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ABSTRACT 

 

Evaluating Post-Fire Plantation Restoration in a Mixed Conifer Forest in the Sierra Nevada 

 

Iris Allen  

 

 Forests in the western United States have experienced a shift from historical disturbance regimes 

in the past century. Many of these changes were induced by European settlers logging the forests and 

suppressing fires. In the past, the dry mixed conifer forests of California’s Sierra Nevada mountains 

experience frequent, low to mixed severity fires. This fire regime helped maintain a heterogeneous 

landscape comprised of groups of trees and openings. However, due to fire suppression and high grading 

logging, forest structure has changed; there are less openings and more small, fire-intolerant trees that can 

carry a fire into the forests crown. The new fire regimes resulting from this change in structure are large, 

high severity fires that kill a majority of the overstory trees. These novel regimes require novel 

approaches to regenerate the forest as they are not adapted to large, high severity fires. The United States 

Forest Service (USFS) will often plant trees after fires to aid with reforestation after large wildfires. A 

new technique being testing is clustering the trees into groups of two to four, instead of the traditionally 

evenly spaced plantations.  

 To evaluate these plantations, I compared growth and development in several post fire plantations 

and natural regenerating stands in the Eldorado National Forest in the north-central Sierra Nevada 

Mountains. I tested for growth and ecological differences between clustered and evenly spaced 

plantations, some with pre-commercial thinning (PCT) and some without, as well as comparing them to 

stands of naturally regenerating trees using mixed effects models. I compared diameter and height growth, 

along with tree density, shrub size, and understory species diversity. My results suggest that clustered 

plantations provide a slight facilitative effect when compared to the evenly spaced plantations. I also 

found high variability in tree stocking, highlighting the intense shrub competition these young plantations 

face. 

I also forecasted growth and fire behavior 100 years into the future using the Forest Vegetation 

Simulation (FVS) and its Fire and Fuels Extension (FFE). In these simulations I tested combinations of 

different fuels treatments (mastication only, mastication with prescribed burning, and no fuels treatments) 

with different overstory thinning intensities (residual densities of 370SDI (stand density index), 495SDI, 

618SDI (TPH), and no overstory thinning) on stand growth and potential fire behavior using three way 

analysis of variance. I compared growth and crowning index at the end of the simulation and the 

simulation age when the flame length, basal area mortality, and fire type reached low severity between 

fuel treatment, thinning intensity, and original management of stands (plantation with PCT, plantation 

without PCT, and natural regenerating stands). I found an overall pattern of decreasing crown fire 

occurrence and fire induced mortality across all simulations due to increasing canopy base height and 

decreasing canopy bulk density. Mastication with prescribed burning was the most effective treatment for 

quickly reducing fire behavior by consuming surface fuels, thus drastically lowing flame length. My 

results highlight the different stressor that post fire plantations experience and how different silvicultrual 

treatments interact with stand development over time to reduce fire risk. They also demonstrate the 

importance of treating stands early and the effectiveness of surface fuel treatments.  
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Chapter 1: Fire Management in Montane Forests of the Northwestern United 

States and California1  

 

1.1 Introduction 

Disturbance, both biotic and abiotic, plays a very important role in shaping the montane forests in the 

northwestern United States and California. In the drier forests of this region, the natural fire regime is 

typically characterized as low-severity or understory fire regime, keeping forests with an open canopy 

(Arno and Allison-Bunnell, 2000; Brown and Smith, 2000). A low-severity regime is categorized as 

generally being non-lethal to the dominant above-ground vegetation where the survival rate of the 

dominant vegetation is 75% or more with low fire return intervals (1–30 years). The main exception to 

this are the dry, high-elevation forests which tend to experience high-severity, stand-replacing fires 

(Agee, 1993). The mesic forests also experience high-severity fires, with very long fire return intervals 

(Agee, 1993). High-severity fires are characterized as generally being very lethal to the dominant 

vegetation which experiences mortality rates of 80% or more (Brown and Smith, 2000). Compared to the 

low-severity regimes, high-severity regimes typically have longer fire return intervals (100–400 years). 

Mixed-severity fire regimes have effects that are intermediate mainly due to variations in topography 

(elevation and aspect) and microclimate that in turn lead to variations in forest vegetation type (Arno and 

Allison-Bunnell, 2000; Brown and Smith, 2000). 

Human activities have altered these forests through their habitation of these forests for many 

centuries. Native Americans used fire as a tool for cooking, hunting, fishing, range management to 

encourage game animal foraging, manipulate plant growth, land clearing, and warfare (Anderson and 

Morrato, 1996; Boyd, 1999; Brown and Smith, 2000). However, it was not until European settlement, 

which began in the 18th century that large-scale landscape alterations occurred. Practices from the past 

two centuries have transformed historical disturbance pattern, forest structure, and species. Historical 

ecology-based natural archives such as tree-rings have been used to reconstruct historical disturbance 

                                                      
1 A version of this chapter was published in the journal “Fire” in April 2019 
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regimes before the European settlement phase (Swetnam et al., 1999). There has been a loss of structural 

heterogeneity and an increase in density. These changes affect fire behavior, wildlife habitat, and 

ecosystem function. Land managers and scientists have noticed the ramifications of the past land 

management and have been working to find new management practices that incorporate landscape-scale 

forest restoration by maintaining natural disturbance regimes (Fig. 1). In particular, the practice of fire 

suppression has shifted fire regimes to a higher proportion of stand-replacement fires and lower 

proportion of low-severity fires compared to the pre-settlement fire disturbance regime (Arno and 

Allison-Bunnell, 2000). 

The objective of this chapter is to provide a synthesis of fire management issues facing the 

mountainous regions of several northwestern states and California in the United States. The scope of fire 

management examined includes preventative activities such as fuel treatments and the policies of state 

and federal agencies that drive management activities. I focused on the large-scale activities that have 

resulted in landscape-scale changes in the forests. I divided the region into two main forests types—wet, 

like the forests in the Pacific Northwest, and dry, like the forests in the Sierra Nevada and Cascade 

ranges. Among these two types, I noted past logging history along with fire management practices, like 

fire suppression. Next, I looked at how historical management has influenced contemporary forest 

management challenges, like catastrophic crown fires, decreased heterogeneity, and climate change. I 

then synthesized what current management actions are performed to address these issues, like thinning 

and fuel treatments to reduce fire severity or improve structural heterogeneity, and restoration after large-

scale disturbances. Lastly, I took a brief look into the policy that has shaped these management actions.  

 

1.2 Study Area 

The northwestern United States and California have a large diversity of mountain ranges and forest 

types. The Rocky Mountains, which run 4800 km from Canada to New Mexico, are a major mountain 

range in western North America. Closer to the Pacific Coast, there are several mountain systems 

including the Coast Range, Sierra Nevada, Cascade, and Klamath ranges in California, Nevada, Oregon, 
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and Washington (Fig. 2). The forest types can be divided into two major categories, dry and wet forests; 

this is predominately due to rain shadow and elevational effects from the mountain ranges. There are 

several different forest types found in the dry forests. In the mid elevations of the Sierra Nevada and 

Cascades, mixed conifer forests are composed of ponderosa pine (Pinus ponderosa Lawson and C. 

Lawson), sugar pine (Pinus lambertiana Douglas), white fir (Abies concolor (Gord. and Glend.) Lindl. ex 

Hildebr.), incense cedar (Calocedrus decurrens (Torr.) Florin), and several oak species (Quercus spp) 

(Old-Growth Definition Task Group, 1986). In the Rocky Mountains, mixed conifer forests are mainly 

composed of Rocky Mountain Douglas-firs (Pseudotsuga menziesii  var. glauca (Mayr) Franco), and 

western larch (Larix occidentalis Nutt.) (Hejl et al., 1995). There is a continuum of moisture availability 

in mixed conifer forests, with moisture increasing as one travels upslope and to northerly aspects (Stine et 

al., 2013). There are also dry ponderosa pine and Douglas-fir forests in these ranges at low to mid 

elevations. Many dry forests in higher elevations consist of lodgepole pine (Pinus contorta Douglas ex 

Loudon) and whitebark pine (Pinus albicaulis Engelm) (North et al., 2009). The wet forests are mainly 

found in the coast ranges of Oregon and Washington. Western hemlock (Tsuga heterophylla (Raf.) Sarg) 

is a common species found in these forests, often mixed with Sitka spruce (Picea sitchensis (Bong.) 

Carriѐre) or coastal Douglas-fir (Pseudotusga menziesii var. menziesii). Western redcedar (Thuja plicata 

Donn ex D. Don) and Pacific silver fir (Abies amabilis (Douglas ex Loudon) Douglas ex Forbes) are 

commonly found in earlier successional mesic forests (Franklin et al., 2002).  

 

1.3 History of Management  

1.3.1 Fire Suppression  

Forests in the dry regions of the northwestern United States and California are shaped by fire, thus 

humans’ manipulation of fire has had a large impact on them. Fire regimes in the west were of low, 

mixed, or high severity, depending on the forest type (Stine et al., 2013). The drier forests like mixed 

conifer and ponderosa pine dominated forests tended to have frequent, low- to mixed-severity fires (Agee, 

1993). Higher elevation forests like lodgepole pine dominated forests and the wetter forests closer to the 
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coast, are adapted to large stand-replacing fires with their thin bark and serotinous cones (Agee, 1993). 

Aspect also plays a role on potential fire behavior due to differences is moisture; more southerly aspects 

have an understory fire regime while more northerly aspects tend to have a stand-replacement fire regime 

(Brown and Smith, 2000). The history of humans using fire to manage lands began long before European 

settlement in the Western United States in the late 18th century. Native Americans would use fire to 

control the growth of certain plants and maintain grasslands to improve foraging for deer, a common 

source of food (Anderson and Morrato, 1996). Their use of the land had a substantial impact on resource 

availability and diversity of flora and fauna; at one point, there were around 100,000 Native Americans 

living in the Sierra Nevada (Anderson and Morrato, 1996). Unfortunately, during the 19th century, Native 

American populations dramatically decreased due to multiple factors, including diseases from European 

settlers, (often forced) cultural assimilation, and violence (Hackel, 2012). This major decline in Native 

peoples’ populations in the late 18th century ended their widespread use of fire for land management 

(Taylor et al., 2016). The Native American communities use of fire for land management (Boyd, 1999) 

were based on traditional fire knowledge (e.g., fire effects on plants and animals) passed down from 

generation to generation within these communities (Christianson, 2015; Huffman, 2013). 

After the major decrease in Native American populations, there were no widespread fire 

management practices until the United States federal government began managing land. The practice of 

fire suppression occurred mainly on public land managed by federal agencies such as the US Forest 

Service and National Park System (Stephens and Ruth, 2005; Van Wagtendonk, 2007). The practice of 

fire suppression began after the creation of the National Parks when the U.S. Army started to patrol them 

in the late 19th century (Stephens and Ruth, 2005). Reduced fire in the late 19th century also coincided 

with heavy fuel removal from extensive livestock grazing (Brown and Smith, 2000). In 1898, Gifford 

Pinchot was appointed as the head of the Federal Forestry Program, which then became the Bureau of 

Forestry in 1901, and then the US Forest Service in 1905 (Pyne, 1997). In 1908, after a series of extensive 

western fires, the prevention and control of fires was added to the charge of the US Forest Service (Pyne, 

1997). The first two chiefs of the US Forest Service were strong proponents of fire suppression, believing 
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that it was necessary in protecting forests (Stephens and Ruth, 2005). The Great Fire of 1910 in Montana, 

Idaho, and Washington further cemented the zero-tolerance policy for fires on federal land (Van 

Wagtendonk, 2007). This fire burned over 1.2 million hectares of land, killed 85 people, and destroyed 

several towns (Pyne, 2008). The passage by the US Congress of the Weeks Act in 1911 allowed 

cooperative agreements and matching funds between the US Forest Service and state forestry 

management agencies to broaden fire protection on public and private lands (Arno and Allison-Bunnell, 

2000). The Weeks Act also provided for the US government to purchase land to set up the National Forest 

system which enabled the government to more effectively manage the lands. The Agricultural 

Appropriations Act of 1912 allowed 10% of the funds generated from the National Forests to be used in 

the construction of roads and trails which in turn improved access in the event of fires. In 1916–1917, the 

National Park Service was established, and 13 National Parks were founded primarily in the western 

United States (Albright and Schenck, 1999). The passage of the Clarke McNary Act in 1924 greatly 

expanded the cooperative fire protection program between the federal and state agencies (Arno and 

Allison-Bunnell, 2000). The 10 a.m. policy was put in place in 1935, stating that all fires on federal land 

should be extinguished by 10 a.m. the next day (Dale, 2006). The Civilian Conservation Corps (CCC) 

program was established by the US Government and ran from 1933–1942 (Pyne, 1997). The CCC 

contributed to fire prevention and firefighting, including the construction of fire lookout towers. For 

instance, the CCC assisted with fighting the 1933 Tillamook Fire (Pyne, 1997). Fire suppression remained 

the Forest Service’s main fire practice until the 1970s (Van Wagtendonk, 2007). During this time period, 

there were voices in the Forest Service and National Park System that were calling for a better 

understanding on fire’s use in the ecosystem, but they did not have any large effect over national policy 

until later in the 20th century (Van Wagtendonk, 2007). Some other federal agencies such as the US Fish 

and Wildlife Service (FWS) conducted the first recorded prescribed fire in 1927 in the St. Mark’s 

National Wildlife Refuge (US FWS (Fish and Wildlife Service), 2014). Recognition of the benefits of 

prescribed burning for land management were noted by ecologists working in the southeastern pine 

forests (Chapman, 1932; Stoddard, 1931). In Idaho and Montana, Elers Koch (1935), a regional forester 
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for the U.S. Forest Service, promoted wilderness values and expressed concerns over fire suppression. 

Effects of prescribed burning were examined in ponderosa pine forests in the mid-20th century (Biswell, 

1960; Weaver, 1952). It was not until the 1960s that the National Park System began to allow fires to 

burn on their land and some prescribed burning (Stephens and Ruth, 2005; Van Wagtendonk, 2007).  

Large fires in the late 20th century did lead to a more cohesive approach to managing fire on a 

national level. The Yellowstone fires and the Canyon Creek Fire both occurred in the summer of 1988 

and burned 500,000 and 100,000 hectares of land, respectively (Turner, 2010; Van Wagtendonk, 2007). 

After these fires, the Secretaries of the Interior and Agriculture performed a review on fire policy on 

National Park and Forest Service wilderness lands (Van Wagtendonk, 2007). This review in 1989 called 

for a change in fire management policy, to make it more straightforward and improve interagency 

cooperation. After this review the National Parks and Forest Service began to allow more fire on their 

lands (Rothman, 2007; Van Wagtendonk, 2007). Another fire that shaped more recent fire policy was the 

1994 South Canyon fire in Colorado. This fire killed 12 firefighters after a blow-up following suppression 

activities (Van Wagtendonk, 2007). After this fire, the review and update of fire management and policy 

on all federal lands was written (U.S. Department of the Interior and U.S. Department of Agriculture, 

1995; Van Wagtendonk, 2007). This report prioritized firefighter and public safety, but also 

acknowledged the ecological need for fire on the land and provide recommendations on how to 

reintroduce fire back onto federal lands (U.S. Department of the Interior and U.S. Department of 

Agriculture, 1995). In 2000, the Departments of the Interior and Agriculture created the National Fire 

Plan (U.S. Department of the Interior and USDA Forest Service, 2002). The plan focused on 

collaboration between federal, state, tribal, and local agencies to identify areas at high fire risk and 

develop strategies to restore fire-adapted ecosystems in these areas (U.S. Department of the Interior and 

USDA Forest Service, 2002). Another aspect of the plan was to assess the feasibility of creating a 

uniform fire planning system across the different agencies (Roose et al., 2008). Jim Hubbard, a state 

forester from Colorado, was assigned that task and created the “Hubbard Report” which lead to the 

creation of the Fire Program Analysis system (Roose et al., 2008). In 2009, the FLAME act was passed 
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which lead to the creation of the National Cohesive Wildland Fire Management Strategy (U.S. 

Department of the Interior et al., 2014). The National Strategy includes guidelines for fire management 

activities that prioritize safety, fuel management, and community engagement, and is still the Nation’s 

fire policy (U.S. Department of the Interior et al., 2014). 

However, despite the advances in fire policy, fire suppression is still a major practice of the US 

Forest Service (Calkin et al., 2014; Stephens and Ruth, 2005). Even with the progress made in 

understanding the important role fire plays in these ecosystems and implementation of prescribed fire and 

fuel reductions, there are still major risks and limited incentives to let wildfires burn (North et al., 2015). 

This is partly due to many people moving to and living in the Wildland Urban Interface, areas where 

homes are located amongst unoccupied spaces, like forests and grasslands (Redeloff et al., 2005). As a 

result, the US Forest Service spends nearly 50% of their annual budget on fire suppression (Calkin et al., 

2014). By altering the natural disturbance pattern of the landscape, fire suppression has also altered the 

structure and function of the landscape (Fig. 1). 

1.3.2 Logging  

The historic logging regime in montane systems usually depended on the forest type. The 

management of wetter forests, found further north and closer to the coast, historically relied on clear cuts 

(Fig. 1). Large-scale logging began in the Pacific Northwest (PNW) to supply California’s population 

boom associated with the gold rush in the mid-19th century (Cox, 1974). As more people moved into the 

Pacific Northwest, more of the huge old-growth forests were cleared and mill towns were created to 

house the lumber workers and their families (Cox, 1974). The timber industry employed 63% of wage 

earners in Washington State and 52% in Oregon in 1915 (Dumont, 1996). The completion of a railroad 

line in the late 19th century and the depletion of timber in the Lake States greatly increased timber demand 

from the Pacific Northwest, making it one of the main suppliers for lumber in the United States (Chiang 

and Reese, n.d.). In the early 20th century, Frederick Weyerhaeuser (timber mogul and founder of 

Weyerhaeuser timber company) purchased over 405 thousand hectares of timber land in Washington 

which greatly expanded industrial forestry in the PNW (Chiang and Reese, n.d.). Industrial loggers 
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worried that the creation of the Forest Reserve Act and the Forest Service would slow down the rate of 

harvest, but Gifford Pinchot, the first head of the US Forest Service, was a supporter of the timber 

industry. He encouraged companies to cut “virgin” forests and regenerate them to allow for sustainable 

yields over time (Chiang and Reese, n.d.). This system of cutting old growth forests and replacing them 

with single species plantations continued after Pinchot and was the main forestry practice from the 1940s 

to the 1980s (Swanson and Franklin, 1992). The rise of conservationism in the mid-20th century and 

environmentalism in the later 20th century, including concern with the Northern Spotted Owl, eventually 

lead to a decline, or complete elimination in many places, of the timber industry (Dumont, 1996). 

However, the legacy of those practices is still felt on the land since these logging operations had a 

tendency to shorten the fire return interval in the wet forest regions (Fig. 1).  

The drier forests, found further south and inland, did not experience the same intensity of clear cuts, 

but these lands were still harvested, which has resulted in lasting impacts (Fig. 1) (Biswell, 1960; 

Rothman, 2007; Turner, 2010). Unlike the clear cuts found in the moist forests in the Pacific Northwest, 

the drier forests had more selection cuts performed (Fig. 1). These dry forests mostly consist of ponderosa 

pine or mixed conifer forest type, which used to have many more large trees, when compared to today, 

that were interspersed with openings (Hessburg et al., 2005). Logging efforts in these forests were 

focused on the largest, most timber worthy trees, usually ponderosa, Jeffery, and sugar pine (Hessburg 

and Agee, 2003; Laudenslayer and Darr, 1990; Stine et al., 2013). This left much smaller residual trees; in 

the Sierra Nevada mountains, this often meant an lower cutting limit of  31 cm DBH (diameter at breast 

height), although by the 1930s there were requirements for leaving trees 61 to 71 cm on some lands 

(Laudenslayer and Darr, 1990). This practice of high-grading, selectively harvesting the best, largest 

trees, leaving behind the small trees, was common practice in the dry forests of California along with the 

Inland Northwest (Hessburg and Agee, 2003; Laudenslayer and Darr, 1990). The harvests also required 

an extensive number of roads and train tracks be put in, to get the logs to the mills (Hessburg and Agee, 

2003). Harvests would usually work across large sections of land, as the earnings from the harvest needed 

to outweigh the cost of roads and train tracks, so it was more cost effective to stay in one large area 
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(Laudenslayer and Darr, 1990). While these logging practices differed from the wet forests, these 

methods also altered and fragmented the forests and induced structural changes that decreased the 

dominance of fire tolerant species.  

1.3.3 Land Ownership  

In addition to the management history of these lands, land ownership patterns also provide important 

context for understanding the issues that forests in the United States face. One usually finds different 

management, historical and current, on private and public forests. In the western United States, a majority 

of the forested land is public, with 64% of the forested area under the federal government (Butler, 2012). 

In terms of forest type, the wet forests in the Olympic Peninsula and Oregon and Washington Coast range 

have a higher proportion of private ownership compared to the dry forest mountain ranges of the 

northwestern United States and California (U.S. Department of Agriculture (USDA) Forest Service, 

2010) (Fig. 2). In California’s 13.4 million hectares of forests, 56% is managed by the federal 

government, with 47% in national forests, 5% in Bureau of Land Management land, and 4% in the 

National Park System (Christensen et al., 2008). In Washington State, about 57% of the forested land is 

public (Erickson and Rinehart, 2005). The remaining forested areas belong to small local and state 

agencies or are on private hands. Having a majority of the land under federal control has advantages and 

disadvantages. It allows for management at the landscape scale, which can help control the spread of 

disturbances like fire and insects. However, this also means resources for management of these areas are 

controlled by the federal budget, which is increasingly limited due to more and more of the budget going 

towards firefighting efforts in the recent years (Steelman, 2016). Also, having such a large area of land 

can make it challenging to have a management plan that address all the area’s needs.  

1.4 Current Issues 

1.4.1 Increasing Fire Risk 

In dry, northwestern and Californian forests, fire suppression has altered structure, which in turn has 

increased fire risk (Arno and Allison-Bunnell, 2000; Brown and Smith, 2000; Schoennagel et al., 2017). 

Mixed conifer and dry pine forests, common forest types in the western United States, historically had a 
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fire regime with frequent surface fires of low to mixed severity (Agee, 1993) (Fig. 1). These fires shaped 

the relatively open canopy forest structure (Stephens et al., 2008). This historical fire regime has changed 

in the past century due to fire suppression (Fig. 1). Due to lack of fires, unforested openings have become 

smaller and fragmented (Skinner, 1995). Forest that were historically kept less dense by fire now have 

increased canopy cover due to lack of fire (Hessburg et al., 2000) (Fig. 1). This pattern of increased forest 

cover due to fire suppression has been detected in the Rockies, Sierra Nevada, Cascade, and Klamath 

ranges (Hessburg et al., 2000; Skinner, 1995; Stephens, 2005; Stine et al., 2013). In response to increases 

in forest density and cover, changes in fire behavior have been observed in areas with historically low to 

moderate fire regimes (Miller and Safford, 2012) (Fig. 1). However, there is still debate over exactly how 

fire trends are changing, especially when it comes to areas of high-severity fires (Hanson and Odion, 

2014; Miller et al., 2009; Miller and Safford, 2012; Morgan et al., 2017). While the specifics of fire 

regime change are not clear, the past few years have witnessed several fires that approach state records. In 

2013, the third largest fire in California’s history burned through a mixed conifer forest on the Stanislaus 

National Forest and Yosemite National Park. The fire was over 100,000 hectares, well outside of historic 

fire extent, and pre-fire forest structure suggested that a majority of the burned area had not experienced a 

fire for more than a century (Harris and Taylor, 2015).  

The shift in fire regimes in western forests has had adverse effects on human livelihoods and wildlife 

habitat. Approximately 39% of housing units in the United States are located in the wildland urban 

interface (WUI) (Redeloff et al., 2005). Many of these homes are found in the western United States 

especially in California and Colorado, and homes located in the WUI are at greater risk for wildfires 

(Covington, 2000). Given this, and the fact that annual area burned by wildfire has increased in the past 

decade, these homes will soon be in direct danger from fire, if they are not already (Stephens and Ruth, 

2005; Stine et al., 2013). In addition to damage to human structures, these atypical (i.e., arising from an 

altered fire regime) large fires harm the forest habitat and resilience. The California spotted owl, Strix 

occidentalis, is a species of concern that is negatively affected by large wildfires (Jones et al., 2016; 

North, 2012; Stephens et al., 2016). They are associated with late successional forests, with high canopy 
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cover and complex structure (North, 2012). However, their preferred habitats now have a high-severity 

fire risk due to an accumulation of fuels from fire suppression (Jones et al., 2016; North, 2012; Stephens 

et al., 2016). When high-severity wildfires burn the owls’ range, they lose nesting habitat and the canopy 

cover they require, which has resulted in a sharp decline in their populations (Jones et al., 2016; Stephens 

et al., 2016). In addition to the loss of habitat, the forests have trouble recovering from the atypical large 

fires, as they are not adapted to them (Collins and Roller, 2013; Welch et al., 2016). Often, seed trees are 

killed, impeding natural regeneration (Bonnet et al., 2005; Donato et al., 2009). This often delays their 

recovery, further displacing wildlife. It is important to note that not all fires cause this damage, only the 

large, atypical ones with high overstory mortality.  

1.4.2 Structural and Functional Changes 

Historic silviculture practices before the 1990s in the moist forests of the Pacific Northwest have 

decreased stand structural complexity, which in turn can affect wildlife habitat and watershed conditions 

(Fig. 1). Before European settler intervention, these forests were old, over 175 years, and structurally 

complex (Fig. 1) (Franklin et al., 1981). There was a mix of trees of all sizes, including very large, old 

trees, along with standing dead trees, snags, and diverse understory plant species (Franklin et al., 2002). 

The diversity of structure and dead and decaying material created habitat for many species and facilitated 

nutrient cycling (Franklin et al., 2002). However, most of this structural diversity is lost when areas are 

clear cut and replaced with either natural regeneration or plantations (Fig. 1). The loss of complex habitat 

harms species like the Northern Spotted Owl, which was listed on the Endangered Species Act in 1990 

due to habitat loss and fragmentation from forest management and logging (Franklin and Gutierres, 

2002). This loss of woody debris also affects forest streams as many aquatic species rely on in stream 

wood for habitat (Benda et al., 2016).  

Drier forests have also experienced a decrease in habitat diversity, but to a different extent. These 

forests were previously characterized by a horizontally heterogeneous landscape with trees clustered in 

groups ranging in age and size, spaced out with small openings filled by herbaceous plants and shrubs 

(Stephens et al., 2008) (Fig. 1). However, due to fire suppression and logging, the forests have become 
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more dense and homogenous (Naficy et al., 2016; Stine et al., 2013) (Fig. 1). Due to selection harvesting 

of the largest pines in the past, the density of large trees in stands has decreased (Hessburg et al., 2000; 

Stine et al., 2013) (Fig. 2). Conversely, the amount of shade-tolerant conifers, like white fir and incense 

cedar, have increased (Hessburg et al., 2000). These trees would have been controlled with low-severity 

fires but are now able to outcompete shade-intolerant pines for moisture and growing space due to fire 

suppression (Fig. 3). The competition in return increases mortality of the larger old trees. Fire suppression 

is also responsible for a decrease in non-forested area. Shrubs and chaparral used to be a common element 

in dry western forests, often resprouting after fires. Shrub lands have been replaced by forest, reducing 

landscape heterogeneity (Nagel and Taylor, 2005). The decrease in heterogeneity and increase in density 

also puts the forests at a greater risk for large scale insect and fungal outbreaks (Fettig et al., 2007) (Fig. 

1). Increased tree mortality from insect pests and fungal pathogens in turn increase the likelihood that 

surface fires will easily transition into crown fires due to the standing dry, dead fuel (Edmonds et al., 

2011). The landscape heterogeneity can act as ecological insurance, allowing for the forest to persist even 

if a small section was harmed. However, as the forests become denser and homogenous, large 

disturbances, such as diseases, insects, and wildfires, are able to spread throughout the whole stand.  

Forests with mixed-severity fire regimes have shown increases in stand density during the 20th century 

with negative implications for stand structural complexity and reduced functional aspects such as beta 

diversity (which is the ratio between regional and local species diversity); this decreases heterogeneity of 

successional stages, which safeguard forest health (Hessburg et al., 2016; Perry et al., 2011). 

1.4.3 Climate Change  

Current climate warming principally stems from anthropogenic emissions and this trend from the 

pre-industrial period to the present will persist for centuries (IPCC, 2013). Some authors suggest it is 

imperative that forest resource managers develop adaptation strategies to climate change and induced 

changes in disturbance regimes (Millar et al., 2007). With this altered climate, warmer temperatures, 

decreased snowpack, earlier snowmelt, increased summer evapotranspiration, and more frequent and 

severe droughts are expected (Chmura et al., 2011). All of these changes will affect forest function, and 
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some already have (Fig. 1). Warmer temperatures may increase productivity in some forests, however 

trees have a heat injury threshold, which, if passed, can damage cells, affecting metabolic processes 

(Chmura et al., 2011; Vose et al., 2018). Drought can harm trees by causing cavitation of water columns 

and water-stress-induced carbon starvation, reducing ability to defend against biotic attacks (Allen et al., 

2010). Often, the combination of elevated temperatures and drought is what kills trees (Clark et al., 2016). 

Large patches of water-stressed and even dead trees can be seen throughout the northwestern United 

States and California, with extreme mortality events in the southern Sierra Nevada Mountains (Stephens 

et al., 2018; Vose et al., 2018).  

Climate change’s effects on weather and tree mortality in turn are altering forests’ disturbance 

regimes (Turner, 2010). Many of the dry forest areas already have weather systems that support fire. 

Foehn winds, often called “chinook” winds in the Rocky Mountains and “mono” winds in the central 

Sierra Nevada, are fast, dry, warm winds that flow downslope (Gedalof et al., 2005). The high peaks of 

the ranges also block and divert moisture away from the region. These hot, dry, windy characteristics 

create conditions conducive to the ignition and spread of fire (Gedalof et al., 2005). Climate change is 

making areas that are already prone to fire even more prone to it (Stephens et al., 2013) (Fig. 1). Wetter 

forest types tend to have longer fire return intervals and climate change inducing more frequent fires 

disrupts this pattern (Westerling and Bryant, 2007) (Fig. 1). There are also climate change predictions for 

decreased or less consistent precipitation, which creates drier fuels, thus increasing flammability 

(Abatzoglou et al., 2017). The effects of drought have already been observed in California. Individual 

fires are burning longer, and the fire season has lengthened due decreased snow pack (Westerling et al., 

2006). This increased climate-related fire risk compounds with the increased forest density, putting these 

forests at a real risk for large, stand-replacing fires.  

In addition to increasing fire hazard, climate change is also changing forest structure and 

exacerbating other issues, like fungal pathogens and insect pests. Warming temperatures shift many 

species habitats up in latitude and or elevation (Moritz et al., 2008). This is especially a problem for 

species that live on mountains, as they have a limited amount of space to move up to (Moritz et al., 2008). 
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The landscape scale morality events from fungal pathogens and insect outbreaks in recent years are 

outside of historical norms (Fig. 1) (Vose et al., 2018). A warming climate has allowed pathogens into 

areas that used to be too cold for survival, thus infecting more trees (Bentz et al., 2010). In Yellowstone 

National Park, the high-elevation whitebark pine forests historically only faced short, infrequent 

outbreaks of mountain pine beetles. This was due to the high-elevation conditions being too cold for the 

beetle. Now, however the beetle is able to overwinter in whitebark pine stands, and in some areas killing 

more than 95% of the cone-bearing trees and is projected to continue killing trees as the climate warms 

more (Logan et al., 2010). As mentioned before, climate change has created more drought conditions in 

dry forests (Allen et al., 2010; Vose et al., 2018) (Fig. 1). These drought conditions create stressed trees, 

which make them more susceptible to attack (Vose et al., 2018). The large, drought-related mortality 

event seen in the southern Sierra Nevada Mountains has been exacerbated by bark beetles killing the 

already water-stressed trees (Vose et al., 2018). Tree mortality during a hot and dry decade (2003–2012) 

in the western United States showed regional differences where mortality was attributed more to 

harvesting in the states of Washington and Oregon, while mortality due to bark beetles was more of a 

concern in Colorado and Montana, and mortality was mainly driven by fire in the state of California 

(Berner et al., 2017).  

 

1.5 Current Management  

1.5.1 Fuels Treatment  

In efforts to restore historical fire regimes and reduce fire hazard, thinning and fuel reduction 

treatments to decrease fire risk are often used (Fig. 1). Given the amount of change that has happened in 

these forests, active management is needed to adequately restore them (Agee, 2002). Fuel reduction can 

be a strong tool but given the extent of fire suppression in the western United States, specific strategies 

are needed to make it effective. Focusing fuel reduction in areas with low- to mixed-severity fire regimes 

will provide the largest impact, as these forests have diverged the most from their historic structure and 

disturbance regimes (Agee, 2002) (Fig. 1). Performing the right type of fuels reduction is also important. 
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Agee and Skinner (2005) laid out four principles for effectively reducing extreme fire behavior in fire 

adapted, dry forests: (1) surface fuels must be reduced to decrease potential flame length; (2) height to 

live crown must be increased so that longer flames lengths are required for a torching; (3) the overall 

density of trees should be reduced to decrease the ability for a crown fire to spread; and (4) maintain the 

largest, fire-resilient species because larger trees are more resistant to fatal fire damage. A common 

technique to alter the nature of fine fuels is mastication (Knapp et al., 2011; Kobziar et al., 2009; Kreye et 

al., 2014; Reiner et al., 2012, 2009). Mastication usually shreds or chips smaller trees, branches, and 

understory shrubs, thus relocating ladder fuels to the surface (Kreye et al., 2014). However, especially 

when used in young stands and plantations, it often needs to be accompanied by prescribed fire to 

effectively reduce fire behavior (Knapp et al., 2011; Kobziar et al., 2009; Reiner et al., 2012). Reducing 

fuels using these principles has been shown to reduce high-severity fire risk in many scenarios (Agee and 

Skinner, 2005; Knapp et al., 2011; Kobziar et al., 2009; Lyons-Tinsley and Peterson, 2012; North, 2012; 

North et al., 2009; Reiner et al., 2012; Safford et al., 2012; Schmidt et al., 2008; Stephens and 

Moghaddas, 2005a). Spatial arrangement of the treatments also influences their effectiveness. 

Strategically placed area treatments (SPLATs) are areas of thinning placed in the forest to slow the spread 

of fire at a landscape-scale (Finney, 2001). When fire behavior is modeled, SPLATs effectively reduce 

high-intensity areas burned (Schmidt et al., 2008).  

Prescribed burning is another common fuel-reduction technique, and when used in tandem with 

thinning, is most effective at reducing crown fire risk (Fig. 1). One of the main problems with only 

thinning forests to reduce fuels is that it can often leave residues, actually increasing surface fuels (Agee 

and Skinner, 2005). Prescribed burning can significantly reduce litter and surface fuels, reducing fire 

intensity (Stephens and Moghaddas, 2005a). When forests have an abundance of ladder fuels, thinning 

medium-sized trees followed by prescribed burning has the largest effect on fire behavior (Schmidt et al., 

2008; Stephens and Moghaddas, 2005a). Besides reducing fuel loading and risk of crown fire, prescribed 

burning can be used for restoring some ecosystem processes. Giant sequoia, the world’s largest tree that is 

only naturally found in California’s Sierra Nevada Mountains, relies on fires for regeneration (Hartesveldt 
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et al., 1975). Unfortunately, due to a history of fire suppression, many white firs have encroached on their 

habitat, affecting regeneration. However, understory thinning and prescribed burning positively affect 

seedling success as it reduces light competition and encourages the serotinous cones to open (Meyer and 

Safford, 2011). It is important to note that prescribed burning is not a perfect solution for all restoration 

projects (Heumann, 2009). Prescribed burning can be risky in areas with steep topography, as fire travels 

quickly up steep slopes, so it is difficult to control prescribed burns in steep areas (Dillon et al., 2011). 

Prescribed burning in unthinned, dense stands also poses a risk of uncontrollable wildfires, as the ladders 

fuels that are responsible for crown fires are still there (Hessburg et al., 2016; Perry et al., 2011). While 

there are some very small risks associated with prescribed burning, in an overwhelming majority of its 

uses, little damage is done (Yoder et al., 2004). Despite their low likelihood of damage, the public still 

views prescribed fire as inherently risky (Yoder et al., 2004). 

1.5.2 Thinning to Increase Heterogeneity  

Land managers are now factoring in ecological concepts into their practices in order to encourage 

and create structural heterogeneity in forests. The pattern of spacing out cuts throughout the landscape is 

still being used, but with modifications. The size and structure of the patches have a large influence on 

habitat. Evenly spaced cuts increase the amount of habitat fragmentations, so clustering cuts and 

maintaining undisturbed connectivity is an important practice (Franklin and Forman, 1987) (Fig. 1). Cuts 

can also be used to increase woody debris in streams, improving fish habitat (Benda et al., 2016). Another 

important ecological principle included in new management plans is the inclusion of biological legacies, 

like old trees and standing dead trees (Fig. 1). Leaving these legacies help maintain important habitat and 

function (Franklin et al., 2002). Franklin and Johnson (2012) created a management plan for wet western 

forests that attempts to do so. They suggest a variable retention harvesting system, creating a 

heterogeneous landscape with patches of cuts (Fig. 1). The cuts would be focused in previously harvested 

stands and would maintain 30% of the preharvest stand structure, like live trees, snags, and logs (Franklin 

and Johnson, 2012). The variable retention harvesting system could also encourage development of 

diverse early seral ecosystems, an important functional stage in western mesic forests that is in limited 
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supply (Franklin and Johnson, 2012) However, these practices are often encouraged but not wholly 

implemented.  

While a majority of the suggested thinning treatments in dry western forests focus on reducing fuels 

and thus crown fire danger, increasing stand heterogeneity is another treatment goal (Fig. 1) (Stine et al., 

2013). There is a shifting focus to a local scale for implementing restoration techniques. Adapting crown 

class, species preference, and stocking density requirements for individual stands help meet the specific 

needs of each stand (North, 2012). Using local topography to determine target densities and species helps 

emulate the original composition of the landscape and help create stand heterogeneity (North et al., 2009). 

These forests were originally composed of a patchwork of clusters of trees and openings. Specifically 

incorporating these elements into restoration treatments ensures that those historic structures return. A 

new approach incorporating individuals, clumps, and openings (ICO) has created a framework to 

categorize and create these elements (Churchill et al., 2013). Focusing on retaining spatially explicit 

elements in the forest helps maintain important ecological process and maintain wildlife habitat (Larson 

and Churchill, 2012). Lower tree density also benefits the tree’s physiology. Dry forests that are more 

open and heterogeneous are less susceptible to drought damage (Stephens et al., 2008). Thinning has also 

been shown to reduce water stress (North et al., 2009). However, it is important to acknowledge that 

creating local scale management plans requires an immense amount of work and will take coordination 

across different agencies and land owners to implement. 

1.5.3 Use of Plantations after a High-Severity Fire  

Conifer regeneration after high-severity fires is extremely variable (Collins and Roller, 2013; Welch 

et al., 2016). Often shrubs will dominate the post fire landscape due to their persistent soil seed bank 

(Nagel and Taylor, 2005). Shrubs can out compete the conifer seedlings for light and water, delaying 

conifer regeneration for decades, if not centuries (Russell et al., 1998). In addition to the increased 

competition, seed source trees are killed during stand-replacing fires, preventing the establishment of the 

next generation of trees (Bonnet et al., 2005). To aid with forest reestablishment, targeted tree species are 

often planted after stand-replacing fires and are usually more successful than natural regenerating stands 
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(Collins and Roller, 2013) (Fig. 1). However, these plantations require intensive management to survive. 

Controlling for shrubs mechanically or with herbicide is also extremely important in plantation success, 

as shrubs can outcompete tree seedlings (McDonald and Fiddler, 2010; Tappeiner and McDonald, 1996; 

Zhang et al., 2008). Salvage logging is often performed before planting to remove fuels and safety 

hazards and provide income to fund other management activities (McGinnis et al., 2010), although 

salvage logging does not yield many ecological benefits (Hessburg et al., 2016). Slash leftover from the 

fire and logging can hinder the success of plantations, so it is often piled and burned to encourage or 

discourage certain species from regenerating (Tappeiner et al., 2015).  

While plantations can be successful at establishing trees quickly, there are several common 

criticisms. Their dense, homogenous nature results in a high density of canopy and surface fuels, which 

put them at risk for high-severity fire (Kobziar et al., 2009; Lyons-Tinsley and Peterson, 2012; North et 

al., 2019; Zald and Dunn, 2018). Plantations at high density are also at risk for drought-induced damage 

or mortality (Cannell, 1999). When compared to naturally regenerating stands, plantations often exhibit 

lower vegetative diversity in the early stages (Stephens and Wagner, 2007). Plantations are also lacking in 

spatial heterogeneity, so many of the problems associated with homogenous stands, like quick spread of 

disease and lack of wildlife habitat, are found in them (Fettig et al., 2007). As forest plantations become a 

more common method for rapid forest restoration, all aspects of ecosystem health and structure like 

diversity and resiliency to drought need to be addressed if they are to achieve their target of restoring the 

older forests conditions.  

While most plantations are historically planted in evenly spaced rows, some restoration projects plant 

them in small, clustered aggregates, (Fig. 4) (Eldorado National Forest, 2014; North et al., 2019). This is 

attempting to mimic the natural clumping pattern of historical mixed conifer forests. Until the 2019 

Tamm Review (North et al., 2019), there have not been any formal studies on this style of plantations in 

the United States. Commonly used square planting patterns were designed to maximize the productive 

capacity of the site by offering each seedling an opportunity for a relatively equal share of sunlight 

condition as well as site nutrients and moisture resources; this methods is also logistically efficient. 
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Although many foresters wonder if a clustered arrangement will yield a forest stand within a reasonable 

time frame, there could be some potential benefits to a clumped arrangement. Tree ring analysis has 

shown trees in clumped patterns are resilient to moisture and fire stress (North et al., 2019). Having a 

spatially heterogeneous stand can break up crown and fuel continuity, thus reducing fire severity (Miller 

and Urban, 2000; Stephens et al., 2008). Most conifers require bare mineral soil, adequate soil moisture, 

light shade, and minimal competition for regeneration (Cooper, 2006; Tappeiner and McDonald, 1996). 

All these variables could potentially be altered by the spatial arrangement of the planted seedlings.  

1.5.4 Shift in Policy  

The Forest Reserve Act in 1891 allowed the president to set aside forest reserves on public land 

(Stephens and Ruth, 2005). Over the following few years, the extent of these reserves expanded along 

with the Forest Service Organic Management Act of 1897, which gave the secretary of the interior the 

power to regulate use on the reserves (Glasser, 2005). This network of public lands, which later became 

the National Forest system, allowed for policies, like the “10 a.m.” fire suppression practice to be widely 

implemented. It was not until later in the 20th century that new policy passed with the goal of restoring 

ecosystems to historical structure and function. There were policies like the Resource Planning Act of 

1974 and the National Forest Management Act of 1976, which required the National Forests to write 

forest management plans and regulate timber harvesting, and also outlined a planning rule that describes 

how public stakeholders can be involved in the planning process and how decisions are subject to 

objections (USDA Forest Service, 2004). The Endangered Species Act, which came out in 1973, has 

strong language, stating that critical habitat of listed species cannot be harmed (Bean, 2009). This had a 

huge impact for management of species like the spotted owl. It created regulations on private lands, which 

have fewer protections than federal lands (Suzuki and Olson, 2008). Another impactful piece of 

legislation was the 1994 Northwest Forest Plan (NWFP). The NWFP created a network of reserves 

throughout the Pacific Northwest and worked to relieve part of the burden put on private landowners to 

manage wildlife species (DellaSala et al., 2015). A new science synthesis for the NWFP was recently 

released that has new science informing management in the PNW since the original publication (Spies et 
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al., 2018). There is a similar plan for the forests of the Sierra Nevada called the Sierra Nevada Forest Plan 

(USDA Forest Service, 2004). These laws and plans had a significant impact of forest management since 

it provided administrative control of larger and more contiguous areas of public land, which makes it 

more effective for addressing issues related to forest health, including fire management (Cortner et al., 

1996).  

In 2003, the Health Forests Initiative was implemented as a response to the severe 2002 fire season. 

Its goals were to expedite fuels treatments by reducing regulations surrounding forest cuttings (Neznek, 

2004). Unfortunately, many people viewed this policy move as simply a way to reduce environmental 

regulations for the benefit of logging companies (Johnson et al., 2006). Another problem with current 

national fire policy is that there is still a lot of operating budget put into fire suppression and there is not 

enough left for fuels reduction. However, this issue is expected to improve starting in 2020 following the 

firefighting bill that the Congress has passed in 2019 which appropriated more funds to fuel management 

(United States. Cong., 2019). As of 2014, annual spending on fire suppression is over 1 billion dollars 

(Calkin et al., 2014). Also, many fuel treatments that are implemented focus on only reducing the amount 

of fuels instead of looking how to reduce severe fires on the landscape level (Stephens and Ruth, 2005). 

Schoennagel et al. (2017) caution that site-level fuel treatment reductions will not have a substantial 

impact on affecting regional wildfire behavior. They also promote a system of treatment triage in which 

critically important ecosystems and communities in the wildland urban interface areas are initially 

targeted for fuel reductions. There is also conflict between protecting wildlife and fuel treatments. The 

strict protections under the Endangered Species Act can often delay or hinder fuel reductions when they 

need to occur in critical habitat (Stephens and Ruth, 2005). The NWFP has also experienced some 

pushback. It has not met its commitment for timber sales, and many argue that it is harming the rural 

communities that rely on logging (DellaSala et al., 2015). There is no definite policy solution to perfectly 

manage forests. That is why it is important to make legislation adaptable to new science and incorporate 

all stakeholders.  
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There are differences in policy and management framework for addressing wet and dry forest types 

in the mountain ranges of the northwestern United States and California. In comparatively wetter forest 

types, stand-replacing fires still serve an ecological role. The key concern in these wetter forest types is 

that a potential shortening of the fire return interval associated with climate change may lead to 

recruitment failure because trees may not get a chance to reach a seed-bearing age (Scott et al., 2014). In 

the drier forest types, the main policy goal is to restore an understory fire regime in these forest types 

(Scott et al., 2014). 

 

1.6 Conclusions  

The legacy of past management in northwestern and Californian montane forests is still seen. Fire 

suppression in frequent-fire forests and logging practices throughout the ranges left many of these forests 

more homogenous, fragmented, and overly dense. The transformed forests experience problems with 

wildfire, lack of wildlife habitat, and loss of function. In their current state, the disturbance regimes in 

these forests have been altered to the point that they have trouble recovering from the new disturbances. 

However, some management practices work to restore ecosystem function and historic disturbance 

regimes. Through different thinning and fuels treatments, structural heterogeneity and historic fire 

regimes can be worked back into these systems. In the past few decades, there has also been an increase 

in legislation working to help these forests, although some legislation is more effective than others. 

Restoring the forests’ structure and function will require active management implemented on the local 

and landscape scale while taking into account climate change. With expected climate-induced changes in 

fire frequency and scale, fuel treatments will likely need to be implemented in dry forests to ensure they 

have an understory fire regime. With respect to wet forests in this region, it is suggested that there is still a 

place for stand-replacement fire regimes. However, these forests will require structural changes 

incorporating heterogeneity to improve their resilience. 
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1.7 General Research Goals and Thesis Structure  

The goal of my thesis is to identify the best tools to use for reforesting land after a large wildfire and 

keep it fire safe as the forest develops. I aim to do this with two research projects that focus on young 

mixed conifer plantations installed after a large, high severity fire in California’s Sierra Nevada 

Mountains. The first project (chapter 2) tests the difference between the clustered and evenly spaced 

plantations and naturally regenerating stands. I compare diameter and height growth as well as density 

variables, shrub characteristics, and understory diversity.  I also identify the best predictor variables for 

diameter and height growth before and after thinning. The second project (chapter 3) takes the growth 

data from the first project and uses the Forest Vegetation Simulation (FVS) and its Fire and Fuels 

Extension (FFE) to model growth and fire behavior 100 years into the future. In these simulations I test 

different fuel and thinning treatments to identify the most effective way to maximize growth and reduce 

risk of crown fires. My goal for my research is to aid land managers in making the most effective decision 

on how to reforest and manage their land after a large wildfire.  
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1.9 Figures and Tables  

 
Figure 1. Effects of historic and restoration management on the wet and dry forests of the northwestern 

United States and California. 
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Figure 2. Map of mountain ranges of the northwestern United States and California showing the 

distribution of wet and dry forest types. Data usgs.gov  
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Figure 3. A fire-suppressed mixed-conifer stand in the Sierra Nevada region of northern California. 

The overstory is dominated by sugar pine and ponderosa pine. The stand contains a dense understory 

of shade tolerant, fire sensitive white fir, and incense cedar. Photo Credits: Dr. Jianwei Zhang, 2008 

 

 

 

 

 

 

    

(a) (b) 

Figure 4. Comparison of a traditional, evenly spaced plantation (a), and a novel clustered arrangement 

(b) in the mixed-conifer forest region of the Sierra Nevada, Eldorado National Forest. Photo Credits: 

Iris Allen, 2017 
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Chapter 2: Comparing past growth and ecology between two plantation 

arrangements and natural regenerating stands after a high severity fire  

 

2.1 Introduction 

 Climate change, past logging practices, and over a century of fire suppression has caused  a 

change in the fire regime of mixed conifer forest in the Sierra Nevada (Agee, 1993; Miller and Safford, 

2012; Westerling and Bryant, 2007). The contemporary fires leave the landscape heavily altered, 

disrupting the post-fire successional process by limited conifer regeneration. Shrubs will often dominate 

this post fire landscape due to their persistent soil seed bank (Nagel and Taylor, 2005). Shrubs can 

outcompete the conifer seedlings for light and water, delaying conifer regeneration for decades (Russell et 

al., 1998). In addition to increased competition, stand replacing fires kill seed source trees, preventing the 

establishment of the next generation of trees (Bonnet et al., 2005). To aid with reforestation, plantations 

are often established after stand replacing fires, and are usually more successful than natural regenerating 

stands (Collins and Roller, 2013; North et al., 2019). These post-fire restoration plantations require 

intensive shrub management to be successful (McDonald and Fiddler, 2010; Zhang et al., 2006). They 

also face a large fire risk due to their close, even spacing and high amount of ladder fuels (Kobziar et al., 

2009; North et al., 2019).  

While most plantations are evenly spaced, some restoration projects plant them in small 

aggregates, usually of two to four trees (Eldorado National Forest, 2014; North et al., 2019). This is an 

attempt to mimic the natural clumping pattern of historically fire resilient Sierra Nevada forests (Churchill 

et al., 2013; North et al., 2009). A potential drawback to this method is that it could increase competition 

between the trees, impacting growth and survival (Duchesneau et al., 2001). Light is one of the most 

important factors for tree regeneration in mixed conifer forests (McDonald, 1976). Increasing light and 

soil moisture competition within clumped plantings could be detrimental to seedling survival, as they are 

important factors for mixed conifer seedling growth and survival (Royce and Barbour, 2001; Tappeiner 

and McDonald, 1996). However, a mutual benefit (facilitation) of young trees within a clump has been 
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observed before (Fajardo and McIntire, 2011; Owen et al., 2017). facilitation could result from 

neighboring trees shading each other and improving soil moisture, benefitting growth in dry conditions 

(Holmgren, 2000). Also, ectomycorrhizal connections between trees are stronger at closer distances 

(Simard, 2009). The literature on clustered plantations in the United States is scarce, with no published 

studies on it in the Sierra Nevada to my knowledge. It is important to quantify the advantages and 

disadvantages of clustered plantations if they are to be used as a regeneration method in post fire 

restoration.   

 This chapter focuses on early forest dynamics in two types of mixed conifer plantations after a 

high severity fire: one planted in the traditional, evenly-spaced method, and one with trees planted in 

clusters. Specifically, the objective of this study is to quantify growth and ecological differences using 

regression-based modeling between these two plantations types along with how they compare to naturally 

regenerating stands after a fire.  

 

2.2 Methods 

2.2.1 Study Area  

 My study took place in the boundary of the 2004 Power Fire that burned at the southern extent 

of the Eldorado National Forest, which lies in the north-central Sierra Nevada Mountains of California 

(Fig. 1). These mountains are in a Mediterranean climate, with dry, warm summers and cool, wet winters 

(Bailey, 2016). Most of the precipitation falls as snow from October to April, averaging about 130 cm 

throughout the year. Mean daily temperature ranges from -6.4 ⁰C in January to 22.5 ⁰C in August 

(PRISM Climate Group, http://prism.oregonstate.edu, Accessed 6 March 2019). The soils are primarily 

Jocal loam in the western portion and vary in the eastern portion, but with large area compromised of 

Chaix-Pilliken coarse sandy loam and Windy gravelly sandy loam (Natural Resource Conservation 

Service, 2018). The study site ranges from 1300 to 2000m in elevation, in the mid-range of the 

mountains. The dominant forest type is mixed conifer, which consists of ponderosa pine (Pinus 

ponderosa Lawson & C. Lawson), Jeffery pine (Pinus jefferyi Grev. & Balf.), sugar pine (Pinus 
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lambertina Douglas), Douglas-fir (Pseudotsuga menziesii (Mrib.) Franco), incense cedar (Calocedrus 

decurrens (Torr.) Florin), white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.), red fir (Abies 

magnifica A. Murr.), and giant sequoia (Sequoiadendron giganteum (Lindl.)Buchholz). Jeffrey pine and 

red fir are more common at higher elevations (Fites-Kaufman et al., 2007).  

The Power Fire burned 6,000 hectares, with almost 50% of the fire burning at high severity, 

corresponding to more than 75% tree mortality (Hann et al., 2008). In efforts to restore the burned area, 

the Forest Service established plantations from 2005 to 2009 (Fig. 2) (U.S. Department of Agriculture 

(USDA) Forest Service, 2017). They planted ponderosa pine, Jeffery pine, sugar pine, Douglas-fir, 

incense cedar, white fir, red fir, and giant sequoia, with ponderosa pine being the most predominate. Two 

planting arrangements were used, each attempting to attain different goals designated by the Sierra 

Nevada Forest Plan Amendment Record of Decision (USDA Forest Service, 2004). The clustered 

planting arrangement, or planting group A, mimics historical group-gap forest structure. It is composed of 

aggregates of 2-4 trees, with about 6.4 m between clusters and 1m between trees in the cluster for a final 

planting density of 494 to 988 trees per hectare. On the other hand, the evenly spaced arrangement, or 

planting group B, follows a traditional silvicultural planting scheme with even spacing and is intended to 

create dense habitat for the endangered northern spotted owl. Trees were planted evenly with about 4 m 

inter-tree spacing, a planting density of 741 to 865 trees per hectare. About 75% of all plantations were 

pre-commercially thinned (PCT) from 2013-2015. This thinning was performed on trees and shrubs, with 

slash left unmulched on the ground.  

2.2.2 Site Selection 

I selected sites to represent conditions in both planting arrangements and in adjacent no-

plantation forest land (Fig. 2). Field sampling occurred from May to August in 2017. I identified clustered 

and evenly spaced plantations without interplanting after initial establishment that occurred in moderate 

to high severity burned areas covering similar areas. Stands covered a range of slopes and aspects. I 

verified stand selection in the field and sites with plantation failure (i.e. conversion to shrub fields) were 

eliminated since the goal of this study was to evaluate how established plantations performed, not identify 
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the factors that cause a plantation to succeed. Elevation at thinned sites ranged from 1340 to 1570 m and 

from 1940 to 2000 m at the unthinned sites. Pre-commercial thinning was only performed at lower 

elevations because the high elevation plantations had not reached an adequate size for thinning. This 

resulted in a confounding factor between thinning and elevation which was accounted for and addressed 

in data analysis and discussion. I selected ten plantations: three clustered-thinned, three evenly spaced-

thinned, two clustered-not thinned, and two evenly spaced-not thinned (Fig. 2, Tables 1 & 2). I located 

natural regenerating stands in areas without management that 1) burned at moderate to high severity and 

2) were within 1 mile of sampled plantations. I field-verified the stands to ensure trees established after 

the fire, i.e. after 2004. I selected four naturally regenerating stands, two near the unthinned plantations 

and two near the thinned plantations (Fig. 2, Tables 1 & 2).  

To determine plot locations within a particular stand, I digitally imposed a 50 by 50 m grid over 

each stand, with a 20-m buffer zone at stand boundaries. I randomly selected five intersections from each 

grid as plot locations. If an intersection landed in an area that could not be sampled (i.e. too steep for safe 

access, road intersecting) I selected another random point until there were a total of five plots per stand. 

Each plot was circular and 200 m2 (1/50 hectare, 7.98 m radius) in area (Fig. 3). All stands had five plots 

except for two natural regenerating stands, one with seven plots and one with eight plots. This was done 

so that clustered, evenly spaced, and natural regenerating stands would each have 25 total plots total. 

2.2.3 Field Methods 

My field team inventoried forest structure to quantify stand growth and attributes. At each plot, 

we took pictures from the center facing the cardinal directions (north, east, south, west), and recorded 

slope, and aspect.  For all trees taller than breast height (1.37 m) (assumed to be planted) within the plot, 

we collected species, DBH, and status (live/dead). We randomly selected a subset of five yellow pines 

(ponderosa or Jeffery pine) to collect additional measurements, specifically height, crown width in two 

directions, height to live crown, and interwhorl height using an ultrasonic measurement system; 

furthermore, we cored these pines at breast height using an increment borer to determine basal area 

increment. Pines are the only species in this forest type that grows one distinct whorl each year, allowing 
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the collection of annual interwhorl measurements. Within the half plot radius, we recorded species and 

heights for all trees below breast height (referred to as regeneration) (Fig. 3). We identified all stumps 

from after the thinning (i.e. similar diameter as standing trees, no char) within the thinned plots, and 

recorded stump diameter and height. 

We surveyed understory vegetation using a 1m x 1m ground cover plot centered at half way 

points (3.99 m) along the northeast and southwest radii of each plot (Fig. 3). We estimated percent cover 

of the different herbaceous species along with a count of individual plants per species. Within in half-

radius plot, we recorded shrub species, height, and two perpendicular crown diameters (Fig. 3). If a shrub 

extended past the half radius boundary, we only measured the diameter portion within the half-radius 

boundary. We recorded distance to nearest seed source (mature, cone baring) with a laser range finder for 

the following tree species: ponderosa pine, Jeffrey pine, white fir, red fir, incense cedar, and Douglas-fir.  

2.2.4 Laboratory Methods  

 I used standard dendrochronological methods to determine past tree growth. I left cores collected 

in the field to dry for at least a month before I mounted and sanded them to 600 grit. Due to the very short 

chronologies (most cores ranged from seven to three rings) and robust growth rings, I only visually 

crossdated and not statistically crossdated the cores. I scanned the cores at 2400 dpi and measured the ring 

widths of the images with the software program CooRecorder 9.0 (Cybis Electronic, 2018). I converted 

rings widths to annual basal area increment (BAI, mm2) using the dplR dendrochronology package in R 

(Bunn, 2008).  

2.2.5 Statistical Methods  

Statistical analyses were conducted to determine differences between the two planting 

arrangements and naturally regenerating stands. I conducted two types of data analysis, analysis of 

variance (ANOVA), and multiple linear regression. Three mixed-effect ANOVAs were performed: 1) 

one-way ANOVA comparing all five different treatment categories (clustered-thinned, evenly spaced-

thinned, clustered-not thinned, evenly spaced-not thinned, and natural regeneration); 2) two-way 

ANOVAs on just the plantations using planting arrangement and presence of thinning as the two 
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treatment factors; 3) t-tests comparing thinned plantations by planting arrangement: clustered and evenly 

spaced.  

For the one-way and two-way ANOVAs I tested the following growth/density variables:  BAI 

before thinning, annual height growth before thinning, diameter at breast height, total height, trees per 

hectare before thinning, and trees per hectare after thinning, and density of trees below breast height 

(regeneration). I also tested the following ecological variables: shrub height, percent of plot covered in 

shrubs, species richness, and Shannon’s diversity index (∑ 𝑝𝑖 × ln𝑝𝑖
𝑠
𝑖=1 ; s = total number of species, pi = 

proportion of individuals in species i). I tested the following variables among only the thinned 

plantations: BAI after thinning, height growth after thinning, and two growth indices (referred to as 

“thinning index”), one for BAI and one for height using the following equation:  

(
𝑔𝑟𝑜𝑤𝑡ℎ 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑖𝑛𝑛𝑖𝑛𝑔−𝑔𝑟𝑜𝑤𝑡ℎ 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑖𝑛𝑛𝑖𝑛𝑔

𝑔𝑟𝑜𝑤𝑡ℎ 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑖𝑛𝑛𝑖𝑛𝑔
). I calculated this to determine the percent change from 

before thinning to after thinning growth.  

Thinning occurred in 2015, and sampling occurred in 2017, therefore, pre or before thinning 

refers to growth in 2013 and 2014 and after or post thinning refers to growth in 2016. I used Plantation ID 

as a random effect if the tested dependent variable was measured at the plot level (e.g. plot area covered 

by shrub, trees per hectare); I used plot ID nested inside plantation ID as a random effect if I measured the 

variable at the individual level (e.g. DBH, shrub height). Additionally, I nested plantation ID inside 

planting and thinning treatment. I tested normality using the Shapiro-Wilk test. If any tests were not 

normal, I performed transformations, including natural logarithm and square root transformations, until 

normality was achieved (Tables 3 & 4). I used Tukey’s HSD for all Post hoc tests. I ran all ANOVAs as 

mixed effects models using the JMP V.14.0.0 statistical program (SAS Institute Inc., 2018). 

 I set up the multiple linear regression models similarly to the ANOVAs, except that all models 

used data summarized at the plot level and I ran them using the R Studio interface of the R statistical 

program (RStudio Team, 2018). There were two different models for each dependent variable. One 

included all treatments (clustered-thinned, evenly spaced-thinned, clustered-not thinned, evenly spaced-
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not thinned, and natural regeneration), and had treatment as a categorical, explanatory variable. The other 

only used plantations and had plantation arrangement (clustered or evenly spaced) and thinning (yes of 

no) as categorical, explanatory variables. In addition to the categorical variables, I used the following 

continuous, explanatory variables: elevation, aspect, slope, percent shrub cover, average shrub height, 

Shannon’s diversity index, species richness, trees per hectare, density of tree regeneration, the distance to 

the closest seed source, and the proportion of trees that were yellow pines in each plot. The dependent 

variables modeled were BAI before thinning, BAI after thinning, annual height growth before thinning, 

and annual height growth after thinning. I used the stepAIC function in R, an AIC stepwise model 

selection process to determine model variables. After stepwise regression selected a model, I removed all 

non-significant variables resulting in the final model.  

 

2.3 Results 

2.3.1 One-Way ANOVA 

Growth in the unthinned plantations resembled that of the natural regenerating stands, which was 

lower than growth of the thinned plantations. Average BAI before thinning differed between the five 

treatments (F = 8.5649, p = 0.0018). The natural regenerating stands had 80% less BAI before thinning 

than the thinned plantations but were not different from the unthinned plantations (Fig. 4, Table 3). There 

were similar results for average height growth before thinning (F = 37.5876, p <0.0001), total tree height 

(F = 35.2145, p <0.0001), and DBH (F = 25.7876, p <0.0001) (Figs. 4 & 5, Table 3). The different 

treatments were similar in terms of shrub cover and understory species diversity.  I did not find any 

differences in mean species richness, Shannon’s diversity, density of regeneration, trees per hectare after 

thinning (Fig. 6), and percent of the plot covered in shrubs (all p > 0.1, Table 3) However, there was a 

trend of average shrub height differing among the treatments (F = 3.5124, p = 0.0517).  The natural 

regenerating stands tended to have shrubs 50% shorter than the other treatments (Fig. 7, Table 3). I tried 

to test for difference in tree basal area per hectare between treatments but could not meet the normality 

assumption of the model despite trying multiple different transformations.  
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2.3.2 Two -Way ANOVA 

With the exception of diameter growth, I found no differences between the clustered and evenly 

spaced planting arrangements. Average BAI before thinning, differed between the two planting 

arrangements (F = 4.9394, p = 0.0427) with the clustered plantation growing 35% more than the evenly 

spaced plantations (Fig. 8, Table 4). This model also had a significant thinning effect (F = 19.3637, p = 

0.0006).  The growth variables diameter at breast height, annual height growth before thinning, total 

height, and basal area per hectare differed among thinning, but not plantation arrangement (Table 4). The 

ecological variables Shannon’s diversity index (Fplant = 0.0017, pplant = 0.9687; Fthin = 8.2442, pthin = 

0.0284), and species richness (Fplant = 0.0384, pplant = 0.8511; Fthin = 5.5922, pthin = 0.0559) differed 

among thinning treatments, but not plantation arrangement; the thinned stands had about 45% more 

species than the unthinned stands (Fig. 9, Table 4). Plantation arrangement or presence of thinning did not 

affect trees per hectare before thinning, regeneration density per hectare, percent of plot covered by 

shrubs, and shrub height (p > 0.1, Table 4). The variables basal area per hectare and trees per hectare after 

thinning did not meet the normality assumption of the model despite multiple transformations; therefore, 

these models were not used. There were no significant interaction terms among any of the two way 

ANOVA tests.  

2.3.3 Just Thinned Plantation ANOVA 

I found a similar diameter growth pattern between the plantation arrangements when looking at 

only thinned plantations. The thinning index for BAI had a trend of the evenly spaced plantations 

responding 15% more to thinning than the clustered plantations (F = 6.6395, p = 0.061; Fig. 10, Table 5). 

None of the other variables tested among only the thinned plantations (BAI and annual height growth 

after thinning and height growth thinning index) differed among planting arrangement (all p > 0.1; Table 

5).  

2.3.4 Regression Models  

 The variables describing growth for all five treatments included density characteristics. BAI 

before thinning was best described by species richness (negative), frequency of yellow pine (positive), 
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and treatment (adjusted R2 = 0.5994). BAI after thinning was best described by the same variables, 

excluding species richness. (R2 = 0.7126). Annual height growth before thinning was best modeled with 

the topographic variables of  elevation (negative) and aspect (positive), along density of regeneration 

(negative) and frequency of yellow pine (positive), and treatment (adjusted R2 = 0.7281). Similar to BAI 

growth, annual height growth after thinning had a simpler model than before thinning. It was best 

described by trees per hectare after thinning (positive), frequency of yellow pine (positive), and treatment 

and had an adjusted R2 of 0.5514 (Table 6).   

 Similar patterns were found in the regression models describing growth for just the plantations 

(Table 7.). BAI before thinning was best described by shrub cover (negative), species richness (negative), 

trees per hectare (negative), frequency of yellow pine (positive), planting arrangement, and thinning 

(adjusted R2 = 0.5859). BAI after thinning was best described with similar, but fewer variables: 

Shannon’s diversity index (negative), frequency of yellow pine (positive), and thinning (adjusted R2 = 

0.6237). The variables that best described annual height growth among the plantations stayed the same 

from before to after thinning: elevation (negative), frequency of yellow pine (positive), and planting 

arrangement (adjusted R2 = 0.7114, 0.5037 respectively).  

 

2.4 Discussion  

In the water limiting climate of the Sierra Nevada Mountains, one might expect trees spaced 

further apart from each other, i.e. evenly spaced plantations in this study, to grow faster more; however 

my results suggest otherwise. The trees in the clustered plantations put on more diameter growth than the 

trees in the evenly spaced plantations before thinning (Fig. 8). Further, the trees in the evenly spaced 

plantations experienced a stronger growth response to thinning than the clustered trees, suggesting that 

the evenly spaced trees were more suppressed before thinning (Fig. 10). The regression analysis also 

suggested that the clustered plantations had larger height and diameter growth (Table 7). In the regression 

tests with just the plantations, plantation arrangement was a significant variable for three out of four tests, 

all with a negative coefficient for the evenly spaced planting arrangement (arrangement “B”). The results 
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suggest that the density of clustering used in the plantations provided a facilitative effect among trees that 

outweighed the inter-tree competition effect. Similar results of facilitation have been found in young 

stands of naturally regenerating trees, including a study by Owen et al. (2017) which was conducted on 

ponderosa pine regeneration after a high severity fire in the western United States (Fajardo and McIntire, 

2011; Owen et al., 2017).   

  It has been shown that trees under water stress will allocate more growth to their roots so they can 

find new water sources (Kozlowski and Pallardy, 2002). Therefore, in clustered plantations, trees might 

be initially stressed but this stress is alleviated as their roots extend in search of water to adjacent canopy 

gaps. These large gaps could provide enough resources for the trees to focus their growth on above 

ground tissues. Having trees in clusters could also improve their connectivity to mycorrhizal networks. In 

very dry forests, the facilitative effects of mycorrhizal networks are at their strongest at short distances, 

and decreases as distance increases (Simard, 2009). This strong network could help a young tree access 

water. It has been shown that the ectomycorrhizal network of young ponderosa pine trees can access 

hydraulically redistributed water (Warren et al., 2008). The results suggest that the trees in clusters are 

possibly more connected into the mycorrhizal network, giving them more access to shared resources, like 

hydraulically redistributed water. 

Frequency of yellow pine was significant in all regression models (Tables 6 & 7). There are two 

possible explanations for this trend. Yellow pines could have faster diameter and height growth when 

accompanied by other yellow pines. Owen et al. (2017) found that in patches of ponderosa pine 

regeneration after a fire, sapling height was positively correlated with neighboring sapling density, 

suggesting that young ponderosa pines experience intraspecific facilitation. This study found other 

evidence of facilitation with the clustered plantations having more diameter growth than the evenly 

spaced plantations before thinning (Fig. 8), although those were not species specific. However, most of 

the trees found in the plantations were yellow pines, so it is possible that the results from BAI are 

reflecting an intraspecific facilitation effect as well. Alternatively, the correlation of yellow pine density 

with positive diameter and height growth could also be a reflection of site quality. A higher quality site 
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can support a greater density of yellow pines and trees would likely exhibit high survival following 

establishment which ultimately translates to better growth.  

Another factor contributing for increased growing was thinning. While BAI in clustered 

plantations responded to pre-commercial thinning less than the trees in evenly spaced plantations, both 

did respond positively (Fig. 10). This is a well-documented result, as pre-commercial thinning is a 

common technique for reducing competition for water and light while increasing growth in young 

ponderosa pine and mixed conifer stands (Ferguson et al., 2011; Vernon et al., 2018; Zhang et al., 2013b). 

Pre-commercial thinning has been shown to increase resource availability, including soil moisture, which 

is incredibly important for ponderosa pine growth, as it is found in dry climates (Chase et al., 2016). 

Similar responses have been shown in larger trees as well. When used along with prescribed burning, a 

common restoration technique for ponderosa pine, thinning increased leaf water potential, which means 

the trees were less water stressed, and increased net photosynthesis, which indicates the trees were able to 

put on more growth (Skov et al., 2004). The decrease in water stress and increase in net photosynthesis 

could be attributed to more moisture and nutrient availability, due to reduced competition.  

Unfortunately thinning and elevation were confounded in this study. The thinned sites elevation 

ranged from 1340 to 1570 meters and the unthinned sites ranged from 1940 to 2000 meters (Table 1). I 

did observe a positive growth effect of thinning, based on the response to thinning index (Fig. 10), 

however the results from the two-way ANOVA cannot be interpreted the same way. I ran multiple two-

way ANOVA tests that showed a significant thinning effect. However, a significant thinning effect was 

found for several variables that only included data from the years before thinning in 2015 (Table 4). 

Therefore, elevation, rather than thinning might be the reason for this difference. The regression results 

also point to an effect of elevation on growth.  Test comparing height growth before and after thinning on 

the plantations and height growth before thinning on all five treatments showed a negative association of 

growth with elevation (Tables 6 & 7). Climate does change with elevation on the western side of the 

Sierra Nevada Mountains. Snowfall increases with elevation from 600 to 2,600 meters, with persistent 

winter snow above 1200 meters (Western Regional Climate Center, 2018). The increased snowpack at 
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higher elevations decreases the amount of growing days because the larger snowpack will persist longer 

into the spring and summer. As with other conifers, photosynthesis and respiration in ponderosa pine 

decreases greatly over wintertime due to the colder temperatures effects on enzyme activity (Adams et al., 

2002; Law et al., 1999). Therefore, the decrease in growing days could explain why I found slower 

growth in the unthinned, higher elevation plantations.  

 While I cannot determine the specific mechanism influencing the patterns of species diversity 

found, past studies suggest that the patterns could result from an interaction of thinning and elevation. 

There was higher species diversity and richness in the thinned, lower elevation sites (Fig. 9). Multiple 

studies in the Sierra Nevada have shown that species richness decreases as elevation increases (Klinger et 

al., 2006; Rundel and Keeley, 2016; Wathen et al., 2014). This decrease in richness is often attributed to a 

decrease in invasive plants with higher elevations (Klinger et al., 2006; Rundel and Keeley, 2016). 

Similarly to the growth patterns with elevation, this relationship could also result from the shorter 

growing season and cooler temperatures at high elevations (Rundel and Keeley, 2016; Western Regional 

Climate Center, 2018). It has also been shown that species richness, especially non-native species 

richness, increases with thinning and fuel treatments in Sierra Nevada forests. Several studies have found 

increased native and non-native species richness with shrub removal in post-fire plantations in the Sierra 

Nevada (Bohlman et al., 2016; McGinnis et al., 2010). The increases in plant richness after shrub removal 

and thinning is most likely due to an increase in the light environment after treatment, allowing for more 

species to colonize (Wayman and North, 2007). I did not distinguish between native and non-native 

species in the surveys, but I did observe high amounts of cheatgrass (Bromus tectorum L.), a common 

invasive species in the Sierra Nevada, in the thinned, lower elevation stands (Keeley, 2006).  

Drought recovery is another potential confounding factor in this study. California experienced 

one of the worst droughts in its recent history from 2012-2015 (Luo et al., 2017). However, an extreme El 

Niño event in the winter of 2015/16 left the state with a large snowpack, ameliorating some of the impacts 

of the drought (Wahl et al., 2017). The drought recovery period coincided with the thinning of the 

sampled plantations; 2016 was the first growing season after thinning and the end of the drought. While I 
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do believe that some of the increased growth after thinning was influenced by the release, it can also be 

attributed, in part to the drought ending. The dramatic increase in winter snowpack most likely had a 

beneficial influence on the change in growth as soil moisture is one of the most important factors for 

young trees’ growth in the mixed conifer forests of the Sierra Nevada (Gray et al., 2005). 

 In addition to the effects of plantation arrangement and thinning, I observed differences among 

the plantations and naturally regenerating stands. There were consistent growth patterns among the five 

treatment groups. Natural regenerating stands grew slower than the thinned plantations; however they did 

not differ from the unthinned plantations (Figs. 4 & 5). Similarly to the lower growth in the unthinned 

plantations due to increased elevation, an environmental factor could explain the reduced growth in the 

naturally regenerating stands.  For a stand to naturally regenerate, there needs to be a nearby seed source 

of overstory trees, which can shade the newly established seedlings. The Forest Service established the 

plantations in this study in areas where a majority of the overstory trees died in the fire, resulting in less 

shade on the young trees when compared to the naturally regenerating stands. This difference in light 

environment could influence the growth differences seen, as light is an important factor in young tree 

growth in these forests (Gray et al., 2005; McDonald, 1976).  

 There was extreme variation in tree stocking within treatments and stands. (Fig. 6). One would 

expect to see a difference between the thinned and unthinned stands, since they were planted at the same 

density, but then half of them were thinned. One explanation might be the extreme variation in tree 

survival within stands, especially the higher elevation, unthinned stands. The standard deviation of trees 

per hectare for the unthinned plots was three times larger than the standard deviation for the thinned plots 

(Table 8). While I only sampled stands that had overall successful conifer establishment, several stands 

were spatially heterogeneous with their success; some plots had many trees while others had few. The 

range in tree density observed in unthinned stands might be explained by shrub competition limited 

successful tree establishment (McDonald and Fiddler, 2010; Zhang et al., 2006) and proximity to seed 

sources, with plots near existing overstory trees exhibiting the greatest increase from the original planting 

density. The standard deviation for trees per hectare among natural regenerating plots was about five 
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times higher than for the standard deviation for the thinned plots.  However, this extreme variation in the 

natural regenerating stands is expected. Multiple studies have found that mixed conifer establishment 

after a high severity fire is often patchy and variable (Collins and Roller, 2013; North et al., 2019; Welch 

et al., 2016).  

 Shrubs establishment after fire is inevitable in the Sierra Nevada but often has a negative impact 

on growth for young trees. With successful conifer establishment, natural regenerating stands had a trend 

of shorter mean shrub height than the plantations (Fig. 7). This could also be attributed to differences in 

the light environments between plantations and naturally regenerating stands. The canopy cover needed 

for seedling establishment could result in less light, thus suppressing the growth of shrubs in the stand. 

Unmanaged stands after a high severity fire are often dominated by large shrubs, as they have a persistent 

seedbank and grow faster than conifer seedlings (Collins and Roller, 2013; Nagel and Taylor, 2005; Zald 

et al., 2008). I also found shrub area to have a negative effect on BAI before thinning among the 

plantations (Table 5).  Shrubs are fierce competitors for light and soil moisture, two resources that are 

integral for growth in recently established seedlings (McDonald and Fiddler, 2010; North et al., 2019; 

Zhang et al., 2006). In fact, many of the original established plantations did not survive due to shrub 

encroachment (U.S. Department of Agriculture (USDA) Forest Service, 2017).  

2.5 Conclusion 

This research helps illuminate the facilitative effects that young trees can have on each other, as 

well as the effects of different stressors in post fire plantations in the Sierra Nevada Mountains. I found a 

positive diameter growth effect in trees growing in clusters when compared to evenly spaced trees. The 

clusters could be arranged in a way that encourages roots growth and or ectomycorrhizal network 

development, potentially giving the young trees more access to resources like water and nutrients. This is 

one of the first studies performed on clustered plantations in the Sierra Nevada, so there is still much to 

investigate on their advantages and disadvantages. I also found effects of thinning, shrubs competition, 

and elevation on growth and species diversity, which are likely a response to different light and moisture 

environments.  The patterns of facilitation (improved growth in clusters) and competition (positive growth 
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response to thinning) highlight the importance of spatial scales when looking into growth relationships. I 

observed facilitation when looking into the small spatial scale of BAI within a cluster, while I observed a 

beneficial release from competition, at the plantation scale. I suggest conducting future research into the 

effects of spatial aggregation and density on tree growth to better understand this relationship. Comparing 

growth among different densities of tree clusters could provide insight on at what scales neighboring trees 

compete or facilitate. Continuing research into how these different planting arrangements respond to 

different climate stressors, like drought, and how their growth changes over an elevational gradient will 

help clarify the confounding factors in the study. As the forest service’s ability to intensively manage 

young stands decreases due to funding and increasing fires, identifying the post fire management options 

that require the least amount of maintenance to become healthy and fire-resilient is becoming more 

important.  
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2.7 Figures and Tables  

 

Table 1. Characteristics of sampled stands. Slope, elevation, and aspect are averaged across the plots per 

stand 

StandID Plantation Arrangement Thinned # of plots 
Slope 

(degrees) 

Elevation 

(m) 
Aspect 

A102 Clustered (A) Yes 5 19.4 1416.6 255.6 

A137 Clustered (A) Yes 5 26.6 1427.4 121.0 

A78 Clustered (A) Yes 5 12.4 1555.0 90.2 

B139 Evenly Spaced (B) Yes 5 29.2 1358.4 106.0 

B140 Evenly Spaced (B) Yes 5 28.6 1355.9 157.0 

B82 Evenly Spaced (B) Yes 5 15.0 1434.8 134.6 

A217 Clustered (A) No 5 13.2 1961.4 122.2 

A25 Clustered (A) No 5 9.4 1984.8 200.2 

B13 Evenly Spaced (B) No 5 10.4 1970.9 126.4 

B24 Evenly Spaced (B) No 5 10.0 1939.6 182.4 

NRG147 Natural Regeneration (NRG) NA 7 14.7 1460.6 114.6 

NRG164 Natural Regeneration (NRG) NA 8 6.9 1525.3 71.9 

NRG17 Natural Regeneration (NRG) NA 5 15.6 2011.4 121.6 

NRG302 Natural Regeneration (NRG) NA 5 15 1794.9 200.4 

 

 

Table 2. Species composition of the sampled stands in trees per hectare. ABCO = Abies concolor, ABMA 

= Abies magnifica, CADE = Calocedrus decurrens, PIJE = Pinus jeffreyi, PIPO = Pinus ponderosa, PILA 

= Pinus lambertiana, PSME = Pseudotusga menziesii.  

StandID Plant Thinned ABCO ABMA CADE PIJE PIPO PILA PSME Hardwoods Total  

A217 Clustered (A) No 10 120 0 1120 0 50 0 170 1470 

A25 Clustered (A) No 20 0 50 480 0 0 0 0 550 

A102 Clustered (A) Yes 0 0 60 0 220 0 0 70 350 

A137 Clustered (A) Yes 0 0 10 0 290 10 0 390 700 

A78 Clustered (A) Yes 0 0 20 0 260 0 0 0 280 

B13 Evenly Spaced (B) No 0 30 60 1450 0 0 0 0 1540 

B24 Evenly Spaced (B) No 0 70 0 110 10 10 0 0 200 

B139 Evenly Spaced (B) Yes 0 0 60 0 360 0 70 190 680 

B140 Evenly Spaced (B) Yes 0 0 30 0 370 0 0 40 440 

B82 Evenly Spaced (B) Yes 0 0 40 0 290 0 0 50 380 

NRG147 
Natural 

Regeneration (NRG) 
NA 7 0 821 0 1550 14 0 7 2399 

NRG164 
Natural 

Regeneration (NRG) 
NA 56 0 519 0 1344 56 13 13 2001 

NRG17 
Natural 

Regeneration (NRG) 
NA 10 10 10 30 60 0 0 0 120 

NRG302 
Natural 

Regeneration (NRG) 
NA 0 0 30 20 250 10 0 240 550 
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Table 3. Results from one way ANOVA among the five overall treatment categories (TRT). * indicates 

significance at 0.1 level, ** indicates significance at 0.05 level for TRT. Regen/ Hec = trees below 1.37 m 

per hectare; TPH = trees per hectare; BAI = basal area increment  

Variable Type 
Trans-

formation 
FTRT pTRT Fstand pstand Fplot pplot 

Regen/ Hec Density (ln(y+1))^2 2.5624 0.1099 3.0962 0.004 NA NA 

TPH before thinning Density NA 0.5818 0.6835 3.4799 0.0016 NA NA 

TPH after thinning Density (ln(y+1))^2 0.0987 0.9803 4.8645 <0.0001 NA NA 

Shrub % Ecology NA 1.4448 0.2928 1.6026 0.1347 NA NA 

Shrub height Ecology ln(y+1) 3.5124 0.0517* 4.0311 0.0003 2.4267 <0.0001 

Shannon's diversity 

index 
Ecology NA 1.8777 0.1961 2.4770 0.0176 NA NA 

Species richness Ecology NA 2.3552 0.1285 2.0857 0.0446 NA NA 

Total height Growth NA 35.2145 <0.0001** 0.7037 0.7030 3.1674 <0.0001 

DBH Growth NA 25.7876 <0.0001** 1.5561 0.1428 7.8319 <0.0001 

BAI before thinning Increment ln(y+1) 8.5649 0.0018** 0.6978 0.6916 2.1503 0.0008 

Annual height 

growth before 

thinning 

Increment NA 37.5876 <0.0001** 0.7165 0.6917 3.4618 <0.0001 
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Table 5. Results from one way ANOVA on just thinned plantations comparing planting arrangements. * 

indicates significance at 0.1 level, for fixed effects  

Variable Type Transformation Fplant pplant Fstand pstand Fplot pplot 

BAI 2016 Increment NA 0.0220 0.8892 1.0025 0.4251 2.3443 0.0020 

BAI thinning index Index (y+1)^1/6 6.6395 0.0610* 0.4005 0.8063 3.9943 0.00001 

Annual height 

growth after 2016 
Increment NA 0.5945 0.4833 1.3160 0.2912 1.6398 0.0473 

Annual height 

index 
Index NA 0.0927 0.7759 1.0827 0.3866 2.9375 <0.0001 

 

 

 

 

 

Table 6. Final selection for linear regression models predicting growth in mixed conifer plantations and 

natural regenerating stands. Rich = species richness, freqYP = the frequency of yellow pines, regencount 

= density of regeneration (trees under 1.37 m), TPH = trees per hectare, TrtAY = dummy variable for 

clustered, thinned plantations, TrtBN = dummy variable for evenly spaced, unthinned plantations, TrtBY 

= dummy variable for evenly spaced, thinned plantations, TrtNRG = dummy variable for natural 

regenerating stands.  

Dependent 

Variable  

Explanatory variable with coefficients Adj R2 

BAI before 

thinning 

(-82.72*rich) + (575.71*freqYP) + (1155.19*TrtAY) + (-419.44*TrtBN) + 

(868.42*TrtBY) + (-809.55*TrtNRG) 

0.5594 

BAI after 

thinning 

(761.6*freqYP) +  (2049*TrtAY) + (-557.7*TrtBN) + (2078.3*TrtBY) + (-

1132*TrtNRG)   

0.7126 

BAI 2013-2016 (482*freqYP) +  (1091.9*TrtAY) + (-332.9*TrtBN) + (934.8*TrtBY) + (-

705.9*TrtNRG)   

0.6709 

Height growth 

before thinning 

(-0.0003*elevation) + (0.0004*aspect) +  (-0.0003 * regencount) 

(0.2068*freqYP) + (0.1750*TrtAY) + (-0.0336*TrtBN) + (0.0822*TrtBY) 

+ (-0.1259*TrtNRG) 

0.7281 

Height growth 

after thinning 

(0.00003*TPH before thinning ) + (0.1798*freqYP) + (0.248*TrtAY) + (-

0.0790*TrtBN) + (0.1970*TrtBY) + (-0.1470*TrtNRG) 

0.5514 

Height growth 

2013-2016 

(0.0005* aspect) + (0.00004*TPH  after thinning ) + (0.1822*freqYP) + 

(0.3415*TrtAY) + (-0.03429*TrtBN) + (0.2812*TrtBY) + (-

0.0851*TrtNRG) 

0.7464 
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Table 7. Final selection for linear regression models predicting growth in plantations. Shrub cover =  % of 

plot covered with shrubs, rich = species richness, TPH = trees per hectare, freqYP = the frequency of 

yellow pines, PlantB = dummy variable for clustered plantations, ThinY = dummy variable for thinned 

plantations, shan.H = Shannon’s diversity index.  

Dependent 

Variable  

Explanatory variable with coefficients Adj R2 

BAI before 

thinning 

(-1024.6239*shrub cover) + (-201.2*rich) + (-0.2345*TPH before thinning) 

+ (1283*freqYP) + (-412.5*PlantB) + (1463*ThinY) 

0.5859 

BAI after 

thinning 

(-651.6*shan.H) + (1430.9*freqYP) + (2531.2*ThinY) 0.6237 

BAI 2013-2016  (-116.3*rich) + (-0.20492*TPH after thinning) + (1088.742*freqYP) + 

(1478.089*ThinY) 

0.6356 

Height growth 

before thinning 

(-0.0006*elevation) + (0.2606*freqYP) + (-0.08574*PlantB) 0.7114 

Height growth 

after thinning 

(-0.0004*elevation) + (0.259*freqYP) + (-0.0842*PlantB) 0.5037 

Height growth 

2013-2016 

(-0.0006*elevation) + (0.2602*freqYP) + (-0.8539*PlantB) 0.7060 

 

 

 

 

 

Table 8. Mean and (standard deviation) of trees per hectare before and after thinning 
 Clust. No Thin Clust. Thin Even No Thin Even Thin Nat. Regen. 

Pre Thinning 

TPH 
1000 (1284) 1773 (924) 870 (850) 1870 (1412) 1436 (1575) 

Post Thinning 

TPH 
1000 (1284) 450 (367) 870 (850) 500 (270) 1436 (1575) 
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Figure 1. Location of Eldorado National Forest (gray) and the perimeter of the 2004 Power Fire (black) 

in Northern California  
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Figure 2. Sampling locations within the 2004 Power Fire perimeter in the El Dorado National Forest, 

California.  
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Figure 3. Sampling diagram for 200 m2 plots. r = radius; N= North, E = East, S = South, W = West.  
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Figure 4. Incremental growth compared among all five treatment groups (Trt): (A) BAI before thinning 

and (B) annual height growth before thinning. Different lower case letters represent a statistical 

difference to the 0.05 significance level between treatments. Error bars represent +/- 1 stand error (back 

transformed if a transformation was used).  

 

 

 

 

 

 

 

 
Figure 5. Mean total height (A) and DBH (diameter at breast height) (B) across all 5 treatments (Trt). 

Different lower case letters represent a statistical difference to the 0.05 significance level between 

treatments. Error bars represent +/- one standard error.  
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Figure 6. Trees per hectare (TPH) after thinning compared between all treatments (Trt). Same lower 

case letters represent no statistical difference to the 0.05 significance level between treatments. Error 

bars represent +/- 1 back transformed standard error. 

 

 

 

 

 

 

 
Figure 7. Shrub height compared between all five treatments (Trt). Different lower case letters 

represent a statistical difference to the 0.05 significance level between treatments. Error bars represent 

+/- back transformed standard error.  
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Figure 8. BAI before thinning compared among planting arrangement and thinning. Gray is not thinned 

and white is thinned. Error bars represent +/- 1 back transformed standard error. BAI differed by 

planting arrangement (p = 0.0427) and thinning (p = 0.0006).  

 

 

 

 

Figure 9. Species richness (A) and Shannon’s diversity index (B) compared among planting 

arrangement and thinning. Gray is not thinned and white is thinned. Error bars represent +/- stand 

error. Both species richness and Shannon’s diversity index different among thinning (p = 0.0284 and 

p = 0.0559, respectively).  
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Figure 10. BAI thinning index ([BAI after thinning- BAI before thinning]/ BAI before thinning) 

compared between planting arrangement among plantations that were thinned. Error bars represent +/- 

1 back transformed standard error. There was a trend of BAI Index differing between planting 

arrangements (p = 0.061).  
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Chapter 3: Modeling future stand development and fire risk of young, post 

fire plantations under different thinning and fuel treatments using FVS-FFE   

 

3.1 Introduction 

 Wildfires in the western United States are becoming more severe, larger, longer-lasting, and more 

destructive (Miller et al., 2009; North et al., 2015). In particular, plantations in fire frequent ecosystems 

are susceptible to higher severity fire compared to surrounding natural stands (Lyons-Tinsley and 

Peterson, 2012; Weatherspoon and Skinner, 1995; Zald and Dunn, 2018). This increased risk can be 

attributed to their dense, homogenous structure, which differs greatly from fire-resilient, pre-fire 

suppression conditions found in areas that historically had frequent fires, like the mixed conifer forests in 

the Sierra Nevada Mountains (Larson and Churchill, 2012; Stephens et al., 2008). Plantation structure 

creates a high continuity of surface and canopy fuels, which can support higher severity fires and 

encourage crown fire (North et al., 2019). Younger plantations are especially at risk; their increased 

density leads to a high accumulation of surface and canopy fuel, their lower canopy base height increases 

the likelihood of crown fires, and their thinner, less fire-resistant bark results in higher post-fire mortality 

(Thompson et al., 2011).  

Science-based, active management of plantations can be employed to reduce their risk of high-

severity fire. Planting trees in clustered groups resembling historical patterns and reducing the overall 

stocking rate are two suggested ways to reduce fuel connectivity and slow fire spread (North et al., 2019; 

Welch et al., 2016). Additionally, fuel reduction treatments, such as overstory thinning, mastication, and 

prescribed fire, are often necessary (Agee and Skinner, 2005). Overstory thinning reduces crown density, 

thus slowing the spread of fire through a canopy, but it does little to affect how fire spreads along the 

surface (Agee and Skinner, 2005). Mastication of small trees and shrubs can reduce connectivity from the 

surface to the crown via ladder fuels (Knapp et al., 2011; Kobziar et al., 2009; Reiner et al., 2012, 2009; 

Stephens and Moghaddas, 2005a). However, the addition of the small chipped fuels to the surface fuel 

bed can increase flame lengths and spread rate (Reiner et al., 2012). Therefore, the effectiveness of using 
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only mastication is contested. Studies found it can both reduce (Reiner et al., 2012) and increase risk of 

crown fire (Kobziar et al., 2009). Other studies found mastication helped moderate some fire behavior 

metrics while exacerbating others (Knapp et al., 2011; Stephens and Moghaddas, 2005a). Therefore, 

mastication is often be combined with another fuel treatment, most effectively, prescribed fire (Kobziar et 

al., 2007; Reiner et al., 2012; Vaillant et al., 2009). Prescribed fire simultaneously reduces surface fuels 

(via consumption) and crown fuels (via consumptions and post-fire mortality), while promoting 

understory diversity and releasing nutrients back into the soil (Kane et al., 2010; Vaillant et al., 2009). 

While some damage from prescribed fire is inevitable in young plantations due to their low canopy base 

height and thin bark, fire’s effect on fuel loading and thus future fire behavior often outweighs most of the 

damage it causes (Bellows et al., 2016).  

Simulation modelling allows managers and researchers to tests the efficacy of different 

management techniques on plantation yield and reducing wildfire-risk over long periods of time without 

going through the time, costs, and logistics of implementing them in the field. The Forest Vegetation 

Simulator (FVS) and its Fire and Fuels Extension (FFE) is one effective tool to evaluate growth and fire 

behavior. FVS is a free, keyword based, spatially independent model, developed by the U.S. Forest 

Service that models stand level growth and mortality over time using tree and plot level variables 

collected in the field (Dixon, 2018). There are 20 different variants of FVS, each calibrated to specific 

regions in the United States. FVS allows the user to perform different management actions in the stand, 

including many types of thinning and fuels treatments. Additionally, the model is customizable, allowing 

the user to calibrate growth and mortality relationships. FVS-FFE is used to model fires in the stands, 

calculate simulated and potential fire behavior, and calculate fuels in the stand (Reinhardt and Crookston, 

2003). 

Creating and calibrating a model of stand development under different fuel treatment scenarios 

using FVS-FFE can provide a more comprehensive understanding of how stand growth influences fire 

behavior over time and help identify how different treatments will influence stand development and fire 

risk. Specifically, the objectives of this chapter are to 1) determine what combination of thinning intensity 
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and fuel treatments best reduces crown fire danger and maximize growth in planted and naturally 

regenerating stands of mixed conifer forests and 2) determine the longevity of early management in the 

younger planted stands.  

 

3.2 Methods 

3.2.1 Inventory and Fuel Data 

 The same inventory data from chapter two was used for simulation of stand development. I 

categorized the 14 stands by the original management they experienced: six plantations had pre-

commercial thinning (PCT), four  plantations did not have PCT (non-PCT), and four stands naturally 

regenerated (NRG) after the fire. Due to FVS’ spatial independence, I decided not to group the plantations 

by planting arrangement (clustered or evenly spaced), as any long term planting arrangement effects 

would be lost. There were five 200 m2 inventory plots in each stand, expect for two natural regenerating 

stands, which had seven and eight plots.  Each plot had elevation, aspect, and slope measured; every tree 

in the plot taller than breast height (1.37 m) had species and DBH recorded. Total height and interwhorl 

height were measured for five randomly selected yellow pines in each plot; cores were also taken at breast 

height to determine yearly diameter growth to calibrate growth in FVS-FFE. To estimate fuel loading, 

two Brown’s fuel transects were conducted along the northwest and southeast radii of the plots(Brown, 

1974). Fuels are categorized by how long they take to respond to changing weather:1-hour fuels (<0.64 

cm) were counted for 1/8 of the transect, 10-hour fuels (0.64 – 2.54 cm) were counted along ¼ of the 

transect, and 100-hour (2.54- 7.62 cm) and 1000-hour (>7.62 cm) fuels were recorded for the full transect. 

The specific diameter of any 1000-hour fuels was recorded (Brown, 1974). Fuel bed, litter layer, and duff 

layer heights were measured at the 1 m point along these transects. 

3.2.2 Growth Simulations  

 To simulate mixed conifer plantation conditions, I input field-collected stand and fuel information 

into FVS. I used the Western Sierra variant of FVS (Keyser and Dixon, 2018). Since FVS models growth 

at a stand level, I averaged elevation, slope, and aspect by plot among the stands. At the tree level, I 

entered species and DBH for all tree species. I input total height, annual height increments, and annual 
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diameter increments when available so these values would help calibrate growth equations. Average 

incremental growth from 2014-2016 was used for both incremental height and diameter growth, as those 

years were common amongst all samples.  

To better categorize stand development over 100 years, regeneration was incorporated into my 

model (Table 1). The Western Sierra variant of FVS uses the partial establishment models, which does 

not include automatic regeneration of non-sprouting species (Dixon, 2018). Therefore, regeneration had 

to be user-inputted. Initially, species-specific values were inputted based on my field-collected data and 

values from the literature; regeneration and subsequent stand development were then calibrated based on 

expert opinion (personal communication with Dr. Jainwei Zhang (United States Forest Service)). Final 

regeneration numbers were meant to accurately reflect different site conditions (namely light availability) 

and treatment effects. Survival rates for pine species were higher in simulations with prescribed burning 

to reflect those species affinity for exposed mineral soil  (Zald et al., 2008). There were many young 

incense cedars and not many sugar pines in the sampled stands; therefore, regeneration of incense cedar 

was favored and sugar pine regeneration rates were kept low. For treated stands, I scheduled regeneration 

to begin 2 years after the initial treatment. I did this to avoid having all seedlings die in the prescribed 

burns, which happens one year after initial treatment (thinning and/or mastication). For untreated stands, 

regeneration amounts were delineated by age and trees per hectare (TPH). Regeneration increased with 

stand aged to reflect more mature trees, thus more seed sources. Regeneration decreased with increasing 

TPH, as competition for light and water increased (Table 1).  

I modelled common silvicultural prescriptions to accurately represent different management 

scenarios for Sierra Nevada mixed conifer forests. I ran 12 different simulations on each stand, each a 

combination of an overstory thinning and a fuel treatment (Table 2). The overstory thinning treatments 

included thinning to stand density index (SDI) targets of 370, 495, and 618 TPH (150, 200, and 250 TPA) 

and no-thinning scenario as control (Table 2). Reineke’s SDI is useful metric as it is not related to age or 

site quality, so it can be used as a target over time and different sites (Shaw, 2005). I chose these thinning 

densities based on Long and Shaw (2012). They calculated 1360 TPH (550 TPA) as the maximum SDI 
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for an even aged, mixed conifer stands in the Sierra Nevada. I chose the 495 and 618 SDI targets because 

they are below the 60% of SDIMax (815 TPH, 330 TPA) where intense competition mortality begins, and 

above the 35% of SDIMax (475 TPH, 192.5 TPA) the lower limit of full site occupancy (Drew and 

Flewelling, 1979; Long and Shaw, 2012). I chose the target of 370 SDI to test an intensive thinning 

option that left the stand below full site occupancy. The three understory fuel treatments were mastication 

only, mastication with prescribed burning, and no treatment (Table 2). When simulating mastication, all 

trees below 20.3 cm DBH were masticated, except for in 2027 and 2037, where 7.6 cm and 12.7 cm DBH 

were used as a cut-off to retain some trees in young stands. The masticated fuels were divided 70% into 

10-hour (0.64- 2.54 cm) and 30% into 1-hour fuels (<0.64 cm) categories (Kane et al., 2009). All 

overstory thinning was a thin from below so harvesting began with the smallest diameter trees and 

continued until the target SDI was reached. In combination with mastication, the thinning lower DBH 

limit was the upper DBH cutoff for mastication; however without mastication, there was no lower DBH 

limit for thinning. To simulate prescribed burning, fires occurred one year after the mastication, which is 

common practice when using the two treatments together (Kobziar et al., 2009; Reiner et al., 2012). Fuel 

moisture conditions were selected from the literature (Johnson et al., 2011) to reflect typical prescribed 

burns in mixed conifer forests (Table 3). Each simulation lasted 100 years with 10 year cycle breaks. I 

simulated all thinning and fuels treatments in the following years: 2027, 2037, 2057, 2077, and 2097, or 

10, 20, 40, 60, and 80 years into the simulation. One simulation without any management served as a 

control.  

3.2.3 Fuel model selection and fuel characteristics 

 To simulate surface fuel conditions, standard fuel models developed by Scott and Burgan (2005) 

were used (Table 4). These standard fuel models have been calibrated for realistic fire behavior. Further, 

they perform comparably to custom fuel models, and can even do a better job with modeling fine fuels 

(Noonan-Wright et al., 2014). Additionally, it is recommended that the standard error of and stand’s 

estimated fuel loads be within 20% of the stand’s estimated mean fuel loading for the variation within a 

stand to be fully captured (Brown, 1974). My estimates did not meet this cutoff.  
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Scott and Burgan’s (2005) fuel model guide was reviewed to determine the best fuel model for 

each situation. These models are divided into several groups, including slash-blowdown (SB), timber 

litter (TL), timber understory (TU), and grass-shrub (GS). The groups represent what fuels will carry a 

fire in that stand.  Each specific fuel model has values for the amount of fuel in the different size classes 

and fuel types (live and woody) and their corresponding surface area to volume ratios. 

Fuel models were selected to represent initial conditions and changed during the simulation to 

continue to reflect fuel condition as the stand matures (Table 4; Fig. 1). For stands that had pre-

commercial thinning, I used a combination of 25% grass and shrub model 2 (GS2), also known as 

“moderate load, dry climate grass-shrub”, and 75% timber litter model 4 (TL4) “small downed logs” for 

initial conditions. When the stands reached an SDI of 865 for unmanaged simulations or the third cycle 

for just thinned simulations, the 25% GS2 fuel model was retained but the TL4 fuel model was replaced 

by timber litter model 5 (TL5) “high load conifer litter”. The TL4 fuel model represents small downed 

trees and the cut trees in the pre-commercial stands were left on site. “High load conifer litter” (TL5) 

portrays a more developed conifer stand as it accumulates fuels. For the remaining stands, the unthinned 

and naturally regenerating stands were divided into two groups based on density. The low density stands 

had very similar models to the pre commercially thinned stands, except that TL4 was replaced with TL3, 

“moderate load conifer litter”, and the switch to TL5 was made in the fourth cycle for just thinning 

simulations. The low density stands had a large shrub component, like the thinned stands, but they did not 

have the same abundance of small downed logs. For the high density stands, a slightly different approach 

was used. The simulation began with timber understory model TU4, “dwarf conifer with understory” 

since it best represented dense stands consisting of many small trees with overlapping crowns and low 

height to live crowns. In these stands, the fuel model switches over to TL8 “long needle litter” when it 

reaches 988 SDI for no management simulations or at the third cycle for just thinning simulations. TL8 

was chosen to represent fuels conditions in an older, denser conifer forests (Pawlikowski et al., 2019; Seli 

et al., 2008; Vaillant et al., 2009). The SDI cut offs for model switches were determined by simulating 
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fire with the different fuel models over time and finding a point in time where a smooth transition 

between the chosen fuel models would happen.  

Fuel models were also changed during the simulation to reflect the effect of different fuel 

management (Table 4). While, FVS accounts for fuel build up and decay as simulations run, masticated 

fuel beds and prescribed burns produce unique fuel characteristics that need to have their own fuel 

models. I decided to use slash and blowdown models SB1 “low load activity fuel” and SB2 “moderate 

load activity fuel or low load blowdown” to reflect post mastication fuel beds. These models have high 

amounts of fine fuels, which resembles a  masticated fuel bed (Kane et al., 2009). Additionally, these two 

models are frequently recommended to adequately portray masticated fuel beds (Knapp et al., 2011; 

Kreye et al., 2014; Reiner et al., 2012; Schmidt et al., 2008). Timber litter model 1 (TL1), also known as 

“low load compact conifer litter”, was used to reflect post prescribed burn conditions, as it is 

recommended by Scott and Burgan (2005)  and is frequently used for modeling post-fire conditions 

(Reiner et al., 2012; Schmidt et al., 2008; Scott and Burgan, 2005). 

Canopy base height (CBH) and canopy bulk density (CBD) are two stand level characteristics 

that influence fire behavior. CBH is the distance from the ground to the level of the crown where the 

density of fuels first surpasses 0.011 kgm-3, the threshold of  fuel density where a fire can travel vertically 

through the canopy (Reinhardt and Crookston, 2003; Smith, 2009). CBD is a measurement canopy fuels 

that will be consumed in a crown fire: mainly foliage and 1 hour fuels (Smith, 2009). To calculate it, first 

crown mass for all trees is calculated based on species, DBH, height, crown ratio, and dominance position 

(Reinhardt and Crookston, 2003). Then FVS-FFE finds the “effective canopy bulk density” by finding the 

maximum 4m running average for 0.3 thick canopy fuel layers (Reinhardt and Crookston, 2003). 

3.2.4 Fire Weather  

 To model severe fire weather conditions, I used weather data from the closets Remote Automatic 

Weather Station (RAWS) to the study sites, Beaver Camp Loc (Station ID: 042601). Daily weather data 

was downloaded from October to May, the common fire season for the Sierra Nevada Mountains, for all 

available years (1996-2018). From that daily weather data, energy release component (ERC) and potential 



71 

 

fuel moistures for different fuel size classes were calculated using Fire Family Plus (Bradshaw and Jolly, 

2014). ERC is a measure of fire intensity as a function of fuel moisture and is often used as an index for 

fire severity (Knapp et al., 2011; Kobziar et al., 2009; Safford et al., 2012). Average weather 

(temperature, wind speed) and fuel moisture values corresponding to the 97th percentile in ERC were used 

to represent severe fire weather conditions (Table 3).  

3.2.5 Statistical Analysis   

 To assess how growth and fire behavior differed among the fuel treatments, thinning intensities 

and original management, I performed three-way ANOVAs on the simulation outputs using those metrics 

as the three factors. For stand growth, I only included trees over 20 cm (to avoid any impact of small trees 

from regeneration) to calculate basal area per hectare, and quadratic mean diameter (QMD) for each stand 

at the end of the simulation. All fire behavior data was taken from the FVS potential fire report, which 

determines fire behavior and effects if fire burned through the stand based on the weather and fuel 

conditions assigned. None of the fire effects from the potential fire report influence subsequent stand 

development. After plotting several fire behavior variables over the length of the simulation, I observed a 

common pattern among all simulations where fire behavior increased in the early years, then stabilized to 

low severity values with little variation (Fig. 2, 3, 4). Therefore, to analyze fire behavior, I decided to 

identify the years for each simulation where each variable reaches the “stable level” of surface fires, low 

flame length, and low mortality.  I first analyzed the year where the fire type transitions to surface fire. 

Fires are categorized into four different categories: active crown fire, passive crown fire, condition crown 

fire, and surface fire. In an active crown fire, the fire spreads through the canopy, burning and killing 

almost all trees in the stand. In passive crown fires, individual trees will torch and have their crowns burn, 

but the fire does not spread through the crown. In a conditional crown fire, if the fire starts as a surface 

fire it will most likely stay there, but if an adjacent stand has a crown fire, it may spread into the crown of 

the stand. Surface fires are the least severe, stay on the ground, and usually do not kill many mature trees 

(Dixon, 2018). To analyze mortality, I looked at when percent basal area mortality went below 25%, a 

common cutoff for low severity fires (Hann et al., 2008). To analyze flame length, I tested when canopy 
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base height exceeded flame length. Crowning index followed a different pattern from the other variables, 

so it was tested accordingly. Crowning index is the required wind speed at 6m above ground to sustain an 

active crown fire. Consequently, as crowning index increases fire risk decreases. To test the overall 

pattern of crowning index, I tested its value at the end of the simulation.  

 To better understand the relationship between fire behavior and stand development I summarized 

and graphed fire effects (mortality), fire behavior (flame length, spread rates, fire type) and fuel variables 

(canopy base height, and bulk density) over the length of the simulation. For each prescribed fire, I 

summarized the percent of the total trees killed in each prescribed fire and compared these values across 

original management and thinning intensity. I summarized surface and total flame length and spread rate 

for all simulation years and tested them among the fuel treatments. Surface flame length and spread rate 

refers to fire behavior when consuming surface (ground) fuels. Total flame length and spread accounts for 

fire spread into trees’ crowns (Reinhardt and Crookston, 2003). I tested all three way ANOVAs using the 

“aov” function in R Studio (RStudio Team, 2018). I tested for normality using a QQ plot and Shapiro-

Wilk test. If normality was not met, I performed different transformation on the data until it was. Tukey’s 

HSD was used for all post hoc testing.  

 

3.3 Results  

3.3.1 Stand Growth 

 The difference in final basal area and QMD were best explained by thinning intensity and 

whether the simulation had a prescribed burn. Final basal area per hectare differed among fuel treatment 

(p < 0.0001) and thinning intensity (p < 0.0001), but the effect of fuel treatment depended on the thinning 

intensity (p < 0.0001) (Tables 5 & 6, Fig. 5A). Within the 370 SDI and 495 SDI thinning intensities there 

was no significant effect of fuel treatment on basal area. However, the mastication with prescribed burn 

fuel treatment resulted in less basal area than the mastication only fuel treatment and no fuel treatment in 

the 618 SDI thinning and no overstory thinning scenarios (Fig 5A). Within the different fuel treatments, 

responses to thinning intensities differed. In the mastication with prescribed burning fuel treatment the 
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only significant differences between thinning intensities were among nonadjacent intensities (e.g. 370 

SDI and 618 SDI, not 370 SDI and 495 SDI), with the larger SDI targets having greater basal area. A 

similar pattern occurred with mastication only and no fuel treatment scenarios, but all differences among 

thinning intensities were significant (Fig. 5A). Overall, final basal area increased as thinning intensity 

decreased (370 SDI being the most intense and no overstory thinning being the least intense) and 

mastication with burning had the lowest final basal area compared to mastication only and no fuel 

treatment simulations (Table 6).   

QMD had the opposite patterns of basal area, differing among thinning intensities (p <0.0001) 

and original management (p <0.0001) (Tables 5 & 7). The effect of fuel treatment depended on the 

thinning intensity (p = 0.0373) (Table 5, Fig. 5B). Within the different thinning intensities, QMD did not 

differ between fuel treatments, expect when there was no overstory thinning (Fig. 5B). Under no-thinning 

scenarios, mastication with prescribed burning resulted in larger QMD than the no fuel treatment 

simulations. Within the mastication only and no fuel treatments, QMD increased with thinning intensity 

only among a few non-adjacent thinning intensities (Fig. 5B). For example, in the mastication only fuel 

treatment, 370 SDI was only different from 618 thin and no thinning, but not different from the 495 SDI 

simulations. Within the mastication with burning treatment there were no differences in QMD between 

thinning intensities (Fig. 5B). Overall, QMD increased as thinning intensity increased; the no thinned 

stands had QMDs that were 11.5% smaller than the 370 SDI simulations (Table 7). The naturally 

regenerating stands had 11.8% larger QMD than both plantation types (Table 7).   

3.3.2 Fire Behavior 

Several factors influenced what simulation year surface fires began. The timing when fire risk 

decline differed among fuel treatments (p < 0.0001), thinning intensity (p = 0.0005), original management 

(p < 0.0001), and the interaction of fuel treatment and thinning intensity (p = 0.0213) (Table 5, Fig. 2 & 

5C).  Within different thinning intensities, fuel treatment only affected simulation year when surface fires 

began for the no overstory thinning simulations; stands that experienced mastication with burning 

transitioned to surface fires 14 and 23 years earlier than the mastication only treatment and the no fuel 
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treatment simulations, respectively. Thinning intensity only affected when surface fire began when no 

fuel treatment was simulated (Fig. 5C). Within the no fuel treatment simulations, all three thinning 

intensities reached surface fires sooner than the no overstory thinning simulations (Fig. 5C). Overall, 

mastication with burning resulted a transition to surfaces fires 10 years sooner than mastication only and 

no fuel treatment (Fig. 2). For overall thinning intensity, only the 370 SDI transitioned to surface fires 

before no overstory thinning simulations. The PCT plantations reached surface fire 10 years sooner than 

both the non-PCT plantations and the natural regenerating stands (Fig. 2).  

Simulation year when basal area mortality went below 25% was reduced the most by prescribed 

fire. It differed among fuel treatments (p < 0.0001), thinning intensities (0.0175), and original 

management (p < 0.0001) (Table 5, Fig. 3). The mastication with burning fuel treatment went below 25% 

basal area mortality 11 and 17 years before the mastication only and no fuel treatment, respectively; 

mastication only went below 25% mortality 6 years before the no fuel treatment simulations (Fig. 3). 

Among the different thinning intensities, the only significant difference was that the 370 SDI thinning 

intensity went below 25% basal area mortality 5 years before the no overstory thinning simulations (Fig. 

3). The PCT plantations went below 25% basal area mortality 9 and 5 years sooner than the non-PCT 

plantations and the naturalyl regenerating stands, respectively. The natural regenerating stands went 

below 25% mortality 4 years sooner than the non-PCT stands (Fig. 3).  

Age when canopy base height went above flame length followed the same patterns as the age 

when surface fire began. It differed among fuel treatment (p <0.0001), thinning intensity (p = 0.0016), 

and original management (p <0.0001), and there was a trend in the interaction of fuel treatment and 

thinning intensity (p = 0.0513) (Table 5, Fig. 4 & 5D). The interaction followed the same trends as age 

when fire type transitioned to surface fire (Fig. 5D). Overall, mastication with burning resulted in canopy 

base height exceeding flame length 10 years sooner than both mastication only and no fuel treatment 

simulations (Fig. 4). Only the 370 SDI thinning level reached canopy base height above flame length 10 

years sooner than the no overstory thinning simulations (Fig. 4). The PCT plantations reached canopy 
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base height above flame length 11 and 7 years sooner than that non-PCT plantations and the natural 

regenerating stands, respectively (Fig. 4).  

The pattern of final crowning index was affected by thinning targets more than the other fire 

behavior variables. Final crowning index differed among fuel treatment (p <0.0001), thinning intensity (p 

<0.0001), original management (p=0.0003), and the interaction between fuel treatment and overstory 

thinning (p=0.0073) (Table 5, Fig. 6 & 5E). When comparing within thinning intensity, I only found a 

difference between fuel treatments in the no overstory thinning scenarios. When no overstory thinning 

was simulated, mastication with burning resulted in a significantly higher final crowning index than 

mastication only and no fuel treatment only in the no overstory thinning simulations (Fig. 5E). Within the 

no fuel treatment simulations, there were difference among all the thinning intensities expect when 

comparing 618 SDI and 495 SDI (Fig. 5E); when comparing thinning intensities within mastication 

simulations, results were very similar. However, within the mastication with burning there were very few 

significant differences between thinning intensities (Fig. 5E). In all cases of significant difference, the 

more intensive thinning treatment had a higher final crowning index. Over all, mastication with burning 

had higher final crowning indices than the mastication only and no fuel treatment simulations (Fig. 6). All 

overstory thinning treatments were different from each other, with the more intensive thinning resulting in 

the higher crowing index (Fig. 6). The natural regenerating stands had a higher crowing index than both 

plantation types (Fig. 6).  

3.3.3 General Fire Behavior and Stand Structure Patterns   

 When comparing percent mortality following prescribed burns between thinning targets, I only 

found significant differences during the last burn. In 2097, the prescribed burn killed more trees in the 

618 SDI and no overstory thinning treatment than the 370 SDI treatment (Table 8). When comparing 

mortality from prescribed burns across original management, the PCT plantation had slightly less 

mortality than the other treatments in the first two buns. In 2027 the non-PCT plantation had about 8% 

less mortality than the NRG stands and in 2037, the NRG stands had about 2% less mortality than the 

non-PCT plantations (Table 8).  A consistent pattern was found when comparing differences in surface 
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and total fire behavior. When comparing total spread rate and flame length, mastication with burning had 

lower values than both mastication only and no fuel treatment; there was no different between mastication 

only and no fuel treatment (Table 9). When comparing surface behavior, mastication with burning was 

still lower than the other two fuel treatments, but mastication only was also significantly lower than the 

no fuel treatment (Table 9).  

 

3.4 Discussion 

Management effected basal area per hectare predictably. Overstory thinning decreased basal area but 

increased QMD (Table 6).  All the thinning and fuel simulations were from below, making it unlikely for 

any regeneration to make it to the overstory, resulting in a lower overstory basal area as thinning intensity 

increased. While the overall stocking decreased with thinning, tree size increased as overstory thinning 

intensity increased. Ponderosa pine and mixed conifer stands show a positive growth response to thinning 

because thinning reduces competition for water, light, and nutrients and allows for more growing space 

(Dore et al., 2016; Feeney et al., 2011; Zhang et al., 2013a, 2013b).  

Mortality from the mastication with burning treatment provided growth benefits to the stands (Table 

7). Smaller trees have a lower chance of surviving fires than larger trees, so prescribed fires can shift 

dimeter distribution upward (van Mantgem et al., 2011). Mortality from prescribed burning is 

unavoidable; in fact, one of its benefits is that it reduces stem density providing a competition release for 

the remaining trees  (North et al., 2007; Schmidt et al., 2006; van Mantgem et al., 2011). The effect of 

mastication with burning was only seen in the 618 SDI and no overstory thin simulations for basal area 

and only the no overstory thinning simulations for final QMD (Fig. 5A & 5b). This could be due to the 

mortality response of different thinning intensities to prescribed burning. The prescribed fires killed more 

trees in the 618 SDI and the no thin simulations compared to the 370 SDI simulations (Table 8). The 

percent mortality from prescribed burning is in line with other studies. Percent mortality from the 

simulations of prescribed fire was the highest in the earliest fire (2029), ranging from 33-64%, decreased 

to 19-44% for the next prescribed fire in 2039, and stayed below 22% for all subsequent prescribed fires 
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(Table 8). Reiner et al. (2012) performed and mastication and burning study in a 25 year old plantation, 

and found mortality from prescribed burning between 27-49%, which overlaps the 33-64% mortality 

observed in this study.   

 One unexpected result was the effect of original management on final QMD. When comparing 

the stands in 2017, the PCT plantations had larger diameter than the non-PCT plantations and natural 

regeneration stands. However, at the end of the simulation, the natural regenerating stands’ QMD were 

about 8 cm larger than the PCT and non PCT plantations (Table 7). In general, the thinned stands had 

steeper slopes than the other two original management groupings. High slopes often have a negative 

effect on tree growth due decreasing soil depth (Stage, 1976); this relationship is expressed in FVS’s 

diameter growth equations. It predicts more diameter growth on gentler slopes (Dixon, 2018; Keyser and 

Dixon, 2018).The small differences in slope could manifest themselves over time.  

While the fuels and overstory thinning treatments had a large effect on fire behavior, all stands, 

regardless of silvicultural prescription, experienced a similar pattern in fire behavior over 100 years. Fire 

severity and intensity reached a maximum usually within the first 10 to 50 years of the simulation, but 

eventually decreased so that surface fires were more common, flame lengths were below canopy base 

height, and mortality was below 25% (Figs. 2, 3, 4). This pattern is a consequence of the stand structure 

and development in even aged plantations. When the stands are young, the trees have low canopy base 

heights, leaving them susceptible to crown scorch, even with low flame length. The horizontally 

homogenous nature of a plantation allows for the fire to spread throughout the stand, resulting in high 

mortality (North et al., 2019). This pattern has been seen in young ponderosa pine and mixed conifer 

plantations (under 50 years), both modeled and observed (Stephens and Moghaddas, 2005b; Thompson et 

al., 2011; Zald and Dunn, 2018). However, as the stand grows, those canopy fuels move away from the 

ground, increasing canopy base height (Fig. 7). The uniform distribution of growth in a plantation usually 

results in one main size class, so there will not be several layers of vertical stratum lowering the position 

of canopy base height. Regeneration can also affect canopy base height. If regeneration is dense enough it 

can lower than canopy base height and help carry a fire from the surface to the canopy, torching and 
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killing mature trees. The simulated overstory thinning and fuels treatments removed regeneration, as they 

all focused on small trees, preventing them from becoming a ladder fuel. Regeneration in the simulations 

without any management did not keep canopy base height low enough to maintain severe fire behavior 

though the full simulation; though it did delay the onset of canopy base height overtaking flame length 

(Fig. 4).   

High canopy base heights have been noted in an even-aged mixed conifer site before. Stephens and 

Moghaddas (2005b) studied mature (80-100 years old), even aged stands that naturally regenerated after 

railroad logging and did not experience any silvicultural treatments. They found high canopy base heights 

in these stands, and therefore low potential for crown fire (North, 2012). While not a plantation, the stand 

structure is like what one would find in plantations; in addition, this study did include some even aged 

stands that naturally regenerated after a fire. However, there are other factors besides canopy base height 

that control whether a fire will travel into a crown. Downed logs and sags can also be ladder fuels, and 

extreme winds can also carry a surface fire to the crown (Zald and Dunn, 2018). Creating a fire resilient 

forest stand cannot simply rely on the fact that canopy base heights will eventually increase over time in a 

plantation.  

The main variables that influence fire behavior in FVS-FFE, such as surface fuel loading, canopy 

base height, and canopy bulk density, can be modified by various silvicultural treatments (Agee and 

Skinner, 2005). A consistent interaction between thinning intensity and fuel treatment was observed for 

most of the fire behavior variables (Table 5, Fig. 5). There were more significant effects of fuel treatment 

in no overstory thinning simulations. This could be due to the nature of the stand structure and how the 

thinning was performed. All thinnings were from below, so they removed the smallest trees first. Smaller 

trees can act as ladder fuels which can carry fire up into tree canopies (Agee and Skinner, 2005). 

Simulations without overstory thinning needed something else to reduce ladder fuels, which mastication 

and prescribe burning can do (Stephens and Moghaddas, 2005a).  

Mastication with prescribed burning was the most effective fuel treatment because how it altered 

surface fuels and flame lengths (Fig. 2 -5). After a prescribed burn, most of the surface and ladder fuels 
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have been consumed (Agee and Skinner, 2005; Stephens, 1998; Vaillant et al., 2009). This decreases 

flame length and reduces the risk of crown fires as fires on the surface cannot travel up the canopy 

(Vaillant et al., 2009). This reduction crowning drastically reduces fire caused mortality (Fig. 3). The 

effectiveness of prescribe burning can be seen in the interaction among thinning and fuel treatments in the 

transition to surface fires (Fig. 5C). Using prescribed fire with mastication caused the transition to surface 

fires to happen so quickly and consistently, that tree density did not matter. Prescribed burning is often 

found to be the most effective treatment for reducing surface fuel loading and thus reduce fire risk in 

Sierra Nevada plantations (Kobziar et al., 2009; Reiner et al., 2012; Schmidt et al., 2008; Stephens and 

Moghaddas, 2005a).  

The differences between the mastication only and the no fuel treatment simulations were minimal 

(Figs. 2, 4, 6). One of main benefits of mastication is how it removes ladder fuels (Knapp et al., 2011; 

Stephens and Moghaddas, 2005a). However in an even aged plantation, where most trees are about the 

same size, there are not many ladder fuels, diminishing the benefits of mastication (Kobziar et al., 2009). 

Also, mastication does not remove the fuels from the stand, it just moves them to the surface and 

decreases their size. Both Kobizar et al. (2009) and Reiner et al. (2012) found that masticated fuel beds 

produced longer flame lengths than stands without fuels treatments when modeling fire behavior in young 

Sierra Nevada pine plantations.  

Despite high total flame lengths, masticated fuels reached basal area mortality under 25% earlier than 

the no fuel treatment simulations (Fig. 3). Both the average surface flame length and average surface 

spread rate across all years in masticated fuel beds was smaller than the no fuel treatments, while there 

was no difference among total flame length and spread rate (Table 9). These differences in surface fire 

behavior could result in less scorch damage in the scenarios with masticated fuel beds, and thus less 

mortality. Both laboratory and field studies suggest that masticating fuels results in denser fuel beds than 

can dampen surface flame lengths and spread rates (Knapp et al., 2011; Kreye et al., 2011). Masticated 

fuel beds can be quite difficult to model (Knapp et al., 2011; Kreye et al., 2014). The fuel particles often 

have an irregular shape which can have complicated interactions with fuel moisture and decay (Kreye and 
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Varner, 2007; Kreye et al., 2014). A development of a fuel model specifically designed for masticated 

fuel beds would improve subsequent studies modeling fire behavior under different fuel treatments.  

 The largest impact of overstory thinning intensity on fire behavior was seen on crowning index. 

As thinning intensity increased, crowning index increased (Fig. 6). As the stand density decreases from 

thinning, the density of fuels in the canopy will also decrease simply due to less trees being present (Fig. 

8). A decrease in canopy bulk density results in less canopy fuel continuity, which ultimately decreases 

the occurrence and severity of crown fires (Agee and Skinner, 2005). While thinning target influenced 

other fire behavior variables due to removing ladder fuels, usually the only difference found between the 

targets was among the most intense thinning target, 370 SDI, and no thinning. Also, the difference 

between them was usually only a 5-10 year improvement on when fire behavior reached low risk levels, 

while mastication with burning often provided a 15-20 year improvement. The more the stands were 

thinned, the larger the trees became (Table. 7). Larger trees will have thicker bark which is more resistant 

to fire (Hood et al., 2018; Pellegrini et al., 2017). Thinning the overstory to below full site capacity was 

required to produce most effective changes in mortality from fire, suggesting it is not a viable option to 

reduce crown fire risk. Several other studies have found similar results of overstory thinning having 

minimal reductions in fire behavior alone (Agee and Skinner, 2005; North et al., 2009; Stephens and 

Moghaddas, 2005a). This is likely due to the fact that overstory thinning will not decrease surface fuels, 

in fact it can increase surface fuels when logging slash is left on the ground.   

 In addition to the silvicultural impacts on fire behavior, several differences among the original 

management scenarios were found. These differences can be attributed to original stand structure and how 

they grew over time. The stands with PCT reached low mortality and achieved a canopy base height 

above flame length sooner than the other original management scenarios (Figs. 3 & 4). While at the end 

of the simulation the natural regenerating stands had larger trees, the stand with PCT started out with 

larger trees. This switch from the PCT trees to the natural regenerating trees as the largest likely happened 

after fire behavior decreased. Like with thinning intensity, this response could also be linked to bark 

thickness. Larger trees have thicker bark, which protects the vascular cambium from heat and scorch 
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damage from fire and is a common adaptation in trees in fire dependent ecosystems (Pellegrini et al., 

2017).  

There are some modeling limitations with FVS-FFE that should be taken into consideration. As 

mentioned earlier, the lack of a full establishment model for all variants and a fuel model for masticated 

fuel beds create complications for accurately modeling fire behavior (Dixon, 2018; North et al., 2009). 

Another limitation of FVS is its spatial independence. The spatial arrangement of trees can greatly effect 

growth and fire behavior (Churchill et al., 2013; Larson and Churchill, 2012; Stephens et al., 2008; 

Ziegler et al., 2017). In addition to this, post-fire plantations have included experimentation with planting 

trees in a clustered arrangement to mimic this pattern (North et al., 2019). The plantations used in this 

study were a mix of clustered and evenly spaced trees but were not analyzed along these lines due to 

FVS’s lack of spatial dependence. Another spatial variable which is not included in FVS is landscape fire 

behavior dynamics. The spatial arrangement of stands and silvicultrual treatments across a landscape can 

affect how a fire spreads (Finney, 2001). The landscape aspect of fire behavior was outside of the scope 

of this project but is an important factor consider when interpreting results. Stands that are predicted to 

have conditional crown fires are more likely to have crown fire spread if an adjacent stand has an active 

crown fire (Reinhardt and Crookston, 2003).  Lastly, shrubs have been proven to be a factor that can 

impact plantation growth in the Sierra Nevada; often controlling for shrubs can be one of the most 

important factors in plantation survival (McDonald and Fiddler, 2010; Zhang et al., 2008). FVS has a 

submodel for shrubs and understory cover, but it is not currently developed for the western sierra variant 

or linked with the FFE extension, and therefore not used in this project. An expansion of this submodel 

would greatly help in modeling plantation and post fire growth in the Sierra Nevada.  

 

3.5 Conclusions 

Stand development and the various silvicultural treatments all interacted to create a variety of 

simulations outcomes. While the overall pattern of decreasing canopy base heights over time eventually 

lead to a decrease in fire behavior metrics regardless of treatment, the amount of time required to reach 
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these decreased crown fire risks changed with treatment. Using prescribed burns reduced flame lengths so 

drastically, that canopy base height quickly exceeded flame length. Additionally, performing intensive 

thinning reduced risk of active crown fires spreading though the stand. These results suggest that treating 

stands early is most important for reducing fire risk, as that is when the risk is the highest. Further 

research into specific timing of treatments will help answer this. Prioritizing prescribed burning, when 

possible, and thinning from below are the most effective ways to quickly improve fire resistance in mixed 

conifer plantations. However, the most effective treatments are not without disadvantages. The prescribed 

burns killed many trees, reducing overall stocking. The most intensive thinning treatment provided the 

best reduction of fire behavior but was also below full stocking level. FVS is not without drawbacks, 

either. It can be sensitive to certain inputs, like regeneration and fuel models and cannot not incorporate 

all the complexity of fire, like spatial arrangement of trees. However, it provides a good tool for 

evaluating overall trends of stand development and how to alter them to reduce fire risk.  

Identifying the most effective stand management techniques to create fire resilient stands has 

become increasingly important in the past few decades. More than half of the Forest Service’s plantations 

in the Sierra Nevada mountains established from 1998 to 2016 have not been pre-commercially thinned, 

and 38% of them have not experienced any competition release (North et al., 2019). These young, dense 

stands pose a large crown fire risk, and if they are left unmanaged, this risk will continue for several 

decades.  
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3.7 Figures and Tables 

Table. 1 Regeneration amounts in terms of trees per acre used after incorporating survival rates by 

species. The no management (a) scenario amounts were delineated by simulation age and TPH (trees per 

hectare). For treated stands (b) (mastication + prescribed burning, mastication only, thinning only) regen 

was only implemented after treatments and delineated by fuel treatment and thinning target.  

(a) No management 

 Age 
 0-30 30-60 60-100 

 Trees per Hectare  

Species 0-247 247-495 495-990 0-247 247-495 >495 0-247 >247 

PIPO 3.75 1.5 0.75 6 1.5 0.75 9.75 1.5 

PILA 2.7 0.9 0.9 1.8 0.9 0.9 2.7 0.9 

ABCO 2.7 1.35 0.9 4.5 1.35 0.9 7.65 1.35 

CADE 3.6 2.4 1.2 6 2.4 1.2 10.2 2.4 

TOTAL 12.75 6.15 3.75 18.3 6.15 3.75 30.3 6.15 

     

(b) Mastication + Prescribed Burn Mastication only + Thinning only   

 Thinning Target   

Species 370 SDI 495 SDI 618 SDI 370 SDI 495 SDI 618 SDI   

PIPO 11.25 8.1 5.4 6.25 4.5 3   

PILA 1.75 1.4 1.05 1.5 1.2 0.9   

ABCO 6 4.5 3 6 4.5 3   

CADE 6 4.6 3 6 4.6 3   

TOTAL 25 18.6 12.45 19.75 14.8 9.9   

 

 

 

 

 

Table 2. Matrix of treatments used in FVS simulations. SDI = Stand Density Index. Mast = mastication 

only, Mast + Burn = mastication with burning.  

 Thinning Target 

Fuels Treatment  370 SDI  495 SDI  618 SDI  No Thin 

Mast. All Stands All Stands All Stands All Stands 

Mast. + Burn All Stands All Stands All Stands All Stands 

No fuel treatment All Stands All Stands All Stands All Stands 
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Table 3. Simulated prescribed fire and potential severe fire conditions.  
   Fuel Moisture (%)      

Fire 
Windspeed 

(kph) 

Temperature 

(C⁰) 
1 hr 10 hr 100 hr 1000 hr Duff 

Live 

Woody 

Live 

Herb 

Prescribed 4.8 10 12 12 14 25 150 150 150 

97% Fire 

Weather 
35.4 31 2.7 3.1 5 6.4 2.7 69.9 20.9 

   

 

 

 

 

 

 

Table 4. Description of fuel models from Scott and Burgan (2005) used in this study. 

   Fuel Load (kgm-2)  

Model Use Description 1hr 10hr 100hr 
Fuel bed 

depth(m) 

SB1 

Masticated fuel beds in plots with original 

TPH <1235; Masticated fuel beds following a 

prescribed fire 

Low load, activity fuel 

0.337 0.674 2.466 0.33 

SB2 
Masticated fuel beds in plots with original 

TPH >1235 

Moderate load, activity fuel or 

low load, blowdown 

1.011 0.952 0.898 0.33 

TL1 Post prescribed fire Low load, compact conifer liter 0.225 0.493 0.806 0.066 

TL3 

75% of low density non-PCT and NRG strands 

from start to cycle 4 or SDI 865 (no fuel 

management) 

Moderate load, conifer litter 

0.112 0.493 0.63 0.099 

TL4 
75% of PCT stands from start to cycle 3 or 

SDI 865 (no fuel management) 
Small downed logs 

0.112 0.337 0.942 0.132 

GS2 
25% of PCT and low density non-PCT and 

NRG stands (no fuel management) 

Moderate load, dry climate 

grass-shrub 

0.112 0.112 0 0.495 

TL5 

75% of PCT and low density non-PCT and 

NRG stands from cycle 4 or 865 SDI to end 

(no fuel management) 

High load, conifer litter 

0.259 0.561 0.986 0.198 

TL8 

High density non-PCT and NRG stands from  

cycle 3 or 988 SDI to end (no fuel 

management) 

Long-Needle litter 

1.3 0.312 0.249 0.099 

TU4 

High density non-PCT and NRG stands from 

start to cycle 3 or 988 SDI (no fuel 

management) 

Dwarf conifer with understory 

1.011 0 0 0.165 
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Table 5. P-values from three-way ANOVA. Fuels = fuel treatment, thin = thinning target, Trt = original 

management. * = significance at the 0.05 level  

Variable fuels thin Trt fuels*thin 
fuels*Tr

t 

thin*Tr

t 

fuels*t

hin*trt 

Final BA (m^2* 

hec^-1) 
<0.0001* <0.0001* 0.873 <0.0001* 0.116 0.871 0.9999 

Final QMD (cm) 0.3701 <0.0001* <0.0001* 0.0373* 0.9892 0.7782 1 

Age Surface fire 

begins 
<0.0001* 0.0005* <0.0001* 0.0213* 0.3053 0.9814 0.9999 

Age when less than 

25% BA mortality 

begins 

<0.0001* 0.0175* <0.0001* 0.4502 0.6775 0.9952 0.995 

Age when canopy 

base height exceeds 

flame length 

<0.0001* 0.0016* <0.0001* 0.0513 0.1345 0.9894 1 

Final Crowning  

Index (kmph) 
<0.0001* <0.0001* 0.0003* 0.0073* 0.1083 0.1832 0.9999 

 

 

 

 

 

 

Table 6. Basal area (m2 ha-1) at end of simulation by thinning target and fuel treatment (Mast = 

mastication only, MB = mastication with burning, No = No fuel treatment), values are averaged across all 

original management (“Total”). Different letters in the “Total” column indicate significant differences 

(p<0.05) between fuel treatments and different letters in the “Total” row indicate significant differences 

(p<0.05) between thinning targets. SDI = stand density index. 

 Thinning Target  

Fuel Treatment  370SDI 495SDI 618SDI No Thin Total 

Mast 33.7 43.5 52.5 58.0 46.9a 

Mast + Burn 31.7 39.0 43.3 44.7 39.7b 

No Fuel 33.6 43.5 52.6 58.1 46.9a 

Total 33.0a 42.0b 49.5c 53.6d 44.5 
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Table 7. QMD (cm) at end of simulation by thinning target and fuel treatment (a) (Mast = mastication 

only, MB = mastication with burning, No = No fuel treatment) and original management (b) (NRG = 

natural regenerating stands, PCT = plantations with pre-commercial thinning, non-PCT = plantations 

without pre-commercial thinning). SDI = stand density index. 

  Thinning Target  
  370SDI 495SDI 618SDI No Thin Total 

a) Fuels Mast 86.3 79.6 74.3 65.5 76.4 

 Mast + 

Burn 
83.0 78.1 75.1 73.6 77.5 

 No Fuel 86.0 79.5 73.6 61.3 75.1 

b) Trt NRG 93.9 85.8 79.5 70.9 82.5 
 PCT 81.3 76.3 72.4 66.1 74.0 

 Non-

PCT 
82.0 76.5 72 63.8 73.6 

Overall 85.1 79.1 74.3 66.8 76.3 
 

 

 

 

 

 

Table 8. Mortality (%) from prescribed fires by original management (a) (Trt: NRG = natural 

regenerating stands, PCT = plantations with pre-commercial thinning, non-PCT = plantations without pre-

commercial thinning), thinning target (b), and year of fire. Different letters in each column within Trt or 

Thinning target indicate a significant (p<0.05) difference in mortality. SDI = stand density index. 

  Year of Prescribed Fire  

  2027 2037 2057 2077 2097 

a) Trt  NRG 60a 36.3a 12.9a 6.4a 4.1a 

 TH 43.2b 24.6b 10.8ab 6.1a 4.1a 

 UTH 52.5c 35.1a 15.3b 7.0a 4.2a 

b) Thinning 

Target 
370SDI 50.1a 30.6a 11.8a 5.6a 3.4a 

495SDI 50.7a 31.0a 12.8a 6.3a 3.9ab 

 618SDI 50.9a 31.0a 13.1a 6.8a 4.4b 

 No Thin  50.9a 31.0a 13.2a 7.1a 4.8b 

 Total (all stands)  32.9-64.3 19.1-44.5 6.4-21.5 3.8-11.1 2.3-7.3 
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Table 9. Surface and total flame lengths (m) and spread rate (m/min) by fuel treatments (Mast = 

mastication only, MB = mastication with burning, No Fuel = No fuel treatment). Different letters in rows 

indicate a difference in flame length or spread rate between fuel treatments.  

  Fuel Treatment   
  Mast MB No Fuel Total 

Flame length (m) Surface 1.3a 0.6b 1.4c 1.1 
 Total 3.2a 0.9b 3.9a 2.7 

Spread rate 

(m/min) 
Surface 3.8a 1.8b 4.4c 3.3 

 Total 8.6a 3.3b 10.0a 7.3 
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Figure 1. Decision tree showing fuel model used in unmanaged simulations, only overstory thinning 

simulations, and initial conditions. SDI = stand density index; TPH = trees per hectare; see Table 4 or 

Scott and Burgan (2005) for full description of fuel model names in final white boxes.  

 

 

 

 
 

Figure 2. Potential fire type over time by fuel treatment (Mast = mastication only, MB = mastication 

with burning, No = No fuel treatment), thinning target, and original management (Trt: NRG = natural 

regenerating stands, PCT = plantations with pre-commercial thinning, non-PCT = plantations without 

pre-commercial thinning). Y Axis: 4 = Active crown five, 3 = passive crown fire, 2 = conditional 

crown fire, 1 = surface fire. 
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Figure 3. % basal area mortality from potential fires over time by fuel treatment (Mast = mastication 

only, MB = mastication with burning, No = No fuel treatment), thinning target, and original 

management (Trt: NRG = natural regenerating stands, PCT = plantations with pre-commercial 

thinning, non-PCT = plantations without pre-commercial thinning). 
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Figure 4. Canopy base height minus total flame length from potential fires over time by fuel treatment 

(Mast = mastication only, MB = mastication with burning, No = No fuel treatment), thinning target, 

and original management (Trt: NRG = natural regenerating stands, PCT = plantations with pre-

commercial thinning, non-PCT = plantations without pre-commercial thinning). 
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Figure 5. Interaction of fuel treatment (Mast = mastication only, MB = mastication with burning, No 

= No fuel treatment) and thinning target for A) basal area (m2ha-1), B)QMD (cm), C) age when surface 

fire begins, D) age CBH exceeds flame length, and E) final crowning index (kph). Error bars are +/- 

1standard error.  
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Figure 6. Crowning index from potential fires over time by fuel treatment (Mast = mastication only, 

MB = mastication with burning, No = No fuel treatment), thinning target, and original management 

(Trt: NRG = natural regenerating stands, PCT = plantations with pre-commercial thinning, non-PCT 

= plantations without pre-commercial thinning). 
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Figure 7. Canopy base height over time by fuel treatment (Mast = mastication only, MB = mastication 

with burning, No = No fuel treatment), thinning target, and original management (Trt: NRG = natural 

regenerating stands, PCT = plantations with pre-commercial thinning, non-PCT = plantations without 

pre-commercial thinning).  
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Figure 8. Canopy bulk density over time by fuel treatment (Mast = mastication only, MB = mastication 

with burning, No = No fuel treatment), thinning target, and original management (Trt: NRG = natural 

regenerating stands, PCT = plantations with pre-commercial thinning, non-PCT = plantations without 

pre-commercial thinning). 
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Chapter 4: Conclusions 
 

  The effects of past management on mixed conifer forests in the Sierra Nevada has changed how 

they regenerate after fires and therefore changed how to keep them healthy and resilient to crown fires. In 

my thesis I compared current growth and ecology of young, post fire plantations as well as naturally 

regenerating stands and then forecasted their growth and potential fire behavior into the future under 

different management scenarios.  

When comparing growth between the two planting arrangements in the young plantations, 

differences were minimal. However, the clustered plantations grew more before thinning than the evenly 

spaced plantations, suggesting that cluster plantations can provide a slight facilitative effect in young 

stands. The thinned plantations had larger trees than the unthinned and natural regenerating stands, but the 

confounding effect of thinning and elevation made comparing between thinned and unthinned plantations 

difficult to interpret. However, there was an effect of thinning found when comparing the BAI of the 

thinned plantations before and after thinning. The effects of shrub growth were seen in multiple variables 

including tree density and diameter growth, which highlights a major difficulty post fire that mixed 

conifer plantations face in the Sierra Nevada Mountains.  

When comparing fire behavior and growth across stands and simulations, several patterns 

emerged. In all simulations I found a general pattern of decreasing fire intensity over time, due to 

increasing canopy base heights and decreasing canopy bulk density. The amount of time before low 

severity surface fire was reached could be altered with fuel treatments and overstory thinning.  I found 

mastication with burning to be the most effective fuel treatment for reducing fire risk and increasing 

growth quickly by drastically reducing surface fuels and thus flame length and stand density. I found 

minimal difference between the mastication treatments, except in surface fire behavior which influenced 

mortality. Overstory thinning mainly affected canopy bulk density, so its effects were mostly seen by 

reducing a fire’s ability to spread through the canopy. The thinning treatments from below helped reduce 

ladder fuels when there were not any additional surface fuel treatment.  
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 My research highlighted how different stressors like planting arrangement, density, shrubs, and 

light can affect young plantation growth and how silvicultrual treatments interact with growth and 

development over time to affect fire behavior.  This is one of the first studies to compare clustered and 

evenly spaced plantations in the Sierra Nevada Mountains as well as forecasting post fire plantations’ 

interactions with silvicultrual treatments and fire behavior into the future. There are still many gaps in the 

knowledge when it comes to interactive effects of cluster plantations with inter-tree facilitation, drought, 

thinning, and site characteristics. There is also a need to understand how fire behavior in even aged 

plantation differs from the natural uneven aged stand development usually found in these forests. My 

study demonstrates the importance of managing post fire plantations closely so shrubs, canopy, density, 

and surface fuels are controlled to keep them growing productively and resilient to stand replacing crown 

fires.   
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