
Graduate Theses, Dissertations, and Problem Reports 

2016 

Conditioning the Estimating Ultimate Recovery of Shale Wells to Conditioning the Estimating Ultimate Recovery of Shale Wells to 

Reservoir and Completion Parameters Reservoir and Completion Parameters 

Maher Jasim Alabboodi 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Alabboodi, Maher Jasim, "Conditioning the Estimating Ultimate Recovery of Shale Wells to Reservoir and 
Completion Parameters" (2016). Graduate Theses, Dissertations, and Problem Reports. 5044. 
https://researchrepository.wvu.edu/etd/5044 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F5044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/5044?utm_source=researchrepository.wvu.edu%2Fetd%2F5044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 

 

 

Conditioning the Estimating Ultimate Recovery of Shale Wells to Reservoir 

and Completion Parameters 

 

Maher Jasim Alabboodi 

 

Thesis submitted to the 

Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 

 

 

In partial fulfillment of the requirements for the degree of 

Master of Science  

in 

Petroleum and Natural Gas Engineering 

  

 

Shahab Mohaghegh, PhD, Chair 

Samuel Ameri, Prof. 

Dengliang Gao, Ph.D. 

 

Department of Petroleum and Natural Gas Engineering 

Morgantown, West Virginia 

2016 

Keywords: Decline Curves Analysis, Estimated Ultimate Recovery, Artificial Neural 

Network, Pattern Recognition. 

 

Copyright 2016 Maher Jasim Alabboodi 



 

 

Abstract 

 

Conditioning the Estimating Ultimate Recovery of Shale Wells to Reservoir and 

Completion Parameters 

 

Maher Jasim Alabboodi 

 

In the last years, gas production from shale has increased significantly in the United States. 

Therefore, many studies have been focused on shale formation in different areas such as fracturing, 

reservoir simulation, forecasting and so on. Forecasting production or estimating ultimate recovery 

(EUR) is considered to be one of the most important items in the production development planning. 

The certainty in EUR calculation is questionable because there are different parameters that impact 

production and consequently the EUR such as rock properties and well completion design.  

 

Different methods to calculate EUR have been used in the industry. Traditionally, the decline curve 

analysis method by Arps (1945) was considered to be the best common tool for estimating ultimate 

recovery (EUR) and reserves. However, the Arps’ equations over estimate of reserves when they 

are applied to unconventional reservoirs (extremely low permeability formation). The reason is 

that Arps’ equations only work for Boundary Dominated Flow (BDF) decline. On the other hand, 

many research papers show that the production from the unconventional tight reservoirs is 

distinguished by an extended period of late transient flow, until reaching the boundary-dominated 

flow. To overcome these problems and improve the unconventional reservoir’s production 

forecast, researchers have developed new empirical methods which are being implemented in all 

flow regimes.  

 

These new and traditional methods have been applied in this research to calculate the EUR for 

more than 200 shale wells.  The results of EUR will be subjected to study and condition with rock 

properties, well characteristics and completion’s design parameters. The porosity, total organic 

carbon, net thickness and water saturation are the main rock properties that are considered in this 

research. Furthermore, the impact of different well design configurations (for instance, well 

trajectories, completion and hydraulic fracturing variable) on EUR will be inspected this study. In 

addition, it will be determined from this research whether reservoir or completion parameters have 

the most impact on EUR.  This study will provide the natural gas professionals insight and 

clarification regarding the effects of rock properties and well design configurations on estimating 

the ultimate recovery for gas shale.
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Chapter 1: Introduction  

1.1 Introduction to the estimated ultimate recovery 

 

For decades, oil and natural gas energy has continued to be the main energy resource around the 

world. Petroleum reservoirs are defined based on the rocks characteristics to conventional and 

unconventional reservoirs. In general, Conventional reservoirs have high permeability and mostly 

produce naturally with high flow rate at the initial reservoir pressure. In contrast, unconventional 

reservoirs have very low permeability and porosity which typically need stimulation job to increase 

the permeability and producing. However, recently, advances in horizontal drilling technology and 

the development of hydraulic fracturing technology have improved access to unconventional 

reservoirs deposits and make these reservoirs the main gas resources in United States.    

In consequence, evaluating the amount of oil and natural gas recoverable is very important for 

both economic and operational purposes. Many methods have been developed to estimate the oil 

and natural gas recoverable in the reservoirs. One of most used technique in the industry is the 

decline curve analysis which used to calculate the estimated ultimate recovery (EUR). Decline 

curve analysis is defined as a graphical technique used for analyzing declining production rates 

and forecasting future performance of oil and gas wells. Different equations derived from the main 

concept of decline curve are developed to achieve this purpose. The accuracy in this technique 

depends on the equation that used to calculate the EUR.   

Traditionally, Arps’ equations have been used to calculate the EUR for conventional reservoir 

when exhibit boundary-dominated flow regime. However, these equations show unreasonable 

result when applied in unconventional reservoir due to low permeability that causes long periods 

of transient flow. To overcome this problem, several techniques have been developed to calculate 

the EUR in unconventional reservoirs such as Power Law Exponential by Ilk et al. (2008) and 

Stretched Exponential Decline by Valko (2009). In addition, in 2010, Duong has developed a new 

empirical model based on long-term liner flow in tight gas reservoir. Duong considers his approach 

easy and simple to use for predicting the future rate and EUR. 

Different parameters such as reservoir characteristic or well completion design impact in the flow 

rate of the production from the reservoirs and consequently affect the estimated ultimate recovery 

for these reservoirs. Study the effects of these parameters on the RUR results provide an 

understanding of which completion design or drilling spot should be applied. 
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Figure 1: Marcellus Shale Distribution [U.S. EIA] 

1.2 Unconventional Gas Shale Resources in the United States 

 

In recent past, natural gas sealed in tight, impermeable shale which called unconventional 

reservoirs was considered uneconomical source to produce. However, using new technologies in 

drilling and reservoir stimulation techniques have changed these thoughts by significantly 

increasing the gas production from the uneconomical reservoirs. In United States, the most prompt 

development of the unconventional reservoirs has been in The Barnett Shale formation in Texas. 

Though, Marcellus Shale formation, which is in the northeastern part, considered the largest 

unconventional gas resource in the United States.  

Unconventional gas shales describe as fine grained, sedimentary rocks, organic rich. Therefore, 

both the sources and the reservoirs of the natural gas found in the shales formations. In the shales 

formation, gas occupies pore spaces while organic matter adsorbs gas on its surface. On the other 

hand, in conventional reservoir, oil and natural gas generate in porous sandstone and carbonate 

reservoirs. Then, the oil and natural gas are migrated upward from its organic source until an 

impermeable cap-rock trapped it in the reservoir.  

Recently, the Marcellus Shale formations stand out as a significant new and major source of natural 

gas production in the United States. It extends from Ohio through West Virginia, western 

Maryland, and into Pennsylvania and New York. Figure (1) shows the distribution of Marcellus 

Shale formations in the United States 
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1.3  Problem Statement 

 

Hydrocarbon production from unconventional shale gas reservoirs has become more common in 

the past decade. Therefore, prediction of hydrocarbon recovery or estimated ultimate recovery 

(EUR) for these reservoirs throughout the life of wells is considered the main step in development 

planning. Decline curve analysis technique is the most popular graphical-mathematical method in 

the industry used to calculate EUR.  

 

The traditional decline curve technique shows unreasonable results when applied in 

unconventional reservoirs because of the complexities in petrophysical and mechanical properties 

of these reservoirs. Consequently, new decline curve models have been developed specifically for 

tight gas reservoirs. However, both the traditional and new techniques do not consider reservoir 

characteristics and completion design parameters. But, in reality, reservoir characteristics and 

completion design parameters have significant impact on future production behavior. Accordingly, 

study the impacts of these parameters on Estimated Ultimate Recovery (EUR) will provide a better 

understanding of the reserves estimation.  

 

The main objective of this research is to condition the estimated ultimate recovery of shale wells 

to reservoir and completion parameters. In addition, it will be determined from this research 

whether reservoir or completion parameters have the most impact on EUR.  The case study 

includes a large number of wells in a shale asset.  The first step is to calculate the EUR for more 

than 200 shale wells by using traditional and new methods of decline curve analysis.   

 

The results of EUR will be subjected to study and condition with rock properties, well 

characteristics and completion’s design parameters by using artificial neural networks technology. 

The porosity, total organic carbon, net thickness and water saturation are the main rock properties 

that are considered in this research. Furthermore, the impact of different well design configurations 

(for instance, well trajectories, completion and hydraulic fracturing variable) on EUR will be 

inspected in this study.  
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Figure 2: Reservoir and completion parameters 

 

This study differs from other published studies in that the focus was not so much on making 

comparison in decline curve methods or their results of   Estimated Ultimate Recovery (EUR), but 

rather was on investigating the impacts of different parameters on EUR values.   

 

This study will provide the natural gas professionals insight and clarification regarding the effects 

of rock properties and well design configurations on estimating the ultimate recovery for gas shale. 

Also in this study, it will be determined which parameters (reservoir or completion) have more 

impact on EUR which will give additional understanding to the petroleum industry when planning 

future well development.   
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Chapter 2: Literature Review 

In recent past, unconventional hydrocarbon resources have become very an important energy 

source in United States and worldwide. Unlike conventional reservoirs, forecasting the future 

production of unconventional reservoirs is considered a big challenge because of the complexities 

in petrophysical and mechanical properties of these reservoirs. Therefore, using same conventional 

tools and techniques that have been used in conventional reservoirs to predict production in 

unconventional reservoirs is not completely successful idea [Mohaghegh, 2014]. 

 

Consequently, various reserve estimation methods have been published in the literature ranging 

from basic material balance calculations to decline-curve analysis. Reservoir Numerical model 

which has been used in estimate future production of conventional reservoirs and provide 

reasonable results shows unreasonable results when applied in unconventional reservoirs 

[A.J.Clark, 2011]. The reason that some assumptions in this modeling are inconsistent with real 

field data of these unconventional reservoirs such as pressure initialization and radial transient 

flow [Duong, 2010]. 

 

Simultaneously, empirical techniques which are mathematical relationships of the decline curve 

analysis have been developed to compute the reserve estimation of the reservoirs. Traditionally, 

Arps’ equation that published by J.J. Arps was commonly used to forecast reserves in conventional 

reservoirs:  

                                                                            𝑞 = 𝑞𝑖 (1 + 𝑏𝐷𝑖 𝑡)
−1

𝑏                                          (1) 

 

In this approach, Arps considered the equation as empirical, but then realized that the exponent 

(b) can be influenced by the reservoir flow condition. The degree of the curvature of the semi-log 

decline is determined by the value of b. It becomes a straight line at b = 0 and increasing the 

curvature at higher values of b.  Arps declared that the value of b has to be in range between zero 

to 1, but didn’t discuss of getting b greater than 1. 

 

After the Unconventional Reservoirs Revolution, applying Arps’ technique for tight gas reservoir 

showed that the exponent b is greater than 1 [Maley, 1985].As a result the forecasting was 

overestimation and unreasonable. In that time (around 80s) it was inevitable to apply Arps’ method 
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to tight gas wells. For example, in1985,  Maley was one of the first scientist who applied Arps’ 

equation in tight reservoir. He declared “There is no theoretical basis for limiting the exponent to 

value less than 1”. However, he found in his conclusion that by using exponent greater than 1, the 

results showed unreasonable forecasting long well lives. Therefore, he recommended to limit the 

forecasted production life with some minimum value for the decline rate as attempt to overcome 

this problem. 

Though, in reality, many oil & gas professionals and engineers avoided using the Arps equation in 

unconventional reservoir to avoid the overestimation in the investment decisions. Some of them 

used approach that assumed decline shape composed of a series of straight line segment. This 

approach is apparently arbitrary [Maley, 1985].  

 

Consequently, in recent studies, several new techniques for the decline curve analysis have been 

developed to improve the accuracy and reliability of the reserves estimates in unconventional 

reservoirs and to avoid the overestimation results.  For instance, Power Law Exponential (PLE) 

method which proposed by Ilk et al. [2008] to estimate the ultimate recovery for unconventional 

reservoir. The interesting side of this model that this model is flexible to model transient, transition, 

and boundary-dominated flow [Ilk et al., 2008].  

 

Further, other method has been suggested by Valko (2009) which is Stretched Exponential 

Production Decline (SEPD). The most significant advantage of this model that is the bounded 

nature of estimated ultimate recovery (EUR) without limits on time or rate [Valko, 2010]. In 

addition, in 2010, Duong has developed a new empirical model based on long-term liner flow in 

tight gas reservoir. Duong considers his approach easy and simple to use for predicting the future 

rate and EUR. Moreover, this model is capable to provide a statistical method to analyze 

production forecasts of resource and establish a range of results for these forecasts, including 

probability distribution of the reserves [Duong, 2010]. 

 

In this study, these new and the traditional methods have been applied to compute the EUR for 

more than 200 shale wells.  The results of EUR will be subjected to study and condition with 

reservoir properties and completion’s design parameters. The focus is on finding relevant and 

reasonable trends between these parameters that mentioned above and EUR. In other words, the 

efforts in this study is to investigate which parameter has significant impacts on future production. 
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In addition, it will be determined from this study whether reservoir or completion parameters have 

the most impact on EUR 

 

Unconventional reservoirs are characterized by very complicated fluid flow because of the 

complexity in petrophysical and mechanical properties of their rocks. For instance, reservoir 

characteristics of shale vary quite significantly for same production area. Therefore, using 

conventional statistical analysis (such as cross-plots and regression) to find relation or patterns in 

data sets in these reservoirs might be challenging due to their inherent nonlinear behavior 

[Mohaghegh, 2015]. To overcome this problem, Advance data mining technology has been used 

to find patterns or relation between the parameters and EUR. 

  

In this study, Advance data mining technology called Fuzzy Pattern Recognition since it is based 

on Fuzzy theory [Mohaghegh, 2000] has been employed to discover any hidden patterns or 

reasonable trend between parameters such as porosity, total organic carbon, net thickness, water 

saturation, well trajectories and hydraulic fracturing design with EUR.  

 

Pattern Recognition is a branch of artificial intelligence used for classification or description of 

observations. The objective of the Pattern Recognition is to classify data based on the statistical 

information that extracted from the pattern. 
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Chapter 3: Background  

 

3.1 Introduction  

 

In any Reservoir Management or Development, the main question will be risen that how much oil 

and/or gas this reservoir be able to produce? How many years this well will be able to produce? 

Defiantly, the forecasting and simulation studies will be employed to answer these questions.  In 

general, there are three techniques that used for forecasting such as Volumetric, Material balance 

and decline curve analysis. As mentioned earlier, using same conventional tools and techniques 

that have been used in conventional reservoirs to forecast production in unconventional reservoirs 

is not successful idea [Mohaghegh, 2014].  

 

In addition, Duong, 2010, mentioned in that some assumption that used in the modeling 

conventional reservoirs are inconsistent with real field data of unconventional reservoirs such as 

pressure initialization and radial transient flow. Moreover, most the results of estimation future 

production obtained by using reservoir numerical modeling on unconventional reservoirs are 

unreasonable. Therefore, estimated ultimate recovery by using decline curve analysis is common 

method in the oil industries because it is simple to use, requires less data and provides reasonable 

results.   

3.2 Decline Curve Analysis 

 

Decline curve analysis is an empirical method used in reservoir engineering to extrapolate 

tendencies in the production data from oil and gas wells and to make a forecast of coming 

production rates in addition to determine the Estimated Ultimate Recovery (EUR). The decline 

curve analysis was performed by plotting rate versus time or rate versus cumulative production. 

The most traditional methods of decline curve equations are those first notarized by J.J. Arps 

(1945). These methods are only valid during Boundary-Dominated Flow (BDF) that typically 

occurs in conventional reservoir when transient flow period ends after a few days. During transient 

flow, these methods do not apply (see figure 3).   

 

In contrast, unconventional tight reservoirs, that have low permeability and require extensive 

fracture networks to produce, can have transient periods between several months to several years 
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till reach the BDF. As a result, Arps’ equations do not work perfectly in unconventional reservoirs 

and could result overestimate EUR (see figure 4).  

Consequently, in recent studies, many researchers have tried to solve this problem by derivative 

equations that involve both transient and boundary-dominated flow.  In other word, these equations 

are particularly applicable to tight unconventional reservoirs because, as mentioned, the transient 

flow is often the dominant flow regime, and the boundary dominated flow may not be reached 

until after many years. 

 

Figure 3: Applying Arps’ equations in conventional reservoir [Courtesy of Reference 1] 
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Figure 4: Applying Arps’ equations in unconventional reservoir [Courtesy of Reference 1] 

3.2.1 Traditional Arps Decline curve Analysis  

 

Arps’s equations, published by J.J. Arps in 1945, are the most common traditional techniques used 

to calculate Estimated Ultimate Recovery (EUR) for conventional reservoirs because they are 

simple to use and require less data. Arps classified three types of production rate decline during 

BDF (Exponential, Hyperbolic and  Harmonic) depending on the way that the nominal decline rate 

(D) changes with rate in  a semi-log plot (log q vs. t). In other word, the changing in the decline 

degree base on the value of the decline exponent constant b. Arps derived the equations for each 

type by using the concept of loss-ratio and its derivative. 

Loss ratio:                                                        

1

𝐷
=  − 

𝑞

𝑑𝑞
𝑑𝑡

⁄
                                                                           (2) 
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The loss ratio derivative: 

                            𝑏 =
𝑑

𝑑𝑡
  [ −  

𝑞

𝑑𝑞
𝑑𝑡

⁄
    ]                                            (3)            

The flow rate equation:  

                𝑞 = 𝑞𝑖 (1+b 𝐷𝑖 t) 
−1

𝑏⁄
                                        (4) 

 

In above equations, “q” refers to flow rate, “qi” refers to initial flow rate, “D” is how steep the 

decline is, “b” is the leveled out portion of the curve, and “t” is the production time such as day or 

month.  

Arps declared that the value of b should lie between 0 and 1.0 and did not discuss of possibility b   

greater than 1. Mathematically, the value of b determines the degree of curvature of the decline. 

Start from straight line (exponential decline) when b=0 to increasing curvature at higher value of 

b. (see table 1) 

 

 

However, for unconventional reservoirs, it is often observed that values of b is greater than 1.0. In 

1985, Maley applied Arps’ equations for tight gas (unconventional reservoir) and mentioned in his 

conclusions that the exponent b in Arps’ equations often does exceed 1.0.  Moreover, many studies 

show that applying Arps’ equations in unconventional reservoirs give b value  greater than 1.00 

such as Ilk , in  2008,  stated that often observe b value greater than 1.0 when applied Arps’ 

 Exponential 

b= 0 

Hyperbolic 

0 ≤ 𝒃 ≤ 𝟏 

Harmonic 

b=1 

D= constant D = changing D= changing 

Flow rate equations  𝑞 = 𝑞0 𝑒
−𝑡𝐷𝑖  𝑞 = 𝑞0 (1 + 𝑏𝐷𝑖 𝑡)

−1
𝑏  𝑞 = 𝑞0 (1 + 𝑏𝐷𝑖 𝑡)

−1
𝑏  

Cumulative equations  
𝑄 =

(𝑞0 − 𝑞)

𝐷𝑖
 𝑄 =

𝑞0 
𝑏

𝐷𝑖(1−𝑏)
(𝑞0

1−𝑏 − 𝑞1−𝑏
) 𝑄 =

𝑞0 

𝐷𝑖
(𝑙𝑜𝑔𝑞0 − 𝑙𝑜𝑔 𝑞 ) 

Table 1: Arps' equation based on b values 
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equation for tight gas. In addition, in this study Arps’ equations have been applied on more than 

200 shale gas wells and show b- exponent value much greater than 1. 

As mentioned before that b value determines the curvature for the decline. Therefore, when b value 

is greater than 1.0, the decline curve decreases and, in consequence, the results of the forecasting 

show overestimation. To overcome these problems, recently, new models of decline curve have 

been developed to estimate ultimate reserve of tight gas shale or in general unconventional 

reservoirs.  

 

3.2.2 The New Decline Curve Models 

 

As discussed before, the Arps’ equations are not valid to apply in unconventional reservoirs for 

different reasons (the long period of the transit flow in unconventional reservoir and the range of 

b-exponent should stretch between 0 and 1 for Arps equations).  However, the studies observed 

that b-exponent value is greater than 1 for unconventional reservoirs. Consequently, many 

researches tried to develop new equations that have b -exponent changes with time and are able to 

handle b greater than 1.0. Two of those new methods will be covered in this section, Power Law 

Exponential Decline by Ilk, 2008 and Stretched Exponential Production Decline by Valko, 2009. 

 

3.2.2.1 Power Law Exponential Decline Models (PLE) 

 

Ilk et al. (2008) established the Power Law Exponential (PLE) decline model, which is an 

improvement of Arps’ exponential decline,  to get better  fit and  forecast of EUR  specifically for 

low  permeability (unconventional  reservoirs).  

PLE loss-ratio, 

                              D = D∞ + n Di t 
n-1                                                       (5) 

PLE derivative of loss-ratio, 

                                  b = 
d

dt
(

1

D
) =  

−n(n−1)Di t
n−1

D2                                     (6) 

PLE rate-time relation, 

                             q = qi exp (- D∞t - 
D1

n
 tn)                                                (7) 

Where: 

qi = rate intercept at t =0 

D∞= decline constant at infinite time 

D = decline constant 

n = time exponent 

 



 

  13 

 

3.2.2.2 Stretched Exponential Production Decline Model (SEPD)  

 

Valk (2009) developed a new equation which has a different technique to handle the exponent 

value. This equation is called Stretched Exponential Production Decline Model (SEPD). When n- 

exponent (equation 8) is set equal to one in SEPD, the equation results in an exponential decline 

and by decreasing n-exponent value the depletion gets slower which is completely opposite as 

what is found when using the Arps decline method (see figure 5). All these characteristics give the 

SEPD method a more rational estimate of EUR compared with other methods. 

 

SEPD rate-time relation, 

                                             q = qi exp [− (
𝑡

𝜏
)

𝑛

]                                      (8) 

 

 

Figure 5:  Stretched Exponential Decline Model Behavior [Courtesy of Reference 2] 
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3.3 Artificial Neural Networks 

 

The failure in solving complex problems by using conventional digital computers have brought a 

new technique called Artificial Neural Networks. An Artificial neural networks (ANNs) are 

defined as model designed to simulate the way that the human brain processes information. The 

concept of ANNs comes from how the human brain is capable of solving complex problems 

without using a mathematical model but rather through using cognitive observation and learning 

from experiences. Thus, The Artificial Neural Networks do not use algorithmic processes that used 

in conventional algorithmic computers, instead, they react to things learned through experience. 

Accordingly, it is important to provide the ANNs with sufficient examples to learn the neural 

networks.   

The Artificial Neural Networks are designed in a similar way to how neurons in human brain 

process the information. In the human brain, the neuron gathers signals from other 

neurons through a network of fine structure called dendrites. Then, the neuron sends waves of 

electrical pulses through long and thin strands within the brain called axon. This axon is split into 

branches and at the end of each branch are the synapse.  This synapse translates the electrical pulse 

from the axon and returns another electrical pulse that will speed up or slow activity in the axon 

and thus, the connected neurons. It is at this time, if the neurons receive enough input, they will 

send electrical activity back through the axon.  Learning actually happens by changing the 

productiveness of the synapses in order to change the influence of one neuron on another. The 

result of that an intelligent brain capable of learning, prediction and recognition. Figure (6) shows 

schematic of a biological neuron.  

 

Figure 6: Neuron Cell    (https://sites.google.com/site/drhuntersanatomyandphysiology/neurons) 

https://sites.google.com/site/drhuntersanatomyandphysiology/neurons


 

  15 

 

Figure 8: Feedback network          

In other hand, the Artificial Neural Networks basically have neurons and each single neuron 

consist of inputs (like synapses). The inputs are multiplied by weights, and then summed by a this 

activation function which determines the activation of the neuron. After that, they passed through 

a transfer function (which called transfer function) to produce the output for that single neuron. It 

has to mention here that the computation of the neuron are different because they are impacted by 

the weight. Therefore, to achieve the desired output for specific input, the weight should be 

adjusted. Figure (7) shows mathematical structure of neuron. 

 

Figure 7: Mathematical structure for neuron of Artificial Neural Networks          

The neurons are connected to each other by different ways. These connection ways have 

significant effect on the operation of artificial neural network. The Feedback and Feedforward 

are the most popular connection ways that used in the ANNs. In the Feedback, the outputs of one 

layer (neurons are arranged in one layer) send back to the input of a previous layer, or to same 

layer (see figure 8). 

 

Figure 8: Feedback network (www.elsevier.com:locate:jpba)                                                                               
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In other side, Feedforward are not designed to send the output back to the input neurons as can 

be seen in Feedback process. Therefore, the Feedforward cannot retain its earlier output values. 

Figure (9) shows diagram of Feedforward.  

 

Figure 9: Feedforward network (www.elsevier.com:locate:jpba)                                                                                                                          

As human’s brain the neurons are trained and learned by experiences, the ANNs have to be learned 

and trained by sufficient training. The neural network, with sufficient number of neuros and 

sufficient training, can model any nonlinear functions [Cybenko, 1989: Funahashi, 1989]. 

One of the most often technique that used to learn the network is Backpropagation. Data from 

inputs are fed forward the neural network to optimize the weight through the neurons. Then, the 

backward propagation is used to optimize the weight by minimizing the error during the training 

or learning process. The progress of Backpropagation starts when the ANNs read the inputs and 

outputs in the training process then alter the weight to reduce the error of the different between the 

predicted or calculated value by ANNs and the output that inserted to ANNs. This error is 

minimized as much as possible by training cycles till reach very small different between the 

predicted and the actual (output )values. Then, the ANNs are called trained enough for using. 

Figure (10) shows diagram of Backpropagation process.   

 

Figure 10: Backpropagation Training Diagram 



 

  17 

 

The important applications of neural networks are pattern recognition and data classification. The 

pattern recognition technique can be used to extract pattern or hidden trend from complex data 

when the computer techniques are unable to find it. For example, in oil& gas industries, studies 

have been shown that unconventional reservoirs have very complex properties, unlike the 

conventional reservoirs, and the correlations that used in conventional reservoirs cannot be applied 

in unconventional reservoirs.  

Therefore, this complex system, nonlinear system, needs new technique that is capable of 

processing extensive amounts of complex dataset. In other words, new technique has the ability to 

find trends and useful information from large datasets. As a result, using the Artificial Neural 

Network as new technique (compared with conventional digital computers) in these reservoirs 

shows successful approach because the Artificial Neural Network has proven to have potential in 

solving problems that require pattern recognition.  

In this study, Fuzzy Trend Analysis (FTR) and Well Quality Analysis (WQA) which are branches 

of Artificial Neural Network concerned with classification and observations are employed to 

discover any hidden but useful patterns among non-linear and interdependent parameters involve 

in the shale gas datasets.  
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Chapter 4: Methodology 

 

Before starting in the methodology of this study, it is necessary to remark some important points.  

First of all, as mentioned earlier, the main focus of this thesis is to condition the Estimated Ultimate 

Recovery (EUR) with reservoir and completion parameters. In other words, the objective of this 

study is to find trend or relation between these parameters and EUR. 

This study differs from other published studies in that the focus was not so much on making 

comparison in decline curve methods or their results of   Estimated Ultimate Recovery (EUR), but 

rather was on investigating the impacts of different parameters on EUR values.   

Another aspect of this study which differs from other published studies is that the study is applied 

on real field data and, therefore, based on fact. In this case, the process is dealing with highly 

variable flow rates (noisy data), different operation condition and other factors that have effects 

on production behavior.  

The following procedure that explain in the below flowchart (figure 11) is designed to give 

consistent, reasonable results:  

 

Figure 11: Flowchart shows the steps of the methodology  
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4.1 Filtering the Production Data 

 

The EUR quality of both the traditional and the new models is limited by the quality of the analyzed 

data. In practice, the single well production is subjected to different factors that effect on the flow 

rate of the well such as changing production strategies or changing operation conditions. Since, 

this study is applied on real field data, it is hard to find reasonable trend of flow rate decline profile. 

Therefore, the big challenge here is to make the noisy data reasonable data.  

 

For all these points that mentioned above, filtering the Production Data is considered to be the rock 

stone of getting accurate EUR in any study. The following steps are applied on the every single 

well before calculate the EUR. 

 

 Highlight the reasonable trend  

 Ignore any points  from different production strategies or changing operation conditions 

 Ignore points that considered producing below the production capacity of the well in just 

portion of the month.  
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4.2. Calculating the Estimated Ultimate Recovery (EUR)  

 

Estimated ultimate recovery have been calculated for more than 200 shale gas  wells by using 

decline curve analysis to predict production for 10, 30 and 50 years. With these large number of 

wells, the study becomes more reasonable and logical.    Both the traditional and the new models 

of the decline curve analysis that mentioned earlier have been used in this study to calculate EUR. 

In this way, this study will be based on both traditional and modern techniques of calculating EUR. 

The Optimism and Pessimism in Decision Making is Based on the way that EUR calculated.  

 

The two traditional models:  

- Hyperbolic Model (HB)                                                             𝑞 = 𝑞𝑖 [(1 + 𝑏𝐷𝑖  𝑡)(−1
𝑏⁄ )]      

- Tail End Exponential Model (TED)                                          𝑞 = 𝑞𝑖 𝐸𝑥𝑝[−𝑡𝐷𝑖]         

 

The two new models: 

- Power Law Exponential Model (PLE)                                        q = qi Exp (- D∞t - 
𝐷1

𝑛
 tn )                          

- Stretched Exponential Production Decline Model (SEPD)         q = qi Exp [− (
𝑡

𝜏
)

𝑛

]                   

                                                   

Non-linear regression technique, that introduced by Towler 2002, has been used on an EXCELL-

SOLVER for determining decline curve parameters. A spreadsheet was set up containing cells for 

each parameter of every model of the Decline Curve Analysis (DCA). For every model, several 

columns in Excel Sheet have been created which are actual production data 𝑞 , appropriate 

production rate equation 𝑞− , the errors squared  (𝑞 − 𝑞−)2 and total errors squared  

(𝑞 − 𝑞𝐴𝑣𝑒𝑟𝑎𝑔𝑒 )
2
.  

Moreover, a cells for the sum of errors squared 𝑆𝑆𝐸 and total errors squared 𝑆𝑆𝑇 were created. 

Finally, a cell for the regression coefficient was generated by using the following formula:  

 

                           𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
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By using Microsoft Excel’s built-in Solver function and setting the objective cell containing  𝑅2 

equal to one while changing the appropriate variable cells for each DCA model, the best fit to 

simulated production data could be obtained. 

 

Once the above columns and cells in Excel are created, the Non-linear regression technique can 

be applied by using Microsoft Excel’s built-in Solver function. This was by setting the objective 

cell containing  𝑅2 equal to one. Then, the calculations are started by  changing the parameters of 

each DCA till obtain the appropriate variable cells for each DCA model and as a consequence the 

best fit to actual  production data is found. The following graph show an example of applying  the 

four models and their differences in estimated ultimate recovery for 10, 30 and 50 years.  

 

Figure 12: Applying the Four Models on Field Data- Well #10030-1 

50 YEARS EUR  50 YEARS EUR –ZOOM IN  
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The above figure (12) shows the results of applying the four models on Well #10030-1. It can be 

seen that Hyperbolic models give highest EUR. In other hand, Tail End Exponential model 

provides the lowest value of EUR. Meanwhile, the new models PLE and SEPD predict reasonable 

results. 

4.3. Preparing the Database  

 

As mentioned earlier, this study is applied on large number of shale wells.  Also, the objective is 

to condition the Estimating Ultimate Recovery (EUR) of Shale Wells to Reservoir and Completion 

Parameters. These parameters which considered in this study are taken from large dataset for more 

than 200 shale wells such as reservoir characteristics, geomechanical properties, completion and 

stimulation data.  

 

This study is applied on more than 200 shale wells in Marcellus shale located in Pennsylvania. 

These wells are described by multiple pads, different landing targets, diverse reservoir properties 

and different completion and stimulation information. The diversity of the wells and reservoir 

properties give this study comprehensive insight and extensive knowledge for the impact of 

different parameters on EUR. In other words, this diversity will cover most completion designs 

and reservoirs properties that are existing in the oil fields. 

 

The dataset that are subjected to study in this research are classified based on the ability to modify 

them to Design parameters which can be changed and Native parameters which can not be 

changed.  The design parameters include the completion and stimulation design such as the shot 

density, perforated/stimulated lateral length, number of stages and etc which represent the 

completion data. The stimulation design are the amount of injected clean water, rate of injection, 

injection pressure, amount of injected slurry and etc. Because the data was provided on a per well 

basis, a cumulative total of volumes of fluid and proppant for multiple hydraulic fracture stages 

were recorded while the pressures for each hydraulic fracture stage were averaged. 

 

In other side, the Native parameters are well information and the reservoir characteristics which 

are matrix porosity, matrix permeability, pay thickness, net to gross (NTG), initial water saturation 

and total organic content (TOC). In addition, the geomechanical properties are provided such as 
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shear modulus, minimum horizontal stress, young’s modulus, and poisson’s ratio. All these dataset 

that mentioned above are supplied for each single well. Figure (13) shows these parameters that 

are considered in this study.  

 

Figure 13: Native and Design Parameters 
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4.4. Artificial Neural Network 

 

Artificial Neural Network (ANN) was used in this study to find the relation or trend between EUR 

and parameters. Pattern recognition which is a branch of the artificial intelligent neural network is 

applied in this research to discover any hidden but potentially useful pattern in the dataset that are 

subjected to investigate in this study.  Improve software has been employed to achieve this goal.  

IMproveTM software, which was developed for artificial neural network task, was employed to 

discover the hidden pattern and achieve the goal of this study.  

 

The processes stared by determining the input and output for the model. In this study, 34 

parameters are the input and only EUR is set the output. EUR have been calculated by using the 

four models that are mentioned earlier in the Decline curve section.  However, studying the impacts 

of all these parameters on EUR give very complex model. To avoid the complexities in the model, 

Key Performance Indicators” analysis was run to determine the influence of each parameter 

(input). Then, the parameters that have highest impact on EUR are selected.  

 

4.4.1 Key Performance Indicators 

 

Key Performance Indicator, or KPI, analysis uses to approximate what level of influence a given 

input will have on the output (EUR). A value between 0 and 100 is assigned to each input as its 

“Degree of Influence”. In this study, the top parameters that show the highest influence on EUR 

were subjected to investigate and condition with EUR.  Figure (14) shows the KPI result model 

built. 
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Figure 14: Key Performance Indicators 

KPI analysis is an excellent and easy technique to determine what inputs should be selected for 

the neural network (the inputs have highest impact on output EUR).  However, the results of the 

KPI analysis should not be the final decision when determining which parameters have highest 

effects on EUR.  Some knowledges about reservoir engineering should be used as well. Parameters 

such as porosity, permeability, water saturation, pay thickness, and so on all play a big role in 

production and EUR. KPI analysis may not recognize the impact of all these parameters.  

 

IMproveTM software has another technique used to find hidden pattern and select the input called 

Fuzzy Pattern Recognition (FPR). All the KPI, FPA and reservoir engineering knowledges are 

used to determine the most effective parameters as an input for neural network.  
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4.4.2 Data Partitioning and Neural Network Training  

 

Training the model is very important step in Artificial Neural Networks. In this study, the neural 

network is prepared for training by selecting the inputs that the KPI analysis showed as having a 

high influence. In addition, based on knowledges, other inputs that are expected to have a 

significant influence on EUR are selected. 

 

 In Artificial Neural Networks, after selected inputs, the dataset has to be divided into three sets 

which are Training, Calibration and Verification. This step is called partitions. In this study, 205 

wells represent the dataset of the model. Training, Calibration and Verification Sets are created by 

using an Intelligent Data Partitioning. The data is split into a 10% Calibration, 10% Verification 

and 80% Training data sets. In this case, the model will be prevented from over training. Once the 

partitions have been generated, training the neural network can start. 

 

The BackPropagation Neural Network technique was utilized for training mechanism in this 

research which provided by IMPROVETM. This technique is one of most popular learning 

algorithm used in the ANN. In feed-forward backpropagation, there are three parameters are 

responsible for algorithm convergence which are momentum, learning rate, and weight decay.  

Momentum and Learning Rate of the neural network have been selected when the 

BackPropagation Neural Network was designed in this model.  IMPROVETM defaults these values 

and the default values are used. Using the default values are recommended because these default 

values are based on many years of experience in working with different cases of neural network 

models. As mentioned earlier, usually the neural networks have three layers which are input, 

output, and hidden layer.  

 

The number of neurons in the hidden layer can also be changed however the default value has 

been used which was determined by the total number of the inputs parameters. Figure (15) shows 

the Design of the BackPropagation Neural Network.  



 

  27 

 

 

Figure 15: Design for the Back-Propagation Neural Network 

Once the design is set, the network model is ready to begin training. As mentioned before, 80% of 

data was used for training the neural network and 10% for calibration and 10% validation. 

Iterations or ‘epochs’ of the NN were established until the error calibration or error training no 

longer reduces. Figure (16) shows the training process of the Neural Network.  

 

 

 

 

 

 



 

  28 

 

 

Figure 16: The training process of the Neural Network (PLE MODEL) 

The best result of training the Neural Network should show a good match with actual output values. 

In other words, the acceptable model should have R-squared value above 70%. By reaching a good 

match with the actual data or getting high R-squared, the ability of predicting and discovering the 

hidden trends in the dataset are increased. For this reason, it was important to train the model till 

get high R-squared. 

 

 Figures (17) and (18) illustrate the cross and the scatter plots respectively of a trained neural 

network for 10-year-EUR with R-squared of 0.86 for all cases. Figures (19) and (20) show the 

cross and the scatter plots respectively. From these figure (19), (20), it can be seen the quality of 

training process which has 0.90 R-squared. 

 



 

  29 

 

Figure 17: Backpropagation result for the trained NN-All Cases - Cross Plot 
 

 
 

Figure 17: Backpropagation result for the trained NN-All Cases - Cross Plot 
 

 

 

Figure 17: Backpropagation result for the trained NN-All Cases- Scatter Plot 

 

Figure 18: Backpropagation result for the trained NN-All Cases- Scatter Plot 
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Figure 19: The impact of well location (Easting) on EUR for the models TED, PLE, SEPD and 

HB- FTA result 

 

Figure 20: Backpropagation result for the trained NN-Training Data -Scatter Plot 
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4.4.3 Fuzzy Pattern Recognition analyses 

 

Extracting useful information or finding relation from large datasets of shale gas reservoirs by 

using same traditional or conventional tools is difficult tasks because of the complexities in 

petrophysical and mechanical properties of these reservoirs. Alternatively, in this study, the Fuzzy 

Pattern Recognition technique has been employed to find any desired hidden patterns among the 

complex dataset that described by non-linear relations.  

Fuzzy Pattern Recognition (FPR) is unique and proprietary algorithms tool that is capable of 

deducing hidden and non-obvious trends and patterns from large complex field datasets. FPR is a 

branch of artificial intelligence concerned with classification the datasets and it derives from the 

concept of fuzzy theory. This tool is very widely used in industries because the experiences show 

that it discovers realistic relations among datasets.  

In this study, Well Quality Analysis (WQA), and Fuzzy Trend Analysis (FTA) which are branches 

of Fuzzy Pattern Recognition (FPR) were applied to generate relevant and reasonable trends 

between EUR and parameters of reservoirs and completion design. In other words, WQA and FTA 

are employed to find the impact of these parameters on EUR.  

Well Quality Analysis is process of Fuzzy Pattern Recognition but it is applied to a limited number 

of classes of wells such as Poor, Average, and Good Wells. In other hand, when every single well 

in the dataset is treated as a potential unique well quality, the result is called Fuzzy Trend Analysis. 

Before showing the results of this study, it was important to present Conventional Statistical 

Analysis and why preferred to avoid using it in shale gas reservoirs. Figure (21) is demonstrating 

analysis for porosity in Cartesian, Semi-log, Log-Log and histogram. 
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In figure (21), the conventional statistical methods were used to show their weakness in extracting 

the trends between data for shale reservoirs. From these results, it can be seen that the conventional 

statistical was unsuccessful in finding trends or relation between the matrix porosity and EUR. 

However, it is very obvious that the higher porosity results better production performance and 

consequently results high EUR, which cannot be recognized by using conventional statistical 

analysis. In other hand, the Fuzzy Pattern Recognition (FPR) was able to extract the hidden pattern 

from the dataset. The Fuzzy Trend Analysis (FTA) in figure (22) and Well Quality 

Analysis(WQA) in figure (23) show the trend or relation between matrix porosity and EUR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Conventional Statistical Analysis 
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Figure 22: Fuzzy Trend Recognition- 10 years PLE EUR vs. % Porosity 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from the above figure (22) that the EUR increase with high value of porosity which 

is very basic knowledge in reservoir engineering but it can not be found in conventional statistical 

analysis. In this figure (22) the purple points (or line) and the grey points represent the FTR and 

actual data respectively. The FTA extracted positive correlation between porosity and EUR.  

Next figure (23) shows using WQA technique to classify the data based on EUR. In this figure, 

the wells have been divided into three groups which are poor, average and good porosity. The 

wells with good porosity give high EUR  
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Figure 23: Well Quality Analysis based on porosity and 10 years PLE EUR 

 

 

 

 

 

 

 

 

 

4.4.4 Generating Type Curve 

 

The developed Models that have been trained by using IMprove Software in this study can be 

utilized to generate Type Curve. The Type Curve is a graphical technique used to show the impact 

of two parameters on EUR. In other words, the Type Curve makes a relation between two 

parameters and EUR by generating a set of curves which display the model behavior when the two 

parameters are changed. This relation can be employed to assist engineers during the decision-

making.  

 

In this type curve, the y-axis represent one of the output of the model such as EUR by PLE, SPED, 

HB or TED. In other side, x-axis is one from the input parameters while the type curve is 

represented a third parameter from the input parameters. However, all the other input parameters 

are kept constant as average value of the parameter for all wells.  

 

The evaluation and insight from the Type Curve can be used for optimization in completion plans, 

future drilling plans and stimulation plans. In addition, it also can be utilized to predict EUR for 

new wells that have not been drilled yet. For example, the Type Curve in figure() shows useful 

correlation between EUR , Measured Depth and Porosity. 
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Chapter 5: Results and Discussions 

 

In this section, the results of Fuzzy Trend Analysis (FTA) and Well Quality Analysis (WQA) will 

be discussed. Both FTA and WQA are employed to discover any hidden patterns in the datasets 

consequently detected the impacts of the parameters on EUR. In addition, important results were 

found in this research regarding whether reservoir or completion parameters have the most impact 

on EUR. This study was applied on more than 200 shale wells located in southwestern 

Pennsylvania. The same analysis has been performed on other parameters as well and the results 

are illustrated in Appendix A. 

 

In order to perform the rigorous analysis presented in this study, the Estimated Ultimate Recovery 

are predicted for 10, 30 and 50 years by using the four techniques (PLE, SPED, HB AND TED). 

By applying these four techniques to the actual data from more than 200 shale wells, this study 

will take into account various parameters to insure more comprehensive results for the study.  

 

IMPORTANT NOTE: The exclusive data of this study will not be published in these results. The 

data will be retained for private use only.   
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5.1 Total Organic Carbon (TOC)  

Total organic carbon (TOC) is one of main parameters to evaluate the potential of shale gas 

resources. The average TOC of prospective resevoir needs to be greater than 2%. It is commonly 

believed to be true that a higher TOC value implies a greater production potentional for natural 

gas and oil. However, this positive correlation cannot be confirmed when considering the actual 

data which is represented by the grey dots which are the results of the conventional statistical 

analysis are used in shale gas reservoirs as noted in figure (24). In contrast, the red dots-line 

represents the Fuzzy Trend Recognition which successfully demonstrates the positive correlation 

between TOC and greater production potential for natural gas and oil.  

Eventhough all of the four techniques of determining EUR ( see figure 24 ) show the same behavior 

in which EUR is greater when TOC has a higher percentage, the impact of TOC on EUR shows 

different individual results for each technique. For example, from the figure (24), formation with 

3% TOC has a EUR of 2.1 Bcf by using TED, 4.2 Bcf by using PLE, 5.2 Bcf by using SPED and 

5.7 Bcf by using HB. Nevertheless, TED model present more reasonable trend comparing to other 

models.  

 

Figure 24: The impact of TOC on EUR for the models TED, PLE, SEPD and HB- FTA result 
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Figure 25: The impact of Young's Modulus on EUR for the models TED, PLE, SEPD and HB- 

FTA result 

5.2 Young’s Modulus  

 

Young’s Modulus is defined as the resistance of rock to elastic deformation under pressure. It is 

one of the most important parameters that should be considered to achieve fracking efficiency. In 

general, the rocks with less young’s modulus mean more flexible rock and consequently are 

fractured easily.  

 

 Figure (25) shows the impact of Young’s modulus on EUR in the four techniques that used to 

calculate EUR.  Based on FTA in this figure, the FTA trend reveals that the wells with higher 

young’s modulus show lower EUR than these with lower young’s modulus. Further, PLE model 

is showing more reasonable trend than the other models.  
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5.3 Stimulated Lateral Length 

 

It is accepted to be true that drilling a horizontal well with a long lateral length will provide a 

greater ultimate production. In figure (26), the FTA extracts this positive correlation in Marcellus 

shale wells dataset for all the four techniques of EUR. However, The PLE and SPED show 

reasonable trend when combined to other techniques. 

 

Figure 26: The impact of Stimulated Lateral Length on EUR for the models TED, PLE, SEPD 

and HB- FTA result 
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5.4 Total Number of Stages  

 

The actual data (grey dots) was scattered and show no correlation between EUR and number of 

stages.  FTA (see red dots- curve in figure 27) clearly shows that wells provide a higher EUR when 

completion is designed with more number of stages. However, this is not a new conclusion in 

petroleum engineering because it has been already proved that productions behavior increase with 

more number of stages. This study has proved that the impact of increasing number of stages on 

EUR shows different results for each technique of determining EUR.  In addition, it is observed 

that TED technique was not very good in showing this obvious correlation.  

 

Figure 27: The impact of Number of Stages on EUR for the models TED, PLE, SEPD and HB- 

FTA result 
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5.6 Cluster Spacing  

 

It can be seen from figures (28) and (29) that when the completion has been designed with close 

cluster spacing, the well will provide higher EUR than this well with large cluster spacing. The 

FTA and WQA present this result in figures (28) and (29) respectively. The main reason is that 

reducing the cluster spacing will increase the conductive transverse fractures. 

 

 

Figure 28: The impact of Cluster Spacing on EUR for the models TED, PLE, SEPD and HB- 

FTA result 
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Figure 29: Well Quality Analysis of Cluster Spacing for models TED, PLE, SEPD and HB 

 

5.7 Injected Proppant per Stage 

 

A proppant is a solid material that pumped to the formation during or following a fracturing 

treatment to keep the hydraulic fracture open. Both FTA and QWA, in figure (30) and figure(31), 

show that treating the wells with more proppant in hydraulic fracturing results high EUR.  It can 

be seen from figure (30) that FTA was more reasonable in TED than the other techniques.  

 

In other side, the WQA (see figure 31) was successful in showing this positive correlation in all 

the four methods. The high quality wells are those pumped with more proppant during the 

fracturing treatment.  
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Figure 30: The impact of Injected Proppant per stage on EUR for the models TED, PLE, SEPD 

and HB- FTA 

 

Figure 31: Well Quality Analysis of Injected Proppant per Stage for EUR models TED, PLE, 

SEPD and HB  
 Good 

 
 Good 

 
 Good 

 

Good 
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5.8 Soak Time  

 

Soak Time is defined as the time between completion the well and when it is opened to production. 

This parameter plays very important rule in the well life.  From FTA (figure 32), it is noted that 

high EUR results when the well has less soak time. Based on this, commencing production should 

begin with minimal delay after completion to improve the future production of the well. The reason 

behind this behavior was explained by [Holditch, 1979] that is injection water after hydraulic 

fracturing job may reduce the formation permeability in the invaded zone because the clay 

swelling, scaling and fines migration. 

 
Figure 32: The impact of Soak Time on EUR for the models TED, PLE, SEPD and HB- FTA 

result 

In addition, the WQA (see figure 33) confirms that wells with shorter soak time provide more EUR 

than these wells with longer soak time. The average soak time of these wells is different based on 

the technique that used to calculate EUR. However, all the techniques show that the same behavior 

of having a shorter soak time will improve the ultimate production of the well.   
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Figure 33: Well Quality Analysis of Soak Time for EUR models TED, PLE, SEPD and HB 

5.9 Thickness of Pay Zone: 

 

The thickness of the Marcellus Shale formation ranges from less than 5 feet thick to more than 250 

feet thick. This thickness increases gradually from the eastern part of the Marcellus Shale 

formation to the western part.  In general, by having greater thickness pay zone, the formation 

produces more. The FTR (figure 34) extracts this positive correlation by applying the four EUR 

techniques. It can be seen in this figure that PLE and SEPD show more reasonable trend than the 

other two models. In addition, it is observed that from the WQA (figure 35) that the wells with 

greater thickness produce more.   
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Figure 34: The impact of Net Thickness on EUR for the models TED, PLE, SEPD and HB- FTA result 

 

 
 

 

 

Figure 35: Well Quality Analysis of Net Thickness for EUR models TED, PLE, SEPD and HB 
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Figure 36: The impact of Matrix Porosity on EUR for the models TED, PLE, SEPD and HB- 

FTA result 

5.10 Matrix Porosity  

 

In Figure 36, gray dots represent the actual data and the red dots-line curve are the result of Fuzzy 

Trend Analysis (FTA) process. As mentioned before, the conventional statistical analysis cannot 

extract pattern between the input and output. In this figure, the gray dots represent the actual data 

scatter between x-axis and y-axis (by using conventional statistical analysis). However, the FTA, 

the red dots-line curve, finds reasonable trend that by increasing the matrix porosity, the future 

production will be increased. It has to mention that each method provides different result of EUR 

when applied to same matrix porosity.  
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Figure 37: Well Quality Analysis of Matrix Porosity for EUR models TED, PLE, SEPD and HB 
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5.11 Generating Type Curve 

5.11.1 EUR as a Function of Measured Depth and Porosity in Type Curve 

 

The Type Curve in figure (38) shows useful correlation between EUR, Measured Depth and 

Porosity. The Y-axis represents EUR that calculated by TED, PLE, SEPD and HB. While the X-

axis is the Measured Depth (MD) which is changing as a continuous parameter. The third 

parameter is the Porosity as different discrete values represented by the curves. 

 

This Type Curve can be used to predict EUR for new wells that have not been drilled yet. For 

example, by drilling new well with MD = 10000 ft., this will provide different values of EUR 

based on the porosity values of the formation. In this example, by using TED method,  the  10 

years of the EUR are 2.2 Bcf for 0.06 porosity, 2.3Bcf for 0.0716 porosity, 2.45 Bcf for 0.0832 

porosity, 2.6 Bcf for 0.0948 porosity, 2.74 Bcf for 0.106 porosity and 2.88 for 0118 porosity. 

Different results will be provided when different model is used for same MD.     

 

 
Figure 38: EUR as a Function of Measured Depth and Porosity in Type Curve   
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5.11.2 EUR as a Function of True Vertical Depth and Lateral Length in Type Curve 

 

Drilling a new horizontal well requires optimization the best lateral length that can be designed to 

enhance the production. In this Type Curve (see figure 39 ), different laterals length are suggested 

for each one True Vertical Depth (TVD).  For example, by using PLE model, drilling well with 

TVD 6400 ft. and 150ft. lateral length will be estimated to produce 1.6 Bcf. While extended the 

lateral length to 4500 ft. will be estimated to produce 4.2 Bcf. However, it can be seen that the 

other models such as TED, SEPD and HB provide different results.  

 

 

Figure 39: EUR as a Function of True Vertical Depth and Lateral Length in Type Curve 
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5.11.3 EUR as a Function of Lateral Length and Number of Stages in Type Curve 

 

It is very important to optimize the suitable number of stages for each lateral length in horizontal 

wells. Figure (40) shows very useful Type Curves that can be used to design the number of stage 

with each lateral length.  Completion well with 3000 ft. lateral length and 4 stages will provide 1.5 

Bcf for 10 years EUR based on TED model. By increasing the number of stages for the same 

lateral length, the well will be estimated to produce 1.8 Bcf with 8 stages, 2.4 Bcf with 12 stages 

and 3.2 Bcf with 22 stages. Though, the other models of EUR show different results.  

 
Figure 40: EUR as a Function of Lateral Length and Number of Stages in Type Curve 
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Chapter 6: Conclusions and Recommendations 

6.1 Conclusions  

 

According to this study, the following results were found: 

 

1) Figure (41) depicts the average influence of Native and Design Parameters on EUR. From this 

figure, critical facts were found regarding which parameters, Native (reservoir) or Design 

(completion), have the most impact on EUR. The results of EUR were significantly impacted by 

design parameters for all four models.  However, Native parameters have the most influence on 

EUR with the TED model. Therefore, to emphasize the impact of the reservoir characteristics on 

EUR one needs to use the TED techniques and to emphasize the impact of the design 

characteristics one needs to use HB. Results generated by SEPD and PLE clearly fall between 

these two decline curve techniques. 

 

Figure 41: The Average Influence Degree of Native and Design Parameters on EUR 
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2) Both Fuzzy Trend Analysis and Well Quality Analysis which are branches of the Fuzzy Pattern 

Recognition, successfully extract useful relationships between EUR and both reservoir and 

completion parameters. These relationships can be used as guidelines when developing an 

exploration project for shale reservoirs and furthermore when designing hydraulic fracture 

completion. 

3) As expected, Total Organic Carbon was an effective indicator of productivity of the reservoirs 

and consequently had an impact on EUR.  Interestingly, the ultimate calculated values for EUR 

were significantly different for each technique of Decline Curve analysis even though the same 

TOC percentage was used for all techniques. 

 

4) The results of this study prove that the same general concepts which are applied to conventional 

reservoirs can also be applied to unconventional reservoirs such as tight gas shale. For example, 

when the formation exhibits high values of Young’s Modulus, the EUR is lower than when the 

formation exhibits low values of Young’s Modulus.  In addition, EUR can be positively impacted 

by lateral length, proppant per stage and the total number of stages within a completion. 

 

5) In order to maximize the ultimate EUR, decreased spacing between clusters should be used in 

horizontal wells. In general, the thickness and the matrix porosity have a positive impact on EUR. 

The Fuzzy Pattern Recognition successfully found these relations in shale gas reservoirs after 

unsuccessful attempts of using Conventional Statistical Analysis.  

 

6) The findings of this study suggest that commencing production should begin with minimal 

delay after completion to improve the future production of the well. 

 

7) Interestingly, this study shows that TED, a traditional method, is able to provide as reasonable 

of results when applied to a shale reservoir as when applied to a conventional reservoir. 

 

8) The Artificial Neural Networks Models that built in this research can be used as guidelines 

when developing an exploration project for shale reservoirs and furthermore when designing 

hydraulic fracture completion. 
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9) In addition, these Artificial Neural Networks Models can be used to predict EUR for wells 

that have not been drilled yet in this field.  

 

10) IMPORTANT NOTE: Results shown in this study are highly case specific and should not be 

expected to have similar behavior when applied to another shale (or even a different asset in the 

same shale play). 

 

 

6.2 Recommendations for future works 

 

 

 Develop computer model based on the results of this study that has the ability to provide 

EUR for each single well by supplying the design and native parameters. 

 

 It is recommended to study the impact of the native and the design parameters on EUR 

for other fields. 
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Figure 42: The impact of well location (Easting) on EUR for the models TED, PLE, SEPD and 

HB- FTA result 

 Appendix  

 

Well Location (Easting) 
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Poisson’s Ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: The impact of Poisson’s Ratio on EUR for the models TED, PLE, SEPD and HB- 

FTA result 
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Total Organic Carbon (Well Quality Analysis) 

 

 

Figure 44: Well Quality Analysis of Total Organic Carbon for EUR models TED, PLE, SEPD 

and HB 
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Young’s Modulus (Well Quality Analysis) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Well Quality Analysis of Young’s Modulus for EUR models TED, PLE, SEPD and 

HB 
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Stimulated Lateral Length (Well Quality Analysis)  

 

 

 

 

Figure 46: Well Quality Analysis of Lateral Length for EUR models TED, PLE, SEPD and HB 
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Number of Stages (Well Quality Analysis) 

 

 

Figure 47: Well Quality Analysis of Number of Stages for EUR models TED, PLE, SEPD and 

HB 
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Injected Clean Volume per Stage 

 

 

Figure 48: Well Quality Analysis of Injected Clean Volume per Stage for EUR models TED, 

PLE, SEPD and HB 
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EUR as a Function of Lateral Length and Cluster Spacing in Type Curve: 

 

 

Figure 49: EUR as a Function of Lateral Length and Cluster Spacing in Type Curve 
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EUR as a Function of Lateral Length and Clean Volume in Type Curve: 

 

 

Figure 50: EUR as a Function of Lateral Length and Clean Volume in Type Curve 
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EUR as a Function of Lateral Length and Net Thickness in Type Curve:  

 

 

Figure 51: EUR as a Function of Lateral Length and Net Thickness in Type Curve 
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