
Graduate Theses, Dissertations, and Problem Reports

2019

Security Bug Report Classification using Feature Selection, Security Bug Report Classification using Feature Selection,

Clustering, and Deep Learning Clustering, and Deep Learning

Tanner D. Gantzer
West Virginia University, tdgantzer@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Information Security Commons, Other Computer Engineering Commons, and the Software

Engineering Commons

Recommended Citation Recommended Citation
Gantzer, Tanner D., "Security Bug Report Classification using Feature Selection, Clustering, and Deep
Learning" (2019). Graduate Theses, Dissertations, and Problem Reports. 4022.
https://researchrepository.wvu.edu/etd/4022

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=researchrepository.wvu.edu%2Fetd%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=researchrepository.wvu.edu%2Fetd%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=researchrepository.wvu.edu%2Fetd%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=researchrepository.wvu.edu%2Fetd%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4022?utm_source=researchrepository.wvu.edu%2Fetd%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Graduate Theses, Dissertations, and Problem Reports

2019

Security Bug Report Classification using Feature
Selection, Clustering, and Deep Learning
Tanner D. Gantzer

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Part of the Information Security Commons, Other Computer Engineering Commons, and the
Software Engineering Commons

https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=researchrepository.wvu.edu%2Fetd%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Security Bug Report Classification using

Feature Selection, Clustering, and Deep

Learning

Tanner D. Gantzer

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Katerina Goseva-Popstojanova, Ph.D., Chair
Roy Nutter, Ph.D.

Matthew Valenti, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2019

Keywords: Cybersecurity, Bug Reports, Text Classification, Feature Selection, Deep
Learning

Copyright 2019 Tanner D. Gantzer

Abstract

Security Bug Report Classification using Feature Selection, Clustering, and Deep Learning

Tanner D. Gantzer

As the numbers of software vulnerabilities and cybersecurity threats increase, it is be-
coming more difficult and time consuming to classify bug reports manually. This thesis
is focused on exploring techniques that have potential to improve the performance of au-
tomated classification of software bug reports as security or non-security related. Using
supervised learning, feature selection was used to engineer new feature vectors to be used in
machine learning. Feature selection changes the vocabulary used by selecting words with the
greatest impact on classification. Feature selection was able to increase the F-Score across
the datasets by increasing the precision. We also explored unsupervised classification based
on clustering. A distribution of software issues was created using variational autoencoders,
where the majority of security related issues were closely related. However, a portion of non-
security issues also ended up in the distribution. Furthermore, we explored recent advances
in text mining classification based on deep learning. Specifically, we used recurrent networks
for supervised and semi-supervised classification. LSTM networks outperformed the Naive
Bayes classifier in projects with a high ratio of security related issues. Sequence autoencoders
were trained on unlabeled data and tuned with labeled data. The results showed that using
unlabeled software issues different from the testing datasets degraded the results. Sequence
autoencoders may be used on large datasets, where labeled data is scarce.

iii

Acknowledgments

I would like to thank my research advisor Dr. Katerina Goseva-Popstajanova for her gen-

erous support and guidance of my research. I would also like to thank the professors at West

Virginia University who influenced me to pursue a master’s degree including my committee

members Dr. Roy Nutter and Dr. Matthew Valenti. Access to the three NASA projects was

granted by the NASA Katherine Johnson Independent Verification and Validation Facility

in Fairmont, WV. I would also like to thank fellow peer, Mohammad Ahmad, for his aid

on acquiring the Red Hat Linux dataset used in this research. Furthermore, I would like to

express my sincere gratitude to my friends and family for their continuous support.

iv

Contents

Acknowledgments iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Key Terms . 2
1.2 Problem Statement . 2
1.3 Research Questions and Contributions . 3
1.4 Organization of the Thesis . 6

2 Related Work 7
2.1 Related Work on Bug Report Classification 7
2.2 Related Work on Text Classification . 9

2.2.1 Sentence Representations . 9
2.2.2 Text Classification . 11

3 Background 13
3.1 Unsupervised Learning . 14
3.2 Supervised Learning . 15
3.3 Metrics used for Performance Evaluation . 17

4 Data-set collection and Feature extraction 19
4.1 Datasets . 20
4.2 Preprocessing and Feature Extraction . 21

5 Feature Selection 23
5.1 Background on Feature Selection . 23
5.2 Feature Selection Approach . 25
5.3 Results . 26

5.3.1 Red Hat Enterprise 4 Results . 26
5.3.2 Ground Mission IV&V Issues Results 27
5.3.3 Flight Mission IV&V Issues Results 29
5.3.4 Flight Mission Developer Issues Results 30

5.4 Feature Selection Conclusion . 31

Contents v

5.5 Threats to Validity . 32

6 Clustering 34
6.1 Background on Variational Autoencoders . 35
6.2 Variational Autoencoders Proposed Approach 37
6.3 Clustering Results . 38

6.3.1 Red Hat Enterprise Linux 4 Results 39
6.3.2 Ground Mission IV&V Issues Results 41
6.3.3 Flight Mission IV&V Issues Results 45
6.3.4 Flight Mission Developer Issues Results 49
6.3.5 Clustering Conclusion . 53

6.4 Threats to Validity . 55

7 Deep Learning Classification 56
7.1 Background on LSTM Networks . 57
7.2 LSTM Network Proposed Approach . 58
7.3 LSTM Networks Results . 59

7.3.1 Red Hat Enterprise Linux 4 Results 60
7.3.2 Ground Mission IV&V Issues Results 61
7.3.3 Flight Mission IV&V Issues Results 62
7.3.4 Flight Mission Developer Issues Results 63

7.4 LSTM Networks Conclusion . 64
7.5 Threats to Validity . 66

8 Conclusion 67

References 69

vi

List of Figures

1.1 Thesis Contribution Diagram . 4

5.1 Red Hat Enterprise Linux 4 Term Frequency Feature Selection Box Plot
(Naive Bayes) . 27

5.2 Ground Mission IV&V Issues Term Frequency Feautre Selection Box Plot
(Naive Bayes) . 28

5.3 Flight Mission IV&V Issues Term Frequency Feature Selection Box Plot
(Naive Bayes) . 29

5.4 Flight Mission Developer Issues TF Chi-squared Box Plot (Naive Bayes) . . 30

6.1 VAE Network Architecture Adaption [19] [18] 37
6.2 Redhat Enterprise Linux 4 VAE Representation: Security[1] CWE[0] Non-

security[-1] . 39
6.3 Red Hat Enterprise Linux 4 PCA Representation: Security[1] CWE[0] Non-

security[-1] . 40
6.4 Ground Mission IV&V Issues Ground Truth VAE Representation: Security[1]

CWE[0] Non-security[-1] . 42
6.5 Ground Mission IV&V Issues K-Means VAE Representation: Security[1] Non-

security[-1] . 43
6.6 Ground Mission IV&V Issues Ground Truth TF PCA Representation: Secu-

rity[1] CWE[0] Non-security[-1] . 44
6.7 Ground Mission IV&V Issues K-Means TF PCA Representation: Security[1]

Non-security[-1] . 45
6.8 Flight Mission IV&V Issues Ground Truth VAE Representation: Security[1]

CWE[0] Non-security[-1] . 46
6.9 Flight Mission IV&V Issues K-Means VAE Representation: Security[1] Non-

security[-1] . 47
6.10 Flight Mission IV&V Issues Ground Truth TF PCA Representation: Secu-

rity[1] CWE[0] Non-security[-1] . 48
6.11 Flight Mission IV&V Issues K-Means TF PCA Representation: Security[1]

Non-security[-1] . 49
6.12 Flight Mission Developer Issues Ground Truth VAE Representation: Secu-

rity[1] CWE[0] Non-security[-1] . 50

List of Figures vii

6.13 Flight Mission Developer Issues K-Means VAE Representation: Security[1]
Non-security[-1] . 51

6.14 Flight Mission Developer Issues Ground Truth TF PCA Representation: Se-
curity[1] CWE[0] Non-security[-1] . 52

6.15 Flight Mission Developer Issues K-Means TF PCA Representation: Secu-
rity[1] Non-security[-1] . 53

7.1 LSTM Network Architecture [5] . 58
7.2 Sequence Autoencoder LSTM Network Architecture [5] 59
7.3 Red Hat Linux 4 (Half) Supervised Learning Box Plot 61
7.4 Ground Mission IV&V Issues Supervised Learning Box Plot 62
7.5 Flight Mission IV&V Issues Supervised Learning Box Plot 63
7.6 Flight Mission Developer Issues Supervised Learning Box Plot 64

viii

List of Tables

3.1 Classification Performance of Unsupervised Learning Baseline using Cosine
Similarity [11] . 15

3.2 Classification Performance of Supervised Learning Baseline [11] 16
3.3 Baseline Supervised Classification with Term Frequency Performance (Naive

Bayes) . 17

4.1 Information About the Four Datasets . 20

5.1 Red Hat Enterprise Linux 4 Term Frequency Performance (Naive Bayes) . . 27
5.2 Ground Mission IV&V Issues Term Frequency Feature Selection Performance

(Naive Bayes) . 28
5.3 Flight Mission IV&V Issues Term Frequency Feature Selection Performance

(Naive Bayes) . 29
5.4 Flight Mission Developer Issues Term Frequency Selection Performance (Naive

Bayes) . 30
5.5 Feature Selection Improvement of Classification Performance (Naive Bayes) . 31

6.1 Ground Mission IV&V Issues Classification from Clustering Results 41
6.2 Flight Mission IV&V Issues Classification from Clustering Results 46
6.3 Flight Mission Developer Issues Classification from Clustering Results 50

7.1 Red Hat Enterprise Linux 4 Project Supervised and Semi-supervised Classi-
fication Results . 60

7.2 Ground Mission IV&V Issues Supervised and Semi-supervised Classification
Results . 62

7.3 Flight Mission IV&V Issues Supervised and Semi-supervised Classification
Results . 63

7.4 Flight Mission Developer Issues Supervised and Semi-supervised Classification
Results . 64

7.5 LSTM Improvement of Classification Performance Compared to Naive Bayes 65

1

Chapter 1

Introduction

Cybersecurity of software has become more relevant through the recent years. There

has been an increased threat of cyber attacks as online infrastructure and commerce grow.

The development of software now requires a large focus in keeping the software secure.

Since software may never be fully secure, security must be continuously managed. Just

one vulnerability may compromise the software leading to costly and harmful damage. The

validation and verification stages of the software development cycle are critical in securing

the software. However, testers may not keep security in mind when discovering new software

issues. Many software development teams may find it important to focus on the security

related software issues over other software issues.

Software faults have been studied in open source projects and across NASA projects [12],

[13], [14], [38]. Software vulnerabilities have been analyzed across the NASA projects used in

this thesis [10], [32]. A successful automated identification of security bug reports has been

done on NASA projects through machine learning approaches [11]. Automated classification

of security bug reports has also been attempted on other datasets [30], [9], [34].

This work focuses on automated classification of security bug reports through machine

learning methods. It builds on the previous work [11] by exploring the effectiveness of several

state-of-the-art text mining appraches.

Chapter 1. Introduction 2

1.1 Key Terms

A bug report is a description of a software related issue.

A vulnerability is a security weakness in software which can be exploited by an attacker.

CWE refers to the Common Weakness Enumeration community-developed list. The

list acts as a common measuring tool of analyzing software security weaknesses [26] [27].

Specifically CWE-888 list that relates to software fault patterns is used.

CVE stands for Common Vulnerabilities and Exposures. CVE system provides identifi-

cation numbers and descriptions for known vulnerabilities.

A NN (Neural Network) is a framework of different machine learning practices that work

together to map a complex input to an output.

A RNN (Recurrent Neural Network) is a type of Neural Network that uses data in the

format of a series to take into account the history and structure of the data.

LSTM (Long Short Term Memory) Neural Networks are a type of recurrent networks

that focus on solving long term dependencies with the addition of gated inputs.

VAE (Variational Autoencoder) Networks learn an efficient compression of the input

data.

1.2 Problem Statement

Software issues are often categorized by type and risk. Developers may be more concerned

with specific types of software issues, such as security related software issues because they

may be weaknesses or vulnerabilities that can be exploited by malicious attackers. The

manual classification software issues is an expensive task as it requires time and domain

expertise. This thesis has a goal of exploring methods to automatically classify software issues

to security related and non-security related. Given a dataset of software issues, the methods

explored are capable of classifying security related issues. The performance metrics of the

methods are explored and vary with different datasets. The developed machine learning

implementation used to test the methods has the input of textual fields of software issues

in a comma-separated values file and classifies each issue as security or non-security related.

Chapter 1. Introduction 3

Our machine learning implementation may be altered to accept different datasets or used to

train other supervised learners.

1.3 Research Questions and Contributions

The research questions explore potential improvements in security bug report classifica-

tion. Research Question 1 relates to improving the features used in text mining. Research

Questions 2 and 3 focus on learning algorithms used in text mining.

RQ 1: What feature selection methods show the greatest improvement of the automated bug

report classification?

RQ 2: Can unsupervised classification based on clustering outperform the anomaly detection

based on cosine similarity?

(a) How do Term Frequency feature vectors perform in combination with K-Means

clustering?

(b) Can Variational Autoencoders be used to represent security related software issues

in a distribution of software bug reports?

RQ 3: Can deep learning outperform traditional supervised machine learning techniques?

(a) How do supervised deep neural networks compare to traditional supervised ma-

chine learning techniques?

(b) How do semi-supervised deep neural networks compare to supervised learning

techniques?

The main contributions of this thesis are as follows:

We used the work done by Goseva and Tyo [11] as a baseline for software bug report

classification. One goal was to improve the precision by lowering the false positive rate.

Analyzing the projects showed that security related words were present in non-security bug

reports, which may have caused a high false positive rate. Feature selection was used to

attempt to remove these words, as well as to reduce the dimensionality of the feature vectors.

Chapter 1. Introduction 4

We also explored a clustering approach using variational autoencoders. Lastly, we used

LSTM network classification and compared the results to the classification based on Naive

Bayes algorithm.

An overview of the contributions of the thesis are shown in Figure 1.1. The darker blue

blocks represent new contributions, while the yellow blocks represent a similar step used in

the related work [11]. This thesis explores one way to feature engineer the feature vectors

used in machine learning, and two methods to apply deep learning solutions to unsupervised

and supervised classification.

Figure 1.1: Thesis Contribution Diagram

1. Feature selection to improve the vocabulary of the features used in text mining.

We expanded the vocabulary of the feature vectors consisting of CWE-888 descriptions

with the descriptions of software issues. Then, we used feature selection with chi-

squared or mutual information dependency tests to remove words in which classifying

Chapter 1. Introduction 5

an issue did not depend heavily on. The added vocabulary of the dataset was used

to improve the classification of non-security software issues. Feature selection weeded

out words from the combined vocabulary. Some related works used feature selection to

improve bug report classification. Chi-squared and info gain feature selection were used

to rank features for use in classifying configuration bug reports [36]. Feature selection

was also used for dimensionality reduction to categorize bug reports based on CWE

standards [34]. Unlike related works, this work focuses on improving the vocabulary of

the feature vectors to classify software bug reports to security related and non-security

related.

2. Unsupervised classification through clustering.

We explored the use of clustering for unsupervised learning and compared the perfor-

mance with similar work done on images and textual reviews [6], [37]. PCA analysis

and VAE networks were used to visualize our data in a two dimensional space, while

K-means clustering was used to predict the data class.

3. Security bug report classification using deep learning.

We experimented with LSTM neural networks to explore if the use of deep learning

methods can benefit the supervised classification problem. The LSTM network does

not use document vectors such as Term Frequency, but instead use tokenized sequences

that are embedded into word vectors. The word vectors attempt to relate together

words that are similar in natural language. LSTM networks also account for the word

order in software issues.

4. Semi-supervised classification with LSTM sequence autoencoders.

We attempt a semi-supervised learning technique using sequence autoencoders to take

advantage of the addition of unlabeled data. Similar work was done by Dai et. al. for

classification of movie reviews [5]. A LSTM autoencoder network was used to pre-train

the weights of a similar LSTM neural network using unlabeled data. The pre-trained

weights were sent to a LSTM network. The pre-trained LSTM network became more

stable and less volatile.

Chapter 1. Introduction 6

1.4 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 surveys the related work to classi-

fying bug reports. Chapter 2 also reviews methods in text mining used in text representation

and text classification. In Chapter 3 we delve deeper into the motivation behind the work.

We also discuss the work upon which this thesis builds on. We discuss the baseline used to

compare the results. We also discuss the performance metrics used to evaluate our findings.

Chapter 4 is an overview of the three NASA datasets and the one Red Hat Enterprise Linux

4 dataset used. We also discuss the data preprocessing steps used on the datasets. In Chap-

ter 5 we explore feature selection using chi-squared and mutual information tests. Feature

selection is a supervised method to improve the vocabulary of feature vectors. Naive Bayes

was used in Chapter 5 to classify security bug reports. In Chapter 6 we explore clustering to

be used in unsupervised classification. Data is represented as a term frequency vector and a

variational autoencoder representation. We classify security bug reports with K-means clus-

tering. In Chapter 7 we explore both supervised and semi-supervised learning with LSTM

networks. Sequence autoencoders are firstly trained on unlabeled data and tuned with la-

beled data. Chapter 8 gives a summary of this thesis including the methods used and overall

results.

7

Chapter 2

Related Work

Related works were surveyed on bug report classification findings and text classification

methods. The bug report section surveys works relevant to classifying security bug reports.

The text classification section surveys state-of-the-art methods through text classification.

2.1 Related Work on Bug Report Classification

Not all works were focused on security and non-security bug reports. The work done by

Xia et al. focused on classifying configuration bug reports. The remaining works related

to security bug reports. The works used different approaches to classify bug reports both

through improving the feature vectors and the algorithms of machine learning.

Gegick et al. developed an approach to label bug reports as security related or non

security related [9]. Firstly, they developed three lists: start, stop, and synonym lists. A

start list was created from the vocabulary of the bug issues in which individual words are

considered to be related to security issues. A stop list was created from words that are not

believed to aid in to the classification process such as articles, prepositions, and conjunctions.

The third list was a synonym list that relates a word used less frequently to a word used

more frequently, giving it a higher frequency score. Singular value decomposition was used to

reduce the size of the feature vector matrix. The approach used SAS Text Miner to construct

a term-by-document matrix and for training the predictive model. The model identified 77%

of security related reports in a Cisco project that were mislabeled as non security related.

Chapter 2. Related Work 8

However, the model resulted in high false positive scores.

Zaman et al. analyzed security the differences between security bug reports and perfor-

mance bug reports in a Firefox dataset [38]. Security bugs should be fixed faster because of

the critical aspect of the vulnerabilities they may cause. However, security bugs require more

expertise and knowledge of the overall software to fix. More individuals are often involved

to fix security software issues, further complicating the problem.

Xia et al. classified bug reports as configuration bugs using supervised learning meth-

ods such as Naive Bayes [36]. Feature selection methods such as chi-squared testing and

information gain were used on the feature vectors. The results showed that Naive Bayes

Multinomial with information gain feature selection performed the best on average through-

out the datasets.

Wen et al. explored improving vulnerability classification through feature extraction [34].

Feature extraction was done using Chi-squared testing. Information gain was not suited for

the application as the vulnerability numbers were different for each category.

Peters et al. proposed an approach to classify security bug reports through filtering and

ranking [30]. The proposed framework FARSEC is based on a combination of filtering and

ranking methods with a goal to reduce mislabelling of security bug reports. Security related

keywords are scored based on the keyword’s frequency in both security and non-security

reports. Non-security bug reports with scores similar to security bug reports are removed

based on the keyword scores. Using the prediction model, FARSEC returns ranked lists of

bug reports where most of the actual security bug reports are at the top of the list. FARSEC

attempts to solve the class inbalance issue. The proposed method reports a reduction in the

number of mislabeled issues by 38%. The precision metric varied project to project. The

highest precision was 50% with a recall of 16.7%. The highest recall throughout the tested

project was 50% with a precision of 5%.

Goseva et al. explored the automated identification of security bug reports [11]. This

thesis uses the work done as a baseline to build on. The related work uses machine learn-

ing methods such as Naive Bayes, SVM, and Random Forest with term frequency feature

vectors. We improved the feature vectors with feature selection on an expanded vocab-

ulary. The unsupervised approach used anomaly detection with distance based similarity

Chapter 2. Related Work 9

scores. We explored clustering based on unsupervised learning. We also used supervised and

unsupervised deep neural networks for classification of security bug reports.

Poddar et al. designed a loss function to be used in a neural network architecture to

detect duplicate bug reports and clustered reports into latent topics [31]. The classification

approach was based on supervised learning. The clustering approach learned meaningful

latent clusters without additional supervision. The purpose was to annotate user submitted

reports.

2.2 Related Work on Text Classification

This section surveys work relating to general text based classification. Many previous

machine learning approaches used document term matrices or feature vectors to represent

the text data. The sentence representation section reviews new ways to represent text data

to capture semantic information. Related works focus on classification through deep neural

networks such as LSTM networks and variational autoencoders.

2.2.1 Sentence Representations

Variational Autoencoders (VAEs) have been used to perform semi-supervised classifica-

tion problems. A VAE network is similar to an autoencoder network where the output is the

same as the input. However, in a VAE, a constraint is added that forces it to generate latent

vectors that follow a unit Gaussian distribution. Kingma et al. first proposed Variational

Autoencoders in 2013 [19].

Mikolov et al. proposed two architectures for computing continuous vector representa-

tions based on simple neural network architectures [24]. The first model proposed was the

Continuous Bag-of-Words Model (CBOW) which was not dependent on word order. The

model was trained to predict a word, while the inputs are the words before and after the tar-

get word. A projection layer is shared for all words in order to average all the word vectors.

The second model proposed was the Continuous Skip-gram model that was dependent on

word order. The model took one word as input and was trained to predict the neighboring

words. A window size was given and as the window size was increased, the quality of the

Chapter 2. Related Work 10

word vectors increased, but also increased computational complexity. The models were able

to be trained on very large datasets with one trillion words for a practically unlimited size of

vocabulary. The vector was set up in a way that similar words are similar in distance. For

instance a well trained vector X = vector(”biggest”) - vector(”big”) + vector(”small”) will

return ”smallest”. The proposed methods are now commonly referred to as word2vec. The

word vectors are commonly used as a building block in many natural language processing

applications.

Le and Mikolov proposed an unsupervised framework that learns continuous distributed

vector representations of text called Paragraph Vectors [21]. The representations are de-

pendent to specific phrases as opposed to individual words. Two versions were experimented

with: Distributed Bag of Words version of Paragraph Vectors (PV-DBOW) and Distributed

Memory version of Paragraph Vectors (PV-DM). PV-DM has a similar implementation as

learning word vectors from Mikolov [24]. The model takes in the order of words to predict a

future word; however, the model also includes a paragraph ID token. The paragraph token

may be thought of as another word that acts as memory, which remembers what is missing

from the current context. In PV-CBOW, the model does not care about the order of the

words. The PV-CBOW model was given a paragraph ID token and trained on randomly se-

lected neighboring words at each iteration of stochastic gradient descent. The features from

the vectors can be fed directly to conventional classifiers such as logistic regression, support

vector machines, or K-means. The proposed method outperformed baseline methods such

as bag-of-words models and Restricted Boltzmann Machines models.

Bahdanau et al. proposed that the use of a fixed-length vector is a bottleneck in im-

proving performance in encoder-decoder architectures [2]. The proposed technique allowed

a model to automatically (soft-)search for parts of sentences that are relevant in predicting

the target. The proposed method expanded on recurrent neural network Encoder-Decoder

frameworks, by instead using a bidirectional recurrent neural network. The reasoning was

that in a conditional RNN the annotation of each word summarizes the word and the preced-

ing words, and in a bidirectional recurrent neural network the annotation will summarize the

preceding words and the future words. The researches tested their architecture on English-

French sentence translation, and the searching recurrent neural network outperformed the

Chapter 2. Related Work 11

traditional encoder-decoder recurrent neural network.

Kiros et al. proposed Skip-Thought Vectors for unsupervised learning of distributed

sentence representations [20]. Skip-Thought Vectors are trained to predict sentences Si−1

and Si+1, given the source sentence Si. The sequence to sequence model is represented as

an autoencoder. The encoder architecture encodes the sequence. Then two decoder archi-

tectures decode the two sentences. The model uses Recurrent Neural Network architecture,

specifically with Gated Recurrent Units. The sentence representations from the encoder may

be used as a replacement to word vectors. The encoder’s vocabulary may be expanded to

words it has never seen before. Using a very large word representation, such as word2vec

pretrained model, the larger word representation can be mapped into the word representa-

tion of the encoder using un-regularized L2 linear regression loss. In the experiment, the

Skip-Thought models were trained with a vocabulary size of 20,000 words; after vocabulary

expansion the models can successfully encode 930,911 words. The proposed method differs

from other methods as it takes context from outside of just one sentence.

Hill et al. compared models that learn distributed sentence representations from unla-

beled data [15]. Hill noted that deeper models are preferable for representations used in

supervised systems, but shallow log-linear models work best in systems with spatial dis-

tance metrics. Hill proposed two new approaches based on previous models, Sequential

(Denoising) Autoencoders and FastSent.

2.2.2 Text Classification

Dai et al. explored at two approaches for pretraining unlabeled data [5]. The main

idea was to use a sequence autoencoder with unlabeled data. Sequence autoencoder LSTM

networks (SA-LSTM) consisted of a recurrent network to decode the input sequence into a

hidden state, then use a recurrent network with the same weights to decode the output. The

network may be fed large amounts of unlabeled data to improve generalizability. The weights

obtained from the sequence autoencoder are able to be used as an initialization of a supervised

network. Dai et al. also experiment with using language models (LM-LSTM), which had

the same approach as sequence models but cuts off the encoder portion of the model. This

Chapter 2. Related Work 12

allows a deep representation of input data. The method was able to match or surpass

reported results for multiple datasets. One of the experiments tested sentiment analysis on

movie reviews. The SA-LSTM networks trained on unlabled data from Amazon or IMDB

reviews outperformed the LSTM trained on only labeled Rotten Tomatoes reviews. Another

experiment done to categorize Wikipedia articles showed SA-LSTM networks outperformed

normal LSTM networks as well as the state of the art methods such as Naive Bayes, SVM,

and ConvNet.

Dilokthanakul et al. use Gaussian mixture variational autoencoders for unsupervised

clustering [6]. The experiment was done on the MNIST dataset (0-9 handwritten digits) and

showed same digits clustered together. Although the handwritten digits were images and

not text data, a similar approach may be used on textual data.

Yang et al. used improved variational autoencoders with LSTM and convolutional layers

for semi-supervised and unsupervised learning [37]. Experiments were done using improved

variational autoencoders as language models. The models competed with LSTM language

models. Unsupervised classification was performed on a dataset of food reviews from Yelp.

The dimensionality was first reduced by running PCA on the features.

13

Chapter 3

Background

Computer security may be managed throughout the software development cycle. During

the software development cycle developers focus on what the software needs to do and

what the software’s resource needs are such as memory and computational power. Software

security may fall out of focus during development; however, this should not be the case.

Many new technologies are influencing the world around us. This is great for the quality of

life, although it may open new opportunities for cybercriminals to take advantage.

Software security should be an important step in the software development cycle. Soft-

ware bug reports may be used as a tool for detecting software issues and vulnerabilities.

Depending on the how new software issues are discovered, it may be difficult to determine

which software issues are security related. Fixing security related issues may be a priority

across products to protect the users.

This work builds upon previous work done at West Virginia University using NASA

mission data [11]. Specifically, the work used both supervised and unsupervised approaches

to classify security bug reports in three NASA data sets. The three NASA datasets (Ground

Mission IV&V Issues, Flight Mission IV&V Issues, Flight Mission Developer Issues) are

further detailed in Section 4.1. The datasets included descriptions of software issues, but

did not include the security status. The CWE-888 list of software weaknesses was used to

categorize software issues [27]. The Common Weakness Enumeration (CWE) lists contain

common software security weaknesses to be used as a baseline for evaluating software issues

[26]. Hand labeling decided if an issue was related to CWE-888 descriptions, and then it

Chapter 3. Background 14

was considered to be a security risk.

The classification was based on using three different feature vectors: Binary Bag of Words

Frequency (BF), Term Frequency (TF), and Term Frequency-Inverse Document Frequency

(TF-IDF). Text preprocessing was performed prior extracting feature vectors. The text

preprocessing included forcing all text to lower case, stemming words, and removing stop

words. Both unsupervised learning and supervised classification were performed on the same

datasets, using the same feature vectors.

Text mining has the increased difficulty of capturing natural language information when

compared to other data mining works. The standard prior to neural networks has been

to use feature vectors based on word occurrence, such as binary bag of words models and

term frequency models. However, these models do not capture the semantic importance of

word ordering and natural language information. Recently, deep learning approaches have

attempted to extract intricate semantic representations of text [24], [21], [20].

The unsupervised learning method was based on anomaly detection. Anomaly detection

has the benefit where only one class needs to be known. The details of the experiment are

given in Section 3.1. Supervised learning has the advantage of learning from issues given

a label. Supervised learning will generally have higher classification performance metrics

compared to unsupervised learning. This requires the training data to be prelabeled which

costs many resources one may not afford. The supervised approach method is detailed in

Section 3.2.

3.1 Unsupervised Learning

Unsupervised learning was used with anomaly detection to differentiate issues from what

appears to be normal. Anomaly detection works with security classification as the security

class will be much smaller than the non-security class. Therefore, a known group of security

issues can be used where any issue similar to that list will be classified as security related. In

prior work [11], the CWE-888 list relating to software fault patterns was used as the normal

data. Cosine similarity distance measures scored software issues based on the similarity to

CWE-888 descriptions. The issues with similarity scores above a calculated threshold were

Chapter 3. Background 15

classified as security related. The threshold was calculated from an average of scores on a

validation test set. Euclidean distance measures were also explored; however, the calculated

thresholds were not as stable as in cosine similarity.

Prior unsupervised classification results are shown in Table 3.1. The methods with the

highest G-Score value are in bold.

Table 3.1: Classification Performance of Unsupervised Learning Baseline using Cosine Sim-
ilarity [11]

Dataset
Ground Mission Flight Mission Flight Mission

IV&V Issues IV&V Issues Developer Issues

Feature vector BF TF TFIDF BF TF TFIDF BF TF TFIDF

Threshold 0.305 0.286 0.263 0.283 0.216 0.235 0.321 0.26 0.22

Accuracy 62.5% 64.3% 73.0% 64.9% 67.8% 49.2% 50.4% 55.4% 51.7%

Precision 12.6% 15.0% 17.7% 57.5% 58.1% 41.2% 70.2% 69.3% 65.9%

Recall 66.2% 78.7% 69.9% 56.1% 77.7% 55.4% 42.7% 57.9% 55.1%

PFA 37.8% 36.9% 26.7% 28.9% 39.1% 55.1% 34.8% 49.4% 54.9%

F-Score 21.2% 25.2% 28.3% 56.8% 66.5% 47.3% 51.6% 63.1% 60.0%

G-Score 64.1% 70.0% 71.5% 62.7% 68.3% 49.6% 53.1% 54.0% 49.6%

3.2 Supervised Learning

Using a supervised approach, several learners were tested. Naive Bayes, a probabilistic

learner, performed consistently well across the projects. Other supervised learners included

Bayesian Network (BN), k-Nearest-Neighbors (kNN), Random Forest (RF), and Support

Vector Machines (SVM). The results varied depending on the feature vectors used and the

specific dataset. Overall Term Frequency showed the best performance with respect to the G-

Score. However, some learners performed better with specific feature vectors. For instance,

Random Forest had better results using a TF-IDF vector compared to Term Frequency

vector. SVM had considerably worse results with a TF-IDF vector compared to using Term

Frequency. The results from Term Frequency will be used as the baseline for supervised

learning.

Baseline supervised classification, with Term Frequency feature vectors, results are shown

in Table 3.2. The methods with the highest G-Score are in bold.

Chapter 3. Background 16

Table 3.2: Classification Performance of Supervised Learning Baseline [11]

Supervised System TF BN TF kNN TF NB TF NBM TF RF TF SVM

Ground Accuracy 87.4% 93.5% 85.2% 87.9% 94.9% 94.1%

Mission Precision 37.1% 57.3% 32.0% 38.0% 82.6% 66.0%

IV&V Recall 93.4% 60.3% 83.1% 93.4% 41.9% 47.1%

Issues PFA 13.1% 3.7% 14.6% 12.6% 0.7% 2.0%

F-Score 53.1% 58.8% 46.2% 54.0% 55.6% 54.9%

G-Score 90.0% 74.2% 84.2% 90.3% 58.9% 63.6%

Supervised System TF BN TF kNN TF NB TF NBM TF RF TF SVM

Flight Accuracy 69.6% 70.9% 75.1% 78.3% 80.4% 83.8%

Mission Precision 57.9% 60.3% 67.8% 67.8% 75.9% 78.8%

IV&V Recall 95.5% 86.0% 75.2% 89.8% 76.4% 82.8%

Issues PFA 48.4% 39.6% 24.9% 29.8% 16.9% 15.6%

F-Score 72.1% 70.9% 71.3% 77.3% 76.2% 80.7%

G-Score 67.0% 71.0% 75.1% 78.8% 79.6% 83.6%

Supervised System TF BN TF kNN TF NB TF NBM TF RF TF SVM

Flight Accuracy 65.8% 61.0% 66.9% 70.6% 70.4% 72.3%

Mission Precision 65.8% 71.7% 75.0% 73.6% 71.0% 76.8%

Developer Recall 100.0% 67.2% 74.6% 86.4% 93.2% 83.1%

Issues PFA 100.0% 51.1% 47.8% 59.8% 73.4% 48.4%

F-Score 79.4% 69.4% 74.8% 79.5% 80.6% 79.8%

G-Score 0.0% 56.6% 61.4% 54.9% 41.4% 63.7%

In general results show good recall scores, meaning fewer security related bug reports

are missed. However, the precision values were rather low. A low precision means non-

security related bug reports are classified as security related. We believe there is room for

improvement in the overall performance of the automated classification. Therefore, this

thesis explores several approaches aimed at improving classification performance.

We develop new implementations of the prior work to compare as a baseline. However,

we do not use word stemming on the the feature vectors. We also use a vocabulary size of

450 words based on the document frequency. The new baseline using Naive Bayes is shown

in Table 3.3. The differences are small; however, the recall degraded in the Flight Developer

Mission project. Results are compared to the prior work labeled as “Previous Baseline” [11].

Chapter 3. Background 17

Table 3.3: Baseline Supervised Classification with Term Frequency Performance (Naive
Bayes)

Project Method Accuracy Precision Recall PFA F-Score G-Score

Ground Mission Previous Baseline 85.2% 32.0% 83.1% 14.6% 46.2% 84.2%

IV&V Issues New Baseline 84.7% 31.8% 84.2% 14.3% 46.2% 84.4%

Flight Mission Previous Baseline 75.1% 67.8% 75.2% 24.9% 71.3% 75.1%

IV&V Issues New Baseline 78.1% 71.8% 77.2% 21.3% 74.4% 77.9%

Flight Mission Previous Baseline 66.9% 75.0% 74.6% 47.8% 74.8% 61.4%

Developer Issues New Baseline 58.7% 74.2% 57.0% 38.9% 64.4% 59.4%

3.3 Metrics used for Performance Evaluation

During classification, performance is measured by true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). True positives are security related

issues correctly classified as security related. True negatives are non-security related issues

correctly classified as non-security. False positives are non-security related issues wrongly

classified as security related. False negatives are the missed security related issues classified

as non-security issues.

Accuracy describes the total amount of correctly classified issues with respect to the

total number of issues. Accuracy may give an unrealistic representation when used on an

unbalanced data set. For example, in a case where only 10% of the data set is security

related, a learner may declare all issues as non security related and show an accuracy of

90%, when in fact it has a poor performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision accounts for the fraction of relevant issues among the issues retrieved as positive.

As seen in Equation 3.2, precision is the fraction of correctly classified security issues over

the total number of issues classified as security related. The metric tells us the percentage

of issues classified as security related that are actually security related.

Precision =
TP

TP + FP
(3.2)

Chapter 3. Background 18

Recall shows the sensitivity to classify an issue as security related. It represents the

percentage of security related issues that were correctly classified as security related. A high

recall score is important in critical scenarios. Recall and precision are usually contending

with one another, where if one goes up the other typically goes down.

Recall =
TP

TP + FN
(3.3)

The probability of false alarm is the probability of a non-security related issue being

labeled as security related. In security critical scenarios, the probability of false alarm will

tend to be high. Using a weaker threshold on declaring issues as security related allows fewer

security issues to be missed.

PFA =
FP

TN + FP
(3.4)

F-Score is the harmonic mean of the precision and recall. The F-Score represents a

balance in the performance between precision and recall. Harmonic means have high values

when both values have high values. Harmonic mean is typically used when comparing values

where as one value increases, the other value may decrease.

F-Score = 2 · Precision ·Recall

Precision + Recall
(3.5)

G-Score is the harmonic mean of recall and (1-PFA). A high G-Score represents a better

performing classifier. The experiment is focused on detecting security related issues with-

out over classifying all issues as security related, therefore G-Score will be an important

representation of a classifier’s performance.

G-Score = 2 · Recall · (1−PFA)

Recall + (1−PFA)
(3.6)

19

Chapter 4

Data-set collection and Feature

extraction

The datasets used throughout this thesis include three NASA projects and one open

source Red Hat Linux Enterprise 4 Bugzilla dataset. Two datasets are from NASA IV&V

analysis of a ground mission and a flight mission. The third dataset comes from the de-

velopers of the flight mission. The three NASA datasets were used for our baseline. We

were given access to the NASA datasets by the NASA Katherine Johnson Independent Ver-

ification and Validation Facility in Fairmont, WV. The fourth Red Hat Linux Enterprise 4

dataset was added to explore the generalizability to the proposed solutions. Access to the

Red Hat Enterprise Linux 4 dataset was made possible by fellow peer Mohammad Ahmad.

Chapter 4. Data-set collection and Feature extraction 20

4.1 Datasets

A summary of the datasets is shown in Table 4.1.

Table 4.1: Information About the Four Datasets

Mission
Total # closed Security

Dataset
bug reports bug reports

Ground 1,779 133 Ground mission IV&V

Flight 383 157 Flight mission IV&V

513 374 Flight mission Developers

Red Hat 11,145 445 Red Hat Enterprise Linux 4

The Ground Mission IV&V Issues dataset includes 1,779 issues. After labeling, 133

(7.5%) were determined to be security related. However, 277 more issues were found to be

related to a related security issue of the testing systems. Since the CWE’s do not cover

testing systems, these 277 issues were not considered to be security related. During the

design of the mission, 127 out of the 133 security related issues come from the code phase

of the mission. In the mission, 53% of the labeled CWE’s were primary classes of “Memory

Access”. The other dominant classes include “Unused Entities”, “Exception Management”,

“Risky Values”, and “Resource Management”.

The Flight Mission IV&V Issues dataset includes 157 (41%) security related issues out of

the 383 software issues.The dominant CWE classes were “Other”, “Risky Values”, “Memory

Access”, and “Unused Entities”.

The Flight Mission Developer Issues dataset has the highest ratio of security software

issues over total software issues. Out of the 513 software issues, 374 (73%) issues are security

related. The dominant CWE classes in the dataset are “Risky Values”, “Exception Manage-

ment”, “Memory Access”, “Channel”, and “Unused Entities”. The Developer Flight dataset

differentiates from the others as most issues come from the developers during development

compared to during testing.

The Red Hat Enterprise Linux 4 dataset includes 11,145 software issues. A software

Chapter 4. Data-set collection and Feature extraction 21

issue was labeled as security related if the description included CVE tag. The CVE list is a

dictionary containing identifiers and descriptions for specific vulnerabilities [25]. While each

CVE describes one specific vulnerabilty, it may be mapped to a CWE identifier. A total of

445 (4%) issues were labeled as security related. The dataset was collected from the Bugzilla

website and is open source.

4.2 Preprocessing and Feature Extraction

The following fields were extracted from the software issues: title, subject, descrip-

tion. The fields were then concatenated together to form a complete description. Non-

alphanumeric characters were removed. The words were converted to lowercase to lower

the amount of varying words. Stop words were removed using python’s Natural Language

Toolkit English stop word list [28]. Word stemming was not used so word embeddings may

be used in latter sections. Each issue has a corresponding label stored independently, 1 for

security related and -1 for non security related.

Stop word lists were used to remove common words that are believed to not affect the

learning process. Word stemming may be used in text classification processes; however, we

do not use it. Word stemming forces words to their most reduced root. This relates the

versions of past, present, future, plural, and others all to one meaning. Word stemming is

useful for forcing all the tenses of a word to be the same, so the learner does not differentiate

the words. Word stemming may be useful using the document term feature vectors; however,

it may confuse the word embeddings used in Section 7. Word embeddings keep similar words

close in a vector representation. All tenses of a word will be closely related in a well trained

word embedding.

Binary Bag-of-Words Frequency (BF), Term-Frequency (TF), and Term Frequency-

Inverse Document Frequency (TF-IDF) were used as the feature vectors in the previous

work [11]. We limit the experiment to using Term Frequency feature vectors. The feature

vectors contains an index for every word in the vocabulary. Each software issue is represented

by the occurrences of vocabulary words. The values inside the feature vectors are based on

the overall frequency of each word. We used term frequency feature vectors in Section 5 and

Chapter 4. Data-set collection and Feature extraction 22

Section 6.

Software issues may also be tokenized and represented by a sequence of integers. Each

integer represents the index of a vocabulary word. A dictionary maps all words to their

indexes. Sequences of integers are a preferred input in neural networks to keep the word

order and reduce dimensionality. Sequences of integers are used in Section 6 for the input of

variational autoencoders and in Section 7.

23

Chapter 5

Feature Selection

An important step in text mining is the feature extraction process. Feature extraction

transforms the text into features that are used by the learning algorithms. The standard

examples include document-term matrices. Feature vectors use a vocabulary, usually the

vocabulary of the dataset, where each feature is a word in the vocabulary. Depending

on the type of document-term matrix, the documents are represented by the presence of

features, frequency of features, or some type of manipulation of features. The more words

in a vocabulary may lead to more patterns to be learned, leading to higher performance.

However, a bigger vocabulary complicates the problem and can make using different learners

more difficult.

In this chapter we address Research Question 1.

RQ 1: What feature selection methods show the greatest improvement of the automated bug

report classification?

5.1 Background on Feature Selection

The previous work used the vocabulary of CWE-888 to capture security related features

[11]. In some projects this leads to a low precision values, meaning a high number of false

positives because much of the vocabulary was security related. In this thesis the new ap-

proach used the vocabulary of both the CWE-888 weaknesses as well as the vocabulary of a

bug report dataset.

Chapter 5. Feature Selection 24

The words in the vocabulary were then shrunk down for two reasons. One reason was

that there are words that do not contribute to the classification as they are independent to

relating issues as security or non security. A smaller vocabulary also allows for more efficient

learning across different algorithms. Some algorithms such as Random Forest require large

amounts of memory, which grows as the vocabulary size grows. Another reason was that

within certain datasets, some words may confuse the learner. As the vocabulary is shrunk,

there is a potential to remove the confusing words.

Typically seven feature selection models used in text mining; Document Frequency, Chi-

Square, Information Gain, Consistency, Filter, Gain Ratio, and Cfs [23]. In this thesis we

focus on Chi-Square and Information Gain feature selection. Document frequency may be

used when generating feature vectors. Document frequency is dependent on the feature

vector where words can be given a cutoff point if they are not frequent in the documents.

Chi-Square is a statistical measure of dependence between stochastic variables. For every

word, one can measure the dependence that word has on the two classes using Equation 5.1

[23]. In the equation, O is the observed frequency and E is the expected frequency. The

words with high independence are removed.

X 2 =
n∑

i=1

(Oi − Ei)
2

Ei

(5.1)

Information Gain measures the dependency between to variables through entropy. En-

tropy is given by Equation 5.2 [23]. The probability is associated with the frequency of

category j at node t. INFO in Equation 5.3 splits t into k partitions where ni is the number

of records in the partition [23].

INFOEntropy(t) = −
∑
i=1

p(
j

t
)log2p(

j

t
) (5.2)

Gain = Entropy(t)−
(k∑

i=1

(
ni

n
)Entropy(i)

)
(5.3)

In related works, Xia et al used chi-squared and information gain feature selection on

feature vectors to classifiy configuration bug reports [36]. Wen et al. used Chi-squared

Chapter 5. Feature Selection 25

testing for dimensionality reduction on a bug report classification approach to classify bug

reports based on CWE descriptions [34].

5.2 Feature Selection Approach

The process of feature selection was done using Sci-kit Lean’s implementation of Selec-

tKBest, chi2, and mutual info classif [29]. Mutual information is an implementation of info

gain that compares two variables. A supervised process was necessary to select the features

used in the vocabulary. A validation test set of the dataset was created. We used a validation

set of 20% of the starting dataset. 10-fold cross validation was used on the remaining dataset

for training and testing. We first expanded the vocabulary from the CWE-888 vocabulary

with the addition of the vocabulary of the validation test set.

The size of the vocabulary of machine learning will affect the overall performance across

machine learning. A smaller sized vocabulary may not have enough information to recognize

patterns across software issues. A large vocabulary may not be necessary as many words

are only found in few software issues and do not contribute to connecting software issues as

security related. The most effective vocabulary size will depend on the dataset and the size

of the dataset. A larger dataset will have more words that are common enough across the

issues to affect the machine learning. Through several test experiments, a vocabulary of 250

words was chosen to attempt to balance between a vocabulary that was too small, and a

vocabulary that did not differentiate from the complete vocabulary.

After a vocabulary was created from feature selection, the feature vectors used in the

previous work may be created [11]. Term Frequency (TF) feature vectors are created using

the new vocabulary. Supervised learning was then applied to the feature vectors. Different

supervised learning classifiers may be used on the feature vectors. Naive Bayes was chosen

because it performed well across different feature vectors and datasets. The open source

machine learning tool Weka was used for the Naive Bayes implementation [35]. No special

parameters differed from the default implementation. Preprocessing and feature selection

code was written using Python [33] and Sci-Kit Learn [29] [3].

A new baseline was calculated using the top 450 words in the CWE-888 vocabulary based

Chapter 5. Feature Selection 26

on Document Frequency. A vocabulary of size 450 words was selected to be large enough to

be similar to the full vocabulary, but small enough so it was computationally feasible. The

baseline was slightly different from the other experiments as a validation set was necessary.

Chi-Squared and Mutual Information Feature Selection was performed to keep only 250

words from the CWE-888 vocabulary and the vocabulary of the bug reports. These words

have the highest dependence on if an issue is security related or not.

5.3 Results

The results are compared to the baseline “450 CWE”, where the feature vector’s vocabu-

lary is from just the CWE-888 list. The results for “Chi 250” represent feature selection using

Chi-squared testing and clipping till 250 of the most influencing words remained. The results

for “MI 250” represent feature selection using mutual information. Results for each dataset

are in tables containing the baseline, chi-squared feature selection, and mutual information

feature selection. Results with the highest G-Score are in bold.

It was observed feature selection increased the precision value across all projects. Feature

selection also increased the F-Score and G-Score across all projects besides the Flight Mission

Developer Issues dataset. The dataset is relatively small and the baseline precision value

was relatively high to begin with.

5.3.1 Red Hat Enterprise 4 Results

The results for feature selection on the Red Hat Linux 4 Dataset are discussed next. The

experimental results are shown in Table 5.1. The baseline classification performance on the

Red Hat resulted in a very low precision metric.

The only metric that degraded from feature selection was recall. However, precision was

still low and may be due to the dataset itself. Both chi-squared and mutual information

feature selection improved the G-Score and precision. Precision improved by 79% while only

degrading recall by 8% using chi-squared feature selection. A box plot comparing the results

is shown in Figure 5.1.

Chapter 5. Feature Selection 27

Table 5.1: Red Hat Enterprise Linux 4 Term Frequency Performance (Naive Bayes)

Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

CWE 450 69.5% 10.6% 90.3% 68.7% 18.9% 78.0%

Chi 250 85.3% 18.9% 83.2% 85.4% 30.8% 84.3%

MI 250 84.5% 17.2% 76.9% 84.8% 28.1% 80.7%

 G-Score

Figure 5.1: Red Hat Enterprise Linux 4 Term Frequency Feature Selection Box Plot (Naive
Bayes)

5.3.2 Ground Mission IV&V Issues Results

The Ground Mission IV&V Issues dataset baseline results showed a low precision value.

Feature selection results are shown in Table 5.2. Feature selection results were similar to

Chapter 5. Feature Selection 28

the baseline while chi-squared feature selection slightly improved the F-Score and G-Score

values. However, mutual information feature selection improved the precision by 7.1% while

degrading recall by 5.2%. A box plot comparing the results is shown in Figure 5.2.

Table 5.2: Ground Mission IV&V Issues Term Frequency Feature Selection Performance
(Naive Bayes)

Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

CWE 450 85.4% 33.3% 85.7% 85.4% 48.0% 85.5%

Chi 250 85.5% 33.6% 85.7% 85.5% 48.2% 85.6%

MI 250 87.0% 35.7% 81.3% 87.5% 49.6% 84.3%

 G-Score

Figure 5.2: Ground Mission IV&V Issues Term Frequency Feautre Selection Box Plot (Naive
Bayes)

Chapter 5. Feature Selection 29

5.3.3 Flight Mission IV&V Issues Results

The Flight Mission IV&V Issues dataset baseline resulted in a relatively high precision

value. Feature selection results are shown in Table 5.3. Mutual information feature selection

improved slightly across all metrics. Chi-squared feature selection degraded the results. A

box plot comparing the results is shown in Figure 5.2.

Table 5.3: Flight Mission IV&V Issues Term Frequency Feature Selection Performance (Naive
Bayes)

Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

CWE 450 78.8% 71.1% 80.8% 77.3% 75.7% 79.0%

Chi 250 75.2% 66.9% 77.6% 73.5% 71.9% 75.5%

MI 450 80.4% 72.4% 84.0% 77.9% 77.8% 80.8%

 G-Score

Figure 5.3: Flight Mission IV&V Issues Term Frequency Feature Selection Box Plot (Naive
Bayes)

Chapter 5. Feature Selection 30

5.3.4 Flight Mission Developer Issues Results

The Flight Mission Developer Issues dataset baseline resulted in a relatively high precision

value. Feature selection results are shown in Table 5.4. Feature selection degraded the

performance on the dataset. The dataset was relatively small so the validation set used to

train feature selection was small. A box plot comparing the results is shown in Figure 5.2.

Table 5.4: Flight Mission Developer Issues Term Frequency Selection Performance (Naive
Bayes)

Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

CWE 450 55.2% 69.7% 54.6% 56.3% 61.2% 55.4%

Chi 250 59.6% 69.2% 67.8% 44.4% 68.5% 53.6%

MI 250 61.1% 72.2% 65.1% 53.8% 68.4% 58.9%

 G-Score

Figure 5.4: Flight Mission Developer Issues TF Chi-squared Box Plot (Naive Bayes)

Chapter 5. Feature Selection 31

5.4 Feature Selection Conclusion

Feature selection may be used as to reduce feature vectors of large vocabularies. The

amount of words in feature vectors and type of feature selection may be tuned to suit the

needs of the particular problem.

Through the use of feature selection, the baseline results were improved in certain areas

as seen by Table 5.5.

Table 5.5: Feature Selection Improvement of Classification Performance (Naive Bayes)

Dataset Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Red Hat Chi 250 85.3% 18.9% 83.2% 85.4% 30.8% 84.3%

Enterpise Linux 4 Improvement +22.7% +78.9% -7.9% +24.3% +62.8% +8.0%

Ground Mission MI 250 87.0% 35.7% 81.3% 87.5% 49.6% 84.3%

IV&V Issues Improvement +1.9% +7.1% -5.2% +2.5% +3.3% -1.5%

Flight Mission MI 250 80.4% 72.4% 84.0% 77.9% 77.8% 80.8%

IV&V Issues Improvement +2.1% +1.8% +4.0% +0.7% +2.8% +2.3%

Flight Mission MI 250 61.1% 72.2% 65.1% 53.8% 68.4% 58.9%

Developer Issues Improvement +10.8% +3.6% +19.3% -4.4% +11.8% +6.3%

Research Question 1 was explored.

RQ 1: What feature selection methods show the greatest improvement of the automated bug

report classification?

1. Both Chi-squared feature selection and mutual information (info gain) feature selection

may be used and the results be depend on the datasets.

The results showed that Chi-squared had the greatest affect on improving the precision

metric at the cost of recall metric on the Red Hat Enterprise Linux 4 dataset. However,

mutual information feature selection improved the classification performance on the

Ground Mission IV&V Issues, the Flight Mission IV&V Issues, and the Flight Mission

Developer Issues datasets.

2. Feature selection may be used to reduce the size of the vocabulary.

Chapter 5. Feature Selection 32

Feature selection may be desired if one needs to build a vocabulary to be effective at a

limited size. It may be necessary to develop an approach to select the best vocabulary

size based on a validation test set. Feature selection improved the results in the two

large datasets. However, the vocabulary size was not changed for the two smaller

datasets.

3. Feature selection may improve a low precision value.

The two datasets with low precision values were improved by feature selection. The

datasets that started with relatively high precision values did not improve as much

from feature selection.

5.5 Threats to Validity

Construct validity threats concerned with measuring what we intend to measure arose

from dealing with different datasets. The size of the dataset affects the size of the vocabulary.

When all vocabularies of the datasets are shrunk down to the same size, there is a chance

for a greater change on the larger datasets. Feature selection takes a supervised approach

which is generated from a validation set. Different validation sets will impact the feature

selection.

Internal validity threats concerned with unknown influences arose from the input data.

An assumption was made that the datasets of appropriate labeling for the software issues.

There is also no guarantee that an issue is or is not a security issue without exploring the

project’s data itself which is often unavailable. The issues were labeled as security related

based on the similarity to CWE descriptions. There is also a threat to the data quality.

There is some assurance of data quality due to the standard of record keeping in NASA

records.

Conclusion validity threats affect the ability to draw the correct conclusions. The

conclusions are based on performance metrics which are all reported. The thesis focuses on

the G-Score value as it is the harmonic mean between precision and recall. We care most

about recall and precision values.

Chapter 5. Feature Selection 33

External validity threats are concerned with the ability to generalize results. The

experiments are based on four large datasets that were created by different developers over

multiple years. We also do not claim the findings in this thesis are valid across other software

systems.

34

Chapter 6

Clustering

Unsupervised learning has the advantage of not requiring labeled data. Anomaly detec-

tion requires only one class and classifies all outliers away from the normal as the different

class. Distance measures such as cosine similarity and euclidean distance may be used to

compute the similarity from a data point to the normal points. A threshold must be com-

puted when using anomaly detection for classification with cosine similarity.

Clustering may be used as an unsupervised classification. Clustering groups datapoints

together based on the distance between points. Each cluster attempts to only have datapoints

of the same class. This section explores Research Questions 2, 2(a), and 2(b).

RQ 2: Can unsupervised classification based on clustering outperform the anomaly detection

based on cosine similarity?

(a) How do Term Frequency feature vectors perform in combination with K-Means

clustering?

(b) Can Variational Autoencoders be used to represent security related software issues

in a distribution of software bug reports?

K-means algorithm uses a local search to partition data points into k clusters. K-means

is initialized with k-clusters chosen arbitrarily. Each point is then assigned a cluster closest

to it. The centers are recomputed and the cycle continues till the clusters stabilize [1].

Autoencoders may be used for unsupervised training. In an autoencoder network, the

output is the same as the input, therefore there is no need for labeled data. The autoencoder

Chapter 6. Clustering 35

network may be split into two parts: encoder and decoder. The encoder portion typically

creates a smaller representation of the input data. This latent representation may represent

the input data in a meaningful way. The decoder portion is used to map the latent repre-

sentation to target data, in this case, the input data. After training, the decoder portion is

no longer necessary.

6.1 Background on Variational Autoencoders

Variational Autoencoders (VAE) proposed by Kingma et al. capture the latent repre-

sentation of a date set through the use of a distribution, often a Gaussian distribution [19].

Variational Autoencoders may be used for training a generative model [7]. Generative mod-

eling is an area of machine learning which represents models of distributions P(X) defined

over datapoints X. Generative models attempt to capture the dependencies between features

in order to reorganize new features into similar objects. A generative model takes in known

examples X which are distributed to some unknown distribution Pgt(X).

Training a model to represent the unknown distribution has been proven difficult prior to

VAEs. There have been three drawbacks to the problem. First, a model might require strong

assumptions about the structure in the data. Second, the model might be required to make

approximations of the data leading to sub optimal models. Thirdly, the model would rely on

computationally expensive inference procedures such as Markov chain Monte Carlo. VAEs

allow the the training to be fast via backpropagation and do not require specific structures

in the data sets. Although VAEs do make approximations, the error introduced is generally

small with large data sets [7].

The goal for a VAE is to capture the dependencies between dimensions. A generative

model with many dimensions and complicated dependencies will be more difficult to train. A

VAE first decides which variable to generate. This decision is represented as a latent variable

z. In order for the model to represent the dataset, for every data point X, there needs to

be one (or more) settings of the latent variable that generates an output similar to X. The

model has a vector of latent variables z in a high dimensional space Z. The latent variables

are sampled over some probability density function (PDF) P(z) defined over Z. Now there

Chapter 6. Clustering 36

is a family of deterministic functions f(z; θ) parameterized by a vector θ in some space Θ,

where f : Z × Θ → X , and X is the high-dimensional space of X. Since f is deterministic,

z is random, and θ is fixed, then f(z; θ) is a random variable in the space X . The task is

then to optimize θ so that one can sample z from P(z). Now f(z; θ) will be similar to the X

datapoints in the dataset as seen in Equation 6.1 below [7].

P(X) =

∫
P(X|z; θ)P(z)dz. (6.1)

The model is based on ”maximum likelihood” where if a model is likely to produce the

dataset samples then it is also likely to produce similar dataset samples. The output follows

a Gaussian distribution where P(X|z; θ) = η(X| f(z; θ), σ2·I). The distribution then has a

mean of f(z; θ) and covariance equal to the identity matrix I times some scalar σ. The goal

of the VAE is to maximize Equation 6.1.

There are two problems that need to be solved before the model can represent the dataset.

The model must choose how to represent the latent variables z and how to deal with the

integral over z. VAEs assert that samples z can be drawn from a distribution η(0, I). These

simple latent variables z are then mapped using complicated functions. In an autoencoder

like structure, the first set of layers map z to the latent values. The later layers map the

latent values to a represented data point.

Now the second problem, to maximize P(X), can be completed by finding a computable

formula for P(X) and taking the gradient of that formula. The formula is found by sampling

over a large number of z values and computing P(X) ≈ 1
n

∑
i P(X|zi). However, with high

dimensions, n may need to be very large to find an appropriate approximation. Given that

for most z, P(X|z) will be close to zero. Therefore, variational autoencoder’s key concept is

to sample from a new function Q(z|X) which takes a sample X and returns a distribution

of z likely to produce something similar to X. By applying Kullback-Leiber divergence and

Bayes rule, the core of variational autoencoders is Equation 6.2.

logP (X)−D[Q(z|X)||P (z|X)] = Ez∼Q[logP (X|z)]−D[Q(z|X)||P (z)] (6.2)

The left side of the equation has the value to maximize: log P(X), plus an error term that

makes Q produce z ’s that can reproduce X. The right side of the equation can be optimized

using gradient descent.

Chapter 6. Clustering 37

6.2 Variational Autoencoders Proposed Approach

An implementation of a variational autoencoder was created from a provided architecture

from Keras [18]. The provided architecture had a hidden units dense layer of 512 units;

however, the number of units was adjusted to 256 units to compensate for the large datasets

running on a CPU. The latent representation dimension was only 2. For larger datasets the

latent representation size may need to be increased; however, the size did not affect results

in a meaningful way in the datasets tested. A batch size of 128 was used and was trained

for 35 epochs. The loss function “binary crossentropy” was used. Code was written using

Python [33], Sci-Kit Learn [29] [3], Matplotlib [17], and Keras [4]. The architecture is shown

in Figure 6.1 and is an adaption of a Variational Autoencoder proposed by Kingma et al [19]

and provided by Keras [18].

Figure 6.1: VAE Network Architecture Adaption [19] [18]

The weights of the variational autoencoder were used in an encoder network which out-

puts a latent representation of the data. The latent representation is used in K-Means

clustering for classification. The K-Means implementation used the expected-maximization

algorithm from Elkan [8]. The security clusters were determined from the CWE-888 issues.

The amount of security clusters was determined by a set number of clusters. Any software

issue that was in a cluster labeled as security related was classified as security related.

K-Means clustering is used with k=100 clusters. The large k was selected as the dat-

apoints cluster closely together, and different clusters may form within a large amount of

datapoints. The Euclidean distance measure was used for determining the clusters. CWE-

888 descriptions determine if a cluster was security related or non security related. Firstly

Chapter 6. Clustering 38

all clusters that do not include a CWE issue are classified as non-security. Next, the 25

clusters with the smallest amount of CWE issues are also classified as non-security. The

remaining clusters are classified as security related. The value of 25 clusters was selected

through tuning a validation test set for the best classification performance.

A Term Frequency representation of the data is also used. The Term Frequency feature

vector is used in the same K-Means algorithm. To visualize the Term Frequency data in

a two dimensional space, Principal Component Analysis (PCA). PCA does not affect the

K-Means algorithm.

6.3 Clustering Results

The figures in this section represent latent representations of the software issues. The first

figure for a project shows all software issues and CWE-888 descriptions labeled by the ground

truth. The labels are used for visualization purposes. The ideal results would be security

related issues clustering on or near the CWE descriptions while the non-security related

issues would vary away from the CWE clusters. The second figure shows the same plot with

K-means clustering and classification. The two plots repeat for variational autoencoders and

term frequency representation visualized through PCA. Tables of results were included for

the projects in which security related software issues clustered with CWE-888 descriptions.

The classifier with the highest G-Score value is in bold in the provided tables. The method

with data represented by variational autoencoders is labeled as “VAE”. The method with

data represented by term frequency feature vectors is labeled as “TF”.

We used K-means clustering to classify software issues as security related or not. How-

ever, the data was not represented well enough to form clusters of security related issues

differentiating from non-security related issues. Therefore, cosine similarity anomaly detec-

tion is our preferred method for unsupervised classification on security bug reports.

The representation of data did show the CWE-888 issues are similar to each other when

represented by variational autoencoders. Portions of security software issues were similar to

one another; however, non-security software issues were also closely similar.

Chapter 6. Clustering 39

6.3.1 Red Hat Enterprise Linux 4 Results

The Red Hat Enterprise Linux 4 dataset was represented by the VAE embeddings in

Figure 6.2. The VAE network was trained on all software issues including the CWE-888 list.

The network training was unsupervised and the output is the same as the input. The network

was cut to the latent representation and K-Means was used to predict security related bug

reports.

−2 −1 0 1 2
z[0]

−1.5

−1.0

−0.5

0.0

0.5

1.0

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.2: Redhat Enterprise Linux 4 VAE Representation: Security[1] CWE[0] Non-
security[-1]

After multiple trials, the VAE network was not able to represent the Red Hat dataset

in a way that distributed CWE-888 descriptions along with security related issues. Since

the distribution does not cluster security issues with CWE descriptions, the classification is

unable to perform, therefore metric performance results are not included for this dataset.

Chapter 6. Clustering 40

However, it can be seen by the representation of data that the majority of security related

issues do cluster together. Although, they are clustered with a portion of non-security related

issues, comparing the issues to a different baseline may be beneficial.

Similar findings were found using PCA analysis on the dataset as shown by Figure 6.3.

The CWE-888 lists were very different than all issues in the dataset and are clustered far

apart. The data was not represented in a way in which K-Means clustering could differentiate

between security related and non-security related software issues. PCA analysis visualization

also showed security related issues were similar to one another.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8
z[0]

−0.2

0.0

0.2

0.4

0.6

0.8

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.3: Red Hat Enterprise Linux 4 PCA Representation: Security[1] CWE[0] Non-
security[-1]

The software issues and CWE-888 descriptions were not similar in the Red Hat dataset

under the experimented representations.

Chapter 6. Clustering 41

6.3.2 Ground Mission IV&V Issues Results

Unsupervised classification through clustering was applied to the NASA IV&V Ground

project as well. The results in Table 6.1 show the baseline cosine similarity results compared

to the clustering results. K-means clustering on Term Frequency vector was not able to

detect a majority of security related issues resulting in a low recall. K-Means clustering

through VAE representation performed similarly to the baseline, with a higher recall value.

Table 6.1: Ground Mission IV&V Issues Classification from Clustering Results

Dataset Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Ground Cosine Sim TF 64.3% 15.0% 78.7% 63.1% 25.2% 70.0%

Project K-Means TF 78.8% 15.0% 36.7% 82.4% 21.3% 50.8%

IV&V Issues K-Means VAE 63.7% 16.3% 88.5% 61.6% 27.6% 72.6%

The VAE representation is shown in Figure 6.4. All issues in the datasets along with

the CWE-888 list were used to train the network to represent the input data through a

distribution.

Chapter 6. Clustering 42

−0.12 −0.10 −0.08 −0.06 −0.04 −0.02 0.00 0.02
z[0]

−0.15

−0.10

−0.05

0.00

0.05

0.10

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.4: Ground Mission IV&V Issues Ground Truth VAE Representation: Security[1]
CWE[0] Non-security[-1]

The ground truth graph did show an overlap of security related software issues and

CWE-888 issues. However, it was difficult to distinguish the security related issues from

the non-security related issues. K-Means clustering is performed on the data representation

seen in Figure 6.5. The clustering appears to label the majority of security related issues;

however, there is an overlap of non-security related issues.

Chapter 6. Clustering 43

−0.12 −0.10 −0.08 −0.06 −0.04 −0.02 0.00 0.02
z[0]

−0.15

−0.10

−0.05

0.00

0.05

0.10

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.5: Ground Mission IV&V Issues K-Means VAE Representation: Security[1] Non-
security[-1]

PCA analysis of the dataset showed the CWE-888 descriptions were not similar to the

security related issues. The CWE-888 descriptions appeared to be represented away from

all issues. Security related issues were represented similarly.

Chapter 6. Clustering 44

−0.4 −0.2 0.0 0.2 0.4
z[0]

−0.4

−0.2

0.0

0.2

0.4

0.6

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.6: Ground Mission IV&V Issues Ground Truth TF PCA Representation: Security[1]
CWE[0] Non-security[-1]

K-Means clustering as shown by Figure 6.7 did not cluster security software issues with

CWE-888 descriptions.

Chapter 6. Clustering 45

−0.4 −0.2 0.0 0.2 0.4
z[0]

−0.4

−0.2

0.0

0.2

0.4

0.6

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.7: Ground Mission IV&V Issues K-Means TF PCA Representation: Security[1]
Non-security[-1]

6.3.3 Flight Mission IV&V Issues Results

Flight Mission IV&V Issues unsupervised classification results are shown in Table 6.10.

Both clustering methods did not perform well compared to the baseline. The main reason

was that the majority of security related issues did not cluster within the CWE-888 clusters.

Cosine similarity was still able to perform effectively for unsupervised classification. The

reason may be seen in Figure 6.10, although the security issues did not cluster with the

CWE-888 clusters, the issues were closer and therefore more similar than the non-security

Chapter 6. Clustering 46

related issues.

Table 6.2: Flight Mission IV&V Issues Classification from Clustering Results

Dataset Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Flight Cosine Sim TF 67.8% 58.1% 77.7% 60.9% 66.5% 68.3%

Project K-Means TF 62.4% 69.4% 15.8% 95.1% 25.8% 27.1%

IV&V Issues K-Means VAE 66.1% 68.0% 33.5% 88.9% 44.9% 48.7%

Flight Mission IV&V Issues dataset representation shown in Figure 6.8 shows clustering

of CWE-888 descriptions along with security related issues. Many of the other security

related issues were scattered throughout the representation away from the CWE clustering.

−0.08 −0.06 −0.04 −0.02 0.00 0.02
z[0]

−0.01

0.00

0.01

0.02

0.03

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.8: Flight Mission IV&V Issues Ground Truth VAE Representation: Security[1]
CWE[0] Non-security[-1]

Chapter 6. Clustering 47

K-Means clustering was applied to the representation of data to detect the security

related issues. Comparing the two graphs, the algorithm was able to form non-security

related clusters within gaps of the CWE-888 clusters to reduce the false positives.

−0.08 −0.06 −0.04 −0.02 0.00 0.02
z[0]

−0.01

0.00

0.01

0.02

0.03

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.9: Flight Mission IV&V Issues K-Means VAE Representation: Security[1] Non-
security[-1]

PCA analysis on the Flight Mission IV&V Issues dataset clusters the security related

issues closer together. Even though the CWE-888 descriptions are aligned with the security

issues, The CWE-888 descriptions were spread out which made it difficult to cluster.

Chapter 6. Clustering 48

−0.2 0.0 0.2 0.4 0.6 0.8
z[0]

−0.2

0.0

0.2

0.4

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.10: Flight Mission IV&V Issues Ground Truth TF PCA Representation: Security[1]
CWE[0] Non-security[-1]

K-Means clustering mislabels a large portion of security related issues because of the

spread of the CWE-888 descriptions. The non-security related issues did cluster away from

the CWE-888s, which created a very lower false positive rate.

Chapter 6. Clustering 49

−0.2 0.0 0.2 0.4 0.6 0.8
z[0]

−0.2

0.0

0.2

0.4

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.11: Flight Mission IV&V Issues K-Means TF PCA Representation: Security[1]
Non-security[-1]

6.3.4 Flight Mission Developer Issues Results

Flight Mission Developer Issues unsupervised classification results in Table 6.3 show that

clustering with the TF feature vector performs very poorly. However, clustering using a VAE

representation performed similarly to cosine similarity. The VAE managed to represent the

data so that a portion of the security related issues were similar to the CWE-888 descriptions.

Chapter 6. Clustering 50

Table 6.3: Flight Mission Developer Issues Classification from Clustering Results

Dataset Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Flight Cosine Sim TF 55.4% 69.3% 57.9% 50.6% 63.1% 54.0%

Project K-Means TF 39.2% 68.4% 13.9% 62.4% 32.2% 24.0%

Developer Issues K-Means VAE 52.9% 67.6% 54.6% 49.7% 60.4% 52.0%

Flight Mission Developer Issues VAE representation in Figure 6.12 did not appear to

distinguish between security and non security related issues. The majority of issues aligned

along with the CWE-888 descriptions. The remaining issues were dispersed away from the

majority clusters.

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
z[0]

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.12: Flight Mission Developer Issues Ground Truth VAE Representation: Security[1]
CWE[0] Non-security[-1]

K-Means clustering attempted to pick out the clusters with the most CWE-888 issues.

The clusters attempted to only cluster the issues that are closely related to the CWE-888

Chapter 6. Clustering 51

descriptions, this allows for non-security related clusters to formed tightly around.

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
z[0]

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.13: Flight Mission Developer Issues K-Means VAE Representation: Security[1]
Non-security[-1]

PCA analysis representation shows that the CWE-888 issues were not similar to the

dataset’s software issues. The representation was therefore not beneficial in a clustering

scenario.

Chapter 6. Clustering 52

−0.4 −0.2 0.0 0.2 0.4 0.6
z[0]

−0.2

0.0

0.2

0.4

0.6

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.14: Flight Mission Developer Issues Ground Truth TF PCA Representation: Secu-
rity[1] CWE[0] Non-security[-1]

K-Means clustering was attempted on the TF feature vector; however, many of the

security related issues were mislabeled. A distance measure based classification method

would perform better for the TF feature vector of this dataset because the datapoints were

not represented in the desired way.

Chapter 6. Clustering 53

−0.4 −0.2 0.0 0.2 0.4 0.6
z[0]

−0.2

0.0

0.2

0.4

0.6

z[
1]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 6.15: Flight Mission Developer Issues K-Means TF PCA Representation: Security[1]
Non-security[-1]

6.3.5 Clustering Conclusion

Security bug report classification was explored through clustering. Term frequency fea-

ture vectors and variational autoencoder representations were used with K-means clustering.

Research Questions 2, 2(a), and 2(b) were explored.

RQ 2: Can unsupervised classification based on clustering outperform the anomaly detection

based on cosine similarity?

(a) How do Term Frequency feature vectors perform in combination with K-Means

clustering?

(b) Can Variational Autoencoders be used to represent security related software issues

Chapter 6. Clustering 54

in a distribution of software bug reports?

1. Clustering through the tested representations and algorithms was not able to outper-

form the anomaly detection based on cosine similarity.

2. Clustering with Term Frequency feature vectors performs poorly.

The representation made it difficult to distinguish between security and non-security

related issues.

3. Variational Autoencoders do not distribute software issues well enough for K-means

clustering.

Variational autoencoders do represent portions of security related software issues sim-

ilarly. CWE-888 descriptions are closely related in the variational autoencoder repre-

sentations.

For the datasets, cosine similarity was able to perform consistently well. One reason

is because the CWE-888 list did not start as a distribution. A software issue needs to be

similar to just one CWE-888 description to be considered security related. In clustering,

the security software issues need to form clusters where CWE-888 descriptions would also be

represented. The second reason is that, in cosine similarity, the security related issues do not

need to be very similar. Security issues need to be more similar to CWE-888 descriptions.

In order for a software issue to fall into a security cluster it needs to be considered very

similar. However, in a different application this property may aid in the problem of selecting

a threshold. Unsupervised cosine similarity works by selecting a threshold based on the

total scores. If text documents that were not even considered software issues were tested,

many issues will still be considered security related under cosine similarity. However, with

clustering, if none of the security issues are security related, there is lower chance of labeling

false positives.

Chapter 6. Clustering 55

6.4 Threats to Validity

The same Internal, External, and Conclusion validity threats discussed in Section 5.5

apply to this section.

Construct validity threats concerned with measuring what we intend to measure arose

during the experiment. In order to classify software issues as security related, a k value is

needed. The same k value was used across all datasets for consistency. Also, clustering is

sensitive to noisy datapoints. Outliers may push clusters away from centers. Variational

autoencoders are random and a new representation will be generated each experiment. The

autoencoders where trained on the complete dataset, so overfitting may affect the distribu-

tion; however, it was a unsupervised approach with no software issue labels used.

56

Chapter 7

Deep Learning Classification

Neural networks have the advantage of mapping complex functions of an input to a

targeted output. For instance, we can build a machine that takes in documents (bug reports)

and outputs a score vector consisting of non-security and security related scores. The bug

reports that are security related should have a higher security related score. The network

must be trained using bug reports for this outcome to occur. Neural networks use an objective

function that measures the error between the output scores and the desired pattern. The

network adjusts its parameters, called weights, after each data input to reduce the error.

The learning algorithm computes a gradient vector which indicates how much the error will

increase or decrease based on the change of a weight. The weight is adjusted in the opposite

direction of the gradient vector. The objective function averaged over the training data

shows slopes of the minimums [22].

Although neural networks may be designed around the structure of the input data,

document-term matrices such as Term Frequency feature vectors are generally not used.

Instead, the sentences are broken up by spaces, separating each word or phrase using a tok-

enizer [4]. Each word was represented by an integer relating to the index of that word in the

vocabulary. Using a sequence of word indexes reduces the dimensionality of the input. With

a feature vector, the length of the input will be the size of the vocabulary. Using a sequence

of word indexes, the length was the size of the largest sentence or a fixed sized sentence.

More advanced word vectors use a sequence of integers as a starting point. The sequence

of indices will allow word order to affect the learning. It may also be used to create word

Chapter 7. Deep Learning Classification 57

vectors and word embedding that attempt to structure the vectors to represent information

from the natural language.

Research Questions 3, 3(a), and 3(b) are addressed in this section.

RQ 3: Can deep learning outperform traditional supervised machine learning techniques?

(a) How do supervised deep neural networks compare to traditional supervised ma-

chine learning techniques?

(b) How do semi-supervised deep neural networks compare to supervised learning

techniques?

7.1 Background on LSTM Networks

Recurrent neural networks (RNN) add the benefit of taking into account history of an

input. This can be very beneficial in scenarios where the data is a sequence or time series.

There is a benefit in using recurrent neural networks with text data because the semantics

of a sentence comes from the words, order or words, and structure. However, whenever there

is a large gap between inputs, RNNs have trouble connecting the information.

Long Short Term Memory (LSTM) networks are designed to solve the problem of long

term dependencies [16]. The LSTM networks allow the cells to store states where the network

decides what gets added and what gets forgotten. Recurrent network modules have one single

neural network layer. LSTM cells are composed of four different neural network layers. Three

of these layers act as gates to decide what to forget, what to pass on to the input, and what

to output. Finally there is a tanh layer to act as an activation layer.

Sequence autoencoders may be used as a pretraining stage to supervised learning as

shown by the work done by Dai [5]. This method is believed to stabilize the parameters of

the supervised model as well as the added benefit from the generalization from unlabeled

data.

Language Models follow the same structure; however, the encoder portion of the network

is removed after training to return a feature representation. A language model could be used

as a feature vector to different machine learning algorithms such as Naive Bayes.

Chapter 7. Deep Learning Classification 58

7.2 LSTM Network Proposed Approach

The LSTM network architecture shown in Figure 7.1 was adapted from Dai et al [5]. An

implementation is made using python and Keras [4]. The word embedding layer is trained so

that the input features are related based on term similarity. The goal of the embedding layer

is to map the semantic meaning into a geometric space. The software issues are converted

to a sequence of integers and used as the input of the network. The network is trained to

classify the issues as security related or non-security related. The network was trained on

10 epochs. The loss function “binary crossentropy” and the optimizer “Adam” were used.

For a LSTM network, the new weights are trained on 90% of the data in the fold.

The remaining 10% of data is used for testing. During training, 10% of the training data

is used for validation testing to prevent over fitting. The training data was forced to be

balanced between security and nonsecurity issues by undersampling non-security related

issues. Undersampling did not affect the testing data.

Figure 7.1: LSTM Network Architecture [5]

A similar sequence autoencoder network to Dai et al [5], uses an autoencoder network

consisting of LSTM layers where the output is the same as the input. The network is trained

to reconstruct the original inputs. The network can be trained as an unsupervised approach,

making the approach semi-supervised. Weights of the network can be used as the weights of

a pretrained supervised model such as the architecture in Figure 7.1. The architecture was

adapted from Dai et el. [5].

Chapter 7. Deep Learning Classification 59

Figure 7.2: Sequence Autoencoder LSTM Network Architecture [5]

One sequence autoencoder used on the Red Hat Enterprise Linux 4 dataset was trained

on a unlabeled subset of 30% of the Red Hat dataset. The NASA projects were smaller, so

one sequence autoencoder was trained on 3,000 unlabeled software issues from other NASA

IV&V datasets. After the sequence autoencoder was trained, the weights were transferred

to a LSTM Network which was then trained on labeled data creating a semi-supervised

approach. All NASA projects use the weights from the same sequence autoencoder which

are then tuned in different LSTM networks.

7.3 LSTM Networks Results

Supervised and semi-supervised classification techniques were explored. Naive Bayes

classification was set as the baseline. Support Vector Machines were also competitive in the

classification performance; however, the results varied more and must be tuned specifically

to a dataset.

The results are compared in tables with “Naive Bayes”, “LSTM”, and “SA-LSTM”.

“SA-LSTM” represents a LSTM network that was pretrained by a sequence autoencoder.

Classification results with the highest G-Score value are in bold. Results are also compared

in box plots.

Chapter 7. Deep Learning Classification 60

7.3.1 Red Hat Enterprise Linux 4 Results

The Red Hat Enterprise Linux 4 classification performance is shown in Table 7.1. The

precision metric in the baseline was very low. The classification performance slightly im-

proved across all metrics using a LSTM network. The classification improved even more

with a SA-LSTM network. The Red Hat Enterprise Linux 4 project was the only project

which trained a sequence autoencoder on a separate subset of the dataset. The precision

metric improved by 19.3% compared to the baseline, while recall degraded by only 2.8%. A

box plot comparing the results is shown in Figure 7.3

Table 7.1: Red Hat Enterprise Linux 4 Project Supervised and Semi-supervised Classification
Results

Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Naive Bayes TF 73.5% 11.8% 84.3% 73.0% 20.7% 78.2%

LSTM Sequence 75.8% 13.0% 85.8% 75.4% 22.6% 80.3%

SA-LSTM Sequence 78.7% 14.1% 81.9% 78.6% 24.0% 80.2%

Chapter 7. Deep Learning Classification 61

 G-Score

Figure 7.3: Red Hat Linux 4 (Half) Supervised Learning Box Plot

7.3.2 Ground Mission IV&V Issues Results

In the Ground Mission IV&V Issues project the LSTM network performance was worse

than the Naive Bayes performance shown in Table 7.2. Naive Bayes outperformed all of the

tested classifiers in the baseline including Support Vector Machines. The Ground Mission

IV&V Issues project had a small amount of security related issues to learn from. The

sequence autoencoder was not trained on unlabeled data from the Ground Mission IV&V

Issues project. A box plot comparing the results is shown in Figure 7.4

Chapter 7. Deep Learning Classification 62

Table 7.2: Ground Mission IV&V Issues Supervised and Semi-supervised Classification
Results

Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Naive Bayes TF 84.7% 31.8% 84.2% 84.7% 46.2% 84.4%

LSTM Sequence 65.9% 17.0% 87.1% 64.2% 28.5% 73.9%

SA-LSTM Sequence 71.5% 17.4% 70.5% 71.6% 27.9% 71.1%

 G-Score

Figure 7.4: Ground Mission IV&V Issues Supervised Learning Box Plot

7.3.3 Flight Mission IV&V Issues Results

The LSTM network outperformed Naive Bayes in all performance metrics as shown in

Table 7.3. The SA-LSTM network which was trained on unlabeled data from other IV&V

missions performed the worst. A box plot comparing the results is shown in Figure 7.3.

Chapter 7. Deep Learning Classification 63

Table 7.3: Flight Mission IV&V Issues Supervised and Semi-supervised Classification Results

Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Naive Bayes TF 78.1% 71.8% 77.2% 78.7% 74.4% 77.9%

LSTM Sequence 82.5% 74.3% 88.0% 78.7% 80.6% 83.1%

SA-LSTM Sequence 71.8% 63.0% 76.6% 68.4% 69.1% 72.3%

 G-Score

Figure 7.5: Flight Mission IV&V Issues Supervised Learning Box Plot

7.3.4 Flight Mission Developer Issues Results

The Flight Mission Developer Issues project results are shown in Table 7.4. Classification

through Naive Bayes resulted in the highest G-Score value. However, recall improved to

92% from 57% at the expense of a high probability of false alarm. We believe the sequence

autoencoder network did poorly because it was not trained on unlabeled data from the same

dataset. A box plot comparing the results is shown in Figure 7.6.

Chapter 7. Deep Learning Classification 64

Table 7.4: Flight Mission Developer Issues Supervised and Semi-supervised Classification
Results

Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Naive Bayes TF 58.7% 74.2% 57.0% 62.1% 64.4% 59.4%

LSTM Sequence 73.5% 74.0% 92.0% 37.9% 82.0% 53.7%

SA-LSTM Sequence 65.9% 67.3% 93.6% 12.8% 78.3% 22.6%

 G-Score

Figure 7.6: Flight Mission Developer Issues Supervised Learning Box Plot

7.4 LSTM Networks Conclusion

Supervised and semi-supervised classification methods were explored with LSTM net-

works. The semi-supervised approach used sequence autoencoders which may be trained on

unlabeled data and tuned on labeled data. The overall improvements compared to Naive

Bayes with Term Frequency feature vectors are shown in Table 7.5.

Chapter 7. Deep Learning Classification 65

Table 7.5: LSTM Improvement of Classification Performance Compared to Naive Bayes

Dataset Classifier Feature Vector Accuracy Precision Recall 1-PFA F-Score G-Score

Red Hat
SA-LSTM

Sequence 78.7% 14.1% 81.9% 78.6% 24.0% 80.2%

Enterprise Linux 4 Improvement +7.1% +19.3% -2.8% +7.6% +16.1% +2.5%

Ground Mission
LSTM

Sequence 65.9% 17.0% 87.1% 64.2% 28.5% 73.9%

IV&V Issues Degradation -22.1% -46.4% +3.4% -24.3% -38.2% -12.5%

Flight Mission
LSTM

Sequence 82.5% 74.3% 88.0% 78.7% 80.6% 83.1%

IV&V Issues Improvement +5.7% +3.6% +13.9% 0.0% +8.3% +6.6%

Flight Mission
LSTM

Sequence 73.5% 74.0% 92.0% 37.9% 82.0% 53.7%

Developer Issues Improvement +25.1% -0.3% +61.5% -38.8% +27.2% -9.5%

Research Questions 3, 3(a), 3(b) were explored.

RQ 3: Can deep learning outperform traditional supervised machine learning techniques?

(a) How do supervised deep neural networks compare to traditional supervised ma-

chine learning techniques?

(b) How do semi-supervised deep neural networks compare to supervised learning

techniques?

1. Deep learning, specifically LSTM networks may outperform traditional supervised ma-

chine learning techniques.

In three out of the four datasets, LSTM networks outperformed Naive Bayes classifica-

tion. However, the classification performance degraded in the Ground Mission IV&V

Issues dataset

2. Deep neural networks show higher recall scores compared to the Naive Bayes baseline.

The recall value in the Flight Mission Developer Issues dataset improved by 61.5%

compared to the baseline. The recall value in the Flight Mission IV&V Issues dataset

improved by 13.9% without any other metrics degrading.

3. Semi-supervised deep neural networks map improved classification performance if

trained on similar data to the dataset.

Chapter 7. Deep Learning Classification 66

An LSTM sequence autoencoder was trained on a subset of the Red Hat Enterprise

Linux 4 dataset and showed an improvement in precision by 19.3% compared to base-

line. However, when the sequence autoencoder was not trained on the similar software

issues dataset the results degraded compared to both supervised machine learning

methods and supervised deep learning methods.

7.5 Threats to Validity

The same Internal, External, and Conclusion validity threats discussed in Section 5.5

apply to this section.

Construct validity threats concerned with measuring what we intend to measure arose

during the experiment. Under sampling is performed on the training dataset for the LSTM

networks; however, it was not used for Naive Bayes classification. Sequence autoencoders

are trained on labeled data. We train sequence autoencoders on unlabeled data from similar

datasets and unrelated datasets and show both classification performances.

67

Chapter 8

Conclusion

Discovering and fixing bug reports is an important step in the development and upkeep of

software. Not all software issues are caused by vulnerabilities and therefore are not security

related. Security related software issues may have higher priority and should be fixed first.

This thesis had the goal to explore new solutions to detecting security related bug reports.

One area to improve is the feature vectors, specifically the vocabulary of a feature vector

which influences the whole learning process. We applied feature selection on feature vectors

to combine the vocabulary of CWE-888 descriptions and the software issues. Feature se-

lection scores words based on the dependence to the classes and selects the words with the

highest scores. If words are common across both classes, they are not likely to be selected

as they may confuse the learner. We trained feature selection on a validation set of 20%

of the dataset. The Red Hat Enterprise Linux 4 dataset showed the greatest improvements

with Chi-squared feature selection. The precision values increased by 78% and the F-Score

improved by 62.8%. The IV&V Ground and Flight projects’ precision metrics improved

by 7.1% and 1.8% respectively using mutual information feature selection. The Developer

Flight project showed an improvement in precision of 3.6%, and F-Score improved by 11.8%.

We believe feature selection can improve precision metrics that are low. Feature selection

works best when given a large enough training set.

We used clustering for unsupervised classification of security related bug reports. We

used term frequency feature vectors and variational autoencoder embeddings to represent

the datasets. K-Means algorithm clustered the representations with CWE-888 descriptions

Chapter 8. Conclusion 68

to be labeled as security related. CWE-888 descriptions were similar to one another in the

representations. In the Red Hat Linux 4 dataset and the IV&V Ground and Flight datasets,

the majority of security issues clustered together with each other. However, many non-

security software issues were present throughout the clusters. The Developer Flight dataset

representation showed the software issues were different from the CWE-888 descriptions.

Anomaly detection using cosine similarity. which was used in the prior work, outperformed

the classification through clustering using the representations and K-means. Future work

could improve on the variational autoencoder by using LSTM and convolutional networks.

Also, K-Means clustering may be improved by using different approaches to selecting appro-

priate k values for each dataset.

LSTM networks, a type of recurrent networks, were used for supervised classification.

LSTM networks performed well in all datasets besides the IV&V Ground project, which had

a high false positive rate. The IV&V Flight project’s classification performance increased

with LSTM networks throughout all metrics tested. Although the Developer Flight project’s

G-Score value decreased due to a higher false positive rate with LSTM networks, the recall

value increased by 61.5% and the F-Score increased by 27.2%.

Sequence autoencoders benefit from using unlabeled data with semi-supervised classifi-

cation. Sequence autoencoders were trained using just the input data where no labels are

required. The trained weights were transferred to a supervised network which was tuned

to the classification using labeled data. The sequence autoencoders stabilized the network,

which led to more consistent results. We trained a sequence autoencoder using 30% of un-

labeled issues from the Redhat Linux 4 dataset. The sequence autoencoder improved the

precision and F-Score values by 19.3% and 16.1% respectively compared to Naive Bayes

classifier. The NASA datasets have fewer issues, so the sequence autoencoder was trained

on unlabeled data from different NASA IV&V missions. The sequence autoencoder did

not improve the results of the NASA projects, that is, degraded the performance metrics.

Sequence autoencoders worked the best when trained on unlabeled data from a validation

set or very similar projects. Sequence autoencoders may be resourceful in large unlabeled

datasets. The architecture may be improved by using bidirectional networks for generative

deep learning.

69

References

[1] D. Arthur and S. Vassilvitskii, “How slow is the k -means method?” in
Symposium on Computational Geometry, 2006, pp. 1–10. [Online]. Available:
https://www2.cs.duke.edu/courses/spring07/cps296.2/papers/kMeans-socg.pdf

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” CoRR, vol. abs/1409.0, 9 2014. [Online]. Available:
http://arxiv.org/abs/1409.0473

[3] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux, “API design for machine learning software: experiences from the
scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and Ma-
chine Learning, 2013, pp. 108–122.

[4] F. Chollet et al., “Keras,” https://keras.io, 2015.

[5] A. M. Dai and Q. V. Le, “Semi-supervised Sequence Learning,”
pp. 3079–3087, 2015. [Online]. Available: http://papers.nips.cc/paper/
5949-semi-supervised-sequence-learning

[6] N. Dilokthanakul, P. A. M. Mediano, M. Garnelo, M. C. H. Lee, H. Salimbeni,
K. Arulkumaran, and M. Shanahan, “Deep Unsupervised Clustering with Gaussian
Mixture Variational Autoencoders,” arXiv preprint arXiv:1611.02648, 11 2016.
[Online]. Available: http://arxiv.org/abs/1611.02648

[7] C. Doersch, “Tutorial on Variational Autoencoders,” arXiv preprint arXiv:1606.05908,
6 2016. [Online]. Available: http://arxiv.org/abs/1606.05908

[8] C. Elkan, “Using the Triangle Inequality to Accelerate-Means,” in Proceedings of
the 20th International Conference on Machine Learning (ICML-03), 2003. [Online].
Available: https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf

[9] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports via text
mining: An industrial case study,” in 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010). IEEE, 5 2010, pp. 11–20. [Online]. Available:
http://ieeexplore.ieee.org/document/5463340/

https://www2.cs.duke.edu/courses/spring07/cps296.2/papers/kMeans-socg.pdf
http://arxiv.org/abs/1409.0473
https://keras.io
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1606.05908
https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
http://ieeexplore.ieee.org/document/5463340/

References 70

[10] K. Goseva-Popstojanova and J. Tyo, “Experience Report: Security Vulnerability
Profiles of Mission Critical Software: Empirical Analysis of Security Related Bug
Reports,” in 2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 10 2017, pp. 152–163. [Online]. Available: http:
//ieeexplore.ieee.org/document/8109082/

[11] ——, “Identification of Security Related Bug Reports via Text Mining Using
Supervised and Unsupervised Classification,” 2018 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 344–355, 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8424985/

[12] M. Hamill and K. Goseva-Popstojanova, “Common Trends in Software Fault and
Failure Data,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp. 484–496,
7 2009. [Online]. Available: http://ieeexplore.ieee.org/document/4760152/

[13] ——, “Exploring the missing link: an empirical study of software fixes,” Software
Testing, Verification and Reliability, vol. 24, no. 8, pp. 684–705, 9 2014. [Online].
Available: http://doi.wiley.com/10.1002/stvr.1518

[14] ——, “Exploring fault types, detection activities, and failure severity in an evolving
safety-critical software system,” Software Quality Journal, vol. 23, no. 2, pp. 229–265,
6 2015. [Online]. Available: http://link.springer.com/10.1007/s11219-014-9235-5

[15] F. Hill, K. Cho, and A. Korhonen, “Learning Distributed Representations of Sentences
from Unlabelled Data,” arXiv preprint arXiv:1602.03483, 2 2016. [Online]. Available:
http://arxiv.org/abs/1602.03483

[16] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online]. Available: http://www.mitpressjournals.
org/doi/10.1162/neco.1997.9.8.1735

[17] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & En-
gineering, vol. 9, no. 3, pp. 90–95, 2007.

[18] Keras, “Variational autoencoder - Keras Documentation.” [Online]. Available:
https://keras.io/examples/variational autoencoder/

[19] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv preprint
arXiv:1312.6114, 12 2013. [Online]. Available: http://arxiv.org/abs/1312.6114

[20] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba,
and S. Fidler, “Skip-Thought Vectors,” pp. 3294–3302, 2015. [Online]. Available:
http://papers.nips.cc/paper/5950-skip-thought-vectors

[21] Q. V. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” International conference on machine learning, 5 2014. [Online]. Available:
http://arxiv.org/abs/1405.4053

http://ieeexplore.ieee.org/document/8109082/
http://ieeexplore.ieee.org/document/8109082/
https://ieeexplore.ieee.org/document/8424985/
http://ieeexplore.ieee.org/document/4760152/
http://doi.wiley.com/10.1002/stvr.1518
http://link.springer.com/10.1007/s11219-014-9235-5
http://arxiv.org/abs/1602.03483
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
https://keras.io/examples/variational_autoencoder/
http://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/5950-skip-thought-vectors
http://arxiv.org/abs/1405.4053

References 71

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, 5 2015. [Online]. Available: http://www.nature.com/articles/nature14539

[23] P. Meesad, P. Boonrawd, and V. Nuipian, “A chi-square-test for word importance dif-
ferentiation in text classification,” in Proceedings of International Conference on Infor-
mation and Electronics Engineering, 2011, pp. 110–114.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” arXiv preprint arXiv:1301.3781, 1 2013. [Online].
Available: http://arxiv.org/abs/1301.3781

[25] MITRE, “CVE - Home.” [Online]. Available: https://cve.mitre.org/about/index.html

[26] ——, “CWE - About CWE.” [Online]. Available: https://cwe.mitre.org/about/index.
html

[27] ——, “CWE - CWE-888: Software Fault Pattern (SFP) Clusters (3.2).” [Online].
Available: https://cwe.mitre.org/data/definitions/888.html

[28] NLTK Project, “Natural Language Toolkit — NLTK 3.4 documentation.” [Online].
Available: http://www.nltk.org/

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[30] F. Peters, T. Tun, Y. Yu, and B. Nuseibeh, “Text Filtering and Ranking for Security
Bug Report Prediction,” IEEE Transactions on Software Engineering, pp. 1–1, 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/8240740/

[31] L. Poddar, L. Neves, W. Brendel, L. Marujo, S. Tulyakov, and P. Karuturi, “Train
One Get One Free: Partially Supervised Neural Network for Bug Report Duplicate
Detection and Clustering,” arXiv preprint arXiv:1903.12431, 3 2019. [Online].
Available: http://arxiv.org/abs/1903.12431

[32] J. P. Tyo, B. M. Statler, K. Goseva-Popstojanova, C. S. Roy Nutter, and
M. C. Valenti, “Empirical Analysis and Automated Classification of Security Bug
Reports,” Master’s thesis, West Virginia University, 2016. [Online]. Available:
https://ntrs.nasa.gov/search.jsp?R=20160014477

[33] G. van Rossum and F. L. Drake, “Python Library Reference,” Cheat Sheets, no.
March, 2006. [Online]. Available: https://www.python.org/

[34] T. Wen, Y. Zhang, Q. Wu, and G. Yang, “ASVC: An Automatic Security Vulnerability
Categorization Framework Based on Novel Features of Vulnerability Data,” Journal
of Communications, vol. 10, no. 2, pp. 107–116, 2015. [Online]. Available:
https://pdfs.semanticscholar.org/504d/32ebbdba999c5737d0d75cf13b6268925e67.pdf

http://www.nature.com/articles/nature14539
http://arxiv.org/abs/1301.3781
https://cve.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/definitions/888.html
http://www.nltk.org/
http://ieeexplore.ieee.org/document/8240740/
http://arxiv.org/abs/1903.12431
https://ntrs.nasa.gov/search.jsp?R=20160014477
https://www.python.org/
https://pdfs.semanticscholar.org/504d/32ebbdba999c5737d0d75cf13b6268925e67.pdf

Appendix 72

[35] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[36] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou, “Automated Configuration
Bug Report Prediction Using Text Mining,” in 2014 IEEE 38th Annual Computer
Software and Applications Conference, 2014, pp. 107–116. [Online]. Available:
https://issues.apache.org/jira/browse/ACCUMULO

[37] Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick, “Improved Variational
Autoencoders for Text Modeling using Dilated Convolutions,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70, 2017, pp. 3881–3890.
[Online]. Available: https://arxiv.org/pdf/1702.08139.pdf

[38] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance bugs,” in
Proceeding of the 8th working conference on Mining software repositories - MSR
’11. New York, New York, USA: ACM Press, 2011, p. 93. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1985441.1985457

https://issues.apache.org/jira/browse/ACCUMULO
https://arxiv.org/pdf/1702.08139.pdf
http://portal.acm.org/citation.cfm?doid=1985441.1985457

	Security Bug Report Classification using Feature Selection, Clustering, and Deep Learning
	Recommended Citation

	2019
	Security Bug Report Classification using Feature Selection, Clustering, and Deep Learning
	Tanner D. Gantzer

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Key Terms
	Problem Statement
	Research Questions and Contributions
	Organization of the Thesis

	Related Work
	Related Work on Bug Report Classification
	Related Work on Text Classification
	Sentence Representations
	Text Classification

	Background
	Unsupervised Learning
	Supervised Learning
	Metrics used for Performance Evaluation

	Data-set collection and Feature extraction
	Datasets
	Preprocessing and Feature Extraction

	Feature Selection
	Background on Feature Selection
	Feature Selection Approach
	Results
	Red Hat Enterprise 4 Results
	Ground Mission IV&V Issues Results
	Flight Mission IV&V Issues Results
	Flight Mission Developer Issues Results

	Feature Selection Conclusion
	Threats to Validity

	Clustering
	Background on Variational Autoencoders
	Variational Autoencoders Proposed Approach
	Clustering Results
	Red Hat Enterprise Linux 4 Results
	Ground Mission IV&V Issues Results
	Flight Mission IV&V Issues Results
	Flight Mission Developer Issues Results
	Clustering Conclusion

	Threats to Validity

	Deep Learning Classification
	Background on LSTM Networks
	LSTM Network Proposed Approach
	LSTM Networks Results
	Red Hat Enterprise Linux 4 Results
	Ground Mission IV&V Issues Results
	Flight Mission IV&V Issues Results
	Flight Mission Developer Issues Results

	LSTM Networks Conclusion
	Threats to Validity

	Conclusion
	References

