
Graduate Theses, Dissertations, and Problem Reports 

2004 

Effect of watering regime and media components on the Effect of watering regime and media components on the 

production of organic tomato transplants production of organic tomato transplants 

Melissa C. VanTine 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
VanTine, Melissa C., "Effect of watering regime and media components on the production of organic 
tomato transplants" (2004). Graduate Theses, Dissertations, and Problem Reports. 2018. 
https://researchrepository.wvu.edu/etd/2018 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230459353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2018?utm_source=researchrepository.wvu.edu%2Fetd%2F2018&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Effect of Watering Regime and Media Components on the Production of 
Organic Tomato Transplants  

 
 
 

Melissa C. VanTine  
 
 
 

Thesis submitted to the  
Davis College of Agriculture, Forestry and Consumer Sciences  

at West Virginia University  
in partial fulfillment of the requirements  

for the degree of  
 
 
 

Master of Science  
in  

Horticulture  
 
 
 

Sven Verlinden, Ph.D., Major Professor  
Louis McDonald, Ph.D  
James Kotcon, Ph.D  

 
Department of Plant and Soil Sciences  

 
 
 
 

Morgantown, West Virginia  
2004  

 
 
 
 

Keywords: Compost, Organic Production, Tomato, Watering Regime, 
Transplant Production, Growing Media  



 ii

ABSTRACT  
 

Effect of Watering Regime and Media Components on the Production of 
Organic Tomato Transplants  

 
Melissa C. VanTine 

 
In order to find appropriate methods to produce quality organic tomato 
transplants, tomato (Lycopersicon esculentum cv. WV ‘63) seedlings were grown 
in four growing media containing various ratios of composted animal manure and 
were compared to transplants grown in a conventional peat-lite mix receiving 
synthetic fertilizers.  These five media were watered according to eight watering 
regimes, including five watering levels and three watering regimes containing 
compost tea. Composted horse and cow manure can be used in part or instead 
of peat in organic potting mixes.  The ratio of compost used will depend on 
characteristics of the compost and will also determine the effect of the watering 
regime on the growth of tomato transplants. In this study, compost tea was not 
found to have a significant impact the growth of tomato transplants.  
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CHAPTER 1 

LITERATURE REVIEW 

 

Organic Certification 

The organic farming industry is estimated to be one of the fastest growing 

segments of agriculture in the United States.  The United States Department of 

Agriculture has observed that certified organic land has more than doubled 

between 1992 and 1997 and another million acres was added between 1997 and 

2001.  The strong market suggests that interest in organically produced 

agricultural goods will only continue to rise (Greene, 2001; Greene et al., 2001; 

Greene and Kremen, 2003). 

The increase in consumers’ demand for organic products over that last 

several decades coincided with an increase in the number of state and private 

institutions setting standards to support organic claims made by farmers.  After 

recognizing the need to ensure the credibility of the small and growing organic 

industry, the California Certified Organic Farmers organization was formed in 

1973 to become the first agency to begin third-party certification (USDA, 2002).  

By 1995 more than half of the states had laws or rules to manage the use of the 

term “organic” on foods marketed organically (Greene, 2001; Vandeman and 

Hayden, 1997).  The various third-party certifying agents throughout the United 

States began to experience friction since each agency established different 

standards of organic production (USDA, 2002). 
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The Federal government became involved in the organic industry with the 

passage of the Organic Foods Production Act, adopted as part of the 1990 Farm 

Bill (§§7 U.S.C. 6501-6522, 2003).  This Act was implemented in order to initiate 

the creation of national organic standards that would create a definition of the 

term organic and facilitate marketing of organic commodities both internationally 

and within the United States (USDA, 2002).  An agency within the United States 

Department of Agriculture, the Agricultural Marketing Service, published the final 

rule in December of 2002 in order to implement the Organic Foods Production 

Act of 1990 (USDA, 2002). 

On October 21, 2002, after about a decade of development, the National 

Organic Program (NOP) (7 C.F.R. pt. 205, 2003) was established, implementing 

organic standards and requiring organic growers to become certified by an 

organization accredited under the NOP (Greene and Kremen, 2003; USDA, 

2002). 

The NOP has created a healthy and stable market for organic foods, 

where both consumers and producers of organic commodities benefit.  

Eliminating misconceptions about the term organic and providing an agreed upon 

definition of the term ‘organic’ was necessary to aid in communication and to 

promote the organic industry.  Consumers’ benefit from an efficient organic 

market and increased confidence that items purchased with the United States 

Department of Agriculture organic seal will prescribe to certain production 

standards (Greene and Kremen, 2003). 
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Although the implementation of the Final Rule has had many benefits, 

there are still obstacles to the adoption of organic practices throughout the 

farming industry.  Factors include an increase in the labor required for organic 

production (and the costs associated with it).  Risk of incurring losses associated 

with shifting to organic methods, which may be unfamiliar to farmers.  Higher 

costs incurred by organic farmers in order to certify their farm as organic 

(inspection fees and pesticide residue testing).  Additionally, during the three-

year certification process farmers cannot obtain a premium price while converting 

from conventional to organic practices (Sellen et al., 1995; Duram, 1999; Greene, 

2001; Greene and Kremen, 2003). 

 

Organic Tomato Industry  

Within the organic industry a larger proportion of vegetables are grown as 

compared to the amount grown under the conventional system.  Approximately 2 

percent of the U.S. certified cropland in 2001 was occupied by organic 

vegetables with tomatoes, lettuce, and carrots grown on one third of that land 

(Greene and Kremen, 2003).  In 2001, one percent of organic acreage was 

planted to tomatoes.  Organic growers generally sell fresh tomatoes directly to 

consumers through farmers’ markets and are able to receive higher prices while 

bringing a sense of community to their area (Greene and Kremen, 2003). 

A reason for the popularity of organic vegetables may be that they are 

generally eaten fresh allowing chemical residues used in conventional production 

to be ingested directly into the human system (Sellen et al., 1995; Greene, 2001).  
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A shopper survey conducted in State College, PA in 1990 found that respondents 

were concerned about chemical residues on fresh tomatoes and the risks 

associated with them.  These risks included risks to their personal health, as well 

as the effects of pesticides on farm workers, groundwater, wildlife, and the 

environment.  Almost 26% of those surveyed were willing to pay more than 15% 

extra for tomatoes that were free of pesticide residues (Weaver et al., 1992). 

 

Tomato Transplant Production 

Like conventional tomatoes, organic tomatoes usually begin with the 

production of tomato transplants.  Transplants are grown in containers in a 

greenhouse or other controlled environment before being placed in a field or in 

larger containers in the case of greenhouse production.  Farmers use tomato 

transplants in order to achieve improved uniformity, higher plant survival in the 

field, higher early and total yields, and marketable fruit sizes (Liptay and Nicholls, 

1993; Weston and Zandstra, 1989). 

Growing plants in a container, as compared to an open field, requires 

more care and attention since there is a limited volume from which a plant can 

absorb nutrients and water (Biernbaum and Versluys, 1998).  Factors that have 

been found to influence the development of tomato transplants in the 

greenhouse, and subsequent performance in the field include container size, age 

of the transplant, as well as fertilization and watering regimes. 

Weston and Zandstra, (1986) found that although total yields were similar 

for transplants grown in various sized containers, transplants grown in larger cell 
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sizes produced greater early yields.  It is theorized that plants grown in cells with 

larger volumes were able to produce large root systems that did not suffer as 

much from transplant shock.  The increased root growth is thought to be due to 

an increase in the volume of air and water available to the roots in the medium 

and not to the larger container (Tilt et. al, 1987). 

Weston and Zandstra, (1989) also found that transplant age can have an 

effect on early and total fruit yield.  Tomato transplants grown in the greenhouse 

for 4 and 5 weeks were found to be ideal for the production of greater early 

marketable yields and total fruit yields.  It was believed that these transplants did 

not become root bound and were at a desirable maturity level to become 

established in the field earlier than 3-week-old transplants. 

Several studies have also found that fertilization regimes can affect yields 

(Liptay and Nicholls, 1993; Weston and Zandstra, 1989).  It was found that 

varying levels of potassium did not affect the performance of seedlings in the 

field and phosphorus was needed at low levels.  Nitrogen levels were found to 

have the greatest effect on transplant performance in the field.  Although at high 

N levels, root growth and early yields increased in the field, those transplants 

were not considered hardened enough to withstand weather conditions and had 

lower field survival (Liptay and Nicholls, 1993).  Weston and Zandstra, (1989) 

found that although early yields were greater for transplants receiving moderate 

to high nitrogen levels, there was no an effect of nitrogen or phosphorus levels 

on total yields of tomatoes. 
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Watering regime can also affect the growth of a transplant since the 

uptake of water from the root zone is required in order to transport nutrients 

throughout the plant, keep the plant cool in hot weather, and provide support 

through turgor pressure in the cells (Kreij, 1995). The availability of water to a 

tomato transplant is largely dependent on characteristics of the medium.  If a 

plant is unable to take up enough water because the medium has poor water-

holding capacities it can have negative effects on growth and overall health of the 

transplant (Biernbaum and Versluys, 1998; Fonteno et al., 1981).  Since 

substrates physical characteristics can differ, the air and water holding capacities 

may differ as well. Therefore it is important to adjust the watering regime 

according to the medium, while also taking into account the temperature and 

humidity in the greenhouse (Biernbaum and Versluys, 1998). 

Transplant growers usually apply high volumes of water to their plants 

since it is not well understood how much water is actually needed to maximize 

growth. Over-watering can reduce the nutrient concentration in the substrate 

(Groves et. al, 1998; Tyler et al., 1996).  By decreasing the amount of water 

supplied to a transplant, less effluent including nitrate, ammonium and 

phosphorus is likely to leave the container and enter ground and surface waters.  

The absorption of nitrogen or phosphorus was unaffected by the watering regime 

but a reduction in water supplied to a transplant can result in a loss of total plant 

growth.  It is for the grower to examine the trade off between whether a reduction 

in plant growth is worth a reduction in the amount of nutrients leaving the root 

zone that could potentially lead to groundwater pollution (Tyler et al., 1996). 
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Growing Media Characteristics  

A growing medium must possess important physical and chemical 

properties in order to provide a transplant with an environment suitable for 

growth.  Physical parameters include the ability of the growing media to have 

adequate air and water holding capacities, a stable structure and a bulk density 

that is light enough for transportation while heavy enough to provide support to 

the transplant (Nelson, 1991; Raviv et al., 1986).  

The distribution of particle and pore sizes in a growing medium will 

determine the watering-holding capacity of the substrate as well as the air 

content to allow adequate gas exchange between the roots of the plant and the 

atmosphere. Pores are open spaces between solid particles that are either full of 

air or water.  Larger particle sizes will create large pores that remain filled with air 

shortly after irrigation (Paul and Lee, 1976).  If a potting mix has too many large 

pores it generally needs to be watered more frequently since the media cannot 

retain enough water for plant uptake.  Small particle sizes of a medium will create 

small pores that can hold water against gravity.  A potting medium with too many 

small pores can become water logged reducing the ability of air and gas 

exchange (Kuepper and Adam, 2002).  An acceptable growing medium will have 

a balance of both large and small pores. 

Most growing media are made up of organic materials that continuously 

undergo decomposition.  However, it is important to choose a substrate that is 

stable and its decomposition negligible.  If organic aggregates in the substrate 
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decompose it will lead to a decrease in aeration of the substrate.  Additionally, a 

reduction of the substrate in the container could be detrimental to the plant since 

there is less space available to the roots to sustain growth (Nelson, 1991). 

The stability of an organic growing medium can be measured by the 

carbon to nitrogen ratio (C:N) (Epstein, 1997).  A C:N ratio below 20 is 

considered to be indicative of a compost that is no longer undergoing rapid 

microbial change and is stable (Epstein, 1997; Havlin et. al, 1999).  If the C:N 

ratio is above 30, any nitrogen added to the medium for plant growth will be 

utilized by microorganisms that will cause a reduction in its availability to the 

plant and also lead to a depletion of oxygen that is being used by the 

microorganisms (Raviv et al., 1986). 

Growing media must also posses chemical characteristics to promote 

plant growth.  These characteristics include adequate cation exchange capacity 

(CEC), pH, and soluble salts level.  Cation Exchange Capacity of organic matter 

has permanent negative charges that electrically attract and hold cations such as 

ammonium, potassium, and calcium.  Cation nutrients are held to exchange sites 

and are readily available to plants for uptake (Rhoades, 1982).  An adequate 

CEC can provide transplants with a reserve of nutrients that are gradually 

released to the transplant and are retained against leaching (Havlin, 1999). 

Since the pH level of a growing medium can affect the form of a plant 

nutrient as well as the mineralization of nitrogen it is extremely important to a 

fertilization program (Argo, 1998).  Most plant species prefer a growing medium 

that has a pH range of 5.0 to 6.0 (Kreij, 1995; Nelson, 1991).  Above a pH level 
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of 6 nutrients such as iron and phosphorus may become unavailable while below 

a pH level of 5, potassium, calcium, and nitrogen may become unavailable 

(Raviv et al., 1986). 

Measuring the electrical Conductivity (EC) of a medium will give an 

indication of the concentration of soluble salts in a medium.  Since water flows by 

diffusion from areas of high to low concentrations, it is important not to have a 

medium with an EC level that is too high since it can inhibit the uptake of water 

into the plant and lead to desiccation of the plant cells (Nelson, 1991). 

 

Types of Growing Media 

Before the middle of this century when soil was the main component of a 

growing medium, the degradation of organic matter in the soil released nutrients 

available for plant growth.  Additional organic and inorganic nutrients were added 

to transplants as soil tests indicated.  As quality topsoil became harder to find, 

and associated problems of low aeration, disease organisms and weed seeds in 

the soil became an issue, soilless media began to take the place of soil (Kuepper 

and Adam, 2002).  Drs. J.W. Boodley and R. Sheldrake of Cornell University 

introduced peat-lite mixes in the 1960’s as a substitute for soil in potting mixes.  

These mixes are referred to as Mix A and Mix B.  Mix A consists of equal 

volumes of peat and vermiculite (v/v), while Mix B substitutes perlite for 

vermiculite (Boodley and Sheldrake, 1982).  In time, soil was replaced with peat 

as the main ingredient in the potting mix and nutrients were supplied via irrigation 



 10

to transplants with synthetic inorganic fertilizers by a process known as 

fertigation (Nelson, 1991). 

Sphagnum peat is formed from sphagnum moss as a result of partial 

decomposition of plants under anaerobic or semi-anaerobic conditions.  Peat is 

formed in environments characterized by high precipitation, low evaporation as 

well as low temperatures during the summer months and low annual sunshine 

(Raviv et al., 1986).  

Since the 1960s sphagnum peat moss has become one of the most 

commonly used materials of soilless media.  There are several reasons for its 

popularity.  Peat is widely available from countries where peat bogs are prevalent 

such as Canada, Ireland and Finland.  Peat is a good growing medium because 

it is a stable organic material that decomposes very slowly.  Due to the high 

surface area of the material that make up the cell walls, peat can hold a great 

deal of water, (up to 60% of its volume) and has a low bulk density as well as 

high CEC.  Additionally, peat can hold large volumes of air and nutrients within its 

porous cell walls.  Peat is also free of weed seeds as well as plant and animal 

pathogens.  Peat, however has a low pH (3.0-4.0) that needs to be adjusted by 

adding finely ground limestone (dolomitic or calcitic) (Robertson, 1993) and does 

not contain nutrients requiring additional fertilization. 

For several reasons there is a search for alternatives to the use of peat in 

growing media (Robertson, 1993). Peat can be costly, especially in countries 

such as Israel where there is not a local source and peat can account for 10-15% 

of total cost for pot plant production (Raviv et al., 1986).   
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Peat bogs serve as wetland habitat for a variety of species as well as a 

sink for carbon dioxide.  When peat is extracted, carbon can no longer 

accumulate and the deeper layers that would eventually turn to coal are exposed 

to aerobic degradation.  After a peat bog is mined, it can take many decades 

before the bog can fix carbon dioxide at its original capacity (Raviv et al., 1998).  

It is believed to be important that peat extraction for use by the horticulture 

industry is reduced in order to protect the environment (Pryce, 1991) and reduce 

cost of transplant production. 

The industry however, disagrees with conservationists over the impact 

that peat extraction has on resources in peat bogs.  It is thought that the 

extraction of peat can be sustainable since peat formation exceeds the amount 

that is extracted for use.  Additionally, adequate conservation and rehabilitation 

measures are in place to restore peat bogs that are cut up and extracted 

(Robertson, 1993). 

 

Compost as a Growing Medium 

Animal manure has been used as a source of nutrients for centuries 

(Kraus et al., 2000).  However, with the advent of synthetic inorganic fertilizers 

made earlier in this century, the use of animal excreta as a fertilizer source has 

decreased dramatically, resulting in the designation of manure as a solid waste 

rather than a valuable resource (Hoitink and Boehm, 1999).   

Additionally, livestock production has changed from pasture to animal 

feedlot systems.  When animals are raised in open pasture the wastes generated 
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are returned back to the land to add nutrients and organic matter to the soil.  

However, in animal feedlots, high concentrations of animals are raised and 

wastes accumulate at such high rates that they cannot be used on the land in the 

area where they are produced and must be transported elsewhere for disposal 

(Taiganides, 1977; Kraus et al., 2000).  The decrease in the use of manure for 

fertilizers as well as an increase in animal feedlots has made the disposal of 

animal wastes problematic. 

Composting has increased in popularity in order to recycle animal wastes 

and has led to an increase in its availability for use as a growing medium by the 

horticulture industry (Hoitink et al., 1991).  Commercial growers using compost in 

a growing medium for transplant production cannot afford any losses due to lack 

of quality and consistency.  It is important that composting facilities are able to 

produce composts that have the same performance and quality between batches 

so it can be used as a growing medium (Gouin, 1995; Ozores-Hampton et al., 

1999; Robertson, 1993).  Quality of the compost is dependent on how it is made 

as well as the materials used in the process.  These parameters can impact the 

amount of nutrients in the composts as well as the chemical and physical 

properties of the end product (Kuepper and Adams, 2002). 

Currently, tomato transplant production is based on conventional 

production methods that use a peat-based growing medium in combination with 

synthetic inorganic fertilizers.  As more tomato growers become organically 

certified the need for organic production methods to produce quality tomato 

transplants will need to be improved (Raviv et al., 1998). Since synthetic 



 13

fertilizers are not allowed under organic production, organic tomato transplant 

growers must find alternative organic methods of supplying nutrients to their 

transplants.  

Using compost to reduce or replace peat in a potting mix to grow organic 

tomato transplants could potentially supply a slow-release form of nutrients to the 

transplant and replace the use of synthetic fertilizers not allowed under an 

organic system (Corti et al., 1998; Ozores-Hampton et al., 1999).  However, 

since the release of nutrients from compost is dependent on the rate of 

decomposition, additional fertilization may be necessary for plant growth (Eklind 

et al., 2001; Kraus et al., 2000).  Watering regimes may also need to be adjusted 

since many composted materials have been found to have lower water retention 

and buffering capacities than peat-based media (Corti et al., 1998; Raviv and 

Shlomit, 1997). 

Using compost in potting mixes may not only benefit organic tomato 

transplant growers by providing them with an alternative fertilizer source but its 

use can also provide an alternative to the disposal and distribution of waste as 

well as decrease the use of peat in growing media. 

 

The objectives of this research were to test the following hypotheses: 

1. Growing media consisting of various ratios of composted manure and peat-

lite will produce organic tomato transplants with comparable growth 

characteristics as transplants grown in a conventional peat-lite mix, fertilized 

with synthetic fertilizers. 
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2. Growing media consisting of various ratios of composted manure and peat-

lite will effect the growth of tomato transplants. 

3. The watering regime will affect the growth of organic tomato transplants. 

4. Compost tea can be used as an additional organic fertilizer source in order to 

increase the growth of organic tomato transplants. 
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CHAPTER 2 

MATERIALS AND METHODS 

Plant Material 

Two experiments, Experiment 1 and Experiment 2, were conducted in the 

spring and summer of 2003.  Tomato (Lycopersicon esculentum cv. WV ‘63) 

seeds were sown in 288-cell (< 6 cm3 volume) plug trays in a soilless peat-lite 

medium mix (1 peat : 1 perlite by volume) on 28 Mar, 2003 for Experiment 1 and 

on 12 June 2003 for Experiment 2. The trays were placed in a mist bed with a 

bottom heat set at 29ºC and misting controlled by an electric leaf (Phytotronics, 

Inc., Earth City, MO).  After 26 days in the mist bed the seedlings from 

Experiment 1 were transplanted into 229 cm3 square pots with about 175 ml of 

medium. In Experiment 2, tomato seedlings were transplanted into cell packs 

each measuring 348 cm3 also with about 175 ml of medium.  The transplants 

were grown in the West Virginia University greenhouse in Morgantown, WV 

(lat.39°39’N and long.79°55’W) at 22°C (D/N) for an additional 4 weeks. 

 

Experimental Design 

To test the hypothesis that the ratio of compost as well as the watering 

regime can affect the quality of organic transplants, Experiment 1 and 2 were set 

up to compare transplants grown under organic production methods to 

conventional production methods.  

Experiment 1 consisted of a 3 x 5 x 8 factorial randomized complete block 

design with three replicate blocks.  Each block Included plants to be measured 
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on weeks 2, 4, and 6, with five media and 8 watering regimes. The first 

experiment was intended to last 6 weeks but was ended early since the 

transplants reached marketable size at week 4. 

Experiment 2 was established using a 2 x 5 x 8 factorial randomized 

complete block design with three replicate blocks.  Each block included plants to 

be measured on weeks 2 and 4, with 5 media and 8 watering regimes. 

 

Growing Media 

Five growing media were used to produce tomato transplants.  These 

media were composed of peat, perlite, and compost in different ratios (v/v).  

Media containing 100% peat-lite were the conventional treatments.  Four organic 

treatments contained 100, 75, 50 and 25% composted animal manure with the 

remaining percentage consisting of a peat-lite mix by volume (Table 1). 

The peat-lite mix used in this study was made by mixing together 110 

liters of sphagnum peat moss (Premier Horticulture Inc. Redhill, Pa) and 10 kg of 

coarse horticultural perlite (Therm-o-rock East Inc. New Eagle, Pa).  Dolomitic 

limestone (derived from calcium-magnesium limestone) was added to the peat-

lite mix in Experiment 1 to adjust the pH to approximately 5.7.  In the second 

experiment dolomitic limestone was only added to the conventional and C25 

treatments since the pH of the composted cow manure (Southern States, 

Morgantown, WV, Fafard, Agawam, MA) was high enough to compensate for the 

low pH of the peat-lite mix. 
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The composted horse manure (Seneca Way, Bruceton Mills, WV) had a 

nutritional analysis of 0.25N-0.14P-0.20K.  The compost consisted of horse 

manure, sawdust, urine and hay. Seneca Way produced their compost by 

forming windrows 3.7 m wide by 1.8 m tall. The windrows were watered to 50% 

moisture and turned every 2 weeks for 3 months. Foreign objects were screened 

out before sale to create a more consistent product (Kirby Clark, 3/1/03, personal 

communication). 

The composted cow manure had a nutritional analysis of 1.0N-1.0P-1.0K.  

The compost consisted of cow manure, peat moss, peat humus, urine, and 

bedding materials.  The raw materials were placed in closed tunnels on concrete 

slabs.  Air was forced through the pile and maintained at 70 ºC for 3 weeks. The 

compost was taken out of the tunnel and placed in windrows on cement slabs for 

1 week to finish maturation. During this time the piles were turned several more 

times (Edward Catellier, 6/1/03, personal communication). 

 

Watering Regimes 

Five of the eight watering regimes were achieved by adding water to each 

pot when the surface was dry in an equal amount to 80, 100, 120, 150, and 

200% of the respective container capacities of each medium (Table 2).  The 

remaining three watering regimes included compost tea and were added only to 

organic treatments on specific weeks depending on watering regime.  Container 

capacities were determined by adding water to individual containers holding the 

various air-dried growing media.  When water first dripped through the bottom of 
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the container it was determined to be at container capacity.  Container capacity is 

defined as the amount of water remaining in the medium after drainage against 

gravity.  The watering regime did not change and each transplant received the 

same amount of liquid throughout each experiment.  Transplants were checked 

two times a day and watered when needed using a beaker to measure the 

correct amount of liquid. 

Transplants grown in the conventional peat-lite mix received 100 ppm N of 

a synthetic 20-10-20 water-soluble fertilizer (Greencare, Kankakee, IL).  

Transplants grown in potting mixes containing composted animal manure were 

watered with tap water.  Transplants of Experiment 1 received compost tea made 

from composted horse manure and transplants of Experiment 2 received 

compost tea made from composted cow manure. 

 

Compost Tea 

A bucket method was used to prepare the compost tea in both 

experiments (Ingham, 2002).  Nine hundred grams of composted horse manure 

or 2300 g of composted cow manure were added to separate 18-L buckets 

containing 14 L of water.  The compost tea used in Experiment 1 and Experiment 

2 was prepared so as to produce a tea with an EC comparable to the synthetic 

liquid fertilizer (Table 3). 

Weighted bubbler tubes at the bottom of the bucket allowed air to flow to 

the bottom of the container.  An aquarium pump (Hi-Tech Pump-380, 

Ethical Products, Newark, NJ) was used to aerate the compost tea by supplying 
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a continuous flow of air through the bucket at 1000 ml·min-1.  The tea was 

aerated for 48 hours.   

A preliminary experiment indicated that at high watering regimes there 

was a decrease in the EC of the medium.  It was hypothesized that adding 

compost tea could replace nutrients lost due to leaching and increase plant 

growth.  Treatments with higher watering regimes received compost tea earlier 

than treatments with lower watering regimes.  At the highest watering regime of 

200% compost tea was added during week 1.  At the 150% watering regime level 

transplants received compost tea on week 2. At the 120% watering regime level 

transplants received compost tea at week 3. 

 

Measurements 

Tissue analysis. Tomato transplant shoots were cut at the medium line 

and weighed to determine fresh weight.  Shoots were oven-dried at 70ºC for 2 

days to determine shoot dry weight.  On week 4, dried leaves of tomato 

transplants were separated from the stem by hand, ground with a mortar and 

pestle and 0.2 g of the sample was weighed and placed in a CNS – 2000 

elemental analyzer (LECO corp. St. Joseph, Michigan) to determine carbon and 

nitrogen content. 

Media Analysis. EC and pH of the media were analyzed with an 

Ultrameter 6P EC and pH meter (Myron L. Co., Carlsbad, Ca) using the 2:1 

method. The 2:1 method uses 1 part medium to 2 parts distilled water in order to 

obtain EC and pH readings.  After the plant was cut at the base the roots were 



 20

separated from the medium.  The medium was then mixed and 3 separate 

random samples were taken.  One part of medium was added to 2 parts of 

distilled water.  After mixing, the solution was strained and the liquid was added 

to the Ultrameter 6P for testing. 

Carbon and nitrogen concentrations of the media were determined by 

taking three samples of each medium and grinding with a mortar and pestle.  

After each medium was ground 0.2 g was placed in a CNS – 2000 elemental 

analyzer with 1 g of Comcat (LECO corp. St. Joseph, Michigan) to accelerate 

burning of the sample. 

 

Statistical Analysis 

To test the hypothesis that the ratio of composted manure in the potting 

mix and the watering regime will affect the quality of organic tomato transplants 

in comparison to conventional tomato transplants the following analysis were 

performed (SAS software, SAS Institute, Cary, NC): 

Measurements of fresh and dry weights of the shoots, carbon and nitrogen 

content of the leaf tissue and EC of the media were analyzed on week 4 by a 

two-way ANOVA procedure with means separated by Duncan’s Multiple Range 

Test.  This analysis was repeated with and without conventional treatments 

under five watering regimes. The percentage of dry weight in the shoots received 

the same analysis but was measured only with the conventional treatments. 
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A final analysis of fresh and dry weight of shoots, nitrogen content of the 

leaves, and the EC of the medium at week 4 were analyzed by one-way ANOVA 

with means separated by Duncan’s Multiple Range Test. 

The effect of compost tea was analyzed separately on the fresh and dry 

weight of shoots and the EC of the media.  A three-way ANOVA procedure 

analyzed measurements from week 4 and included treatments with and without 

compost tea under 3 watering regimes and 4 organic media. 

The influence of time was analyzed by ANOVA to determine the overall 

linear or quadratic change in EC and pH for each medium over 4 weeks. 
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CHAPTER 3 

RESULTS 

Experiment 1 

Tissue Analysis 

Fresh and dry weight: After 4 weeks, the interaction of the watering regime 

and medium had a significant effect on the fresh and dry weights of the tomato 

transplant shoots (Table 4).  However, when the interaction was analyzed without 

the conventional treatments, it was no longer significant for fresh weight but was 

significant for the dry weight of the shoots of the tomato transplants (Figures 1 

and 2). 

Medium affected the fresh and dry weight of the tomato transplant shoots 

with and without the conventional treatments included in the analysis (Table 4). 

The shoots of the transplants grown in the H100 medium was significantly 

greater than shoots of transplants grown in the conventional medium.  

Transplants grown in the H75 medium had comparable fresh and dry weights to 

the conventional medium.  As the amount of peat-lite increased in the organic 

medium there was a significant decrease in the shoot fresh and dry weight of the 

tomato transplants.  Watering regime also affected fresh and dry weight of the 

tomato transplant shoots with and without the conventional treatments included 

in the analysis (Table 4).  At the lower watering regimes of 80-120% of container 

capacity, the fresh and dry weights of the tomato transplant shoots were 

significantly higher than shoots grown under the higher watering regimes of 150-

200%. 
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Dry weight as a percentage of fresh weight: After 4 weeks, the watering 

regime and the ratio of composted horse manure in the media also did not affect 

the amount of dry weight in the shoots of the tomato transplants as a percentage 

of fresh weight (Table 5).  However, tomato transplants grown in the conventional 

medium had significantly smaller percentages of dry weight than the organic 

treatments. 

Carbon content of leaf tissue: After 4 weeks, the interaction of the 

watering regime and medium was not significant with and without the 

conventional treatments included in the analysis (Table 4).  Medium affected the 

percentage of carbon in the leaf tissues of tomato transplants and was 

significantly highest in transplants grown in conventional medium.  In general, 

there was a decrease in carbon content as the amount of peat-lite increased in 

the media, although this observation was not always statistically significant.  

Watering regime did not affect the content of carbon in the leaves of the tomato 

transplants (Table 4). 

Nitrogen content of leaf tissue: After 4 weeks, the interaction of the 

watering regime and medium on the content of nitrogen in the leaf tissue was 

significant when conventional treatments were included in the analysis (Table 4).  

However, when the interaction was analyzed without the conventional 

treatments, it was not significant.  Medium affected the content of nitrogen in the 

leaf tissue of the tomato transplants (Table 4).  Tomato transplants grown in the 

conventional medium contained significantly higher amounts of nitrogen in the 

plant tissue than treatments grown in media containing composted horse 
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manure. Nitrogen content in the leaves of the tomato transplants was significantly 

higher in the H100 medium and similar in the remaining organic treatments.  

Watering regime did not affect the content of nitrogen in the leaves of the tomato 

transplants (Table 4). 

 

Media Analysis 

Electrical Conductivity: The EC of the conventional medium increased linearly 

over a period of 4 weeks (Figure 3).  The EC of the organic media decreased 

linearly for the organic media although the decrease was not significant for the 

H25 and H50 media. 

After 4 weeks, the interaction of the watering regime and medium on the 

EC of the medium was significant when conventional treatments were included in 

the analysis (Table 4, Figure 4).  However, when the interaction was analyzed 

without the conventional treatments, it was not significant.  Medium affected the 

EC of the media (Table 4).  Conventional medium had higher EC measurements 

than the organic media containing composted horse manure.  H100 and H75 

media had similar EC measurements and were significantly higher than the other 

organic media, which decreased with the addition of the peat-lite mix. The 

watering regime affected the EC of the media (Table 4).  The EC of the media 

was significantly higher at the lowest watering regime of 80%, and significantly 

lower at the highest watering regime of 200%.   

pH of media treatments: All media of Experiment 1 had a statistically 

significant quadratic change in pH over the 4-week period (Figure 5).  The 
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conventional medium had a decrease in pH by the end of four weeks while there 

was an increase in the pH of the organic media.  

 

Experiment 2 

Tissue Analysis 

Fresh weight: After 4 weeks, the interaction of the watering regime and 

medium had a significant effect on the fresh and dry weights of the tomato 

transplant shoots with and without the conventional treatments included in the 

analysis (Table 6). Transplants grown in the C100 medium had significantly 

smaller fresh and dry weights under the 150-200% watering regime than any 

other transplant grown in any of the other media types under any of the five 

watering regimes (Figures 6 and 7). Medium affected the fresh and dry weight of 

the shoots of the tomato transplants (Table 6).  The shoots of tomato transplants 

grown in the conventional medium had significantly higher fresh and dry weight 

than the shoots of transplants grown in organic media.  Transplants grown in the 

C50 and C75 media had similar fresh and dry weights to one another and were 

significantly higher than transplants grown in the C100 and C25 media. Although 

the watering regime had a significant effect on the fresh and dry weight of the 

shoots of the tomato transplant, means tended to be similar as determined by 

Duncan’s Multiple Range Test (Table 6). 

Dry weight as a percentage of fresh weight: After 4 weeks, watering 

regime did not affect the percentage of dry weight in the shoots of the tomato 

transplants. However, medium did affect the percentage of dry weight in the 
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shoots of the tomato transplants (Table 7).  C100 and C75 media had 

significantly higher percentages of dry weight and tended to decrease as the 

amount of peat-lite increased in the growing media, although this trend was not 

always significant.   

Carbon content of leaf tissue: After 4 weeks, the interaction of the 

watering regime and medium was not significant with and without the 

conventional treatments included in the analysis (Table 6).  Medium affected the 

fresh and dry weight of the shoots of the tomato transplants (Table 6).  Tomato 

transplants grown in the C25 medium showed smaller amounts of carbon in the 

leaf tissue than any of the other media treatments.  Watering regime did not have 

a significant effect on the carbon content in the leaf tissue of tomato transplants 

(Table 6).   

Nitrogen content of leaf tissue: After 4 weeks, the interaction of the 

watering regime and medium had a significant effect on nitrogen content in the 

leaves of the tomato transplants with and without the conventional treatments 

included in the analysis (Table 6).  Medium affected the nitrogen content in the 

leaves of the tomato transplants (Table 6).  Nitrogen content was higher in the 

leaves of transplants grown in the conventional medium than tomato transplants 

grown in media containing composted cow manure.  Transplants grown in C50 

and C75 media contained higher amounts of nitrogen in their leaves than C100 

and C25 media.  Watering regime affected the amount of nitrogen found in the 

leaves of the tomato transplants and tended to decrease as the watering regime 

increased, although the trend was not always significant (Table 6). 



 27

 

Media Analysis 

Electrical Conductivity: There was a quadratic change in EC over the 4-

week study for all media types except for the C75 medium treatment, which did 

not show a significant change in EC (Figure 8).  While the conventional medium 

had an overall increase in EC over the 4-week trial, the organic media had an 

overall decrease in EC. 

After 4 weeks, the interaction of the watering regime and medium had a 

significant effect on the EC of the media with and without the conventional 

treatments included in the analysis (Table 6).  The EC of the H100 medium at the 

150-200% watering regime had a significantly larger decrease in EC by week 4 

than any of the other organic treatments (Figure 9).  Medium affected the EC of 

the media and was highest in the C100 and C75 organic media and lowest in the 

conventional medium (Table 6).  Watering regime affected the EC of the medium 

and was significantly highest under the 80% watering regime and tended to 

decrease as the watering regime increased, although this trend was not always 

significant (Table 6). 

pH of media treatments: Conventional medium as well as C100 and C75 

media showed a linear change in pH over the 4-week experiment (Figure 10).  

Like Experiment 1, a decrease in pH was observed in the conventional medium 

whereas the organic media increased. 
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COMPOST TEA RESULTS 

The interaction of compost tea, watering regime and medium was not statistically 

significant in any measurements in Experiments 1 or 2 (Tables 8 and 9).  The 

interaction of watering regime and medium was also not significant for any of the 

measurements in Experiment 1 or 2.  Therefore, the response of the dependent 

variables to the addition of compost tea was not significant.  The following results 

only discuss the effects of watering regime and medium on fresh and dry weight 

of the shoots of the tomato transplants and the EC of the medium. 

 

Experiment 1 

Tissue Analysis  

Fresh and dry weight: The fresh and dry weight of the tomato transplant 

shoots significantly decreased as the amount of peat-lite increased in the 

growing media (Table 8). The fresh of the shoots of the tomato transplants was 

significantly highest under the 80% watering regime.  The dry weight of the 

tomato transplant shoots significantly decreased as the watering regime 

increased. 

 

Media Analysis 

Electrical Conductivity: EC of the media decreased as the as the amount 

of peat-lite increased in the media and as the watering regime increased (Table 

8). 
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Experiment 2 

Tissue Analysis 

Fresh and dry weight: Tomato transplant shoots grown in C75 and C50 

media had fresh and dry weights that were significantly higher than those grown 

in C100 or C25 while transplants grown in C100 medium had significantly lower 

fresh and dry weights than any other transplant grown in the other media (Table 

9).  Unlike in Experiment 1, watering regime did not have a significant effect on 

the fresh or dry weight of the shoots of tomato transplants. 

 

Media Analysis 

Electrical Conductivity:  The EC of the media was significantly lower in the 

C25 medium and in media under the 200% watering regime (Table 9). 
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CHAPTER 4 

DISCUSSION 

 

This study found that media with 100% and 75% composted horse 

manure and 75% and 50% of composted cow manure with the remainder peat-

lite can produce quality organic transplants for use by organic tomato growers.  It 

was also shown that the amount of water supplied to organic transplants grown 

in composted manure while in the greenhouse is a key factor in producing quality 

transplants. 

The chemical analysis and EC of the composted horse manure indicated 

that sufficient nutrients might have been present to support growth in most crops 

(Nelson, 1991).  It was clear that as the amount of peat-lite in the media and the 

watering regime increased the EC levels decreased and may have contributed to 

decreased plant growth.  Opposite trends were found in a study by Ozores-

Hampton et al. (1999).  In that study it was found that shoot as well as root dry 

weight decreased as the amount of composted yard trimming-biosolids increased 

in a medium with peat and vermiculite after 21 and 28 days.  The reduction in 

growth was attributed to the high EC measurements of the compost and the 

addition of peat and vermiculite reduced the EC to optimal levels of 0 to 2 dS·m-1.  

After 35 days differences between transplants disappeared and yield was similar 

regardless of the ratio of the compost, peat and vermiculite in the media.  EC 

measurements only give an indication of the amount of soluble salts present in 

the compost.  Although EC measurements were similar to the composted horse 
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manure, the compost used in Ozores-Hampton’s et al. (1999) study may have 

consisted of salts that were not essential for plant growth or were at toxic levels. 

Transplants grown in media containing 100% composted cow manure at 

the 150-200% watering regime showed the lowest fresh and dry weights.  

Composted cow manure had high EC levels at the beginning of the experiment 

when the transplants were not able to utilize the soluble nutrients and may have 

been exposed to salt stress.  By the end of the experiment at the higher watering 

regimes of 150-200% EC levels were reduced at levels lower than most other 

media containing composted cow manure. The high EC at the beginning of the 

experiment combined with the large reduction in EC may have led to a reduction 

in plant growth observed in our study.  In support of this observation, Bugbee 

(1994) found that young transplants or seedlings are not large enough to utilize 

nitrogen in the beginning of their experiment and more was leached in media 

containing 100% composted material than media that included peat-lite resulting 

in decreased growth throughout the experiment. 

Although EC levels were higher in media containing composted cow 

manure as compared to the conventional treatments, the fresh and dry weights of 

transplants grown in the composted cow manure were smaller than transplants 

grown in the conventional medium.  One of the reasons transplants were smaller 

in composts containing composted cow manure is the possible presence of 

unusable nutrients (e.g. Na+) and associated salt stress. 

Though tomato transplants grown in the conventional peat-lite media 

usually had higher fresh and dry weight, transplants grown in the organic media 
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treatments had higher amounts of dry weight as a percentage of fresh weight 

than the conventional treatments.  The amount of dry matter in the transplants 

could have an effect on the growth of transplants once they are placed in the field 

since dry matter content in the shoot of a plant is an important factor associated 

with good rooting and stress avoidance at transplanting (Markovic et al., 1997).  

According to Markovic et al. (1997) a dry matter content of tomato seedlings 

ranging from 8.1 to 12.7% is considered normal.  All tomato transplants in this 

study had normal or above normal amounts of dry matter content of between 9.0 

and 16.0% (see figures 5, 6 and tables 9, 10).  Although the fresh and dry 

weights of the conventional treatments were generally higher than the organic 

treatments, the similarity in dry matter content may indicate that the quality of the 

organic transplants is comparable to the conventional transplants in these 

regards.   

Generally, transplants from both experiments had carbon contents of 

around 40%, which is considered normal for most plants (Nelson, 1991).  Carbon 

is assimilated into plants from CO2
 through photosynthesis and is used to 

synthesize carbohydrates, which is then utilized by the plants for various 

functions. The amount of carbon generally decreased with increasing amounts of 

peat-lite in the mix but generally was not affected by the watering regime similar 

to dry weight content observations. In addition to the above-mentioned reasons 

for lower fresh and dry weights, the decreasing amounts of nitrogen in the media, 

which are needed by the transplants for the formation of chlorophyll, may have 
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also contributed to a decrease in photosynthesis and the synthesis of 

carbohydrates.   

The concentration of nitrogen in the leaves of tomato transplants was 

significantly higher in the conventional peat-lite medium receiving synthetic 

fertilizers when compared to transplants grown in composted manure confirming 

observations by others (Eklind et al., 2001).  In at least one other study, reduction 

in mineral content, including nitrogen of the leaves was attributed to the lower 

water holding capacity of composts in comparison to peat (D’Angelo et al., 1995).  

Nitrogen content considered adequate in the dry tissue of most plants is 

considered to be about 1.5% (Salisbury and Ross, 1985).  In this study the 

tomato transplants that were grown in media containing composted manure had 

between 2.5 and 1.3% of nitrogen in their leaves compared to 4.7 to 6.6% in the 

conventional treatments.  The conventional treatments may have contained 

higher levels of nitrogen in their leaves but may not have been necessary for 

growth. 

A C:N ratio below 20 is considered to be indicative of a compost that is no 

longer undergoing rapid microbial change and is stable (Epstein, 1997; Havlin et. 

al, 1999).  The conventional medium had the highest C:N ratio compared with the 

composted manure media.  As the amount of peat-lite increased in the media the 

C:N ratio also increased as a result of the decrease in nitrogen content in the 

media.  The relatively lower C:N ratios of potting mixes containing 50, 75, or 

100% composted manure indicated that nitrogen could be mineralized.  However 

other studies have shown that the mineralization may not be enough to release 
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sufficient nitrogen into the medium and media containing composted manure 

may therefore still require additional fertilization (Kraus et al., 2000).  The 

conventional peat-lite medium along with the media containing only 25% of 

composted manure had C:N ratios that could cause nitrogen immobilization. 

However, the stability of the peat which is made up of materials high in cellulose 

and lignin will take longer to decompose and may not lead to immobilization 

(Epstein, 1997; Freeman and Cawthon, 1999). 

Throughout the 2 experiments pH levels remained between 5 and 8, an 

acceptable range for plant growth (Nelson, 1991).  The conventional treatment 

had a slight decrease in pH by the end of four weeks likely due to the slightly 

acidic fertilizer used in our study.  The organic media had a slight increase in the 

pH by the end of the 4-week experiments, which may have been due to the 

slightly alkaline tap water.   

As increasing amounts of composted manure were added to the peat-lite 

mix the pH of the media increased as well, due to the high pH level of the 

composted manure. The higher pH levels of the composted manure could reduce 

or eliminate the need to adjust the pH of a medium with dolomitic limestone when 

adding compost to a peat-lite mix.  In general, pH was not affected by the 

watering regime. 

According to Dr. Elaine Ingham’s (2002) compost tea brewing manual, 

applying compost tea as a soil drench can create a barrier around the roots of 

plants of beneficial microorganisms as well as nutrients.  Additionally, nutrient 

cycling can be improved as well as nutrient retention and disease suppression.   
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In our study compost tea was not an effective fertilizer since it did not 

significantly increase the overall growth of the tomato transplants.  However, we 

cannot exclude that compost tea helped in disease suppression because we did 

not measure any parameters associated with alleged characteristics of compost 

teas.  There are other alternative fertilizer options not investigated here, an 

organic grower can use to supply additional nutrients to their transplants, such as 

blood, feather, crab-shell and cottonseed meal, as well as whey sludge.  These 

products have shown to increase dry weight of tomato transplant shoots by 57-

83% (Gagnon and Berrouard, 1993). 

 

Conclusion 

With the increasing availability of composted animal wastes and the 

importance of using organic management techniques in organic transplant 

production, organic growers are becoming increasingly interested in using 

compost as a potting medium.  Our study and experiments by others have shown 

that composts can be a viable alternative to conventional transplant production 

(Corti et al., 1998; Ozores-Hampton et al., 1999; Raviv et al., 1998).  

However it is important for producers of compost to supply a product that 

is consistent as well as of high quality so that organic producers will want to 

purchase their products for their potting mixes.  Producers marketing their tomato 

transplants as organic must comply with the National Organic Programs 

guidelines when using compost in their potting mix (USDA, 2002).  Transplant 

growers are interested in a compost that contains all the qualities of a good 
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potting medium such as high nutrient content, an adequate and especially not too 

high of a pH, an acceptable soluble salts level, a C:N ratio below 20, and an 

acceptable water holding capacity (Ozores-Hampton et al., 1999).  

This study was able to show that composted horse and cow manure can 

be used to replace or reduce the use of peat in the growing medium used for the 

production of organic tomato transplants.  The ratio of compost used will depend 

on both physical factors of the medium such as water holding capacity and 

chemical factors that include pH, as well as the amount and type of soluble salts 

in the medium.  It is also important for a grower to manage the amount of water 

supplied to the tomato transplants since this could lead to a reduction in growth.  

Compost tea as used in this study is not recommended as an additional fertilizer 

source since it not increase the quality of the tomato transplants. 
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Table 1. The influence of the percentage of compost and 
peat-lite (v/v) on the carbon (C), nitrogen (N) content, 
and carbon to nitrogen ratio (C:N) of the growing media 
of Experiments 1 and 2.  

Medium y Compost Peat-lite  C (%) N (%) C:N
Expt. 1 

Hconv 0 100 34 0.7 50 
H25 25 75 33 0.1 31 
H50 50 50 30 1.6 20 
H75 75 25 27 1.6 17 
H100 100 0 29 2.0 14 

Expt. 2 
Cconv 0 100 39 0.6 62 
C25 25 75 40 1.5 27 
C50 50 50 40 2.0 20 
C75 75 25 38 2.3 17 
C100 100 0 38 2.5 15 
y Treatment names of Hconv, H100, H75, H50, and H25 
contain composted horse manure and treatment names of 
Cconv, C100, C75, C50, and C25 contain composted cow 
manure.  Hconv and Cconv are the conventional treatments 
and H100, H75, H50, H25, C100, C75, C50, and C25 are 
the organic treatments. 
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Table 2. Watering Regime and amount of liquid applied 
per container to organic and conventional treatments 
of Experiments 1 and 2. z   

Liquid applied / container (ml) 

Watering regimey Organic treatments
Conventional 
treatments 

Expt. 1 
80 59 40 
100 74 50 
120 89 60 
150 111 75 
200 148 100 

Expt. 2 
80 40 48 
100 50 60 
120 60 72 
150 75 90 
200 100 120 
yWatering regime, i.e., 80, 100, 120, 150, or 200 percent of 
container capacity of the respective containers. 
z Organic treatments contain composted manure in the 
growing media and received tap water, while some organic 
treatments at watering regimes of 120, 150, and 200% of 
container capacity received compost tea as needed on 
weeks 3, 2, and 1, respectively, as needed.  Conventional 
treatments consist of peat-lite in the growing media and 
received synthetic fertilizers as needed.  See table 3 for 
chemical properties of synthetic fertilizer, compost tea, and 
tap water. 
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Table 3. Chemical characteristics of synthetic 
fertilizer, compost tea and tap water used in 
watering regimes of Experiments 1 and 2. z 

Type of liquid 
Electrical 

conductivity
(dS m-1) 

pH 

Composted horse manure 
tea 0.80 7.08 
Composted cow manure tea 1.00 7.32 
Synthetic fertilizer 1.00 6.28 
Tap water 0.30 7.38 
z See table 2 for explanation of watering regimes.
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Table 4. Main effects (watering regime and media) and interaction of main effects 
(watering regime x media) on dependent variables with (conventional) and 
without (organic) conventional treatments of Experiment 1 (n = 3). z 
 Dependent variables 

  
Fresh 

weight (g)
Dry 

weight (g)

Carbon 
content 

(%) 

Nitrogen 
content 

(%) 

Electrical 
conductivity 

(dS m-1) pH 
Watering regime       
80 12.2 a y 1.3 a 39 a 1.7 a 0.4 a 6.4 b 
100 11.8 a 1.3 a 39 a 1.6 a 0.3 b 6.4 ab 
120 11.4 a 1.2 a 39 a 1.8 a 0.3 b 6.4 b 
150  8.4 b 0.9 b 39 a 1.4 a 0.3 b 6.4 ab 
200  8.3 b 0.9 b 38 a 1.6 a 0.2 c 6.5 ab 
Significance x NS (*) * NS NS (*) * * (NS) 
       
Medium       
Hconv 13.3 b 1.2 b 42 a 6.6 a 0.8 a 5.4 e 
H100 16.7 a 1.8 a 40 b 2.3 b 0.3 b 7.0 a 
H75 11.8 b 1.3 b 39 c 1.6 c 0.3 b 6.2 c 
H50 8.0 c 0.9 c 38 cd 1.4 c 0.3 c 6.7 b 
H25 5.2 d 0.6 d 38 d 1.2 c 0.2 d 5.8 d 
Significance * * * * * * 
Watering regime x 
medium NS (*) * NS NS (*) NS (*) * (NS) 
R2 (organic) 0.89 0.89 0.74 0.64 0.74 0.96 
R2 (conventional) 0.86 0.86 0.83 0.96 0.75 0.97 
z See tables 1 and 2 for composition of the media and explanations of the watering 
regimes and treatments. 
yColumns with the same letter do not differ significantly according to Duncan’s multiple 
range test, P ≤ 0.05. 
x Significance in parenthesis (NS, *) ANOVA analysis includes conventional treatments.
NS, * Nonsignificant (NS) or significant (*) at P ≤ 0.05 level determined by ANOVA. 
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Table 5. Percentage of dry weight based on fresh 
weight (dry weight %) of the shoots of 4-week-old 
tomato transplants from Experiments 1 and 2 (n=3). z 
Medium Dry weight (%) 
Hconv 9b y 
H100 11a 
H75 11a 
H50 11a 
H25 11a 
z See table 1 for media composition. 
y Columns with the same letter do not differ significantly 
according to Duncan’s multiple range test, P ≤ 0.05. 
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Figure 3. Change in electrical conductivity expressed in dS m-1 over 4-weeks of 
conventional peat-lite (Hconv) and media containing composted horse manure 
(H100, H75, H50 and H25) in Experiment 1 (n = 3). 
Change was nonsignificant (NS) or linear (L) for media Hconv, H100, H75, H50, 
and H25 at 0, 2 and 4 weeks after transplanting (P ≤ 0.05).  
Hconv (L), H100 (L), H75 (L), H50 (NS), H25 (NS).  
See table 1 for composition of media. 
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Figure 5. Change in pH of media over time of conventional peat-lite (Hconv) and 
media containing composted horse manure (H100, H75, H50 and H25) in 
Experiment 1 (n = 3). 
Change was quadratic for media, Hconv, H100, H75, H50, and H25 at 0, 2 and 4 
weeks after transplanting , (P ≤ 0.05). 
See table 1 for composition of media. 
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Table 6. Main effects (watering regime and media) and interaction of main effects 
(watering regime x media) on dependent variables with (conventional) and 
without (organic) conventional treatments of Experiment 2 (n = 3). Z 
 Dependent variables 

  
Fresh 

weight (g)
Dry 

weight (g)

Carbon 
content 

(%) 

Nitrogen 
content 

(%) 

Electrical 
conductivity 

(dS m-1) pH 
Watering regime       
80 14.6 b y 2.0 ab 40 a 2.5 a 1.0 a 6.0 b 
100 16.5 a 2.3 ab 40 ab 1.7 b 0.8 b 6.1 b 
120 15.5 ab 2.2 ab 40 ab 1.5 bc 0.7 b 6.1 b 
150 14.3 b 1.9 b 39 b 1.4 c 0.5 c 6.1 b 
200 14.5 b 2.0 ab 40 ab 1.3 c 0.4 c 6.3 a 
Significance x * * (NS) NS * * * (NS) 
       
Medium       
Cconv 23.2 a 2.8 a 40 a 4.7 a 0.3 c 4.8 d 
C100 13.0 d 1.9 c 40 a 1.3 c 0.8 a 7.0 a 
C75 15.9 bc 2.3 b 41 a 2.1 b 0.8 a 6.5 b 
C50 16.6 b 2.2 b 40 a 1.9 b 0.6 b 6.0 c 
C25 14.8 c 1.9 c 38 b 1.3 c 0.5 b 5.0 d 
Significance * * * * * * 
Watering regime x 
medium * * NS * * NS 
R2 (organic) 0.76 0.64 0.59 0.82 0.82 0.96 
R2 (conventional) 0.91 0.78 0.58 0.96 0.83 0.93 
z See tables 1 and 2 for composition of the media and explanations of the watering 
regimes and treatments. 
yColumns with the same letter do not differ significantly according to Duncan’s multiple 
range test, P ≤ 0.05. 
x Significance in parenthesis (NS, *) ANOVA analysis includes conventional treatments.
NS, * Nonsignificant (NS) or significant (*) at P ≤ 0.05 level determined by ANOVA. 



0

5

10

15

20

25

30

35

Cconv C100 C75 C50 C25

Media 

Fr
es

h 
W

ei
gh

t (
g)

80% 100% 120% 150% 200%

 
 
c

 
b

 
b

a  
 
 
d
e
f
g

 
 
c
d

 
 
 
 
 
 
g

 
 
 
 
 
 
 
h

 
 
 
 
 
 
 
h

 
 
 
d
e
f
g

 
 
c
d

 
 
 
d
e
f
g

 
 
 
d
e
f
g

 
 
 
d
e
f
g

 
 
 
 
e
f
g

 
 
c
d
e
f

 
 
c
d

 
 
c
d

 
 
c
d
e

 
 
 
d
e
f
g

 
 
 
 
 
 
g

 
 
 
d
e
f
g

 
 
 
d
e
f
g

 
 
 
d
e
f
g

 
 
 
 
 
f
g

Watering Regime



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Cconv C100 C75 C50 C25

Media 

D
ry

 W
ei

gh
t (

g)
80% 100% 120% 150% 200%

 
 
 
d
e
f
g
h

 
 
c
d
e
f
g

 
b
c

a
b

a  
 
c
d
e
f
g
h

 
b
c
d

 
 
 
 
 
f
g
h
i

 
 
 
 
 
 
 
 
 
j

 
 
 
 
 
 
 
 
i
j

 
 
c
d
e
f
g
h

 
 
c
d
e

 
 
 
d
e
f
g
h

 
 
c
d
e
f
g
h

 
 
c
d
e
f
g
h

 
 
 
 
 
 
 
h
i
j

 
 
c
d
e
f
g
h

 
 
c
d
e
f

 
 
c
d
e
f
g
h

 
 
c
d
e
f

 
 
 
 
e
f
g
h
i

 
 
 
 
 
 
 
h
i
j

 
 
 
 
e
f
g
h

 
 
 
 
 
 
g
h
i

 
 
 
 
 
 
g
h
i

Watering Regime



 50

 
Table 7. Percentage of dry weight based on fresh 
weight (dry weight %) of the shoots of 4-week-old 
tomato transplants from Experiments 1 and 2 (n=3). z 
Medium Dry weight (%) 
Cconv 12c y 
C100 15a 
C75 14a 
C50 14ab 
C25 13bc 
z See table 1 for media composition. 
y Columns with the same letter do not differ significantly 
according to Duncan’s multiple range test, P ≤ 0.05. 
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Figure 8. Change in electrical conductivity expressed in dS m-1 over time of 
conventional peat-lite (Cconv) and media containing composted cow manure 
(C100, C75, C50 and C25) in Experiment 2 (n = 3). 
Change was nonsignificant (NS) or quadratic (Q) for media Cconv, C100, C75, 
C50, and C25 at 0, 2 and 4 weeks after transplanting, (P ≤ 0.05).  
Cconv (Q), C100 (Q), C75 (NS), C50 (Q), C25 (Q).  
See table 1 for composition of media. 
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Figure 10. Change in pH over time of conventional peat-lite (Cconv) and media 
containing composted cow manure (C100, C75, C50 and C25) in Experiment 2 
(n = 3). 
Change was nonsignificant (NS) or linear (L) for media Cconv, C100, C75, C50, 
and C25 at 0, 2 and 4 weeks after transplanting, (P ≤ 0.05).  
Cconv (L), C100 (L), C75 (L), C50 (NS), C25 (NS).  
See table 1 for composition of media. 
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Table 8. Main effects (watering regime, media and compost tea) and 
interaction of main effects (watering regime x media x compost tea) on 
dependent variables of Experiment 1 (n = 3). Z 
 Dependent variables 

  
Fresh weight 

(g) 
Dry weight 

(g) 
Electrical conductivity 

(dS m-1) 
Watering regime    
120 11.6 a y 1.3 a 0.3 a 
150  9.4 b 1.0 b 0.3 b 
200  8.4 b 0.9 c 0.2 c 
Significance * * * 
    
Medium    
H100 14.3 a 1.6 a 0.3 a 
H75 11.7 b 1.3 b 0.3 a 
H50  7.5 c 0.8 c 0.2 b 
H25  5.8 d 0.7 d 0.2 c 
Significance * * * 

Watering regime x medium * * NS 
Compost tea * * NS 
Watering regime x compost 
tea NS NS NS 
Medium x compost tea * * NS 
Watering regime x compost 
tea x medium NS NS NS 
R2 0.88 0.88 0.78 
z See tables 1 and 2 for composition of the media and explanations of the 
watering regime. 
yColumns with the same letter do not differ significantly according to Duncan’s 
multiple range test, P ≤ 0.05. 
NS, * Nonsignificant (NS) or significant (*) at P ≤ 0.05 level determined by ANOVA.
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Table 9. Main effects (watering regime, media and compost tea) and 
interaction of main effects (watering regime x media x compost tea) on 
dependent variables of Experiment 2 (n = 3). Z 
 Dependent variables 

  
Fresh weight 

(g) 
Dry weight 

(g) 

Electrical 
conductivity (dS 

m-1) 
Watering regime    
120 15.8 a y 2.2 a 0.7 a 
150 15.4 a 2.2 a 0.6 a 
200 15.1 a 2.0 a 0.4 b 
Significance NS NS * 
    
Medium    
C100 11.3 c 1.6 c 0.6 a 
C75 16.5 ab 2.4 a 0.7 a 
C50 18.0 a 2.4 a 0.6 ab 
C25 15.9 b 2.0 b 0.5 b 
Significance * * * 
Watering regime x medium NS NS NS 
Compost tea * NS * 
Watering regime x compost tea NS NS NS 
Medium x compost tea NS NS NS 
Watering regime x compost tea x 
medium NS NS NS 
R2 0.64 0.54 0.65 
z See tables 1 and 2 for composition of the media and explanations of the 
watering regime. 
yColumns with the same letter do not differ significantly according to Duncan’s 
multiple range test, P ≤ 0.05. 
NS, * Nonsignificant (NS) or significant (*) at P ≤ 0.05 level determined by 
ANOVA. 
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