
Graduate Theses, Dissertations, and Problem Reports

2015

Measuring in-plane deflections and strains through visual sensing Measuring in-plane deflections and strains through visual sensing

techniques for civil infrastructure applications techniques for civil infrastructure applications

Youyi Feng

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Feng, Youyi, "Measuring in-plane deflections and strains through visual sensing techniques for civil
infrastructure applications" (2015). Graduate Theses, Dissertations, and Problem Reports. 5588.
https://researchrepository.wvu.edu/etd/5588

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/5588?utm_source=researchrepository.wvu.edu%2Fetd%2F5588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

MEASURING IN-PLANE DEFLECTIONS AND STRAINS THROUGH

VISUAL SENSING TECHNIQUES FOR CIVIL INFRASTRUCTURE

APPLICATIONS

Youyi Feng

Thesis submitted to the College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science

In

Civil Engineering

 Fei Dai, Ph.D., Chair

 Roger Chen, Ph.D.

 Radhey S. Sharma, Ph. D.

 Yoojung Yoon, Ph.D.

Department of Civil and Environmental Engineering

Morgantown, West Virginia

2015

Keywords: Visual sensing, infrastructure safety, strains, DIC, SIFT, SURF

Copyright 2015 Youyi Feng

II

Abstract

MEASURING IN-PLANE DEFLECTIONS AND STRAINS THROUGH VISUAL

SENSING TECHNIQUES FOR CIVIL INFRASTRUCTURE APPLICATIONS

Youyi Feng

Maintaining the integrity and safety of civil infrastructures such as bridges, dams, tunnels

and high-rise buildings is an essential task for civil engineers. Collapse or damage of these civil

infrastructures may lead to a tremendous amount of injuries and casualties. To alleviate this

situation, a real-time surveillance method enabled by visual sensing techniques is proposed in this

thesis. The advances of applying visual sensing techniques, for instance, are allowing practical

deployment for large extended systems in a more cost-effective way. Also, the image or video data

can be easily used for long-term condition assessments.

The proposed method entails applying visual sensing techniques to measure in-plane

deflections and strains of structural members for civil infrastructure applications. In specific, it

employs visual sensors (digital/industrial cameras) to capture and record a series of continuous

image frames of the targets. Then automated feature detection and matching algorithms are applied

to detect and match object features in the consecutive image frames. Based on the location

information of the detected features, the in-plane object displacement can be accurately calculated

through keeping tracking those features in the continuous image frames. Next, an optimized

interpolation procedure is conducted to obtain dense displacement field for the object. And the

strains can be consequently recovered from the displacement field through computing its

derivatives.

In this research, firstly, the work of evaluating the optimum feature detection and matching

algorithm is reported, which is the key task to achieve accurate surveillance. A series of

experiments were conducted to compare the three algorithms: DIC (Digital Image Correlation),

SIFT (Scale Invariant Feature Transform), and SURF (Speeded-Up Robust Features). The

experimental result indicated that the DIC algorithm reveals superiority among the three algorithms

and holds the most potential for measuring in-plane deflections and strains of civil infrastructures.

To further validate our method, we employed high-speed industrial camera (Manta G223B) to

capture a series of continuous image frames of deformed real-world scenarios. The DIC algorithm

was adopted for the feature detection and matching process. As the output, the displacement and

strains were calculated and then compared with the ground truth in order to evaluate the accuracy

performance of the method. Colored strain maps were generated by using different colors to reflect

different strain levels in an intuitive way. The experimental result indicated that our method can

achieve highly accurate measuring performance of computing in-plane displacements and strains

for civil infrastructure applications. The proposed method has several advantages when compared to

pre-existing methods (such as sensor networks). It can generate accurate full-field deflections and

strains of the target. Besides, the cost-effective equipment and much more convenient set-up

procedures will enable engineers to operate periodically and apply for different scales of civil

infrastructure applications.

III

Dedication

This thesis is dedicated to my beloved parents, sister and girlfriend. Thank you for

offering me the unconditional love and support.

IV

Acknowledgements

I wish to thank my adviser, Dr. Fei Dai for his guidance and inspiring ideas

throughout the research. I would like to extend my special thanks to my committee

member, Dr. Roger H. L. Chen, also Mr. Zhanxiao Ma and Dr. Mark L. Skidmore for the

assistance and valuable suggestions in conducting the LVDT experiments. I would also like

to express my appreciation to my committee members, Dr. Radhey Sharma and Dr.

Yoojung Yoon for reviewing this work.

I am thankful to my office mates Mr. Haidar Aldaach and Dr. Murat Dinc for their

help in the laboratory. I am thankful to my friends for all their help during my stay at

WVU. I would also like to thank my roommates Wei Qi and Jiaxin Li for making my stay

in Morgantown a very pleasant and memorable one.

I also wish to express my gratitude to my family and girlfriend, their support and

love gave me the motivation to do my best in life.

V

Table of Contents

Abstract ... ii

Dedication ..iii

Acknowledgments .. iv

Table of Contents .. v

LIST OF FIGURES .. viii

LIST OF TABLES .. x

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: BACKGROUND .. 3

2.1 Current methods for measuring deflections of civil infrastructures 4

2.1.1 Contact measuring methods .. 5

2.1.2 Non-contact measuring methods .. 8

2.2 Feature detection and matching algorithms ... 11

2.2.1 Scale-Invariant Feature Transform (SIFT) ... 11

2.2.2 Speeded-up Robust Features (SURF) .. 15

2.2.3 Digital Image Correlation (DIC) .. 17

2.2.4 Interpolation .. 21

2.2.5 In-plane displacement and strain computation ... 24

CHAPTER 3: PROBLEM STATEMENT AND OBJECTIVE 26

CHAPTER 4: EXPERIMENTAL DESIGN .. 30

4.1 Comparison experiments for evaluating feature matching algorithms 30

4.1.1 Original digital image dataset ... 31

4.1.2 Synthetic image dataset .. 32

VI

4.1.3 Real world testing and deflection measuring ... 34

4.2 Measuring deflections and strains for real world scenarios 36

4.2.1 Data collection .. 37

4.2.2 Industrial image dataset .. 39

4.2.3 Data pre-processing .. 40

4.2.4 In-plane displacement calculation .. 42

4.2.5 In-plane strain computation .. 44

CHAPTER 5: EXPERIMENT RESULT AND EVALUATION 46

5.1 Accuracy comparison of digital image groups .. 46

5.1.1 Measurement accuracies of linear deflected scenarios 47

5.1.2 Measurement accuracies of non-linear deformed scenarios 48

5.2 Measuring error distributions ... 50

5.3 Efficiency comparison ... 52

5.4 Error estimation in real world scale ... 54

5.5 Real world scenario testing .. 55

5.6 Measuring deflections and strains for real world scenarios 61

5.7 Integrated user interface for measuring in-plane deflections and strains 69

CHAPTER 6: DISCUSSION AND ANALYSIS .. 71

6.1 Algorithm accuracy performance .. 71

6.2 Algorithm efficiency performance .. 71

6.3 Error estimation in real world scale ... 72

6.4 Real world scenario testing .. 72

VII

6.5 Measuring deflections and strains .. 73

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 74

References ... 77

Appendix 1 Original code of deflection and strain computation and user interface 84

Appendix 2 Integrated user interface original code ... 93

VIII

LIST OF FIGURES

Figure 1. General schematic of the GPS deployment on a high-rise structure 6

Figure 2. Dimensions of PVDF sensor element ... 7

Figure 3. Example of DIC inputs and outputs .. 19

Figure 4. Specification of region of interest (ROI) .. 21

Figure 5. Linear interpolation procedure .. 22

Figure 6. Un-deformed and deformed bar configurations to illustrate average strain

computation .. 24

Figure 7. Un-deformed and deformed bar configuration for point strain computation.26

Figure 8. Framework of measuring deflections and strains from images 27

Figure 9. Framework of conducting comparison experiment for the three algorithms.31

Figure 10. Original image dataset ... 32

Figure 11. Synthetic Image dataset... 33

Figure 12. Sinusoidal function deformed image dataset .. 34

Figure 13. Industrial camera images of real world scenarios in concrete lab 36

Figure 14. Framework of measuring deflections and strains for real world scenarios.37

Figure 15. Industrial camera set up and LVDT configuration 38

Figure 16. Experimental specimen and LVDT equipment .. 39

Figure 17. Real world industrial image dataset of concrete sample 40

Figure 18. Image correlation-based algorithm operation interface 41

Figure 19. Processing window of the image correlation-based algorithm 42

Figure 20. Scatter points for displacement calculation .. 43

IX

Figure 21. Displacement arrow map .. 44

Figure 22. Strain maps before and after applying interpolation algorithm 45

Figure 23. Processing results of DIC, SIFT and SURF algorithms for rotation

group……………………………………………..…………….………....47

Figure 24. Processing results of DIC, SIFT and SURF algorithms for deformation group

 ... 50

Figure 25. Feature point error distributions standard deviation: (a) Translation; (b)

Rotation; (c) Illumination changes; (d) Deformation 51

Figure 26. Efficiency comparisons of the three algorithms for (a) Translation scenarios,

(b) Rotation scenarios, and (c) Illumination changing scenarios 54

Figure 27. Real world scenario testing results of the three algorithms for synthetic

images with different resolutions ... 55

Figure 28. Processing results of DIC, SIFT and SURF algorithms for deformation group

 ... 57

Figure 29. Pixel-level processing errors of the three algorithms for industrial images

of real world scenario ... 58

Figure 30. Real world scale processing errors of the three algorithms 61

Figure 31. User interface for computing in-plane deflections and strains 62

Figure 32. Displacement maps for measuring the real world scenarios 64

Figure 33. Strain maps for measuring the real world scenarios 65

Figure 34. Point strain distribution: (a) group 1, (b) group 2, (c) group 3, (d) group 4.68

Figure 35. Integrated user interface for measuring in-plane deflections and strains 70

X

LIST OF TABLES

Table 1. Collapse accidents of civil infrastructure applications in recent years 3

Table 2. Error percentages of different image scenes: (a) Translation; (b) Rotation; (c)

Illumination changes ... 56

Table 3. Error percentages of the three algorithms for different deformed scenarios...58

Table 4. Running time of the three algorithms for different image scenarios: (a)

Translation; (b) Rotation; (c) Illumination changes 60

Table 5. Real world scale error estimation ... 62

Table 6. Pixel-level errors of the algorithms for industrial images 65

Table 7. Real world-scale errors of the three algorithms for processing industrial images

 .. 67

Table 8. Average errors of measuring deflections for real world scenarios 71

Table 9. Accuracy of measuring deflections for real world scenarios 71

Table 10. LVDT experimental results .. 71

Table 11. Strain measuring accuracy for the 4 groups of experiments 77

CHAPTER 1: INTRODUCTION

With the continuous development of human civilization, more and more civil

infrastructures have come into being in our today’s life. However, along with the

emergence of those infrastructure applications such as bridges, overpasses, tunnels, dams,

and high-rise building, the security of the infrastructures has become a crucial issue for

civil engineers. Recent research work has shown that quite a few catastrophes in civil

engineering field are associated with the failure of those civil infrastructures (e.g.,

collapse of bridges, dams and tunnels) (Chang et al. 2003). As an inevitable consequence,

the collapse will result in enormous loss, injuries and casualties.

In order to ameliorate this situation and to improve the security, a real-time

surveillance method enabled by visual sensing is proposed in this thesis. It proposes to

utilize high-speed industrial cameras to measure the deflections and strains for civil

infrastructure applications so that their integrity and safety can be monitored in a cost-

effective way while they are undergoing excitements during operations. In this method,

key features on the target object’s surface are continuously detected and matched to

quantitatively measure the deflection values of the target, which then can be further

processed into strains (Young and Budynas 2002).

The objective of this research is to measure the in-plane deflections and strains for

civil infrastructure applications. However, different algorithms might be applied for the

feature detection and matching procedure in the visual sensing-based method; and the

performance of the algorithms has not been compared for measuring in-plane deflections

and strains of civil infrastructures in terms of accuracy and efficiency. To address this

2

problem, firstly, we need identify the optimal feature detection and matching algorithm

for the visual sensing-based method. In specific, we evaluate three selected feature

detection and matching algorithms DIC (Digital Image Correlation), SIFT (Scale

Invariant Feature Transform), and SURF (Speeded-Up Robust Features). In this research,

measuring accuracy and running efficiency of the algorithms are compared in detail.

Also, the influences on the measuring accuracy of the three algorithms when utilizing

images with different resolutions and using different camera shooting distances have

been evaluated and analyzed.

A series of experiments were conducted to compare the three algorithms. The

experimental result indicated that the DIC algorithm reveals superiority among the three

algorithms and holds the most potential for measuring in-plane deflections and strains of

civil infrastructures. To further test the method, we employed high-speed industrial

camera (Manta G223B) to capture a series of continuous image frames a concrete sample

under deforming in WVU structural lab. Then, the image correlation-based algorithm was

adopted for the feature detection and matching procedure. As the output, the

displacement and strains were calculated and then compared with the ground truth in

order to evaluate the accuracy performance of the method. Colored strain maps were

generated by using different colors to reflect different strain levels in an intuitive way.

The experimental result indicated that our method can achieve highly accurate measuring

performance of computing in-plane displacements and strains for civil infrastructure

applications. The proposed method has several advantages when compared to pre-

existing methods (such as sensor networks). It can generate accurate full-field deflections

3

and strains of the target. Besides, the cost-effective equipment and much more convenient

set-up procedures will enable engineers to operate periodically and apply for different

scales of civil infrastructure applications.

The outline of this thesis can be described as follows: Chapter 2 presents the

detailed literature review of current existing methods for measuring deflections and

strains in civil engineering related field. Chapter 3 explains our motivation and objectives

to conduct the research work in detail. Also, a flow chat is generated in order to show the

whole procedures of our research work. Chapter 4 focuses on the methodologies applied

in our research to implement the designed comparison and validation experiments. The

experimental results are presented in Chapter 5, and then Chapter 6 further provides some

in-depth discussion and analysis regarding the experimental results presented in Chapter

5. Finally, conclusion of the research and future work is presented in Chapter 7.

CHAPTER 2: BACKGROUND

Civil infrastructure applications should meet the safety, serviceability and

durability requirements under certain circumstance (Karbhari and Zhao 2000). Once any

of the requirements is not strictly satisfied, the integral security of the infrastructure

applications will definitely be threatened. The failures will undoubtedly induce

tremendous loss, delay, injuries, and causalities as the consequence.

The table below shows some collapse accidents that are related with civil

infrastructure applications in recent years around the world.

4

Table 1. Collapse accidents of civil infrastructure applications in recent years

Time Location Injuries/Fatalities Accident depiction

7/10/06 Boston, USA 1 injured, 1 deaths Boston Fort-Point tunnel collapse

9/30/06 Quebec, Canada 6 injured, 5 deaths Lawal city overpass collapse

3/27/09 Jakarta, Indonesia 130 injured, 96 deaths Collapse of Situ-Gintung dam

12/3/12 Yamanashi, Japan 2 injured, 9 deaths High-way tunnel collapse

1/21/14 Lai Chua, Vietnam 37 injured, 7 deaths Collapse of a bridge across the river

5/03/14 Guangdong, China 16 injured, 11 deaths Bridge collapse under construction

To alleviate this issue, we propose to properly monitor the safety of civil

infrastructure applications by measuring their real time dynamic deflections and

deformations. It aims at ensuring whether the deformation is within limits in terms of

stability (Brownjohn 2007). Hence, while strains or stress may be measured, the

emphasis is on measuring deflections. In our research, the deflection is defined as the

spatial displacement of structural members, which can be computed by recovering the

target’s spatial coordinates as time goes by. After obtaining the deflection information of

civil infrastructures, strains of the target can be recovered and corresponding preventive

decisions can be made in response to corresponding safety situations, for instance,

sounding an alarm when the strains of civil infrastructure exceed the pre-specified

threshold. This action will potentially help to reduce those unexpected accidents, and also

gain more evacuation time for people to escape from the terrible disasters (Rainieri et al.

2011).

2.1 Current methods for measuring deflections of civil infrastructures

This section mainly focuses on the available methods that can be applied to

measure deflections of civil infrastructures. These methods can be introduced as follows:

based on the spatial location relationships between the measuring instrument and the

5

target, the methods can be divided into two main categories: contact and non-contact

measuring methods.

2.1.1 Contact measuring methods

Contact measuring method, namely, the methods that require the measuring

instruments to be put into the target or installed onto the surface of the target.

Wire/wireless sensor networks: Dargie and Poellabauer summarized the

wireless sensor networks method for monitoring civil infrastructure applications (Dargie

and Poellabauer 2010). It is the most typical method using for measuring deflections and

strains. In terms of this method, usually professional operators will install the

wire/wireless sensors onto the target that needs to be monitored, whereby they can collect

the target’s spatial positon changing information (Kim et al. 2007). This method can

achieve sufficient accuracy performance for measuring deflections. However, although

the development of wireless sensing technique may reduce the extra expense of the wire

transmission to some extent (Lynch and Kenneth 2006), the convenience of switching

operation between different measuring targets still needs improvement. Besides, when

facing relative large-scale applications, the number of sensors needed for installation and

uninstallation will be another issue which calls for extra efforts (Yuan et al. 2012). What

is more, since the sensor networks method can only detect the deflections of those

particular positions where the sensors were put onto, the full-field accurate deflections of

the integral target still cannot be achieved (Chintalapudi et al. 2006).

Global Positioning System (GPS) based methods:

6

The GPS based method belongs to contact measuring method since the GPS

receivers will be put onto the surface of the target to collect the data. Figure 1 shows the

general schematic of the GPS deployment on a high-rise structure.

Figure 1. General schematic of the GPS deployment on a high-rise structure (Ting et al.

2013)

 The GPS methods include static, fast-static, and RTK (real-time kinematic)

modes. Some previous research in the GPS monitoring of civil engineering structures is

about the static monitoring of settlements and deflection trends for banks or dams. The

RTK method is also applied in structural health monitoring (SHM). In the RTK mode, the

reference-station is considered as a fixed station point for checking, and the point’s 3D

coordinates can be determined by the static GPS method and by recording the difference

7

between its already known spatial position and calculated spatial positon from the

satellite data (Ting et al. 2013).

PVDF (polyvinylindine fluoride) film sensor: For this method, according to the

fact that the larger the PVDF film area, the more charge is produced after being squeezed,

and also the piezoelectric constant along the stretch direction is the largest, the size of the

film, including the film area and the length to width ratio, plays an important role in

sensor design. Four different sizes have been investigated with different area and

different length-to-width ratio (length is along the stretch direction of PVDF film). They

were mounted to the same place of a cantilever beam with one end fixed and the other

being free to be moved up or down to generate mechanical deformation. The dimensions

of the sensor patch are shown in Figure 2 (Gu et al. 2005).

Figure 2. Dimensions of PVDF sensor element (Gu et al. 2005)

8

2.1.2 Non-contact measuring methods

 Non-contact measuring methods, also known as remote sensing, enable the

measuring tools to be a few meters or even tens of meters away from the target, which

means that the stations of the measuring operations are beyond the limitation of the

target’s position. Due to this favorable property, non-contact measuring methods may

hold more potential to be applied to measuring deflections when considering the

operating convenience (Jonckheere et al. 2004). There are a series of methods have been

proposed in relevant research such as laser scanning (Monserrat and Crosetto 2008),

image/video-based method (Feng and Dai 2014) and total station surveying etc.

Based on the measuring properties of different instruments, these methods can

further be divided into active measuring methods and passive measuring methods (Ulaby

et al. 1982). Active measuring basically means the measuring instrument itself will emits

energy onto the target’s surface when measuring that target, while passive measuring

means the instrument will not emit any energy to the target throughout the whole

measuring process (Sabins 2007). For example, laser scanning is a typical active

measuring method. It emits laser rays onto the target to obtain its spatial position

information. On the other hand, image/video-based method belongs to the category of

passive measuring category. It utilizes digital/industrial cameras to capture image/video

streams of the target to recover the spatial information of the target (Elgamal et al. 2003),

while emitting no energy onto the target surface in the measuring process.

9

Laser scanning method: In 2006, Alba and Fregonese presented their work of

monitoring deformations of large concrete dams by terrestrial laser scanning (Alba et al.

2006). This method generates 3D point cloud of the target. Based on the point cloud

before and after the target deforming, the spatial deflection information of the target can

be obtained (Park et al. 2007). However, the main drawback of this method is that the

expense of 3D laser scanner that can be used for accurate surveying is normally over

thousands of dollars, which has induced this method actually not really practical for the

research with relatively low cost to measure the deflections or deformation of civil

infrastructure applications.

Total station surveying: This surveying method can also be applied to measure

the deflections of civil infrastructures (Maas and Hampel 2006). In this method, several

special markers will be placed on the target, and then the total station machine will be

operated by professionals to record the spatial coordinates of the markers to acquire the

target’s positon changing information. However, using total station faces the same

problem with applying sensor networks. That is, it cannot achieve full field measurement

of deflections for targets.

Visual sensing-based method: Considering the above mentioned unfavourable

factors of the conventional methods, image sensing technique is employed to address

above existing issues. Image sensing technique, namely, applying image/video sensors

(such as digital/video cameras, industrial cameras, etc.) to capture and record the spatial

position information of the targets (normally, the output format will be digital image or

video streams), and then based on relevant imaging principles of the camera to recover

10

the real world spatial position information of the target. After obtaining the necessary

spatial coordinates, the deflection of the target can be computed as the output (Wahbeh et

al. 2003). This method has several advantages when compared to the conventional

methods. Firstly, it can generate accurate full-field deflections of the target that the

images covered. Secondly, it is very convenient to be operated periodically and applied

for different scales of civil infrastructure application (Wang and Cuitiño 2002). As a

result, this image sensing-based method can be a highly potential alternative to be applied

to measure deflections of civil infrastructures.

The goal of our research is to establish such a visual sensing-based method that

can real-time measure the full-field deflections of load bearing members of civil

infrastructure applications. The method entails utilizing high-speed video/industrial

camera to capture a series of target image streams such that the target’s spatial deflection

can be real time computed so as to alert the engineers when the deflection is in large scale

and may cause an accident.

In our research, the basic principle of the deflection measuring method lies in

detecting and matching interest feature points in a series of continuous image frames to

obtain the position changing values of the features. Then, based on the location

information of the detected features, the in-plane object displacement/deflections can be

accurately calculated through keeping tracking those features in the image frames. In

specific, the accuracy of this deflection measuring method is entirely associated with the

interest points’ location in each image frame. Hence, the key task to achieve a high-

accuracy measuring method is totally determined by the feature detection and matching

11

results (Küntz et al. 2006). As a consequence, obtaining the optimal feature detection and

matching algorithm has priority over all other tasks in our current research.

2.2 Feature detection and matching algorithms

A series of algorithms have been developed to detect and match feature points

along image streams. These algorithms can be categorized into two types (Govender

2009). The first type is feature-based pixel level matching algorithm. In this type, Scale-

Invariant Feature Transform (SIFT) proposed by Lowe is known as the most typical

algorithm (Lowe 2004). Speeded-Up Robust Features (SURF) is another feature-based

matching algorithm proposed by Bay in 2006 (Bay et al. 2006). It inherits the property of

scale-invariant features, and its running efficiency has been proved to be higher than

SIFT (Luo and Gwun 2009). The reason that we picked these two algorithms to test in

our experiments is because previous relevant research has revealed that the SIFT and

SURF detectors and descriptors have priority over other detectors and descriptors (Zhu

and Davari 2014), such as HOG (Histogram of Oriented Gradients) and GLOH (Gradient

Localization Oriented Histogram) etc. (Mikolajczy and Cordelia 2005).

2.2.1 Scale-Invariant Feature Transform (SIFT)

David Lowe proposed the Scale-Invariant Feature Transform (SIFT) algorithm in

1999 (Lowe 1999). This algorithm has been used for object detection, recognition and

image matching, etc. It was further improved in 2004. SIFT (Scale-Invariant Feature

Transform) operator is a type of local image descriptor, with scale, rotation, translation

invariance. It also has certain robustness to changes in illumination, affine transformation

12

and three-dimensional projection transformation. In Mikolajczyk’s comparative

experiments of comparing dozens of local invariant descriptors including SIFT and its

expansion descriptors. The experimental results revealed that SIFT and its expansion

algorithm has shown to have the most robustness in those descriptors (Mikolajczy and

Cordelia 2005). The main idea of SIFT algorithm is to find the extreme points in image

scale space (not the extreme points on the plane), and then filter the extreme points to

find several stable feature points. Finally extract the local characteristics of the image

around each stable feature point, and the formation of local descriptors will be used in

subsequent matching. The theory of SIFT algorithm solves the problem of scale

invariance, that is to say, regardless of the scale size of the same object in the picture, can

be extracted as the same feature points by SIFT algorithm.

The features extracted by SIFT algorithm are local features of the image. Those

features have scale invariant property to spatial translation, rotation, scale zooming,

brightness variation, occlusion and image noise. The algorithm also has certain stability

to visual changes of the images and affine transformation.

The feature detecting and matching procedures of Scale-Invariant Feature

Transform (SIFT) algorithm can be described as the following four main steps:

 Image scale space: generate Gaussian pyramid models for the images.

 Detection of local extremum (local maxima or minima): firstly, calculate

differential Gaussian pyramid models for images; secondly, extract extremum

candidates of the image based on the differential model; thirdly, pick out real

13

extremums, those that have low contrast values or are poorly localized along

edges are removed in this step.

 Feature descriptor: 1) firstly, calculate the dominant orientations of each

extremum; secondly, generate gradient histogram to represent the gradient

direction within the feature point; thirdly, the peak values of gradient histogram

represent the dominant orientations of the feature points; 2) specify a N by N

window (normally N=16) for each feature points, then generate multidimensional

feature descriptors at the central region of the window based on the gradient

histograms.

 Feature matching: calculate the distances between feature points, those

features that have the minimum distance are determined as matched feature pairs.

SIFT descriptor have the following properties (Khan et al. 2011). Firstly, it is

invariant to scale transform and spatial rotation due to the features is determined by local

maxima or minima across scales and their dominant orientations. Besides, the detected

features have illumination invariance. These favorable properties lead SIFT algorithm

one of the most powerful algorithms for feature detection and matching in lots of related

areas (Nghiem et al. 2007).

Golparvar-Fard et al. presented their work for segmentation and recognition of

highway assets using image-based 3D point clouds (Golparvar-Fard et al. 2012). In their

method, SIFT algorithm implemented on GPU is applied. Next, using a new multicore

implementation, the SIFT features are matched in pairs over the span of Ω consecutive

14

video frames. An initial solution for the 3D locations of these features points is calculated

using Nister’s 5-point algorithm. Then, the objective function for the distance between

SIFT features and their re-projected 3D points at every iteration is minimized through an

optimization process using the multicore sparse bundle adjustment library (Wu et al.

2011). This process results in a sparse point cloud model plus intrinsic and extrinsic

camera parameters for each video frame which are fed into the MVS algorithm

(Furukawa et al. 2009) to improve density of the sparsely reconstructed model.

Jahanshahi and Masri proposed the adaptive vision-based crack detection method

by using 3D scene reconstruction for condition assessment of structures (Jahanshahi and

Masri 2012). In the method, SIFT key-points (Lowe 2004) are detected in each image and

then matched between all pair of images. The RANSAC algorithm (Fischler and Bolles

1981) is used to exclude outliers. These matches are used to recover focal length, camera

center and orientation, and radial lens distortion parameters (two parameters

corresponding to a 4th order radial distortion model. Their experimental results reveal the

method has good potential to detect cracks for civil structures.

Some advantages and disadvantages of the Scale Invariant Feature Transform

(SIFT) algorithm are shown as below:

 Advantages:

1)Feature uniqueness is good, informative, and suitable for extracting and

matching rapid massive characteristics in the database

2)Sufficient features, even though a handful of objects in the images, it can also

15

generate a lot feature points from the images.

3)Relatively fast, Sift optimized matching algorithm can even achieve real-time

requirements compare with some global matching algorithms.

4)The extracted features can easily be used to combine with other forms of

eigenvectors.

 Disadvantages:

1)The running efficiency of the algorithm is still not good when comparing with

some real time matching algorithms, such as blocking matching.

2)Sometimes insufficient feature points for non-texture areas of the image.

3)For smoothing edges in the image, it cannot accurately extract the feature points

of the object.

2.2.2 Speeded-up Robust Features (SURF)

SURF was proposed by Herbert Bay in 2006. This algorithm employed the

Hessian matrix to extract image extremums. Image features are localized by applying a

non-maximum suppression schema across image scales (Bay et al. 2008).

 Five main procedures involved in SURF algorithm:

1) Generate Hessian matrix for the image to be processed

2) Generate scale space for the image

3) Feature point precise localization based on the generated Hessian matrix in the

16

scale space

4) Determine dominate orientations for those feature points

5) Feature description and matching

Henssian matrix used in SURF algorithm has excellent stability when extracting

local extreme points for the images. However, it is also dependent on the direction of the

gradient of the local region of pixels. It is possible to find the incorrect dominant

direction in the feature point extraction and matching process. Sift a grayscale algorithm

using only the nature properties of the algorithm. It ignores the color information of the

images, while Surf's descriptor can take use of the color information in the feature

extracting and matching process.

As the related application, SURF algorithm has also been applied to automatically

generate sparse 3D points for acquiring civil infrastructure’ geometric data in Fathi and

Brilakis’ paper (Fathi and Brilakis 2011). An automated stereo vision-based method is

proposed, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D

point cloud of an infrastructure scene utilizing two video streams captured by a set of two

calibrated cameras. In this process SURF features are automatically detected and matched

between each pair of stereo video frames. 3D coordinates of the matched feature points

are then calculated via triangulation. The detected SURF features in two successive video

frames are automatically matched and the RANSAC algorithm is used to discard

mismatches. They have validated their method a competitive one to recover spatial

geometric data for civil infrastructure applications.

17

The advantages and disadvantages of the Speed up Robust Features (SURF)

algorithm are shown as below (Luo and Gwun. 2009):

 Advantages:

1) Comparing with SIFT algorithm, its computing efficiency (running time) is

much higher than SIFT algorithm.

2) SURF algorithm also has scale transform and spatial rotation invariance

property when extracting and matching the image features.

 Disadvantages:

1) The algorithm is sensitive to illumination variances, which means it has

difficulty to process the images under different light condition.

So far, SURF algorithm has been successfully applied in several related research

fields, such as object detection and recognition (Duy-Nguyen et al. 2009), 3D

reconstruction (Segundo et al. 2012).

2.2.3 Digital Image Correlation (DIC)

Another type of algorithm is pixel based sub-pixel level matching algorithm.

Digital image correlation belongs to this type. It has been applied in other applications

such as industrial parts deformation detection in mechanical field. Related research has

shown the DIC algorithm has great potential in mechanical field (Zhao et al. 2012).

However, the performance of this algorithm in civil infrastructure applications still

cannot be identified due to the distinct differences between civil engineering and

18

mechanical fields. For example, speckle patterns are usually applied for DIC algorithm in

experimental testing of mechanical applications (Bornert et al, 2009); whereas the

speckle patterns are actually not appropriate to be utilized in civil infrastructure

applications.

On the other hand, civil infrastructure applications, such as tunnels or dams, are

usually in much greater scales than that of mechanical applications. This also may cause

the uncertainty of applying DIC algorithm in civil engineering field. As a result, to

further identify whether DIC algorithm can still reveal great potential to be utilized to

measure deflections of civil infrastructures, we need compare the DIC algorithm with the

settings suitable for civil infrastructure applications with conventional feature matching

algorithms, such as SIFT and SURF.

Digital Image Correlation (DIC) is an innovative non-contact optical technique

for measuring strain and displacement. It employs image registration and tracking

techniques to measure the planar or spatial deflection and deformation within a series of

continuous image frames. This algorithm has a huge range of potential applications. It

may prove to be ideally suited for the study of crack propagation and material

deformation in real-world applications, as it has the potential to become a cheap, simple

yet accurate solution (McCormick and Lord 2010).

19

Figure 3. Example of DIC inputs and outputs (“DIC” Ncorr. Web. 20 Mar. 2015.)

1) Correlation criterion

 Zero-mean normalized cross-correlation (ZNCC) criteria, which is insensitive

to image scale and illumination variance (Taniguchi et al. 2013). The ZNCC criterion is

described as bellow.

 (Eq. 1)

Where, f(x, y) and g(x’, y’) are the corresponding gray values of the deformed

reference subsets; x and y are the point coordinates at the center of the reference subset

coordinate systems; x’ and y’ are mapped coordinates of the point (x, y), respectively.

 and are

the average gray values of the points in the two subsets; p’ is described as the

deformation vector, which reveals the relationships between the coordinates (x, y) and

coordinates (x’, y’).

Afterwards, the point (x, y) in the reference subset after deformation is

20

represented by the first- order shape function shown as below:

 (Eq. 2)

 (Eq. 3)

Where, u and v are the displacement components of reference subset center on x

and y directions; the expressions όu/όx, όu/όy, όv/όx and όv/όy are the displacement

gradient components; p’= [u, v, όu/όx, όu/όy, όv/όx] is calculated as the corresponding

deformation parameter vector (Zhao et al. 2012).

The first-order shape function presented above can be used to handle the

situations of translation, rotation, shear, strains and their combinations, and all necessary

deflection and deformation information for the measurement in our research can be

recovered.

2) Providing initial guess

Gauss-Newton method is applied to search the roots of a function to deal with the

issue that an analytic solution may not be available. The issue can be addressed by

obtaining the roots of the derivative of a function. Furthermore, its generalization to

multivariate optimization can be achieved by replacing the derivative with the gradient,

afterwards determining where the norm of the gradient converges to zero (Marquardt

1963).

3) Region of interest (ROI) for DIC

When applying the Digital Image correlation (DIC) algorithm, we need specify a

region of interest for the algorithm. Region of interest, namely, is the image region that

21

we are interested to obtain the feature points. Normally, this region is specified through

given the top left and bottom right pixel coordinates of the image that needs to be

processed.

The figure below shows the example of specifying the region of interest for the

digital image correlation algorithm in our experiment. In this example, we specified the

coordinates of the top left point to be (800, 350), and the coordinates of the bottom right

point is (1100, 650). Then, actually the width of region of interest is 300 pixels (bottom

right X coordinate minus top left X coordinate), and the height of region of interest is 300

pixels (bottom right Y coordinate minus top left Y coordinate). Normally, these

coordinate values can be determined by the specific position where the target with

interest exactly located in the image.

Figure 4. Specification of region of interest (ROI)

2.2.4 Interpolation

Interpolation procedure is needed because after obtaining the sparse displacement

field the dense displacement field is generated by interpolating those sparse displacement

values. Bilinear interpolation method is adopted in our experiment after getting the sparse

deflection/displacement values.

22

Bilinear interpolation is one of the most typical image interpolation methods in

image processing. The principle idea of this algorithm is to compute the linear

interpolation values for the target points based on the interpolation function f(x). These

interpolation values can be calculated according to the 4 nearest points around the target

point by applying the interpolation functions for X and Y directions respectively.

The following figure briefly shows the procedures of bilinear interpolation

method:

Figure 5. Linear interpolation procedure (“Bilinear Interpolation”, Baike. Web. 25 Mar.

2015.)

The green point in the figure is the target point that we need to obtain its

interpolation value. The red points are the 4 nearest points around the target point. Then,

assume the coordinates for the 4 nearest points are Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2,

y1) and Q22 = (x2, y2). We need to calculate the interpolation value for the target point P =

(x, y).

The first step, linear interpolation will be conducted for X direction. In specific,

23

we need get the value for the blue points in the figure. The value of blue points will be

calculated based on the two red points around them by given specific metric for the

interpolation function. In our experiment, the metric is specified to be Euclidian distance.

In other words, the distances between the blue point and its two nearest red points will

assigned to be weights when computing the interpolation value.

The following formulas are given:

 (Eq. 4)

 (Eq. 5)

Where, f(Q11), f(Q12), f(Q21) and f(Q22) are already known values of the red points.

The values of x, x1 and x2 are coordinates along the X direction of the image. In this way,

the interpolation value for the point R1 and R2, which are the blue points shown in the

above figure.

Then, the second step is based on the calcualted interpolation vaules of R1 and R2

(blue poins). Linear interpolitaon procedure will be conducted once again for the green

point. This time, the blue points replece the red poinst in the previous step.

The following formula is used:

 (Eq. 6)

Where, f(R1) and f(R2) are already calculated values from the step one. The values

of y, y1 and y2 are coordinates along the Y direction of the image. Then, the f(P) is the

interpolation value that we need to calculate for the target point P (x, y).

24

Compared with nearest interpolation algorithm, the processing performance of

bilinear interpolation is much better, while compared with bi-cubic interpolation

algorithm, the running efficiency of bilinear interpolation algorithm is better (Acharya

and Tsai 2007). It is adopted after trade-off between the processing performance and

running efficiency in our experiments.

2.2.5 In-plane displacement and strain computation

This procedure can be performed by specifying a region of interest (ROI) and

then the displacement data is determined in a grid within the ROI. Afterwards, the

displacements data can be either reduced or interpolated to generate a "continuous"

displacement field. In our research we apply bilinear interpolation procedure introduced

above to obtain dense displacement field.

After obtaining the dense displacement field, in-plane strains of the target can

calculated through computing the derivatives of displacement field. Following procedures

were applied to compute the strains.

 Average strain computing

Figure 6. Undeformed and deformed bar configurations to illustrate average strain

computation (“Strain”. IAST.Lect04. Web. 26 Mar. 2015)

25

For an un-loaded bar of length L0 aligned with the X axis, as shown in the above

figure. Regarding the un-deformed bar, also called initial reference or original

configuration, the strains of the bar are taken to be zero. This bar is then pulled by applying

an axial force. The un-deformed and deformed configurations are shown offset for

visualization convenience. In this new configuration, also called deformed or current

configuration, the bar’s length becomes L = L0 + δ, where the elongation of the bar is δ = L

− L0. Then, the average axial strain over the whole bar is defined as:

 (Eq. 7)

Where, Lref is the reference length selected for the strain computation. The two

conventional choices are Lref = L0 for Lagrangian strains, and Lref = L for Eulerian strains.

The former is that commonly applied in solid mechanics and structures. The latter one is

usually used fluid mechanics. In our experiment, we specified the Lref to be L0 for

Lagrangian strains.

 Point Strain Computing

The strain at a point is obtained by a limit process. For the un-deformed bar, we

mark two points: P and Q separated by a small but finite distance

x, as shown in the figure below. Then, the bar is pulled to the deformed configuration as

shown in the Figure 7. (b).

26

Figure 7. Undeformed and deformed bar configuration for point strain computation

(“Strain”. IAST.Lect04. Web. 26 Mar. 2015)

The P and Q points have moved to P’ and Q’. The axial displacements are uP=u and

uQ=uP+(uQ−uP)=u+△u, respectively. The strain at P can be obtained through taking the

limit of the average strain over x as this distance tends to zero. The computation formula is

given as:

 (Eq. 8)

This formula is also called the strain-displacement equation. It can be applied to

compute strains directly by differentiation of the displacement. The formula is shown as

below:

 (Eq. 9)

Where, u is the displacement value of the X direction. ЄXX is the strain along the

same direction. This formula can be used for computing the point strains for each direction

of the images.

CHAPTER 3: PROBLEM STATEMENT AND OBJECTIVE

Figure 8 below shows how the feature detection and matching procedure is

27

applied to measure the deflections and strains.

Figure 8. Framework of measuring deflections and strains from images

Different algorithms might be applied in the feature detection and matching

procedure, however, the performance of the algorithms has not been compared for

28

measuring in-plane deflections and strains of civil infrastructures in terms of accuracy

and efficiency. To identify the optimal feature detection and matching algorithm for the

visual sensing-based method, we need evaluate the three selected feature detection and

matching algorithms DIC, SIFT and SURF.

As also introduced in Chapter 2, there are two types of feature detection and

matching algorithms can be applied for the measuring task, The first type is feature-based

method (SIFT, SURF, etc.). The reason why we selected SIFT and SURF algorithms to

test in our experiments is because previous relevant research has revealed that the SIFT

and SURF detectors and descriptors have priority over other detectors and descriptors

(Zhu and Davari 2014), such as HOG (Histogram of Oriented Gradients) and GLOH

(Gradient Localization Oriented Histogram) etc. Another type of algorithm is pixel-based

method digital image correlation (DIC). DIC algorithm has shown great potential to

measure deformations in mechanical field (Zhao et al. 2012). However, the performance

of this algorithm in civil infrastructure applications still has not be identified due to the

distinct differences between civil engineering and mechanical fields. Civil infrastructure

applications, such as tunnels or dams, are usually in much greater scales than that of

mechanical applications. This also may cause the uncertainty of applying DIC algorithm

in civil engineering field. Besides, speckle patterns are usually used for DIC algorithm in

mechanical applications (Bornert et al, 2009); whereas the speckle patterns are actually

not appropriate to be utilized for civil infrastructure applications. As a result, to further

identify whether DIC algorithm can still reveal great potential to be utilized to measure

deflections and strains of civil infrastructures, we need apply and compare the DIC

29

algorithm with the settings suitable for civil infrastructure applications with feature-based

matching algorithms, such as SIFT and SURF.

Specifically, all the three algorithms can be used in detecting and matching

variance that occurs on the surfaces of structure members. However, which one is the

most appropriate for implementation of measuring the dynamic deflections and strains of

civil infrastructures is unknown in terms of accuracy and efficiency. In order to address

this problem, firstly, the algorithms should be implemented with suitable parameter

setting for measuring civil infrastructures. After the algorithm implementing procedure,

the accuracy and efficiency performance of three algorithms need to be evaluated in a

detailed manner. To fill the gap, a series of experiments are designed through using both

synthetic images and industrial images as the dataset to test the three algorithms. Next,

the accuracy and efficiency comparison work is to be conducted in order to determine the

optimal algorithm.

In addition, for the purpose of validating whether the determined optimal feature

detection and matching algorithm is applicable to measure deflections and strains for real

world civil infrastructures, real world scenario testing needs to be conducted based on the

optimal algorithm (it could be determine in the evaluation work that the DIC algorithm is

the optimal feature detection and matching algorithm for our case). Therefore, the second

section of our research attempts to apply the DIC-based algorithm to measure deflections

and strains for real world scenarios and LVDT experiment is designed and conducted to

accomplish the research goal (the experimental data is collected in the concrete lab at

West Virginia University). In detailed discussion and analysis work is also conducted to

30

further validate the applicability and its accuracy performance of the proposed DUC-

based visual sensing method for measuring deflections and strains of civil infrastructure

applications.

CHAPTER 4: EXPERIMENTAL DESIGN

In this section, firstly, a series of experiments are designed and carried out in

order to test the performance of the three presented feature detection and matching

algorithms. These experiments can be divided into two groups: 1) synthetic image

testing; 2) real world scenario testing. For group 1, three images of civil structures are

first selected. Then, their corresponding synthetic images include translation subset,

rotation subset; illumination changes subset and deformation subset are generated to

provide the ground truths. Image processing programs are designed and implemented in

MATLAB platform to achieve the translation, rotation, changing illumination and

deformation processes.

4.1 Comparison experiments for evaluating feature matching algorithms

 Overview

The following flow chart presents the overall procedure of conducting the

comparison experiment. As shown in the figure below, digital camera Canon 5D mark III

is employed in our experiment to capture experimental dataset. In the figure, the first part

is about data collection, namely, applying our digital/industrial cameras to capture a

series of images frames of the targets. The second part is data processing, including

image feature detection and matching, ground truth generation. The third part is about

31

experimental results.

Figure 9. Framework of conducting comparison experiment for the three algorithms

4.1.1 Original digital image dataset

Three images with different scenarios were selected in our research as shown in

Figure 10. Image (a) is a part of a concrete bridge in the field; image (b) is a constructed

mock-up bridge in the lab; image (c) is an in-building structure at a construction site.

32

Figure 10. Original image dataset

4.1.2 Synthetic image dataset

The translation subset is designed to test the performance of the algorithms to deal

with the in-plane translation (deflection) of the scenarios. The images of translation

subset are shown in Figure 11.(a). Rotation subset is designed to test the performance of

the algorithms when facing with the in-plane rotation of the scenarios. Figure 11.(b)

shows the images of rotation subset. Furthermore, Illumination changes subset is for

assessing the algorithm performance in dealing with illumination changes when the

pictures are captured under different lighting condition. The illumination changed images

is generated by operating Xnview image software based on the synthetic images with 5

pixels deflection. The illumination subset is important since the algorithms are expected

to have the ability to measure the scenarios under different light conditions during the

daytime. These illumination changes subset images are shown in Figure 11.(c).

 +3 pixels +5 pixels +8 pixels

(a) Vertical deflection: respectively 3 pixels, 5 pixels 8 pixels deflection of original image

33

 +0.5 deg +1 deg +1.5 deg

(b) Clockwise rotation: respectively 0.5, 1 and 1.5 degree rotation of original image

 -50 lex +50 lex

(c) Illumination changes: respectively 50 Lex less illumination and 50 Lex more illumination

images based on original image

Figure 11. Synthetic Image dataset

The experimental subsets presented above are all about linear transformations of

the original dataset. However, as well known, in the real world the observed targets

cannot always be as preforming linear transformation. Therefore, the following

experimental subset is designed to deal with non-linear transformation scenarios.

The synthetic deformed images are generated by the specified deformation

functions:

 (Eq. 10)

 (Eq. 11)

The functions above are employed to add sinusoidal deformation to the original

dataset. Where, function (1) is used to add vertical sinusoidal deformation; similarly,

34

function (2) adds horizontal sinusoidal deformation to the original images.

In this functions, (x, y) are the coordinates of the original image points and (u, v),

(u′, v′) are the coordinates of corresponding points in the deformed image. The

deformation scale factor µ is set to be 5.0 in this experiment. Pi is the circumference

ratio, and h and w are the height and width of the images. The deformed synthetic images

are shown in Figure 12.

 (a) Original images (b) Deformed images

Figure 12. Sinusoidal function deformed image dataset

4.1.3 Real world scenarios testing and deflection measuring

In this experiment, Manta G-233-B industrial camera with a 2/3 inch COMS

35

sensor and a 50 mm fixed focal length lens were used. We captured two groups of indoor

scenario images under operating the servo-hydraulic fatigue testing machine (INSTRON

8501) in our concrete laboratory. The two groups of images captured by the industrial

camera are shown in Figure 13.

 Vertical - 2 mm Vertical -3 mm

 Vertical - 2 mm Vertical -3 mm

 Vertical - 2 mm Vertical -3 mm

 Vertical - 2 mm Vertical -3 mm

36

(a) Group 1 (b) Group 2

Figure 13. Industrial camera images of real world scenarios in concrete lab

4.2 Measuring deflections and strains for real world scenarios

 Overview

In this section, several experiments are designed to compute the deflections and

strains for real world scenarios by applying images correlation-based algorithm. After

computing the deflections and strains, these experimental results will then be used to

compare with the ground truth data. Then the performance of our method can be

evaluated in this way.

The following flow chart presents the overall procedure of the experiment. As

shown in the figure below, industrial camera Manta G-223B is employed in our

experiment to capture the experimental dataset. In the figure, the first part is data

collection. The second part is data processing, including image feature detection and

matching, ground truth recording and the third part is about experimental results.

37

Figure 14. Framework of measuring deflections and strains for real world scenarios

4.2.1 Data collection

To collect the experimental data, we conducted LVDT (Linear Variable

Differential Transformer, also called differential transformer, which is a device typically

used for measuring linear displacement) experiment with INSTRON concrete

compression machine in the structural/concrete lab at West Virginia University. The

following figure is an image taking when we are conducting the LVDT experiment in the

concrete lab.

38

Figure 15. Industrial camera set up and LVDT configuration

The data collection procedures mainly includes industrial camera (Manta G-

223B) set up and configuration, LVDT installation and recording configuration, and

INSTRON compression machine configuration and operation as well. The image data

captured by the industrial camera will be instantly transmitted and stored in the laptop’s

hard drive.

Figure below is an image of the testing concrete sample with LVDT devices

installed on it. This concrete testing sample was made by technician from WVU

structural group. The LVDT devices (two LVDT devices used for the concrete sample, as

shown in the figure below, left and right sides of the sample were installed one device,

respectively) have been installed onto the testing sample, and then the concrete sample

was placed on the INSTRON hydraulic machine for compression experiment.

39

Figure 16. Experimental specimen and LVDT equipment

4.2.2 Industrial image dataset

The images of concrete testing sample as shown in the figure blow are single-

view images captured by the industrial camera during the experiments. From image (a) to

image (f), the concrete sample was compressed by the machine by specifying 0.0008 inch

displacement between each two neighboring images.

 (a) (b)

40

 (c) (d)

 (e) (f)

Figure 17. Real world industrial image dataset of concrete sample

4.2.3 Data pre-processing

After obtaining the industrial image dataset shown in last section, firstly, we

applied the image correlation-based algorithm to detect and matching the corresponding

features in the image frames. Then, based on the positions of the feature points,

deflection/displacement can be calculated for each pair of corresponding feature points.

The following figure is the operation interface of the image correlation-based

algorithm. It is built upon Dr. Zhao’s previous work (Zhao et al. 2012). In this algorithm,

different region of interest (ROI) and related local parameters that are suitable for

processing the images of civil infrastructure applications are adjusted in the experiments.

41

Figure 18. Image correlation-based algorithm operation interface

The figure below shows the processing window of the image correalation-based

algorithm. From the figure, we can see it is a win32 console program, in which totally 49

points of interest (POI) are specified for the current processing precedure. The algorithm

attempts to search the correspodning feature poins for each point of interest iteratively.

Corresponding features, namely, is the feature points in defferent images that correspons to

the same object points in the real world.

42

Figure 19. Processing window of the image correlation-based algorithm

4.2.4 In-plane displacement calculation

After we get the corresponding features for the image frames, the deflection/

displacement values can be calculated based on the positions of corresponding feature pairs

located in defferent image frames.

As presented in section 2.2.3, dispalcement values can be calculated by substracting

the image coordinates of corresponding feature points in the images. Here, we obtain the

displaceent results are pixel displacement of the object in the image coordinate system.

However, after specifying the camera capture distance and foucal length of camera lens, the

image-scale pixel displacement can be reclaculated in real world scale.

The figure shown below presents the Matlab program implemented to calculate the

sparse displacement field based on the processing result obtained by the image correaltion-

based algorithm.

43

Figure 20. Scatter points for displacement calculation

The scatter points shown in the above figure are the previously introduced points of

interest (POI). Thus, after the image correlation processing procedure, we got the

corresponding feature points in deffrent image for those POIs.

Then, the displacement values can be calculated based on the corresponding

features. The calculated results can be visualized as displacement arrow map. As shown in

the figure below.

44

Figure 21. Displacement arrow map

the origins of the arrows are the points of interest (POIs), the direction of the arrows

refer to the directions where dispalcement happening, and the lengths of the arrows are

displacement values. Therefire, this arrow map actually is a vector diagram for representing

in-plane displacement field, in which the arrow derections are the directions of

displacement vectors and the leagths of the arrows represent the quantity value of

displacement vectors.

4.2.5 In-plane strain computation

After obtaining the sparse displacement field, actually sparse in-plane can also be

45

computed based on those displacement values. However, in order to generate much more

accurate and smoothing dense strain field, optimized interpolation method is

implemented and employed in the strain computation procedure. The figure below shows

the intuitive difference before and after applying the interpolation algorithms for the

strain optimization work.

(a) Before (b) After

Figure 22. Strain maps before and after applying interpolation algorithm

As we can see in the above figure, the strain map getted before the interpolation

procesure has sharp edges, which means the strain values in the map is not changing

smoothly. In this case, the strain values obtained for the points other than the points of

interest (POIs) are not accruate. On the other hand, the strain map generated after the

interpolation procedure has very smoothing edges, in outher words, the strain values in the

map change gradually and continuously, which is more reasonabe when accounting the real

wrorld strain disctributions.

46

CHAPTER 5: EXPERIMENT RESULT AND EVALUATION

5.1 Accuracy comparison of digital image groups

The accuracy criterion for comparing the three algorithms is based on calculating

the absolute differences (errors) between the measured transformed values (experimental

processing results) through applying the algorithms and their corresponding ground

truths. Besides, the time efficiency of the three algorithms is also evaluated by recording

and comparing the algorithms’ running time when processing different groups of testing

scenarios.

The figure below shows the feature detection and matching results of the three

algorithms, from which we can also observe that the region of interest (ROI) can be

specified in the DIC algorithm. While the SIFT and SURF algorithms only automatically

selected a series of random features in the images.

(a) DIC processing result

47

(b) SIFT processing result

(c) SURF processing result

Figure 23. Processing results of DIC, SIFT and SURF algorithms for rotation group

5.1.1 Measurement accuracies of linear deflected scenarios

To compare the accuracy performance of the algorithms, this section shows the

statistical results of measuring accuracy. The following table shows the accuracy of the

three algorithms when processing linear deflected scenarios, including translation,

rotation and illumination changing groups. The data in the table is error percentages that

48

are calculated through dividing absolute errors by the corresponding ground truth.

Table 2. Error percentages of different image scenes: (a) Translation; (b) Rotation; (c)

Illumination changes

Translation

(%)

3 pixels 5 pixels 8 pixels

Scene 1
Scene

2

Scene

3

Scene

1

Scene

2

Scene

3

Scene

1
Scene 2

Scene

3

DIC 0.0311 0.0003 0.5587 0.0045 0.0001 0.0124 0.0362 0.0259 0.0339

SIFT 0.1252 0.2914 1.4079 0.5825 0.1743 0.8446 0.4822 0.0890 0.5279

SURF 12.5417 8.0829 8.8976 5.6888 4.3751 5.0000 0.5072 0.2331 0.0586

(a)

Rotation

(%)

0.5 degree 1 degree 1.5 degree

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 17.6293 15.9105 16.7992 17.545 15.1788 16.3858 16.7685 14.8734 15.3340

SIFT 25.3056 24.3408 25.8251 25.397 23.9278 24.3075 24.5719 23.1111 23.2874

SURF 24.8862 25.0558 25.5584 24.0299 22.6295 24.1035 23.8335 22.0336 22.6595

(b)

Illumination

(%)

Less-Illumination Normal-Illumination More-Illumination

Scene

1

Scene

2

Scene

3

Scene

1

Scene

2

Scene

3

Scene

1

Scene

2

Scene

3

DIC 0.0043 0.0813 0.0023 0.0045 0.0001 0.0124 0.0045 0.0001 0.014

SIFT 0.5825 0.1803 0.8446 0.5825 0.1744 0.8446 0.5825 0.1803 0.8446

SURF 6.1731 4.3751 5.6578 5.6888 4.3751 5.0000 5.7403 4.3751 5.219

(c)

5.1.2 Measurement accuracies of non-linear deformed scenarios

Above three groups of experiments are designed for linear deflected scenarios.

However, deflections of civil infrastructure applications in our real world can not always

be considered as scenraios only with linear deflcetions. Therefore, anohter group of

experimetn is conducted to testing the performace of processing non-linear case. Here we

use the deormed image dataset, which has presented in 4.1.2 section.

The following figure presnets an example of the processing results of the threee

feature detection and mathcing algorithms for the deformed scenarios.

49

(a) DIC processing result

(b) SIFT processing result

(c) SURF processing result

50

Figure 24. Processing results of DIC, SIFT and SURF algorithms for deformation group

The experimental processing results of the three different deformed scenes are

shown in the table below. The data in the table is error percentages calculated through

dividing the errors by the ground truths.

Table 3. Error percentages of the three algorithms for

 different deformed scenarios

Deformation

(%)
Scene 1 Scene 2 Scene 3 Average

DIC 17.5012 18.8390 18.5891 18.3098

SIFT 19.9427 26.1856 27.3290 24.4858

SURF 19.5472 25.6559 26.3965 23.8665
(d)

5.2 Measuring error distributions

The measuring error distributions (standard deviation (ð) of the errors) are

observed and calculated for each experimental subset. This procedure aims at reflecting

the deviation that lies in the errors. It can help to evaluate the stability of the algorithms

in terms of their processing errors. The results are shown in Figure 25.

(a)

51

(b)

(c)

(d)

Figure 25. Feature point error distributions standard deviation: (a) Translation; (b)

Rotation; (c) Illumination changes; (d) Deformation

52

5.3 Efficiency comparison

The time efficiency of the algorithms is also taken into account to evaluate the

overall performance of the feature detection and matching algorithms. The running time

of the algorithms was presented in Table 4. The unit of the data is in second.

Table 4: Running time of the three algorithms for different image scenarios: (a)

Translation; (b) Rotation; (c) Illumination changes

Translation

(sec)

3 pixels 5 pixels 8 pixels

Scene

1
Scene 2

Scene

3
Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 5.979 4.894 4.148 5.733 5.285 4.584 12.356 12.253 12.435

SIFT 1.046 1.05 1.023 1.045 1.342 1.277 1.025 1.062 1.543

SURF 0.982 0.981 0.961 0.983 0.958 0.957 0.982 0.975 0.960

(a)

Rotation

(sec)

0.5 degree 1 degree 1.5 degree

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 11.446 11.666 9.982 11.687 11.788 11.927 12.396 12.408 12.396

SIFT 0.99 0.98 0.991 1.035 1.083 1.053 1.042 1.098 1.022

SURF 0.941 0.959 0.944 0.982 0.955 0.997 0.995 0.997 0.994

(b)

Illumination

(sec)

Less illumination Normal illumination More illumination

Scene 1
Scene

2
Scene 3 Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

DIC 5.733 5.285 4.584 4.974 5.261 5.986 5.898 4.962 5.365

SIFT 1.0446 1.3417 1.277 1.1256 1.235 1.338 1.261 1.325 1.167

SURF 0.983 0.952 0.958 0.978 0.951 0.952 0.979 0.956 0.951

(c)

The figure below visualized the data in above table by histograms. From the

figure, we can observe that the running time values of SURF algorithm are the smallest

among the three algorithms. Both SIFT and SURF algorithms’ running time for these

three scenarios is around 1 second, which actually can be considered as real-time or near

real-time processing.

However, for the DIC algorithm, the running time of rotation group is over 10

53

seconds. For other groups, DIC algorithm also needs over 5 seconds to process the

experimental data. Therefore, the efficiency of SIFT and SURF algorithms are much

higher than that of DIC algorithm from these comparison results.

(a) Translation scenarios

 (b) Rotation scenarios

(c) Illumination changing scenarios

54

Figure 26. Efficiency comparisons of the three algorithms for (a) Translation scenarios,

(b) Rotation scenarios, and (c) Illumination changing scenarios

5.4 Error estimation in real world scale

Based on the imaging principle of optical camera, the pixel-based errors can be

converted into real world scale by specifying different image resolutions at the given

camera capture distances.

The digital camera employed in our experiments is Canon 5D mark III which

equips with a 36×24 mm full-frame CMOS sensor. The camera lens adopted in the

experiments has a 30 mm fixed focal length. The capturing distance is set to be 5 meters.

By specifying different image resolutions (5760×3840, 2880×1920, 1920×1280,

720×480), the errors in real world scale can be calculated based on the pixel-based errors

reported in section 5.1. As shown in Table 5, the errors are in millimeter scale.

Table 5. Real world scale error estimation (camera capture distances: 5 m)

Resolution: 5760×3840

Real-world error

estimation (mm)
Translation Rotation Illumination Deformation

DIC 0.0038 0.4293 0.0009 0.5992

SIFT 0.0258 0.6413 0.0279 0.8013

SURF 0.2575 0.6128 0.2738 0.7810

Resolution: 2880×1920

Real-world error

estimation (mm)
Translation Rotation Illumination Deformation

DIC 0.0076 0.8586 0.0019 1.1983

SIFT 0.0516 1.2826 0.0558 1.6025

SURF 0.5150 1.2256 0.5476 1.5620

Resolution: 1920×1280

Real-world error

 estimation (mm)
Translation Rotation Illumination Deformation

DIC 0.0114 1.2879 0.0028 1.7975

SIFT 0.0773 1.9240 0.0837 2.4038

SURF 0.7726 1.8383 0.8214 2.3430

Resolution: 720×480

55

Real-world error

estimation (mm)
Translation Rotation Illumination Deformation

DIC 0.0304 3.4344 0.0074 4.7934

SIFT 0.2062 5.1306 0.2233 6.4102

SURF 2.0601 4.9022 2.1903 6.2481

Based on the error data presented in the above table, the statistical histograms are

generated to reveal the error estimation for the three algorithms intuitively. The bin-plot of the

estimation errors is shown in Figure 27.

Figure 27. Real world scenario testing results of the three algorithms for synthetic images with

different resolutions

5.5 Real world scenario testing

56

Two groups of experiments were conducted in our concrete laboratory at WVU to

further test the three feature detection and matching algorithms. The instrument employed

in the experiments is Manta G-233-B industrial camera with a 2/3 inch COMS sensor,

and a 50 mm fixed focal length lens was used. The image dataset has been presented in

4.1.3 section. The images in group 1 are taken with 15.4 pixel deflection (equals to 2 mm

displacement in real world) between each two neighboring images, and the images in the

second group 2 are taken with 22.9 pixel deflection (3 mm real world displacement

interval). All the testing images used in the experiments have a 2048*1088 resolution.

The figure below shows the examples of feature detection and matching results of

the three algorithms for industrial image groups.

(a) DIC processing result

(b) SIFT processing result

57

(c) SURF processing result

Figure 28. Processing results of DIC, SIFT and SURF algorithms for deformation group

The three feature detection and matching algorithms were respectively employed

to process the two groups of industrial images. The processing results are presented in

Table 6. The data in the table is pixel-based processing errors.

Table 6. Pixel-level errors of the algorithms for industrial images

Group 1

Average

Error

(pixel)

15.4 pixels

(2 mm)

translation

30.8 pixels

 (4 mm)

translation

46.2 pixels

(6 mm)

translation

61.6 pixels

(8 mm)

translation

Average Error

of the

algorithm

DIC 0.0421 0.1716 0.1605 0.0400 0.1036

SIFT 0.3734 0.3212 0.2488 0.2470 0.2976

SURF 0.1452 0.2624 0.2388 0.2840 0.2326

Group 2

Average

Error

(pixel)

22.9 pixels

(3 mm)

translation

45.8 pixels

(6 mm)

translation

91.6 pixels

(12 mm)

translation

114.5 pixels

(15 mm)

translation

Average Error

of the

algorithm

DIC 0.2112 0.0831 0.3764 0.2334 0.2260

SIFT 0.4052 0.4626 0.6760 1.0112 0.6388

SURF 0.3817 0.3016 0.4509 0.6426 0.4442

Then, to compare the error performance more intuitively, the line char of avergae

erros of the three algorithms is reproted in the figure below.

58

(a) Group 1

(b) Group 2

Figure 29. Pixel-level processing errors of the three algorithms for industrial images of

real world scenario

Based on imaging principle, the capturing distance of the industrial images is

calculated to be 0.95 meter. Additionally, by specifying different camera capture

59

distances, the pixel-based errors in Table 6 can be re-calculated into real world in

millimeter scale. Table 7 presents the computing results.

Table 7. Real world-scale errors of the three algorithms

for processing industrial images

Group 1 (Real camera capture distance is 0.95 m)

Average error

(mm)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total

Average

DIC 0.0055 0.0223 0.0208 0.0052 0.0135

SIFT 0.0485 0.0417 0.0323 0.0321 0.0386

SURF 0.0189 0.0341 0.03 0.0369 0.0302

(Estimated camera capture distance is 5 m)

Average error

(mm)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total

Average

DIC 0.0301 0.1226 0.1146 0.0286 0.074

SIFT 0.2667 0.2294 0.1777 0.1764 0.2126

SURF 0.1037 0.1874 0.1706 0.2028 0.1661

(Estimated camera capture distance is 10 m)

Average error

(mm)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total

Average

DIC 0.0605 0.2465 0.2305 0.0575 0.1488

SIFT 0.5364 0.4614 0.3573 0.3547 0.4275

SURF 0.2086 0.3769 0.343 0.4079 0.3341

(Estimated camera capture distance is 30 m)
Average error

(mm)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total

Average

DIC 0.1821 0.7418 0.6937 0.173 0.4476

SIFT 1.6139 1.38832 1.0753 1.0674 1.2862

SURF 0.6277 1.1342 1.032 1.2274 1.0053

(Estimated camera capture distance is 50 m)

Average error

(mm)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total

Average

DIC 0.3036 1.237 1.1569 0.2885 0.7465

SIFT 2.6915 2.3153 1.7932 1.7801 2.145

SURF 1.0468 1.8915 1.7211 2.0469 1.6766

Group 2 (Real camera capture distance is 0.95 m)

Average error

(mm)
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Total

Average

DIC 0.0277 0.0109 0.0493 0.0306 0.0296

SIFT 0.0531 0.0606 0.0886 0.1325 0.0837

SURF 0.05 0.0395 0.0591 0.0842 0.0582

60

(Estimated camera capture distance is 5 m)

Average error

(mm)
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Total

Average

DIC 0.1522 0.0599 0.2712 0.1682 0.1629

SIFT 0.292 0.3333 0.4871 0.7286 0.4602

SURF 0.275 0.2173 0.3249 0.463 0.3201

(Estimated camera capture distance is 10 m)

Average error

(mm)
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Total

Average

DIC 0.306 0.1205 0.5453 0.3382 0.3275

SIFT 0.5871 0.6703 0.9795 1.4651 0.9255

SURF 0.553 0.437 0.6534 0.931 0.6436

(Estimated camera capture distance is 30 m)

Average error

(mm)
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Total

Average

DIC 0.9209 0.3625 1.6409 1.0176 0.9855

SIFT 1.7666 2.01692 2.9474 4.4085 2.7849

SURF 1.6641 1.3148 1.966 2.8014 1.9366

(Estimated camera capture distance is 50 m)

Average error

(mm)
Scenario 5 Scenario 6 Scenario 7 Scenario 8

Total

Average

DIC 1.5357 0.6045 2.7364 1.6971 1.6434

SIFT 2.9461 3.3636 4.9153 7.3519 4.6442

SURF 2.7752 2.1927 3.2786 4.6718 3.2296

Based on the computing results shown in the above table, the line chart of the real

world scale average errors for the three algorithms has been generated and shown in the

figure below.

61

Figure 30. Real world scale processing errors of the three algorithms

In the figure above, the processing average errors of the three algorithms (DIC,

SIFT and SURF) are presented for images of group 1 and group 2, separately. The camera

capture distances are specified to be the 5m, 10m, 30m and 50m for estimating the

processing errors when the camera station is from different distances to the target.

5.6 Measuring deflections and strains for real world scenarios

The image dataset of real world scenarios used for measuring deflections and

strains has been presented in 4.2.2 section.

The methodology proposed in 2.2.3 section has been implemented in MATLAB

62

platform to generate a user interface for the deflection and strain computing process. The

figure below shows the user interface.

Figure 31. User interface for computing in-plane deflections and strains

 Deflection measuring results

The industrial image dataset reported in section 4.1.3 was used for measuring in-

plane deflections. There are 2 groups of image data, the ground truth of group 1 is 2 mm

(15.4 pixel image-based deflection) real world vertical deflection between each

neighboring images, and for group 2, the ground truth is 3 mm real world deflection (22.9

pixel image-based deflection) along vertical direction.

The average errors for deflection measuring are presented in the table below. Both

the pixel-based errors and real world scale errors are reported.

63

Table 8. Average errors of measuring deflections for real world scenarios

Table 9. Accuracy of measuring deflections for real world scenarios

Deflection measuring accuracy

Error

percentages

Ground

truth 2 mm

Ground

truth 4 mm

Ground

truth 6 mm

Ground

truth 8 mm

Average Error

percentages (%)
Accuracy

Group 1 0.2772 0.5516 0.3444 0.0591 0.3081 0.9969

Group 2 0.8986 0.1673 0.3868 0.2084 0.4153 0.9958

 Strain measuring results

After the deflection measuring testing, we conducted another several groups of

experiments to test the performance of the proposed method to measure in-plane strains

for real world scenarios. The industrial image dataset has been presented in 4.2.2 section.

In this experiment, we use LVDT (Linear Variable Differential Transformer) to record the

ground truth data which will be used to evaluate the processing results of the experiment

The figure below shows the processing results. The displacement maps as shown

in Figure 32 reflect the sparse displacement field of the moving surface members of the

target. There are 49 (7 by 7) points are specified to compute the displacement. The

directions of the arrows represent the directions of the displacement of these points, and

the length of the arrows represents the quantity value of the displacement.

Average error for deflection

Group 1

Ground Truth
15.4 pixels

(2 mm)

30.8 pixels

(4 mm)

46.2 pixels

(6 mm)

61.6 pixels

(8 mm)
Average

DIC
Average err (pixel) 0.0421 0.1716 0.1605 0.04 0.1036

Average err (mm) 0.0055 0.0223 0.0208 0.0052 0.0135

Group 2

Ground Truth
22.9 pixels

(3 mm)

45.8 pixels

(6 mm)

91.6 pixels

(12 mm)

114.5 pixels

(15 mm)
Average

DIC
Average err (pixel) 0.2112 0.0831 0.3764 0.2334 0.226

Average err (mm) 0.0301 0.1226 0.1146 0.0286 0.074

64

(a) (b)

(a) (b)

Figure 32. Displacement maps for measuring the real world scenarios

After computing the displacement field for the sparse points, we need to conduct

the interpolation procedure as described in section 4.1.3, and bilinear interpolation is

adopted in our method. Then, strain maps can be generated based on the displacement

65

filed after interpolation. The figure below show the final strain maps after interpolation

for the real world testing scenarios.

(a) (b)

(a) (b)

Figure 33. Strain maps for measuring the real world scenarios

 Measuring accuracy

The processing results were compared with the ground truth data that are

66

recorded by the LVDT devices. As shown in the industrial image dataset in section 4.2.2,

the LVDT devices were install on the left and right side of the testing sample. Therefore,

we compared our processing results with the ground truths from LVDT devices. 4 groups

of experiments were conducted in this section. The following table shows the

experimental results.

Table 10. LVDT experimental results

LVDT experiment Group 1 Group 2 Group 3 Group 4 Average

LVDT values (inch) 0.00401 0.004 0.004 0.004 0.004

Strain ground truth 0.000501 0.0005 0.0005 0.0005 0.0005

Loading stress (psi) 2166.08 2210.37 2159.17 2055.88 2147.88

Young's modulus (Kpsi) 4321.36 4420.74 4318.34 4111.76 4293.05

Average strain (measured) 0.000529 0.000562 0.000555 0.000406 0.000513

Error percentages 0.0562 0.1249 0.1104 0.1879 0.1198

Accuracy 0.9438 0.8751 0.8896 0.8121 0.8802

The figure below shows the accuracy distribution of measuring the in-plane

strains for the real world scenarios. The ground truth of the strains recorded by the LVDT

device is 5×10
-4

 for each single group of industrial images. The blue points plotted in the

figure below are the measured point-strain values along the vertical direction of the

images. The red line is the average strain ground truth. This figure is used for

representing the accuracy distribution of the calculated strains.

67

(a)

(b)

Group 1

Group 2

68

(c)

(d)

Figure 34. Point strain distribution: (a) group 1, (b) group 2, (c) group 3, (d) group 4

Group 3

Group 4

69

To quantitatively compare the in-plane strain measuring accuracy, firstly, the error

percentages of the experimental results were computed by applying the following

formula:

 Error percentage = (Measuring value – Ground truth)/Ground truth (Eq. 12)

Then, the accuracy of the algorithm can be calculated based on the formula give as

below:

 Measuring accuracy = 1 – Error percentage (Eq. 13)

The table below reports the strain measuring accuracy and the error standard

deviation of the 4 experimental groups.

Table 11. Strain measuring accuracy for the 4 groups of experiments

 Strain measuring accuracy

Strains
Group 1 Group 2 Group 3 Group 4 Average Ground truth

0.000529 0.000562 0.000555 0.000406 0.000513 0.000501

Accuracy
Group 1 Group 2 Group 3 Group 4 Average accuracy

0.9425 0.8765 0.8909 0.8111 0.8802

Error

STD

Group 1 Group 2 Group 3 Group 4 Average standard deviation

0.000125 0.000101 0.000085 0.000133 0.000111

As shown in the table above, the average accuracy of measuring strains for these

groups of experiments is around 88%. The average standard deviation value of the

measuring errors is around 1.11×10
-4

 while the ground truth of average strain is recorded

as 5.01×10
-4

.

5.7 Integrated user interface for measuring in-plane deflections and strains

70

We have implemented an integrated user interface for the deflection and strain

measuring procedures with Matlab GUI programing, from camera initial parameter

configuration to data collection, data processing, and to the generation of displacement

maps and strain maps. The figure below shows the integrated user interface.

Figure 35. Integrated user interface for measuring in-plane deflections and strains

In the user interface shown above, there are three main parts. The first part is about

camera initialization parameters configuration. We also integrate the external time trigger

CC320 into our measuring system for highly precise dual camera-synchronization. The second

part includes data collection (two adaptive windows for image capturing) and the captured

image data visualization. The third part is about data processing (deflections and strains

computation) and result visualization (generation of displacement maps and strain maps).

71

CHAPTER 6: DISCUSSION AND ANALYSIS

6.1 Algorithm accuracy performance

From Table 2 and Table 3, we can see that DIC achieved the best accuracy

performance among all of the testing groups including translation, rotation, illumination

changes and deformation. SIFT led to more accurate measurements than SURF in

translation and illumination changes scenarios. In terms of the rotation and deformation

scenarios, the performance of SIFT and SURF is not as good as that of DIC algorithm.

6.2 Algorithm efficiency performance

The running time of the algorithms processing different datasets is shown in Table

4. All the images processed in the efficiency experiments have the resolution of 501×501

pixels. From Table 4, the three algorithms’ running time for different scenarios

(translation, rotation, and illumination change) has little difference. This result indicates

that scenario differences have relatively small influence on the time efficiency of the

algorithms.

However, the running time of the three algorithms when processing the same

scenario is quite different. From the results in Table 4, SURF achieved the best time

efficiency among these three algorithms. SIFT is the second. The time complexity of DIC

is not as good as SURF and SIFT. The average running time of SURF algorithm is around

0.9 second and the running time of SIFT algorithm is around 1 second. The running time

of SURF and SIFT can be considered to be real time or near real time. However, the

running time of DIC varies with different scenarios; it is around 5 seconds in illumination

72

change group, and around 12 seconds in rotation and 8 pixel translation groups.

6.3 Error estimation in real world scale

In Table 5, the image pixel errors were computed into real-world metric

measurements. As for translation subset, when the camera capture distance is 5 m from

the target with a 5760×3840 image resolution, the error in real world scale is

approximately 0.004 mm for DIC algorithm. With the image resolution reducing, the real

world-scale error increases to 0.03 mm with a 720×480 resolution. Similar results can be

observed in rotation, illumination changes and deformation sunsets. As a result, regarding

the same algorithm, the real world accuracy is positively correlated with image

resolution.

In addition, comparing the real-world accuracy between different algorithms, we

can see that DIC algorithm achieved the best accuracy performance among the three.

SURF obtained the worst accuracy performance. Especially, when the image resolution is

reduced to 720×480 pixels, the real world-scale error of SURF algorithm for dealing with

translation scenarios is over 2 mm that is much higher than that of DIC and SIFT.

In particular, all of the three algorithms seem to have difficulties in processing the

rotation and deformation subsets when the images have relatively small resolution. For

example, in deformation subset, when the image resolution is 720×480, the accuracy

performances of all three algorithms are over 4 mm. As a consequence, these algorithms

still call for further improvement to overcome this limitation.

6.4 Real world scenario testing

73

From the results shown in Table 5, the DIC algorithm achieved the best accuracy

performance among the three algorithms for processing the real world scenarios. It can

obtain an average accuracy within 0.5 pixel that is much higher than that of SURF and

SIFT. SURF algorithm obtained the second best accuracy results. SIFT revealed the worst

accuracy performance among the three algorithms. The average error of SIFT is around 3

times of result of DIC algorithm.

In terms of the real world scale estimation of the average errors shown in Table 6

and Table 7, the DIC algorithm still reveals superiority among the three algorithms,

SURF algorithm is the second, while the accuracy performance of SIFT algorithm

actually is not as good as DIC and SURF. For instance, when the capturing distance is 50

meter, the average error of SIFT in real world scale is even over 7 mm that is considered

to be meaningless for our research task.

6.5 Measuring deflections and strains

In section 5.6, to further validate the feasibility and measuring accuracy

performance of our proposed image correlation-based algorithm, several groups of

experiments were conducted. From Table 8 and Table 9, we can see the accuracy of

measuring in-plane deflections is 99.69% for the first group experiment, and a 99.58%

accuracy performance of the second group. The first group experiment used the dataset

with a 2 mm (ground truth) interval between each neighboring industrial image, and the

second group experiment has a 3 mm ground truth interval. These experimental results of

the two groups show the algorithm achieved relatively higher accuracy when processing

74

those scenarios with smaller deflection ground truths.

From the data in Table 10, we can see the average accuracy for measuring strains

of real world scenarios is 88.03%, and the average standard deviation is 1.11×10
-4

, which

is used for evaluating the distribution of measuring errors. The experimental results in

section 5.6 reveals our proposed method can achieve high accuracy to measure in-plane

deflections and strains for real world scenarios.

CHAPTER 7: CONCLUSION AND FUTURE WORK

This thesis proposes to apply visual sensing techniques to measure in-plane

deflections and strains for civil infrastructure applications. It entails applying image

correlation-based algorithm to automatically detect and matching image features which

are used to computing the deflections and strains. A series of experiments were conducted

to compare and evaluate those three feature detection and matching algorithms (DIC,

SIFT, SURF) in order to obtain the optimal one using for our measuring goal. What is

more, several experiments were also conducted for the purpose of further validating the

applicability of the DIC-based method for real world scenarios. The experimental results

reveal that the proposed DIC-based visual sensing method has achieved highly accurate

measuring performance.

As the main contributions of this research, we studied and evaluated the three

feature detection and matching algorithms (DIC, SIFT and SURF) for measuring in-plane

deflections and strains of civil infrastructure applications. The gap of the accuracy and

efficiency performance of applying DIC algorithm to measure in-plane deflections and

75

strains for civil infrastructures has been clearly identified through designing and

implementing the experiments of both synthetic image group and real-world laboratory

scenario group along with comparing to SIFT and SURF algorithms. Also, after finishing

the evaluation work of the algorithms, the accuracy of measuring real-world scale

deflections and strains by applying DIC algorithm is tested through conducting the LVDT

experiment in lab environment. The experimental results reveal that the method can

achieve around 88% measuring accuracy performance. So far, we have also developed an

user interface for the DIC-based deflection and strain measuring method. It integrates all

the involved procedures including data collection (configuring and controlling the Manta

G-223B industrial cameras), data storage and transmission, data visualization, data

processing (image feature detection and matching), in-plane deflection & strain

computing and output visualization (generating displacement maps and strain maps). This

user interface enables the users a better environment to facilitate their efficiency when

applying the visual sensing-based method.

The visual sensing-based method for measuring in-plane deflections and strains is

relatively novel in civil infrastructure health and safety monitoring field. It has several

competitive advantages when comparing with other method (such as wire/wireless sensor

networks). Firstly, this method can generate full-field measurement results (it can obtain

continuous deflections and strains for the whole object). Besides, the cost-effective

equipment and much more convenient set-up procedures will enable engineers to operate

periodically and apply for different scales of civil infrastructure applications. As a result,

this visual sensing-based method is a highly potential alternative to be applied to measure

76

deflections and strains for civil infrastructure applications.

However, the time efficiency of DIC is not as good as expected. It impedes the

effectiveness of applying this method to acquire real-time deflection and strain measuring

results. Therefore, as the future work, the time efficiency of DIC algorithm will be further

investigated in detail and improved by reducing the computing complexity of the

algorithm. Also, this method has not been applied to measure three dimensional real

world scenarios, and the accuracy performance for 3D scenarios is still undetermined. In

addition, some research work is also demanded to identify relations between the

measured deflection/strain values and the safety/integrity situations of civil infrastructure

applications so that our proposed deflection and strain measuring method can be finally

employed to successfully address the widely existed health and safety issues of civil

structures/infrastructures.

77

References

Acharya, T., and Tsai, P. S. (2007). Computational foundations of image interpolation

algorithms. ACM Ubiquity, 8(42).

Alba, M., Fregonese, L., Prandi, F., Scaioni, M., & Valgoi, P. (2006). Structural

monitoring of a large dam by terrestrial laser scanning. International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 6.

Barnes, J., Rizos, C., Kanli, M., Small, D., Voigt, G., Gambale, N., and Lamance, J.

(2004). Structural deformation monitoring using locata. In 1st FIG International

Symposium on Engineering Surveys for Construction Works and Structural Engineering.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features.

Springer Berlin Heidelberg, In Computer Vision–ECCV 2006. 404-417.

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E. (2002). A new algorithm for

surface deformation monitoring based on small baseline differential SAR

interferograms. Geoscience and Remote Sensing, IEEE Transactions on,40(11), 2375-

2383.

Bornert, M., Brémand, F., Doumalin, P., Dupré, J. C., Fazzini, M., Grédiac, M. and

Wattrisse, B. (2009). Assessment of digital image correlation measurement errors:

methodology and results. Experimental mechanics, 49(3), 353-370.

Chang, P. C., Flatau, A., and Liu, S. C. (2003). Review paper: health monitoring of civil

78

infrastructure. Structural health monitoring, 2(3), 257-267.

Chintalapudi, K., Fu, T., Paek, J., Kothari, N., Rangwala, S., Caffrey, J., and Masri, S.

(2006). Monitoring civil structures with a wireless sensor network. Internet Computing,

IEEE, 10(2), 26-34.

Dai, F., Feng, Y., and Hough, R. (2014). Photogrammetric error sources and impacts on

modeling and surveying in construction engineering applications. Visualization in

Engineering, 2(1), 2.

Dargie, W. and Poellabauer, C. (2010). Fundamentals of wireless sensor networks: theory

and practice. John Wiley & Sons.

Fathi, H., & Brilakis, I. (2011). Automated sparse 3D point cloud generation of

infrastructure using its distinctive visual features. Advanced Engineering Informatics,

25(4), 760-770.

Feng, Y., and Dai, F. (2014) Evaluation of Stereo Matching Algorithms for Temporary

Structure Monitoring. In Computing in Civil and Building Engineering (pp. 1206-1213).

ASCE.

Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2009). “Reconstructing building

interiors from images.” IEEE 12th Int. Conf. on Computer Vision, IEEE, 80–87.

Golparvar-Fard, M., Balali, V., and de la Garza, J. M. (2012). Segmentation and

recognition of highway assets using image-based 3D point clouds and semantic Texton

79

forests. Journal of Computing in Civil Engineering, 29(1).

Govender, N. (2009). Evaluation of feature detection algorithms for structure from

motion.

Jahanshahi, M. R., and Masri, S. F. (2012). Adaptive vision-based crack detection using

3D scene reconstruction for condition assessment of structures.Automation in

Construction, 22, 567-576.

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., and Baret, F.

(2004). Review of methods for in situ leaf area index determination: Part I. Theories,

sensors and hemispherical photography. Agricultural and forest meteorology, 121(1), 19-

35.

Juan, L, and Oubong G. (2009). A comparison of sift, pca-sift and surf. International

Journal of Image Processing (IJIP) 3.4: 143-152

Karbhari, V. M., and Zhao, L. (2000). Use of composites for 21st century civil

infrastructure. Computer methods in applied mechanics and engineering,185(2), 433-454.

Khan, N. Y., Brendan M., and Geoff W. (2011). "Sift and surf performance evaluation

against various image deformations on benchmark dataset." Digital Image Computing

Techniques and Applications (DICTA), 2011 International Conference on. IEEE.

Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., and Turon, M. (2007,

April). Health monitoring of civil infrastructures using wireless sensor networks.

80

In Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International

Symposium on (pp. 254-263). IEEE.

Küntz, M., Jolin, M., Bastien, J., Perez, F., and Hild, F. (2006). Digital image correlation

analysis of crack behavior in a reinforced concrete beam during a load test. Canadian

Journal of Civil Engineering, 33(11), 1418-1425.

Li, H. N., Li, D. S., and Song, G. B. (2004). Recent applications of fiber optic sensors to

health monitoring in civil engineering. Engineering structures, 26(11), 1647-1657.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. InComputer

vision, 1999. The proceedings of the seventh IEEE international conference on (Vol. 2, pp.

1150-1157). Ieee.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2), 91-110.

Lynch, J. P., and Kenneth J. L. (2006). A summary review of wireless sensors and sensor

networks for structural health monitoring. Shock and Vibration Digest 38.2: 91-130

M. A. Fischler, R. C. Bolles, (1981). Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography, Commun. ACM

24 (6) 381–395.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear

parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2), 431-441.

81

Maas, H. G., and Uwe H. (2006). Photogrammetric techniques in civil engineering

material testing and structure monitoring. Photogrammetric Engineering & Remote

Sensing 72.1: 39-45

McCormick, N., and Lord, J. (2010). Digital image correlation. Materials today,13(12),

52-54.

Mikolajczyk, K., and Cordelia S. (2005). A performance evaluation of local descriptors.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 27.10: 1615-1630

Nghiem, A. T., Bremond, F., Thonnat, M., and Valentin, V. (2007, September). ETISEO,

performance evaluation for video surveillance systems. In Advanced Video and Signal

Based Surveillance, 2007. AVSS 2007. IEEE Conference on (pp. 476-481). IEEE.

Park, H. S., Lee, H. M., Adeli, H., and Lee, I. (2007). A new approach for health

monitoring of structures: terrestrial laser scanning. Computer Aided Civil and

Infrastructure Engineering, 22(1), 19-30.

Rainieri, C., Fabbrocino, G., and Cosenza, E. (2011). Integrated seismic early warning

and structural health monitoring of critical civil infrastructures in seismically prone

areasRoberts, G. W., Meng, X., & Dodson, A. H. (2004). Integrating a global positioning

system and accelerometers to monitor the deflection of bridges. Journal of Surveying

Engineering, 130(2), 65-72.. Structural Health Monitoring, 10(3), 291-308.

Roberts, G. W., Meng, X., and Dodson, A. H. (2004). Integrating a global positioning

system and accelerometers to monitor the deflection of bridges. Journal of Surveying

82

Engineering, 130(2), 65-72.

Sabins, F. F. (2007). Remote sensing: principles and applications. Waveland Press.

Segundo, Mauricio Pamplona, et al. "Automating 3D reconstruction pipeline by surf-

based alignment." Image Processing (ICIP), 2012 19th IEEE International Conference on.

IEEE, 2012.

Taniguchi, Ayako, et al. (2013). "Automated assessment of small bowel motility function

based on three-dimensional zero-mean normalized cross correlation."Biomedical

Engineering and Informatics (BMEI), 2013 6th International Conference on. IEEE.

Ta, Duy-Nguyen, et al. (2009). "Surftrac: Efficient tracking and continuous object

recognition using local feature descriptors." Computer Vision and Pattern Recognition,

CVPR.

Udd, E. (1998). Early efforts to initiate the field of fiber optic smart structures at

Mcdonnell Douglas. In 5th Annual International Symposium on Smart Structures and

Materials (pp. 12-18). International Society for Optics and Photonics.

Wahbeh, A. M., John P. C., and Sami F. M. (2003). A vision-based approach for the direct

measurement of displacements in vibrating systems. Smart Materials and Structures 12.5:

785

Wang, Y., and Alberto M. C. (2002). Full-field measurements of heterogeneous

deformation patterns on polymeric foams using digital image correlation. International

83

Journal of Solids and Structures 39.13: 3777-3796

Wu, C., Agarwal, S., Curless, B., and Seitz, S. M. (2011). “Multicore bundle adjustment.”

Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, 3057–3064.

Young, W. C., and Budynas, R. G. (2002). Roark's formulas for stress and strain (Vol. 7).

New York: McGraw-Hill.

Zhao, J. Q., Zeng, P., Lei, L. P., and Ma, Y. (2012). Initial guess by improved population-

based intelligent algorithms for large inter-frame deformation measurement using digital

image correlation. Optics and Lasers in Engineering,50(3), 473-490.

84

APPENDIX 1 Original code of deflection and strain computation and user interface

function varargout = Strain_computing(varargin)

% Author: Youyi Feng, 03-25-2015

% Department of Civil and Environmental Engineering

% Email: yofeng@mix.wvu.edu

% STRAIN_COMPUTING MATLAB code for Strain_computing.fig

% STRAIN_COMPUTING, by itself, creates a new STRAIN_COMPUTING or raises the

existing

% singleton*.

%

% H = STRAIN_COMPUTING returns the handle to a new STRAIN_COMPUTING or the

handle to

% the existing singleton*.

%

% STRAIN_COMPUTING('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in STRAIN_COMPUTING.M with the given input arguments.

%

% STRAIN_COMPUTING('Property','Value',...) creates a new STRAIN_COMPUTING or

raises the

% existing singleton*. Starting from the left, property value pairs are

85

% applied to the GUI before Strain_computing_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to Strain_computing_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Strain_computing

% Last Modified by GUIDE v2.5 04-Apr-2015 16:28:43

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @Strain_computing_OpeningFcn, ...

 'gui_OutputFcn', @Strain_computing_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

86

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Strain_computing is made visible.

function Strain_computing_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Strain_computing (see VARARGIN)

87

% Choose default command line output for Strain_computing

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes Strain_computing wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = Strain_computing_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in loaddata.

function loaddata_Callback(hObject, eventdata, handles)

% hObject handle to loaddata (see GCBO)

88

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

load 1.txt;

% --- Executes on button press in axes1.

function arrowmap_Callback(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

[col1,col2,col3,col4,col5,col6,col7, col8]=...

 textread('1.txt','%f %f %f %f %f %f %f %f',-1);

%

%% Compute the displacement matrix

POI=[col2,col3]; % Point of interest with displacement vector

DIS=sum((col2.*col2)+(col3.*col3),2); % compute the displacement matrix

%% Plot the scatter points for displacement

% Define the order of the points

%% To find 81*81 interest points

%

89

%******************Set m,n values for m*n points************%

m=7; % determined for 81*81 points %?50?450????5????

n=7;

No_x = repmat(800:(300/(m-1)):1100,1,n); %generate the x coordinates

A=zeros(1,m*n);

for i=1:m

A(:,((i-1)*m+1):((i-1)*m+m))=50*(i-1)+350; %generate the y coordinates

end

No_y = A;

%

%% plot the scatter points and displacement

%{

figure;

plot(No_x,No_y, '.');

title ('Diaplacement scatter points')

%}

%Plot the arrow map

axes(handles.axes1);

No_x1=No_x+(col2)';

90

No_y1=No_y+(col3)';

quiver(No_x,No_y,(col2)',(col3)');

title ('Arrow map')

% --- Executes on button press in axes2.

function strainmap_Callback(hObject, eventdata, handles)

% hObject handle to axes2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%% For 81*81 case

%

tic

[col1,col2,col3,col4,col5,col6,col7, col8]=...

 textread('1.txt','%f %f %f %f %f %f %f %f',-1);

POI=[col2,col3]; % Point of interest with displacement vector

DIS=sum((col2.*col2)+(col3.*col3),2);

%******************Set m,n values for m*n points************%

m=7; % determined for 81*81 points %?50?450????5????

91

n=7;

No_x = repmat(800:(300/(m-1)):1100,1,n); %generate the x coordinates

A=zeros(1,m*n);

for i=1:m

A(:,((i-1)*m+1):((i-1)*m+m))=50*(i-1)+350; %generate the y coordinates

end

No_y = A;

%******************Set J,K values for J*K points************%

% n*n displacement matrix

J=7;

K=7;

Dis_x= (reshape(col2,J,K))';

Dis_y= (reshape(col3,J,K))';

% displacement matrix for point P

Dis_x_p= Dis_x(:,1:J-1);

Dis_y_p= Dis_y(1:K-1,:);

% displacement matrix for point Q

Dis_x_q= Dis_x(:,2:J);

Dis_y_q= Dis_y(2:K,:);

92

% compute displacement micro increasement Delta_u;

%(Displacement of point Q minus thant of point P

X_Delta_u= Dis_x_q - Dis_x_p;

Y_Delta_u= Dis_y_q - Dis_y_p;

% calculate the point strains for each point

D_pq= 50; % the distance interval of points P and Q

X_strain_0 = X_Delta_u/D_pq;

Y_strain_0 = Y_Delta_u/D_pq;

% Complement the strain matrix to n*n dimension to fit the n*n points

A=zeros(J,1);

B=zeros(1,K);

X_strain= [X_strain_0, A];

Y_strain= [Y_strain_0; B];

% Compute the point strains matrix

Strain= ((X_strain.^2)+(Y_strain.^2)).^0.5;

93

APPENDIX 2 Integrated user interface original code

function varargout = MyCameraGUI(varargin)

% Author: Youyi Feng

% Department of Civil Engineering and Environment, WVU

% Email: yofeng@mix.wvu.edu

% MYCAMERAGUI MATLAB code for MyCameraGUI.fig

% MYCAMERAGUI, by itself, creates a new MYCAMERAGUI or raises the existing

% singleton*.

%

% H = MYCAMERAGUI returns the handle to a new MYCAMERAGUI or the handle to

% the existing singleton*.

%

% MYCAMERAGUI('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MYCAMERAGUI.M with the given input arguments.

%

% MYCAMERAGUI('Property','Value',...) creates a new MYCAMERAGUI or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before MyCameraGUI_OpeningFcn gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to MyCameraGUI_OpeningFcn via varargin.

94

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MyCameraGUI

% Last Modified by GUIDE v2.5 27-Feb-2015 10:30:41

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @MyCameraGUI_OpeningFcn, ...

 'gui_OutputFcn', @MyCameraGUI_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

95

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before MyCameraGUI is made visible.

function MyCameraGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to MyCameraGUI (see VARARGIN)

% Choose default command line output for MyCameraGUI

handles.output = hObject;

handles.vid1=videoinput('gige',1);

triggerconfig(handles.vid1,'hardware','DeviceSpecific','DeviceSpecific');

%triggerconfig(handles.vid1,'manual');

handles.vid1.FramesPerTrigger = Inf;

%triggerconfig(handles.vid1,'manual');

96

handles.vid2=videoinput('gige',2);

triggerconfig(handles.vid2,'hardware','DeviceSpecific','DeviceSpecific');

%triggerconfig(handles.vid2,'manual');

handles.vid2.FramesPerTrigger = Inf;

%camera2trigger=triggerconfig(handles.vid2)

guidata(hObject, handles);

% UIWAIT makes MyCameraGUI wait for user response (see UIRESUME)

% uiwait(handles.MyCameraGUI);

uiwait(handles.MyCameraGUI);

% --- Outputs from this function are returned to the command line.

function varargout = MyCameraGUI_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%handles.output = hObject;

%varargout{1} = handles.output;

% Get default command line output from handles structure

97

%varargout{1} = handles.output;

% --- Executes when user attempts to close MyCameraGUI.

function MyCameraGUI_CloseRequestFcn(hObject, eventdata, handles)

% hObject handle to MyCameraGUI (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

delete(hObject);

delete(imaqfind);

close all;

clear all;

% Hint: delete(hObject) closes the figure

%delete(hObject);

% --- Executes on button press in startStopCamera.

function startStopCamera_Callback(hObject, eventdata, handles)

% hObject handle to startStopCamera (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.cameraAxes);

vidRes1=get(handles.vid1,'VideoResolution');

98

nBands1=get(handles.vid1,'NumberOfBands');

set(handles.vid1,'ReturnedColorSpace','rgb');

himage1=imshow(zeros(vidRes1(2),vidRes1(1),nBands1));

%preview(handles.vid1,himage1);

if strcmp(get(handles.startStopCamera,'String'),'Start Camera')

 % Camera is off. Change button string and start camera.

 set(handles.startStopCamera,'String','Stop Camera')

 %start(handles.vid1)

 preview(handles.vid1,himage1);

 set(handles.startAcquisition,'Enable','on');

 set(handles.captureImage,'Enable','on');

else

 % Camera is on. Stop camera and change button string.

 set(handles.startStopCamera,'String','Start Camera')

 stop(handles.vid1)

 set(handles.startAcquisition,'Enable','off');

 set(handles.captureImage,'Enable','off');

end

99

%}

% --- Executes on button press in captureImage.

function captureImage_Callback(hObject, eventdata, handles)

% hObject handle to captureImage (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

frame = get(get(handles.cameraAxes,'children'),'cdata'); % The current displayed frame

save('testImage1.mat', 'frame');

figure;

imshow(frame);

disp('Frame saved to file ''testImage.mat''');

% --- Executes on button press in startAcquisition.

function startAcquisition_Callback(hObject, eventdata, handles)

% hObject handle to startAcquisition (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%axes(handles.cameraAxes);

100

if strcmp(get(handles.startAcquisition,'String'),'Start Acquisition')

 % Camera is not acquiring. Change button string and start acquisition.

 set(handles.startAcquisition,'String','Stop Acquisition');

 %stop(handles.vid1);

 %stoppreview(handles.vid1);

 %triggerconfig(handles.vid1,'hardware','DeviceSpecific','DeviceSpecific');

 start(handles.vid1);

 %trigger(handles.vid1);

 Initial_frameslogged = handles.vid1.FramesAcquired

 %wait (handles.vid1, 30);

 %disp('Waiting for CC320 trigger commands.....')

else

 % Camera is acquiring. Stop acquisition, save video data,

 % and change button string.

 stop(handles.vid1);

 disp('Saving captured video...');

 videodata = getdata(handles.vid1);

 save('testvideo1.mat', 'videodata');

101

 %save('testvideo.avi', 'videodata');

 disp('Video saved to file ''testvideo1.mat''');

 frameslogged = handles.vid1.FramesAcquired

 % start(handles.vid3); % Restart the camera

 set(handles.startAcquisition,'String','Start Acquisition');

end

% --- Executes on button press in startStopCamera2.

function startStopCamera2_Callback(hObject, eventdata, handles)

% hObject handle to startStopCamera2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%handles.output2 = hObject;

axes(handles.cameraAxes2);

vidRes2=get(handles.vid2,'VideoResolution');

nBands2=get(handles.vid2,'NumberOfBands');

set(handles.vid2,'ReturnedColorSpace','rgb');

himage2=imshow(zeros(vidRes2(2),vidRes2(1),nBands2));

102

% preview(handles.vid2,himage2);

if strcmp(get(handles.startStopCamera2,'String'),'Start Camera')

 % Camera is off. Change button string and start camera.

 set(handles.startStopCamera2,'String','Stop Camera')

 %start(handles.vid2)

 preview(handles.vid2,himage2);

 set(handles.startAcquisition2,'Enable','on');

 set(handles.captureImage2,'Enable','on');

else

 % Camera is on. Stop camera and change button string.

 set(handles.startStopCamera2,'String','Start Camera')

 stop(handles.vid2)

 set(handles.startAcquisition2,'Enable','off');

 set(handles.captureImage2,'Enable','off');

end

% --- Executes on button press in captureImage2.

function captureImage2_Callback(hObject, eventdata, handles)

% hObject handle to captureImage2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

103

% handles structure with handles and user data (see GUIDATA)

frame2 = get(get(handles.cameraAxes2,'children'),'cdata'); % The current displayed frame

save('testImage2.mat', 'frame2');

figure;

imshow(frame2);

disp('Frame saved to file ''testImage.mat''');

% --- Executes on button press in startAcquisition2.

function startAcquisition2_Callback(hObject, eventdata, handles)

% hObject handle to startAcquisition2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if strcmp(get(handles.startAcquisition2,'String'),'Start Acquisition')

 % Camera is not acquiring. Change button string and start acquisition.

 set(handles.startAcquisition2,'String','Stop Acquisition');

 %triggerconfig(handles.vid1,'hardware','DeviceSpecific','DeviceSpecific');

 start(handles.vid2);

 Initial_frameslogged = handles.vid2.FramesAcquired

 %wait (handles.vid2,20);

104

else

 % Camera is acquiring. Stop acquisition, save video data,

 % and change button string.

 stop(handles.vid2);

 disp('Saving captured video...');

 videodata = getdata(handles.vid2);

 save('testvideo2.mat', 'videodata');

 %save('testvideo.avi', 'videodata');

 disp('Video saved to file ''testvideo2.mat''');

 frameslogged = handles.vid2.FramesAcquired

 % start(handles.vid2); % Restart the camera

 set(handles.startAcquisition2,'String','Start Acquisition');

end

% --- Executes on button press in cameraset1.

function cameraset1_Callback(hObject, eventdata, handles)

% hObject handle to cameraset1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

105

imaqtool;

% --- Executes on button press in cameraset2.

function cameraset2_Callback(hObject, eventdata, handles)

% hObject handle to cameraset2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

system('C:\Users\user\Desktop\EXE\Win32\VimbaViewer.exe');

% --- Executes on button press in configtrigger1.

function configtrigger1_Callback(hObject, eventdata, handles)

% hObject handle to configtrigger1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

 f=figure('Name','CC320 Configuration','Num','off','Units','norm');

% Add the browser object on the right

jObject = com.mathworks.mlwidgets.html.HTMLBrowserPanel;

[browser,container] = javacomponent(jObject, [], f);

set(container, 'Units','norm', 'Pos',[0.3,0.05,0.65,0.9]);

106

% Add the URLs listbox on the left

urls = {'http://192.168.1.5/general.cgi'};

hListbox = uicontrol('style','listbox', 'string',urls, ...

 'units','norm', 'pos',[0.05,0.05,0.2,0.9], ...

 'userdata',browser);

% Set the listbox's callback to update the browser contents

cbStr=['strs = get(gcbo,''string''); ' ...

 'url = strs{get(gcbo,''value'')};' ...

 'browser = get(gcbo,''userdata''); ' ...

 'msg=[''<html><h2>Loading '' url '' - please wait''];'... % no need for </h2></html>

 'browser.setHtmlText(msg); pause(0.1); drawnow;'...

 'browser.setCurrentLocation(url);'];

set(hListbox,'Callback',cbStr);

% --- Executes on button press in configtrigger2.

function configtrigger2_Callback(hObject, eventdata, handles)

% hObject handle to configtrigger2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

 system('C:\Users\user\Desktop\EXE\CC320\GardasoftMaint.exe'); % invoke the Gardasoft;

107

% --- Executes on button press in synchronize.

function synchronize_Callback(hObject, eventdata, handles)

% hObject handle to synchronize (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if strcmp(get(handles.synchronize,'String'),'Synchronization')

 % Camera is not acquiring. Change button string and start acquisition.

 set(handles.synchronize,'String','Stop');

 tic

 start(handles.vid1);

 toc

 start(handles.vid2);

else

 tic

 stop(handles.vid1);

 toc

 stop(handles.vid2);

 disp('Saving captured video...');

108

 videodata1 = getdata(handles.vid1);

 save('testvideo1.mat', 'videodata1');

 %save('testvideo.avi', 'videodata');

 frameslogged = handles.vid1.FramesAcquired

 disp('Video saved to file ''testvideo1.mat''');

 disp('Saving captured video...');

 videodata2 = getdata(handles.vid2);

 save('testvideo2.mat', 'videodata2');

 %save('testvideo.avi', 'videodata');

 frameslogged = handles.vid2.FramesAcquired

 disp('Video saved to file ''testvideo2.mat''');

 close all;

end

% --- Executes on button press in initialdata.

function initialdata_Callback(hObject, eventdata, handles)

% hObject handle to initialdata (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

109

% handles structure with handles and user data (see GUIDATA)

%save video 1

load ('testvideo1.mat'); % read video file/ use "whos" command to see the variables

[h,w,g,N_frame]=size(videodata1); % N_frame is the number of frames (images) in this video

% testing show the imgae

 filename = 'film1';

writerObj = VideoWriter([filename '.avi']);

N=10; %set the rates that the video has

writerObj.FrameRate = N;

open(writerObj);

%figure;

for ii = 1: N_frame

 frame = videodata1(:,:,:,ii);

 %imshow(frame);

 f.cdata = frame;

 f.colormap = [];

 writeVideo(writerObj,frame);

end

close(writerObj);

%save video 2

110

load ('testvideo2.mat'); % read video file/ use "whos" command to see the variables

[h,w,g,N_frame]=size(videodata2); % N_frame is the number of frames (images) in this video

% testing show the imgae

 filename = 'film2';

writerObj2 = VideoWriter([filename '.avi']);

N=10; %set the rates that the video has

writerObj2.FrameRate = N;

open(writerObj2);

%figure;

for ii = 1: N_frame

 frame = videodata2(:,:,:,ii);

 %imshow(frame);

 f.cdata = frame;

 f.colormap = [];

 writeVideo(writerObj2,frame);

end

close(writerObj2);

% save image data for DIC, SIFT, SURF to process

%save left image

111

load('testvideo1.mat');

Img1=videodata1(:,:,:,1);

Img1=imresize(Img1,[500,500]);

imwrite(Img1,'C:\Users\user\Desktop\employedcode\2DDIC\Image_0.bmp'); % Save data into DIC folder

path

imwrite(Img1,'C:\Users\user\Desktop\employedcode\SIFT\Image_0.bmp'); % Save data into SIFT folder path

imwrite(Img1,'C:\Users\user\Desktop\employedcode\SURF\TestImages\Image_0.bmp'); % Save data into

SURF folder path

%save right image

load('testvideo2.mat');

Img2=videodata2(:,:,:,1);

Img2=imresize(Img2,[500,500]);

imwrite(Img2,'C:\Users\user\Desktop\employedcode\2DDIC\Image_1.bmp');% Save data into DIC folder

path

imwrite(Img2,'C:\Users\user\Desktop\employedcode\SIFT\Image_1.bmp'); % Save data into SIFT folder path

imwrite(Img2,'C:\Users\user\Desktop\employedcode\SURF\TestImages\Image_1.bmp'); % Save data into

SURF folder path

% --- Executes on button press in readinput.

function readinput_Callback(hObject, eventdata, handles)

% hObject handle to readinput (see GCBO)

112

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%{

load('testvideo1.mat');

load('testvideo2.mat');

axes(handles.figure1);

imshow(videodata1(:,:,:,1)); % show single left image

axes(handles.figure2);

imshow(videodata2(:,:,:,1)); % show single right image

%}

%

%Read and show the video data in processing box

mov1 = VideoReader('film1.avi');

mov2 = VideoReader('film2.avi');

for i=1:mov1.NumberOfFrames

 img1 = read(mov1, i);

 img2 = read(mov2, i);

 axes(handles.figure1);

 imshow(img1);

 axes(handles.figure2);

113

 imshow(img2);

end

%

%{

axes(handles.figure2);

mov2 = VideoReader('film2.avi');

for i=1:mov2.NumberOfFrames

 img2 = read(mov2, i);

 imshow(img2);

end

%}

% --- Executes on button press in DIC.

function DIC_Callback(hObject, eventdata, handles)

% hObject handle to DIC (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

open('C:\Users\user\Desktop\employedcode\2DDIC\Pool2008Pred.exe');

disp('2D DIC is running, please wait......''');

%system('C:\Users\user\Desktop\EXE\Win32\VimbaViewer.exe');

114

%[x,y]=textread('C:\Users\user\Desktop\employedcode\2DDIC\Image_1.bmp_xps.txt','%f%f%*[^\n]','delimit

er',';','headerlines',1);

% --- Executes on button press in showresult.

function showresult_Callback(hObject, eventdata, handles)

% hObject handle to showresult (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

test=importdata('C:\Users\user\Desktop\employedcode\2DDIC\Image_1.bmp_xps.txt');

X_dis=test.data(:,2);

Y_dis=test.data(:,3);

[a,b]=size(test.data(:,2));

formatSpec = 'Obtained %d interest points from the inputs. \n';

fprintf(formatSpec,a);

col2=X_dis;

col3=Y_dis;

%visulize the processing result

POI=[col2,col3]; % Point of interest with displacement vector

DIS=sum((col2.*col2)+(col3.*col3),2); % compute the displacement matrix

115

%% To find 81*81 interest points

%

%% Plot the scatter points for displacement

% Define the order of the points

% To find 9*9 interest points

%

%******************For 9*9 points************%

No_x = 50*[1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,...

 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9....

 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,...

 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,...

 1,2,3,4,5,6,7,8,9,];

No_y = 50*[1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,...

 3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,...

 5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,...

 7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,...

 9,9,9,9,9,9,9,9,9];

%

%******************Set m,n values for m*n points************%

116

%{

m=81; % determined for 81*81 points %?50?450????5????

n=81;

No_x = repmat(50:(400/(m-1)):450,1,n); %generate the x coordinates

A=zeros(1,m*n);

for i=1:m

A(:,((i-1)*m+1):((i-1)*m+m))=5*(i-1)+50; %generate the y coordinates

end

No_y = A;

%}

%% plot the scatter points and displacement

%figure;

%plot(No_x,No_y, '.');

%title ('Diaplacement scatter points')

%Plot the arrow map

No_x1=No_x+(col2)';

No_y1=No_y+(col3)';

axes(handles.arrowmap);

quiver(No_x,No_y,No_x1,No_y1);

rotate3d on

117

title ('Displacement srrow map')

%Triangulation of the scatter points and draw displacement map

% use delaunay triangulation

tri=delaunay(No_x,No_y);

z=DIS;

%{

figure;

trimesh(tri,No_x,No_y,z,...

 'FaceColor','interp',...

 'FaceLighting','phong',...

 'EdgeColor','k');

grid off;

colorbar;

title ('Displacement map')

%}

%% Compute Strain from displacement

% n*n displacement matrix

Dis_x= (reshape(col2,9,9))';

Dis_y= (reshape(col3,9,9))';

118

% displacement matrix for point P

Dis_x_p= Dis_x(:,1:8);

Dis_y_p= Dis_y(1:8,:);

% displacement matrix for point Q

Dis_x_q= Dis_x(:,2:9);

Dis_y_q= Dis_y(2:9,:);

% compute displacement micro increasement Delta_u;

%(Displacement of point Q minus thant of point P

X_Delta_u= Dis_x_q - Dis_x_p;

Y_Delta_u= Dis_y_q - Dis_y_p;

% calculate the point strains for each point

D_pq= 50; % the distance interval of points P and Q

X_strain_0 = X_Delta_u/D_pq;

Y_strain_0 = Y_Delta_u/D_pq;

% Complement the strain matrix to n*n dimension to fit the n*n points

A=zeros(9,1);

B=zeros(1,9);

X_strain= [X_strain_0, A];

Y_strain= [Y_strain_0; B];

% Compute the point strains matrix

119

Strain= ((X_strain.^2)+(Y_strain.^2)).^0.5;

% use delaunay triangulation and draw strain map

tri=delaunay(No_x,No_y);

z_1=reshape((Strain)',1,81);

axes(handles.strainmap);

trimesh(tri,No_x,No_y,z_1,...

 'FaceColor','interp',...

 'FaceLighting','phong',...

 'EdgeColor','k');

grid off;

colorbar;

rotate3d on

title ('Strain map');

%% For 81*81 case

%{

%******************Set J,K values for J*K points************%

% n*n displacement matrix

J=81;

K=81;

120

Dis_x= (reshape(col2,J,K))';

Dis_y= (reshape(col3,J,K))';

% displacement matrix for point P

Dis_x_p= Dis_x(:,1:J-1);

Dis_y_p= Dis_y(1:K-1,:);

% displacement matrix for point Q

Dis_x_q= Dis_x(:,2:J);

Dis_y_q= Dis_y(2:K,:);

% compute displacement micro increasement Delta_u;

%(Displacement of point Q minus thant of point P

X_Delta_u= Dis_x_q - Dis_x_p;

Y_Delta_u= Dis_y_q - Dis_y_p;

% calculate the point strains for each point

D_pq= 50; % the distance interval of points P and Q

X_strain_0 = X_Delta_u/D_pq;

Y_strain_0 = Y_Delta_u/D_pq;

% Complement the strain matrix to n*n dimension to fit the n*n points

A=zeros(J,1);

B=zeros(1,K);

X_strain= [X_strain_0, A];

121

Y_strain= [Y_strain_0; B];

% Compute the point strains matrix

Strain= ((X_strain.^2)+(Y_strain.^2)).^0.5;

% use delaunay triangulation and draw strain map

tri=delaunay(No_x,No_y);

z_1=reshape((Strain)',1,J*K);

figure;

trimesh(tri,No_x,No_y,z_1,...

 'FaceColor','interp',...

 'FaceLighting','phong',...

 'EdgeColor','k');

grid off;

colorbar;

title ('Strain map');

%

	Measuring in-plane deflections and strains through visual sensing techniques for civil infrastructure applications
	Recommended Citation

	Thesis

