
Graduate Theses, Dissertations, and Problem Reports

2016

Empirical Analysis and Automated Classification of Security Bug Empirical Analysis and Automated Classification of Security Bug

Reports Reports

Jacob P. Tyo

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Tyo, Jacob P., "Empirical Analysis and Automated Classification of Security Bug Reports" (2016). Graduate
Theses, Dissertations, and Problem Reports. 6843.
https://researchrepository.wvu.edu/etd/6843

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6843?utm_source=researchrepository.wvu.edu%2Fetd%2F6843&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Empirical Analysis and Automated

Classification of Security Bug Reports

Jacob P. Tyo

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Katerina Goseva-Popstojanova, Ph.D., Chair
Roy S. Nutter, Ph.D.

Matthew C. Valenti, Ph.D.

Lane Department of Computer Science and Electrical Engineering
CONFIDENTIAL. NOT TO BE DISTRIBUTED.

Morgantown, West Virginia
2016

Keywords: Cybersecurity, Machine Learning, Issue Tracking Systems, Text Mining, Text
Classification

Copyright 2016 Jacob P. Tyo

Abstract

Empirical Analysis and Automated Classification of Security Bug Reports

Jacob P. Tyo

With the ever expanding amount of sensitive data being placed into computer systems,
the need for effective cybersecurity is of utmost importance. However, there is a shortage
of detailed empirical studies of security vulnerabilities from which cybersecurity metrics and
best practices could be determined. This thesis has two main research goals: (1) to explore
the distribution and characteristics of security vulnerabilities based on the information pro-
vided in bug tracking systems and (2) to develop data analytics approaches for automatic
classification of bug reports as security or non-security related. This work is based on using
three NASA datasets as case studies. The empirical analysis showed that the majority of
software vulnerabilities belong only to a small number of types. Addressing these types of
vulnerabilities will consequently lead to cost efficient improvement of software security. Since
this analysis requires labeling of each bug report in the bug tracking system, we explored
using machine learning to automate the classification of each bug report as a security or
non-security related (two-class classification), as well as each security related bug report as
specific security type (multiclass classification). In addition to using supervised machine
learning algorithms, a novel unsupervised machine learning approach is proposed. Of the
machine learning algorithms tested, Naive Bayes was the most consistent, well performing
classifier across all datasets. The novel unsupervised approach did not perform as well as the
supervised methods, but still performed well resulting in a G-Score of 0.715 in the case of
best performance whereas the supervised approach achieved a G-Score of 0.903 in the case
of best performance.

iii

Acknowledgments

This work was funded by the NASA Software Assurance Research Program (SARP) grant

in FY16. I would like to thank Dr. Katerina Goseva-Popstajanova for her support, guidance,

and patience throughout this research, as well as my committee members Dr. Roy Nutter

and Dr. Matthew Valenti for sharing their knowledge and time with me. Furthermore,

I would like to express my sincere gratitude to my parents, siblings, and friends for their

unwavering support.

iv

Contents

Abstract ii

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Key Terms . 2
1.2 Research Questions and Contributions . 3

2 Related Work 6
2.1 Vulnerability Profile . 6
2.2 Automated Bug Report Classification . 10

3 Vulnerability Profiles 16
3.1 Datasets . 17
3.2 Classification Schema . 18
3.3 Issue Labeling Approach . 21
3.4 Ground Mission IV&V Issues . 22
3.5 Flight Mission IV&V Issues . 30
3.6 Flight Mission Developer Issues . 37
3.7 Comparison of the Results Across Three Datasets 42
3.8 Threats to Validity . 47
3.9 Conclusion . 48

4 Automated Bug Report Classification 49
4.1 Datasets, Data Extraction, and Preprocessing 50
4.2 Feature Vectors . 50
4.3 Classifiers . 52
4.4 Performance Evaluation . 55
4.5 Supervised Learning . 57
4.6 Supervised Two Class Classification . 58

4.6.1 Two Class Classification Results . 58
4.6.2 Two Class Classification Observations 62

CONTENTS v

4.7 Supervised Multiclass Classification . 63
4.7.1 Multiclass Classification Results . 63
4.7.2 Multiclass Classification Observations 72

4.8 Unsupervised One-Class Problem . 73
4.8.1 Defining a Threshold . 74
4.8.2 One-Class Classification . 75
4.8.3 Unsupervised Classification Results 75
4.8.4 Unsupervised Observations and Comparisons with Supervised Tech-

niques . 77
4.9 Threats to Validity . 78
4.10 Automated Classification Conclusion . 79

5 Conclusion 84

References 87

A CWE-888 Overview 93

B Field Descriptions of Analyzed ITS’s 99

Approval Page i

vi

List of Tables

3.1 Comparison of Primary Class Distributions Across All Projects 42
3.2 Comparison of Dominating Secondary CWE-888 Class Distributions Across

All Projects . 44
3.3 Main Findings Across all Datasets . 45

4.1 Performance Measure Confusion Matrix . 55
4.2 Two-Class Classification Performance of BF Feature Vector and all Classifiers

Across All Projects . 59
4.3 Two-Class Classification Performance of TF Feature Vector and all Classifiers

Across All Projects . 60
4.4 Two-Class Classification Performance of TF-IDF Feature Vector and all Clas-

sifiers Across All Projects . 61
4.5 Performance of BF NB on All Projects vs Amount of Training Data 62
4.6 Multiclass Classification Weighted Average Performance of BF Feature Vector

and all Classifiers Across All Projects . 64
4.7 Multiclass Classification Weighted Average Performance of TF Feature Vector

and all Classifiers Across All Projects . 65
4.8 Multiclass Classification Weighted Average Performance of TF-IDF Feature

Vector and all Classifiers Across All Projects 66
4.9 Multiclass Classification Macro-Averaged Performance of BF Feature Vector

and all Classifiers Across All Projects . 67
4.10 Multiclass Classification Macro-Averaged Performance of TF Feature Vector

and all Classifiers Across All Projects . 68
4.11 Multiclass Classification Macro-Averaged Performance of TF-IDF Feature

Vector and all Classifiers Across All Projects 69
4.12 One-Class Performance Across All Projects using Cosine Similarity 76
4.13 One-Class Performance Across All Projects using Euclidean Distance 77
4.14 Comparison with Related Works . 80

A.1 CWE-888 Overview . 93

B.1 IV&V Issue Tracking System Field Descriptions 99
B.2 Developer Issue Tracking System Field Descriptions 101

vii

List of Figures

3.1 Ground Mission IV&V Issues - Issue Category Distribution 23
3.2 Ground Mission IV&V Issues - Issue Type Distribution 24
3.3 Ground Mission IV&V Issues - Capability Distribution 25
3.4 Ground Mission IV&V Issues - Subsystem Distribution 25
3.5 Ground Mission IV&V Issues - Analysis Method Distribution 26
3.6 Ground Mission IV&V Issues - Severity Distribution 27
3.7 Ground Mission IV&V Issues - Phase Introduced Distribution 27
3.8 Ground Mission IV&V Issues - Phase found Distribution 28
3.9 Ground Mission IV&V Issues - Distribution of issues across CWE-888 Primary

Classes . 28
3.10 Ground Mission IV&V Issues - Primary and Secondary CWE-888 Class Dis-

tributions . 29
3.11 Flight Mission IV&V Issues - Issue Category Distribution 30
3.12 Flight Mission IV&V Issues - Issue Type Distribution 31
3.13 Flight Mission IV&V Issues - Defect Distribution 32
3.14 Flight Mission IV&V Issues - Capability Distribution 32
3.15 Flight Mission IV&V Issues - Subsystem Distribution 33
3.16 Flight Mission IV&V Issues - Severity Distribution 33
3.17 Flight Mission IV&V Issues - Phase Introduced Distribution 34
3.18 Flight Mission IV&V Issues - Phase Found Distribution 34
3.19 Flight Mission IV&V Issues - Phase Resolved Distribution 34
3.20 Flight Mission IV&V Issues - Distribution of issues across CWE-888 Primary

Classes . 35
3.21 Flight Mission IV&V Issues - Primary and Secondary CWE-888 Class Distri-

butions . 36
3.22 Flight Mission Developer Issues - Issue Type Distribution 37
3.23 Flight Mission Developer Issues - Subsystem Distribution 38
3.24 Flight Mission Developer Issues - Severity Distribution 38
3.25 Flight Mission Developer Issues - Phase Found Distribution 39
3.26 Flight Mission Developer Issues - Distribution of Issues Across CWE-888 Pri-

mary Classes . 40
3.27 Flight Mission Developer Issues - Primary and Secondary CWE-888 Class

Distributions . 41
3.28 CWE-888 Primary Class Distribution Graphical Comparison for all Projects 43

LIST OF FIGURES viii

4.1 Multiclass Classification Heatmap of Ground Mission IV&V Issues dataset
using TF NB . 70

4.2 Multiclass Classification Heatmap of Flight Mission IV&V Issues dataset using
TF NB . 71

4.3 Multiclass Classification Heatmap of Flight Mission Developers Issues dataset
using TF NB . 72

1

Chapter 1

Introduction

The awareness of hacking has risen significantly in recent years due to both an increase

in the amount of hacking related media available, and to the seemingly endless attacks

plaguing news headlines. The consequences of falling victim to one of these increasing

number of attacks has caused a significant shift in software validation, verification, and

security monitoring. Security is increasingly becoming part of the software development

life cycle. This thesis has two main research goals: (1) to explore the distribution and

characteristics of security vulnerabilities based on the information provided in bug tracking

systems and (2) to develop data analytics approaches for automatic classification of bug

reports as security or non-security related.

This work uses three NASA datasets extracted from issue tracking systems. Two of the

datasets used in this thesis are from the same NASA flight mission, with one originating

from the developers of that system and the other originating from the IV&V analysts. The

remaining dataset originates from an IV&V analysis of a NASA ground mission.

Chapter 3 of this thesis focuses on analyzing the data extracted from bug tracking systems

to develop vulnerability profiles, which provide an empirical view of a software security

vulnerabilities. This allows for analysts and developers to examine the most common security

flaws, as well as the most vulnerable components and subsystems found in their systems.

Furthermore, this information can be used to enhance the education of the developers of

these systems to eliminate similar issues in the future.

Creating a vulnerability profile of a project using information extracted from a bug track-

Jacob P. Tyo Chapter 1. Introduction 2

ing system requires that each issue is labeled with a tag describing its security effects, flaws,

or type. This information was partially present in one dataset, and non-existent in the

others. Assigning these labels is very labor intensive, time consuming, and requires signifi-

cant security specific knowledge. To alleviate this burden, Chapter 4 focuses on developing

machine learning approaches capable of automatically assigning each bug report with its

corresponding security tag. This includes classifying each bug report as security related or

not, as well as classifying each issue as a specific vulnerability type.

Supervised approaches to automating the classification of issues requires manual labeling

which is time consuming and costly. In an attempt to avoid this requirement, a novel

unsupervised learning approach was developed.

1.1 Key Terms

This thesis relies on terminology specific to the security field, as well as defines some

terms to simplify certain explanations. These terms are addressed in this section:

A failure is a departure of the system or system component behavior from its required

behavior.

A fault is an accidental condition, which if encountered, may cause the system or system

component to fail to perform as required. Bug is typically used as a synonym for fault.

Bug reports (also referred to as issues) are accounts of faults and failures. Bug reports

can cover an extreme variety of topics, and are used to detail, find, and fix such system

problems.

Developer Change Requests (DCRs) are requests to change or update the system’s

functionality, or to request a fix for software bugs. These are located in any bug tracking

system originating from developers. For the NASA mission containing such requests, each

DCR was labeled with a subtype such as “Defect” or “Change Request” which allows for

extraction of only DCRs that are bug reports.

Bug tracking systems (sometimes referred to as issue tracking systems) are software

programs that manage and maintain lists of issues as needed by an organization. Many types

of these systems exists, yet the type of system is irrelevant for this research.

Jacob P. Tyo Chapter 1. Introduction 3

A vulnerability (also referred to as a security issue) is a security flaw, glitch, or

weakness found in software that can lead to gaps in the systems security, and potentially be

exploited by an attacker.

A vulnerability profile is an empirical view of software security vulnerabilities. The

vulnerability profile of each project includes the most common types of vulnerabilities in the

system, the most vulnerable components, where most vulnerabilities are found, and more.

CWE refers to Common Weakness Enumeration, which is a formal list of software weak-

ness types aimed at serving as a common language for describing software security weaknesses

in architecture, design, or code. This work will refer both to the total listing (CWE list) as

well as individual elements within the list (CWE).

A CWE View is a particular perspective (or view) from which to look at the CWE list.

Each view can organize, categorize, or group each individual CWE’s within the overall list

differently.

CVE stands for Common Vulnerabilities and Exposures. CVE is a dictionary of common

names for publicly known cyber security vulnerabilities and exposures.

NVD (National Vulnerability Database) is the U.S. government repository of standards

based vulnerability management data represented using the Security Content Automation

Protocol. NVD includes databases of security checklists, security related software flaws,

misconfigurations, product names, and impact metrics.

CVSS is the Common Vulnerability Scoring System which is an open framework for com-

municating the characteristics and severity of software vulnerabilities. This scoring system

takes into account properties of vulnerabilities such as the impact it would have if exploited,

as well as the ease of exploiting the vulnerability.

1.2 Research Questions and Contributions

This work explores the following research questions:

1. What are the dominant types of vulnerabilities in NASA ground and flight software

systems?

Jacob P. Tyo Chapter 1. Introduction 4

(a) Are they consistent across projects and project types?

2. Can supervised machine learning algorithms be used to classify software issues as

security related or not?

(a) Do some learners perform consistently better than others?

(b) How much data must be set aside for training in order to produce accurate clas-

sification results?

3. Can supervised machine learning algorithms be used to classify security issues to spe-

cific security classes?

(a) Are some classes harder to predict than others?

4. Can unsupervised machine learning algorithms be used to classify software issues as

security related or not?

5. How does the performance of supervised and unsupervised machine learning algorithms

compare when classifying software bug reports?

The main contributions of this thesis are as follows:

We developed a vulnerability profile for thee NASA datasets, which include over 1,800 bug

reports. The most common security flaws in each dataset were determined, and those which

were consistent across the different datasets were identified. Software faults and failures in

open source and NASA missions have been previously studied [1], [2], [3], but not specifically

vulnerabilities.

Supervised machine learning algorithms were used to classify each bug report as security

related or not (two-class problem), based only on the information found in a bug tracking

system. Several efforts have been done [4], [5], [6], and [7], which focused on separating

security from non-security bug reports: [4], [5], and [6] automated this process achieving

moderate performance. Furthermore, all approaches were only focused on classification to

security and non-security bug reports.

Jacob P. Tyo Chapter 1. Introduction 5

Supervised machine learning algorithms were used to classify each bug report to a spe-

cific security class (multiclass classification), based only on the information found in a bug

tracking system. Wang et al used machine learning techniques to classify vulnerabilities as

a CVE type [8]. However, the features used for classification were the CVSS scores of the

vulnerability.

An unsupervised machine learning approach was developed to classify bug reports as

security related or not. This approach uses a one class problem and incorporating the CWE

list. It appears that no prior work using unsupervised machine learning to classify software

security bug reports exists.

6

Chapter 2

Related Work

This chapter presents the related work to the vulnerability profile and the automated

security bug classification system.

2.1 Vulnerability Profile

The information housed within an issue tracking system contains valuable information

for quantifying traits of a software system such as how error prone it is, how well-kept it is,

and how secure the system is. Empirical studies of the information found in issue tracking

systems can be used for things ranging from determining the most error prone aspects of a

system to detecting how the system could be improved. While little research that leverages

an issue tracking system in an empirical way was found, the following papers are highly

related to such a situation.

Fenton et al. empirically studied a large software-intensive telecommunication application

from Ericsson Telecom AB [9]. This work was focused on a range of software engineering

hypotheses related to the Pareto principle of distribution of faults and failures, the use of

early fault data to predict later fault and failure data, metrics for fault prediction, and

benchmarking fault data. The results included strong evidence that a small number of

modules contain most of the faults discovered in prerelease testing and that a very small

number of modules contain most of the faults discovered in Operation. However, the fault-

prone modules was not explained by its size or complexity. While showing that the number

Jacob P. Tyo Chapter 2. Related Work 7

of faults discovered in prerelease testing is an order of magnitude greater than the number

discovered in 12 months of operational use, they also discovered fairly stable numbers of

faults discovered at corresonding testing phases. The most surprising result was related to

the counter-intuitive relationship between pre- and postrelease faults. In other words, the

modules that were the most fault-prone prerelease were among the the least fault-prone

postrelease, as well as vice versa.

Hamill et al. explored the localization of faults that lead to individual software failures

and the distribution of different types of software faults in a mature NASA mission and the C

preprocessor of GCC [3]. It was shown that individual failures are often caused by multiple

faults spread throughout the system, which indicates that finding and fixing faults that

lead to such software failures in large, complex systems are often difficult and challenging

tasks despite the advances in software development. While showing that the most common

types of software faults are requirement faults, coding faults, and data problems, they also

showed that a significant percentage of failures are linked to late life cycle activities, which

is contrary to popular belief. Comparing the trends across software systems, Hamill et al.

suggested that these trends were likely to be intrinsic characteristics of software faults and

failures rather than project specific.

Hamill et al. focused on empirically characterizing software fixes [2] based on their

previous work [3]. Based on a safety-critical NASA mission containing 21 large-scale software

components, a link was established from software faults to failures and consequently to fixes

made to correct these faults. The results showed that a significant number of software failures

required fixes in multiple software components and/or multiple software artifacts (i.e.,15%

and 26% respectively). Furthermore, the patterns of software components fixed together

were significantly affected by the software architecture. The types of fixed software artifacts

were highly correlated with the fault type, and they had different distributions for pre-release

and post-release failures.

Hamill et al. studied the types of faults that caused software failures, activities taking

place when faults were detected or failures were reported, and the severity of failures [1]

which builds on their previous works [2] and [3]. They explored the associations among

these attributes and the trends within and across releases. Results showed that only a

Jacob P. Tyo Chapter 2. Related Work 8

few fault types were responsible for the majority of failures pre-release, post-release, and

across releases. The distributions of fault types were different for pre-release and post-release

failures, and the percentage of safety-critical failures was small overall. All failures were more

heavily associated with coding faults than with any other type of fault, while components

that experienced a high number of failures in one release were not necessarily among high

failure components in the subsequent release. Lastly, components that experienced more

failures pre-release were more likely to fail post-release.

With the increasing popularity, capability, and the release of open source OSes for hand-

held devices, Maji et al. utilized bug reports, bug fixes, developer reports, and failure

reports to look into the manifestation of failures in different modules of Android and their

characteristics [10]. These reports were viewed from the standpoint of the frequency of

failures, and the persistence of the issue. This study showed that most of the bugs (over

90%) were permanent in nature, the kernel layer was sufficiently robust yet much effort was

needed to improve the middleware layer. Furthermore, between 11% and 50% of bugs were

a result of the customizability Android offered to the developers, and most bugs required

only minor changes for correction (etc. update configuration parameters).

Grottke et al. [11] analyzed the faults discovered in the on-board software for 18

JPL/NASA space missions, pointing out that the ability to effectively deal with faults is

increasingly important as space mission software becomes more complex. The authors de-

fined Bohrbugs as bugs that are easily isolated and removed during software testing, and

Mandelbugs as bugs that appear to behave chaotically. This paper explored the proportions

of Bohrbugs and Mandelbugs and studies how they evolved over time, after manually clas-

sifying each bug as either a Bohrbug or a Mandelbug. Furthermore, they examined whether

or not the fault type and attributes such as the failure effect are independent. A set of 520

anomalies was derived, each of which represent a unique fault in the flight software of 18

JPL/NASA missions. Grottke et al. determined that there is a highly significant relationship

between the fault type and the failure risk, and 61.4% of bugs were Bohrbugs, and 36.5%

were Mandelbugs.

Frattini et al. presented an analysis of 146 bug reports from Apache Virtual Computing

Lab, which they determined to be a representative open source Cloud platform [12]. This

Jacob P. Tyo Chapter 2. Related Work 9

analysis identified the components where bugs were likely to be found in future releases,

the phases of the service life cycle during which such bugs may be discovered, and the

modification required to solve them. This paper was based on a small dataset, but the

results included useful information which could be used to create guidelines and increase

efforts in areas in which the system under concern is weakest.

Alonso et al. [13] analyzed the mitigation’s associated with each fault defined in their

previous work [11], [14]. Trends of mitigation type proportions within missions as well as

from mission to mission were identified, while looking for relationships between fault types

and mitigation types. This paper showed that the Bohrbugs and Mandelbugs discussed

in [11] are most frequently mitigated via fixes instead of other measures such as proactive

reboots, and for each type of fault, the earlier missions tended to show lower frequencies of

fixes/patches than the more recent missions.

Xia et al. utilized the bug databases and code repositories for the build systems Ant,

Maven, CMake, and QMake containing 199, 250, 200, and 151 bug reports respectively

[15]. Each sample was manually classified into various categories for further analysis. These

categories were very general. The results showed that 21.35% of bugs belonged to the

external interface category, 18.23% belonged to the logic category, and 12.86% belonged to

the configuration category.

Alhazmi et al. examined the feasibility of quantitatively characterizing some aspects of

security [16]. Specifically, they investigated if it is possible to predict the number of vulner-

abilities that can potentially be present in a software system, but may not have been found

yet. The density of vulnerabilities, fraction of software defects that are security related,

the dynamics of vulnerability discovery, and the vulnerability discovery rate were used to

estimate the magnitude of the undiscovered vulnerabilities still present in the system. The

analysis was based on both commercial and open-source systems to determine the general-

izability. The results revealed that the vulnerability densities fall within a range of values,

similar to fault density for general faults. The authors claimed that it is possible to model

the vulnerability discovery using a logistic model, which can sometimes be approximated by

a linear model as a function of time.

Venter et al. focused on the problem in which each vulnerability scanner represents,

Jacob P. Tyo Chapter 2. Related Work 10

identifies, and classifies vulnerabilities in its own way [17]. A vulnerability scanner is a

proactive information security technology which searches systems and networks for the oc-

currence of known flaws and then produces a report that an individual or Enterprise can

use to strengthen its security. A static code analysis tool is a type of vulnerability scanner.

Each scanner’s report is different, therefore scanners are difficult to compare. Often times

multiple scanners are ran on the same system to catch as many vulnerabiities as possible,

yet it is difficult to aggregate the results appropriately. This paper outlines an approach

towards achieving a standardized vulnerability category set via a data-clustering algorithm,

which was done with self-organizing maps (SOMs) and data pulled from CVE’s. While no

quantification of the results was provided, this paper showed the importance and benefits of

having a standardized vulnerability categorization set.

The Sourcefire Vulnerability Research Team (Younan et al.) took a historical look at

vulnerabilities reported from 1998 to 2012 [18]. This vulnerability analysis was based on

frequency analysis of the CVE’s in the NVD databases. Younan et al. were able to lever-

age this data to draw several interesting conclusions, one of which being that despite the

progress in mitigating attacks against buffer overflows, they remain one of the top ranking

vulnerabilities year over year. Furthermore, they showed that while fewer vulnerabilities

were reported in the last couple of years, the percentage of more critical vulnerabilities has

increased. Some surprising conclusions include that Microsoft has significantly improved

within the last couple of years and their browser and mobile operating systems are better

than their competitors’ in terms of vulnerabilities discovered. Furthermore, Chrome ranked

as one of the highest for vulnerabilities, while Android had very few; iOS had a significant

lead in number of vulnerabilities, while Safari had the fewest compared to the other browsers.

2.2 Automated Bug Report Classification

Issue tracking systems contain unstructured text, and therefore text mining can be used

to automatically process data from such systems. This section discusses previous work

that uses the issues available in issue tracking systems to perform some type of automatic

classification.

Jacob P. Tyo Chapter 2. Related Work 11

Hovsepyan et al. approached static code analysis from the perspective of raw text,

i.e. treated the source code as a text document [19]. Their text mining and classification

approach used consisted of creating the feature vectors which contained the term frequencies

and Support Vector Machine (SVM) to classify which files contain vulnerabilities. The

dataset used in this work was the source code for the K9 mail client for Android mobile

device applications, and labeled with Fortify [20]. Fortify is a static code analysis tool which

does not detect 100% of vulnerabilities and is known to have a very high false positive rate.

Because this was used to label the data, the performance metrics reported are compared to

these labels and not the true class of the data meaning that the reported accuracy of 0.87,

precision of 0.85 and recall of 0.88 mean almost nothing in terms of true performance, only

that this method performs similar to Fortify.

Scandariato et al. took an approach very similar to that mentioned in [19] by also us-

ing project source code as text for text mining approaches [21]. Specifically, they aimed to

determine which components of a project are likely to contain vulnerabilities using term fre-

quencies along with either Naive Bayes or Random Forest. After validation with 20 Android

application, they determined that a dependable prediction model can be built (precision be-

tween 62% and 100% and recall between 48% and 100%), which could be useful in prioritizing

the validation activities.

Perl et al. approached the increasing level of software vulnerabilities from a perspective

yet to be mentioned, through Vulnerability Contributing Commits (VCC) within version

control systems [22]. A large scale mapping was created between CVE’s and the commits

leading to them to create a vulnerable commit database. Based on that database, an SVM

classifier was used to flag suspicious commits. 66 projects that used either C or C++

programming language as well as the Git version control system were used for the analysis.

During testing, the danger level of a piece of code was determined by the danger level of the

commit. The authors stated that compared to Flawfinder [23], their method cut the number

of false positives in half, while maintaining a recall between 26% and 48% and precision

between 11% and 56%.

Jalbert et al. [24] proposed a system that automatically classifies duplicate bug reports

as they arrive, using surface features, textual semantics, and graph clustering. Titles and

Jacob P. Tyo Chapter 2. Related Work 12

descriptions were used from the bug reports, however the authors argued that combining

them would result in a loss of information and are therefore kept as separate corpora. A

“bag of words” approach was used when defining similarly between the textual data, or in

other words the cosine similarity was computed between the term frequency vectors of each

issue. To account for weighting of features, it is argued that the popular Term Frequency /

Inverse Document Frequency (TF/IDF) would not provide effective results, therefore they

developed their own logarithmic weight algorithm based solely on the number of occurrences

of a term in a document. The dataset consisted of 29,000 bug reports from the Mozilla

project. The results showed that the created system was capable of filtering out only a small

portion (8%) of duplicate bug reports.

Lamkanfi et al. demonstrated that text mining can predict the severity of a given bug

report with a reasonable accuracy given a training set of sufficient size [25]. In this paper four

well-known text mining algorithms were compared (Naive Bayes, Naive Bayes Multinomial,

K-Nearest Neighbor and Support Vector Machine). Three research questions were explored:

“What classification algorithm should we use when predicting bug report severity?”, “How

many bug reports are necessary when training a classifier in order to have reliable predic-

tions?”, and “What can be deduced from the resulting classification algorithms?” The results

showed that the Naive Bayes Multinomial classifier had the best accuracy (as measured by

ROC) and was also the fastest when classifying the severity of reported bugs. The Naive

Bayes and Naive Bayes Multinomial classifiers are able to achieve stable accuracy the fastest,

needing about 250 bugs for training.

Antoniol et al. investigated whether the text of the issues posted in bug tracking systems

is enough to classify them into corrective maintenance and other kinds of activities [26]. The

Eclipse, Mozilla, and JBoss open soure systems were the selected datasets, with the title,

description and discussing being used to build the feature vector. Although a lot of focus was

placed on automating this process, it was also shown that the information contained in issues

posted on bug tracking system can be indeed used to classify such issues, distinguishing bugs

from other activities, with a precision between 64% and 98% and a recall between 33% and

97% and accuracy as high as 82%.

Chawla et al. attempted to classify an issue as either a bug or other request using a fuzzy

Jacob P. Tyo Chapter 2. Related Work 13

logic approach [27]. The typical text preprocessing steps were applied, and three open source

software systems were used as case studies: HTTPClient, Jackrabbit, and Lucene. A custom

feature extraction process was used, yet it was very similar to the common TF-IDF method,

followed by 5 fold cross validation for separation of the data into training and testing sets.

The fuzzy logic approach worked marginally better than other classification methods such as

Naive Bayes, Logistic Regression, and AD Tree, and achieved accuracies of 87%, 84%, and

91% and recalls of 77%, 78%, and 85% on the three projects respectively.

Ahmed et al. pointed out the need for dependable bug categorization in order to better

handle proper solution [28]. Their paper analyzes the automatic prediction of different bug

types (Function, Logic, Standard, and GUI) using K Nearest Neighbor and Naive Bayes.

After using 10 fold cross validation, they report recall and precision respectively 91% and

75% for standard issues, 79% and 75% for function issues, 79% and 73% for user interface

issues, and 72% an 79% for logic issues respectively.

Somasundaram et al. investigated automatically categorizing bug reports to allow for

the assignment of a bug to the proper development team through the use of TF-IDF with an

SVM classifier (SVM-TF-IDF), LDA with SVM (SVM-LDA), and LDA and KL (LDA-KL,

Kullback Leiber divergence) [29]. Kullback Leiver divergence is an approach which classifies

bug reports by measuring the divergence between each topic’s centroids obtained from LDA

and a test bug. After testing on the Eclipse, Mylyn, and Mozilla datasets, LDA-KL produced

recalls of 86%, 77%, and 82% on the three project respectively. These results were similar

to those found previously but with better consistency across all components for which bugs

must be categorized.

Layman et al. applied topic modeling to a corpus of NASA problem reports to extract

trends in testing and operational failures, where problem reports are records of off-nominal

performance, deviations from design, and human errors that occur while building and op-

erating these systems [30]. The analysis of problem reports with topic modeling led to the

most popular topics within and across missions, and how popular topics changed over the

lifetime of a mission. Layman et al. found that topic modeling can identify problem themes

within missions and across mission lifetime. However, they identified multiple challenges:

the process of selecting the topic modeling parameters lacks definitive guidance, defining

Jacob P. Tyo Chapter 2. Related Work 14

semantically-meaningful topic labels requires non-trivial effort and domain expertise, topic

models derived from the combined corpus of missions were biased toward the larger missions,

and topics must be semantically distinct as well as cohesive to be useful.

Wang et al. proposed a novel model and methodology to classify and categorize vulner-

abilities according to their security types [8]. Furthermore, they used Bayesian Networks to

automate the proposed process. The security types were defined as a subset of the NVD

classification scheme, and each vulnerability was classified as one of these types based on its

CVSS Access Vector, Access Complexity, Authentication, Confidentiality Impact, Integrity

Impact, and Availability Impact [31]. In order for this method to be successful, the probabil-

ity distribution of vulnerabilities was calculated from all vulnerabilities in the NVD related

to Firefox. No performance metrics were given, but the authors claimed each software prod-

uct must use its own Bayesian network, which implies that each software project would need

its own network constructed to utilize the proposed methodology. Furthermore, the authors

claimed that the automatically generated results were compared to the CVE type in NVD,

and it “proved the correctness of our method.”

Wright et al. conducted an experiment to estimate the number of misclassified bugs yet

to be identified as vulnerabilities in the MySQL bug report database [7]. To determine which

issues were misclassified, a scoring system was developed in which the first part of the scoring

system was the creation of a list of strings with an associated weight, then the second part

was simply checking each issue for the presence of any of those strings. If an issue contained

any of the strings, then the weight associated with the present string was added to that

issues score. This experiment was performed on a subset of issues from the MySQL bug

database, and after scoring, the results were extrapolated into the entire dataset. It was

claimed that human efforts are largely ineffective in classifying bugs as vulnerabilities, and

with the assumption that any issue including one or more of the strings in the generated list

is a vulnerability, after extrapolation they estimated a 657% to 772% increase in the number

of vulnerabilities for the MySQL project but did not verify these findings.

Gegick et al. used text mining on the descriptions of bug reports to train a statistical

model on manually-labeled bug reports to identify security bug reports that were mislabeled

as non security bug reports [6]. The term ”by document frequency method” was used to

Jacob P. Tyo Chapter 2. Related Work 15

create feature vectors. More specifically, the SAS text mining tool is used for the feature

vector creations, as well as prediction in the form of singular value decomposition (SVD).

The issue data from four large Cisco projects were used as datasets which the authors stated

that their model identifies a high percentage (77%) of the security bug reports which were

manually mislabeled as non-security bug reports by bug reporters. However, this system

had a very high false positive rate varying from 26.7% to 96.2%.

Often times, bugs are only identified as vulnerabilities long after the bug has been made

public [5]. Wijayasekara et al. denoted such issues as Hidden Impact Bugs (HIBs), and

created a system that can identify such bugs as an extension of their previous work [32].

CVE’s for the Linux kernel were identified, and then corresponding issues were gathered.

The text mining method used was a basic “bag of words” approach where the frequency of

the terms in each issue was placed into a feature vector. A corpus of regular bugs and HIBs

were then created for training and testing. The Naive Bayes, Naive Bayes Multinomial, and

Decision Tree classifiers were tested, resulting in a precision of 0.88, 0.78, 0.28, a recall of

0.02, 0.09, and 0.40 respectively.

Behl et al. published a paper which highly relates to our work [4], however this paper

does not seem to be credible. They claim to have used “the bugzilla repository of bug

reports,” however bugzilla is an issue tracking system software suite and has no repository

of bug reports. This work claimed to use Term Frequency-Inverse Document Frequency

(TF-IDF) along with an undefined “vector space model,” and compared this performance

to an approach using Naive Bayes. Accuracy and precision were the only performance

metrics used, which do not relate well to the systems ability to classify bugs as security or

non-security. Both performance metrics can give misleading results when using imbalanced

datasets, which is expected in this situation. The reported accuracy and precision (95.7%

and 93.2% respectively) is only marginally better than Naive Bayes.

16

Chapter 3

Vulnerability Profiles

A vulnerability profile, as defined in Section 1.1, is an empirical view of software secu-

rity vulnerabilities. Three NASA bug tracking systems were used to create three separate

datasets, in which each security issue was labeled into a specific security class. This infor-

mation was then used to look for trends that could potentially differentiate security from

non-security issues, as well as the most frequent security themes that each dataset contains.

In this chapter, we explore research questions 1 and 1a.

1. What are the dominant types of vulnerabilities in NASA ground and flight software

systems?

a) Are they consistent across projects and project types?

The procedures and results presented in this section are the result of an empirical study

based on the data described in detail in the following section. Following the dataset descrip-

tion, several potential classification schema’s are described, and the schema selected for use

in this work discussed. The approach taken to manually classify (label) each issue is then

described, followed by the results for each dataset. This section is concluded by comparing

the datasets for common trends and findings, the threats to validity of this empirical study,

and finally by answering the aforementioned research questions 1 and 1a.

Jacob P. Tyo Chapter 3. Vulnerability profile 17

3.1 Datasets

Three main datasets from NASA used were utilized for this work: ground mission IV&V

issues, flight mission IV&V issues, and flight mission developer issues. The developer issues

are obtained from the developers of the software whereas the IV&V issues are obtained from

the Independent Verification and Validation (IV&V) analysts. The issue reports by the

IV&V analysts were of very good quality containing in depth analysis of the problems. The

data extracted from the developer’s bug tracking system was also good, yet did not contain

quite the same level of detail and security specific information. The datasets discussed below

were created from all “closed” issues from their corresponding bug tracking systems.

The first dataset is the IV&V issues extracted from the bug tracking system of a NASA

ground mission and will be referred to as Ground Mission IV&V Issues. This system consisted

of approximately 1.36 million source lines of code, and the bug tracking system contained

1,779 issues created over four years. The IV&V analysts put special emphasis on considering

the security impact of each issue, and as a result 350 (20%) of the issues were marked as

potentially security related. Most issues contained very detailed descriptions, titles, com-

ments, and the issues determined to be security related were labeled as such. In addition,

the issue descriptions contained security related terminology making it a very good dataset

for this project. The fields are detailed in Table B.1.

The second dataset is the IV&V issues extracted from the bug tracking system of a NASA

flight mission and will be referred to as Flight Mission IV&V Issues. This system consisted

of approximately 924 thousand source lines of code, and the bug tracking system contained

506 issues created over four years. After removal of issues marked as “Withdrawn” or “Not

an Issue,” 383 remained. Although this dataset was also from the IV&V analysts, there was

no special consideration put towards the security of each issue. This resulted in the issue

descriptions containing very little security related terminology, and were focused mainly on

proper system operation. The fields of this bug tracking system are detailed in B.1.

The third dataset is the Developer issues extracted from the bug tracking system of the

same NASA flight mission as Flight Mission IV&V Issues and will be referred to as Flight

Mission Developer Issues. This bug tracking system consisted of 1,947 Developer Change

Jacob P. Tyo Chapter 3. Vulnerability profile 18

Requests (DCRs) created over five and a half years. 573 of these DCRs were marked as

“Defects,” whereas the others were marked as “Change Requests” or some other non-issue

related category. Only “Defect” DCRs were included in the dataset, and any mentioning of

an issue from this project refers to only the “Defect” DCRs. This dataset originated from

developers instead of the IV&V analysts, resulting in a much greater focus on proper project

operation instead of security. The fields of this bug tracking system are detailed in B.2.

The aforementioned datasets originate from one of two sources (IV&V analysts or de-

velopers) and from one of two projects (flight mission or ground mission). This creates

natural groupings for comparison. The ground mission IV&V issues dataset will be com-

pared to flight mission IV&V issues dataset to identify trends consistent across ground and

flight missions. The flight mission IV&V dataset will be compared against the flight mission

developer issues to identify problematic themes across IV&V and developer issues.

3.2 Classification Schema

In order to classify a bug report, a classification schema is needed. Common problems

among classification schemas are undefined levels of specificity, very complicated structure,

and non-hierarchical graphs. This section explores some software vulnerability and/or weak-

ness classification schemes along with some strengths and weaknesses of each. At the end of

this section, one of the mentioned classification schemes will be selected for use in the rest

of this work.

Common Weakness and Enumeration (CWE) is a formal list of software weakness types

aimed at serving as a common language for describing software security weaknesses in ar-

chitecture, design, or code. The CWE list also serves as a standard measuring stick for

software security tools targeting those weaknesses, and to provide a common baseline stan-

dard for weakness identification, mitigation, and prevention efforts [33]. Each entry in this

list is given a number such as CWE-120, describes a security weakness, and from here on

out a CWE will refer to an individual entry (i.e. CWE-120) in the CWE formal list. As

quickly getting information from a list of 1004 CWE’s is nearly impossible, a number of

views (as defined in Section 1.1) have been developed to ease grouping similar CWE’s based

Jacob P. Tyo Chapter 3. Vulnerability profile 19

on differing factors, as well as easing the use of this general knowledge. Many views will be

discussed and compared in this section, which attempt to minimize or eliminate common

problems such as undefined levels of specificity, very confusing non-hierarchical structure, or

structuring consisting of child CWE’s having multiple parent CWE’s (as defined in Section

1.1).

Similar to CWE is the Common Vulnerabilities and Exposures (CVE) dictionary [34].

This contains common names for publicly known cybersecurity vulnerabilities and often

includes examples, descriptions, and are mapped to one or more CWE’s. In more general

terms, a CVE is an account of a publicly know vulnerability, which is often grouped into one

or more CWE’s in order to describe the type of underlying problem more accurately and

in more common terms. Because this is a dictionary of known vulnerabilities, it cannot be

used as a classification schema, but could possibly be leverages to get real world examples

of specific CWE’s.

CWE-2000 is the Comprehensive CWE Dictionary View (from here on denoted as CWE-

2000) covers all elements in CWE. It contains 1004 total CWE’s with no particular grouping

or classification [35]. This listing of 1004 CWE’s offers no classifying advantage as there is

no relationships drawn, similarities defined, or any attempt to ease the confusing nature of

classifying such a large corpora of software weaknesses. This view will not be considered as

a potential classification schema for use in this project.

CWE-1000 is the Research Concepts view and was created with the intent to facilitate

research into weaknesses, including their inter-dependencies and their role in vulnerabili-

ties [36]. It classifies weaknesses in a way that largely ignores how they can be detected,

where they appear in code, and when they are introduced in the software development life-

cycle. Instead, it is mainly organized according to the abstractions of software behaviors. It

uses a deep hierarchical organization which provides many levels of abstraction and speci-

ficity. Where possible, this view uses abstractions that do not consider particular languages,

framework, technologies, life-cycle development phases, frequency of occurrence, or types of

resources. It explicitly identifies relationships that form chains and composites, which have

not been a formal part of past classification efforts. This classification scheme contains a

total of 723 CWE’s, grouped into 11 main classes. One issue with this classification scheme

Jacob P. Tyo Chapter 3. Vulnerability profile 20

is the deep hierarchical structure used: The level of specificity is not the same across all

depths. For example, if two CWE’s are compared that were taken from two levels beyond

different main classes of this classification scheme, one may be very specific to a certain

problem and the other may detail a very general set of problems.

CWE-888 is the Software Fault Pattern (SFP) view and is a classification scheme devel-

oped as a result of a Department of Defense (DoD) sponsored project through KDM Analytics

[37] [38]. This view developed a formal specification of software weaknesses/vulnerabilities

that enable automation through focusing on characteristics that are discernible in code,

while also ensuring systematic coverage of the “weakness space.” The classification schema

contains 705 CWE’s, grouped into 21 primary and 62 secondary classes. Furthermore, every

CWE within this view is classified to exactly one primary and one secondary class, creating a

three level hierarchical view. This structure does not have the specificity problem described

about CWE-1000. The three levels have well defined levels of specificity with the primary

class being the most general, and the third level (individual CWE’s) being the most granu-

lar. This along with the very intuitive structuring makes this classification a good potential

match for this work.

CWE-700 is the Seven Pernicious Kingdoms View which originated from Cigital [39] [40].

This schema offers a simple, effective organization structure for software security coding

errors. The creators argue that all other security taxonomies are too complex, due to people

on average being good at keeping track of seven (plus or minus two) things. This provides

the motivation to create a taxonomy with only seven primary classes or topics. However,

due to this simplified classification structure, only 97 CWE’s grouped into seven primary

classes are covered in this two level hierarchical structure. This schema is too simplistic and

too general for use in this work.

CWE-699 is the Development Concepts view which organizes weaknesses around concepts

that are frequently used in software development [41]. Accordingly, this view aligns closely

with the perspectives of developers, educators, and assessment vendors. It borrows heavily

from the organizational structure used by Seven Pernicious Kingdoms, but it also provides a

variety of other categories that are intended to simplify navigation, browsing, and mapping.

This classification scheme contains 756 CWE’s, organized in a hierarchical structure similar

Jacob P. Tyo Chapter 3. Vulnerability profile 21

to CWE-1000. There are six primary classes, which can contain any number of CWE’s,

subclasses, or nested subclasses. In terms of the viability of using this classification schema

for this work, this schema has the same specificity problem as CWE-1000 and will no longer

be considered.

The National Vulnerability Database (NVD) integrates the CWE list into the scoring of

CVE vulnerabilities by utilizing their own subset of the overall CWE structure [42]. This

subset is simply 123 CWE’s which the NVD analysts use to assist in scoring CVE’s at both a

fine a coarse granularity. While this subset may provide good vulnerability coverage, the lack

of classes makes classifying an issue into it very difficult, time consuming, and non-trivial.

This schema will no longer be considered for this work.

The schema that best fit the needs of this project was the CWE-888 Software Fault

Pattern View. CWE-888 includes a three level hierarchical structure of which the first two

levels (primary and secondary classes) were used for our classification. This allowed for each

issue to have a general (primary) class, and a more specific (secondary) class. Furthermore,

the organizational structure of this schema was a good fit for this work as it was developed

for enabling automation through focusing on characteristics that are discernible in code.

A more complete picture of this schema can be seen in Table A.1. The description of the

Software Fault Pattern (SFP) Numbers is out of the scope of this thesis, but can be found

from [37].

3.3 Issue Labeling Approach

For each of the datasets, we manually inspected and labeled each security issue with

its corresponding CWE-888 primary and secondary class. Every issue found to be not

security related was assigned a primary and secondary class of “Not Security Related.” The

fields from the bug tracking systems used for this labeling were the “Title,” “Subject,”

“Description,” and if needed the “Recommended Actions” or “Solution.” This method

allowed for the classification of each issue into two specific levels of detail with the primary

class being more general, and the secondary class being more specific.

An interesting problem encountered was that in some cases, even though an issue can

Jacob P. Tyo Chapter 3. Vulnerability profile 22

be assigned to a CWE-888 primary and secondary class, it may not necessarily be security

related. An example of this could be an issue labeled with the primary class of “Risky

Values,” and secondary class of “Glitch in Computation.” Even though this is a problem

and concern, just because a formula is not generating the correct result does not mean that

this issue is a security concern. Additionally, we did not have the necessary information to

determine if the security related issues could be exploited or what the overall security related

impact on the system would be. Here, similarly to labeling done by static code analysis tools,

we took a conservative approach and treated as security related every issue to which a CWE

class could be assigned. Several Examples of this classification follow:

The description of an issue read “. . . Line 277: Null pointer dereference of ‘getServiceS-

tatusInfo(...)’ where null is returned from a method,” then this issue was labeled with the

primary cluster of “Memory Access” and the secondary cluster of “Faulty Pointer Use.”

An issue description read “. . . Table 1-11 lists XYZ as a unidirectional interfaces,

but Figure 1-4 shows this connection as bidirectional,” then this issue was labeled as “Not

security Related.”

As a final example, an issue description read “. . . The stream is opened on line 603

of file1. If an exception were to occur at any point before line 613 where it is closed, then

the ‘try’ would exit and the stream would not be closed,” then the issue was labeled with

the primary class of “Resource Management” and the secondary class of “Failure to Release

Resource.”

Upon completion of the labeling, each dataset was analyzed. The results and conclusions

are detailed in the following sections.

3.4 Ground Mission IV&V Issues

Of the 1779 issues in this dataset, 350 (20%) were marked as potentially security related

by the IV&V analysts. After labeling, it was determined that 133 of the 350 were truly

security related (38% of the original 350). This reduction in security related issues is due to

a large concentration of testing issues. A testing issue is an issue detailing a problem with

a testing system instead of a problem with the system being tested. No CWE’s exist that

Jacob P. Tyo Chapter 3. Vulnerability profile 23

cover such a case and testing issues are not dealing with the actual system under concern,

therefore we labeled these issues as “Not Security Related.”

Figure 3.1: Ground Mission IV&V Issues - Issue Category Distribution

Figure 3.1 shows the distribution of security and non-security issues across the different

issue categories. The issue category defines what aspect of the project the issues falls under.

As shown, the Design category contained the highest number of issues. However, this cate-

gory consists of only 2.3% (three of 133) of all security issues. The code category houses the

vast majority of security issues, containing 95.5% (127 of 133) of all security issues.

Jacob P. Tyo Chapter 3. Vulnerability profile 24

Figure 3.2: Ground Mission IV&V Issues - Issue Type Distribution

Figure 3.2 shows the distribution of security and non-security issues across the different

issues types, which are most detailed than the issue category. Four dominating issue types

are seen to be “Incomplete Design,” “Incomplete Code,” “Incorrect Code,” and “Incomplete

Test Article.” Similar to the issue category, none of the “Incomplete Test Article” issues

are security related and only one “Incomplete Design” issue is security related. The code

related issues types of “Incomplete Code” and “Incorrect Code” contain 84% (112 of 133) of

security related issue. Furthermore, 43% of the issues in “Incomplete Code” and “Incorrect

Code” are security related.

Jacob P. Tyo Chapter 3. Vulnerability profile 25

Figure 3.3: Ground Mission IV&V Issues - Capability Distribution

Figure 3.3 shows the distribution of the issue capabilities ordered from the capability

that contains the highest total number of issues to the capability that contains the least.

Capability 1, 2, 3, and 4 hold all of the security issues. Capability 3 has the most security

issues containing 40% (53) of the 133 security issues, followed by Capability 2 with 26% (34)

of the 133 security issues. Although only half of the Capabilities house all of the security

related issues, they are also represent 82% of all Capabilities used. Each capability that

contains security issues have a similar ratio of security to non-security issues.

Figure 3.4: Ground Mission IV&V Issues - Subsystem Distribution

Figure 3.4 shows the subsystem distribution ordered from the subsystem that contains

Jacob P. Tyo Chapter 3. Vulnerability profile 26

the highest total number of issues to the subsystem that contains the least. Subsystem 1

and 2 contribute 70% of all issues, which is consistent with the Pareto Principle. The Pareto

Principle states that for many events, roughly 80% of the effects come from 20% of the

causes. In this case, 70% of all issues, and 86% of all security issues come from two of the

seven subsystems which is consistent with the results shown in [3], [43], [1], and [9].

Figure 3.5: Ground Mission IV&V Issues - Analysis Method Distribution

Figure 3.5 shows the distribution of issues with respect to the analysis method used to

detect the issues. The largest proportion of issues (30% of all issues) was found from “Design

Analysis,” however this method did not uncover any security issues. The vast majority of

security issues were discovered using “Implementation Analysis (Static Code Analysis).”

This method was used to discover 91% of all security related issues. Interestingly, the

analysis method of “Security Analysis (Verify Security Control Implementation)” turned up

almost no issues. This is possibly due to the difficulty of determining the potential security

problems in the first place. If a developer is aware of a problem then they are easily able

to fix it, however when a problem is not known, it cannot be fixed. The security analysis

method highlights this difference as the problems the analysts know to look for have already

been fixed. Furthermore, the largest portion of security issues were found via Static Code

Analysis.

The analysis method used can greatly effect the results of this analysis. Often times, the

results are specific to a specific tool or method, and when a different tool or method is used

Jacob P. Tyo Chapter 3. Vulnerability profile 27

different results are presented. The amount of time and energy invested in each method

could also influence its effectiveness. The only information pertaining to the amount of

effort expended on each method known is that significant amount of static code analysis was

performed, and therefore a complete picture of the effectiveness of each analysis cannot be

drawn from this information.

Figure 3.6: Ground Mission IV&V Issues - Severity Distribution

NASA severity ratings range from 1 to 5, with 1 being the most severe. The majority of

all issues (72%) are of severity 3 as shown in Figure 3.6. This trend remains the same for

security issues as well, with 86% of all security related issues being of severity 3.

Figure 3.7: Ground Mission IV&V Issues - Phase Introduced Distribution

Jacob P. Tyo Chapter 3. Vulnerability profile 28

Figure 3.8: Ground Mission IV&V Issues - Phase found Distribution

Figure 3.7 and 3.8 detail the phase in which each issue was introduced and found in the

project. The majority of security issues (91%) were introduced in the implementation phase,

which again shows how hard implementing security code is compared to determining the

requirements and design from a security standpoint. Furthermore, the phase in which issues

were found closely followed the phase in which they were introduced.

Figure 3.9: Ground Mission IV&V Issues - Distribution of issues across CWE-888 Primary
Classes

Jacob P. Tyo Chapter 3. Vulnerability profile 29

Figure 3.9 shows the distribution of security issues across the primary CWE-888 classes,

however only 11 out of the 21 primary classes were observed. The class of “Memory Access”

consisted of 53% of all security issues. Furthermore, the primary classes of “Memory Access,”

“Unused entities,” “Exception Management,” “Risky Values,” and “Resource Management”

contain 92% of all security issues.

Figure 3.10: Ground Mission IV&V Issues - Primary and Secondary CWE-888 Class
Distributions

The secondary CWE-888 classes provide more detail than simply the primary classes.

Figure 3.10 shows the overall distribution of security issues in both the primary and secondary

class, which better represents the types of security issues. This figure shows that of the 70

issues in the “Memory Access” primary class, 63 are of the secondary class “Faulty Pointer

Use.” The remaining dominating class of “Unused Entities,” “Exception Management,” and

Jacob P. Tyo Chapter 3. Vulnerability profile 30

“Risky Values” were comprised mainly of the secondary classes “Dead Code,” “Ambiguous

Exception Type,” and “Glitch in Computation” respectively.

3.5 Flight Mission IV&V Issues

After the removal of “Withdrawn” or “Not an Issue” issues, 383 issues remained. After

labeling, 157 issues were marked as security related (41% of all issues). The following figures

show the results of the analysis.

Figure 3.11: Flight Mission IV&V Issues - Issue Category Distribution

As shown in Figure 3.11, most of the security related issuse were associated with the

“Code” category, which contributed 92% of all security related issues. This project did not

have the testing issue problem as described in the previous section, which is a result of no

issue in this dataset containing any specific security related tags but all issues being manually

classified into the CWE-888 classification scheme. This distribution of security related issues

aligns with the conclusions presented in the previous section, with majority of security issues

related to the implementation, rather than early life cycle phases.

Jacob P. Tyo Chapter 3. Vulnerability profile 31

Figure 3.12: Flight Mission IV&V Issues - Issue Type Distribution

Figure 3.12 shows four issue types dominating the majority of the security issues: “In-

correct Code,” “Incomplete Code,” “Missing Code,” and “Extraneous Code.” It is not

surprising that these dominating issues types are all code related having in mind that code

issue category had most of the security issues.

Jacob P. Tyo Chapter 3. Vulnerability profile 32

Figure 3.13: Flight Mission IV&V Issues - Defect Distribution

Figure 3.13 provides a breakdown by defect categories. The three dominating defect

categories are “Algorithms and Processing,” “Control, Logic and Sequence,” and “Data.”

Figure 3.14: Flight Mission IV&V Issues - Capability Distribution

Figure 3.14 is not very informative. Each capability contains approximately the same

Jacob P. Tyo Chapter 3. Vulnerability profile 33

proportion of security issue with respect to its size (i.e. each capability is approximately

30% security and 70% non-security). Even though security issues are more concentrated in

certain development phases or types (i.e. the implementation or coding), the functionality

of the code being created has little to no impact on the number of security issues associated

with it.

Figure 3.15: Flight Mission IV&V Issues - Subsystem Distribution

Figure 3.15 shows that 88% of all security issues and 88% of all issues fall into three

subsystems. Furthermore, according to this figure, Subsystem 3 is the most security issue

prone with 53% of the issues related to this subsystem being security related.

Figure 3.16: Flight Mission IV&V Issues - Severity Distribution

As shown in Figure 3.16, severity levels 3 and 4 contain 79% of all security issues and

86% of all issues.

Jacob P. Tyo Chapter 3. Vulnerability profile 34

Figure 3.17: Flight Mission IV&V Issues - Phase Introduced Distribution

Figure 3.18: Flight Mission IV&V Issues - Phase Found Distribution

Figure 3.19: Flight Mission IV&V Issues - Phase Resolved Distribution

Figures 3.17 and 3.18 show results consistent with the Ground Mission IV&V issues,

where the majority of security issues were introduced (85%) and found (85%) in the imple-

mentation phase. The phase in which an issue was found closely follows the phase in which

Jacob P. Tyo Chapter 3. Vulnerability profile 35

the issue was introduced. Unlike the Ground Mission IV&V Issues dataset, the Flight Mis-

sion IV&V Issues dataset included information on the phase in which each issue was resolved,

detailed in Figure 3.19. 75% of security related issues were resolved in the implementation

phase, and the remaining 25% were resolved in the testing phase. Interestingly enough, no

security issues were resolved in the design phase, even though some were introduced and

found in this phase.

Figure 3.20: Flight Mission IV&V Issues - Distribution of issues across CWE-888 Primary
Classes

The diagram shown in Figure 3.20 shows the distribution of security issues when labeled

with their corresponding CWE-888 primary class. Similarly as the Ground Mission IV&V

Issues dataset, only 9 of the 21 primary classes were observed with the dominating classes

of “Other,” “Risky Values,” “Memory Access,” and “Unused Entities.” .

Jacob P. Tyo Chapter 3. Vulnerability profile 36

Figure 3.21: Flight Mission IV&V Issues - Primary and Secondary CWE-888 Class
Distributions

Figure 3.21 shows the distribution of security issues across the primary and secondary

classes. The secondary classes provide more detail on the types of security issues seen

throughout this dataset than the primary classes, giving a more specific picture of the types

of security issues observed. Of the 59 “Other” issues, 55 were of the secondary class “Im-

plementation.” The primary class of “Risky Values” contained 30 issues, all of which with

the secondary class of “Glitch in Computation.” Of the 20 “Memory Access” issues, 14

were of the secondary class “Faulty Buffer Access.” ‘The primary class of “Unused Entities”

contained 23 issues, 18 were of the secondary class “Dead Code.”

Jacob P. Tyo Chapter 3. Vulnerability profile 37

3.6 Flight Mission Developer Issues

After the removal of all issues that were not “Closed” and a “Defect,” 569 issues remained.

Labeling resulted in 374 of these issues marked as security related (66% of all issues), which

is significantly higher than the proportion of security related issue in the other datasets. The

following figures show the results of the analysis.

Figure 3.22: Flight Mission Developer Issues - Issue Type Distribution

Figure 3.22 shows the distribution of issue types. Two dominating categories are “Incor-

rect Implementation” and “Incorrect Operation or Unexpected Behavior.” The dominating

category “Incorrect Implementation” is consistent in what has been seen in the previously

analyzed datasets.

Jacob P. Tyo Chapter 3. Vulnerability profile 38

Figure 3.23: Flight Mission Developer Issues - Subsystem Distribution

Figure 3.23 presents the distribution of security and non-security issues across the sub-

systems used in this dataset. The characteristics are very similar to the previous datasets,

with 88% of all security issues found in only four subsystems, which together houses 89% of

all issues.

Figure 3.24: Flight Mission Developer Issues - Severity Distribution

While the severity ratings used by the IV&V analysts ranged from 1 to 5, the ratings

found in this dataset are Minor, Moderate, and Critical. In a fashion similar to previously

Jacob P. Tyo Chapter 3. Vulnerability profile 39

observed the moderate category dominated, containing 86% of the security issues, and 85%

of all issues. Only 4% of all issues, and 4% of security issues were determined to be critical.

Figure 3.25: Flight Mission Developer Issues - Phase Found Distribution

This dataset contained information about the phase in which each issue was found, yet

no information on when they were introduced or resolved. As shown in Figure 3.25, the

major phases where issues were found were ”Build Verification,” ”Build Integration,” and

”Code Implementation.” This is similar to what has been previously observed in the previous

datasets.

Jacob P. Tyo Chapter 3. Vulnerability profile 40

Figure 3.26: Flight Mission Developer Issues - Distribution of Issues Across CWE-888 Pri-
mary Classes

The diagram shown in Figure 3.26 shows the distribution of security issues when placed

into corresponding CWE-888 class. While only 13 of 21 primary class were observed, “Risky

Values,” “Exception Management,” and “Memory Access” were responsible for 50% of all

security issues.

Jacob P. Tyo Chapter 3. Vulnerability profile 41

Figure 3.27: Flight Mission Developer Issues - Primary and Secondary CWE-888 Class
Distributions

Figure 3.27 show the distribution of security issues across the primary and secondary

classes. The secondary classes provide more detail on the types of security issues seen

throughout this dataset then the primary classes, giving a more specific picture of the types

of security issues observed. The previous datasets saw mostly a single secondary class dom-

inating within each primary class, which is not always the case with this dataset. The

primary class with the most issues is “Risky Values” and all issues of this primary class

are of the secondary class of “Glitch in Computation.” However, the next largest primary

class is “Exception Management” with 90 issues: of these 90 issues, 48 were of the sec-

ondary class “Incorrect Exception Behavior,” and the remaining 42 were of the secondary

class “Unchecked Status Condition.” A similar distribution occurs within the primary class

of “Memory Access” where of the 34 issues, 22 are of the secondary class “Faulty Buffer

Access,” and the remaining 12 are of the secondary class “Faulty Pointer Use.”

Jacob P. Tyo Chapter 3. Vulnerability profile 42

3.7 Comparison of the Results Across Three Datasets

This section presents a comparison of the results across all datasets. The CWE-888

primary and secondary classes are used to compare the security distribution across projects,

as well as the issues most often plaguing NASA systems. Furthermore, the main findings

across these datasets are presented.

Table 3.1: Comparison of Primary Class Distributions Across All Projects

Primary CWE-888 Class
Ground Mission

IV&V Issues

Flight Mission

IV&V Issues

Flight Mission

Developer Issues

API (887) 1.9%

Channel (902) 2.7% 6.0%

Exception Management (889) 10.8% 8.2% 27.2%

Memory Access (890) 54.6% 18.3% 12.8%

Memory Management (891) 0.4%

Other (907) 1.5% 24.5% 7.1%

Predictability (905) 0.8%

Privilege (901) 1.2%

Resource Management (892) 6.9% 3.0%

Risky Values (885) 8.5% 21.8% 28.3%

Synchronization (894) 0.8% 3.4%

Tainted Input (896) 1.5% 8.2% 3.8%

UI (906) 0.9% 1.1%

Unused Entities (886) 14.6% 14.5% 3.8%

Jacob P. Tyo Chapter 3. Vulnerability profile 43

Figure 3.28: CWE-888 Primary Class Distribution Graphical Comparison for all Projects

Table 3.1 and Figure 3.28 detail the percent in which each CWE-888 primary classes

contributes to each dataset. The primary classes of “Exception Management,” “Memory

Access,” “Other,” “Risky Values,” and “Unused Entities” account for the most significant

portion of security issues across all projects. Interestingly, primary classes which do not occur

in all datasets, tend to make up for only a small proportion (7% or less) of the datasets they

do appear in.

Jacob P. Tyo Chapter 3. Vulnerability profile 44

Table 3.2: Comparison of Dominating Secondary CWE-888 Class Distributions Across All
Projects

Primary CWE-888 Class

Secondary CWE-888 Class

Ground Mission

IV&V Issues

Flight Mission

IV&V Issues

Flight Mission

Developers Issues

Exception Management (889)

Ambiguous Exception Type (960) 7.7%

Incorrect Exception Behavior (961) 4.5% 14.0%

Unchecked Status Condition (962) 3.1% 3.6% 13.2%

Memory Access (890)

Faulty Buffer Access (970) 4.6% 12.7% 8.3%

Faulty Pointer Use (971) 50.0% 5.5% 4.5%

Other (907)

Architecture (975) 0.9%

Design (977) 2.6%

Implementation (978) 1.5% 23.6% 4.5%

Risky Values (885)

Glitch in Computation (998) 8.5% 21.8% 28.3%

Unused Entities (886)

Dead Code (561) 14.6% 10.0% 3.4%

Unused Variable (563) 4.5% 0.4%

Table 3.2 shows the dominating CWE-888 primary classes along with their corresponding

secondary class across all projects. The secondary classes most often occurring in “Exception

Management” issues were “Ambiguous Exception Type,” “Incorrect Exception Behavior,”

and “Unchecked Status Condition.” These secondary class names are specific, self explana-

tory, and will not be discussed further.

“Memory Access” was another dominating class, consisting of “Faulty Buffer Access”

and “Faulty Pointer Use.” These categories include common programming errors such as

null pointer dereferences and buffer overflows. As shown by Younan [18], buffer overflows

continue to be one of the most common vulnerabilities in software systems.

The next dominating primary class is “Other” with the most commonly seen secondary

classes of “Design” and “Implementation.” “Design” consists of weaknesses dealing with

insufficient control flow management or reliance on data/memory layout. “Implementation”

is based around weaknesses such as coding standards violation or containment errors. These

secondary classes were assigned to issues which had security related problems related strictly

Jacob P. Tyo Chapter 3. Vulnerability profile 45

to their design or implementation and could not be placed into any other class.

Another dominating primary class is “Risky Values.” This primary class consists of

the secondary class “Glitch in Computation” which deals with calculation errors. These

involve everything from a divide by zero error to a function call with an incorrect order of

arguments. The Flight Mission Developer Issues dataset had the highest percentage of these

errors. This is potentially be because this was the only bug tracking system from developers.

The developers are more likely to focus on things such as the incorrect generation of results,

and therefore fix them before they reach the IV&V analysts (in this case Flight Mission

IV&V Issues).

The last consistently dominating class is “Unused Entities,” consisting of the “Dead

Code” and “Unused Variable” secondary classes. These issues were abundant across all

project types, but were found much more often in the IV&V datasets.

Table 3.3: Main Findings Across all Datasets

Ground Mission

IV&V Issues

Flight Mission

IV&V Issues

Flight Mission

Developers Issues

% Security Issues 9% 41% 66%

Security Issues

Category
95% Code 92% Code Data not available

Severity of Security

Issues
Level 3 dominated (86%)

Levels 3 and 4 dominated (to-

gether 78%). 7% were level 2
Moderate dominated (84%)

Phase Introduced
95% in the Implementation

Phase

85% in the Implementation

Phase
Data not available

Phase Found
Followed closely the phase in-

troduced distribution

Followed closely the phase in-

troduced distribution

Most found during Code Im-

plementation, Build Integra-

tion, and Build Verification

Subsystem
86% found in two subsystems

(70% of all issues)

88% in three subsystems (88%

of all issues)

88% in four subsystems (90%

of all issues)

Five (out of 21)

most frequent Pri-

mary Classes

Exception Management 10.8%

Memory Access 54.6%

Other 1.5%

Risky Values 8.5%

Unused Entities 14.6%

Total 90.0%

Exception Management 8.2%

Memory Access 18.2%

Other 24.5%

Risky Values 21.8%

Unused Entities 14.5%

Total 87.3%

Exception Management 27.2%

Memory Access 12.8%

Other 7.1%

Risky Values 28.3%

Unused Entities 3.8%

Total 79.2%

Table 3.3 shows the main findings for each dataset. The percentage of security issues for

each dataset was covered a wide range (from 9% to 66%). One possibility for this is that the

Ground Mission IV&V Issues dataset is a sample from a not yet complete project, as the

Jacob P. Tyo Chapter 3. Vulnerability profile 46

testing phase has not yet begun. However, in Flight Mission IV&V Issues the majority of

all security issues were introduced and found in the implementation phase, which indicates

that the Ground Mission IV&V Issues dataset simply had less security related issues.

Not surprisingly, the Ground Mission IV&V Issues dataset as well as the Flight Mission

IV&V Issues dataset had the vast majority of security issues belonging to the “Code” cate-

gory (95% and 92% respectively. The Flight Mission Developers Issues dataset however did

not contain this information. This is to be expected as implementing secure code (instead

of developing the requirements or design) proves to be the most difficult aspect of software

security.

Ideally, security issues should be of higher severity than non-security. However, across

all datasets, the majority of all issues along with the majority of security issues were of a

severity level relating to moderate. This is most likely due to the severity being assigned to

an issue before the security implication of that issue are known or realized.

Furthermore, security issues should be fixed in a timely manor to not only minimize the

time that vulnerabilities exist in the system, but to also prevent its propagation. While the

data pertaining to the project phase in which issues were found was not given in the Flight

Mission Developers Issues dataset, in both the Ground Mission IV&V Issues dataset and the

Flight Mission IV&V Issues dataset the phase in which an issue was found closely follows the

phase in which it was introduced. This correlates to security issues being found during the

same phase in which they are introduced, and therefore being identified in a timely fashion.

The subsystem is a grouping of software components, juxtaposed to create a modular

piece of code to accomplish a specific task. As these subsystems can be reused, it is important

to determine the risk of introducing security related issues into the system by incorporating

them. This is hard to determine using only the bug tracking system as the amount each

subsystem is used is unknown. However, each dataset shows two to four subsystems which

contain the majority of security issues, and the majority of all issues. Assuming each sub-

system is used in proportion to the total number of issues found for it, then each subsystem

introduce very similar risk into the system through their implementation.

The final row in Table 3.3 details the previously discussed dominating primary CWE-888

class, along with the percent make up of each dataset. For a more detailed description and

Jacob P. Tyo Chapter 3. Vulnerability profile 47

analysis of the distribution of these issues across each dataset, see Table 3.2 and the following

discussion.

3.8 Threats to Validity

Many issues arose during the analysis of each project. One problem with each data set

is that it originates from human analysis. This creates problems because the number of

security related issues depends on the quality of the software artifacts, the validation and

verification (V&V) methods used, and the amount of effort expended in the issue creation,

classification, and analysis. Therefore, vulnerability profiles built from projects bug tracking

systems depend on the quality and completeness of information provided in the bug tracking

system.

Furthermore, some instances arose when a bug report could be correctly classified into

multiple CWE-888 classes. This has no clear solution and was solved by selecting the most

relevant of the possible classes. Although this can change the vulnerability type distribution,

it most likely has little to no effect as the issue is still accounted for, and the number of issues

fitting into multiple classes was small.

As described in Section 3.4, testing issues marked as security related by IV&V analysts

were not included in out analysis. A testing issue details a problem with a testing system,

instead of a problem with the system being testing. No CWE’s exist that cover such a case

and therefore could not be included in the analysis.

Each dataset contained a small amount (15% or less) if issues that did not contain

sufficient information for classification. To classify these issues an analyst or developer

would need to look further into the issue and provide more details. Issues which did not

contain the information necessary for classification to CWE classes were not included in the

analysis.

Jacob P. Tyo Chapter 3. Vulnerability profile 48

3.9 Conclusion

We conducted the empirical analysis of the NASA datasets to determine the vulnerability

distributions and trends. We summarize the research questions 1 and 1a here as follows:

1. What are the dominant types of vulnerabilities in NASA ground and flight software

systems?

a) Are they consistent across projects and project types?

The dominant types of vulnerabilities in NASA ground and flight software systems are

Exception Management, Memory Access, Other, Risky Values, and Unused Entities account-

ing for 79% to 90% of all security issues, depending on the dataset. Looking further into the

secondary classes of these dominating types provided more detail of the exact vulnerability

types as follows: the most commonly observed vulnerabilities among Exception Manage-

ment issues were Ambiguous Exception Type and Incorrect Exception Behavior. The most

commonly observed vulnerabilities among Memory Access issues were Faulty Buffer Access

and Faulty Pointer Use. The most commonly observed vulnerability among Other issues was

Implementation. The most commonly observed vulnerability among Risky Values issues was

Glitch in Computation. The most commonly observed vulnerability among Unused Entities

issues was Dead Code.

While the dominating vulnerability types differ in which contains the highest percentage

of security issues in each dataset, the same five vulnerability types consistently dominate

across ground and flight missions as well as across the IV&V and Developer Datasets.

49

Chapter 4

Automated Bug Report Classification

The vulnerability profile described in Chapter 3 provides valuable information to the

analysts and developers that aim to increase the security of the software system under

concern. However, developing such vulnerability profiles required manual classification of

each issue, which is time consuming and costly. This section addresses this concern by using

machine learning techniques to automatically classify bug report. Research questions 2, 2a,

2b, 3, 3a, 4, and 5 will be addressed.

2. Can supervised machine learning algorithms be used to classify software issues as

security related or not?

a) Do some learners perform consistently better than others?

b) How much data must be set aside for training in order to produce accurate clas-

sification results?

3. Can supervised machine learning algorithms be used to classify security issues to spe-

cific security classes?

a) Are some classes harder to predict than others?

4. Can unsupervised machine learning algorithms be used to classify software issues as

security related or not?

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 50

5. How does the performance of supervised and unsupervised machine learning algorithms

compare when classifying software bug reports?

4.1 Datasets, Data Extraction, and Preprocessing

The datasets used throughout this chapter are the same datasets as described in Section

3.1. Although these datasets contained many fields as described in Tables B.1 and B.2, only

the Title, Subject, and Description of each issue were used for the automated classification.

These fields were selected because every issue includes them, and they do not depend on data

that is only available after extensive human analysis such as the “Recommended Solution.”

Furthermore, the CWE-888 class of each issue was kept as the class label.

Specifically, the Title, Subject, and Description of each issue were extracted, and then

concatenated into a single string. The preprocessing steps of removing all non-alphanumeric

characters using a regular expression in python, converting all characters to lowercase with

python, remove stop words using python’s Natural Language Toolkit (NLTK) English stop

word list [44], and then stem each word with python’s Lovins stemming algorithm imple-

mentation [45]. Stop words are words that do not contain important significance to be used

in this classification.

After all of the preprocessing steps were completed, we were left with one string for each

issue in the dataset. The features to be used for the machine learning were then extracted

from these strings as described in the next section.

4.2 Feature Vectors

Three tyes of feature vectors were used throughout this project: Binary Bag-of-Words

Frequency (BF), Term Frequency (TF), and Term Frequency-Inverse Document Frequency

(TF-IDF). Traditional terminology when discussing these methods include terms, documents,

and corpus. This work has three corpora, one for each dataset and will be denoted in the

same manor as the datasets they originated from: Ground Mission IV&V Issues, Flight

Mission IV&V Issues, and Flight Mission Developers Issues. A “term” is a word within a

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 51

document, or in this case a word in the string representation of an issue. A document is a

collection of terms, or in this case a string representing an issue. A corpora is a collection of

documents, or in this case the collection of strings representing an issue from a specific bug

tracking system. From here on, term, document, and corpus will refer to the aforementioned

definitions.

All of the aforementioned feature extraction methods produce a vector of numeric values

for each document. Each method also does this in a similar way, by each location in the

vector representing a term, and the numeric value at the location representing the occur-

rence of that term in the document. The words which each location in these feature vectors

represent is referred to as the vocabulary. This is an important aspect of these feature ex-

traction methods. Selecting a large vocabulary would improve the coverage, and therefore

the amount of terms extracted from each document analyzed; however, this leads to a very

large dimensionality, increasing time complexity, and could result in unnecessary noise. Fur-

thermore, too small of a vocabulary could result in insufficient information to classify each

document with. The typical approach for selecting the feature extraction vocabulary is to

use every term in the corpus. This approach however is problematic as it creates such a large

dimensionality (1,970,810 terms in the largest cast), and when scaling this work the time

complexity becomes a barrier. To avoid this issue, the CWE-888 data was preprocessed in

the same was as mentioned in the previous Section, and the remaining terms were used as

the vocabulary (reducing the dimensionality to 2938 terms).

The most simplistic feature extraction method is the Binary Bag-of-Words Frequency

(BF) as shown in Equation 4.1. This method only determines if each term in the vocabulary

is in the document or not. Equation 4.1 shows that the BF of any term can only be 1 or 0.

BF(term) is the binary frequency of term, and f(term) represents the frequency (or number

of occurrences) of term in document.

BF (term) =

{
0 f(term) = 0

1 f(term) > 0
(4.1)

The Term Frequency (TF) feature extraction method (as shown in Equation 4.2) retains

more information about the document than the BF. Instead of reducing a document into 1’s

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 52

and 0’s corresponding to the presence or absence of a term, TF records the frequency (or

number of occurrences) of term in the document. TF(term) is the term frequency of term,

and f(term) represents the frequency (or number of occurrences) of term in the document.

TF (term) = f(term) (4.2)

The Term Frequency-Inverse Document Frequency (TF-IDF) feature extraction method

(as shown in Equation 4.3) is an extension of the TF feature extraction method, that weights

the importance of a term in a specific document inversely to how often it appears in other

documents. This is done to decrease the effect a term which appears in many documents

has on the feature vector, as a term which appears in a wide range of documents would

contain little discriminatory information. tfidf(term) represents the tfidf score of term in

the document, f(term) is the frequency (or number of occurrences) of term in the document,

n is the total number of documents, and N(term) is the number of documents that term

appears in.

tfidf(term) = f(term) ∗ log n

N(term)
(4.3)

A common variation to these feature extraction methods is to exclude any terms that do

not appear a minimum number of times in a document. This minimum frequency is often

used to reduce the noise of the dataset, however this work focused on bug reports which

often include only one word pertaining to the security aspect of the issue. Therefore, no

minimum frequency was set to avoid loosing important information.

4.3 Classifiers

Machine learning classifiers fall into two main categories: supervised and unsupervised

[46]. A supervised learning technique is any approach in which the true class of the training

data is used to infer a function or model to describe the output from the input data. The

supervised learning methods used in this work and discussed below are: Bayesian Network

(BN), k-Nearest Neighbor (kNN), Naive Bayes (NB), Naive Bayes Multinomial (NBM),

Random Forest (RF), and Support Vector Machine (SVM).

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 53

P (A|B) =
P (B|A)P (A)

P (B)
(4.4)

Equation 4.4 presents Bayes’ theorem where P(A) and P(B) are the probabilities of

observing A and B without regard to each other, P (A|B) is the probability of observing

event A given that B is true (referred to as a conditional probability), and P (B|A) is the

probability of observing event B given that A is true [47]. This theorem is the basis for the

Naive Bayes, Naive Bayes Multinomial, and Bayesian Network classifiers described below.

P (X|C) = Πn
i=1P (Xi|C) (4.5)

The Naive Bayes classifier is a result of the unrealistic assumption that strong inde-

pendence exists between the features, and presented in Equation 4.5, where X is a feature

vector and C is a class. Although this assumption is unrealistic, the Naive Bayes classifier

is remarkably successful in practice [48]. The implementation of this algorithm in Weka was

used [49].

P (x|Ck) =
(
∑

i xi)!

Πixi!
Πip

xi
ki (4.6)

As an expansion of the Naive Bayes classifier, a multinomial event model is expected

correlating to the feature vectors being probabilities of a multinomial distribution [50]. The

multinomial expansion on the Naive Bayes Theorem is show in in Equation 4.6 where x is the

feature vector, pi is the probability that even i occurs, and k is the class. In simpler terms,

this assumes the input is of a multinomial distribution. This algorithm was implemented

using Weka [49].

A Bayesian Network (or Bayes Net) is a probabilistic directed acyclic graphical model

that represents a set of random variables and their conditional dependencies [51]. In simpler

terms, a Bayesian network can be considered a mechanism for automatically applying Bayes’

theorem (as shown in Equation 4.4) to complex problems. A common example is that

a Bayesian Network could represent the probabilistic relationships between diseases and

symptoms. Given symptoms, the network can be used to compute the probabilities of the

presence of various diseases. Bayes Net was implemented using Weka [49].

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 54

Random Forests operate by constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes of the individual trees [52]. Decision

trees are know to overfit, and therefore the Random forest approach helps to correct for this

overfitting. Decision trees map observations (branches) about an item to conclusions about

the item’s target value (leaves). This classifier was implemented using Weka [49].

Support Vector Machine (SVM) is a non-probabilistic binary linear classifier, which max-

imizes the distance between the decision line (the line separating the two classes) and each

of the two classes [53]. Although this is a linear model, it can efficiently perform non-linear

classification using a kernel trick which maps the input into a higher dimensionality feature

space. This classifier was implemented using Weka [49].

Unsupervised learning is any technique in which algorithms or models are used to infer

a function to describe hidden structure from unlabeled data. The unsupervised classifiers

used in this work and discussed below are Cosine Similarity and kNN.

k-Nearest Neighbor (kNN) is a classification method in which an input is classified by a

majority vote of its closest neighbors, with the input being assigned to the class most common

among its k nearest neighbors (where k is a positive integer) [54]. This among the simplest of

machine learning algorithms, and is a form of lazy-learning where all computation is deferred

until classification. The distance metric used for this classifier was the Euclidean distance as

described in Equation 4.7, where D(a, b) represents the Euclidean distance between vectors

a and b and n represents the dimensionality of the vectors. This classifier was implemented

using Weka [49].

D(a, b) =

√√√√ n∑
i=1

(bi − ai) (4.7)

Equation 4.8 shows the formula used to calculate the cosine similarity between two vectors

A and B [55]. While this is simply a distance metric, it can be used to represent the similarity

between two documents that are represented in feature vectors. Therefore, the documents

can be classified as the class of which they are most “similar.” This method was implemented

using python [45].

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 55

similarity(A,B) =
A ∗B
||A||||B||

(4.8)

4.4 Performance Evaluation

The metrics used for performance evaluation are derived from the confusion matrix shown

in Table 4.1 [56]. The true or positive class for this work was chosen to be security related

issues, and the false or negative class was chosen to be the non-security issues. The following

performance metrics were used: accuracy, precision, recall, probability of false alarm (PFA),

F-Score, and G-Score. The equations and description of each metric are given below.

Table 4.1: Performance Measure Confusion Matrix

Predicted Class Class

Security Issue Non-Security Issue

True Class
Security Issue Count of True Positives (TP) Count of False Negatives (FN)

Non-Security Issue Count of False Positives (FP) Count of True Negatives (TN)

The accuracy as shown in Equation 4.9 describes the total number of correctly classified

issues with respect to all issues. This metric is of limited value to this work due to the

effect imbalanced data has on it. For example, if only 10% of the issues in a project were

security related, then an accuracy of 90% could be obtained simply by labeling all issues as

non-security.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.9)

The precision as shown in Equation 4.10 describes the total number of correctly classified

security issues out of all issues determined to be security related. Again, this measure can

be skewed with imbalanced data.

Precision =
TP

TP + FP
(4.10)

The recall as shown in Equation 4.11 is one of the most important performance metrics

for this work, and often referred to as the probability of detection. The recall describes the

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 56

probability of detecting a security issue. This metric is one of the most important for this

work as missing a security issue can lead to vulnerabilities that significantly decrease the

software system’s integrity.

Recall =
TP

TP + FN
(4.11)

The probability of false alarm (PFA) describes the probability of labeling a non-security

issue as security. This measure tends to be very high in automated security tasks in an

attempt to catch all security issues.

PFA =
FP

TN + FP
(4.12)

The F-Score is the harmonic mean between precision and recall, which describes how

well an automated system is able to balance the performance between precision and recall.

A system with a higher F-Score usually relates to better performance.

F-Score = 2 ∗ precision ∗ recall
precision + recall

(4.13)

The G-Score is the harmonic mean between recall and one minus the probability of false

alarm. This metric will be highly scrutinized as well as it accounts for the two most important

measures in security detection systems.

G-Score = 2 ∗ recall ∗ (1− PFA)

recall + (1− PFA)
(4.14)

When reporting the results from multiclass classification, both the macro-averaged and

the weighted average of the performance metrics listed above were used. Macro-averaging

treats each class as equally important, whereas the weighted average weights each class with

respect to the number of instances it contains. The weighted average is then biased towards

the largest or larger class(es), whereas the macro-averaged performance metrics may not

show performance which accurately describes the number of correctly classified instances.

The weight average and macro-average equations are shown below where i represents the

number of classes, Mi represents the performance metric being averaged for each class, and

wi represents the number of bug reports in each class.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 57

Macro-average =
1

n

n∑
i=1

Mi (4.15)

Weighted Average =

∑n
i=0 Miwi∑n
i=0 wi

(4.16)

4.5 Supervised Learning

As defined in Section 4.3, supervised learning is an approach in which the true class

of the training data is used to infer a function or model (train a learner) to describe the

output from the input data. This section describes the procedure used to train and test

each automated system that could be created from combining one of the feature extraction

methods mentioned in Section 4.2, as well as one of the supervised classifiers listed in Section

4.3. Each system will be denoted as (Feature Extraction Method) (Classifier). For example,

if the Term Frequency feature extraction method was used with the Naive Bayes Multinomial

(NBM) classifier, this would be denoted as TF NBM.

Even though each system is made up of a different feature extraction and supervised

classifier combination, the process used to train and test each system is the same. Therefore,

the remainder of this section will use the term system to refer to all feature extraction and

classifier combinations.

Each system will be tested on the corpora from each of the datasets described in Section

4.2. Each corpus must be separated into a training and a testing set in which no document

appears in both sets. 10-fold stratified cross validation, as well as 75%, 50%, and 25%

percentage splits where used to create four sets of training and testing data per corpus, in

order to test each system’s performance with respect to amount of training data needed.

After these training and testing sets were obtained, each system was presented each doc-

ument and label in the training set. The system then used the labels to tune the underlying

function or model to the training data, by predicting the label of the input document, and

comparing this result to the true label of the input document. The system then updates

the underlying function or model accordingly. After the system has been presented with all

training documents, the testing documents are presented to the system. The system gen-

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 58

erates labels for the testing data based on what it learned from the training data, and the

performance is then evaluated by comparing the predicted labels to the true labels of the

testing issues.

4.6 Supervised Two Class Classification

Using the procedure mentioned above, testing each system on each corpus as a two-class

problem meant simply labeling all documents labeled with a CWE-888 class to “Security

Related,” and label the rest as “Not Security Related.” Each systems ability to distinguish

between a security and a non-security bug report was tested by addressing research questions

2, 2a, and 2b addressed. These results are detailed in the next section.

2. Can supervised machine learning algorithms be used to classify software issues as

security related or not?

a) Do some learners perform consistently better than others?

b) How much data must be set aside for training in order to produce accurate clas-

sification results?

4.6.1 Two Class Classification Results

Table 4.2 presents the classification performance for each dataset when using Binary

Bag-of-Words feature extraction and each supervised classifier, and 10-fold stratified cross

validation. The column corresponding to the classifier that performs the best (with respect to

G-Score) for each dataset is in bold. Interestingly, the best performing classifier is different for

each dataset. Furthermore, a classifier which performs very well on one dataset, may perform

very poorly on another. An example of this is the Bayesian Network: while performing the

best on the Ground Mission IV&V Issues dataset, it performed the worst (G-Score of 0) on

the Flight Mission Developers Issues dataset. When using the BF feature extraction method,

a Bayesian Network classifier is most effective for the Ground Mission IV&V issue dataset,

a Random Forest is most effective for the Flight Mission IV&V dataset, and Naive Bayes is

most effective for the Flight Mission Developers Issues dataset.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 59

Table 4.2: Two-Class Classification Performance of BF Feature Vector and all Classifiers
Across All Projects

Ground

Mission

IV&V

Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 87.4% 94.6% 87.2% 88.7% 94.8% 94.3%

Precision 37.0% 65.4% 36.7% 39.4% 80.3% 70.7%

Recall 93.4% 62.5% 93.4% 89.7% 41.9% 42.6%

PFA 13.1% 2.7% 13.3% 11.4% 0.9% 1.5%

F-Score 0.530 0.639 0.527 0.547 0.551 0.532

G-Score 0.900 0.761 0.899 0.891 0.589 0.595

Flight

Mission

IV&V

Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 69.9% 76.2% 70.7% 80.1% 84.0% 81.4%

Precision 58.3% 70.4% 59.1% 70.6% 80.8% 79.1%

Recall 94.3% 72.6% 93.0% 88.5% 80.3% 74.5%

PFA 47.1% 21.3% 44.9% 25.8% 13.3% 13.8%

F-Score 0.674 0.715 0.723 0.785 0.805 0.767

G-Score 0.678 0.755 0.692 0.807 0.834 0.799

Flight

Mission

Developers

Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 65.8% 66.9% 66.9% 70.1% 69.5% 67.1%

Precision 65.8% 69.4% 77.7% 70.2% 69.9% 74.7%

Recall 100.0% 89.0% 69.8% 94.6% 94.4% 75.7%

PFA 100.0% 75.5% 38.6% 77.2% 78.3% 49.5%

F-Score 0.794 0.780 0.735 0.806 0.803 0.752

G-Score 0.000 0.384 0.653 0.367 0.353 0.606

Table 4.3 presents the classification performance for each dataset when using the Term

Frequency (TF) feature extraction method and each supervised classifier. The column cor-

responding to the classifier that performs the best (with respect to G-Score) for each dataset

is in bold. Unlike Table 4.2, the best performing classifier (SVM) was consistent across the

Flight Mission IV&V Issues and the Flight Mission Developers Issues datasets. Consistently

with Table 4.2 however, a classifier that performs well on one dataset does not imply that

it performs well with another. When using the TF feature extraction method, the Naive

Bayes Multinomial classifier is most effective for the Ground Mission IV&V Issues, and the

Support Vector Machine classifier is the most effective for both Flight Mission datasets.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 60

Table 4.3: Two-Class Classification Performance of TF Feature Vector and all Classifiers
Across All Projects

Ground

Mission

IV&V

Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 87.4% 93.5% 85.2% 87.9% 94.9% 94.1%

Precision 37.1% 57.3% 32.0% 38.0% 82.6% 66.0%

Recall 93.4% 60.3% 83.1% 93.4% 41.9% 47.1%

PFA 13.1% 3.7% 14.6% 12.6% 0.7% 2.0%

F-Score 0.531 0.588 0.462 0.540 0.556 0.549

G-Score 0.900 0.742 0.842 0.903 0.589 0.636

Flight

Mission

IV&V

Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 69.6% 70.9% 75.1% 78.3% 80.4% 83.8%

Precision 57.9% 60.3% 67.8% 67.8% 75.9% 78.8%

Recall 95.5% 86.0% 75.2% 89.8% 76.4% 82.8%

PFA 48.4% 39.6% 24.9% 29.8% 16.9% 15.6%

F-Score 0.721 0.709 0.713 0.773 0.762 0.807

G-Score 0.670 0.710 0.751 0.788 0.796 0.836

Flight

Mission

Developers

Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 65.8% 61.0% 66.9% 70.6% 70.4% 72.3%

Precision 65.8% 71.7% 75.0% 73.6% 71.0% 76.8%

Recall 100.0% 67.2% 74.6% 86.4% 93.2% 83.1%

PFA 100.0% 51.1% 47.8% 59.8% 73.4% 48.4%

F-Score 0.794 0.694 0.748 0.795 0.806 0.798

G-Score 0.000 0.566 0.614 0.549 0.414 0.637

Table 4.4 presents the classification performance for each dataset when using the Term

Frequency-Inverse Document Frequency (TF-IDF) feature extraction method and each su-

pervised classifier. The column corresponding to the classifier that performs the best (with

respect to G-Score) for each dataset is in bold. Similar to what was seen in Table 4.2, the

best performing classifier for each dataset was different. As in Tables 4.2 and 4.3, a clas-

sifier that performs well on one dataset does not imply that it performs well with another.

When using the TF-IDF feature extraction method, a Bayesian Network performs best on

the Ground Mission IV&V Issues dataset, the Naive Bayes Multinomial Classifier performs

best on the Flight Mission IV&V Issues dataset, and the Naive Bayes Classifier works best

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 61

on the Flight Mission Developers Issues dataset.

Table 4.4: Two-Class Classification Performance of TF-IDF Feature Vector and all Classifiers
Across All Projects

Ground

Mission

IV&V

Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 87.6% 93.9% 86.0% 92.8% 94.0% 90.2%

Precision 37.3% 61.7% 34.0% 90.0% 75.0% 40.7%

Recall 91.9% 54.4% 89.0% 6.6% 33.1% 61.0%

PFA 12.8% 2.8% 14.3% 0.1% 0.9% 7.4%

F-Score 0.531 0.578 0.492 0.123 0.459 0.488

G-Score 0.895 0.698 0.873 0.124 0.496 0.735

Flight

Mission

IV&V

Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 70.2% 73.3% 79.3% 82.2% 82.5% 73.6%

Precision 58.4% 61.2% 71.2% 90.1% 80.0% 67.9%

Recall 94.9% 95.5% 83.4% 63.7% 76.4% 67.5%

PFA 47.1% 42.2% 23.6% 4.9% 13.3% 22.2%

F-Score 0.723 0.746 0.768 0.746 0.782 0.677

G-Score 0.679 0.720 0.797 0.763 0.812 0.723

Flight

Mission

Developers

Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 68.0% 64.9% 62.3% 66.0% 70.6% 59.9%

Precision 48.9% 66.7% 73.4% 65.9% 71.2% 73.0%

Recall 94.4% 93.2% 66.9% 100.0% 92.9% 61.9%

PFA 82.6% 89.7% 46.7% 99.5% 72.3% 44.0%

F-Score 0.795 0.777 0.700 0.795 0.806 0.670

G-Score 0.294 0.185 0.593 0.010 0.427 0.588

The previous tables have shown promising results for each dataset. Table 4.5 addressed

research question 2b which asked: How much data must be set aside for training in order

to maintain accurate results? The Binary bag-of-words feature vector was used along with

the Naive Bayes feature vector to address this question: there was no significant difference

between any of the feature extraction methods, and the Naive Bayes classifier was the most

consistently acceptable performing classier across all datasets. As show below, the Ground

Mission IV&V Issues dataset, along with the Flight Mission IV&V Issues dataset both

achieved the best performance when using only 25% of the data for training. Furthermore,

The Flight Mission Developers Issues dataset performed the best when using only 50% of

the data for training. A system which is able to perform well when using a small amount of

data for training is significantly more practical, than one which needs 90% of the data for

training (as in any example using 10-fold cross validation).

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 62

Table 4.5: Performance of BF NB on All Projects vs Amount of Training Data

Ground Mission

IV&V Issues

% of Issues

for Training

10% Stratified

Cross Validation
75% 50% 25%

Accuracy 87.2% 86.3% 85.6% 86.7%

Precision 36.7% 38.9% 34.0% 36.9%

Recall 93.4% 92.5% 94.1% 93.5%

PFA 13.3% 14.3% 15.1% 13.9%

F-Score 0.527 0.548 0.500 0.529

G-Score 0.899 0.890 0.893 0.896

Flight Mission

IV&V Issues

% of Issues

for Training

10% Stratified

Cross Validation
75% 50% 25%

Accuracy 70.7% 71.6% 76.4% 77.3%

Precision 59.1% 83.7% 87.5% 90.5%

Recall 93.0% 54.2% 66.7% 68.3%

PFA 44.9% 10.6% 11.6% 10.1%

F-Score 0.723 0.658 0.757 0.778

G-Score 0.692 0.675 0.760 0.776

Flight Mission

Developers Issues

% of Issues

for Training

10% Stratified

Cross Validation
75% 50% 25%

Accuracy 66.9% 62.7% 65.1% 66.0%

Precision 77.7% 80.3% 78.5% 75.9%

Recall 69.8% 58.9% 64.2% 71.1%

PFA 38.6% 29.5% 33.3% 43.8%

F-Score 0.735 0.680 0.706 0.734

G-Score 0.653 0.642 0.654 0.628

4.6.2 Two Class Classification Observations

The two class classification of bug reports has been shown possible with good perfor-

mance. Furthermore, it was shown that as small as 25% of the data can be used for testing

without degrading the classification performance. The feature vector used did not effect the

results significantly, and the Naieve Bayes classifier was consistently the best performing, or

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 63

among the best performing classifiers for all datasets. SVM was another consistently high

performing classifier, yet was not as good as Naive Bayes.

The part about the smaller training set can be expanded

4.7 Supervised Multiclass Classification

Each of the corpus as defined in Section 4.2 are labeled for a multiclass classification

problem. Each document is labeled with either “Not Security Related” or its corresponding

CWE-888 class. With the data in this form, it can be processed as previously described

where each document will be classified by the system into one of the CWE-888 classes, or as

“Not Security Related.” This section addressed research questions 3 and 3a, and the results

are detailed in the following section.

3. Can supervised machine learning algorithms be used to classify security issues to spe-

cific security classes?

a) Are some classes harder to predict than others?

4.7.1 Multiclass Classification Results

The following three tables will present the supervised systems performance on the mul-

ticlass problem, identifying each issue as its security type. Table 4.6 shows the systems

performance when using the BF feature extraction method on each of the datasets for multi-

class classification. As seen in the two class results, just because a classifier performs well on

one dataset does not mean that it will perform well on another. When using the BF feature

extraction method, as well as the weighted average of each individual classes performance,

the Naive Bayes classifier performed the best for both IV&V Issues datasets, and k-Nearest

Neighbor performed the best on the Flight Mission Developers Issues Dataset.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 64

Table 4.6: Multiclass Classification Weighted Average Performance of BF Feature Vector
and all Classifiers Across All Projects

Ground Mission

IV&V Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Precision 93.9% 94.1% 94.1% 91.1% 92.1% 92.1%

Recall 84.9% 93.9% 86.0% 91.5% 94.5% 87.0%

PFA 8.4% 33.3% 5.1% 32.8% 60.5% 46.9%

F-Score 0.892 0.940 0.899 0.913 0.933 0.895

G-Score 0.881 0.780 0.902 0.775 0.557 0.659

Flight Mission

IV&V Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Precision 66.3% 63.3% 70.2% 65.2% 67.3% 48.0%

Recall 50.0% 63.9% 59.9% 66.8% 68.6% 35.9%

PFA 10.3% 28.8% 9.7% 34.5% 40.1% 15.7%

F-Score 0.570 0.636 0.646 0.660 0.679 0.411

G-Score 0.642 0.674 0.720 0.661 0.640 0.504

Flight Mission

Developers Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Precision 12.9% 30.7% 41.8% 44.0% 44.7% 26.9%

Recall 33.8% 98.5% 44.8% 47.2% 48.7% 6.3%

PFA 33.4% 29.9% 18.7% 25.2% 23.5% 5.4%

F-Score 0.187 0.468 0.432 0.455 0.466 0.102

G-Score 0.448 0.819 0.578 0.579 0.595 0.118

Table 4.7 shows the systems performance when using the TF feature extraction method

on each of the datasets for multiclass classification. As shown in the two class results, just

because a classifier performs well on one dataset does not mean that it will perform well on

another. When using the TF feature extraction method, along with the weighted average

of each individual class’s performance, the Naive Bayes classifier performed the best for the

Ground Mission IV&V Issues dataset, and the Naive Bayes Multinomial classifier performed

the best for both of the Flight Mission datasets.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 65

Table 4.7: Multiclass Classification Weighted Average Performance of TF Feature Vector
and all Classifiers Across All Projects

Ground Mission

IV&V Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Precision 93.8% 92.5% 92.5% 94.5% 91.9% 90.9%

Recall 85.2% 92.0% 80.8% 88.9% 94.3% 92.3%

PFA 9.1% 37.4% 2.7% 14.7% 62.5% 65.2%

F-Score 0.893 0.922 0.863 0.916 0.931 0.916

G-Score 0.880 0.745 0.883 0.871 0.537 0.505

Flight Mission

IV&V Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Precision 66.1% 67.1% 63.9% 69.5% 66.1% 56.5%

Recall 48.4% 51.8% 59.9% 67.3% 68.3% 46.3%

PFA 10.3% 21.7% 5.6% 17.9% 39.5% 19.4%

F-Score 0.559 0.585 0.618 0.684 0.672 0.509

G-Score 0.629 0.624 0.733 0.740 0.642 0.588

Flight Mission

Developers Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Precision 12.6% 23.5% 36.7% 39.3% 41.9% 28.7%

Recall 33.3% 37.2% 33.1% 46.7% 46.1% 13.0%

PFA 33.4% 31.2% 15.0% 23.4% 24.7% 8.3%

F-Score 0.183 0.288 0.348 0.427 0.439 0.179

G-Score 0.444 0.483 0.476 0.580 0.572 0.228

Table 4.8 shows the systems performance when using the TF-IDF feature extraction

method on each of the datasets for multiclass classification. This table again shows that just

because a classifier performs well on one dataset does not imply that it will perfor well on

anther. Again, this table shows the best performing classifier being different for each dataset.

When using the TF-IDF feature extraction method, along with the weighted average of each

individual class’s performance, a Bayesian Network performed best for the Ground Mission

IV&V Issues dataset, the Naive Bayes classifier performed the best for the Flight Mission

IV&V Issues dataset, and the Random Forest classifier performed the best for the Flight

Mission Developers Issues dataset.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 66

Table 4.8: Multiclass Classification Weighted Average Performance of TF-IDF Feature Vec-
tor and all Classifiers Across All Projects

Ground Mission

IV&V Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Precision 94.1% 92.6% 93.1% 85.3% 91.0% 92.5%

Recall 85.5% 93.1% 76.8% 92.4% 94.0% 43.7%

PFA 9.0% 42.2% 11.8% 92.4% 67.3% 7.8%

F-Score 0.896 0.928 0.842 0.887 0.925 0.594

G-Score 0.882 0.713 0.821 0.140 0.485 0.593

Flight Mission

IV&V Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Precision 67.5% 66.8% 65.7% 34.7% 69.9% 64.7%

Recall 50.5% 47.1% 63.6% 85.9% 68.8% 31.7%

PFA 9.9% 11.6% 19.2% 58.9% 7.2% 5.3%

F-Score 0.578 0.552 0.646 0.494 0.693 0.426

G-Score 0.647 0.615 0.712 0.556 0.790 0.475

Flight Mission

Developers Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Precision 13.4% 31.8% 33.4% 49.2% 43.7% 28.8%

Recall 33.8% 35.7% 31.2% 40.9% 46.7% 10.8%

PFA 32.7% 31.2% 5.4% 29.3% 24.7% 7.0%

F-Score 0.192 0.336 0.323 0.447 0.452 0.157

G-Score 0.450 0.470 0.469 0.518 0.576 0.194

The previous three tables have detailed the supervised systems performance on the mul-

ticlass problem (each issue as its corresponding security type), based on the weighted average

of the performance metrics for each individual classes. The following three tables show the

supervised systems performance on the multiclass problem, but using the macro-averaged

performance metrics of each individual classes. Table 4.9 shows the systems macro-averaged

performance when using the BF feature extraction method on each of the datasets for mul-

ticlass classification. Consistently with all other results presented thus far, just because a

classifier performs well on one dataset does not mean that it will perform well on another.

When using the BF feature extraction method and macro-averaged performance metrics for

multiclass classification, the best performing classifier for the Ground Mission IV&V Issues

dataset was a Bayesian Network, the best performing classifier for both Flight Missions was

Naive Bayes.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 67

Table 4.9: Multiclass Classification Macro-Averaged Performance of BF Feature Vector and
all Classifiers Across All Projects

Ground Mission

IV&V Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 84.9% 84.9% 86.0% 91.5% 94.5% 87.0%

Precision 15.5% 21.9% 54.7% 10.4% 33.3% 24.6%

Recall 26.1% 15.1% 35.6% 14.0% 20.5% 18.2%

PFA 1.8% 4.6% 1.5% 3.2% 5.1% 4.6%

F-Score 0.194 0.179 0.431 0.119 0.254 0.209

G-Score 0.41 0.261 0.523 0.245 0.337 0.306

Flight Mission

IV&V Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 50.0% 63.9% 59.9% 66.8% 68.6% 35.9%

Precision 25.2% 28.8% 31.1% 38.6% 39.0% 12.6%

Recall 27.1% 28.1% 35.3% 24.0% 25.7% 18.2%

PFA 6.0% 6.5% 5.0% 6.8% 7.2% 8.0%

F-Score 0.261 0.284 0.331 0.296 0.310 0.149

G-Score 0.421 0.432 0.515 0.382 0.403 0.304

Flight Mission

Developers Issues

Supervised

System
BF BN BF kNN BF NB BF NBM BF RF BF SVM

Accuracy 33.8% 38.5% 44.8% 47.2% 48.7% 6.3%

Precision 3.4% 7.4% 20.6% 15.7% 21.4% 7.4%

Recall 6.7% 7.5% 17.1% 11.8% 13.5% 8.0%

PFA 6.2% 5.7% 4.6% 4.9% 4.7% 6.2%

F-Score 0.045 0.074 0.187 0.135 0.166 0.077

G-Score 0.125 0.139 0.290 0.210 0.236 0.147

Table 4.10 shows the systems macro-averaged performance when using the TF feature

extraction method on each of the datasets for multiclass classification. Consistently with all

other results presented thus far, just because a classifier performs well on one dataset does not

mean that it will perform well on another. This table shows the same classifier performing

the best across all datasets, which has not yet been observed. The best performing classifier

for all datasets was Naive Bayes.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 68

Table 4.10: Multiclass Classification Macro-Averaged Performance of TF Feature Vector and
all Classifiers Across All Projects

Ground Mission

IV&V Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 85.2% 92.0% 80.8% 88.9% 94.3% 92.3%

Precision 15.5% 27.0% 15.3% 33.3% 34.1% 30.5%

Recall 26.8% 25.8% 35.3% 21.2% 19.4% 18.3%

PFA 1.9% 3.5% 2.7% 2.0% 5.2% 5.6%

F-Score 0.196 0.264 0.213 0.259 0.247 0.229

G-Score 0.421 0.407 0.518 0.349 0.322 0.307

Flight Mission

IV&V Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 48.4% 51.8% 59.9% 67.3% 68.3% 46.3%

Precision 24.1% 31.2% 32.4% 42.0% 37.9% 25.2%

Recall 25.5% 23.2% 34.6% 31.8% 24.9% 22.9%

PFA 6.2% 7.0% 5.6% 5.1% 7.1% 7.3%

F-Score 0.248 0.266 0.335 0.362 0.301 0.240

G-Score 0.401 0.371 0.506 0.476 0.393 0.367

Flight Mission

Developers Issues

Supervised

System
TF BN TF kNN TF NB TF NBM TF RF TF SVM

Accuracy 33.3% 37.2% 33.1% 46.7% 46.1% 13.0%

Precision 3.2% 4.8% 13.3% 13.1% 20.6% 8.6%

Recall 6.6% 7.1% 14.7% 12.4% 13.0% 10.4%

PFA 6.3% 5.9% 5.1% 4.8% 4.9% 6.0%

F-Score 0.043 0.057 0.140 0.127 0.159 0.094

G-Score 0.123 0.132 0.255 0.219 0.229 0.187

Table 4.11 shows the systems macro-averaged performance when using the TF-IDF fea-

ture extraction method on each of the datasets for multiclass classification. Consistently with

all other results presented thus far, just because a classifier performs well on one dataset does

not mean that it will perform well on another. Just as with Table 4.10, Table 4.11 shows the

same classifier performing the best across all datasets, which also happens to be the same

classifier. The best performing classifier for all datasets was Naive Bayes.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 69

Table 4.11: Multiclass Classification Macro-Averaged Performance of TF-IDF Feature Vector
and all Classifiers Across All Projects

Ground Mission

IV&V Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 85.5% 93.2% 76.8% 92.4% 94.0% 43.7%

Precision 16.6% 30.0% 18.0% 7.1% 26.5% 11.9%

Recall 26.2% 26.9% 32.6% 7.7% 17.3% 20.4%

PFA 1.8% 3.8% 2.7% 7.7% 5.6% 4.9%

F-Score 0.203 0.284 0.232 0.074 0.209 0.150

G-Score 0.414 0.420 0.488 0.142 0.292 0.336

Flight Mission

IV&V Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 50.5% 47.1% 63.6% 58.9% 68.8% 31.7%

Precision 25.8% 25.1% 32.7% 5.9% 41.0% 24.5%

Recall 26.3% 24.5% 31.5% 10.0% 25.1% 24.6%

PFA 5.9% 6.4% 5.6% 10.0% 7.2% 7.4%

F-Score 0.260 0.248 0.321 0.074 0.311 0.245

G-Score 0.411 0.388 0.472 0.180 0.395 0.389

Flight Mission

Developers Issues

Supervised

System
TFIDF BN TFIDF kNN TFIDF NB TFIDF NBM TFIDF RF TFIDF SVM

Accuracy 33.8% 35.7% 31.2% 40.9% 46.7% 10.8%

Precision 3.9% 12.2% 13.2% 18.1% 21.2% 11.4%

Recall 7.4% 7.2% 14.9% 8.3% 1.3% 7.7%

PFA 6.2% 6.0% 5.4% 5.5% 4.9% 6.0%

F-Score 0.051 0.091 0.140 0.114 0.024 0.092

G-Score 0.137 0.134 0.257 0.153 0.025 0.142

Figures 4.1, 4.2, and 4.3 show heatmaps corresponding to a typical confusion matrix for

each dataset. The density of each cell is represented by shades of grey and represents the

percentage of each true class assigned to each predicted class. The main diagonal corresponds

to correct classification assignments, and therefore a good assignment would consist of dark

squares along the diagonal, and white everywhere else. Furthermore, a dark vertical line

would represent everything being classified into a single class, and therefore poor system

performance.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 70

Figure 4.1: Multiclass Classification Heatmap of Ground Mission IV&V Issues dataset using
TF NB

Figure 4.1 shows five columns with multiple dark squares in them. This corresponds to

a large portion of bug reports being classified as the classes corresponding to those columns.

These highly assigned classes are “Not Security Related,” “Memory Management,” “Risky

Values,” “Resource Management,” and “Predictability.” Interestingly enough, all of these

highly assigned classes are the largest classes found in each dataset, with the exception of

“Predictability.” The best performing classes are “Not Security Related,” “Memory Access,”

“Risky Values,” “Resource Management,” and “Unused Entities.” These are noted as best

performing due to the dark squares along the diagonal, representing the majority of all issues

that belong to those classes actually being assigned to those classes.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 71

Figure 4.2: Multiclass Classification Heatmap of Flight Mission IV&V Issues dataset using
TF NB

For the same reasoning as described for Figure 4.1, Figure 4.2 shows the majority of all

issues were assigned to “Memory Access,” “Not Security Related,” and “Risky Values.” The

best performing classes were “Memory Access,” “Not Security Related,” “Unused Entities,”

and “Other.”

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 72

Figure 4.3: Multiclass Classification Heatmap of Flight Mission Developers Issues dataset
using TF NB

For the same reasoning as described for Figure 4.1, Figure 4.3 shows the majority of all

issues were assigned to “Not Security Related,” “Memory Access,” and “Risky Values.” The

best performing classes were “Memory Access” and “Risky Values.”

4.7.2 Multiclass Classification Observations

All performance metrics were presented macro-averaged as well as weighted averaged.

The difference in these can be summarized as the macro-average detailing the classification

performance with respect to each class, no matter the size of the class, whereas the weighted

average details the classification performance with respect to the majority of the issues.

All classifiers performed well with respect to the weighted average except for SVM, which

significantly underperformed other classifiers in several cases. With respect to the macro-

averages however, Naive Bayes outperformed all classifiers in all situations.

The best performing security classes most likely perform well because they contain class

specific, well known terminology. The class of “Memory Access” (one of the best performing

classes) revolves around problems with pointers and buffers. These are well known and

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 73

commonly used terms. However, a class such as “Synchronization” is more centered around

the order and process in which things occur; such a class has little class specific terminology

that is not as well known as something such as ‘pointer,’ and therefore is more difficult to

accurately predict.

4.8 Unsupervised One-Class Problem

The previous section (Section 4.5) defined the process in which supervised systems are

trained and tested. Supervised systems rely heavily on labeled data as defined in the defi-

nition of supervised learning, and shown in the previous section. An enormous amount of

time and effort is needed to manually label each issue (or a significant portion of all issues)

properly for use in any of the aforementioned systems. Furthermore, there is a very high

likelihood that not all classes (especially in the case of multiclass classification) will be am-

ply defined, or even present in the training set. Obviously, if a class is never defined to a

classifier, it is impossible for that classifier to correctly classify an issue of the never defined

class. The results shown multiple times throughout Chapter 3 proves that this situation

exists for every project analyzed.

In order to avoid this time consuming and costly requirement of manual labeling as well

as guarantee that all classes have been properly defined and amply presented to a classifier,

this section presents a distance metric based approach to classifying issues. The CWE-888

view defined in Section 3.2 was used to define the security type of each issue during labeling

as defined in Section 3.3. Furthermore, all CWE’s in the CWE-888 view (from here on out

referred to as the CWE-888 data) describe the features of each class, and can be used for

one-class classification.

This approach is one of anomaly detection. Anomaly detection refers to the problem of

finding patterns in data that deviate from a normal [43]. The CWE-888 data was used to

define this normal. Specifically, each CWE in the CWE-888 view was processed just as each

issue was in Sections 4.1 and 4.2, which put this data in the same form as the documents in

the corpora. The definition of the normal will be covered in Section 4.8.2.

Now that the data is in a format consistent with the documents (issues), the cosine

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 74

similarity distance measure can be used to determine if a document conforms to the normal

or not. The cosine similarity and Euclidean distance simply measures the distance (angle)

between the normal and the document, and if the distance is greater than a threshold then the

issue is said to deviate from the normal, otherwise it does not. Using the Euclidean distance

in this sense is essentially an application of the kNN algorithm, with the only difference

being that each instance is classified based on its distance from a specified neighbor. The

selection of this threshold will be discussed in Section 4.8.1. This section addresses research

question 4:

4. Can unsupervised machine learning algorithms be used to classify software issues as

security related or not?

4.8.1 Defining a Threshold

In many cases, defining a threshold is more of an art than a scientific method. However,

[57] described a method which was employed in this work. The threshold was selected using

the following steps:

1. Separate the data into three sets: training, validation, and testing

2. Test a wide range of thresholds on the validation data

3. Select the threshold which gives the best performance on the validation data, for use

on the testing data

As mentioned in the first step, three subsets of data are needed. The training data will be

the CWE-888 data, however the testing and validation data must originate from the corpora.

Therefore, each corpus was separated into two subsets using 2-fold cross-validation, where

one fold was used as the validation set, and the remaining as the testing set. Furthermore,

we selected the G-Score as the metric to base the selection of the threshold on as maximizing

either the recall or probability of false alarm could easily lead to everything being classified

to a single class. The G-Score incorporates both the recall and probability of false alarm

into one metric, and because the recall and probability of false alarm are the metrics we are

attempting to maximize, the G-Score was the obvious choice.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 75

4.8.2 One-Class Classification

Using the approach mentioned in Section 4.8, the CWE-888 data was defined as the

normal. Following this, the corpus for each dataset was separated into a validation and a

testing set using 2-fold stratified cross validation. The cosine similarity was used to quantify

the distance between each validation document and the normal. A wide range of thresholds

were tested, and the one maximizing the performance on the validation dataset was chosen.

The cosine similarity is then used in combination with the selected threshold to classify

the testing data, with a document conforming to the normal being security related, and a

document not conforming to the normal being non-security related.

4.8.3 Unsupervised Classification Results

This section details the results obtained from the methodology described in Section 4.8.2.

The performance of all systems using BF feature extraction and TF feature extraction have

been very similar thus far. The one-class problem was only run with the TF and TF-IDF

feature extraction methods. Figure 4.12 shows the one-class performance across all datasets

using cosine similarity. The best performance among each metric is shown in bold, and

the threshold selected from a validation set is also shown for each test. The highest G-

Score obtained using the TF-IDF feature extraction method in combination with the cosine

similarity distance metric was on the Ground Mission IV&V Issues dataset. Although this

method does not perform as well as the best supervised methods, it obtains results very

similar to what is seen among the supervised classifiers.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 76

Table 4.12: One-Class Performance Across All Projects using Cosine Similarity

Dataset
Ground Mission

IV&V Issues

Flight Mission

IV&V Issues

Flight Mission

Developers Issues

Feature Extraction

Method
TF TF-IDF TF TF-IDF TF TF-IDF

Selected Threshold 0.286 0.263 0.216 0.235 0.260 0.220

Accuracy 64.3% 73.0% 67.8% 49.2% 55.4% 51.7%

Precision 15.0% 17.7% 58.1% 41.2% 69.3% 65.9%

Recall 78.7% 69.9% 77.7% 55.4% 57.9% 55.1%

PFA 36.9% 26.7% 39.1% 55.1% 49.4% 54.9%

F-Score 0.252 0.283 0.665 0.473 0.631 0.600

G-Score 0.700 0.715 0.683 0.496 0.540 0.496

Table 4.13 shows the systems performance when using the Euclidean distance as the

distance measure for the one-class problem. The best performance among each metric is

shown in bold, and the threshold selected from a validation set is also shown for each test.

The highest G-Score obtained using the TF-IDF feature vector in combination with the

Euclidean distance metric was on the Ground Mission IV&V Issues dataset. Although this

method does not perform as well as the best supervised methods, it obtains results very

similar to what is seen among the supervised classifiers.

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 77

Table 4.13: One-Class Performance Across All Projects using Euclidean Distance

Dataset
Ground Mission

IV&V Issues

Flight Mission

IV&V Issues

Flight Mission

Developer Issues

Feature Extraction

Method
TF TF-IDF TF TF-IDF TF TF-IDF

Selected Threshold 8.000 1.214 8.770 1.237 6.708 1.248

Accuracy 68.3% 73.0% 66.0% 49.0% 51.1% 51.5%

Precision 10.4% 17.8% 60.0% 41.0% 66.9% 65.8%

Recall 41.2% 69.9% 51.6% 54.8% 50.8% 54.8%

PFA 29.4% 26.7% 24.0% 55.1% 48.4% 54.8%

F-Score 0.166 0.283 0.555 0.469 0.578 0.598

G-Score 0.520 0.715 0.615 0.493 0.512 0.495

Interestingly, the results in Table 4.13 for the classification of the Ground Mission IV&V

Issues dataset using the TF-IDF feature vector was exactly the same as the results seen

in Table 4.12. The difference in performance between the cosine similarity and Euclidean

distance metric are marginal elsewhere as well. The only case where the G-Score differs by

more than 0.07 is in the case of the Ground Mission IV&V Issues dataset and the TF feature

vector, where the cosine similarity obtained a G-Score of 0.700 and the Euclidean distance

obtained a G-Score of 0.520.

4.8.4 Unsupervised Observations and Comparisons with Super-

vised Techniques

The difference in the classification performance between the cosine similarity and the

euclidean distance were marginal. The cosine similarity thresholds did not very significantly

across different datasets or different feature vectors, however the thresholds used for the

euclidean distance varied significantly across feature vectors, but not across datasets. In

all cases, the cosine similarity distance measure obtained equal or higher recalls than the

euclidean distance, but the Euclidean distance obtained an equal or better probability of

false alarm than the cosine similarity. Furthermore, the F-Score was equal between the two

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 78

distance metrics, or higher for the cosine similarity in all cases.

The best unsupervised classification results (G-Score of 0.715) were not as good as the

best supervised classification results (G-Score of 0.903), however, the best unsupervised

classification results are comparable to the average supervised classification results. Although

these two methods are comparable, in general the supervised classifiers outperformed the

unsupervised classifiers on all performance metrics.

4.9 Threats to Validity

Many issues arose during the automated classification of bug reports. Some instances

arose when an issue could be correctly classified into multiple CWE-888 classes, and therefore

could generate two correct results. This has no clear solution and was solved in the case of

manual labeling by selecting the most relevant of the possible classes, which possibly could

be counting an assigned issue as incorrect, when in fact the classification was accurate. This

could have a significant negative impact on the results to the automated classification with

regards to multiclass classification.

Each dataset contained a small amount (15% or less) if issues that did not contain

sufficient information for classification. The assumption was made that due to the low level

of information included in the issue, more information must be provided before the issue

is solved. This would lead to either an analyst or developer looking further into the issue

and providing more detail, or another issue being opened entirely which more accurately

and completely describes the issue. Because of this, an issue which did not contain the

information necessary for classification was labeled as “Not Security Related,” and most

likely does not affect the automated classification significantly.

A troubling factor faced throughout the automated classification was the amount of noise

contained within each issue. Remembering that the purpose of a bug tracking system is to

detail issues with the system, the vast majority of issues are focused on finding, describing,

and fixing a bug. Therefore, the security impact or traits of an issue are most often a small

detail within each issue, or not even present. When using traditional feature extraction

methods, the most often goal of the following classification is to detect the topic of the

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 79

document under concern; however in this case, the goal is to ascertain the security relevance

of the issue instead of the topic. Because of this, each feature vector contained a significant

amount of noise, often with only a very few terms (as small as one) relating to the security

aspect. The attempt of solving this in this work was using the vocabulary extracted from the

CWE-888 list, however more delicate solutions could lead to significantly better performance.

Another influencing factor is the terminology used. If the data being classified used

terminology to denote security issues that does not exist in the CWE list, then those terms

are not being extracted, and therefore can have no effect on the classification. Although this

could not be verified, after the manual classification of each issue in Chapter 3, this did not

appear to be the case.

Quantifying the performance of any classification system is a difficult task, as many

different performance metrics exist which all bring unique benefits and costs. This thesis

utilized the G-Score as the main classification method as it is able to quantify the recall and

probability of false alarm in a single number, as well as includes many other performance

metrics in an attempt to provide the entire picture of the performance of the system. This

however, is also complicated for multiclass classification, due to the difference in macro-

averaging and the weighted averages of each performance metric. To help avoid experimental

bias in this regard, many performance metrics were provided.

Arguably the largest threat to validity is the quality of the provided data. While these

NASA bug tracking systems are well maintained, our work attempts to leverage this issue

tracking data in a way in which it was not originally meant to be used. Therefore, sufficient

information to perform the tasks at hand may not be provided, but other secondary patterns

may be used by the classifiers in an attempt to make sinse of, and classify each issue. Whether

each issue has sufficient information regarding the security implication of an issue depends

on the security knowledge of the developer or analyst entering the issue into the system.

4.10 Automated Classification Conclusion

Table 4.14 presents a comparison between this project and related works. The first row

in this table represents the work presented in this thesis, whereas each of the other rows

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 80

represent a related work.

Table 4.14: Comparison with Related Works

Comparison with Related Work

Paper Purpose Dataset
Feature

Vectors
Classifiers

Performance

Metrics
Best Performance

This

work

Separate bugs into security

categories
NASA

TF, TF-

IDF,

Binary Bag

of Words

Cosine Similarity,

Naive Bayes, Naive

Bayes Multinomial,

Random Forest, k-

Nearest Neighbor,

Support Vector Ma-

chine, Bayes Net

Precision,

Accuracy,

Recall,

Probability

of False

Alarm,

F-Score,

G-Score

Precision up to 94%,

Recall up to 96%, F-

Score up to 85%, G-

Score up to 90%

[4]
Separate bugs based on secu-

rity impact

“the

Bugzilla

repository

of bug

reports”

TF-IDF
“ector space model”,

Naive Bayes

Accuracy

and Preci-

sion

Success Rate: 95.69,

Precision Rate: 93.19

[5]

Identify Security issues within

an issue tracking system (HIB

- Hidden Impact Bugs)

Redhat and

Linux Ker-

nel

TF
NB, NBM, Decision

Tree

TP Rate

(precision),

Bayesian

Detection

(recall)

Bayesian Detection

Rate: 0.4, TP Rate:

0.28, TN Rate: 0.99

[6]

Identify security bug reports

which were mislabeled as non

security bug reports

Cisco

Projects
TF SVM

Accuracy,

Precision,

Recall

Accuracy of .87, pre-

cision of .85, and re-

call of .88; however this

was compared to the

output from the static

code analysis tool For-

tify

[7]
Find security issues which were

misclassified as non-security
MySQL

Set known

strings to

risk values

Get total risk of an

issue from feature ex-

traction and calculate

which are security

problems

N/A

Claim a 657 to 772%

increase in the num-

ber of vulnerabilities

for the MySQL project.

[8]

Classify and categorize vulner-

abilities according to their se-

curity types

Firefox
CVSS

Scores
Bayesian Net N/A N/A

[21]

Determine which components

of a project are likely to con-

tain vulnerabilities

20 Android

Applica-

tions

TF
Naive Bayes or Ran-

dom Forest

Precision,

Recall

Precision with Naive

Bayes: 0.62 - 1, Recall

with Naive Bayes: .32-

.92, Precision with ran-

dom Forest: .59-1, Re-

call of Random Forest:

.24-1

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 81

[24]

Determine if bug is a dupli-

cate of one already in the issue

tracking system

Mozilla

Project

TF + cus-

tom term

weighting

Cosine Similarity N/A
8% of duplicate bug re-

ports were filtered out

[25] Predict the severity of bug

Eclypse

and

GNOME

TF-IDF

Naive Bayes, Naive

Bayes Multinomial,

K-Nearest Neigh-

bor, Support Vector

Machine

ROC
Area under ROC curve

of 0.93

[26]

Classify each bug into correc-

tive maintenance or other kind

of activity

Eclipse,

Mozilla,

JBoss

TF

Naive Bayes, Logistic

Regression, Alternate

Decision Trees

Precision,

Recall

Precision between .64

and .98, Recall be-

tween .33 and .97, cor-

rect decision rate from

.39 to .82

[27]
Classify issue as bug or request

using fuzzy logic

HTTPClient,

Jackrabbit,

Lucene

Membership

score based

on term

frequency

Fuzzy Logic

Precision,

Recall,

Accuracy,

F-Measure

accuracies, marginally

better than other clas-

sification methods

[28]

Automatic prediction of differ-

ent bug types using KNN and

Naive bayes.

FIT 4 -

Multiple

Tele-

com and

Banking

projects

TF
Naive Bayes and k-

Nearest Neighbor

Precision,

Recall

Recall from .72 to .91,

Precision from .73 to

.79

[29]

Automatically route bugs to

the appropriate developer for

solution

Eclipse

Mylyn,

Mozilla

TF-IDF,

LDA
SVM, KL

Recall, Di-

vergence

Recall similar to those

found previously, with

better consistency

This chapter addressed the following research questions:

2. Can supervised machine learning algorithms be used to classify software issues as

security related or not?

a) Do some learners perform consistently better than others?

b) How much data must be set aside for training in order to produce accurate clas-

sification results?

3. Can supervised machine learning algorithms be used to classify security issues to spe-

cific security classes?

a) Are some classes harder to predict than others?

4. Can unsupervised machine learning algorithms be used to classify software issues as

security related or not?

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 82

5. How does the performance of supervised and unsupervised machine learning algorithms

compare when classifying software bug reports?

Can supervised machine learning algorithms be used to classify software issues as security

related or not? This work has shown that accurate classification results can be obtained using

multiple feature extraction methods, and multiple classifiers on each of the datasets. The

level of performance however, does depend on the dataset. A G-Score of 0.903 was obtained

on the best performing dataset, whereas the worst performing dataset achieved a G-Score of

only 0.653.

Do some learners perform consistently better than others? The results showed that this

is the case, but in a very unpredictable manor. Some learners do better than others, but the

best performing classifier was different depending not only on the feature extraction method,

but also on the dataset. In general however, the Naive Bayes classifier was consistently among

the best performers.

How much data must be set aside for training in order to produce accurate classification

results? This research has shown that the systems performance using only 25% of the data

for training a Naive Bayes classifier is just as effective as using 10-fold cross validation.

Can supervised machine learning algorithms be used to classify security issues to specific

security classes? The macro-averaged performance metrics were used to evaluate the multi-

class performance, and accurate classification results were achieved for some of the classes.

A larger sample size could possibly improve these results, as several classes had a very small

number of instances (less than 3). Furthermore, the dataset quality continued to effect the

classification results, with the same datasets performing best for the two-class classification

performing best for the multiclass classification.

Are some classes harder to predict than others? Most classes are hard to detect. However,

the dominating classes for each dataset were the best performing classes for each correspond-

ing dataset. This could imply that not enough data is provided for the under performing

classes. A more likely explanation however is that the best performing security classes most

likely perform well because they contain class specific, well known terminology. The class of

“Memory Access” (one of the best performing classes) revolves around problems with point-

Jacob P. Tyo Chapter 4. Automated Bug Report Classification 83

ers and buffers. These are well known and commonly used terms. However, a class such

as “Synchronization” is more centered around the order and process in which things occur;

such a class has little class specific terminology that is not as well known as something such

as ‘pointer,’ and therefore is more difficult to accurately predict.

Can unsupervised machine learning algorithms be used to classify software issues as

security related or not? Incorporating the CWE list into an anomaly detection problem

allowed for exactly this. The CWE list can be used in conjunction with unsupervised machine

learning algorithms to classify software issues as security related or not with performance

comparable to supervised methods. The best unsupervised classification results (G-Score

of 0.715) were not as good as the best supervised classification results (G-Score of 0.903),

however, the best unsupervised classification results are comparable to the average supervised

classification results.

How does the performance of supervised and unsupervised machine learning algorithms

compare when classifying software bug reports? In most cases, supervised machine learning

algorithms perform better than unsupervised; however the best performing unsupervised

method’s performance is comparable to the supervised methods. Although these two meth-

ods are comparable, in general the supervised classifiers outperformed the unsupervised

classifiers on all performance metrics.

84

Chapter 5

Conclusion

This thesis had two main research goals: (1) to explore the distribution and characteristics

of security vulnerabilities based on the information provided in bug tracking systems and (2)

to develop data analytics approaches for automatic classification of bug reports as security or

non-security related. A vulnerability profile was created for three NASA datasets, showing

the prominent vulnerability types as well as how those vulnerabilities trend across projects

and mission types. Common supervised machine learning algorithms, as well as a novel

unsupervised machine learning approach were used to classify vulnerabilities as security or

non-security related.

The vulnerability profile revealed that the majority of software vulnerabilities belong

only to a small number of types. Specifically, 87% or more of all issues in the analyzed

projects fall under the vulnerability type of “Exception Management,” “Memory Access,”

“Other,” “Risky Values,” or “Unused Entities.”

The supervised classifiers of Naive Bayes, Naive Bayes Multinomial, Bayesian Network,

k-Nearest Neighbor, Random Forest, and Support Vector Machine were used to distinguish

between security and non-security bug reports as a two class problem. Furthermore, each

of these classifiers was tested in combination with three feature extraction methods: Binary

Bag-of-Words, Term Frequency, and Term Frequency-Inverse Document Frequency. The

classification performance of each dataset depended upon the feature vector and classifier

used, bug no significant performance difference was seen between feature vectors. The per-

formance of each classifier varied greatly between datasets, however, the Naive Bayes and

Jacob P. Tyo Chapter 5. Conclusion 85

SVM classifiers were always among the best performing. All other classifiers performed very

poorly on at least one dataset. The Naive Bayes classifier coupled with the Binary Bag-of-

Words feature vector was shown to achieve the same level of performance when using only

25% of the data to train on, as when using 10-fold cross validation.

The classifiers and feature vectors mentioned in the previous paragraph were also eval-

uated on their ability to differentiate between different security types. This performance

was evaluated using both the macro-averaged performance metrics as well as the weighted

averaged performance metrics. The weighted averaged performance metrics weighted each

class with respect to how many issues it contained, with larger classes carrying more weight.

With respect to these performance metrics, the best performing classifiers were very similar

to the best performing classifiers of the two-class problem. The macro-averaged performance

metrics placed equal weight on every class, which significantly changed the performance met-

rics as several classes with very few (5 or less) instances exist in all datasets. With respect to

the macro-averaged performance metrics, the Naive Bayes classifier out performed all other

classifiers in all cases. While many classes did not perform well, the best performing classes

seemed to be those with commonly known, class specific terminology.

In an attempt to not only remove the manual labeling constraint of the supervised learn-

ing approach, but to also ensure a complete definition of security types, a novel unsupervised

machine learning approach was developed. This approach was one of anomaly detection

which used the CWE-888 data to define a normal. The cosine similarity and Euclidean

distance measures were used to determine if a bug report deviated from the normal (making

it non-security) or not (security). These distance measures achieved very similar classifica-

tion performance, with the cosine similarity narrowly outperforming the Euclidean distance.

An interesting observation however is the selected threshold for the cosine similarity varied

only slightly between datasets and feature vectors, where the Euclidean distance threshold

changed drastically depending on the feature vector. While this approach performed well, it

was not as effective as the supervised method, achieving a G-Score of only 0.715 where the

best supervised approach achieved a G-Score of 0.903.

To explore the generalizability of vulnerability profiles, open source empirical studies

should be performed. This could easily be performed on bug tracking systems such as

Jacob P. Tyo Chapter 5. Conclusion 86

those made available by RedHat or MySQL. Furthermore, the vulnerability profile could be

automated for any issue tracking system in which the issues are labeled with a corresponding

CWE-888 tag, or a tag that could be easily linked to the CWE-888 classification schema.

An interesting alternative route for this project would be utilizing a custom built neural

network for both the feature extraction and classification. This could be done by creating

either a convoluted or recurrent neural network which would convolve over the text and

output the class. The class could be either security related or not security related, or could

even be expanded to do multiclass classification with the CWE-888 structure. This could be

a good approach because often times as seen in this project, automated classification is hard

due to the high level of noise, and therefore the feature extraction is of utmost importance.

A properly built and sufficiently large neural network would have the opportunity to perform

its own feature extraction, and assuming a large enough dataset could most likely become

very accurate. The size of the dataset is most likely not an issue either however due to the

large amount of open source data available.

Another, perhaps more interesting approach would be to expand the anomaly detection

to a multiclass problem. This could be done by treating each class of the multiclass problem

as a one-class anomaly detection problem. Then select a threshold for each class with a

validation set as described in Section 4.8.1. Then when classifying the testing set, run the

test data against all classes as a one-class anomaly detection problem (as was done in this

work), and if the issue falls under the threshold for any class, assign that issue to that class.

In the even that an issue falls under multiple classes, then select the class in which the issue

falls under the threshold by the most significant amount. This would most likely be done by

dividing the similarity assigned by the distance metric by the threshold, and assigning the

issue to the class in which this number is the lowest.

87

References

[1] M. Hamill and K. Goseva-Popstojanova, “Exploring fault types, detection
activities, and failure severity in an evolving safety-critical software system,”
Software Quality Journal, vol. 23, no. 2, pp. 229–265, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11219-014-9235-5

[2] ——, “Exploring the missing link: an empirical study of software fixes,” Software
Testing, Verification and Reliability, vol. 24, no. 8, pp. 684–705, 2014. [Online].
Available: http://dx.doi.org/10.1002/stvr.1518

[3] ——, “Common trends in software fault and failure data,” IEEE Transactions on Soft-
ware Engineering, vol. 35, no. 4, pp. 484–496, July 2009.

[4] D. Behl, S. Handa, and A. Arora, “A bug mining tool to identify and analyze secu-
rity bugs using naive bayes and tf-idf,” in Optimization, Reliabilty, and Information
Technology (ICROIT), 2014 International Conference on, Feb 2014, pp. 294–299.

[5] D. Wijayasekara, M. Manic, and M. McQueen, “Vulnerability identification and classi-
fication via text mining bug databases,” in IECON 2014 - 40th Annual Conference of
the IEEE Industrial Electronics Society, Oct 2014, pp. 3612–3618.

[6] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports via text mining:
An industrial case study,” in 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), May 2010, pp. 11–20.

[7] J. L. Wright, J. W. Larsen, and M. McQueen, “Estimating software vulnerabilities:
A case study based on the misclassification of bugs in mysql server,” in Availability,
Reliability and Security (ARES), 2013 Eighth International Conference on, Sept 2013,
pp. 72–81.

[8] J. A. Wang and M. Guo, “Vulnerability categorization using bayesian networks,”
in Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, ser. CSIIRW ’10. New York, NY, USA: ACM, 2010, pp.
29:1–29:4. [Online]. Available: http://doi.acm.org/10.1145/1852666.1852699

[9] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex
software system,” IEEE Transactions on Software Engineering, vol. 26, no. 8, pp. 797–
814, Aug 2000.

REFERENCES 88

[10] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing failures in mobile oses:
A case study with android and symbian,” in 2010 IEEE 21st International Symposium
on Software Reliability Engineering, Nov 2010, pp. 249–258.

[11] M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation of fault types
in space mission system software,” in 2010 IEEE/IFIP International Conference on
Dependable Systems Networks (DSN), June 2010, pp. 447–456.

[12] F. Frattini, R. Ghosh, M. Cinque, A. Rindos, and K. S. Trivedi, “Analysis of bugs in
apache virtual computing lab,” in 2013 43rd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), June 2013, pp. 1–6.

[13] J. Alonso, M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault repairs and mitigations in space mission system software,” in 2013 43rd An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
June 2013, pp. 1–8.

[14] ——, “The nature of the times to flight software failure during space missions,” in 2012
IEEE 23rd International Symposium on Software Reliability Engineering, Nov 2012, pp.
331–340.

[15] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical study of bugs in software build
systems,” in 2013 13th International Conference on Quality Software, July 2013, pp.
200–203.

[16] O. Alhazmi, Y. Malaiya, and I. Ray, “Measuring, analyzing and pre-
dicting security vulnerabilities in software systems,” Computers & Se-
curity, vol. 26, no. 3, pp. 219 – 228, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404806001520

[17] H. Venter, J. Eloff, and Y. Li, “Standardising vulnerability categories,” Com-
puters & Security, vol. 27, no. 3–4, pp. 71 – 83, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404808000096

[18] Y. Younan, “25 years of vulnerabilities: 1988-2012,” Sourcefire Vulnerability Research
Team, 2013.

[19] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden, “Software vulnerability pre-
diction using text analysis techniques,” in Proceedings of the 4th International Workshop
on Security Measurements and Metrics, ser. MetriSec ’12. New York, NY, USA: ACM,
2012, pp. 7–10. [Online]. Available: http://doi.acm.org/10.1145/2372225.2372230

[20] H. Packard, “Fortify static code analyser,” 2015, [online]
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/.

[21] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting vulnerable soft-
ware components via text mining,” IEEE Transactions on Software Engineering, vol. 40,
no. 10, pp. 993–1006, Oct 2014.

REFERENCES 89

[22] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and
Y. Acar, “Vccfinder: Finding potential vulnerabilities in open-source projects to assist
code audits,” in Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp.
426–437. [Online]. Available: http://doi.acm.org/10.1145/2810103.2813604

[23] D. A. Wheeler, “Flawfinder,” 2016, [online] http://www.dwheeler.com/flawfinder/.

[24] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking systems,”
in 2008 IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN), June 2008, pp. 52–61.

[25] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing mining al-
gorithms for predicting the severity of a reported bug,” in Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on, March 2011, pp. 249–258.

[26] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a
bug or an enhancement?: A text-based approach to classify change requests,” in
Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds, ser. CASCON ’08. New York, NY, USA: ACM, 2008,
pp. 23:304–23:318. [Online]. Available: http://doi.acm.org/10.1145/1463788.1463819

[27] I. Chawla and S. K. Singh, “An automated approach for bug categorization using
fuzzy logic,” in Proceedings of the 8th India Software Engineering Conference, ser.
ISEC ’15. New York, NY, USA: ACM, 2015, pp. 90–99. [Online]. Available:
http://doi.acm.org/10.1145/2723742.2723751

[28] M. M. Ahmed, A. R. M. Hedar, and H. M. Ibrahim, “Predicting bug category based on
analysis of software repositories.”

[29] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug reports
using latent dirichlet allocation,” in Proceedings of the 5th India Software Engineering
Conference, ser. ISEC ’12. New York, NY, USA: ACM, 2012, pp. 125–130. [Online].
Available: http://doi.acm.org/10.1145/2134254.2134276

[30] L. Layman, A. P. Nikora, J. Meek, and T. Menzies, “Topic modeling of nasa space
system problem reports: Research in practice,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New York, NY, USA: ACM,
2016, pp. 303–314. [Online]. Available: http://doi.acm.org/10.1145/2901739.2901760

[31] T. F. of Incident Response and S. T. (FIRST), “Common vulnerability scoring system
(cvss),” 2015, [online] https://www.first.org/cvss.

[32] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen, “Mining bug databases for
unidentified software vulnerabilities,” in 2012 5th International Conference on Human
System Interactions, June 2012, pp. 89–96.

[33] T. M. Corporation, “Common weakness enumeration (cwe),” https://cwe.mitre.org/,
2015, online; accessed 20 August 2016.

REFERENCES 90

[34] ——, “Common vulnerabilities and exposures (cve),” https://cve.mitre.org/, 2016, on-
line; accessed 24 August 2016.

[35] ——, “Cwe-2000: Comprehensive cwe dictionary,” 2015, [online]
https://cwe.mitre.org/data/slices/2000.html.

[36] ——, “Cwe-1000: Research concepts,” 2015, [online]
https://cwe.mitre.org/data/graphs/1000.html.

[37] N. Mansourov, “Software fault patterns: Towards formal compliance points for
cwe,” 2011, [online] https://buildsecurityin.us-cert.gov/sites/default/files/Mansourov-
SWFaultPatterns.pdf.

[38] T. M. Corporation, “Cwe-888: Software fault pattern (sfp) clusters,” 2015, [online]
https://cwe.mitre.org/data/graphs/888.html.

[39] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms: a taxonomy of
software security errors,” IEEE Security Privacy, vol. 3, no. 6, pp. 81–84, Nov 2005.

[40] T. M. Corporation, “Cwe-700: Seven pernicious kingdoms,” 2015, [online]
https://cwe.mitre.org/data/definitions/700.html.

[41] ——, “Cwe-699: Development concepts,” 2015, [online]
https://cwe.mitre.org/data/graphs/699.html.

[42] N. V. Database, “Cwe cross section mapped into by nvd,” 2016, [online]
https://nvd.nist.gov/cwe.cfm.

[43] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1541880.1541882

[44] N. Project, “Natural language tooklkit,” 2016, [online] http://www.nltk.org/.

[45] P. S. Foundataion, “Python,” 2016, [online] https://www.python.org/.

[46] C. Donalek, “Supervised and unsupervised learning,” 2011, [online]
http://www.astro.caltech.edu/ george/aybi199/Donalek classif1.pdf.

[47] V. N. Vapnik and V. Vapnik, Statistical learning theory. Wiley New York, 1998, vol. 1.

[48] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop on
empirical methods in artificial intelligence, vol. 3, no. 22. IBM New York, 2001, pp.
41–46.

[49] M. L. G. at the University of Waikato, “Weka,” 2015, [online]
http://www.cs.waikato.ac.nz/ml/weka/.

[50] A. McCallum, K. Nigam et al., “A comparison of event models for naive bayes text clas-
sification,” in AAAI-98 workshop on learning for text categorization, vol. 752. Citeseer,
1998, pp. 41–48.

REFERENCES 91

[51] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”
Machine Learning, vol. 29, no. 2, pp. 131–163, 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1007465528199

[52] L. Breiman and A. Cutler, “Random forests,” 2015, [online]
https://www.stat.berkeley.edu/ breiman/RandomForests/cc home.htm.

[53] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical guide to support vector classifi-
cation,” 2003.

[54] F. Sebastiani, “Machine learning in automated text categorization,” ACM computing
surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[55] S. L. Developers, “Cosine similarity python implementation,” 2016, [online]
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine similarity.html.

[56] M. Sokolova and G. Lapalme, “A systematic analysis of perfor-
mance measures for classification tasks,” Information Processing & Man-
agement, vol. 45, no. 4, pp. 427 – 437, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306457309000259

[57] L. Manevitz and M. Yousef, “One-class document classification via neural networks,”
Neurocomputing, vol. 70, pp. 1466 – 1481, 2007, advances in Computational
Intelligence and Learning 14th European Symposium on Artificial Neural Networks
200614th European Symposium on Artificial Neural Networks 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S092523120600261X

[58] A. Dasgupta, P. Drineas, B. Harb, V. Josifovski, and M. W. Mahoney, “Feature
selection methods for text classification,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’07. New York, NY, USA: ACM, 2007, pp. 230–239. [Online]. Available:
http://doi.acm.org/10.1145/1281192.1281220

[59] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword extraction from
individual documents,” Text Mining, pp. 1–20, 2010.

[60] M. Timonen, “Categorization of very short documents.” in KDIR, 2012, pp. 5–16.

[61] M. Timonen, T. Toivanen, Y. Teng, C. Chen, and L. He, “Informativeness-based key-
word extraction from short documents.” in KDIR, 2012, pp. 411–421.

[62] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in Advances in Neural Information Processing Systems, 2015, pp. 649–
657.

[63] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machine
Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

REFERENCES 92

[64] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing mining al-
gorithms for predicting the severity of a reported bug,” in Software Maintenance and
Reengineering (CSMR), 2011 15th European Conference on, March 2011, pp. 249–258.

[65] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a
reported bug,” in 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), May 2010, pp. 1–10.

[66] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of how people describe soft-
ware problems,” in Visual Languages and Human-Centric Computing (VL/HCC’06),
Sept 2006, pp. 127–134.

[67] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance bugs: A case
study on firefox,” in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp. 93–102. [Online].
Available: http://doi.acm.org/10.1145/1985441.1985457

[68] M. Hafiz, P. Adamczyk, and R. E. Johnson, “Organizing security pat-
terns,” IEEE Software, vol. 24, no. 4, p. 52, Jul 2007. [Online]. Available:
http://search.proquest.com/docview/215838715?accountid=2837

[69] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy,
vol. 2, no. 6, pp. 76–79, 2004.

93

Appendix A

CWE-888 Overview

Table A.1: CWE-888 Overview

CWE-888: Software Fault Pattern Overview

Primary Secondary
of

CWEs

Primary

CWE

Totals

Pattern &

Condition

Available?

Discernible

CWEs
SFP #

Risky Values 31

Glitch in Computa-

tion
31 partial 27 SFP1

Unused Entities 3

Unused Entities 3 yes 3 SFP2

API 28

Use of an Improper

API
28 partial 20 SFP3

Exception Man-

agement
27

Unchecked Status

Condition
17 partial 13 SFP4

Ambiguous Exception

Type
2 yes 2 SFP5

Jacob P. Tyo Appendix A: CWE-888 Overview 94

Primary Secondary
of

CWEs

Primary

CWE

Totals

Pattern &

Condition

Available?

Discernible

CWEs
SFP #

Incorrect Exception

Behavior
8 partial 3 SFP6

Memory Access 20

Faulty Pointer Use 3 yes 3 SFP7

Faulty Buffer Access 11 yes 11 SFP8

Faulty String Expan-

sion
2 yes 2 SFP9

Incorrect Buffer

Length Computation
3 partial 2 SFP10

Improper NULL ter-

mination
1 singular 1 SFP11

Memory Man-

agement
5

Faulty Memory Re-

lease
5 yes 5 SFP12

Resource Man-

agement
17

Unrestricted Con-

sumption
4 partial 3 SFP13

Failure to Release Re-

source
7 yes 7 SFP14

Faulty Resource Use 2 yes 2 SFP15

Life Cycle 4 no 0 -

Path Resolution 51

Path Traversal 43 partial 38 SFP16

Failed chroot Jail 1 singular 1 SFP17

Jacob P. Tyo Appendix A: CWE-888 Overview 95

Primary Secondary
of

CWEs

Primary

CWE

Totals

Pattern &

Condition

Available?

Discernible

CWEs
SFP #

Link in Resource

Name Resolution
7 partial 4 SFP18

Synchronization 22

Missing Lock 13 partial 10 SFP19

Race Condition Win-

dow
5 partial 4 SFP20

Multiple

Locks/Unlocks
3 yes 3 SFP21

Unrestricted Lock 1 singular 1 SFP22

Information

Leak
96

Exposed Data 76 partial 38 SFP23

State Disclosure 7 no 0 -

Exposure Through

Temporary File
3 no 0 -

Other Exposures 7 no 0 -

Insecure Session Man-

agement
3 no 0 -

Tainted Input 138

Tainted Input to

Command
87 partial 68 SFP24

Tainted Input to Vari-

able
8 yes 8 SFP25

Composite Tainted In-

put
0 no 0 SFP26

Faulty Input Transfor-

mation
15 no 0 -

Jacob P. Tyo Appendix A: CWE-888 Overview 96

Primary Secondary
of

CWEs

Primary

CWE

Totals

Pattern &

Condition

Available?

Discernible

CWEs
SFP #

Incorrect Input Han-

dling
17 no 0 -

Tainted Input to Envi-

ronment
11 partial 3 SFP27

Entry Points 11

Unexpected Access

Points
11 yes 11 SFP28

Authentication 43

Authentication By-

pass
10 no 0 -

Faulty Endpoint Au-

thentication
11 partial 6 SFP29

Missing Endpoint Au-

thentication
2 yes 2 SFP30

Digital Certificate 6 no 0 -

Missing Authentica-

tion
2 yes 2 SFP31

Insecure Authentica-

tion Policy
6 no 0 -

Multiple Binds to the

Same Port
1 singular 1 SFP32

Hardcoded Sensitive

Data
4 partial 2 SFP33

Unrestricted Authen-

tication
1 singular 1 SFP34

Access Control 16

Insecure Resource Ac-

cess
4 partial 2 SFP35

Jacob P. Tyo Appendix A: CWE-888 Overview 97

Primary Secondary
of

CWEs

Primary

CWE

Totals

Pattern &

Condition

Available?

Discernible

CWEs
SFP #

Insecure Resource

Permissions
7 no 0 -

Access Management 5 no 0 -

Privilege 12

Privilege 12 partial 1 SFP36

Channel 13

Channel Attack 8 no 0 -

Protocol Error 5 no 0 -

Cryptography 13

Broken Cryptography 5 no 0 -

Weak Cryptography 8 no 0 -

Malware 11

Malicious Code 8 no 0 -

Covert Channel 3 no 0 -

Predictability 15

Predictability 15 no 0 -

UI 14

Feature 7 no 0 -

Information Loss 4 no 0 -

Security 3 no 0 -

Other 46

Architecture 11 no 0 -

Jacob P. Tyo Appendix A: CWE-888 Overview 98

Primary Secondary
of

CWEs

Primary

CWE

Totals

Pattern &

Condition

Available?

Discernible

CWEs
SFP #

Design 29 no 0 -

Implementation 5 no 0 -

Compiler 1 no 0 -

632 310 36

99

Appendix B

Field Descriptions of Analyzed ITS’s

Table B.1: IV&V Issue Tracking System Field Descrip-

tions

IV&V Issue Tracking System Field Descriptions

Column Title Description Is Field Used?

Issue ID An ID is assigned to each issue and recorded in this field Yes

Project Contains the project name that the issue is from Yes

State
The current state of the issue (i.e. Closed, Submitted,

Withdrawn, etc)
Yes

Subject The subject or title of the issue Yes

Attachments N/A No

Capability

General Grouping of Functionality - A capability is

made up of several subsystems which is made up of sev-

eral software components

Yes

Comments
Updates about the progression and search for solution

of the issue
Yes

Count N/A Yes

Data Restrictions N/A Yes

Defer Date N/A No

Defer Issue N/A No

Jacob P. Tyo Appendix B: Field Descriptions of Analyzed ITS’s 100

Column Title Description Is Field Used?

Defer Notify Recipi-

ents
N/A No

Description The full description of the issue Yes

Impact
The projected or observed impact of the issue on the

system
Yes

Issue Category The category the issue falls into (i.e. Code, Design, etc.) Yes

Issue Type
The type of issue, more specific than Issue Category (i.e.

Incomplete Design, Incorrect Code, etc.)
Yes

Severity How sever the issue is Yes

Method The analysis method used to detect the issue Yes

Originator N/A Yes

Phase Found The project phase in which the issue was found Yes

Phase Introduced The project phase in which the issue was introduced Yes

Phase Resolved The project phase in which the issue was resolved No

Recommended Ac-

tions

The action that the analyst recommends taking in re-

sponse to the issue
Yes

References Any material that can be reference to support the issue Yes

Related Issues Any issues highly related to the current issue Yes

Resolution Chronol-

ogy
A history of the solution of the issue Yes

Technical Framework

Level 1
N/A Yes

Technical Framework

Level 2
N/A Yes

Technical Framework

Level 3
N/A Yes

Workaround
If issue cannot be solved, what was put in place to ac-

count for it
Yes

Defect
The defect of the issue (i.e. Software Behaviors, Re-

quirements Documentation, etc)
Yes

Jacob P. Tyo Appendix B: Field Descriptions of Analyzed ITS’s 101

Column Title Description Is Field Used?

Defect Category
The category of the defect (i.e. Design, Requirements,

etc.)
Yes

Analysis Method The method used to review the issue Yes

Element

The element that the issue originates from, similar to the

“Subsystem” in the Developer Issue Tracking System -

A subsystem is made up of several software components

Yes

Date Submitted to

POC
N/A Yes

Reqt Number N/A No

Developer ITA N/A Yes

Verification Procedure

Review
The procedure used to verify the fix of the issue Yes

Created By
The analyst or developer that entered the issue into the

issue tracking system
Yes

Created Date
The date the issue was entered into the issue tracking

system
Yes

Updated By The last analyst or developer to update the issue Yes

Updated Date The last data the issue was updated Yes

Table B.2: Developer Issue Tracking System Field De-

scriptions

Developer Issue Tracking System Field Descriptions

Column Title Description Is Field Used?

Issue ID An ID is assigned to each issue and recorded in this field Yes

DCR Product The product the DCR relates to Yes

Type The project and product of the DCR Yes

DCR Solution The actions taken to resolve the DCR Yes

DCR Severity The criticality of the DCR Yes

DCR Subtype A general category of the problem under concern Yes

Jacob P. Tyo Appendix B: Field Descriptions of Analyzed ITS’s 102

Column Title Description Is Field Used?

DCR/Test Descrip-

tion
The description of the DCR Yes

DCR Subsystem

The part of the system the DCR originates from, similar

to “Element” from the IV&V Issue Tracking System -

A subsystem is made up of several software components

Yes

DCR Type The type of DCR (i.e. Defect, Change Request, etc.)

DCR Title The title or subject of the DCR Yes

DCR Priority How urgent fixing the DCR is Yes

DCR Application The application the DCR originates from Yes

DCR Closure Notes
Points of interest detailing the solution of the DCR or

deviations from normal routine
Yes

State What lifespan stage the DCR is in Yes

DCR Date Closed

With Defect
N/A Yes

DCR Date In Test The date the DCR is ready for testing Yes

Backward Relation-

ships
Any previos DCR’s that the current is related to Yes

DCR Test Procs Used

to Verify
The procedures used to verify the DCR Yes

DCR Date On Hold
If the DCR was put on hold, the data of which this took

place
Yes

DCR Date Test Com-

pleted

The date at which the testing on the DCR was com-

pleted
Yes

DCR Date Ready For

Test
The date the DCR is ready to be tested Yes

DCR Affects FSRL N/A Yes

Attachments
Any attachments that assist with the description, test-

ing, or resolution of the DCR
Yes

DCR Date Closed The date the DCR was closed Yes

Jacob P. Tyo Appendix B: Field Descriptions of Analyzed ITS’s 103

Column Title Description Is Field Used?

Implements
Any other DCR solutions that the DCR under concern

implements
Yes

DCR Build Target N/A Yes

DCR Test Assigned

Tester
The developer assigned to test the DCR Yes

DCR Test Log Init

Files Folder
N/A Yes

Signature Comment N/A No

DCR IRB Comments N/A Yes

DCR Test Outcome Initial test results Yes

DCR Test Tester

Comments
Comments left by the testing developer Yes

DCR Date In Work Date when work starts on the DCR Yes

DCR Date Work

Completed
Date the work is finished on the DCR Yes

DCR Phase Found The development phase of which the DCR was found Yes

DCR IRB Comments

History
N/A No

DCR Workflow N/A Yes

Forward Relationships The related DCR’s created after the one under concern Yes

DCR Date Assigned The date the DCR is assigned to a dveloper Yes

DCR Test Log Init

Files
N/A Yes

DCR Document Type
The type of DCR document (i.e. requirements, algo-

rithms, etc)
Yes

Links to Tests from

DCR
The tests relevant to the DCR Yes

DCR Additional

Products Affected

Products other than the one the DCR originated from

that are effected
Yes

Modified Date The last date the DCR was modified Yes

Jacob P. Tyo Appendix B: Field Descriptions of Analyzed ITS’s 104

Column Title Description Is Field Used?

DCR Date Ready For

Closure
The date the DCR is marked as ready to close Yes

Signed By N/A No

Modified By The developers to modify the DCR Yes

DCR Test Verification How was the DCR verified Yes

DCR Date Build Inte-

gration
The date the DCR was integrated Yes

DCR/Test Leads

Comments
Project lead comments Yes

DCR Test Log Folder

Verify
N/A Yes

DCR Test Log Files

Verify
N/A Yes

Is Related To Other DCR’s the one under concern is related to Yes

DCR Assigned To The Developer the DCR was assigned to Yes

Created By The creater of the DCR Yes

DCR Build Found The build in which the DCR was found Yes

DCR Test Procs Init

Used
N/A Yes

Assumed Issue Cate-

gory
N/A No

Empirical Analysis and Automated

Classification of Security Bug Reports

Jacob P. Tyo

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering

Lane Department of Computer Science and Electrical Engineering
CONFIDENTIAL. NOT TO BE DISTRIBUTED.

APPROVAL OF THE EXAMINING COMMITTEE

Roy S. Nutter, Ph.D.

Matthew C. Valenti, Ph.D.

Katerina Goseva-Popstojanova, Ph.D., Chair

Date

	Empirical Analysis and Automated Classification of Security Bug Reports
	Recommended Citation

	tmp.1568233084.pdf.qqMCA

