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ABSTRACT 

Spatial Redistribution of Organic Phosphorus in Hay and Grass Pastures of Eastern West Virginia 

Following Long-term Animal Manure Applications 

Michael B. Harman 

 This study was conceived to investigate the fate of organic P (Po) in typical hay and grass pasture 

of eastern West Virginia. It is not uncommon in this region of West Virginia for hay and grass pastures to 

receive annual applications of animal manure, often on a nitrogen basis. As P management has evolved, 

many farms in the region have begun to use management tools such as a P index to continue use of 

animal manure as N fertilizer. However, many hay and grass pastures in the region already have a high 

degree of P saturation. There are reasonable expectations that in time the P saturation at these sites 

may reach thresholds whereby actions to lower P saturation become necessary. At such time it may 

become necessary to develop interception strategies to prevent movement of P into surface and ground 

water from there extremely saturated locations. While most P research focuses on P loss via surface 

erosion, or on tile drained land, and rarely is Po considered. To fully evaluate the risks of P loss and 

develop remediation and interception strategies, data specific to Po movement at field scales across 

complex landscapes is needed to increase assurances that existing research is compatible with or 

applicable to West Virginia pastures. To develop this data, sequentially extracted P fractions were 

measured in samples from both spatially-explicit locations across typical hay and grass pastures and 

from bench top experiments to evaluate the applicability of existing research. I examined patterns in Po 

distributions to determine if Po levels significantly exceeded what could be explained by changes in soil 

properties. Results support the presence of spatial structure in the variability of the NaHCO3 and HCl 

extractable Po fractions in some locations, but no purely spatial component is present in the variability 

of the NaOH and H2O extractable fractions. Various topographic parameters were evaluated to 

determine their efficacy in explaining Po variability and soil-landscape modeling techniques were 

successfully used to develop relatively simple models based on soil test P results and topographic data 

to predict the distributions of the sequential extracted Po fractions across these landscapes. The bench 

top experiment indicated no significant effects from actively growing plants or P sources on the 

disposition of Po. As such, the bench top results support the acceptance of existing data in decision 

making processes, and the field scale data supports development of soil landscape models to afford 

future environment professional a higher degree of understanding relative to the spatial distribution of 

sequentially extracted Po fractions at a landscape scale.  
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Introduction 

Experimental Overview 

This research consists of both field- and lab-scale experiments designed to examine the transformation 

and movement of Po in typical hay or pasture setting on marginal soil in the poultry-producing region of 

West Virginia. 

The selected study sites were typical of hay or grass pasture fields in eastern West Virginia. The study 

sites consisted of one set of two (fertilized) locations with a lengthy history (approximately 10+ yr) of 

annual N-based manure applications, and one set of two (unfertilized) locations with very infrequent 

manure applications (maximum of one application every 10 yr). All locations were as similar to each 

other as practically possible.  

Outline of Dissertation 

This dissertation is divided into six chapters, beginning with an extensive review of the literature 

(Chapter 1) and ending with a brief summary of the important findings of this body of work (Chapter 6). 

In between are four chapters that describe aspects of both lab-based experiments (Chapter 2) and field-

based analysis and modeling (Chapters 3 through 5). While all of the field-based research utilized the 

same study sites and the same data, the results and discussion were divided into three separate 

chapters to more clearly organize and communicate both the methods and the results of the somewhat 

complex field-based research. 

Chapter 1. Literature Review 

The overall literature review covers the fundamental research in this field of study. This review is written 

to place in the proper context the issues related to this problem, the extent of research efforts to 

explain this phenomena, and areas in need to additional research. 

Chapter 2. Lab-Scale Experiments 

To understand the interactions between soils and nutrients one approach is to combine various soils and 

nutrients and, after an appropriate period of time, examine the changes that have occurred. The 

purpose of this experiment was to evaluate these changes under more realistic conditions than typically 

employed during such experiments. To this end, lengthy soil incubations with multiple P sources under 

conditions more similar to the pasture and hay land environments of the poultry producing region of 

West Virginia were implemented. Accordingly, operationally defined sequential extracted organic P 

fractions were examined in the presence of vegetation, variability in P sources, and management history 
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of soil to determine if these variables have a significant effect on the ultimate disposition of organic P in 

the afore mentioned operationally defined sequential extracted P fractionations.  

Chapter 3. Identifying Spatial P Patterns  

In general, advanced understanding of the complex redistribution of Po is critical for making the best 

decisions in terms of how to intercept P movement, how to model P behavior, and how to infer the 

relative value of this complex and costly data from relatively inexpensive and readily available surrogate 

data. To this end, the purpose of this chapter was to determine if there is an unidentified spatial 

component to the field-scale distribution of sequentially-extracted Po beyond what can be explained by 

changes in soil properties across the landscape. Various experimental design and statistical analysis 

techniques were used to evaluate possible spatial relationships obvious changes in soil properties.  

Chapter 4. Explaining Spatial P Patterns 

This chapter describes efforts to incorporate exploratory spatial data analysis (ESDA) and 

geovisualization techniques while evaluating field-scale distribution of sequentially-extracted Po in 

greater. Using similar techniques to chapter 3, a more detail examination was conducted to determine if 

the variability identified in Chapter 3 could be explained by including landscape-scale physical processes. 

The purpose of this inquiry was to evaluate the theoretical potential for successful soil landscape 

modeling applications related to the spatial distribution of sequentially extracted organic P fractions.   

Chapter 5. Modeling Spatial P Patterns 

This chapter was developed to construct and evaluate soil test P-based predictive models. Specifically, 

these models combine STP data and Landscape data to predict operationally defined sequentially-

extracted Po fractions. Successful development of such models could facilitate the accurate estimation 

of otherwise difficult and costly to collect data from readily available and significantly less costly inputs. 

This could facilitate new and exciting ways to approach P management regionally in locations like tie 

poultry producing region in West Virginia.  

Chapter 6. Summary Review 

The summary review brings together the concepts and ideas from the preceeding chapters to attempt 

to answer the broader questions related to P management in the poultry producing region of West 

Virginia. 
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Chapter 1. Topographic Influence on the Movement and Transformation 

of Organic Phosphorus in Hay and Grass Pastures of Eastern West 

Virginia 

Introduction 

Understanding the interactions between soils, fertilizers, and management practices is critical for 

sustainable agriculture and the protection of sensitive watersheds. Some regions of the U.S., because of 

the presence of high density animal agriculture production, are inherently more likely to experience 

environmental impacts derived from excess manure availability. The poultry-producing region of West 

Virginia is one such location. Grant, Hardy, and Pendleton Counties in eastern West Virginia account for 

about 83% of the broiler and other meat type chicken sales annually (USDA NASS, 2014). This regionally 

dense production generates substantial volumes of poultry manure. Given current production of 

approximately 78,000,000 broilers per year (USDA NASS, 2014) and an estimated 2.3 pound of poultry 

manure per broiler (Beegle, 2007), this region has the potential to generate in excess of 80,000 tons of 

poultry litter per year. Historically in this region of West Virginia as much as 90% of the poultry manure 

has been used as fertilizer and over 80% of that has been applied to grasslands (Basden et al., 1994). 

When concentrated animal agriculture and long-term N-based manure management occur together, 

phosphorus (P) saturation and elevated risks to water quality following are potential outcomes (Beck et 

al., 2004). 

As concerns over pending regulation mount, a strategic long-term approach to research should become 

a higher priority within the poultry producing and regulatory communities. Over time more land uses 

will become regulated and it is reasonable to assume some of this land, currently receiving animal 

manure applications on a N basis or in excess of crop removal rates, will attain a degree of P saturation 

that will prohibit further manure application. As some lands are removed from the manure application 

pool, other locations within the surrounding area will be needed, or the manure resources will need to 

be moved greater distances. In the coming years, the effort of reduce the P saturation of the existing 

sites and prevent P loss from all sites will become a greater priority. Thus, some portion of current 

research efforts should focus on answering questions about the fate of P in these agricultural lands with 

extensive histories of animal manure applications. 

Understanding the composition and distribution of the P pool on marginal lands could assist land 

managers in remediating P saturated locations, maximizing environmentally safe manure usage, 
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reducing costly sampling, and focus the application of limited resources to maximize their affect. The 

utilization of a soil-landscape modelling approach could allow researchers to meet some of these goals. 

The soil-landscape modelling approach provides a quantitative means of estimating soil properties 

across an area by combining physiographic properties, and georeferenced soil sample data (McSweeney 

et al., 1994). In place of resource dependent sampling regimens, relatively inexpensive high-resolution 

surrogate data are collected and correlated with georeferenced soil sample data to develop a regression 

based estimate at the resolution of the surrogate data (Thompson et al., 2006). 

To date, the majority of P-soil-environment research has focused on inorganic P (Pi) (Laboski and Lamb, 

2003; Anderson and Magdoff, 2005). However, organic P (Po) may be a significant part of the total soil P 

pool. To understand the implications of management decisions, relative to manure applications, a 

greater understanding of potential Po movement and soil interactions is needed (Condron et al., 2005). 

Developing that understanding and generating the means of extending that knowledge is paramount. 

The goal of this research is evaluate the applicability of incubation studies, evaluate Po patterns across 

farm fields, assess soil and topographic parameters to understand potential Po movement, and 

ultimately model Po distribution in fields. Specific hypotheses related to these individual overarching 

goals will follow in the individual chapters to follow.  

Literature Review 

The following literature review is subdivided into general topics and a summary of related research. The 

section on phosphorus will briefly address P in the environment, in soils, and in animal manure. The 

section on the phosphorus cycle will briefly discuss the P cycle, P movement, and how P was measured 

and defined in its various forms. The section on soil–landscape modelling will explain what soil–

landscape modelling is, how it can and has been used to model soil properties. The summary of related 

research will examine previous Po research in West Virginia, Po fractionation, manure-soil incubations, 

and landscape modelling in the context of this research, examining what has been done and outlining 

what is needed. 

Phosphorus 

Long-term applications of plant nutrients in the form of chemical fertilizers or animal manures at rates in 

excess of crop or plant removal can lead to the accumulation of nutrients (Sims et al., 2002; Beck et al., 

2004; Johnson et al., 2005; Miller et al., 2010). If excess nutrients are lost or transported from 

agricultural land to either ground or surface waters, the excess nutrients generate a degree of risk to 

water quality in the surrounding environment (Sharpley et al., 1992). Of particular concern are N and P 
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because excess amounts of N and P in aquatic ecosystems can stimulate excessive algal growth, limit 

light penetration, and causes hypoxia as the algae decomposes (USEPA, 1996; Gachter et al., 1998; 

Tarkalson and Mikkelsen, 2004). The USEPA (1995) considers P among the leading causes of pollution in 

lakes, estuaries, and rivers. In freshwater systems, P is often the limiting nutrient for algal growth 

(Newton et al., 1999; Conley, 2000). Consequently, agricultural sources have been identified in some 

instances as contributing to algal blooms and perhaps even fish kills (Shedlock et al., 1999; Sharpley, 

2000; Boesch et al., 2001). 

Historically, most research on P sorption and availability has focused on inorganic sources, with 

significantly less attention given to organic species of P (Laboski and Lamb, 2003; Anderson and 

Magdoff, 2005). Some researchers hypothesize this may be due to a perception that Pi is the dominant 

form of P and it is the plant available form, and the analysis of organic forms was simply too problematic 

(Jansson et al., 1988; Turner and Haygarth, 2000; Anderson and Magdoff, 2005). However, the loss of 

any bioavailable P is potentially damaging to the environment (Sharpley et al., 1992). 

Sorption is the generic term used to describe a series of physical (precipitation) and chemical 

(adsorption and absorption) processes (Bache, 1964; Sanyal and De Datta, 1991; Abekoe 1996). 

McGechan and Lewis (2002) stated, “Sorption is the process by which reactive chemicals become 

attached to surfaces, sometimes of otherwise relatively harmless solids.” Pierzynski et al (2005) likened 

P sorption to the generic transfer of P from the solution to the solid phase. This capacity to sorb P is 

typically described or defined in terms of a sorption isotherm or related function. These sorption 

isotherms are equations or models used to represent the sorption process (McGechan and Lewis 2002). 

A sorption isotherm can be used to model maximum P sorption, short-term sorption, slower long-term 

sorption processes, and desorption (McGechan and Lewis 2002). 

The strength of the P—soil bonds affect soil solution concentrations (Brady and Weil, 2002; Blake et al., 

2003; Pierzynski et al., 2005). Fundamentally, P sorption capacity is related to the soil surface chemistry, 

reactivity, Fe and Al content, clay content, and pH (Barrow, 1984; Fox, 1985; McGechan and Lewis, 

2002). P in soils is often bound to metal oxides, carbonates, and sometimes displaces water and 

hydroxyl groups on surfaces (Smeck, 1985; Pierzynski et. al 2005). In solution, P tends to act like a hard 

Lewis base, forming inner and outer sphere complexes with hard Lewis acids such as Al3+, Ca2+, and Fe3+ 

(Pierzynski et. al 2005). In mineral soils, some anions of organic acids compete with the P anions for the 

Fe and Al cations (Struthers and Sieling, 1950). In organic soils, Gerke and Hermann (1992) found the Fe 

and Al compounds were crucial in creating bridges between P and the humic substances. When P forms 
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bidentate inner sphere complexes with metal cations, he P compounds are stronger complexes and not 

as readily reversible as outer sphere, or monodentate, inner sphere complexes (Sims and Pierzynski 

2005). The strength of these relationships with sorption capacity has allowed researchers to effectively 

predict the P sorption capacity of similar soils (Scheinost and Schwertmann, 1995). 

In terms of P composition in soil, the Po pool in soil is typically composed of inositol phosphates, 

phospholipids, nucleic acids, phosphoproteins and other unidentified P compounds (Schroeder and 

Kovar, 2006). Pi in soils typically comes from the weathering of apatite (Pierzynski et al., 2005). The exact 

speciation of these phospho-metal-oxides and hydroxides is dependent upon the available components 

and soil conditions (Pierzynski et al., 2005). 

P within animal manure can be identified or described in a similar manner to soil. The dominant forms of 

P in poultry litter are orthophosphate (inorganic) and phytate (organic) and the concentrations of 

orthophosphate and phytate correlate well with some sequential fractionations techniques (Warren et 

al., 2008). The majority of the P in poultry litter is extractable with H2O and NaHCO3 (Codling, 2006; Dou 

et al., 2000; Dail et al., 2007). Phytate is the principal form of P in the grain-based (Maize) diets of non-

ruminants (poultry) and most of it is passed along into the feces undigested (Harland and Morris, 1995; 

Sharpley, 2000). The Pi percentage is typically highest in the H2O extractable fraction (Codling, 2006). 

However, some reports indicate that 72–83% of H2O-extractable P in poultry manure is in an organic 

form (Sistani et al., 2001). A four-step fractionation (H2O, NaHCO3, NaOH, and HCl) has been shown to 

extract between 85 to 97% of the total P in poultry manure (Warren et al., 2008; McGrath et al. 2005) 

and is similar to the numerous other sequential extraction procedures used to fractionate P in soils. 

Continuous applications of manures can lead to the modification of soil properties, P sorption 

characteristics, and perhaps increase P translocation through the soil profile (Hao et al., 2008; Harman 

et al., 2013). For example, by elevating the Ca content of the soil, Po additions could alter P sorption 

characteristics (Robinson and Sharpley, 1996). The more labile nature of some of these Ca-P complexes 

following long-term manure applications could contribute to potential P translocation within the soil 

profile (Holford et al., 1997; Siddique and Robinson, 2003). This is supported by the research of 

Lehmann et al. (2005). In research on locations with long-term application of animal manure, Lehman et 

al. (2005) documented P leaching consistent with accumulation and translocation. 

Continual additions of poultry manure shift P from binding with Fe and Al products to binding with Ca 

(Sharpley et al., 2004). In addition to elevating P, N, pH, and Ca, poultry manure elevates the levels of 
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bicarbonates and of organic acids with carboxyl and phenolic hydroxyl groups (Sharpley et al., 2004). 

The introduction of these compounds and their associated functional groups provide new reactive 

surfaces within soil and change the composition of the soil solution, affecting everything from pH to 

ionic strength. When poultry manure is added continuously to soil, more and more P becomes 

contained within the most easily extractable, labile fractions (Blake et al., 2003). Ultimately, the number 

and type of sorbtive surfaces in the soil determine the fate of P fractions (Blake et al., 2003). 

Phosphorus Cycle 

The soil solution P concentration is typically very low, thus requiring a constant turnover from other 

pools to replace P removed from the soil solution (Pierzynski et al., 2005). This replacement or 

replenishment of solution P comes from the P referred to as labile P. Labile P is “soil or sediment P that 

rapidly equilibrates with an aqueous solution” (Pierzynski et. al 2005). Nonlabile P is the form of P in soil 

that is more stable and less useful in maintaining P levels in solution. This overly simplified re-allocation 

of P between P pools and P forms is the basis of the P cycle. 

The phosphorus cycle is an extremely complex interaction of Pi, Po, biogeochemical processes, and 

environmental factors, by which a semi-steady state of solution P is maintained via the transformation 

of P forms. It is the conceptual model of how Pi and Po move between labile and non-labile pools 

through biological, chemical, and physical pathways within the environment. There are four major 

coupled processes within the P cycle: sorption–desorption, precipitation–dissolution, mineralization–

immobilization, and input–loss. 

The sorption –desorption process is a mechanism by which P can be removed from or added to the soil 

solution (Bunemann 2015). Sorption–desorption is a complex process of P temporarily bonding with a 

particle surface in the soil system. Excess P in solution becomes sorbed to the surface of primarily AL 

and Fe oxides (Fossard et al., 1995). When P levels in the soil solution change, P may be sorbed or 

desorbed from the soil particles until equilibrium between the relative attraction to the particles and the 

concentration in solution is achieved. Accordingly, as soils become more saturated with P, the soils have 

a lower ability to retain additional P (Giles et al., 2015).  

 Dissolution - precipitation is a very important abiotic process regulating P levels in the soil solution as 

labile P is only a small part of the total P pool in soil (Fossard et al., 2000). Precipitation–dissolution is 

the process of P forming or dissolving of primary and secondary P minerals from the soil solution. 

Primary P mineral generally refer to apatite, while secondary P minerals include sorbed P, as well as Al 
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phosphate, Fe phosphates, and Ca phosphates like brushite, monetite, and octacalcium phosphate 

(Smeck, 1985). As soils weather and acidify, the formation of Fe and Al phosphates and Po is favored 

(Smeck, 1985; Pierzynski et. al 2005). Ultimately, if the soluble pool of P becomes depleted, the 

encapsulation of these secondary P minerals by metal oxides and formation of occluded P becomes 

likely (Smeck, 1985).  

The third of the major coupled process in the P cycle is mineralization - immobilization. Mineralization–

immobilization is the process where P moves between organic and inorganic forms. This is the biotic 

phase of the P cycle. In short, organisms access P from the soil solution decreasing solution 

concentrations while increasing their mass or number. Over time, these organisms die and decay 

releasing P back into the soil solution. Thus as conditions dictate, available P can be immobilized (made 

unavailable) within biological entities in various states of growth or decay or mineralized (released) as 

various inorganic and organic P compounds.   

The final phase of the P cycle includes inputs and losses. P input is typically either weathering of primary 

P minerals or anthropogenic additions. P loss typically takes the form of sediment mediated transport 

and leaching losses (Pierzynski et. al 2005). Simultaneously, sorption–desorption, precipitation–

dissolution, and mineralization–immobilization reactions are actively transforming P to satisfy the plant 

and microbiological communities. P can change forms, shift between inorganic and organic forms, and 

be leached away or move with sediments and organic matter.   

While, in a general sense, P is limited in its mobility, P does move in soil. In native conditions, long-term 

water movement can lead to slow migration of P across the landscape. Smeck (1973) and Smeck and 

Runge (1971) have proposed that P can move laterally within a landscape, and that P will accumulate in 

lower landscape positions. Measuring changes in P across a landscape can infer a reasonable 

approximation of how water movement occurred across and through that landscape historically (Smeck, 

1973). In addition to physically moving P, water can chemically alter the soil, and this can alter the long-

term fate and transport of P. For example, dryer soils found in well-drained, upland positions, rich in 

iron and aluminum oxides tend to have higher P sorption capacities then less oxidized soils more 

common in wetter landscape positions (Walker and Syers, 1976; Abekoe, 1996). 

In terms of P movement, P loss from agricultural lands generally occurs via one of two mechanisms, 

surface and subsurface movement (King et al., 2015). When transported via subsurface flow 

mechanisms, P from fertilizer or manure moves through the soil into the ground or surface water. 
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Erosion losses occur when overland flow moves P from fertilizer, manure, or P enriched soil materials 

across the soil surface and or into surface waters. Historically best management practices focused on 

reducing or eliminating erosional losses, as erosional losses were considered the more important 

pathway of P loss (King et al., 2015). P leaching was generally not considered as important due to the 

low dissolved P concentrations in the soil solution and the sorbtive properties of the soil matrix (Baker et 

al., 1975). However, soils receiving large quantities of P fertilizer, soils with lower concentrations of 

reactive surfaces, coarser textures, pronounced structure, high concentrations of rock fragments, and 

extensive macropores networks pose a greater risk for P loss (Anderson and Magdoff, 2005; Harman et 

al., 2013). Yet, Pi is only part of the P picture. Literature indicates organic P (Po) could be as low as 29% 

or as high as 65% of the total P (Harrison, 1987) and some research indicates it could be as high as 90% 

of P in the soil solution phase (Helal and Dressler, 1989; Shand et al., 1994; Turner and Haygarth, 2000; 

Anderson and Magdoff, 2005). Only considering Pi in risk assessment is overlooking the rather large 

remaining portion of the total P pool, or assuming it behaves proportional to the Pi component. 

Measuring Soil Phosphorus 

Similar to how a P extraction method is selected; how P is physically measured is equally important. 

Colorimetric methods of P measurement are common. However, inductively coupled plasma (ICP) 

spectroscopy has been the most significant development in agricultural sample analysis since the 

development of the atomic absorption spectroscopy (AAS) (Isaac and Johnson, 1983). The ICP has 

facilitated rapid and consistent measurement of many soil nutrients. However, with P there are 

complications when comparing colorimetric to ICP based methods. ICP P measurements can be as much 

as 36% higher than colorimetric methods (Ziadi et al., 2009). The obvious explanation for this increase is 

the ability of ICP based methods to measure Po, polyphosphates, and orthophosphate (measured by the 

colorimetric methods). Identification of individual P components would require lengthy examination, 

and many additional analytical steps. 

The most rapid, complete approach to P characterization would be 31P nuclear magnetic resonance. 

However, it is believed the preparative steps in 31P nuclear magnetic resonance can lead to partial 

hydrolysis of some Po forms, thus introducing a degree of inaccuracy (He et al., 2008). The identification 

of Po fractions by enzymatic hydrolysis is the more accurate method of Po identification if identification 

of specific labile Po species as opposed to the entire labile pool (He et al., 2008). Understanding the 

operationally defined nature of the measurement is as critical as understanding the limitations of the 

extraction methodology. 
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In general, P extracted with any hydroxide solution is assumed to be Po and Pi typically bound to Al and 

Fe (Sharpley et al., 2004). P extracted with acid, is assumed to be Po and Pi typically bound to Ca 

(Sharpley et al., 2004). P extracted with bicarbonate, ion exchange resin, and water-based extractions is 

assumed to remove only the most weakly bound most labile P components (Sharpley et al., 2004). 

Bicarbonate, ion exchange resin, and water-based extractions are said to remove the easily 

exchangeable and plant available forms of P (Sharpley et al., 2004). These examples describe parts of 

the pool based on the perceived role that the parts play in the P cycle (plant nutrients), how researchers 

extract them (ion exchange resin P), and the expected mechanism of retention in the soil (Al and Fe 

bound P). 

Sequential P fractionation integrates a collection of chemical extractions such that the P is characterized 

by the type and strength of their physicochemical interactions with soil components (Bowman and Cole 

1978; Hedley et al., 1982; Cross and Schlesinger, 1995). An individual fraction in a sequential 

fractionation is conceptually different but not necessarily pure or unique. The most common extractions 

used in these sequential fractionations are water (H2O), anion exchange resin, sodium bicarbonate 

(NaHCO3), hydrochloric acid (HCl), and sodium hydroxide (NaOH) (Guppy et al., 2000; Schroeder and 

Kovar, 2006). It is common to label these groups by the chemicals or chemical processes that removed 

them from the soil, by the believed mechanism of sorption, or the extraction’s name. Typically, total P 

and Pi are determined in each sequential fraction and in the residual soil following the final extraction. 

Soil-Landscape Modelling 

Soil-landscape modelling is an integration of Milne’s (1935) catena concept, and Jenny’s (1941) 

contention of topography controlling landscape scale variability in soil (Thompson et al., 2006). Terrain 

variables can be used to model significant variance in soil properties (Gessler et al., 2000). Soil–

landscape modelling techniques were developed as a means to quantitatively predict patterns of soil 

properties (Gessler et al., 1995; McBratney et al., 2000; Thompson et al., 2006). In fact, in locations with 

uniform geology and geomorphic history, variability in topographic properties can provide appropriate 

means of spatial prediction of soil properties (Gessler et al., 1995). Moore et al. (1991) indicated that 

topography can be used as an indirect measure of the spatial processes that occur at catchment scale, 

thus making topography an ideal means of estimating soil properties at field scale. Terrain variables can 

be used to model many soil properties, such as soil organic matter, moisture content, soil depth, and 

erodibility (Moore et al., 1991; Bell et al., 2000; Gessler et al., 2000; Mueller and Pierce, 2003; Pei et al., 

2010). Jenny (1941) cited the work of Ellis (1938) as an example of soil moisture differentiation across a 
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landscape based on slope and landscape position. The topography factor has proven to be important in 

terms of the spatial distribution of soil moisture (Sorensen et.al, 2005; Thompson et a., 2012) and soil 

properties influenced by soil moisture content and water movement (Hall, 1983). In humid 

environments, water continuously moves across and through a landscape interacting with the soil 

influencing the physical, chemical, and biological properties of the soil and the water. This subsequent 

re-distribution of water within a landscape can cause changes in soil properties in multiple dimensions 

(Hall, 1983). 

It is common for terrain attributes to correlate with soil properties (Moore et al., 1993; Bell et al., 1994; 

Tomer et al., 1995; Boer et al., 1996; Park et al., 2001). As water is redistributed across the landscape, 

any soluble or suspended material contained within the water will be redistributed as well. As sediments 

and any dissolved materials move, the water effectively generates a degree of soil differentiation (Girgin 

and Frazier, 1996; Young and Hammer, 2000; Pachepsky et al., 2001; Ziadat, 2005). Thus, the physical, 

chemical, biological, and development status of soil is related to the factors controlling this 

redistribution of materials. Cognizant of this relationship between landscape and soil properties, 

researchers have used numerous forms of regression and correlation procedures to study these 

relationships between landscape position and soil properties (Lane, 2002; Webster, 2001; Guisan et al., 

2002; Park and Vlek, 2002; Ziadat, 2005). 

The basis for most of these regression and correlation procedures is the digital elevation model (DEM). A 

DEM is a representation of the variability of the elevation across a landscape (Bishop and Minasny 

2006). The elevation data from the DEM is used to create spatial explicit derivatives known as primary or 

secondary (sometimes called compound) terrain attributes (Bishop and Minasny 2006). These primary 

terrain attributes are calculated directly from DEM while the secondary or compound terrain attributes 

are mathematical combinations of primary terrain attributes (Moore et al., 1991). The most common 

primary terrain attributes are slope gradient, slope aspect, and slope curvature. The most common 

secondary attribute is the topographic wetness index (TWI) sometimes referred to as the compound 

topographic index (CTI) or wetness index (WI) (Bishop and Minasny 2006). Secondary attributes are 

often more useful than primary attributes for predicting soil properties as secondary attributes tend to 

explain more complex physical properties and may be useful for modeling nonlinear relationships (Bell 

et al. 1994; McBratney et al., 2000; Bishop and Minasny 2006). 

Topographic wetness index has been used in one form or another in many contexts to estimate 

properties associated with wetness (e.g., Moore et al., 1991; Hornberger & Boyer, 1995; Iverson et al., 
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1997; Boerner et al., 2000; Gessler et al., 2000; Case et al., 2005). The concept of TWI was developed by 

Beven and Kirkby (1979) as a component in a basin hydrology model. TWI is a compound terrain 

attribute, as it is made up of multiple primary terrain attributes (Bishop and Minasny 2006; Murphy et 

al., 2009). Specifically, TWI is defined as ln (A / tan B) where A is the local upslope contributing area for 

that point and B is the local slope gradient (Beven and Kirkby, 1979; Bishop and Minasny 2006; Murphy 

et al., 2009). TWI infers relative wetness within a landform. 

TWI values are dependent on flow accumulation calculations (Murphy et al., 2009). Flow accumulation is 

contingent on first determining flow direction (Bishop and Minasny 2006). Flow direction is simply a 

directional assignment of likely flow for each cell. Flow accumulation is the collection of cells flowing 

together as defined by the flow direction layer (Murphy et al., 2009). Flow accumulation can be 

unidirectional, multidirectional, or dispersive; and each of these three methods of representing flow 

accumulation has its own specific limitations (Murphy et al., 2009). Murphy et al. (2009) contends that 

some TWI calculations do not adequately consider downslope topography, hydrologic conditions, and 

dispersive flow when modelling moisture. Others contend that the (tan B) does reflect the local drainage 

potential (Beven and Kirkby, 1979; Quinn et al., 1995). 

Summary of Related Research 

The West Virginia University Agricultural Experiment Station cataloged the amounts and types of Po 

found in 17 soil series at 34 locations across WV in the 1960’s (Jencks et al., 1964). This research 

measured total P, total Po, phytin, available P, organic matter, and pH in these unfertilized and unlimed 

soils. Po accounted for between 7 and 66% of the total P in the surface horizons, and from 13 to 55% in 

the subsurface horizons (Jencks et al., 1964). Phytin or phytic acid (an inositol phosphate) accounted for 

between 13 and 63% of the total P in the surface horizons, and from 10 to 48% in the subsurface 

horizons (Jencks et al., 1964). The Jencks et al. (1964) findings are corroborated by the assertions of 

others (Harrison, 1987; Helal and Dressler, 1989; Shand et al., 1994; Turner and Haygarth, 2000; 

Anderson and Magdoff, 2005) that significant portions of the total soil P pool may in fact be Po. 

There are numerous examples of research that utilized a sequential extraction process to separate the 

total P pool into operational defined fractions (Bowman and Cole 1978; Hedley et al., 1982; Tiessen et 

al., 1984; Schoenau et al., 1989; Cross and Schlesinger, 1995; Iyamuremye et al., 1996; Sui et al., 1999; 

Guppy et al., 2000; Qian and Schoenau, 2000; Yang et al., 2002; He et al., 2004; Schroeder and Kovar, 

2006). Similarly, there are numerous examples of soil research that utilizes incubations with soil and 

fertilizers (Iyamuremye et al., 1996; Qian and Schoenau, 2000; Whalen et al., 2001; Maguire et al., 2001; 
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Yang et al., 2002; Crouse et al., 2002; Laboski and Lamb, 2003; He et al., 2004). However, in instances 

where researchers examine the fractions in a location under some set of conditions, it is rare that the 

study is accompanied by incubation experiments to further the understanding of potential sources of 

specific operationally defined sequentially extracted P fractions. 

Historically, there have been multistep fractionation procedures developed for soil P (Chang and 

Jackson, 1957; Bowman and Cole 1978; Hedley et al. 1982), marine sediment P (Martin et al. 1987 and 

Ruttenberg, 1992), and countless modifications to these methods. The most commonly cited and 

modified method used in soil P research is the Hedley et al. (1982) fractionation (Guppy et al., 2000). 

The Hedley et al. (1982) fractionation partitions the P pool into soluble, aluminum/iron-bound, calcium-

bound, and residual forms. The more recent efforts to characterize the Po pool in soil has utilized 

enzymes to separate specific Po compounds (He et al., 2004), 31P nuclear magnetic resonance analysis 

(Toor et al. 2003; Hill and Cade-Menun, 2009), and a sequential fractionation. Often these approaches 

are combined in some fashion to further differentiate P forms.  

To learn how P additions change in soil over time, mixtures of fertilizer and soil are often incubated to 

examine changes relative to some factor or P type. This approach has been used to define changes in 

the soil P pool (He et al., 2004; Qian and Schoenau, 2000; Yang et al., 2002). However, long-term, field 

scale studies have shown P fractions do not change uniformly, and P concentrations decrease in the soil 

profile with depth (Hountin et al., 2000). In fact, long term applications of poultry manure (a source of 

Po) can even cause the proportion of Pi in the total pool to increase (Sharply et al., 2004). 

Robinson and Sharpley (1996) examined sorption and fractionation on multiple soil samples from 

untreated locations after adding poultry manure leachate and concluded manure fertilizers and 

chemical fertilizers act differently in soils. When applying deliberate Po fractions to packed soil columns, 

Anderson and Magdoff (2005) found different classes of Po fraction moved through the soil at different 

rates. Specifically, orthophosphate diesters are more likely to leach in soils than monoesters or Pi 

(Anderson and Magdoff, 2005). Other researchers have incubated poultry manure in soil and 

fractionated the soil, manure, and soil-manure mixture after the incubation (Warren et al., 2008). 

However, the incubations were not in the presence of actively growing plants. Some researchers have 

looked at P loss and characterized the P in manure, in farm fields, and in drainage way sediment 

downstream (creating a theoretical transects form source to stream) using the latest 31P nuclear 

magnetic resonance analysis (Hill and Cade-Menun, 2009) but did not look for differentiation within a 

field, or examined if Po had changed at any other scale in their theoretical transect.  
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A better approach to understanding the changes and movement of Po in soils would combine aspects of 

these and similar studies with landscape modelling techniques. Topographic data has been shown to be 

a useful parameter when modelling spatial patterns in soil P. Using TWI, Moore et al. (1993) explained 

48% of the variability in data from a STP extraction at landscape scale. Given, that (i) Po fractions moved 

through the soil at different rates (Anderson and Magdoff, 2005), (ii) the properties that can control soil 

P sorption vary across the landscape (Daniels et al., 2001), and (iii) the re-distribution of water within a 

landscape can cause changes in soil properties (Hall, 1983), TWI is a logical choice for a high-resolution, 

low-cost surrogate variable to model Po fractions at a landscape scale. 

Spatially explicit sampling strategies for measuring Po at landscape scales may be necessary due to 

spatial autocorrelation, and the potential effect of space on the distribution or redistribution of applied 

P. As Tobler (1970) put it, "Everything is related to everything else, but near things are more related 

than distant things." Failing to consider the potential of sample autocorrelation can jeopardize the 

reliability of some analysis (Fagroud and Van Meirvenne, 2002). Many statistical methodologies rely on 

independence within the sampling design, while in reality much of this data could be spatially 

autocorrelated (not independent). Sampling strategies can be devised to measure or evaluate spatial 

variability and autocorrelation. However, these strategies are typically resource dependent and too 

often are not used (Bridgham et al., 2001). In their place, researchers rely on replication, blocking, 

sample independence, and randomization; but these measures do not necessarily generate independent 

data (Fagroud and Van Meirvenne, 2002). 

Acknowledging that P added from animal manures is a unique mixture of Pi and Po with various solubility 

(Harland and Morris, 1995; Schroeder and Kovar, 2006; Warren et al., 2008), it seems reasonable to 

expect overland flow and infiltration to move these fractions at different rates, over different distances, 

and by potentially by different processes. Given that P forms vary in their ability to participate in the 

sorption–desorption process, the precipitation–dissolution process, and the mineralization–

immobilization process, (Pierzynski et. al 2005) it would seem logical that these forms could accumulate 

or be transformed relative to their specific differences. Knowing that different organic P fractions are 

sorbed preferentially (Anderson and Magdoff, 2005) and P sorption capacity is dictated by soil 

properties (Blake et al., 2003), it would seem likely that individual Po fractions could be partitioned in 

accordance with soil properties. Given the plethora of examples where landscape data has been 

correlated with soil properties (Moore et al., 1993; Bell et al., 1994; Tomer et al., 1995; Boer et al., 1996; 

Young and Hammer, 2000; Pachepsky et al., 2001; Park et al., 2001; Ziadat, 2005; and others), it would 
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seem logical to assume this sort of data could be used for modelling P fractions at field or landscape 

scale. 

Expected Benefits 

This research should answer fundamental questions about how P from primarily poultry manure 

applications change within the landscape and determine if incubation with soil only is adequate for 

modelling P change. Additionally, the multi-dimensional distribution of Po fractions may generate new 

hypothesis about P transformations, translocations, and movement, as well as potential remediation 

techniques that may become necessary in the years to come. Lastly, this research will develop a 

modeling approach that could be used to estimate a much more detailed description of the P pool in 

locations where site specific P distribution knowledge could be useful in designing and implementing P 

loss management, and remediation plans.  

As concerns over regulation are becoming more common, it is reasonable to assume land currently 

receiving N-based animal manure applications could face P saturation. At that time, the continued 

application of manure will likely cease. However, that does not mean the problem will go away. 

Surrounding areas will become attractive destinations for excess manure. Many of these locations may 

be land previously unfertilized perhaps due to costs. As producers are forced to move manure off-farm, 

it could lead to a declining cost associated with manure. It would seem reasonable that these conditions 

could lead to marginally productive local farm lands seeing an increase in manure applications. 

In the future there are two general problems that may need to be addressed. First, what management 

decisions need to be made on farmland that has become saturated with P, and second, how can 

resource managers maximize applications on new fields without repeating the current situation. 

Understanding how Po moves at field scale could help answer these questions and more. For example, 

land managers could implement P remediation strategies at subfield scales to reduce cost by targeting 

the topographic conditions in fields where labile and possible moderately labile P accumulates. 

Additionally, when allocating sparse government resources to improve water quality, regional 

assessment of topographic data could identify farms where remediation could potential yield the most 

environmental impact. Lastly, the lab-scale experiment answers important questions about how 

different constituents of the manure respond differently; how incubation studies could be biasing the 

results; and how STP results correctly or incorrectly estimate risk, and determine the effect of 

vegetation on these transformations. 



16 
 

These same questions could be answered with massive field scale trials and site specific sampling in 

every field, but this is a poor use of resources when looking at the “big picture”. This research will 

provide a quantitative means of estimating Po distribution within fields based on typical soil test results 

and relatively inexpensive high-resolution geospatial data. When specific questions about a field arise, 

additional examination would always remain an option. Voluntary precision sampling of individual fields 

would yield definitive answers, but would likely be too costly for many producers. This research provides 

valued data at a low cost and a wide scale to help solve problems of local, regional, and national 

importance, thus allowing limited resources to be used in such a manner as to do the most public good. 
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Chapter 2. Effect of Vegetation and Phosphorus Source on Sequential-

Extracted Phosphorus Fractions in Incubated Soils 

Abstract 

Incubation-based P transformation studies provide valuable insight into the fate of nutrients. However, 

the practical utility of such experiments is contingent on the characterization of the transformed P forms 

being consistent with characterization approaches that are used at field scales. Furthermore, this utility 

is limited by the ability of the incubations to mimic field conditions. This research is focused on applying 

experimental conditions that more closely resemble field conditions to a traditional incubation 

experiment, and characterize the P in a fashion that could prove useful at examining P movement and 

transformation at a field or landscape scale. Soil samples from locations with very high soil test P levels 

and locations with very low soil test P levels with and without actively growing vegetation were 

incubated for 16 weeks, following P additions from manure, manure leachate, leached manure, phytic 

acid, or CaPO4. During the incubation, the samples were repeatedly wetted and allowed to dry such that 

the gravimetric soil moisture ranged between 80 and 105% container capacity. Consequently, the 

sequentially-extracted, operationally defined P fractions in the samples following the incubation were 

measured and examined for significant multivariate effects. The analysis identified significant 

differences between several fractions relative to P source and fertilization history, but no difference 

relative the presence of vegetation. It appears that most P additions generally end up in the NaOH 

extracted fractions and the presence of actively growing vegetation does not alter the fate of these P 

additions. Accordingly, data from other incubation studies where P is assumed to be sorbed to Fe and Al 

should be applicable when trying to understand P transformations. As such, the transformation seen in 

most of these incubations should be reflective of what would occur in field-scale situations. 

Introduction 

Knowledge of the interactions between soils, fertilizers, and management practices is critical for 

sustainable agriculture and environmental protection (Maguire and Sims, 2002; He et al., 2004; Harman 

et al., 2013). These concerns are most relevant in regions with extensive confined animal feeding 

operations or N-based manure management. When these conditions occur together, P saturation and 

an elevated risk to water quality become potential outcomes (Beck et al., 2004; Miller et al., 2010). In 

addition, the availability of P in soil can be influenced by microbial and chemical properties of the soil, 

manure composition, and rhizosphere processes (Waldrip et al., 2011). To better manage the 
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relationship between soils, fertilizers, and management practices researchers must first understand how 

differences in P sources, P saturation, and vegetation alter the forms of P that are retained, sorbed, or 

transformed within the soil.  

One approach to facilitate examination of the interactions between soils and nutrients is to combine 

them and after an appropriate period of time examine any changes that have occurred. There are 

numerous examples of research that utilize this approach to examine changes relative to various soil 

amendments (Iyamuremye et al., 1996; Qian and Schoenau, 2000; Whalen et al., 2001; Maguire et al., 

2001; Yang et al., 2002; Crouse et al., 2002; Laboski and Lamb, 2003; He et al., 2004; Miller et al., 2010; 

Gagnon et al., 2012). These lab-scale experiments are low cost alternatives to inelegant field-scale 

experiments (Sharpley and Sisak, 1997). Another approach is to describe in greater detail the 

distribution of a nutrient, such as P, within soil. Combined, lab scale and sequential extracted spatially 

explicit experiments allows researchers to document the changes that occur in fertilized soil over time in 

greater detail. 

A sequential P fractionation (one approach to describe P in soils in greater detail) is a collection of 

successive chemical extractions that characterize P by the type and or strength of the assumed 

physicochemical interactions with the soil (Bowman and Cole 1978; Hedley et al., 1982; Cross and 

Schlesinger, 1995; Negassa and Leinweber 2009; Gagnon et al., 2012). Some research (Qian and 

Schoenau, 2000; Yang et al., 2002; He et al., 2004; Warren et al., 2008; Negassa and Leinweber 2009; 

Gagnon et al., 2012) has used this approach to define changes in the soil P pool. Recent efforts to 

describe organic P (Po) pools have included additional analytical measures such as enzymatic hydrolysis 

(He et al., 2008) and nuclear magnetic resonance analysis (Toor et al. 2003; Hill and Cade-Menun, 2009) 

in conjunction with sequential P fractionation. More advanced analytical techniques such as enzymatic 

hydrolysis and nuclear magnetic resonance analysis can generate a great deal of information about 

specific P compounds and retention mechanisms, but may not be practical for use by producers. 

To improve management decisions there is a need for research that can assist in translating the existing 

body of knowledge into more useable formats. For example, it is known that manure application can 

increase soil concentrations of both total, soluble, and stable organic forms of P (Erich et al. 2002; 

Ylivainio et al. 2008; Waldrip-Dail et al. 2009). Research on the complex interactions between plant 

roots, manure, soil, and P is ongoing, but a full understanding has not yet been achieved (Waldrip et al., 

2011). Po must be mineralized into inorganic forms to fully participate in the P cycle and that ability is 

impacted by the biological activity within the soil matrix (Magid et al., 1996, Waldrip et al., 2011). 
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Specifically, insight into how manure applications change sequentially-extracted P pools in a more 

natural environment, with plant interactions, in a more biologically active setting is critical to updating 

management paradigms to reflect the latest research. Understanding the composition of the P pool 

relative to unique combinations of conditions could streamline research by culling ill designed and 

ineffective remediation strategies before research resources are consumed. Surface applications and 

protective berms of low cost materials with specific affinities for labile P compounds could be developed 

to limit P loss. 

The objective of this research was to determine if the presence of vegetation, variability in P sources, 

and management history of soil has a significant effect on the disposition of organic P in sequential 

fractionations. To examine the potential P transformations, a series of laboratory incubations were 

performed to examined how organic P pools changed in soils given the presence of vegetation and the 

effect of hydrological differentiation (separation of soluble and non-soluble portions of a manure P 

sources) along with traditional P sources. The first research hypothesis (H1a) states that an addition of P 

causes a significant difference in operationally defined sequentially extracted Po fractions relative to the 

source of the P addition and the fertilization history of the sample. The null hypothesis (H0a) states that 

additions of P does not cause a significant difference in operationally defined sequentially extracted Po 

fractions relative to the source of the P addition and the fertilization history of the sample. The second 

hypothesis (H1b) states that the presence of active growing vegetation can affect sequentially extracted 

Po fractions in incubated soil samples. The null hypothesis (H0b) states, that the presence of active 

growing vegetation does not affect sequentially extracted Po fractions in incubated soil samples. 

Materials & Methods 

Overview 

To achieve a more realistic model of typical growing conditions and evaluate change over time, manure, 

manure leachate, leached manure, phytic acid, and Ca(H2PO4)2 were incubated with soil under 

controlled conditions more similar to the pasture and hay land environments of the poultry producing 

region of West Virginia. This bench top experiment includes vegetation, repeated wetting and drying, 

and soil from locations with very low and very high P concentrations. Under these conditions, changes in 

the operationally defined sequential extracted organic P pools were measured to determine what 

parameters, if any, altered the P pools. These considerations should place the utility of existing research 

in a proper context and designate a clearer direction for future research relative to both remediation 

and preventive strategies. 
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The experiment was arranged as a randomized complete block within a factorial design (Dowdy et al., 

2004), with factors of management history, P sources, and vegetation. The two levels of management 

history are annually fertilized (Fertilized) and rarely fertilized (Unfertilized). There are six levels of the 

fertilizer factor (control, manure, manure leachate, leached manure, phytic acid, and Ca (H2PO4)2). The 

two levels of the vegetation factor (with and without vegetation) were constructed by seeding the 

appropriate samples with 0.1g of tall fescue [Lolium arundinaceum (Schreb.) Darbysh. = (Schedonorus 

arundinaceus (Schreb.) Dumort.] seed at the onset of incubation. The experimental block was replicated 

three times. 

The soils used in this incubation experiment came from two locations: One location with a lengthy 

history of poultry manure applications and one location with no know history of poultry manure 

fertilization. These locations have been managed as pastures in excess of 25 years. These locations are 

mapped as Berks-Weikert channery silt loams. The map unit composition is typically 55 % Berks and 

similar soils, 35 % Weikert and similar soils, and 10 % minor components. For additional details on 

theses soils see Table 2.1. Berks is among the most common soil series identified under hay and grass 

pastures in the poultry producing region of West Virginia (Harman et al. 2011). The soil used during this 

experiment came from Ap horizon of these locations and were air dried ground, sieved, and mixed 

repeatedly to create a homogenous bulk samples from each location.  

Incubation 

Forty grams of air dried soil were incubated 16 weeks with one of six levels of the fertilizer treatments. 

In the manure treatment, 1.2 mg of P (95 mg of manure) was added. In the phytic acid, and 

monocalcium phosphate treatments, 1.2 mg of P were added. In the other treatments 95mg of manure 

was leached with distilled deionized water and the leached manure added to the leached manure 

treatment and the leachate added to the manure leach treatment. The application 1.2mg of P per 

sample is roughly equal to a field scale application of 60 pound per acre. The literature indicates water-

soluble P levels stabilize as quickly as 3 weeks after fertilization (Bond, et.al, 2006) or could continue to 

increasing in availability for up to 13 weeks before leveling off and stabilizing for up to 6 months 

(Gagnon and Simard, 1999). There is a great deal of variation in incubation times, from days (Warren 

et.al, 2008; Leytem et.al, 2004) to months (Ebeling et.al 2003; Laboski and Lamb, 2003). The 16-week 

incubation period exceeds the minimum time (3 weeks) for stabilization of water soluble P (Bond, et al., 

2006) and the initial increase in available P reported by Gagnon and Simard (1999), while being more 

directly comparable to the first 16 week cycle of Ebeling et al. (2003). 
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Gravimetric soil moisture was adjusted based on percent container capacity (CC) (Leytem et al., 2004). 

CC is similar to field capacity. Gravimetric soil moisture is determined by saturating 50 g of soil with 

distilled deionized water (DDI) and allowing it to drain freely for 48 hr. under normal atmospheric 

pressure and room temperature, followed by reweighing the sample, and calculating water content per 

unit soil (Cassel and Nielsen, 1986). The moisture level was measured and adjusted approximately every 

3-5 d. DDI was added when the sample weights fell below 80% of CC until the weight of the sample 

reached approximately 105% CC. 

Laboratory Analysis 

The chemical properties of the soils used in the experiment were characterized by a sequential 

extraction procedure developed to divide the P pool into operationally-defined segments. Sequential 

fractionation evolved from the works of Chang and Jackson (1957) and Bowman and Cole (1978), 

through Hedley et al. (1982). The most common extractions used in sequential fractionations are water 

(H2O), anion exchange resin, sodium bicarbonate (NaHCO3), hydrochloric acid (HCl), and sodium 

hydroxide (NaOH) (Guppy et al., 2000; Schroeder and Kovar, 2006). The P in this study was characterized 

with a modified Hedley fractionation as suggested by (Sui et al., 1999) and described by He et al. (2003). 

For each sample, approximately 1.0 g of soil and 25 mL of extractant was placed in a centrifuge tube in a 

reciprocal shaker at 180 oscillations per minute for 16 h at room temperature. The samples were 

centrifuged for 15 min at 3500 g and the supernatant filtered through a medium porosity filter paper. 

This process was repeated sequentially from DDI through 0.5M NaHCO3, 0.1M NaOH, and 1M HCl. The 

extracted P from these samples were further differentiated into operationally- defined categories of 

organic P and inorganic P. Inorganic P includes orthophosphate plus any molybdate reactive organic and 

inorganic species of P. Organic P is defined as the difference between total P as measured by an ICP-OES 

and the molybdate reactive organic and inorganic species of P, as identified by the ammonium 

molybdate-ascorbic acid colorimetric method (Knudsen and Beegle, 1988). 

The ammonium molybdate-ascorbic acid colorimetric method of Knudsen and Beegle (1988) is a two 

reagent procedure. The first reagent is the concentrated ammonium paramolybdate solution. 

Concentrated ammonium paramolybdate solution is made from 60.0 g of ammonium paramolybdate 

(NH4)6Mo7O24*4H2O), 1.455 g antimony potassium tartrate (KSbOC4H4O6) and 700 mL of concentrated 

sulfuric acid (H2SO4) diluted to 1 L with DDI. The second reagent is the ascorbic acid solution. It is made 

by dissolving 132 g of ascorbic acid in 1 L of DDI. Daily, a working reagent is made by adding 25 mL of the 

concentrated ammonium paramolybdate solution with 10 mL of the ascorbic acid solution and diluting 
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to volume to 1 L with DDI. A 2 mL aliquot of soil extract is transferred in to 15 mL microcenterfuge tube 

and mixed with 8 mL of the working reagent. The solution is allowed to stand for 20 minutes and the 

color change is read at 882 nm. High pH extractants (NaHCO3 and NaOH) extract some acid insoluble 

organic acids. These acids precipitate when pH is lowered by the ammonium molybdate-ascorbic acid 

colorimetric method. These organic acids were eliminated by pipetting 10 mL of these extractions into a 

50 mL centrifuge tube and lowering the pH to about 1.5 by adding 6 mL to the 0.5 M NaHCO3 and 1.6 mL 

of 0.9 M H2SO4 to the 0.1 M NaOH (Tiessen and Moir, 1993). The precipitated samples were centrifuged, 

made to volume, and analyzed accordingly. 

Statistical Analysis 

Prior to analysis the data were examined to evaluate univariate normality using the Ryan - Joiner 

method and identify potential outliers identified by the Dixon’s Q test (Minitab 16, 2010). Statistical 

outliers were examined and considered for eliminated. With removal of outliers the data more closely fit 

the assumptions associated with the analysis. The experimental design dictated that the data were 

independent; however, the homogeneity of the covariance matrices were not examined, as the 

requirement for the covariance of each cell to every other cell results in numerous opportunities for the 

assumption of homogeneity to fail and in practice it is rarely satisfied in real research data (Lehman et 

al., 2005). 

Data analysis began with multivariate analysis of variance (MANOVA). This looked for significant 

difference within the P fractions collectively relative to management history, differing sources of P used 

in the incubations, and the presence or absence of vegetation. Essentially, MANOVA was used to 

determine which independent variables had significant effects on the P fractions prior to univariate 

analysis. The univariate ANOVA determines if the effects of the independent variables were significant 

within each dependent variable. Some research assumes a significant MANOVA controls family error 

rate (Minitab 16 Statistical Software, 2010) while others indicate this is incorrect (Weinfurt, 1995). 

Multiple comparisons within the ANOVA between the levels of fertilizer treatments were examined by 

Tukey's Honestly Significant Differences (Tukey’s HSD) test (Dowdy et al., 2004). 

Results and Discussion 

Poultry manure as a fertilizer has the ability to accelerate the transformation and mineralization of less 

labile P forms (Waldrip et al., 2011). The question is how this impacts the ultimate distribution of P 

under real world conditions. Samples were collected at two locations with very different histories of 

management but from very similar locations (Table 2.1). As expected, the results of this research 
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indicated significant effects for main factor History P=0.000 (Table 2.2). For example, Fox and Kamprath 

(1970) noted increases in soluble P were related to initial soil test P levels. Specifically, Fox and 

Kamprath (1970) found greater increases in soils with higher initial soil test P levels. Similarly, Pote et al. 

(2003) and Bond et al. (2006) found higher levels of water soluble P in experimental trials was strongly 

correlated to the initial levels of water soluble P. This is in direct agreement the identified significance 

related to the factor History. 

Additionally, results indicated significant effects for main factors Source P=0.005 (Table 2.2). However, 

there is some degree of disagreement among previously published results regarding the potential 

impact of P source on P distribution and fractionation. Some studies noted livestock manures were 

equivalent to inorganic P sources relative to their availability (Eghball et al. 2005; Sikora and Enkiri 2005; 

Zvomuya et al. 2006; Sneller and Laboski 2009). Conversely, others have found livestock manures and 

inorganic P do not have the same availability (Gracy 1984; Motavalli et al. 1989; Sharpley and Sisak 

1997; Griffin et al. 2003; Miller et al. 2010), whereas these findings indicate not only a significant effect 

for Source, but a significant interaction between History and Source P=0.003 (Table 2.3) This data 

indicates that change in the distribution of P is related to the P status of soil prior to the additions. In 

similar work, Waldrip et al. (2011) noted increases in specific P fractions over time in soils amended with 

poultry manure, but did not necessarily find evidence that single applications created significant 

differences in specific fractions over time. 

Miller et al (2010) indicated experimental conditions such as incubation periods, animal species, and 

inorganic P types could explain some of the conflicting findings among the literature. Similarly, Rumi et 

al. (2012) noted changes in soil test P was rate and time dependent. The observed interaction between 

Source and History means the significance of the independent variable Source is dependent upon the 

level of the independent variable History. Under these experimental conditions (one soil with very low 

STP levels vs. one with an extensive history of manure P additions and high STP levels) the ability to 

identify changes in soil test P levels relative to P source is related to the management history. It is 

reasonable to assume that the effect of that management paradigm has led to an elevated initial soil 

test P level (Scalenghe et al. 2002) and the changes from such management alters the soil properties 

and soil P dynamics (Hao et al., 2008). As a result, continual additions of poultry manure shift P from 

binding with Fe and Al products to binding with Ca (Sharpley et al., 2004). 

No significant differences in P levels relative to the factor Vegetation P=0.494 were identified (Table 

2.2). Strictly in terms of plant use, Goss and Stewart (1979) found plants grown in soil fertilized with 
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inorganic P removed soil P at higher rates than those grown in soil fertilized with manure. Later research 

examined poultry liter compost and compared it to inorganic fertilizer and found no significant 

differences in plant uptake (Sikora and Enkiri, 2003). Yet, luxury consumption of P and elevated initial 

soil test P levels could be contributing factors to inconsistent plant utilization of P (Goss and Stewart, 

1979; Sikora and Enkiri, 2003; Miller et al. 2010). However, one would assume the uptake of P from the 

plants would change P levels, leading to significant differences between samples incubated with and 

without vegetation. Yet in soils with significant pools of P, the transformation and redistribution of P 

between could buffer minimal losses during short term incubation. In this experiment P additions were 

nominal (equivalent to 60 pounds per acre). Typically, acidic upland soils like berks have a significant P 

sorption capacity (Sekhon et al., 2014) and the location with a long history of poultry manure 

applications should have a higher degree of P saturation. Assuming soils are capable of replenishing the 

labile P pools; limited change in STP levels relative to any plant uptake would be expected. Similarly, soil 

for the location with limited to no know history of poultry manure fertilization would have extensive 

unused P sorption capabilities and would retain the majority of the P applied and may not reflect change 

due to plant uptake. Combined the availability of P from manure applications, the effect of microbial 

and chemical properties of the soil and the composition of the manure (Waldrip et al. 2011) make a 

simple explanation of findings is unlikely. Additionally, the vegetation in this experiment was minimal 

given the appropriate samples were seeded with 0.1g of tall fescue and its growth did not exceed 8 cm 

in height. Given these conditions and factors, the lack of significance relative to the factor Vegetation 

was not unexpected as its inclusion as an experimental factor was not about plant uptake as much as it 

was to establish if the soil-root interactions significantly impacted P distribution within these 

operationally defined pools. 

After examining the main factors and identifying a significant interaction between the dependent 

variables History and Treatment, (Table 2.3) the dependent variable were analyzed individually. The 

differences between the levels of History were significant across all dependent variables (Tables 2.4, 2.5, 

2.6, and 2.7). The main factor Treatment was only significant 2 of 4 sequentially extracted fractions. A 

closer examination identified significant effects for treatment at the p<0.1 level in the H2O-Organic 

(Table 2.4) and NaOH-Organic fractions (Table 2.6). Typically following brief incubations (4 weeks) the 

majority of the sequentially extracted Po is found in the NaOH extractable fraction with the least 

extractable Po in the most labile fractions (Waldrip et al., 2014). Following longer incubations (8 weeks) 

more P is retained in the NaOH extractable fraction. Likewise, Fox and Kamprath (1970) identified 

greater increases in soils P fractions when soils were examined with higher initial soil test P levels.  
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The Tukey HSD multiple comparisons procedure was applied to the H2O-Organic (Table 2.8) and NaOH-

Organic (Table 2.10) fractions, but the only significant difference identified were between the poultry 

manure leachate and the control in the NaOH-Organic fraction and the Organic and Inorganic P fractions 

and the control in the H2O extracted fractions. In general, NaOH extracted organic fractions are 

considered immobile and are often phytic acid sorbed onto clay minerals or precipitated with various 

metals oxides (Gagnon et al. 2012). Po can be described or assigned in to one of two generic pools (the 

slow cycling and the fast cycling pools) and this is related to the form of the Po and the associated 

process by which the Po is retained within the soil (Dodd and Sharpley, 2015). The more stable, slow 

cycling pool consists of dead microbial cells, organic matter, and plant materials where the faster cycling 

pool consists of P contained within the microbial biomass (Dodd and Sharpley, 2015). Others (Negassa 

and Leinweber, 2009) indicated that in short-term studies, changes in P fractions depended on the 

amount of applied P regardless of P source. Similarly, sequential-P-fractionation schemes can be 

insensitive to detect small changes in P fractions following incubation with little or no P additions to 

agricultural soils (Qian and Schoenau, 2000; Hylander and Siman, 2006). One possible explanation would 

be the leaching of very labile P forms and related enzymes that facilitate the transfer of sorbed P into 

the fast cycling Po pool over time.  

The data identified significant interactions between History and Treatment in the HCl-Inorganic (Table 

2.7), and H2O-Organic fractions (Table 2.4) at the p<0.1 level. The HCl extracted inorganic P is typically 

associated with Ca compounds and the water extractable fraction are the most labile fractions (Negassa 

and Leinweber 2009; Gagnon et al. 2013). Organic P when incorporated in soil can be transformed into 

labile inorganic P forms (Waldrip et al. 2011). Long-term additions of P even at low rates should 

increases the level of Po in all extractable P o fractions (Negassa and Leinweber 2009). While in general, 

P additions in any form tend to follow a progression outline by Walker and Syers (1976) that predicts the 

gradual conversion of P additions toward occluded P, more specifically it appears over time P from labile 

or moderately labile fractions can be transformed into the stable more recalcitrant forms (Negassa and 

Leinweber 2009). The interactions seen here indicate a likely hood that the most recalcitrant pools and 

the most labile pools seem to be dependent upon the management history i.e. the degree of P 

saturation, size of the active P pool in solution, and change in organic matter, and cations associated 

with long-term manure applications. Clearly these changes could impact how P additions would behave 

and what forms of P if any would remain in solution following weeks of incubation. 
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Conclusions 

There were no significant effects from the actively growing plants on the disposition of P within the 

sequentially extracted factions. While 16 week incubations may be sufficient for sorption—desorption 

studies, there are limits to the amount of vegetation that can be generated under these experimental 

conditions. It is possible more prolific vegetation and increased sample numbers could lead to 

statistically significant differences. However, based on the lack of effect from vegetation in this 

experiment, any significant differences in P distribution because of vegetation in additional research 

seem unlikely. As such, any previous research involving incubation of P and soil without actively growing 

vegetation can be assumed representative of P sorption—desorption dynamics typical of pasture 

settings. 

It was noted that P additions contribute to P pools in somewhat predictable ways. The changes in 

extractable soil P pools are consistent with the basic premise of the conceptual model of Walker and 

Syers (1976), whereby inorganic P in the labile pool become occluded. In theory as P becomes occluded, 

it is replenished via P cycling between labile and non-labile and organic and inorganic forms. As such, it 

appears the majority the P added to these samples became sorbed or occluded to the extent that the 

sequential extraction failed to identify any significant differences between the various sources. The 

literature indicates water-soluble P levels stabilize as quickly as 3 weeks after fertilization (Bond, et.al, 

2006) or could continue to increasing in availability for up to 13 weeks before leveling off and stabilizing 

for up to 6 month (Gagnon and Simard, 1999). The length of incubation (16 week) and the repeated 

wetting and drying of the soil would have facilitated P cycling and provided time for P level to 

equilibrate. 

It is understood that additions of some P compounds such as inositol hexaphosphate (IP6) can cause 

other forms of sorbed P to desorb causing temporary spikes in the more labile P pools such as water 

soluble inorganic P (Berg and Joern, 2006). Additionally, consider the conceptual model of Walker and 

Syers (1976) and its’ conclusion that, over time, P becomes occluded and it is known that continual 

additions of poultry manure shift P from binding with Fe and Al products to binding with Ca (Sharpley et 

al., 2004). Given the experimental design with soil from locations with extensive histories of manure 

application the likelihood of the soil—P dynamics changing due to shifts in binding mechanisms is high. 

Likewise, soil from locations with low soil test P levels should have ample sorption capacity. It is 

assumed these factors contribute to the modest P additions not inducing significant changes in P levels. 
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Combined with the fact that is not unexpected that P additions from one source may elevate seeming 

unrelated P pools none of these results should be viewed as entirely unexpected. 

Following these lines of reasoning and these findings, it seems reasonable to support the use of existing 

research independent of the P source and the presence or absence of vegetation in the incubation 

process, for the development of P management strategies and risk assessments. However, it is also clear 

that long-term additions of poultry manure change the fundamental aspects of how P additions interact 

with the soil. It is paramount to remember that while a great deal of P is retained in these soils, the 

interaction of the most labile forms is fundamental affected by the management history. Moving 

forward much caution should be observed when anticipating the fate of new P additions with any 

degree of specificity. Clearly there are more opportunities to examine the impacts of management 

history on P and how remediation strategies could impact that relationship over time. 

The first research hypothesis (H1a) states that an addition of P causes a significant difference in 

operationally defined sequentially extracted Po fractions relative to the source of the P addition and the 

fertilization history of the sample at the p ≤ 0.1 level. The null hypothesis (H0a) states that additions of P 

does not cause a significant difference in operationally defined sequentially extracted Po fractions 

relative to the source of the P addition and the fertilization history of the sample at the p ≤ 0.1 level. 

Results of the MANOVA identified significant difference between P levels in the samples relative to 

History and Treatment. A detailed examination identified that while there are differences in some 

instances but not for all sequentially extracted fractions but not in the samples with soils with limited 

histories of P additions, thus rejecting the null hypothesis.   

The third hypothesis (H1b) states that the presence of active growing vegetation can affect sequentially 

extracted Po fractions in incubated soil samples at the p ≤0.1 level. The null hypothesis (H0c) states, that 

the presence of active growing vegetation does not affect sequentially extracted Po fractions in 

incubated soil samples at the p ≤ 0.1 level. There was no evidence that the presence of actively growing 

plants had any impact on the sequentially extracted Po level. Thus the null hypothesis was confirmed.  
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Tables 

Table 2.1 Soil map unit information from locations where soil was collected for benchtop 

experiments.   

Location Map Unit Name Size  

  Acers 

*Fertilized Berks-Weikert channery silt loams, 8 to 15 percent slopes 4.7  

**Unfertilized Berks-Weikert channery silt loams, 15 to 25 percent slopes 1.2 

*Fertilized location received annual or near annual applications of animal (poultry) manure as a source 
of N fertilizer for a minimum of 10 years.   
**Unfertilized locations are similar but had no significant manure applications within the last 10 years. 
 

Table 2.2 MANOVA Test Criteria and F approximations for history treatment vegetation 

Effect Test Statistic Approximate 

F statistic 

Numerator 

DF 

Denominator 

DF 

P value 

History Wilks’ 0.00384 1201.273 8 37 ≤0.000* 

Lawley - Hotelling 259.73474 1201.273 8 37 ≤0.000* 

Pillai’s 0.99616 1201.273 8 37 ≤0.000* 

   S = 1 M = 3.0 N = 17.5  

       

Treatment Wilks’ 0.20420 1.804 40 164 0.005* 

Lawley - Hotelling 1.99458 1.765 40 177 0.007* 

Pillai’s 1.29632 1.794 40 205 0.005* 

   S = 5 M = 1.0  N = 17.5  

       

Vegetation Wilks’ 0.83067 0.943 8 37 0.494 

Lawley - Hotelling 0.20385 0.943 8 37 0.494 

Pillai’s 0.16933 0.943 8 37 0.494 

   S = 1  M = 3.0 N = 17.5 

 

 

 

* indicates p value less than or equal to 0.05, Wilks' test is the most commonly used test because it was 

the first derived and has a well-known F approximation, the Lawley-Hotelling is based on a T statistic. 

Pillai's trace will give similar to the Wilks' and Lawley-Hotelling's tests. S, M, and N are used to calculate 

the various statistics. If S=1 or 2, the F is exact, otherwise it’s an approximation.  
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Table 2.3 MANOVA Test Criteria and F approximations for interactions 

Effect Test Statistic Approximate 

F statistic 

Numerator 

DF 

Denominator 

DF 

P value 

History X 

Treatment 

Wilks’ 0.19293 1.881 40 164 0.003* 

Lawley - Hotelling 2.21027 1.956 40 177 0.002* 

Pillai’s 1.28431 1.771 40 205 0.006* 

   S = 5 M = 1.0 N = 17.5  

       

History X 

Vegetation 

Wilks’ 0.67905 2.186 8 37 0.051 

Lawley - Hotelling 0.47264 2.186 8 37 0.051 

Pillai’s 0.32095 2.186 8 37 0.051 

   S = 5 M = 1.0 N = 17.5  

       

Treatment X 

Vegetation 

Wilks’ 0.50667 0.692 40 164 0.914 

Lawley - Hotelling 0.82902 0.734 40 177 0.876 

Pillai’s 0.57072 0.660 40 205 0.941 

   S = 5 M = 1.0 N = 17.5  

       

History X 

Treatment X 

Vegetation 

Wilks’ Lambda 0.46420 0.790 40 164 0.808 

Hotelling - Lawley   0.88306 0.782 40 177 0.820 

Pillai’s Trace 0.67342 0.798 40 205 0.801 

   S = 5 M = 1.0 N = 17.5  

       

* indicates p value less than or equal to 0.05, Wilks' test is the most commonly used test because it was 

the first derived and has a well-known F approximation, the Lawley-Hotelling is based on a T statistic. 

Pillai's trace will give similar to the Wilks' and Lawley-Hotelling's tests. S, M, and N are used to calculate 

the various statistics. If S=1 or 2, the F is exact, otherwise it’s an approximation.  

Table 2.4 Analysis of Variance for H2O-Organic, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

History 1 17162.8 17173.6 17173.6 280.27 ≤0.000* 

Treatment 5 702.8 696.4 139.3 2.27 0.060* 

History * Treatment 5 696.6 696.6 139.3 2.27 0.059* 

Error 56 3431.4 3431.4 61.3   

Total 67 21993.6     

S = 7.82783     R-Sq = 84.40%     R-Sq (adj) = 81.33% 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  

Table 2.5 Analysis of Variance for NaHCO3 -Organic, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

History 1 23500.7 23913.6 23913.6 190.26 0.000* 

Treatment 5 706.0 784.1 156.8 1.25 0.299 
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History * Treatment 5 690.0 690.0 138.0 1.10 0.372 

Error 56 7038.6 7038.6 125.7   

Total 67 31935.3     

S = 11.2111     R-Sq = 77.96%     R-Sq (adj) = 73.63% 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  

Table 2.6 Analysis of Variance for NaOH-Organic, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

History 1 469495 475973 475973 509.54 ≤0.000* 

Treatment 5 8620 9333 1867 2.00 0.093* 

History * Treatment 5 8048 8048 1610 1.72 0.144 

Error 56 52310 52310 934   

Total 67 538473     

S = 30.5633     R-Sq = 90.29%     R-Sq (adj) = 88.38% 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  

Table 2.7 Analysis of Variance for HCl-Organic, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 

History 1 24056.5 23899.5 23899.5 2662.55 ≤0.000** 

Treatment 5 79.9 75.4 15.1 1.68 0.154 

History * Treatment 5 97.7 97.7 19.5 2.18 0.070* 

Error 56 502.7 502.7 9.0   

Total 67 24736.8     

S = 2.99603     R-Sq = 97.97%     R-Sq (adj) = 97.57% 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  

  



48 
 

Table 2.8 Grouping Information Using Tukey Method and 90.0% Confidence for H2O Extractable 

Organic P 

History Treatment Count Mean Standard Error  Standard Deviation Grouping  

   mg/kg    

Fe
rt

ili
ze

d
 

Control 6 25.4 1.63 4.0 A 

Leached Manure 6 39.2 5.71 13.98 A B 

Manure 6 33.6 5.34 13.09 A B 

Manure Leachate 5 29.3 0.88 1.97 A B 

Po 6 41.2 6.42 15.74 B 

Pi 6 26.0 3.29 8.06 B 

U
n

fe
rt

ili
ze

d
 

Control 6 0.5 0.21 0.51 C 

Leached Manure 6 0.4 0.23 0.56 C 

Manure 6 1.0 0.31 0.75 C 

Manure Leachate 6 0.9 0.31 0.75 C 

Po 5 1.1 0.29 0.64 C 

Pi 6 1.0 0.34 0.84 C 

Treatments with same grouping letter are not significantly different 
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Table 2.9 Grouping Information Using Tukey Method and 90.0% Confidence for NaHCO3 Extractable 

Organic P 

History Treatment Count Mean Standard Error  Standard Deviation Grouping  

   mg/kg    

Fe
rt

ili
ze

d
 

Control 6 48.4 7.65 18.74 A 

Leached Manure 6 50.0 5.94 13.27 A 

Manure 6 47.3 7.20 17.63 A 

Manure Leachate 5 64.5 1.74 3.88 A 

Po 6 45.9 1.77 19.03 A 

Pi 6 46.6 5.49 13.45 A 

U
n

fe
rt

ili
ze

d
 

Control 6 11.5 0.30 0.75 B 

Leached Manure 6 11.7 0.26 0.64 B 

Manure 6 11.9 0.14 0.32 B 

Manure Leachate 6 13.7 1.86 4.56 B 

Po 5 11.5 0.23 0.51 B 

Pi 6 16.6 2.14 5.25 B 

Treatments with same grouping letter are not significantly different 
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Table 2.10 Grouping Information Using Tukey Method and 90.0% Confidence for NaOH Extractable 

Organic P 

History Treatment Count Mean Standard Error  Standard Deviation Grouping  

   mg/kg    

Fe
rt

ili
ze

d
 

Manure Leachate 5 264 5.22 11.7 A  

Leached Manure 6 243 13.9 34.0 A B 

Manure 6 208 15.7 38.5 A B 

Pi 6 223 27.6 67.7 AB 

Po 6 217 17.3 42.5 A B 

Control 6 199 11.7 28.6 B 

U
n

fe
rt

ili
ze

d
 

Control 6 53.6 3.60 8.81 C 

Leached Manure 6 56.7 0.98 2.41 C 

Manure 6 62.0 4.97 12.2 C 

Manure Leachate 6 58.9 4.52 11.1 C 

Po 5 56.2 4.19 9.36 C 

Pi 6 65.6 5.73 14.0 C 

Treatments with same grouping letter are not significantly different 
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Table 2.11 Grouping Information Using Tukey Method and 90.0% Confidence for HCl Extractable 

Organic P 

History Treatment Count Mean Standard Error  Standard Deviation Grouping  

   mg/kg    

Fe
rt

ili
ze

d
 

Control 6 25.4 1.63 4.00 A 

Leached Manure 6 39.2 5.71 13.98 A 

Manure 6 33.6 5.34 13.09 A 

Manure Leachate 5 29.3 0.88 1.97 A 

Po 6 41.2 6.42 15.75 A 

Pi 6 26.0 3.29 8.06 A 

U
n

fe
rt

ili
ze

d
 

Control 6 0.5 0.21 0.51 B 

Leached Manure 6 0.4 0.23 0.56 B 

Manure 6 1.0 0.31 0.75 B 

Manure Leachate 6 0.9 0.31 0.75 B 

Po 5 1.1 0.29 0.64 B 

Pi 6 1.0 0.34 0.84 B 

Treatments with same grouping letter are not significantly different 
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Chapter 3. Identifying the Effects of Space on the Distribution of 

Sequential Extracted Organic Phosphorus Fractions in Hay and Grass 

Pastures of Eastern West Virginia Following Long-Term Nitrogen-based 

Manure Applications. 

Abstract 

While P, in general, is strongly sorbed by soil, P applied to the soil surface may not necessarily remain in 

place. Not all forms of P are equal in terms of the strength with which the forms are sorbed. There is 

also variability in terms of ability of different soils to sorb P. Furthermore, surface applications of 

manure or fertilizer are not necessarily uniform across the landscape. All of these factors play some role 

in the physical distribution of various P compounds within any managed unit. When P at landscape 

scales is examined to evaluate potential movement or loss one must account for these effects prior to 

determining if a true pattern exists. To determine if P has moved over time, multiple P fractions were 

sequentially extracted and analyzed for significant spatial structure. Statistical techniques were applied 

to identify soil properties that could explain significant portions of the P variability while controlling for 

the effect of those variables while examining the residual variability for spatial structure. Thus it was 

concluded that in some instances the 0.5M NaHCO3 extractable organic P (Po) fraction and the 1.0M HCl 

extractable P fraction exhibited identifiable spatial structure (residual spatial autocorrelation) not 

associated with changes in soil properties. Conversely the more stable 0.1M NaOH extractable P fraction 

and the very transient H2O extractable fractions did not exhibit such patterns. These results are 

consistent with a hypothesis of extractable P fractions behaving uniquely at landscape scales. 

Introduction 

Whether practicing sustainable agriculture, protecting sensitive watersheds or understanding the long-

term implication of specific management paradigms is critically important. In some locations, due to 

capacity to generate manure and how that manure is utilized on farms, have a greater potential to 

influence water quality. The poultry-producing region of West Virginia is one such location. For example, 

Grant, Hardy, and Pendleton Counties in eastern West Virginia produce approximately 14% of the state’s 

cattle sales and 85% of the state’s meat type chicken sales (USDA-NASS, 2009). This regionally dense 

food animal agriculture production has the potential to generate in excess of 200,000 tons of dry 

manure per year (Wang et al., 2007). Significant portions of animal manure in these counties are used as 

fertilizers (Basden et al., 1994) on grain crops, grass hay, and pasturelands. When concentrated animal 

agriculture and N-based manure management occur together, P saturation and elevated risks to water 
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quality are potential outcomes (Beck et al., 2004; Miller et al. 2010). If a given location in these counties 

received animal manure applications on a N basis, these locations will accumulate P as the P levels on 

the manures are in excess of plant removal or requirement rates when applied to meet the N needs of 

the crops. This should prohibit further manure applications. In the coming years the efforts to reduce 

the P saturation of these sites and prevent P loss will be a greater priority. As such, a greater 

understanding of the fate of surface applied P on these agricultural lands becomes even more critical. 

Historically, most research on P sorption and availability has focused on inorganic sources, with 

significantly less attention given to organic species of P (Laboski and Lamb, 2003; Anderson and 

Magdoff, 2005). Some researchers have hypothesized that this is, in part, be due to (i) a perception that 

Pi is the dominant form of P, (ii) Pi is the plant available form, and (iii) the analysis of organic P is simply 

too problematic (Jansson et al., 1988; Turner and Haygarth, 2000; Anderson and Magdoff, 2005). 

Between 29 to 65% of the total P (Harrison, 1987) and perhaps greater than 90% of the soil solution 

phase P could be in an organic form (Helal and Dressler, 1989; Shand et al., 1994; Turner and Haygarth, 

2000; Anderson and Magdoff, 2005). Only considering Pi in risk assessment is to potentially overlook a 

large portion of the total P pool. Such oversight could undermine the conservation and restoration 

efforts of regulators, the agricultural community, and conservation professionals by invalidating the 

basic assumptions used in developing their P loss control strategies. 

In terms of P composition in soil, the Po pool is typically composed of inositol phosphates, phospholipids, 

nucleic acids, phosphoproteins, and unidentified P compounds (Schroeder and Kovar, 2006). To date, 

the only significant examination of Po in West Virginia soils was produced by the West Virginia University 

Agricultural Experiment Station in the 1960’s (Jencks et al., 1964). This research measured total P, total 

Po, phytin, available P, organic matter, and pH in several soils. Po accounted for between 7 and 66% of 

the total P in the surface horizons, and from 13 to 55% in the subsurface horizons (Jencks et al., 1964). 

Phytin or phytic acid (an inositol phosphate) accounted for between 13 and 63% of the total P in the 

surface horizons, and from 10 to 48% in the subsurface horizons (Jencks et al., 1964). This corroborates 

the assertions of others (Harrison, 1987; Helal and Dressler, 1989; Shand et al., 1994; Turner and 

Haygarth, 2000; Anderson and Magdoff, 2005) that significant portions of the total soil P pool may, in 

fact, be Po. Given any P loss is potentially damaging to the environment, resource managers need a 

better understanding of how Po responds relative to management, movement, and soil interaction 

(Condron et al., 2005). 
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One way to examine differing P forms in soil is sequential extraction. There are numerous examples of 

research that has utilized this technique to separate the total P pool into operational defined fractions 

(Bowman and Cole 1978; Hedley et al., 1982; Tiessen et al., 1984; Schoenau et al., 1989; Cross and 

Schlesinger, 1995; Iyamuremye et al., 1996; Sui et al., 1999; Guppy et al., 2000; Qian and Schoenau, 

2000; Yang et al., 2002; He et al., 2004; Schroeder and Kovar, 2006). A sequential P extraction integrates 

a collection of chemical extractions so as to characterize P by the type and strength of their 

physicochemical interactions with soil components (Bowman and Cole 1978; Hedley et al., 1982; Cross 

and Schlesinger, 1995). An individual fraction in a sequential extraction is conceptually different but not 

necessarily pure or unique. The most common extractions used in these sequential fractionations are 

water (H2O), anion exchange resin, sodium bicarbonate (NaHCO3), hydrochloric acid (HCl), and sodium 

hydroxide (NaOH) (Guppy et al., 2000; Schroeder and Kovar, 2006). 

In soil, P extracted with any hydroxide solution is typically bound to Al and Fe (Sharpley et al., 2004). The 

P extracted with acid is typically bound to Ca (Sharpley et al., 2004). The P extracted with bicarbonate, 

ion exchange resin, and or H2O are characteristically the weakest attached, most labile, and easily 

exchangeable or plant available forms of P (Sharpley et al., 2004). The dominant forms of P in poultry 

manure (the primary animal manure used in these study areas) are orthophosphate and phytate 

(Warren et al., 2008). The majority of the P in poultry liter can be extracted from the manure with H2O 

and NaHCO3 (Codling, 2006; Dou et al., 2000; Dail et al., 2007) due in part to phytate is the principal 

form of P in the grain-based diets of non-ruminants being passed along into the feces undigested 

(Harland and Morris, 1995; Sharpley, 2000). The Pi percentage is typically highest in the H2O extractable 

fraction (Codling, 2006). However, some reports indicate that 72–83% of H2O-extractable P in poultry 

manure is in an organic form (Sistani et al., 2001).  

Poultry manure can raise P, N, and Ca levels in soil, as well as elevate the levels of bicarbonates and 

organic acids with carboxyl and phenolic hydroxyl groups (Sharpley et al., 2004). This provides new 

reactive surfaces, changes the constitution of the soil solution, and can alter basic chemical properties 

such as pH and ionic strength; which can, over time, shift P from binding with Fe and Al to binding with 

Ca (Sharpley et al., 2004). With continued manure application, more and more P ends up in the easily 

extractable, labile fractions (Blake et al., 2003). Ultimately, the number and type of sorbtive surfaces in 

the soil determines the fate of P and how it is described by a sequential extraction procedure (Blake et 

al., 2003). Accordingly, when analyzing spatial distributions of P across a landscape it is important to 

consider how changes in soils properties across the landscape could alter the distribution. 
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While, in a general sense, P is limited in its mobility, it can move through soil profiles (Smeck and Runge, 

1971; Smeck, 1973; Harman et al. 2013) and across landscapes (Smeck, 1973). Most P loss or movement 

is attributed to one of two processes—leaching or erosion. Leaching occurs when P from fertilizer or 

manure moves through the soil into the groundwater or surface water. Erosion losses occur when 

overland flow moves P from fertilizer and manures or P enriched soil materials across the soil surface 

and into surface waters. Pi leaching is generally considered a minimal risk (Anderson and Magdoff, 

2005). However, soils receiving large quantities of P fertilizer, deep sandy soils, organic soils, well 

structure soils, and soils with high rock fragment contents can be at risk of P leaching (Harman et al., 

2013; Anderson and Magdoff, 2005). Smeck (1973) and Smeck and Runge (1971) proposed that P can 

move laterally in a landscape, and will accumulate in lower landscape positions. The more important 

questions are: do all forms of P move similarly, and are changes in P levels an indication of movement or 

an indication of changes in soil properties that shift or modify P retention dynamics? 

Measured P levels at any location is the product of the soils properties, P additions over time, and any 

landscape scale process that could move P over or through the soil. Research on P sorption capacity of 

riparian wetlands soils has highlighted the importance of changes in soil properties relative to the soils 

ability to retain P (Bruland and Richardson, 2004). Bruland and Richardson (2004) found significant 

portion of the variability in P levels were related to changes in the P sorption capacity. In most instances, 

within a defined management area such as a hayfield, an attempt to achieve a somewhat uniform 

application of nutrients over time can be assumed. Thus if one accounts for the effect of changing soil 

properties across a management area and assume a uniform application of nutrients over time, any 

pattern in measure P at that scale must be related to the space itself, or the physical process that are 

dependent upon that space. Similarly, operational defined P fractions can have differing characteristics 

and sorb at differing rates to soil particles (Anderson and Magdoff, 2005). Thus some sequentially 

extracted P fractions may be more or less responsive to these spatial effects and manifest some degree 

of spatial dependence. 

One way to measure spatial dependence is the Mantel test (Mantel, 1967). The Mantel test is a 

permutation-based correlations analysis where one matrix is a difference matrix and the other a 

distance matrix. A correlation coefficient is calculated between these matrices. The values of distance 

matrix are randomly reassigned to another location, and the analysis repeated. After many 

permutations, a distribution of the correlation coefficients is generated. Thus the significance of the 

correlations can be estimated from the permutated distribution (Bonnet and Van de Peer. 2002). 
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A further adaptation of the Mantel test is the partial Mantel test. A partial Mantel test uses three 

matrices. Rossi (1997) stated, “Once the existence of a relationship between two variables has been 

demonstrated, one can wonder if it is a true correlation or if it is only a spurious correlation due to 

common spatial (or temporal) pattern”. A partial Mantel test, tests the correlation of two matrices while 

controlling the effect of a third matrix (Bonnet and Van de Peer, 2002; Smouse et al., 1986). When 

looking at a P distribution across a landscape, one such spurious correlation could be changes in P 

sorption capacity via changes in soil properties. The partial Mantel test allows for control for the effect 

of changes in soil properties while determining if any remaining patterns of spatial dependence exist 

within the P data. 

This research consists of field scale experiments designed to examine the possible movement of 

sequentially extracted Po fractions in typical hay or pasture setting on marginal soil in the poultry-

producing region of West Virginia. The purpose of this research is to determine if there is an 

unidentified spatial component to the field-scale distribution of sequentially extracted Po beyond what 

can be explained by changes in soil properties across the study area. 

The first research hypothesis (H1a) states that over time sequentially extracted Po fractions in typical hay 

or pasture setting on marginal soil in the poultry-producing region of West Virginia will exhibit spatial 

dependence among the sequentially extracted Po fractions. The null hypothesis (H0a) states that in 

typical hay or pasture settings on marginal soil in the poultry-producing region of West Virginia will not 

exhibit spatial dependence among the sequentially extracted Po fractions. The second hypothesis (H1b) 

states that there is spatial dependence among sequentially extracted Po fractions after removing 

potential spatial dependence associated with changes in soil properties. The null hypothesis (H0b) states, 

states that there is no spatial dependence among sequentially extracted Po fractions after removing 

potential spatial dependence associated with changes in soil properties. 

Materials & Methods 

Site selection and Sampling 

The selected study sites were typical hay or grass pasture fields in eastern West Virginia. The study sites 

consisted of one set of fertilized locations (High 1 and High 2), with lengthy histories (approximately 10+ 

yrs.) of annual N-based manure applications and one set of unfertilized locations (Low 1 and Low 2) with 

very infrequent manure applications (approximately one application every 5-10 yrs.). 
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Sample points sere selected in a stratified random design (Thompson et al., 2006), with the strata being 

the topographic wetness index (TWI) at each location. For all locations, TWI was calculated from a 3-m 

digital elevation model (DEM) from the WV State Address Mapping Board (SAMB) aerial imagery. All 

determinations were made from a DEM free of sinks or voids. TWI is defined as the ln (A / tan B) where 

A is the local upslope contributing area for that point and B is the local slope gradient (Beven and Kirkby, 

1979). The flow directions used in the TWI calculation was the simplest design. It specifies flow direction 

from each raster cell into one of the eight neighboring cells based on the steepest downward slope 

gradient (O'Callaghan and Mark, 1984). Specific catchment area is estimated by A/L, with A being the 

number of pixels draining into a pixel, multiplied by the area of a pixel, and L is the pixel width (Moore et 

al., 1991b). At each location TWI was classified into three equal-sized classes based on the TWI score. 

Ten samples locations were selected at random within each class, for a total of 30 samples locations at 

each study area. From each sample point the first mineral horizon (surface horizon) and the 10 cm 

below that horizon (subsurface horizon) were sampled.  

Sample Preparation 

All samples were air dried, ground, sieved (2-mm sieve), and thoroughly mixed to make individual 

samples as homogenous as possible (Laboski and Lamb, 2003). Dried and ground samples were stored in 

sealed centrifuge tubes at 4°C until one day prior to analysis. All soil samples were analyzed in duplicate. 

pH 

The pH of the soil samples was measured as described by Eckert and Sims (1995) in the recommended 

soil testing procedures for the northeastern United States. A 5 cm3 sample of dried and sieved soil was 

mixed with 5 mL of distilled deionized water (DDI), stirred vigorously for 15 seconds and allowed to sit 

for 30 minutes. The pH was measured with a calibrated pH meter. This procedure was then repeated 

using 0.01 M CaCl2 in place of DDI. 

Sequential Fractionation 

This method of sequential P fractionation is based on a suggested modification (Sui et al., 1999) of the 

Hedley method (Hedley et al., 1982) as described by He et al. (2003). For each sample, 1.0 g of soil and 

25 mL of extractant was placed in a centrifuge tube in a reciprocal shaker at 180 oscillations per minute 

for 16 h at room temperature. The samples were centrifuged for 15 min at 3500 g and the supernatant 

filtered (Whatman No. 2 or equivalent). This process was repeated sequentially with the following 

extractants: distilled deionized water, 0.5M NaHCO3, 0.1M NaOH, and 1M HCl. Duplicates of each 
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sample were fractionated in this manner. Water, 0.5M NaHCO3, and 0.1M NaOH extracts were acidified 

and filtered (Whatman No. 2 or equivalent) prior to analysis for Pi. 

Pi was determined by the ammonium molybdate-ascorbic acid method (Knudsen and Beegle, 1988). The 

ammonium molybdate-ascorbic acid method is a single reagent orthophosphate colorimetric method. 

There are two stock solutions: the concentrated ammonium paramolybdate solution and the ascorbic 

acid solution. The concentrated ammonium paramolybdate solution was made by adding 60 g of 

ammonium paramolybdate (NH4)6Mo7O24·4H2O) to approximately 200 mL of distilled water in a 1 L 

volumetric flask, along with 1.455 g of antimony potassium tartrate (KSbO·C4H4O6). Then 700 mL of 

concentrated sulfuric acid was added and the solution was allowed to cool to room temperature, diluted 

to volume with distilled water, and stored in a dark glass bottle in the refrigerator. The ascorbic acid 

solution was made by dissolving 132 g of ascorbic acid in distilled water diluted to 1 L in a volumetric 

flask. The single colorimetric working solution was made daily by adding 25 mL of concentrated 

ammonium paramolybdate solution to approximately 800 mL distilled water, with 10 mL of the ascorbic 

acid solution and diluting to volume with distilled deionized water in a 1 L volumetric flask. 

To determine P content, 2 mL of the sample solution was transferred to a test tube with 8 mL of the 

colorimetric working solution and mixed thoroughly. After 20 minutes for color development, percent 

transmittance was read at 882 nm. Total P (Pt) was determined with a Perkin Elmer P4000 Inductively 

Coupled Plasma Optical Emission Spectrometer (ICP-OES). Po was calculated for each fraction as the 

mathematical difference between the reactive Pt and Pi. 

Mehlich-1 

Mehlich-1 is a soil test with a 5:1 ratio of Mehlich-1 solution (0.025 N H2SO4 + 0.05 N HCl) to soil. The 

mixture is shaken for five minutes on a reciprocating shaker set at a minimum of 180-200 oscillations 

per minute (Nelson et al., 1953). The extractant is filtered through a medium-porosity filter paper 

(Whatman No. 2 or equivalent) and analyzed for Al, Ca, Fe, and P content (Nelson et al., 1953). Total P, 

Fe, Al and Ca levels were determined by ICP-OES. 

Total Soil Carbon 

Total soil carbon was measured in a LECO TruSpec CHN elemental analyzer (LECO Corp., St Joseph, MI), 

where a sample was weighed into foil cups and combusted at 950°C and the CO2 gas produced was 

measured by infrared gas spectrometer (Keene, 2010). 
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Particle Size Distribution  

Particle size distribution was determined by the pipette method (Gee and Bauder, 1986), with only A 

horizon samples pretreated to remove organic matter. Five grams of soil and 25 ml of H2O were placed 

in a tared 250 mL fleaker with 5 mL of H2O2. After the reaction ceased, additional H2O2 was added until 

the reactivity stopped and the mixture appeared to be fully oxidized (little reaction and a gleyed 

appearance). When oxidation of organic C was complete, the sample and container were oven dried at 

90°C and reweighed. 

The samples were dispersed in sodium hexametaphosphate solution (HMP) overnight on a mechanical 

shaker, in a solution at a concentration of 0.5g/L HMP. The sample was then made to volume (250 ml) 

shaken for 30 seconds, and positioned to allow time for differential settling of the sand and silt size 

particles, prior to extracting a 25 mL sample and transferring it into a tared container and dried at 90°C, 

cooled, and reweighed. The remaining sample was filtered through a 270-mesh sieve into a tared 

container and the sand size particles dried at 90°C, cooled, and reweighed. A blank of the HMP was 

sampled in the same manner to determine salt content from the HMP. The clay content was calculated 

from the sample minus the HMP blank. Sand content was calculated from the direct measurement of 

sieved sand. Silt will be determined mathematically as the difference between the sample mass after 

any pretreatments and the sum of the sand and clay (Gee and Bauder, 1986). 

Statistical Analysis 

The initial characterization of the soil samples from each location began by preforming a multivariate 

analysis of variance (MANOVA) on the soil test data from each horizon independently to determine if 

there were significant differences between locations, followed by a Bonferroni corrected one-way 

analysis of variance (ANOVA) on each soil test parameter. Spatial dependence in the sequentially 

extracted Po data was assessed with Mantel and partial Mantel tests. The Mantel tests (Mantel, 1967) 

were used to determine if the differences between P measures and the distances between sample 

locations were significantly correlated, thus spatially dependent (Bonnet and Van de Peer, 2002). The 

Mantel test is a permutation based correlations analysis. One matrix was the difference between Po 

values of each pair of points, the other a distance matrix between points. A correlation coefficient was 

calculated between these matrices. The values on one matrix randomly reassigned to another location, 

and the analysis repeated. After many permutations, a distribution of the correlation coefficients would 

be generated. Probabilities would then be estimated based on the data’s position within the 

permutated distribution (Bonnet and Van de Peer. 2002). 
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A stepwise regression was used to identify measured soil properties that could explain a significant 

portion of the variability seen in STP levels. Alpha to enter and leave values of 0.15 were selected and 

the Mehlich 1 extractable Fe, Al, and Ca; soil carbon; sand, silt, and clay percentages; surface horizon 

thickness; and pH in water and in CaCl for the surface horizon samples were examined. For the 

subsurface horizon samples, similarly the Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, 

and clay percentages; surface horizon thickness; pH in water and in CaCl; and STP levels of the surface 

horizon samples were examined. 

The extension of the Mantel techniques is the partial Mantel test. A partial Mantel test uses more 

difference or distance matrices. In a partial Mantel test, two variables are compared while fixing for the 

effect of a third matrix of a third variable or group of variables. Similarly, after permutation the 

probabilities can be estimated based on the data’s position within the generated distribution (Bonnet 

and Van de Peer. 2002). Accordingly, a two tailed permutation Mantel and partial Mantel tests with 

10,000 permutations were performed. 

Results and Discussion 

The Mehlich 1 soil test results, pH, particle size distribution, and surface horizon thickness were used to 

characterize each fertilized and unfertilized location. The MANOVA of the soil test levels was used to 

determine if there were significant differences between the unfertilized and fertilized locations (Table 

3.1). The MANOVA results indicated significant differences (p ≤0.001) between the soil test values from 

the surface horizons of the fertilized and unfertilized locations. Similarly, the MANOVA of the subsurface 

soil test values indicated significant differences (p ≤0.001) between the fertilized and unfertilized 

locations (Table 3.2.). This result was explored in further detail by individually examining each soil test 

parameter via one-way ANOVA using Tukey’s multiple comparison procedure to evaluate the 

significance of the different locations. 

The one-way ANOVA of surface soil test P values indicated a significant difference between locations 

(Table 3.3). The mean soil test P levels ranged from 1020 mg/L at High 2 to a mean low of 12.9 mg/L at 

Low 2 (Table 3.4). The grouping information using Tukey’s multiple comparisons procedure identified 

three groups: (i) High 1, (ii) High 2, and (iii) a group comprised of Low 1 and Low 2 (Table 3.4). 

Subsurface STP levels were significantly different between locations (Table 3.3), with values ranging 

from a high of 982 mg/L at High 2 to a low of 4.9 mg/L at Low 1 (Table 3.4). The grouping Information 

from the Tukey’s multiple comparisons procedure followed the same pattern as the STP levels of the 
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surface horizon (Table 3.5). The elevated STP levels at the fertilized locations are consistent with N-

based manure applications (Beck et al., 2004) and P translocation into the soil profile (Harman et al., 

2013). 

The one-way ANOVA of surface and subsurface soil test Ca (STCa) levels indicated a significant difference 

between locations (see Table 3.3). The mean surface horizon STCa levels ranged from a high of 4170 

mg/L at High 2 to a low of 745 at Low 2, while mean subsurface STCa levels ranged from 1620 mg/L at 

High 1 to 365 mg/L at Low 2 (Table 3.4). The grouping information for the subsurface STCa levels using 

the Tukey’s multiple comparisons procedure identified three groups: (i) High 1, (ii) High 2, and (iii) a 

group comprised of Low 1 and Low 2 (Table 3.5) following the same pattern as the surface and 

subsurface STP levels, and surface STCa levels. Poultry manure can raise P, N, and Ca levels in soil, as 

well as elevate the levels of bicarbonates and organic acids with carboxyl and phenolic hydroxyl groups 

(Sharpley et al., 2004). Based on STP levels, the effects of long term N-based poultry manure 

applications, and the Tukey groupings it appears the High fertilization locations were managed 

significantly different from each other, with one receiving more frequent applications leading to higher 

STP levels. 

Soil test Fe and Al (STFe and STAl) results do not follow this pattern. The one-way ANOVA of STAl 

indicated a significant difference between locations (see Table 3.3). The mean STAl levels ranged from a 

high of 277 mg/L at High 2 to a low of 120 at Low 1 (Table 3.4). The grouping information using Tukey 

multiple comparisons procedure identified three groups. STAl levels at High 1 and Low 2 were not 

significantly different forming one group while High 2 and Low 1 were significantly different from each 

other and from High 1 and Low 2 (Table 3.5). The one-way ANOVA of STFe indicated a significant 

difference between locations (see Table 3.3). The mean soil test Fe levels ranged from a high of 57.2 

mg/L at Low 1 to a low of 16.1 at High 2 (Table 3.4). The grouping Information from the Tukey multiple 

comparisons procedure identified two groups. Only Low 1 was significantly different from the other 

locations (see Table 3.5). This indicates differences in STFe and STAl are not related to management 

practices, i.e., the differences are pedogenic. However, these differences are potentially important 

because as soils weather and acidify, the formation of Fe and Al phosphates and Po is favored (Smech, 

1985; Pierzynski et. al 2005). Thus, differences in concentrations of extractable Fe and Al could impact 

retention mechanisms. 

Changes in Fe, Al, and Ca concentrations and soil texture have the potential to be important factors in 

the translocation of P across a landscape. Specifically, Sharpley et al. (2004) described sequentially 
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extracted P as typically bound to Al, Fe, and Ca, or weakly attached, most labile, and easily 

exchangeable. Blake et al. (2003) stated that continued additions of poultry manure would increase the 

more easily extractable labile fraction of soil P. Additionally it is known that concentrations of various P 

fractions can be affected by slope position (Heilmann et al., 2005, Kistner et al., 2013). Thus it seems 

likely that, even if applied uniformly over a lengthy period of time, P accumulation and distribution 

would not remain uniform. As such, there could be patterns in the P distributions related to changes in 

these properties or changes dependent on the landscape itself. When combined, the physical distances 

between locations and the significant differences in STP, STFe, STAl, and STCa justifies examining each 

location independently. 

The Mantel test for correlation between dissimilarity matrices was applied to each location for each 

sequential fraction. In brief, this test identifies significant correlation between dissimilarity matrices of 

data. The partial Mantel test was applied to examine the data in greater detail. The partial mantel test 

fixes for the effect of selected data while comparing the correlation of dissimilarity matrices of the other 

data sets. The identification of a significant correlation between the dissimilarity matrices is an 

indication of an underlying spatial structure within the data.  

To identify other factors that could explain the distribution of P across the landscape a stepwise 

regression of the response STP was used for the surface and subsurface horizons and identified multiple 

properties related to STP levels (Tables 3.6 and 3.7). These properties were fixed while evaluating the 

correlation between the dissimilarity matrices in sequentially extracted P fractions using the partial 

Mantel test. This approach is similar to Bruland and Richardson (2004), who used these techniques to 

measure partial correlations between soil properties and P sorption while controlling for the effect of 

spatial autocorrelation. In this instance the procedure controlled for the effects of soil properties when 

evaluating the probability of spatial structure in the data. In this example each sequential fraction at 

each location was examined for spatial autocorrelation. The Mantel tests identified spatial structure 

among multiple Po fractions (Table 3.8). For any location-sequential fraction combination with identified 

spatial structure the effects of the select soil properties as identified via stepwise regression were held 

constant and the remaining variability was examined via the partial Mantel test to determine if the 

underlying spatial structure was intact. Initial observation of the data seemed to indicate that the 

locations with the higher STP and the lower STP levels do not behave consistently. Specifically, locations 

High 1 and High 2 each have Po fractions exhibited spatial structure after fixing for the effects of 

changing soil properties, but not the same fractions. Management can be an important factor in how P 
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is distributed between sequentially extracted pools. P availability post manure application can be 

influenced by microbial and chemical properties of the soil, the makeup of the manure, and the complex 

interactions between these components (Waldrip et al. 2011). Lilientein et al. (2000) determined that 

changes in landuse strongly influence available P fractions relative to Ca, Fe, and Al-bounded P fractions. 

The location with the highest STP levels shows spatial dependence in the HCl extracted fraction. Low 2 

has a lower mean STP level (approximately 20% of High 1). This location has a significant spatially 

autocorrelated NaHCO3 extracted fraction. It is not uncommon for P additions on fertilized pastures to 

lead to elevated NaHCO3 and NaOH fractions (Haynes and Williams, 1992) and it is possible due to the 

higher STP levels at High 1 that the HCl extractable fraction is behaving as a sink for the more labile P 

forms. Specifically, Sharpley et al. (2004) found that long term applications of manures shifted P 

fractions into the HCl extractable fractions. Thus it seems likely that there are differing mechanisms of 

retention between High 1 and High 2.   

Similarly, the location Low 1 also exhibited spatial dependence in theNaHCO3 fraction. Waldrip et al. 

(2011) hypothesized that stable P forms from poultry manure would steadily replenish plant available 

forms of P in the soil solution. Additionally, it is known that NaHCO3 extractable Po is labile and in some 

instances is considered plant available (Johnson et al. 2003, Dieter et al. 2010). As a labile to moderately 

labile fraction it is not unexpected to find spatial differentiation of this P fraction. However, while there 

was no statistical difference between the STP levels of the unfertilized plots, there were differences in 

terms of which extractable fractions exhibited spatial dependence after fixing for the effects of soil 

properties. At location Low 1 the NaHCO3 extracted fraction was spatially autocorrelated and at Low 2 

the HCl extracted fraction was spatially autocorrelated. This finding is inconsistent with what is 

expected.   

When examining the subsurface horizons data there were no spatially autocorrelated fractions in the 

High locations. Given the frequency and pedologiclly diverse conditions where preferential flow occurs 

in pasture of this region (Harman et al., 2011) one would expect to find a great deal of variability in the 

subsurface data. However, given the elevated STP level of the fertilized sites and the modest depths of 

the subsurface samples the soil could be more fully saturated than the subsurface samples from the 

unfertilized locations. Likewise, the number and diversity of fractions exhibiting spatial dependence in 

the unfertilized location could be a product of preferential flow. In similar pasture soils, Harman et al. 

(2013) identified P translocation through multiple soil profiles.  
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Conclusions 

P availability following manure application can be influenced by the microbial communities and chemical 

properties of the soil, the makeup of the manure, and any number of complex interactions between 

these components (Waldrip et al. 2011). Among the chemical properties influencing P availability is soil 

surface chemistry, reactivity, Fe and Al content, clay content, and pH (Barrow, 1984; Fox, 1985; 

McGechan and Lewis, 2002). As these soil properties change, the strength of the interactions between P 

and the soil changes. The changes in these interactions affects soil solution P concentrations (Brady and 

Weill, 2002; Blake et al., 2003; Pierzynski et al., 2005). Knowing that P from animal manures is a mixture 

of P forms of various solubility (Harland and Morris, 1995; Schroeder and Kovar, 2006; Warren et al., 

2008), not all P forms are equally labile (Pierzynski et. al 2005), and concentrations of various P fractions 

can be affected by slope position (Heilmann et al., 2005; Kistner et al., 2013). The logical conclusion is a 

differential distribution of all P forms across a landscape. 

However, if inferring risk of Po loss from over-fertilized landscapes based in patterns seen in the P 

distribution, the first step in determining if Po loss and leaching is occurring is identifying how much of 

the changes in Po concentrations are related to soil properties and how much is related to the 

landscape. Water movement in a landscape is often an indication of the potential P distribution (Smeck 

and Runge, 1971).  

Given the dynamic relationships between the soil, the fertilizers, and the landscape one would assume 

several specific occurrences within the spatial distribution of Po. The first logical assumption would be to 

expect relatively low and or constant levels of water soluble Po due to the transient nature of the pool 

and constant replenishment from other P fractions. A second assumption would be the labile but more 

recalcitrant NaHCO3 extractable P fractions would potentially be mobile enough to redistribute yet 

recalcitrant enough to accumulate. As metal oxide sorption sites become saturated with P, the NaOH 

extractable fraction would essentially mimic the distribution of metal oxides and be explained by the 

changes in particle size distribution and the Fe and Al concentrations. Lastly, one would expect the HCl 

extractable Po fractions should be closely matched to the concentrations of Ca in the soil.  

The data collected was consistent with a sequential saturation of progressively stronger sorption sites. 

At the fertilized location with the highest STP levels, the variability in the transient and labile fractions 

were fully explained by the changes in soil properties (Table 3.8). However, the HCl extracted fraction in 

this location continued to exhibit spatial dependence beyond that explained by changes in soil 
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properties (Table 3.8). It is not uncommon for soils with high levels of P to show evidence of P 

movement even if the respective P levels in deeper horizons are very low (Nelson, et al., 2005). Similarly, 

at the fertilized location with lower STP levels, there was variability unexplained by changes in soil 

properties but it was identified in the more labile fractions (Table 3.8). The location Low 1 also exhibited 

spatial dependence in theNaHCO3 fraction (Table 3.8). Waldrip et al. (2011) hypothesized that stable P 

forms from poultry manure would steadily replenish plant available forms of P in the soil solution. 

Additionally, it is known that NaHCO3 extractable Po is labile and in some instances is considered as 

plant available (Johnson et al. 2003, Dieter et al. 2010). While there was no statistical difference 

between the STP levels of the unfertilized plots (Table 3.5), there were differences in terms of which 

extractable fractions exhibited spatial dependence after fixing for the effects of soil properties (Table 

3.8). At location Low 1 the NaHCO3 extracted fraction was spatially autocorrelated and at Low 2 the HCl 

extracted fraction was spatially autocorrelated (Table 3.8).  

At Low 2 several fractions in the subsurface exhibit spatial dependence (Table 3.8). While somewhat 

unclear as to why, there is obvious evidence of landscape factors leading to Po redistribution. As such it 

is very apparent there is in fact an unidentified spatial component to the field scale distribution of 

sequentially extracted Po beyond what can be explained by changes in soil properties. In the future, 

detailed exploratory spatial data analysis and geovisualization techniques could be applied to formulate 

specific hypotheses related to the apparent spatial structure within this data. While the likely cause of 

the variability is the landform itself, by examining the data and its structure, it should be possible to 

develop specific hypothesis related to how pedogenic processes and management factors could 

contribute to controlling the ultimate distribution of the itinerant Po fractions. These hypotheses, when 

tested, should be the next step in the progression of identifying spatial significance, determining the 

cause of that significance, and using that understanding to more efficiently model Po distributions across 

landscapes. 

After reviewing the data collected it became apparent spatial dependence among some sequentially 

extracted Po fractions was confirmed at multiple locations, conforming (H1a). This outcome was in 

contradiction to (H0a). H1b states that there is spatial dependence among sequentially extracted Po 

fractions after removing potential spatial dependence associated with changes in soil properties. 

Likewise H1b was confirmed.  
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Tables  

Table 3.1 MANOVA for fertility levels surface samples 

Criterion Test Statistic F Numerator Denominator P 

   Degree Freedom  

Wilks’ 0.43631 37.143 4 115 ≤0.000* 
Lawley-Hotelling 1.29193 37.143 4 115 ≤0.000* 

Pillai’s 0.56369 37.143 4 115 ≤0.000* 

Roy’s 1.29193     

s = 1 m = 1.0 N = 56.5 

 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  

Table 3.2 MANOVA for fertility levels subsurface samples 

Criterion Test Statistic F Numerator Denominator P 

   Degree Freedom  

Wilks’ 0.41976 39.742 4 115 ≤0.000* 

Lawley-Hotelling 1.38234 39.742 4 115 ≤0.000* 

Pillai’s 0.58024 39.742 4 115 0.000* 

Roy’s 1.38234     

s = 1 m = 1.0 N = 56.5 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  

Table 3.3 Summary of Bonferroni corrected one-way ANOVA of soil test values 

Horizon STP STCa STAl STFe 

Surface ≤0.005 ≤0.005 ≤0.005 ≤0.005* 

Subsurface ≤0.005 ≤0.005 ≤0.005 ≤0.005* 

* indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  
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Table 3.4 Descriptive statistics 
Variable Location N Mean SE Mean St Dev Median 

Surface Horizon 

Thickness 

High 1 30 5.85 0.342 1.87 5 

High 2 30 9.58 0.833 4.56 9 

Low 1 30 7.17 0.254 1.39 7 

Low 2 30 4.72 0.203 1.11 4.75 

Surface Horizon 

STAl 

High 1 30 277 8.41 46.1 272 

High 2 30 152 6.18 33.8 158 

Low 1 30 120 4.54 24.9 117 

Low 2 30 168 7.48 41.0 163 

Surface Horizon 

STCa 

High 1 30 4170 229 1260 3750 

High 2 30 1980 66.3 363 1940 

Low 1 30 837 46.0 252 788 

Low 2 30 743 35.3 194 715 

Surface Horizon 

STP 

High 1 30 1020 58.4 320 962 

High 2 30 229 13.4 73.6 228 

Low 1 30 15.2 1.92 10.5 12.7 

Low 2 30 12.9 0.985 5.39 12.1 

Surface Horizon 

% Sand 

High 1 30 0.248 0.005 0.0290 0.250 

High 2 30 0.258 0.009 0.051 0.252 

Low 1 30 0.412 0.026 0.1402 0.430 

Low 2 30 0.193 0.006 0.032 0.195 

Surface Horizon 

STFe 

High 1 30 16.1 0.577 3.16 15.7 

High 2 30 29.4 4.90 26.8 17.6 

Low 1 30 16.2 1.52 8.32 14.7 

Low 2 30 57.2 7.29 38.6 45.3 

Subsurface 

Horizon 

STCa 

High 1 30 1620 62.8 344 1630 

High 2 30 3680 257 1410 3020 

Low 1 30 523 35.2 193 482 

Low 2 30 365 40.9 224 308 

Subsurface 

Horizon 

pH (CaCl2) 

High 1 30 5.7 0.059 0.323 5.70 

High 2 30 5.97 0.060 0.326 6.04 

Low 1 30 4.97 0.043 0.234 4.98 

Low 2 30 4.51 0.053 0.292 4.52 

Subsurface 

Horizon 

STAl 

High 1 30 162 8.03 43.96 148 

High 2 30 329 12.8 70.0 332 

Low 1 30 136 6.54 35.8 126 

Low 2 30 221 18.3 100 199 

Subsurface 

Horizon 

% Sand 

High 1 30 0.259 0.011 0.059 0.271 

High 2 30 0.278 0.008 0.046 0.278 

Low 1 30 0.428 0.021 0.115 0.475 

Low 2 30 0.208 0.007 0.038 0.211 

Subsurface High 1 30 18.7 0.931 5.10 18.0 
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Variable Location N Mean SE Mean St Dev Median 

Horizon 

STFe 

High 2 30 26.4 5.12 28.1 15.1 

Low 1 30 12.0 1.29 7.04 9.48 

Low 2 30 43.6 5.02 26.5 35.8 

Subsurface 

Horizon 

% Carbon 

High 1 30 2.06 0.111 0.608 2.04 

High 2 30 2.61 0.141 0.774 2.60 

Low 1 30 1.83 0.117 0.642 1.66 

Low 2 30 1.50 0.103 0.564 1.36 

 

Table 3.5 Summary groupings from one-way ANOVA of soil test values 

Horizon Location STP STCa STAl STFe 

  Group   Group   Group   Group  

Surface 

High 1  B   B   B   B  

High 2  A   A   A   B  

Low 1  C   C   C   A  

Low 2  C   C   B   B  

   

Subsurface 

High 1  B   B   C   B  

High 2  A   A   A   BC  

Low 1  C   C   C   C  

Low 2  C   C   B   A  

Treatments with same grouping letter are not significantly different 
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Table 3.6 Stepwise regression of soil properties for surface samples with STP as the response, and 

Mehlich 1 extractable Fe, Al, and Ca; % soil carbon; % sand, silt, and clay; surface horizon thickness; 

and pH in water and in CaCl as the predictors 

Alpha-to-enter: 0.15     Alpha-to-remove: 0.15 Response is STP, 10 predictors, n = 120 

 

Step 1 2 3 4 

Constant -215.2 -349.5 -268.7 -337.6 

STCa 0.2762 0.2398 0.2464 0.2467 

T-Value 34.90 23.64 23.94 24.31 

P-Value ≤0.000** 0.000 0.000 0.000 

STAl  1.14 0.96 1.04 

T-Value  5.08 4.13 4.48 

P-Value  ≤0.000** 0.000 0.000 

Thickness   -8.9 -9.4 

T-Value   -2.46 -2.63 

P-Value   0.015** 0.010 

% Sand    207 

T-Value    2.09 

P-Value    0.038** 

S 133 121 118 116 

R-Sq 91.17 92.77 93.13 93.38 

R-Sq (adj) 91.09 92.64 92.95 93.15 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line 
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Table 3.7 Stepwise regression of soil properties for subsurface samples with STP as the response, 

and Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, and clay percentages; surface 

horizon thickness; pH in water and in CaCl; and STP levels of the surface horizon as predictors 

Alpha-to-enter: 0.15     Alpha-to-remove: 0.15 Response is STP, 11 predictors, n = 120 

 

Step 1 2 3 4 5 6 7 

Constant -18.97 -56.69 367.23 187.45 139.52 80.09 98.01 

Surface STP 0.977 0.736 0.687 0.577 0.561 0.537 0.515 

T-Value 56.00 13.43 13.82 10.69 10.89 10.42 9.87 

P-Value ≤0.000** ≤0.000** ≤0.000** ≤0.000** ≤0.000** ≤0.000** ≤0.000** 

STCa  0.074 0.118 0.129 0.135 0.136 0.146 

T-Value  4.60 7.20 8.26 9.06 9.28 9.50 

P-Value  ≤0.000** ≤0.000** ≤0.000** ≤0.000** ≤0.000** ≤0.000** 

pH in CaCl2   -90 -67 -71 -51 -50 

T-Value   -5.56 -4.11 -4.60 -2.92 2.90 

P-Value   ≤0.000** ≤0.000** ≤0.000** 0.004** 0.005** 

STAl    0.353 0.393 0.379 0.411 

T-Value    4.03 4.69 4.59 4.95 

P-Value    ≤0.000** ≤0.000** ≤0.000** ≤0.000** 

% Sand     199 189 204 

T-Value     3.67 3.56 3.84 

P-Value     ≤0.000** 0.001** ≤0.000** 

Thickness      -5.2 -6.1 

T-Value      -2.35 -2.74 

P-Value      0.021** 0.007** 

% Carbon       -18.5 

T-Value       -1.95 

P-Value       0.053* 

S 84.6 78.2 69.8 65.6 62.3 61.1 60.3 

R-Sq 96.37 96.93 97.58 97.88 98.10 98.19 98.25 

R-Sq (adj) 96.34 96.88 97.51 97.80 98.02 98.09 98.14 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 
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Table 3.8 Mantel and Partial Mantel tests for spatial structure in surface samples 
 

 High 1 High 2 Low 1 Low 2 

DDI H2O Po 
Surface Subsurface Surface Subsurface Surface Subsurface Surface Subsurface 

0.28047 0.65123 0.78742 0.53695 0.89601 0.61504 0.68513 0.33227 

0.5 M NaHCO3 Po 0.41676 0.63874 
0.02040 

0.36716 
0.00060 0.00030 

0.75682 
0.64454 

 0.01940 ** 0.00170 ** 0.00910 ** 

0.1 M NaOH Po 0.76712 0.15368 
0.02620 

0.41696 0.69003 
0.00010 

0.95960 
0.68943 

 0.48215 0.02640 ** 

1.0 M HCl Po 
0.03920 

0.57274 0.10739 0.13719 
0.05859 0.00290 0.01560 0.05749 

0.03790 ** 0.26907 0.01270 ** 0.01550 ** 0.36746 

Values in bold indicate significant mantel correlations, values identified with ** indicate a significant 

(P≤0.05) after controlling for the contribution of soil properties identified by stepwise regression. 
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Chapter 4. Topographic Influence on the Movement and Transformation 

of Organic Phosphorus in Hay and Grass Pastures of Eastern West 

Virginia 

Abstract 

This study was conceived to investigate the fate of organic P (Po) in typical hay and grass pasture of 

eastern West Virginia following long-term annual applications of animal manure, often on a N basis. 

Over the past decade, P management has evolved on many West Virginia farms from N-based manure 

management towards using tools such as a P index. At present, many hay and grass pastures in the 

region have a high degree of P saturation and, at some locations, additional application may be 

occurring. As environmental regulations tighten there are expectations that remediation and 

interception strategies at some locations may be needed. Given that most P research focuses on P loss 

via surface erosion, on tile drained land, and rarely on Po there is a clear deficit in knowledge. The 

capacity to predict how Po moves is a potentially useful tool in evaluating risk of loss and for developing 

remediating strategies. Sequentially extracted P fractions derived from spatially explicit samples can be 

used to better understand Po movement at field scales. In this research a Pearson’s product-moment 

correlation matrix was used to determine what, if any, topographic variables were significantly 

correlated to selected sequentially extracted Po fractions. Stepwise regression was further used to 

identify variables specific to each location and each fraction. Partial Mantel tests were then used to 

determine if the remaining variability could be explained. Specifically, it was hypothesized that the pure 

spatial portion of the variability in sequentially extracted Po fractions could be explained by topographic 

variables. This only proved to be the case in locations with histories of long-term N-based manure 

applications. However, identifying explanatory topographic variables can still be a strategic component 

in developing field-scale predictive models of Po distributions that could prove invaluable in risk 

assessment, remediation, and model development. 

Introduction 

Plant nutrients applied in excess of crop removal rates allow some nutrients to accumulate (Sims et al., 

2002; Johnson et al., 2005). When concentrated animal agriculture occurs and P is applied at rates in 

excess of plant needs, the soil becomes saturated with P and may pose a risk to water quality (Beck et 

al., 2004). As more fields become saturated with P, efforts of lower saturation and prevent P loss may 
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become a greater priority. To effectively address this situation, it will require strategies that incorporate 

topographic data to effectively model field scale P movement. 

Conceptually, the idea of relating soil properties to terrain can be traced to the catena concept (Milne 

1935) and the belief that soils differentiate in predictable ways along toposequences. This concept was 

refined by Jenny (1941) who developed the idea of factors of soil formation. Jenny (1941) concluded 

that soil properties were related to a series of factors: climate, organisms, relief, parent material, and 

time. In particular, topography directs the movement of water. Jenny (1941) believed relief or 

topography was responsible the majority of the variability seen in soils at landscape scale. Today, many 

studies have included topographic elements when modeling soil moisture and other properties (Moore 

et al., 1991; Hornberger & Boyer, 1995; Iverson et al., 1997; Famiglietti et al. 1998; Boerner et al., 2000; 

Gessler et al., 2000; Western et al. 2001; Mohanty and Skaggs 2001; Case et al., 2005). Accordingly, 

there is reasonable expectation of changes in soil properties directly related to the changes in the 

mechanistic process that occur differentially across the landform. 

When examining P distributions one must consider the possible effects of changing soil properties. If the 

ability of the soil profile to retain P is, in part, related to changes in soil properties, then as these 

properties change so changes the P exchange dynamics of the soil. A soil’s ability to retain P is related to 

the soil surface chemistry, reactivity, Fe and Al content, clay content, and pH (Barrow, 1984; Fox, 1985; 

McGechan and Lewis, 2002). Over time, management can modify soil properties and, by extension, P 

sorption characteristics, which may increase P translocation, through the soil profile (Hao et al., 2008). 

Specifically, the continual additions of poultry manure shifts P from binding with Fe and Al products to 

binding with Ca (Sharpley et al., 2004). The soluble nature of some of these Ca-P complexes under some 

conditions could contribute to potential P translocation within the soil profile (Holford et al., 1997; 

Siddique and Robinson, 2003). As such, it is critical to consider the variability in soil properties within a 

management unit when evaluating the mobility of any portion of the P pool. 

Much of the P-soil-environment research has focused on Pi or total P (Laboski, and Lamb, 2003; 

Anderson and Magdoff, 2005; Loria and Sawyer, 2005; Casson, et al., 2006; Haden et al., 2007). 

However, Po is a significant part of the total soil P pool. For example, Jencks et al. (1964) examined 

various P fractions in a selection of soils across West Virginia and found Po accounted for between 7 and 

66% of the total P in the surface horizons, and from 13 to 55% in the subsurface horizons. While Pi 

leaching is generally considered of minimal risk, soils receiving large quantities of P fertilizer, sandy soils, 

organic soils, well structure soils, and soils with high rock fragment content can be at risk of P leaching 



80 
 

(Anderson and Magdoff, 2005; Harman et al., 2013). A greater understanding of potential Po movement 

and soil interactions is needed (Condron et al., 2005). 

In terms of water movement, it is known that soils with high percentages of rock fragments can rapidly 

infiltrate to some depth via preferential flow processes (Harman et al. 2011). Likewise, research has 

shown that in this environment (hay and pasture lands of eastern West Virginia) there is P translocation 

within the soil profile (Harman et al. 2013). The literature indicates that downslope receiving positions 

can in some conditions soils test considerably higher for P than stable upland positions due to the 

movement of P downslope (Porder et al. 2005). This is consistent with the assertions of Smeck (1973) 

and Smeck and Runge (1971) when they proposed that P can move latterly within a landscape, and will 

accumulate in lower landscape positions. This is an indication of the importance of understanding the 

landscape, water movement, and topographic data. 

Quantitative topographic data for use in soil-landscape analysis and modeling is most often obtained 

from digital elevation models (DEM). These DEM-derived land surface parameters can be classified as 

primary or secondary (sometimes called compound) terrain attributes (Moore et al., 1991; Thompson et 

al., 1997; Bishop and Minasny 2006). Using a computer, the most easily estimated primary attributes 

would include slope gradient, slope aspect, slope curvature, drainage direction, and drainage area 

(Moore at al. 1991). A complete list of primary terrain attributes was published by Speight (1974, 1980). 

The most common secondary attribute is the topographic wetness index (TWI) (Bishop and Minasny 

2006; Grundwald 2006). Secondary attributes are often more useful than primary attributes for 

predicting soil properties (Bell et al. 1994; Gessler et al., 1995; McBratney et al., 2000; Bishop and 

Minasny 2006). TWI describes the tendency of a cell to accumulate water (Gruber and Peckham, 2009). 

TWI is defined as the ln (A / tan B) where A is the local upslope contributing area for that point and B is 

the local slope (Beven and Kirkby, 1979). Up slope contributing area is estimated by a/L, with a being the 

number of pixels draining into a pixel, multiplied by the area of a pixel, and L as the pixel width (Moore 

et al., 1991). A similar secondary terrain attribute, stream power index, was developed to be used to 

describe erosion and related landscape processes, and is defined as A × (tan B) (Moore et al., 1991). 

There are many techniques that can be used to determine flow direction and each has the potential to 

calculate a unique outcome. Flow direction determines flow accumulation, which establishes the 

upslope contributing area. The earliest and simplest flow direction calculation is the deterministic 8 (D8) 

of O’Callaghan and Mark (1984). D8 specifies a single flow direction from each raster cell into one of the 

eight neighboring cells based on the steepest downward slope (O'Callaghan and Mark, 1984). Another 
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method is the multiple flow direction (MFD) method (Quinn et al., 1991). MFD divides flow between all 

down slope cells based on slope gradient (Tarbonton, 1997). A third method, which is a compromise 

between D8 and MFD, is the deterministic infinity method (D∞) of Tarboton (1997). The D∞ method 

divides a 3×3 grid into eight triangular facets, and allocates flow to the steepest direction, where by 

allocating flow solely to one cell or dividing it based on slope gradient between the cells that define the 

downslope facet (Tarbonton, 1997). 

Po fractions move through the soil at different rates (Anderson and Magdoff, 2005), and soil P fixation 

varies with changes in soil properties as soils vary across the landscape (Daniels et al., 2001; Borling et 

al., 2004; Herlihy and McGrath, 2007). Thus Po levels at any location are the product of the soils 

properties, Po additions, Po transformations and any landscape-scale process that move P or soil over or 

through the landscape. In fact, compound topographic variables have been successfully used to 

explaining variability in STP data at field scale (Moore et al., 1993). If accepted that water can move Po 

and erode surface soils while statistically accounting for the variability in the Po levels associated with 

changes in soil properties, any residual pattern must be related to space or a physical process 

dependent upon the configuration of that space such as the movement of water. This necessitates not 

only the consideration of topographic variables when modeling Po fractions across a landform or 

management unit, but closer attention to the location of high and low values during data processing. 

It is assumed that spatial dependence identified in selected Po fractions not explained by changes in 

management practices, soil properties or sub field level management units are primarily due to water 

movement. Thus the research hypothesis (Ha) states: Spatial dependence in sequentially extracted Po 

fractions can be sufficiently explained via compound topographic variables, TWI and SPI such that the 

remaining variability will be randomly distributed across management units. The null hypothesis (Ho) 

states with the inclusion of compound topographic variables, TWI and SPI will not render the remaining 

spatial variability randomly distributed across the management units. 

Materials and Methods 

Site Selection 

The study sites were hay or grass pasture fields typical of eastern West Virginia. There were two 

fertilized locations with histories of annual N-based manure applications (High 1 and High 2), and two 

unfertilized locations with very infrequent manure applications (Low 1 and Low 2). The unfertilized 
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locations typically received manure application approximately once every 5 to 10 yr. For more 

information on the composition of these locations see Table 4.1.  

Compound Topographic Indices 

All terrain attributes were calculated from 3-m resolution (DEM) data from United States Geologic 

Survey (USGS) using SAGA GIS (Bock et al., 2008). The DEM was extracted for each field, and was 

preprocessed to remove any sinks or voids (Wang and Liu, 2006). From these DEM, three flow direction 

grids were calculated: A D8 grid (O’Callaghan & Mark, 1984), a MFD grid (Quinn et al., 1991), and a D∞ 

grid (Tarboton, 1997). From each of these grids, upslope contributing area grids were developed using 

the recursive upslope method and then both TWI and SPI grids were created. In addition to these six 

compound indices (MFD TWI, D8 TWI, D∞ TWI, MFD SPI, D8 SPI, and D∞ SPI), two additional indices 

were constructed, SAGA wetness index (TWIs) and modified SPI (SPIm). TWIs uses a modified catchment 

area calculation to better represent water dispersions in low slope areas (Boehner et al., 2002). SPIm is 

the same SPI calculation but it is generated using the modified catchment area calculation of the TWIs. 

Sample Locations 

A stratified random design was used to select sample points (Thompson et al., 2006). The stratification 

variable was the most basic TWI the D8-based TWI (Moore et al., 1991). Three equal sized TWI classes 

were specified and ten samples locations were selected randomly within each class. In the field, two soil 

samples were collected at each sample location: one sample the surface A or Ap horizon and one from 

the 10 cm immediately below. Samples were air dried, ground, sieved (2-mm sieve), and thoroughly 

mixed (Laboski and Lamb, 2003). 

Laboratory Methods 

The pH of the soil samples was measured in distilled deionized water (DDI) and 0.01 M CaCl2 (Eckert and 

Sims, 1995). Samples were sequential fractioned based on a suggested modification (Sui et al., 1999) of 

the Hedley method (Hedley, et al., 1982) as described by He et al (2003). Mehlich-1 extractable Al, Ca, 

Fe, and P content (Nelson et al., 1953) were determined with a Perkin Elmer P4000 Inductively Coupled 

Plasma Optical Emission Spectrometer (ICP-OES). Particle size distribution was determined by the 

pipette method (Gee and Bauder, 1986). Total soil carbon was measured in a LECO TruSpec CHN 

elemental analyzer (LECO Corp., St Joseph, MI), where soil carbon total is measured by dry combustion 

(Keene, 2010).  
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Data Analysis 

Values for all terrain attributes were extracted for each of the sample locations. The combined data was 

than exported as .DBF files for analysis in Minitab version 16 (Minitab Inc. 2012) and PASSaGes version 

2.0 (Rosenburg and Anderson, 2011). 

Unforeseen spatial factors can contribute to the data variability. To reduce these likelihood elements of 

exploratory spatial data analysis (ESDA) and geovisualization (GV) techniques were incorporated to 

identify spatial outliers and enhance the understanding of this data (ESRI, 2011). ESDA was used to 

visualize spatial distributions of data and identify potential unforeseen spatial factors leading to atypical 

locations, spatial clusters, spatial regions, or forms of spatial instability or non-stationary within the data 

(Anselin 1996, 1998a, 1998b). In brief, the STP levels were analyzed for spatial clusters, particularly 

hotspots (locations with clusters of high values) using the Getis-Ord Gi* statistic (Getis and Ord, 1992). 

This analysis examines the Z-scores of the variables relative to the surrounding data points and 

compared to the entire data set (Mitchell, 2005). When hotspots were identified the aerial images of the 

locations were reviewed along with the history of the sample locations. If there was a possibility of an 

external factor contributing to the elevated values, the data in the hot spot was considered a spatial 

outlier and excluded. Additionally, each location was examined in 2D to determine if there was a need 

to be subdivided or separated based on the complexity of the landform. Accordingly, the sample points 

were categorized (as landform units) within each location by any landscape position or change in slope 

aspect that dramatically inhibits uniform downslope movement of nutrients.  

Following the ESDA, any sequentially extracted fraction-horizon-location combinations with spatial 

outliers were re-examined. Specifically, stepwise regression was used to identify measured soil 

properties that could explain a significant portion of the variability. Using alpha to enter and leave 

values of 0.15 the Mehlich 1 extractable Fe, Al, and Ca; soil carbon; sand, silt, and clay percentages; 

surface horizon thickness; and pH in water and in CaCl of the surface horizon samples were examined. 

For the subsurface horizon samples, the Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, 

and clay percentages; surface horizon thickness; pH in water and in CaCl; and STP levels of the surface 

horizon samples were examined. Next the data was examined to determine if the data retained a purely 

spatial component in the data variability. Subsequently all reaming sequentially extracted fraction-

horizon-location combinations with a purely spatial component in their data variability were examined 

in detail. Specifically, compound topographic variables were selected to include in a stepwise regression 

based on a Pearson’s product-moment correlation matrix. S selected soil properties and the compound 
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topographic variable with the strongest correlation were entered into a stepwise regression with p 

values to enter and to remove of 0.05 to determine what if any soil and compound topographic 

properties explained a significant portion of the data variability.  

To examine the role of space in the structure of the data variability, Mantel and partial Mantel tests 

were used to fix for the effects of soil and topographic variables. The Mantel test is a permutation based 

correlations analysis with one matrix being the difference between Po values of each pair of points, the 

other a distance matrix between points. A correlation coefficient is calculated between these matrices. 

The values of one matrix are randomly reassigned to another spatial location, and the analysis repeated. 

After 10,000 permutations, a distribution of correlation coefficients is generated. Probabilities can be 

estimated, based on the data’s position within the permutated distribution (Bonnet and Van de Peer. 

2002). One extension of the Mantel techniques is the partial Mantel test. A partial Mantel test uses 

more difference or distance matrices. In a partial Mantel test, two variables are compared while fixing 

for the effect of a third matrices of a third variable or group of variables. Similarly, after permutation the 

probabilities can be estimated, based on the data’s position within the generated distribution (Bonnet 

and Van de Peer. 2002). Selected sequentially extracted fraction-horizon-location combinations were 

examined with a series of Mantel tests to determine if the selected sequentially extracted fraction-

horizon-location combinations exhibited spatial structure in the data variability after fixing for the effect 

of soil properties, compound topographic indices, and sub field level delineations. 

Results and Discussion 

Of the 32 possible combinations of horizon, location, and sequential extracted Po fraction examined in 

chapter 3, seven had significant partial mantel correlations indicating spatial structure beyond that 

explained by changes in soil properties identified as explaining a significant portion of the variability in 

STP data (Table 4.1). The next analysis included a review of the data using ESDA techniques. Next each 

location was examined using the Getis-Ord Gi* technique (Figs. 4.1, 4.2, 4.3 and 4.4), which identified 

multiple hotspots among the locations. Each hotspot was examined in detail to determine if the 

hotspots could be attributed to additional management factors. 

At location Low 2, it was determined that three sample points (Fig. 4.5) near the entrance to the pasture 

formed a hotspot potentially associated with land use and management. When viewed against the field 

imagery, it seemed apparent the two data points located closest to the entrance were potentially spatial 

outliers. Two of the three data points were very near the entrance. It is possible this location was a 
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natural bottleneck in cattle traffic and this location has been used as a winter feeding area. The third 

data point that made up the hotspot while having a higher STP value, it was farther away from the 

entrance to the pasture. Thus the two data points nearest the entrance were considered spatial outliers 

and excluded them from the analysis. When the location was reexamined, it no longer exhibited the 

underlying spatial dependence noted in chapter 3. Hence moving forward only the remaining six 

possible combinations of horizon, location, and sequential extracted Po fraction were examined. 

When reviewed it became apparent there was a need for additional division of the management units 

(the fields) at each location. At location High 1, it became apparent the field had three distinct regions, a 

summit position, and a sub field drainage exiting the field midslope. (Fig. 4.6). Sample points were 

categorized accordingly. Location High 2 also had a complex configuration. At High 2 the field was 

composed of two basic elements, a very flat footslope and a series of convex and concave backslopes. 

Most of the data points appeared hydrologically connected (based on the topography) however a sub 

set of the data that appear to drain away from the majority of the data. Accordingly, the field was into 

two groups (Fig. 4.7). At location Low 1 the field was composed of four basic elements, a summit, two 

backslopes and a footslope position. The sample points in the summit drained into one of two 

backslopes, which converged at the footslope of the landscape. The field was divided into three parts. 

The first two parts were the two backslopes with the associated points at the summit/shoulder area. 

The remaining data points at the footslope were grouped together (Fig. 4.8). 

Initially, the Pearson product-moment correlations were calculated between the compound topographic 

indices (Table 4.3) and each of the six unique combination (UC) of horizon–location–Po fraction 

identified in chapter 3 (Table 4.2). Stepwise regression of each UC was used to identify the variables that 

best explained the Po data. Next, partial Mantel tests were used to determine if the soil variables 

explained all the spatial variability in the data to an extent that it eliminated the correlation of the 

dissimilarity matrices and void of identifiable spatial structure. The partial Mantel test was performed 

again fixing for the effect of soil properties and the compound topographic indices with the strongest 

linear relationship to each UC. Similarly, partial Mantel tests were calculated including a variable of in-

field division (IFD), and with the combination of compound topographic indices and IFD. 

Location Fertilized 1 is a pasture and hay field that has received annual poultry manure applications on a 

N-basis for more than 30 yr. Long-term manure application has been documented to cause total P 

concentration in the top 5 cm to increase as much as 2.8 to 5.5 times (Koopmans et al., 2007). Location 

Fertilized 1-surface horizon-1.0 M HCl extractable Po fraction has a significant partial Mantel correlation 
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indicating an underlying spatial structure within the data (Table 4.1). P fertilization mostly increases the 

labile and moderately labile inorganic soil P fractions (Oniani et al., 1973; Blake et al., 2003) with 

minimal effect on Po levels except the most labile Po fraction, such as the NaHCO3 extractable Po fraction 

(Pätzold 2013). Pedogenic transport processes can govern the distribution and forms of P at field scale 

(Heilmann et al., 2005). As such, recognizing connectivity within a complex landform is important given 

significance of movement mechanisms when evaluating P loss and movement (Davies et al 2006). As 

such the subdivision of data points in to three subsets for analysis seems prudent.  

The Mantel correlation from the 1.0 M HCl extractable Po fraction of Fertilized 1 was p = 0.038 (Table 

4.2). The Pearson’s product-moment correlation analysis identified TWIs as the topographic index with 

the strongest linear relationship to the 1.0 M HCl extractable Po fraction (see Table 4.3), with a 

correlation of -0.576 and a p value = 0.001. The stepwise regression of 11 predictors (TWIs, horizon 

thickness, STAl, STFe, STCa, % Carbon, % Sand, % Silt, % Clay, pH in H2O and pH in 0.01M CaCl2) for 1.0M 

HCl extracted Po identified STCa and TWIs as the only predictors that explained a significant portion of 

the variability (Table 4.4). Poultry manure can raise P, N, and Ca, levels in soil, as well as elevate the 

levels of bicarbonates and organic acids with carboxyl and phenolic hydroxyl groups (Sharpley et al., 

2004). P bound to Ca can be a significant fraction within some soil (Amaizah et al., 2012). STCa explained 

55.9% of the variability. Together, STCa and TWIs explained 61. 6% of the variability in the data. The 

partial Mantel tests indicated significant spatial structure (Table 4.5) in the 1.0 M HCl extractable Po 

fraction when fixing for the effects of soil properties (p=0.038), soil properties with TWIs (p=0.037), and 

soil properties with IFD (p=0.090). When fixed for the effect of STCa, TWIs, and IFD, the residuals were 

no longer spatially autocorrelated (p=0.133) indicating the identifiable patterns of P distribution were 

likely related to changes in soil properties and water movement / soil moister conditions. 

Location Fertilized 2 is a pasture and hay field that has received annual poultry manure applications on a 

N-basis for more than 30 yr. Location Fertilized 2-surface horizon-0.5 M NaHCO3 extractable Po fraction 

has a significant partial Mantel correlation indicating an underlying spatial structure within the data 

(Table 4.2). P losses are often driven by fast transport processes such as surface runoff, shallow 

interflow, and macropore flow in close interaction with P enriched topsoil layers resulting in high P 

concentrations in along these rapid pathways, particularly in permanent grassland with histories of P 

accumulation (Schärer et al. 2007). P extracted with NaHCO3 is a labile P fraction can contribute to the 

nutrient supply to plants and can be transferred to the surrounding environment by moving through the 

soil profile (Pizzeghello et al., 2011; Schmitt et al., 2014). 
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The Mantel correlation from the 0.5 M NaHCO3 extractable Po fraction from the surface horizon of 

Fertilized 2 was p = 0.019 (Table 4.2). The Pearson’s product-moment correlation analysis identified TWIs 

as the topographic index with the strongest linear relationship to the 0.5 M NaHCO3 extractable Po 

fraction (Table 4.6) with a correlation of 0.450 and a p value = 0.014. The stepwise regression of 11 

predictors (TWIs, horizon thickness, STAl, STFe, STCa, % Carbon, % Sand, % Silt, % Clay, pH in H2O, and pH 

in 0.01M CaCl2) for the 0.5 M NaHCO3 extractable Po fraction identified TWIs as the only predictor that 

explained a significant portion of the variability, with TWIs explaining 17.26% of the variability in the 

data (Table 4.7). While 17.26% would seem to be a small percentage of the total variability, the 

compound topographic variable in location High 1 only accounted for 5.7%. While that model accounted 

for 61.4%. The partial Mantel tests indicated a significant correlation between the dissimilarity matrices 

(Table 4.5) in the 0.5 M NaHCO3 extractable Po fraction when fixing for the effects of TWIs (p=0.01350), 

and for IFD (p=0.09749). When fixed for the effect of TWIs and IFD the residuals were no longer 

exhibited spatial structure (p=0.12479). Any number of factors (slope position, soil order, management, 

and weather condition) can affect the concentration and proportions of P fractions (Wagar et al., 1986; 

Heilmann et al., 2005; Negassa and Leinweber, 2009).  

The Mantel correlation from the 0.5 M NaHCO3 extractable Po fraction from the surface horizon of 

Unfertilized 1 was p = 0.002 (Table 4.2). The Pearson’s product-moment correlation analysis identified 

D8 SPI as the topographic index with the strongest linear relationship to the 0.5 M NaHCO3 extractable 

Po fraction (Table 4.8) with a correlation of 0.341 and p value = 0.065. The Mantel correlation from the 

0.5 M NaHCO3 extractable Po fraction from the subsurface horizon of Unfertilized 1 was p = 0.00910 

(Table 4.2). In general it is expected to find elevated NaHCO3 extractable P levels when soils are 

fertilized (Haynes and Williams, 1992) and the NaHCO3 fraction is labile and under some conditions can 

be considered plant available (Johnson et al. 2003, Dieter et al. 2010).The Pearson’s product-moment 

correlation analysis identified MFD SPI and SPIm as the topographic indices with the strongest linear 

relationships to the 0.5 M NaHCO3 extractable Po fraction (Table 4.8) with a correlation of 0.451 and p 

value = 0.012. Given the labile nature of NaHCO3 fraction this was not unexpected.  

The Mantel correlation from the 0.1 M NaOH extractable Po fraction from the subsurface horizon of 

Unfertilized 1 was p = 0.026 (Table 4.1). The Pearson’s product-moment correlation analysis identified 

TWIs as the topographic index with the strongest linear relationship to the 0.1 M NaOH extractable Po 

fraction (Table 4.8) with a correlation of 0.290 and p value = 0.121. In general, NaOH extracted organic 

fractions are immobile sorbed onto clay minerals or precipitated with metals oxides (Gagnon et al. 
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2012). As such, under conditions with minimal P saturation, it is less likely the NaOH extractable 

fractions would be strongly correlated with metrics for water movement. However, the Mantel 

correlation from the 1.0 M HCl extractable Po fraction from the subsurface horizon of Unfertilized 1 was 

p = 0.013 (Table 4.1). The Pearson’s product-moment correlation analysis identified D8 SPI as the 

topographic index with the strongest linear relationship to the 1.0 M HCl extractable Po fraction (Table 

4.8) with a correlation of 0.540 and p value = 0.004.  

P availability following manure application can also be influenced by microbial properties of the soil, the 

makeup of the manure, and any number of complex interactions between these components (Waldrip 

et al. 2011). Stepwise regression was used to determine the variables that explained a significant portion 

of the variability in each fraction–horizon combination with known spatial correlation. The stepwise 

regression of 11 predictors (TWIs, horizon thickness, STAl, STFe, STCa, % Carbon, % Sand, % Silt, % Clay, 

pH in H2O and pH in 0.01M CaCl2) identified horizon thickness as significant for the 0.5 M NaHCO3 

extractable Po fraction from the surface (Table 4.9) and subsurface (Table 4.10) horizons of Unfertilized 

1. Likewise, via regression depth of horizon, % carbon, STAl, STFe, % silt, and pH that explained 

significant portions of the variability in the 0.1 M NaOH extractable Po fraction from the subsurface 

horizon of Unfertilized 1 (Table 4.11) were determined. The more labile nature of some of these Ca-P 

complexes following long-term manure applications could contribute to potential P translocation within 

the soil profile (Holford et al., 1997; Siddique and Robinson, 2003). It is believed this is likely due in part 

to the elevated organic matter concentration, the formation of dissolved organic P species, and colloid 

mediated transport facilitated by association dissolved organic carbon (Gerke, 1992; Dolfing et al., 1999; 

Ilg et al., 2005; Koopmans et al 2007). Similarly, horizon depth was the only variable that explained a 

significant portions of the variability 1.0 M HCl extractable Po fraction from the subsurface horizon of 

Unfertilized 1 (Table 4.12).  

Conclusions 

Understanding how topographic variables and sequential extracted Po fractions relate is important to 

the understanding of landscape-scape scale P movement. While P is generally relatively insoluble in soil, 

considerable movement can occur over time (Smeck, 1973). P inputs elevate labile organic P pools 

regardless of the type of P input (Guggenberger et al) and Po fractions can be as much as 20–30% of the 

total P (Amaizah et al., 2012). The primary objective of this research was to identify an optimal 

topographic variable to explain the variability in Po levels not explained by management practices, 

changes in soil properties, or sub field level delineations. The relationship between P fractions and 
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environmental loss is related to the susceptibility to runoff and the distance to waterways (Negassa and 

Leinweber 2009), and reducing elevated P concentrations to more environmentally acceptable levels by 

cession of P applications could take decades or more (Dodd et al., 2012). To facilitate an immediate 

response or reduce imminent loss, the use of these topographic variables could be fundamental to the 

predictive capabilities needed to identify potential points of P egress.  

The results from the locations with lengthy histories of poultry manure applications were different but 

explainable. Smeck and Runge (1971) indicated that the distribution of P across a landscape was a good 

indicator of past water movement. Logically this relationship should prove useful when looking for 

patterns in P distribution. Very different behaviors between TWI and the 1.0 M HCl extractable Po 

fractions (a negative correlation) and the more labile 0.5M NaHCO3 Po fraction (positive correlation) at 

locations with histories of N-based manure applications were identified. One would expect to find the 

labile Po fractions will be highest in the lower slope positions (Heilmann et al., 2005) and following 

continual additions of poultry manure one would expect P to shift from binding with Fe and Al to binding 

with Ca (Sharpley et al., 2004). Additionally, one would expect the soluble nature of some of these Ca-P 

complexes to be subject to loss relative to water movement (Holford et al., 1997; Siddique and 

Robinson, 2003). Overall this is what was confirmed. Topography is guiding the distribution and to some 

extent the composition of the Po pool and the determining threshold appears to be relative P status. 

The unfertilized location was very different. The unfertilized location had multiple fractions across the 

surface and subsurface horizons that contained a pure spatial component in their data structure. The 

same fractions exhibited differing behaviors between horizons and overall there seems to be no definite 

trend. Still it is interesting that in situations where P is scarce and sorption and consumption is expected 

to render the collective P distribution somewhat fixed in place, yet some patterns, particularly at depth 

were still identified. The analysis was able to explain some of these patterns via topographic means. As 

the unfertilized locations have had poultry manure applications in the past, it could lead one to 

speculate that these locations may have had significantly higher ST levels at some point in time causing 

these relict spatial patterns that are not easily interpreted. 

Specifically, the research hypothesis (Ha) states: Spatial dependence in sequentially extracted Po 

fractions can be sufficiently explained via compound topographic variables, TWI and SPI such that the 

remaining variability will be randomly distributed across management units. This only proved to be the 

case in locations with histories of long-term N-based P applications. Dieter et al. (2010) pointed out that 

the interpretation of all P fractionation results is complicated and of limited practical utility, however 
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there may be significant utility in some fractions at some locations. The null hypothesis (Ho) states with 

the inclusion of compound topographic variables, TWI and SPI will not render the remaining spatial 

variability randomly distributed across the management units. Thus Ha is accepted and Ho rejected.  

Ultimately it appears the determining factor in which extractable P fraction is subject to movement and 

redistribution in accordance with spatially predictable parameters is the degree or level of P at the 

location. Additionally, in several instances a purely spatial component in the data variability was 

identified. These insights lend themselves to speculation about field scale process of Po movement. 

Many soil properties like soil carbon, clay content, and STP have been shown to be strongly correlated 

with TWI, in particular. As such, it is very likely that TWI alone or in conjunction with a metric for local 

field-scale P status could directly—and through collinearity with other important variables—explains a 

significant portion of the spatial variability seen in sequentially extracted Po fractions. 

Unlike the initial analysis in chapter 3 that sought to identify spatial patterns in sequentially extracted P 

fractions, this chapter’s intent was to go one step further and look for the specific soil properties that 

explain variability in each of the fraction-location combinations and fully describe the sources of the 

variability. In doing so it became obvious, water related metrics were capable of modeling the spatial 

variability in the soils with lengthy histories of fertilization with animal manures, primarily poultry 

manure. This distinction indicates that these terms could be beneficial for modeling these relationships. 

Future research should focus on additional compound topographic variables that could prove useful for 

modeling Po movement, determining the threshold where P makes the transition from spatial 

relationships between 0.5NaHCO3 extractable Po and soil properties, to 1.0M HCl extractable Po fractions 

and Ca levels in the soil, and selecting optimal metrics for local field scale P assessment. As agricultural 

fields in similar landscape to those investigated become saturated with P, the ability to predict or model 

Po movement will become critically important, particularly to the poultry producing region of West 

Virginia. At a minimum, this research supports the use of TWI as a risk assessment tool, and as 

supporting information for focused remediation. With TWI resource managers could select fields that 

pose a greater risk for Po leaching or movement, and target funding for conservation or remediation 

efforts. In the years to come as environmental regulations tighten and policies change, the ability to 

effect meaningful change with minimal resources on an immediate time scale will become a necessity. 

This sort of soil landscape modeling technique could allow a greater portion of the limited financial 

resources available to be focused on locations with the greatest potential to pollute and by extension 

generate the greatest savings per unit of funding. 
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Tables 

Table 4.1Soil Map Units by Study Site 

Location Map Unit Name Slope Range Acres Percent Total 

High 1 Berks-Weikert channery silt loams 8 – 15 % 4.7 44.9 

 Berks-Weikert channery silt loams 15 – 25 % 5.5 51.8 

 Berks-Weikert channery silt loams 25 – 55 % 0.3 3.3 

     

High 2 Berks channery silt loam 8 – 15 % 1.4 21.4 

 Berks-Weikert channery silt loams 22 – 55 % 1.1 17.3 

 Ernest silt loam 3 – 8 % 2.9 46.1 

 Lobdell loam 0 – 3 % 1.0 15.2 

     

Low 1 Blackthorn channery sandy loam 8 – 15 % 8.6 85.8 

 Toms silt loam 3 – 8 % 1.4 14.2 

     

Low 2 Berks-Weikert channery silt loams 15 – 25 % 1.2 23.1 

 Berks-Weikert channery silt loams 25 – 55% 4.2 76.6 

 

 

 

 

 

Table 4.2 Location – horizon – fraction combinations with a significant spatial component to the 

data variability 
Location & 

Horizon* 

Fertilized 1 

Surface 

Fertilized 2 

Surface 

Unfertilized 1 

Surface 

Unfertilized 1 

Subsurface 

Unfertilized 

1 Subsurface 

Unfertilized 

1 Subsurface 

Unfertilized 

2 Surface 

Po Fraction 1.0 M HCl 0.5 M NaHCO3 0.5 M NaHCO3 0.5 M NaHCO3 0.1 M NaOH 1.0 M      HCl 1.0 M      HCl 

Two-tailed p 0.038 0.019 0.002 0.009 0.026 0.013 0.016** 

These combinations were previous identified in chapters 3 as having a purely spatial portion to their variability after fixing for the effects of soil properties 



100 
 

significantly related to STP data. ** After removing spatial outliers this location – horizon – fraction combination was no longer spatially significant.  
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Table 4.3 Pearson’s product-moment correlation matrix for sequential extracted Po fractions from 

location Fertilized 1 

 1.0M HCl MFD TWI MFD SPI D∞ TWI D∞ SPI D8 TWI D8 SPI TWIs 

MFD TWI 

0.071        

0.710        

MFD SPI 

-0.345 -1.519       

0.062** 0.003**       

D∞ TWI 

0.054 0.997 -0.505      

0.778 0.000** 0.004**      

D∞ SPI 

-0.338 -0.490 0.988 -0.472     

0.068* 0.006** 0.000** 0.008**     

D8 TWI 

0.060 0.973 -0.468 0.971 -0.441    

0.752 0.000** 0.009** 0.000** 0.015**    

D8 SPI 

-0.374 -0.482 0.990 -0.467 0.989 -0.427   

0.042 0.007** 0.000** 0.009** 0.000** 0.019**   

TWIs 

-0.576 -0.020 0.522 -0.001 0.504 0.012 0.509  

0.001** 0.914 0.003** 0.994 0.005** 0.950 0.004**  

SPIm 

-0.345 -0.521 1.000 -0.507 0.988 -0.470 0.990 0.524 

0.062* 0.003** 0.000** 0.004** 0.000** 0.009** 0.000** 0.003** 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  
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Table 4.4 Stepwise regression of surface horizon from location Fertilized 1 with 1.0M HCl extracted 

Po as the response and Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, and clay 

percentages; surface horizon thickness; pH in water and in CaCl; and TWIs as the predictors 

Step 1 2 

Constant -259 2900 

STCa 0.504 0.370 

T-Value 6.14 3.83 

P-Value ≤0.000** 0.001** 

TWIs  -505 

T-Value  -2.27 

P-Value  0.031** 

S 560 518 

R-Sq 57.4 64.2 

R-Sq (adj) 55.9 61.6 

Alpha to enter or remove = P≤ 0.05 Response = 1.0M HCl extracted Po, predictors = 11, n = 30 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 
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Table 4.5 Mantel and partial Mantel correlations all unique combinations with a spatial component 

in the data variability 

Location & Horizon 
Fertilized 1 

Surface 

Fertilized 2 

Surface 

Unfertilized 1 

Surface 

Unfertilized 1 

Subsurface 

Unfertilized 1 

Subsurface 

Unfertilized 1 

Subsurface 

Po Fraction 1.0 M HCl 
0.5 M 

NaHCO3 
0.5 M NaHCO3 0.5 M NaHCO3 0.1 M NaOH 1.0 M      HCl 

Stepwise selected variables 

(P≤0.05) 

STCa 

TWIs 

TWIs 
Horizon 

Thickness 
Depth to Horizon 

Depth to 

Horizon, %C, 

STAl, STFe, 

%Silt, pH 

Depth to 

Horizon 

Partial Mantel 

test 

Soil properties  

correlation 0.174 -na- 0.254 0.184 0.163 0.235 

t 2.21 -na- 3.30 2.472 2.43985 2.95 

Two-tailed p 0.038** -na- 0.003** 0.012** 0.01570** 0.010** 

Partial Mantel 

test 

Soil and TI 

correlation 0.176 0.168 0.205 0.094 0.093 0.16661 0.123 

t 2.20 2.68 2.98 1.46 1.44 2.48767 1.842 

Two-tailed p 0.037** 0.014** 0.007** 0.155 0.157 0.01601** 0.094* 

Partial Mantel 

test 

Soil and IFD 

correlation 0.136 0.104 0.262 0.233 0.20830 0.301 

t 1.78 1.66 2.84 2.63 2.75 3.14 

Two-tailed p 0.090* 0.097* 0.007** 0.009** 0.008** 0.007** 

Partial Mantel 

test 

Soil, TI, and IFD 

correlation 0.120 0.102 0.198 0.121 0.119 0.206 0.157 

t 1.55 1.57 2.38 1.58 1.56 2.73 1.98 

Two-tailed p 0.133 0.125 0.022** 0.135 0.138 0.010** 0.081* 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  
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Table 4.6 Pearson’s product-moment correlation matrix for sequential extracted Po fractions from 

location Fertilized 2 
 0.5 M NaHCO3 MFD TWI MFD SPI D∞ TWI D∞ SPI D8 TWI D8 SPI TWIs 

MFD TWI 

0.155        

0.421        

MFD SPI 

0.195 -0.201       

0.311 0.295       

D∞ TWI 

0.142 0.994 -0.210      

0.464 0.000** 0.275      

D∞ SPI 

0.198 -0.213 0.999 -0.220     

0.304 0.266 0.000** 0.251     

D8 TWI 

0.169 0.956 -0.155 0.952 -0.164    

0.380 0.000** 0.423 0.000** 0.394    

D8 SPI 

0.201 -0.189 0.999 -0.196 0.999 -0.141   

0.297 0.327 0.000** 0.309 0.000** 0.467   

TWIs 

0.450 0.330 0.575 0.319 0.569 0.338 0.576  

0.014* 0.080* 0.001** 0.092* 0.001** 0.072* 0.001**  

SPIm 

0.193 -0.232 0.999 -0.240 0.990 -0.184 0.997 0.565 

0.315 0.226 0.000** 0.210 0.000** 0.339 0.000** 0.001** 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10 
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Table 4.7 Stepwise regression of soil properties for surface horizons of location fertilized 2 with 

0.5M NaHCO3 as the response and Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, 

and clay percentages; surface horizon thickness; pH in water and in CaCl; and TWIs as the 

predictors 

Step 1 

Constant 133 

TWIs 20.9 
T-Value 2.62 

P-Value 0.014 

S 43.8 
R-Sq 20.2 

R-Sq (adj) 17.3 

Alpha to enter or remove = P≤ 0.05     Response = 0.5M NaHCO3 extracted Po, predictors = 11, n = 29 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 
 

Table 4.8 Pearson’s product-moment correlation matrix for sequential extracted Po fractions from 

location Unfertilized 1 

 
0.5 M 

NaHCO3 

0.5 M 

NaHCO3 

0.1 M 

NaOH  
1.0 M HCl MFD SPI MFD TWI D∞ TWI D∞ SPI D8 TWI D8 SPI TWIs  

0.5 M 

NaHCO3 

0.467                     

0.009*                     

0.1 M 

NaOH 

0.543 0.726                   

0.002* 0.000*                   

1.0 M  

HCl  

0.300 0.410 0.585                 

0.107 0.024** 0.001**                 

MFD SPI 

0.339 0.451 0.240 0.479               

0.067zxt 0.012** 0.201 0.007**               

MFD TWI 

-0.298 -0.205 -0.197 -0.266 -0.477             

0.109 0.277 0.297 0.156 0.008**             

D∞ TWI 

-0.294 -0.209 -0.194 -0.286 -0.444 -0.992           

0.115 0.268 0.305 0.126 0.014** 0.000**           

D∞ SPI 

0.336 0.440 0.229 0.484 0.998 -0.449 -0.415         

0.070zxt 0.015** 0.224 0.007** 0.000** 0.013** 0.023**         

D8 TWI 

-0.202 -0.066 -0.104 -0.097 -0.439 0.926 0.905 -0.412       

0.285 0.730 0.585 0.610 0.015** 0.000** 0.000** 0.024**       

D8 SPI 

0.341 0.438 0.198 0.504 0.959 -0.445 -0.415 0.967 -0.352     

0.065zxt 0.015** 0.294 0.004** 0.000** 0.014** 0.023** 0.000** 0.056zxt     

TWIs 

-0.127 0.118 0.290 0.004 0.083 0.260 0.304 0.081 0.212 0.087   

0.503 0.536 0.121 0.983 0.664 0.165 0.102 0.670 0.260 0.648   

SPIm 

0.340 0.451 0.238 0.482 1.000 -0.466 -0.433 0.999 -0.427 0.963 0.080 

0.066zxt 0.012** 0.206 0.007** 0.000** 0.009** 0.017** 0.000** 0.019** 0.000** 0.673 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10  
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Table 4.9 Stepwise regression of soil properties for surface horizon of location Unfertilized 1 with 

0.5M NaHCO3 as the response and Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, 

and clay percentages; surface horizon thickness; pH in water and in CaCl; and TWIs as the 

predictors 

Step 1 
Constant 129 

Horizon Thickness -4.7 
T-Value -2.06 

P-Value 0.049 

S 17.0 
R-Sq 13.1 

R-Sq (adj) 10.0 

Alpha to enter or remove = P≤ 0.05 Response = 0.5M NaHCO3 extracted Po, predictors = 11, n = 30 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 

 

Table 4.10 Stepwise regression of soil properties for subsurface horizon of location low one with 

Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, and clay percentages; surface 

horizon thickness; pH in water and in CaCl; and STP levels of the surface horizon as predictors 

Step 1 

Constant 132 

Depth to Horizon -12.3 

T-Value -5.38 

P-Value ≤0.000** 

S 17.2 

R-Sq 50.8 

R-Sq (adj) 49.1 

Alpha to enter or remove = P≤ 0.05 Response is 0.5M NaHCO3 predictors = 12, n = 30 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 
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Table 4.11 Stepwise regression of soil properties for subsurface horizon of location Unfertilized 1 

with Mehlich 1 extractable Fe, Al, and Ca; the soil carbon; sand, silt, and clay percentages; surface 

horizon thickness; pH in water and in CaCl; TWIs; and STP levels of the surface horizon as 

predictors 

 

Step 1 2 3 4 5 6 
Constant 820 649 427 354 114 726 

Depth -63 -53 -42 -38 -49 -39 
T-Value -5.61 -4.50 -3.42 -3.40 -4.72 -3.75 

P-Value 0.000 0.000 0.002 0.002 0.000 0.001 

% Carbon  53 65 95 97 95 

T-Value  2.09 2.63 3.81 4.50 4.86 

P-Value  0.046 0.014 0.001 0.000 0.000 

STAl   0.90 1.31 1.76 1.74 
T-Value   2.07 3.13 4.48 4.86 

P-Value   0.048 0.004 0.000 0.000 

STFe    -5.6 -6.9 -7.3 

T-Value    -2.68 -3.70 -4.24 

P-Value    0.013 0.001 0.000 

%Silt     581 478 
T-Value     3.01 2.66 

P-Value     0.006 0.014 

pH      -114 

T-Value      -2.46 

p-Value      0.022 

S 84.4 79.8 75.3 67.7 58.8 53.5 

R-Sq 52.9 59.5 65.2 73.0 80.4 84.5 

R-Sq (adj) 51.2 56.5 61.2 68.7 76.3 80.4 

Alpha to enter or remove = P≤ 0.05 Response = 0.1M NaOH extracted Po, predictors = 12, n = 30 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 
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Table 4.12 Stepwise regression of soil properties for subsurface horizon of location low one 

 

Step 1 

Constant 88.8 

Depth to Horizon -9.2 

T-Value -2.38 

P-Value 0.024** 

S 29.1 

R-Sq 16.9 

R-Sq (adj) 13.9 

A-to-enter: 0.15 A-to-remove: 0.15 Response is 1.0M HCl extracted Po, 11 predictors, n = 30 

** indicates p value less than or equal to 0.05, * indicates p value less than or equal to 0.10. The 

adjusted R-squared compares the explanatory power of regression models. The predicted R-squared 

indicates how well a regression model predicts responses for new observations. S represents the 

average distance that the observed values fall from the regression line. 
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Figures 

Figure 4.1 Hot spot analysis of Mehlich 1 soil test phosphorus data at location fertilized 1where 

locations with high value, surrounded by other features with high values are identified and hot 

spots and locations with low value, surrounded by other features with low values are identified and 

cold spots 
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Figure 4.2 Hot spot analysis of Mehlich 1 soil test phosphorus data at location fertilized 2where 

locations with high value, surrounded by other features with high values are identified and hot 

spots and locations with low value, surrounded by other features with low values are identified and 

cold spots 
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Figure 4.3 Hot spot analysis of Mehlich 1 soil test phosphorus data at location unfertilized 1where 

locations with high value, surrounded by other features with high values are identified and hot 

spots and locations with low value, surrounded by other features with low values are identified and 

cold spots 
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Figure 4.4 Hot spot analysis of Mehlich 1 soil test phosphorus data at location unfertilized 2 where 

locations with high value, surrounded by other features with high values are identified and hot 

spots and locations with low value, surrounded by other features with low values are identified and 

cold spots 
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Figure 4.5 Hot spots near former gated entrance and winter feeding area at entrance of the pasture 

area at location unfertilized 2 where locations with high value, surrounded by other features with 

high values are identified and hot spots and locations with low value, surrounded by other features 

with low values are identified and cold spots 
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Figure 4.6 Isolines of location fertilized 1 with sample points divided into three distinct subsets 

with the sample points located in the summit position (blue), the sample points contributing to a 

midfield concave feature draining out of the field (yellow), and the remaining points (red). 
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Figure 4.7 Isolines of location fertilized 2 with sample points divided into two subsets: a limited 

subset of sample points located on the higher landscape positons in the foot slope that appear to be 

hydrologically isolated from the remaining data points (blue) and the remaining data points 

(yellow). 
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Figure 4.8 Isolines of location unfertilized 1 is composed of four basic elements, a summit, two back 

slopes and a foot slope position. The sample points in the summit drained into one of two back 

slopes, who converged at the foot slope of the landscape. The data points are divided into three 

parts: the two back slopes (red and blue) and data points at the foot slope position (yellow). 
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Chapter 5. Modeling Sequentially Extracted Organic Phosphorus 

Fractions from Soil Test Phosphorus and Topographic Data 

Abstract 

In locations with significant food animal agriculture and historic N-based manure applications, P 

accumulation is a significant environmental concern. As efforts to evaluate risk associated with 

additional manure applications evolve, tools to improve the ability of conservation professionals to 

make such determinations become more critical. When locations are identified with a degree of P 

saturation that poses a risk of environmental loss, any tools that assist conservation professionals in 

developing remediation strategies are equally utilitarian. However, the resources to manage risk and 

develop remediation strategies are often at a premium. By utilizing readily available topographic data 

and routine soil test data, P distributions in locations with lengthy histories of animal manure 

applications can be modeled without the costs associated with additional sampling and elaborate multi-

step laboratory procedures. As such, when sequential extracted P fractions were modeled using Mehlich 

1 (M1) and Mehlich 3 (M3) soil test data and various topographic data it explained between 43.2 and 

97.9 % of the variability in the data. This has the potential to allow resource managers to utilize basic soil 

test results and topographic data to predict multiple organic and inorganic P fractions providing a useful 

tool for risk assessment and remediation at a fraction of normal cost. 

Introduction 

Historically, there have been multi-step fractionation procedures developed to describe and categorize 

soil P (Chang and Jackson, 1957; Bowman and Cole 1978; Hedley et al. 1982) and countless 

modifications to these methods. The most commonly cited and modified method in soil P research is the 

Hedley et al. (1982) fractionation (Guppy et al., 2000). The Hedley et al. (1982) fractionation partitions 

the P pool into soluble, aluminum/iron-bound, calcium-bound, and residual forms. Most research on P 

has focused on inorganic P (Pi), with significantly less attention given to organic species of P (Laboski, 

and Lamb, 2003; Anderson and Magdoff, 2005). Some researchers hypothesize that this is in part due to 

a perception that Pi is the dominant form of P, it is the plant available form, and the analysis of organic 

forms was simply too problematic (Jansson et al., 1988; Turner and Haygarth, 2000; Anderson and 

Magdoff, 2005). 

In general, P mobility is dependent upon hydrological and chemical processes (Galeone, 1996; Easton et 

al., 2009). P movement follows the direction of surface and subsurface water movement (Smeck and 
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Runge, 1971). The research of Smeck (1973) and Smeck and Runge (1971) documented lateral P 

movement and accumulate in lower landscape positions. Smeck (1985) identified multiple examples 

where soils sampled from lower positions in a toposequence had higher total P levels. 

Multiple researchers have reported subsurface transport of P (Turner and Haygarth, 2000; Kleinman et 

al., 2004; Nelson et al., 2005; Andersen and Kronvang, 2006). Using a topographic wetness index (TWI) 

Moore et al. (1993) explained 48% of the variability within STP extractions at a field scale. Similarly, 

McKenzie and Ryan (1999) found climate, terrain, and parent material to explain as much as 78% of total 

P variation within a catchment. As sediments and any dissolved materials move with water, it effectively 

generates vertical and lateral differentiation in the soil or its properties (Ziadat, 2005; Pachepsky et al., 

2001; Young and Hammer, 2000; Girgin and Frazier, 1996). Water and material movement at field scale 

is strongly influenced by slope configuration (Huggett, 1975). However, the specific factors that control 

surface and subsurface hydrology may change with scale (Park and Vlek, 2002; Kirkby et al., 1996). 

Phosphorus fractionation procedures can provide insight into how P exists within a soil and across a 

landscape. The strength of the P-soil bonds affects soil solution concentrations (Brady and Weil, 2002; 

Blake et al., 2003; Pierzynski et al., 2005). In terms of P composition in soil, the Po pool in soil is typical 

composed of inositol phosphates, phospholipids, nucleic acids, phosphoproteins and other unidentified 

P compounds (Schroeder and Kovar, 2006). Pi in soils typically comes from the weathering of apatite 

(Pierzynski et. al 2005). If multiple Po fractions are applied to packed soil columns, different classes of Po 

fractions will move through the soil at different rates (Anderson and Magdoff, 2005). For example, 

orthophosphate diesters are more likely to leach in soils than monoesters or Pi (Anderson and Magdoff, 

2005). Based on the principals of soil landscape modeling, if one can model the water movement within 

a landscape and that water moves one or more fractions of P, one could develop a quantitative method 

to predict the redistribution of P across the same landscape. 

While effective at describing the distribution of P within a sample, sequential extractions are time 

consuming and may not be practical for routine soil analysis. Yet at a landscape scale, knowledge of the 

labile P fractions is of importance in assessing risk of P loss (Negassa and Leinweber, 2009). The 

proposed solution is to predict P fractions from more readily available data. In recent years there has 

been research on predicting and assessing the spatial distribution of soil P (Wang et al., 2009; Liu et al., 

2013; Rubaek et al., 2013; Roger et al., 2014), but little effort to predict spatially explicit sequentially 

extracted P fractions from landscape data. This may be in part related to the perception that terrain 

attributes do not adequately explain the variability seen in P distributions. Roger et al. (2014) noted the 
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poor performance of terrain attributes at spatially predicting various P forms and the overwhelming 

influence of land use and management on P levels. Similarly, Sarmadian et al. (2014) indicated only a 

moderate influence of terrain attributes on P levels in Iran. However, if landscape variables are only part 

of the model and landscape variables are combined with other metrics for P status, field level spatial 

prediction is not unreasonable. 

As concerns over pending P regulation mount, strategic long-term solutions to localized P saturation will 

become more necessary. Locations currently applying animal manure on a N basis or locations subject to 

new more restrictive P indices will soon be prohibited further P application. In the coming years, the 

efforts of reduce the P saturation at these sites and prevent P loss will become more critical. Similarly, 

the ability to model P movement within these sites and develop spatially-based P interception strategies 

will be dependent on basic, accurate, and cost-effective modeling of P distributions at the field level. 

Soil-landscape modeling can provide that capability. 

There are two primary objectives of this research. The first is to establish a series of statistical soil-

landscape models that best explain the spatial distributions of sequential extracted P fractions across 

hay and grass pastures in West Virginia. The second is to determine which soil test extraction (Mehlich 1 

or Mehlich 3) is best suited for modeling sequential extracted P fractions. As such, these models could 

serve as a guide for resource allocations, as a component in remediation strategies, and have the 

potential to improve regional risk assessments of P loss. 

The first research hypothesis (Ha1) states that soil landscape data and soil test P data will be significant 

(p≤0.05) terms in sequentially extracted Po models at landscape scales. The null hypothesis (Ho1) states 

that soil landscape data and soil test P data will not be significant (p≤0.05) terms in sequentially 

extracted Po models at landscape scales. The second research hypothesis (Ha2) states Mehlich 1 soil test 

phosphorus data based models will have higher R2 values than Mehlich 3 soil test phosphorus data 

based models. The second null hypothesis (Ho2) states Mehlich 3 soil test phosphorus data based 

models will have higher R2 values than Mehlich 1 soil test phosphorus data based models.  
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Materials and Methods 

Study Sites and Sample Locations 

The selected study sites were typical hay or grass pasture fields in eastern West Virginia. The study sites 

consisted of four fields. Two fields had lengthy histories (approximately 10+ yrs.) of annual N-based 

manure applications. Two fields had very infrequent applications of animal manure (once every 4 or 5 

yrs.). Within each field a stratified random sampling design (Thompson et al., 2006) was used to select 

sample points. The topographic wetness index (TWI) of each location was used as the basis for the 

stratification. TWI was calculated from a 3-m DEM (SAMB) made free of sinks or voids. TWI is defined as 

the ln (A / tan B) where A is the local upslope contributing area for that point and B is the local slope 

gradient (Beven and Kirkby, 1979). Flow direction was calculated for TWI by determining the specific 

flow direction from each cell into one of the eight neighboring cells based on the steepest downward 

slope (O'Callaghan and Mark, 1984). Specific catchment area is estimated by A/L, with A being the 

number of pixels draining into a pixel multiplied by the area of a pixel, and L as the pixel width (Moore et 

al., 1991). TWI was grouped into three classes of equal area. Ten samples locations were selected at 

random within each class. From each sample point the first mineral horizon (surface horizon) and the 10 

cm below that horizon (subsurface horizon) were sampled. 

Sample Preparation 

All samples were air dried, ground, sieved (2-mm sieve), and thoroughly mixed to make individual 

samples as homogenous as possible (Laboski and Lamb, 2003). Dried and ground samples were stored in 

sealed centrifuge tubes at 4°C until 1 day prior to analysis. 

Sequential Fractionation 

The method of sequential P fractionation is based on a suggested modification (Sui et al., 1999) of the 

Hedley method (Hedley et al., 1982) as described by He et al. (2003). From each sample, 1.0 g of soil and 

25 mL of extractant was placed in a centrifuge tube in a reciprocal shaker at 180 oscillations per minute 

for 16 h at room temperature. The samples were centrifuged for 15 min at 2,800 X g and the 

supernatant filtered (Whatman No. 2 or equivalent). This process was repeated sequentially with the 

following extractants: (i) distilled deionized water, (ii) 0.5M NaHCO3, (iii) 0.1M NaOH, and (iv) 1.0M HCl. 

Duplicates of each sample were fractionated in this manner. Water, 0.5M NaHCO3, and 0.1M NaOH 

extracts were acidified and filtered prior to analysis for Pi. Pi was determined by the ammonium 

molybdate-ascorbic acid method (Knudsen and Beegle, 1988). The ammonium molybdate-ascorbic acid 

method is a single reagent orthophosphate colorimetric method with two stock solutions, the 
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concentrated ammonium paramolybdate solution and the ascorbic acid solution. The concentrated 

ammonium paramolybdate solution consists of 60 g of ammonium paramolybdate (NH4)6Mo7O24·4H20) 

and approximately 200 mL of distilled water in a 1 L volumetric flask, along with 1.455 g of antimony 

potassium tartrate K2Sb2 (C4H2O6)2. These compounds are added to 700 mL of concentrated sulfuric acid 

and allowed to cool to room temperature, diluted to volume with distilled water, and stored in a dark 

glass bottle in the refrigerator. The ascorbic acid solution was made by dissolving 132 g of ascorbic acid 

in distilled water and diluted to 1 L in a volumetric flask. The single colorimetric working solution was 

made daily by adding 25 mL of concentrated ammonium paramolybdate solution to approximately 800 

mL distilled water, with 10 mL of the ascorbic acid solution and diluting to volume with distilled 

deionized water in a 1 L volumetric flask. To determine P content, 2 mL of the soil extract or P standard 

was transferred to a test tube with 8 mL of the colorimetric working solution and mixed thoroughly. 

After 20 minutes for color development, the percent transmittance was read at 882 nm. Total P (Pt) was 

determined with a Perkin Elmer P4000 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-

OES). Po was calculated for each fraction as the mathematical difference between the reactive Pi and Pt. 

Mehlich-1 

Mehlich-1 (M1) is a soil test with a 5:1 ratio of Mehlich-1 solution (0.025 N H2SO4 + 0.05 N HCl) to soil. 

The mixture is shaken for five minutes on a reciprocating shaker set at a minimum of 180-200 

oscillations per minute (Nelson et al., 1953). The extractant is filtered through a medium-porosity filter 

paper (Whatman No. 2 or equivalent) and analyzed for P content (Nelson et al., 1953). Pt was 

determined with a Perkin Elmer P4000 Inductively Coupled Plasma Optical Emission Spectrometer (ICP-

OES). For modeling purposes, a mean M1 P levels was calculated for each field. 

Mehlich-3 

Mehlich-3 (M3) is a 10:1 ratio of Mehlich-3 solution (0.2 N CH3COOH + 0.25 N NH4NO3 + 0.015 N NH4F + 

0.013 N HNO3 + 0.001 M EDTA) to soil. The mixture is shaken for five minutes on a reciprocating shaker 

set at a minimum of 180-200 oscillations per minute (Mehlich, 1984). The extractant is filtered through a 

medium-porosity filter paper (Whatman No. 2 or equivalent) and analyzed for P content (Mehlich, 

1984). Pt level was determined with a Perkin Elmer P4000 ICP-OES. For modeling purposes, a mean M3 P 

levels was calculated for each field. 

Modeling Parameters 

Terrain attributes from 3-m resolution United States Geologic Survey (USGS) DEM were calculated. The 

elevation model was converted and exported as an ASCII files using ArcGIS 10.3. The ASCII files were 
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imported into SAGA GIS (Bock et al., 2008). In SAGA, each DEM was examined for and filled any sinks or 

voids (Wang and Liu, 2006). Primary terrain attributes slope gradient, profile curvature, plan curvature, 

and tangential curvature were calculated (SAGA). Based on multiple flow direction (MFD), deterministic 

eight (D8) and deterministic infinity (D∞) calculation methods, the upslope contributing areas using the 

recursive upslope method, were calculated for use when calculating the compound topographic indices 

TWI and SPI. In addition to these six compound indices three additional indices, a SAGA wetness index 

(TWIs), modified SPI (SPIm) and convergence index (CI) were constructed. CI is a terrain parameter that 

examines the aspect of surrounding cells and determines the degree to which those aspects point 

toward or away from a given cell (Koethe and Lehmeier, 1996). TWIs uses a modified catchment area 

calculation to better represent water dispersions in low slope areas (Boehner et al., 2002). The SPIm is 

the same SPI calculation but it is generated using the modified catchment area calculation of the TWIs. 

All compound indices were exported as ESRI Grid files using SAGA 2.0. Lastly, the data was imported into 

Arc Map 10.2 and the respective TWI and SPI values attached to the sample point data. The combined 

data was than exported as .DBF files for analysis in Minitab version 17 (Minitab, 2012). 

While the 3M DEM was the basis for all topographic data in this research, it is likely there is a local 

optimal resolution. Clearly there is some potential for a variation on the modifiable areal unit problem 

related to the artificial selection of 30 meter dimensionality. Specifically a DEM at another resolution or 

scale could generate different results. However a multi scale assessment to optimize DEM resolution to 

the study sites or the region is beyond the scope of this research. Additionally 30 meters is a resolution 

that is available statewide and is less resource dependent in terms of processing the DEM. 

Statistical Analysis and Modeling 

Surface and subsurface models were developed. All models included a STP term (individual data points 

or field averages). Stepwise regression was used to identify topographic variables that explain a 

significant portion of the variability in the sequential extracted P fractions across all study sites. Alpha to 

enter and leave values of 0.05 were selected. Each Po and Pi fraction for the surface and subsurface 

horizons relative to the modeling parameters S TWI, CI, ELE, MFD, Z Slope, D8 SPI, D8 TWI, DINF SPI, 

PRC, and TANC were examined. To determine final model parameters, the initial models with multiple 

landscape variables were reexamined. Where models were generated with multiple terms measuring 

the same phenomena and or spatial model terms were significantly correlated (p≤0.05), selected model 

terms were removed. Model terms selected for removal were based on variance inflation factors, p 

values, frequency of occurrence in other models, and expert knowledge.  
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Randomly 30% of the data was selected for the purpose of model validation. After selecting model 

terms, the regression equations were applied to the validation data, and modeled the predicted values 

against the real data and measured the fit (r2) for each equation. Next field level averages were 

calculated from the sample data for M1 and M3 STP values in place of individual sample STP values and 

evaluated these predicted values against validation data and measured the fit (R2) for each equation. 

Lastly the fit of the M1 and M3 STP models was measured across all samples to determine which STP 

method explained the greatest portion of variability in the test data. This step was developed to 

determine how well each soil test data set did respectively when modeling the sequentially extracted P 

fractions over the landscape. 

Results and Discussion 

To facilitate the development of these models an extensive set spatially explicit sequentially extracted P 

data was used to develop and test a series of multiple regression models based on initial stepwise 

regression models. When the stepwise procedure was applied to the model dataset the predicted r2 

ranged from a low of .528 for the subsurface Pi M3-0.5M NaHCO3 model to a high of .962 for the surface 

Po M1-1.0M HCl model (Table 5.1). However, when examined closer, several models contained terms 

that were potentially collinear and the lack of fit with some models could be an indication of inaccuracy 

and bias in the models (Minitab, 2012). Of the 18 initial landscape variables considered by the stepwise 

procedure, ten variables were included in at least one model (Table 5.2). The Pearson product moment 

correlation (Table 5.3) identified 16 significant (p ≤ 0.05) correlations between various landscape terms. 

Inclusion of multiple collinear model terms violates the basic assumptions inherent with regression 

models and thereby reducing the predictive utility of the model (Thompson et al., 1997). Two of more 

landscape variables were included in 14 of the regression models. In some instances, (Surface Pi M1-DDI 

H2O and Subsurface Po M1-0.5M NaHCO3) models had Mallows’ Cp values more than double the number 

of model terms (Table 5.1) an indication of collinearity. In other instances, potential collinearity was 

identified when models contained compound terrain variables as well as some of their component 

primary terrain variable components. Thompson et al. (1997) point out how several of the models 

generated by Moore et al. (1993) used regression models with slope gradient and TWI to predict soil 

properties. The primary terrain variable slope gradient is a component in the TWI and using both has the 

potential to reduce the predictive utility of the model (Thompson et al., 1997).  

To view selected model terms, see (Table 5.4 & 5.5). In general, model terms were selected that had 

lower variance inflation factors, lower p values, and terms that occurred frequently in other models 
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(Table 5.6). For example, the model for the surface inorganic P fraction extracted with 0.5M NaHCO3, 

contained a slope gradient term and a compound terrain variable in which slope is a component (Table 

5.4), and the subsurface inorganic P fraction extracted with DDI H2O, contained another compound 

terrain variable, and upslope contributing area term (Table 5.5). While not a component of the 

compound variable, the up slope contributing area term is another calculation of a component term. In 

both instance, there were significant correlations between the terms (Table 5.3), similar variance 

inflation factors (Table 5.4 & 5.5). The complete list of final regression models is provided in Table 5.7. 

Among the models for the sequentially extracted Pi fractions from the surface horizon samples, the term 

TWIs was included in six of eight models (Table 5.6). Among compound terrain variables, TWI is a good 

indicator of soil moisture (Pei et al., 2010) and TWI has been suggested as a tool to identify critical 

source areas (CSA) (Endreny and Wood 2003; Page et al., 2005). “The strong influence of terrain 

parameters on the soil spatial variation is now a well-known principle” (Park and Vlek 2002). Overall, in 

seven of eight models the terrain parameter model term (TWI or CI) was selected. Terrain parameters 

tend to be very effective soil predictors at the hillslope or field scale (Huggett, 1975; McKenzie and 

Austin, 1993; Gessler et al., 1995; Thompson et al., 1997; McBratney et al., 2000; Park and Vlek 2002). 

This is consistent with the way P movement was described by Smeck and Runge (1971) when they 

indicated P movement follows the direction of surface and subsurface water movement. The frequent 

inclusion of these terms reinforces the notion that hydrologic data needs to be integrated when 

identifying CSA, predicting P loss, and developing P management strategies (Collick et al., 2015). 

The sequentially extracted Po fractions from the surface horizon samples behaved somewhat similar to 

the Pi fractions. However, unlike the inorganic fractions where only M3 models did not contain the term 

TWIs, the two models without TWIs in this group were in the same extractable fraction in both the M1 

and M3 STP models. It would appear that 1.0M HCl extracted Po fractions may be controlled by other 

factors. For example, as pH and other the concentrations of other ions change the forms of soil 

phosphorus also change (Smeck, 1973). In general, as pH drops less soluble and more occluded forms of 

P dominate (Smeck, 1973). In general, the HCl extractable pools are the non-available and or recalcitrant 

P pools (Ziadi et al 2013). It may be the relative stability of this fraction does not lend to downslope 

movement as seen in the other fractions. Similarly, others have indicated the HCl extractable fraction 

may be a sink for P (Haynes and Williams, 1992; Patzold et al. 2013). The continual and excessive 

additions of P to soils in temperate climates causes elevated levels of the most labile P fractions 

(Negassa and Leinweber 2009). Perhaps over time these mobile fraction satiate the sorption sites 
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typically extracted by the stronger components in the sequential extraction and the spatial variability of 

that factor is adequately expressed by the variability in the routine soil test data. 

The subsurface sequentially extracted inorganic P fractions did not display the consistency in selected 

model terms found in the surface samples. Traditionally P transfer by subsurface pathways has been 

perceived as negligible (Turner and Haygarth, 2000). However, P does bypass much of the soil matrix via 

preferential flow (Kleinman et al., 2004; Harman et al., 20130. Clearly subsurface P movement is a less 

understood transport mechanism (Turner and Haygarth, 2000). As such, unlike the majority of the 

surface samples, within the inorganic fractions, only two of the eight models used the combination of 

TWIs and STP. Three models include other topographic variables (profile curvature, elevation, and SPI). 

This is consistent with the idea that topography can have an indirect effect on soil properties, and the 

distribution of P (Seibert et al. 2007; Vasques et al. 2010), but as a whole, the more mobile fraction (DDI 

H2O, and 0.5M NaHCO3) models tend to not have topographic components while the models for the less 

mobile fractions do include topographic components. This is consistent with mobile fractions moving 

rapidly away via subsurface flow and less mobile fractions persisting. As Rittenburger et al. (2015) 

pointed out, in subsurface pathways, strongly adsorbed chemicals tend to adhere to the soil matrix and 

become somewhat immobile. In the literature there are ample examples of P accumulating in the sub 

surface horizons of agricultural soils (Eghball et al., 1996; Hountin et al., 1997; Oehl et al., 2002; 

Stephenson and Chapman, 1931; Harman et al., 2013). 

In the subsurface horizon, sequentially extracted Po fractions behaved in a pattern more consistent with 

the surface organic fractions. TWIs was a model tem in six of eight models. P applied with animal manure 

is generally more prone to leaching than inorganic fertilizer (Chardon et al., 1997; Eghball et al., 1996; 

Glæsner et al., 2011). As such the ability to model these fractions similarly to their surface counterparts 

is not unexpected. The only sequentially extracted fraction models not to include the term TWIs were 

the 1.0M HCl fractions with the M1 and M3 model terms. Given the similarity of extraction mechanisms 

(strong acid and dilute double acid) it is it is understandable that such a model could explain 94.26% of 

the variability. The M3 model did not include a spatial term similar to its corresponding surface model. 

The models for the 1.0M HCl fraction in the M1 Po subsurface, M1 Pi subsurface, and the M1 Po surface 

models all contained the same model terms (list those model terms in parentheses here).  

Overall, M1 models explained 89.35% of the variability in the validation data set, while the M3 models 

only explained 69.08% (Table 5.8). This may be an important distinction, as terrain variables are poorly 

correlated to various P forms across multiple land uses (Roger et al., 2014; Sarmadian et al., 2014), but 
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have proven highly useful at identifying CSA and predicting P loss at field and sub field levels. While P 

variability can be substantial between fields, among land uses, and within fields (Page et al., 2005), the 

combination of actual soil test P data and topographic data can adequately describe said variability and 

generate useful knowledge. When examined by soil test type (M1 vs. M3) some broad generalizations 

about the appropriateness of each soil test for the purpose of modeling sequentially extracted P 

fractions could be made. For example, the M1 and M3 models were examined across all sample data by 

various grouping intervals (surface, subsurface, Po and Pi) to determine which soil test had the best 

overall fit. Among the surface samples, point value M1 STP data had an overall fit (R2) of 92.44% 

compared to the M3 STP data fit of 84.56%. Among the subsurface models those numbers dropped to 

84.13% and 54.56%, respectively. Accordingly, it is critical to utilize a soil test parameter that is the best 

compromise between availability of data and simple fit of the predictive model. Overall, the M1 STP 

models yielded a higher R2, but in many instances both models have the ability to improve 

understanding and enhance the decision making processes. 

Given the global frequency of P application in excess of removal (Kronvang et al., 2009), the acceleration 

of P redistribution by agricultural practices (Rubaek et al., 2013) and need for models that reflect P fate 

and transport (Kleinman et al., 2015) it is reasonable to expect such models may find practical 

application. Given this, it is prudent to consider how a model may be used as opposed to how it was 

intended to be used. While terrain variables are extensive in number and scope, and while terrain 

variables provide a great deal of important information about the various physical process that occur at 

a given location (Pei et al., 2010), discrete STP data for any or all fields or sub-field units of management 

in a region are generally not available. Often in agriculture producers sample at coarser scales than 

researchers may prefer for modeling P fate and or transport. Thus the best available STP data may at 

times be a single field value from a composite sample. 

If applied in practice regionally in the poultry producing region of West Virginia, a single field average is 

likely the only data that would be available. While not specifically modeled for this use, it is likely that 

would be how these models would be applied. To understand the impact of using the incorrect data for 

these models, the field average STP data was utilized in place of the point data values. When this 

substitution was made for the surface models the R2 values dropped (Table 5.8). However, when the 

same substitution was applied to the subsurface models the M3 model dropped but the M1 model 

improved slightly. Overall, the point data out performed field averages, but in many instances both 

models have the ability to improve understanding and decision making. 
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Conclusions 

The goal of these models was to develop a simple, affordable, and utilitarian approach for predicting 

sequentially extracted P fractions across complex landforms utilizing the best available data. Such 

models could facilitate frugality and equitableness in allocation of resources to identify locations for 

targeted mediation. Historically soil-landscape relationships have been used successfully at numerus 

scales to model many soil properties and characteristics (Moore et al. 1993; Gessler et al., 1995; Gessler 

et al., 2000; Omran, 2012). However, for such models to be successfully applied to the management of 

P, soil-P- landscape models must accurately capture the impact of the various important processes 

controlling the distribution of P at a given scale (Kleinman et al., 2015). In the context of these models, 

that means not only selecting the proper terrain variables, but also selecting the STP method that yields 

the greatest predictive power. The data is suggestive of an ability to adequately model the spatial 

distribution of sequentially extracted P data within individual fields from routine soil test data and 

readily available terrain data. Thus confirming Ha1 as soil landscape data and soil test P data were 

successfully used to model sequentially extracted Po models at landscape scales thus rejecting the Ho1. 

Likewise when the Mehlich 1 and Mehlich 3 soil test P levels were used to model sequentially extracted 

Po fraction the Mehlich 1 models generally yielded models with higher R2 vales, thus rejecting Ho2.  

In most cases a single field average from a typical agronomic soil test and the associated TWIs for that 

field would generate a map of highly labile, labile, moderately labile, and somewhat non-labile P for the 

field in question. From this data, conservation professionals could evaluate the infield area that is most 

likely to contribute significant P loss. In addition to a basic evaluation of potential loss, environmental 

and conservation professionals could in theory apply some sort of economic metric in terms of P loss 

prevented per dollar spent and spatially model competing scenarios for how to allocate resources. 

Clearly this model may not have adequate exportability to be useful at larger national scales, but in 

terms of grassland in the poultry producing region of West Virginia this may prove to be very useful. 

Given the political climate in the Chesapeake Bay watershed, some locations with significant P 

accumulation could ultimately face mandatory mitigation. At that time P loss assessment tools will be 

needed to implement mediation strategies. It is safe to assume there will never be adequate funding to 

pay for full implementation, and it is very unlikely that all producers would voluntarily make every 

desired remediation effort given the elevated P levels may have occurred while operating under 

previously acceptable management practices. This makes targeted remediation using available funding 

not only sensible, but a reasonable first step in a long term plan to eliminate much of the current P loss. 



129 
 

  



130 
 

References 

ArcGIS. 2014. ArcGIS 10.3. ESRI Redlands CA. 

Anderson, B.H. and F.R. Magdoff. 2005. Relative movement and soil fixation of soluble organic and 

inorganic phosphorus. J. Environ. Qual. 34:2228–2233. 

Andersen, H.E., and B. Kronvang. 2006. Modifying and evaluating a P index for Denmark. Water Air and 

Soil Poll. 174(1-4): 341-353. 

Beven, K. J. and M.J. Kirkby. 1979. A physically based, variable contributing area model of basin 

hydrology. Hydrol. Sci. Bull., 24, 43–69. 

Blake, L., A.E. Johnston, P.R. Poulton and K.W.T. Goulding. 2003. Changes in soil phosphorus fractions 

following positive and negative phosphorus balances for long periods. Plant and Soil 254: 245–

261. 

Bock, M., J. Bohner, O. Conrad, R. Kothe, and A. Ringeler. 2008. SAGA: System for the Automated 

Geoscientific Analysis. Dept. of Physical Geography, Hamburg, Germany. URL http://www.saga-

gis.org/en/index.html/ (verified 29 March 2013). 

Boehner, J., R. Koethe, O. Conrad, J. Gross, A. Ringeler, T. Selige. 2002. Soil Regionalization by Means of 

Terrain Analysis and Process Parameterization. In: Micheli, E., Nachtergaele, F., Montanarella, L. 

[Ed.]: Soil Classification 2001. European Soil Bureau, Research Report No. 7, EUR 20398 EN, 

Luxembourg. pp. 213-222. 

Bowman, R.A., and C.V. Cole. 1978. An exploratory method for fractionation of organic phosphorus from 

grassland soils. Soil Sci. 125, 95–101. 

Brady, N. C., and R.R. Weill. 2002. The Nature and Properties of Soils; Prentice Hall: Englewood Cliffs, NJ. 

Chang, S.C., and M.L. Jackson. 1957. Fraction of soil phosphorus. Soil Sci. 84:133–144. 

Chardon, W., O. Oenema, P. del Castilho, R. Vriesema, J. Japenga, D. Blaauw, D., 1997. Organic 

phosphorus in solutions and leachates from soils treated with animal slurries. Journal of 

Environmental Quality. 26: 372–378. 



131 
 

Collick, A., D. Fuka, P. Kleinman, A. Buda, J. Weld, M. White, T. Veith, R. Bryant, C. Bolster, Z. Easton. 

2015. Predicting phosphorus dynamics in complex terrains using a variable source area 

hydrology model. Hydrol. Process. 29: 588–601. 

Easton, Z.M., M.T. Walter, M. Zion, E.M. Schneiderman, T.S. Steenhuis. 2009. Including source-specific 

phosphorus mobility in a nonpoint source pollution model for agricultural watersheds. Journal 

of Environmental Engineering, ASCE 135(1): 25–35.  

Eghball, B., G.D. Binford, D.D. Baltensperger. 1996. Phosphorus movement and adsorption in a soil 

receiving long-term manure and fertilizer application. Journal of Environmental Quality 25: 

1339–1343.  

Endreny, T.A., E.F. Wood. 2003. Watershed weighting of export coefficients to map critical phosphorus 

loading areas. J. Am. Water Resour. Assoc. 39: 165–181.  

Galeone, D.G. 1996. Factors affecting phosphorus transport at a conventionally-farmed site in Lancaster 

County, Pennsylvania. 1992-95. U.S. Geological Survey Water-Resources Investigations Report 

96-4168.  

Gessler, P.E., O.A., Chadwick, F. Chamran, L. Althouse, and K. Holmes. 2000. Modelling soil-landscape 

and ecosystem properties using terrain attributes. Soil Science Society of America Journal, 64, 

2046– 2056. 

Gessler, P.E., I.D. Moore, N.J. McKenzie, P.J. Ryan. 1995. Soil-landscape Modelling soil-and spatial 

prediction of soil attributes. Int. J Geogr. Inf. Syst. 9: 421-432.  

Girgin, B.N., and B.E. Frazier. 1996. Landscape position and surface curvature effects on soils developed 

in the Palouse area, WA. Washington State University, Department of Crop and Soil Sciences, 

Pullman, WA. 

Glaesner, N., C. Kjaergaard, G.H. Rubaek, J. Magid. 2011. Interactions between soil texture and 

placement of dairy slurry application: II. Leaching of phosphorus forms. Journal Environmental 

Quality 40: 344–351. 

Guppy, C.N., N.W. Menzies, P.W. Moody, B.L. Compton, F.P.C. Blamey. 2000. A simplified, sequential, 

phosphorus fractionation method. Communications in soil science and plant analysis. 31: 1981 – 

1991. 



132 
 

Harman, M. B., J.A. Thompson, L.M. McDonald, E.M. Pena-Yewtukhiw, J. Beard. 2013. Phosphorus 

Translocation in Pastures on Benchmark Soils in West Virginia. Soil Horizons, 54(3). 

Haynes, R. J., P.H. Williams. 1992. Long-term effect of superphosphate on accumulation of soil 

phosphorus and exchangeable cations on a grazed, irrigated pasture site. Plant Soil 142: 123–

133. 

He, Z., C. W. Honeycutt, and T. S. Griffin. 2003. Comparative investigation of sequentially extracted 

phosphorus fractions in a sandy loam soil and a swine manure. Communications in soil science 

and plant analysis. Vol. 34, Nos. 11 & 12, pp. 1729–1742. 

Hedley, M.J., J.W.B. Stewart, and B.S. Chauhan. 1982. Changes in inorganic and organic soil phosphorus 

fractions induced by cultivation practices and by laboratory incubations. Soil. Sci. Soc. Am. J. 46, 

970–976. 

Hountin, J., D. Couillard, A. Karam. 1997. Soil carbon, nitrogen and phosphorus contents in maize plots 

after 14 years of pig slurry applications. Journal of Agricultural Science. 129: 187–191. 

Huggett, R.J., 1975. Soil landscape systems: a model of soil genesis. Geoderma 13, 1– 22. 

Jansson, M., H. Olsson, and K. Pettersson. 1988. Phosphatase: Origin, characteristics and function in 

lakes. Hydrobiologia 170:157–175. 

Kirkby, M.J., Imeson, A.C., Bergkamp, G., Cammeraat, L.H., 1996. Scaling up processes and models from 

the field plot to the watershed and regional scale. Journal of Soil and Water Conservation 51, 

391–396. 

Kleinman, P.J.A., D.R. Smith, C.H. Bolster, Z.M. Easton. 2015. Phosphorus fate, management, and 

modeling in artificially drained systems. J. Environ. Qual. 44:460–466. 

Kleinman, P.J.A., B.A. Needelman, A.N. Sharpley, and R.W. McDowell. 2004. Using soil phosphorus 

profile data to assess phosphorus leaching potential in manured soils. Soil Sci. Soc. Am. J. 67 (1): 

215-224. 

Knudsen, D. and D. Beegle. 1988. Recommended phosphorus tests. p. 12-15, In: W.C. Dahnke (ed.) 

Recommended Chemical Soil Tests Procedures for the North Central Region. Bulletin No. 499 

(Revised). North Dakota Agric. Exp. Sta., Fargo, North Dakota.  



133 
 

Koethe, R. & F. Lehmeier. 1996. SARA - System zur Automatischen Relief-Analyse. User Manual, 2. 

Edition [Dept. of Geography, University of Goettingen, unpublished].  

Kronvang, B., G.H. Rubaek, G. Heckrath. 2009. International phosphorus workshop: diffuse phosphorus 

loss to surface water bodies — risk assessment, mitigation options and ecological effects in river 

basins. Journal of Environmental Quality 38: 1924–1929.  

Laboski, C.A.M., and J.A. Lamb. 2003. Changes in soil test phosphorus concentration after application of 

manure or fertilizer. Published in Soil Sci. Soc. Am. J. 67:544–554. 

Liu, Z.P., M.A. Shao, Y.Q. Wang. 2013. Spatial patterns of soil total nitrogen and soil total phosphorus 

across the entire Loess Plateau region of China. Geoderma 197–198: 67–78. 

McBratney, A.B., I.O.A. Odeh, T.F.A. Bishop, M.S. Dunbar, T.M. Shatar. 2000. An overview of pedometric 

techniques for use in soil survey. Geoderma 97, 293–327. 

McKenzie, N.J., M.P. Austin. 1993. A quantitative Australian approach to medium and small scale surveys 

based on soil stratigraphy and environmental correlation. Geoderma 57, 329– 355. 

McKenzie, N.J., and P.J. Ryan. 1999. Spatial prediction of soil properties using environmental correlation. 

Geoderma 89, 67–94. 

Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of the Mehlich 2 extractant. Commun. 

Soil Sci. Plant Anal. 15(12):1409-1416. 

Minitab. 2012. MINITAB 17. Minitab, State College, PA. 

Moore, I.D., R. B. Grayson and A. R. Ladson. 1991 "Digital terrain modelling: A review of hydrological, 

geomorphological, and biological applications. Hydrological Processes, 5, 1: pp. 3-30. 

Moore, I.D., P.E. Gessler, G.A. Nielsen, G.A. Peterson. 1993. Soil attribute prediction using terrain 

analysis. Soil Sci. Soc. Am. J. 57:443-452. 

Negassa, W., P. Leinweber. 2009. How does the Hedley sequential phosphorus fractionation reflect 

impacts of land use and management on soil phosphorus: A review J. Plant Nutr. Soil Sci. 172: 

305–325. 



134 
 

Nelson W.L., A. Mehlich, E. Winters. 1953. The development, evaluation, and use of soil tests for 

phosphorus availability. In: Pierre, W.H., and A.G. Norman. Editors. Soil and fertilizer 

phosphorus. New York (NY): Academic Press, Inc. (Agronomy monograph series; 4). p 153-88. 

Nelson, N.O., J.E. Parsons, and R.L. Mikkelson. 2005. Field-scale evaluation of phosphorus leaching in 

acid sandy soils receiving swine waste. J. Environ. Qual. 34(6): 2024-2035. 

O'Callaghan, J. F. and D. M. Mark. 1984. The extraction of drainage networks from digital elevation data. 

Computer Vision, Graphics and Image Processing. 28: 328-344. 

Oehl, F., A. Oberson, H.U. Tagmann, J.M. Besson, D. Dubois, P. Mader, H.R. Roth, E. Frossard. 2002. 

Phosphorus budget and phosphorus availability in soils under organic and conventional farming. 

Nutrient Cycling in Agroecosystems 62: 25–35.  

Omran El, E., 2012. On-the-go digital soil mapping for precision agriculture. Int. J. Remote Sensing Appl. 

2 (3): 1–18. 

Park, S.J., and P.L.G. Vlek. 2002. Environmental correlation of three-dimensional soil spatial variability: a 

comparison of three adaptive techniques. Geoderma 109 (2002) 117– 140. 

Pachepsky, Y.A., D.J. Timlin, and W.J. Rawls. 2001. Soil water retention as related to topographic 

variables. Soil Sci. Soc. Am. J. 65: 1787–1795. 

Page T. P.M. Haygarth, K.J. Beven, A. Joynes, T. Butler, C. Keeler, J. Freer, P.N. Owens, and G.A. Wood. 

2005. Spatial variability of soil phosphorus in relation to the topographic index and critical 

source areas: sampling for assessing risk to water quality. J. Environ. Qual. 34:2263–2277.  

Park, S.J.; P.L.G. VLEK. 2002. Environmental correlation of three-dimensional soil spatial variability: 

comparison of three adaptive techniques. Geoderma 109: 117-140.  

Patzold S., M. Hejcman, J. Barej, J. Schellberg. 2013. Soil phosphorus fractions after seven decades of 

fertilizer application in the Rengen Grassland Experiment. Journal of Plant Nutrition and Soil 

Science 176: 910-920.  

Pei, T., C.Z. Qin, A.X. Zhu, L. Yang, M. Luo, B. Li, C. Zhou. 2010. Mapping soil organic matter using the 

topographic wetness index: A comparative study based on different flow-direction algorithms 

and kriging methods Ecological Indicators. 10: 610–619. 



135 
 

Pierzynski, G.M., RW McDowell, J.T. Sims. 2005. Chemistry, cycling, and potential movement of 

inorganic phosphorus in soils. in J.T. Sims and A.N. Sharpley. 2005. Phosphorus: Agriculture and 

the Environment. Soil Science Society of America. Madison Wisconsin, USA. pp53—87. 

Rittenburg, R.A., A.L. Squires, J. Boll, E.S. Brooks, Z.M. Easton, T. Steenhuis. 20145. Agricultural BMP 

effectiveness and dominant hydrological flow paths: concepts and a review. Journal of the 

American Water Resources Association 51(2): 305-329.  

Roger, A., Z. Libohova, N. Rossier, S. Joost, A. Maltas, E. Frossard, S. Sinaj. 2004. Spatial variability of soil 

phosphorus in the Fribourg canton, Switzerland. Geoderma 217–218: 26–36. 

Rubaek, G.H., K. Kristensen, S.E. Olesen, H.S. Ostergaard, G. Heckrath. 2013. Phosphorus accumulation 

and spatial distribution in agricultural soils in Denmark. Geoderma 209–210: 241–250. 

Sarmadian, F. A. Keshavarzi, A. Rooien, M. Iqbal, G. Zahedi, H. Javadikia. 2014. Digital mapping of soil 

phosphorus using multivariate geostatistics and topographic information. AJCS 8(8):1216-1223. 

Schroeder, P.D., and J.L. Kovar. 2006. Comparison of organic and inorganic phosphorus fractions in an 

established buffer and adjacent production field. Communications in Soil Science and Plant 

Analysis, 37: 1219–1232. 

Seibert J, J. Stendahl, R. Sorensen. 2007. Topographical Influences on soil properties in Boreal Forests. 

Geoderma 141: 139–148. 

Smeck, N.E. 1985. Phosphorus dynamics in soils and landscapes. Geoderma 36: 185-199. 

Smeck, N.E. 1973. Phosphorus: and indicator of pedogenetic weathering processes. Soil Sci. 115: 199-

206. 

Smeck, N.E. and E.C.A. Runge. 1971. Phosphorus availability and redistribution in relation to soil profile 

development in an Illinois landscape segment. Soil Sci. Soc. Am. Proc. 35: 952-959. 

Stephenson, R.E., H.D. Chapman. 1931. Phosphate penetration in field soils. Journal of the American 

Society of Agronomy 23: 759–770.  

Sui, Y., M.L. Thompson, and C. Shang. 1999. Fractionation of phosphorus in a Mollisol with biosolids. Soil 

Sci. Soc. Am. J. 63: 1174–1180. 



136 
 

Thompson, J.A. E.M. Pena-Yewtukhiw, J.H. Grove. 2006. Soil–landscape modelling across a physiographic 

region: Topographic patterns and model transportability. Geoderma 133: pp. 57–70 

Turner, B.L., and P.M. Haygarth. 2000. Phosphorus forms and concentrations in leachate from four 

grassland soil types. Soil Sci. Soc. Am. J. 64 (3):1090–1097. 

U.S. Geological Survey (USGS) and West Virginia Statewide Addressing and Mapping Board (SAMB). 

2003. West Virginia statewide digital elevation models. URL: 

http://wvgis.wvu.edu/data/dataset.php?ID=261 (verified May 15th 2016). 

Vasques, G.M., S. Grunwald, N.B. Comerford, J.O. Sickman. 2010. Regional modelling of soil carbon at 

multiple depths within a subtropical watershed. Geoderma 156: 326–336.  

Wang, L. & H. Liu. 2006. An efficient method for identifying and filling surface depressions in digital 

elevation models for hydrologic analysis and modelling. International Journal of Geographical 

Information Science. 20 (2): 193-213. 

Wang, Y., X. Zhang, C. Huang. 2009. Spatial variability of soil total nitrogen and soil total phosphorus 

under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150 (1-2): 

141–149.  

Young, F.J., and R.D. Hammer. 2000. Soil-landform relationships on a loess-mantled, upland landscape in 

Missouri. Soil Sci. Soc. Am. J. 64:1443–1454. 

Ziadat, F.M. 2005. Analyzing digital terrain attributes to predict soil attributes for a relatively large area. 

Soil Sci. Soc. Am. J., 69: 1590-1599. 

Ziadi, N., J.K Whalen, A.J. Messiga, C. Morel. 2013. Assessment and modeling of soil available 

phosphorus in sustainable cropping systems. Adv. Agron. 122: 85–126. 

  



137 
 

Tables 

Table 5.1 Initial regression models using stepwise procedure with adjusted R2 - a modified version 

of R-squared that has been adjusted for the number of predictors in the model, Mallow’s CP - when 

close to the number of predictors in a model indicates unbiased in estimating the true regression 

coefficients and predicting future responses and S the standard error of the regression 

Model Stepwise regression equation 

Model 

Adj. R2 

Mallow’s 

CP S 

Surface Pi M1 DDI H2O Y = -40.0 + 21.89 Z Slope + 16.03 S TWI + 0.12151 M1S 85.04 15.56 22.3 

Surface Pi M1 0.5M NaHCO3 Y = -150.1 + 40.4 Z Slope + 68.63 S TWI + 0.2866 M1S 85.60 16.48 48.6 

Surface Pi M1 0.1M NaOH Y = -388.2 - 0.4325 MFD + 230.5 S TWI - 8.65 D8 TWI - 0.0696 DINF SPI + 0.6462 M1S 87.26 1.77 110 

Surface Pi M1 1.0M HCl Y = -105.6 - 7663 TANC + 60.2 S TWI + 1.5076 M1S 95.52 1.19 140 

Surface Pi M3 DDI H2O Y = 8.65 + 1.743 m3s 60.20 7.94 34.7 

Surface Pi M3   0.5M NaHCO3 Y = -91.1 + 4.348 m3s + 48.5 S TWI 63.50 9.54 77.4 

Surface Pi M3   0.1M NaOH Y = -438.3 + 11.157 m3s - 0.224 MFD + 202.6 S TWI 78.23 4.25 144 

Surface Pi M3   1.0M HCl Y = 28.0 + 25.80 m3s - 7.71 CI 76.25 0.14 322 

Surface Po M1 DDI H2O Y = -24.2 + 22.60 S TWI + 0.18152 M1S 85.23 -1.0 32.9 

Surface Po M1 0.5M NaHCO3 Y = -46.3 + 1.668 CI + 59.2 S TWI + 0.2812 M1S 73.76 -4.30 75.5 

Surface Po M1 0.1M NaOH Y = -263 + 7.53 CI + 319.4 S TWI + 0.9823 M1S 69.58 8.34 299 

Surface Po M1 1.0M HCl Y = -21.2 - 44.2 Z_ELEVATIO + 1.8775 M1S 96.18 3.50 166 

Surface Po M3 DDI H2O Y = -12.5 + 2.986 m3s + 17.02 S TWI 72.38 3.92 43.7 

Surface Po M3 0.5M NaHCO3 Y = -4.9 + 5.380 m3s + 38.8 S TWI 74.22 -3.58 74.9 

Surface Po M3 0.1M NaOH Y = -50 + 18.67 m3s + 227.3 S TWI 65.87 3.05 316 

Surface Po M3 1.0M HCl Y = -57.4 + 30.89 m3s 80.03 -1.35 379 

Subsurface Pi M1 DDI H2O Y = 0.50 + 0.08461 M1S 86.94 -3.70 14.5 

Subsurface Pi M1 0.5M NaHCO3 Y = 42.8 - 4359 PRC + 0.2665 M1S 70.07 -1.70 74.6 

Subsurface Pi M1 0.1M NaOH Y = -378.2 + 4.00 CI + 162.9 S TWI + 0.5942 M1S 83.5 1.96 120 

Subsurface Pi M1 1.0M HCl Y = 4.9 - 37.3 Z_ELEVATIO + 1.2702 M1S 94.26 -2.02 139 

Subsurface Pi M3 DDI H2O Y = 0.01 + 1.324 m3s 65.70 1.49 23.5 

Subsurface Pi M3 0.5M NaHCO3 Y = 43.6 + 4.054 m3s 52.83 0.61 93.7 

Subsurface Pi M3 0.1M NaOH Y = -254.2 + 10.985 m3s + 110.5 S TWI 76.43 2.10 144 

Subsurface Pi M3 1.0M HCl Y = -36.3 + 22.36 m3s - 5.72 CI + 0.1441 D8 SPI 77.63 -1.28 274 

Subsurface Po M1 DDI H2O Y = -36.7 - 0.0440 MFD + 24.69 S TWI + 0.15711 M1S 86.98 6.57 26.1 

Subsurface Po M1   0.5M 

NaHCO3 

Y = -101.4 + 2.175 CI + 54.7 S TWI + 0.3218 M1S 84.62 -6.81 63.2 

Subsurface Po M1   0.1M NaOH Y = -587 + 11.00 CI + 339.6 S TWI + 0.8370 M1S 71.85 3.23 261 

Subsurface Po M1   1.0M HCl Y = -42.8 - 48.0 Z_ELEVATIO + 1.3785 M1S 90.99 -5.66 193 

Subsurface Po M3 DDI H2O Y = -43.2 + 2.739 m3s + 32.3 Z Slope + 21.65 S TWI 75.76 5.94 35.6 

Subsurface Po M3 0.5M NaHCO3 Y = -52.8 + 6.134 m3s + 30.9 S TWI + 0.0297 D8 SPI 74.22 3.00 67.0 

Subsurface Po M3 0.1M NaOH Y = -304 + 17.24 m3s + 221.5 S TWI 68.31 6.52 277 

Subsurface Po M3 1.0M HCl Y = -69.3 + 22.80 m3s 76.21 0.15 313 

  



138 
 

Table 5.2 All topographic variables considered & selected by the initial stepwise regression 

procedure 

Potential model terms Selected Variable type 

Deterministic 8 up slope contributing area (D8)  primary terrain variable 

Deterministic infinity up slope contributing area (INF)  primary terrain variable 

Multiple flow direction up slope contributing area (MFD) • primary terrain variable 

Profile curvature (PRC) • primary terrain variable 

Plan curvature (PLC)  primary terrain variable 

Tangential curvature (TANC) • primary terrain variable 

Z score of individual study site aspects (Z Aspect)  primary terrain variable 

Z score of individual study site aspects slope (Z Slope) • primary terrain variable 

Z score individual study site aspects (Z Elevation) • primary terrain variable 

Convergence index (CI) • Compound terrain variable 

SPI from D8 up slope contributing area (D8 SPI) • Compound terrain variable 

TWI from D8 up slope contributing area (D8 TWI) • Compound terrain variable 

SPI from INF up slope contributing area (DINF SPI) • Compound terrain variable 

TWI from INF up slope contributing area (DINF TWI)  Compound terrain variable 

SPI from saga modified contributing area (MC SPI)  Compound terrain variable 

SPI from MFD up slope contributing area (MFD SPI)  Compound terrain variable 

TWI from MFD up slope contributing area MFD TWI)  Compound terrain variable 

Saga topographic wetness index (S TWI) • Compound terrain variable 
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Table 5.3 Pearson product moment correlation of topographic model terms selected by initial 

stepwise regression procedure. 
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0.221         

0.052         

PRC 

-0.027 -0.063        

0.816 0.582        

TANC 

0.007 -0.067 0.465       

0.955 0.561 0.000       

MFD 

-0.176 -0.289 0.012 -0.356      

0.123 0.010 0.981 0.001      

CI 

0.236 -0.030 0.167 0.453 -0.597     

0.038 0.792 0.144 0.000 0.000     

S TWI 

-0.198 -0.395 -0.084 -0.379 0.483 -0.554    

0.083 0.000 0.465 0.001 0.000 0.000    

D8 TWI 

0.034 -0.033 -0.027 -0.043 0.193 -0.102 -0.001   

0.767 0.774 0.816 0.712 0.091 0.376 0.993   

DINF SPI 

0.076 0.151 0.011 0.153 -0.514 0.104 -0.171 -0.491  

0.509 0.186 0.927 0.181 0.000 0.367 0.135 0.000  

D8 SPI 

0.061 0.113 0.019 0.111 -0.363 0.049 -0.120 -0.559 0.822 

0.599 0.322 0.868 0.335 0.001 0.671 0.296 0.000 0.000 
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Table 5.4 Summary model data for surface stepwise regression models with potentially collinear 

model terms 
Surface Pi M1 DDI H2O 

Term Coef   SE Coef   T-Value   P-Value    VIF 

Constant -40.0 12.9 -3.11 0.003  

Z Slope      21.89 8.20 2.67 0.009 1.24 

M1S        16.03 4.12 3.89 0.000 1.15 

S TWI 0.12151 0.00588 20.67 0.000 1.35 

 

Surface Pi M1 0.5M NaHCO3 

Term Coef   SE Coef   T-Value   P-Value    VIF 

Constant -150.0 29.4 -5.11 0.000  

Z Slope      40.4 18.7 2.16 0.034 1.24 

S TWI        68.63 9.42 7.28 0.000 1.35 

M1S 0.2866 0.0134 21.34 0.000 1.15 

 

Surface Pi M1 0.1M NaOH 

Term Coef   SE Coef   T-Value   P-Value    VIF 

Constant -388.2 70.2 -5.53 0.000  

MFD -0.4325 0.0881 -4.91 0.000 1.76 

S TWI 230.5 21.7 10.63 0.000 1.39 

D8 TWI -8.65 3.89 -2.22 0.029 1.33 

DINF SPI -0.0696 0.0199 -3.50 0.001 1.75 

M1S 0.6462 0.0300 21.56 0.000 1.11 

 

Surface Pi M1 1.0M HCl 

Term Coef   SE Coef   T-Value   P-Value    VIF 

Constant -105.6 80.5 -1.31 0.194  

TANC -7663 3614 -2.12 0.037 1.21 

S TWI 60.2 25.8 2.34 0.022 1.23 

M1S 1.5076 0.0384 39.22 0.000 1.14 

 

Surface Pi M3   0.1M NaOH 

Term Coef   SE Coef   T-Value   P-Value    VIF 

Constant -483.3 80.0 -5.48 0.000  

M3S 11.157 0.701 15.91 0.000 1.10 

MFD -0.224 0.100 -2.24 0.028 1.33 

S TWI 202.6 27.9 7.27 0.000 1.35 
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Table 5.5 Summary model data for subsurface stepwise regression models with potentially 

collinear model terms 
Subsurface Pi M1 0.1M NaOH 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -378.2 73.7 -5.13 0.000  
CI 4.00 1.24 3.22 0.002 1.67 
S TWI 162.9 24.1 6.77 0.000 1.45 
M1S 0.5942 0.0349 17.00 0.000 1.27 

 
Subsurface Pi M3 1.0M HCl 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -36.3 42.8 -0.85 0.400  
M3S 22.36 1.54 14.48 0.000 1.48 
CI -5.72 2.67 -2.14 0.036 1.48 
D8 SPI 0.1441 0.0578 2.49 0.015 1.00 

 
Subsurface Po M1 DDI H2O 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -36.7 14.5 -2.52 0.014  
MFD -0.0440 0.0180 -2.44 0.017 1.31 
S TWI 24.69 5.10 4.84 0.000 1.38 
M1S 0.15711 0.00709 22.17 0.000 1.11 

 
Subsurface Po M1 0.5M NaHCO3 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -101.4 38.8 -2.61 0.011  
CI 2.175 0.653 3.33 0.001 1.67 
S TWI 54.7 12.7 4.32 0.000 1.45 
M1S 0.3218 0.0184 17.50 0.000 1.27 

 
Subsurface Po M1 0.1M NaOH 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -587 160 -3.66 0.000  
CI 11.00 2.70 4.08 0.000 1.67 
S TWI 339.6 52.3 6.49 0.000 1.45 
M1S 0.8370 0.0759 11.02 0.000 1.27 

 
Subsurface Po M3 DDI H2O 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -43.2 21.8 -1.98 0.052  
M3M 2.739 0.178 15.38 0.000 1.16 
Z Slope 32.3 13.9 2.31 0.023 1.28 
S TWI 21.65 6.92 3.13 0.002 1.36 

 
Subsurface Po M3 0.5M NaHCO3 

Term Coef   SE Coef   T-Value   P-Value    VIF 
Constant -52.8 36.9 -1.43 0.156  
M3M 6.134 0.323 18.98 0.000 1.08 
S TWI 30.9 11.7 2.64 0.010 1.10 
D8 SPI 0.0297 0.0142 2.09 0.040 1.02 
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Table 5.6 Frequency of terms across all initial stepwise regression models 

Model Terms 
Number of 

Occurrences 

% of models 

including term 

Saga topographic wetness index (S TWI) 20 62.5  

Convergence index (CI) 7 21.9 

Z score individual study site elevation (ELE) 3 9.4 

Multiple flow direction up slope contributing area (MFD) 3 9.4 

Z score of individual study site slope (Z Slope) 3 9.4 

SPI from D8 up slope contributing area (D8 SPI) 2 6.3 

TWI from D8 up slope contributing area (D8 TWI) 1 3.1 

SPI from INF up slope contributing area (DINF SPI) 1 3.1 

Profile curvature (PRC) 1 3.1 

Tangential curvature (TANC) 1 3.1 
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Table 5.7 Final regression models for sequentially extracted P fractions with adjusted R2 - a 

modified version of R-squared that has been adjusted for the number of predictors in the model, R2 

fit 1 - fit against the validation set using point STP data, R2 fit 2 - fit against the validation set using 

field average STP data and S the standard error of the regression 
Model Stepwise regression equation Model 

Adj. R2 

R2 fit 1 * R2 fit 2 * S 

Surface Pi M1 DDI H2O Y = -25.1 + 0.11832 M1S + 11.25 S TWI 83.8% 73.4% 78.3% 22.1 

Surface Pi M1 0.5M NaHCO3 Y = -122.6 + 0.2807 M1S + 59.81 S TWI 84.9% 89.0% 81.2% 49.8 

Surface Pi M1 0.1M NaOH Y = -422.3 + 0.6617 M1S + 190.4 S TWI 82.9% 78.0% 81.3% 128 

Surface Pi M1 1.0M HCl Y = -161.6 + 1.4928 M1S + 77.9 S TWI 95.3% 95.7% 89.3% 143 

Surface Pi M3 DDI H2O Y = 8.65 + 1.743 m3s 60.2% 55.6% 63.7% 34.7 

Surface Pi M3   .5M NaHCO3 Y = -91.1 + 4.348 m3s + 48.5 S TWI 63.5% 74.0% 69.1% 77.4 

Surface Pi M3   0.1M NaOH Y = -404.2 + 11.371 m3s + 174.8 S TWI 77.1% 69.9% 79.3% 148 

Surface Pi M3   1.0M HCl Y = 28.0 + 25.80 m3s - 7.71 CI 76.3% 81.1% 82.2% 322 

Surface Po M1 DDI H2O Y = -24.2 + 0.18152 M1S + 22.60 S TWI 85.2% 75.0% 80.1% 32.0 

Surface Po M1 0.5M NaHCO3 Y = -0.6 + 0.2985 M1S + 43.3 S TWI 72.5% 78.6% 66.6% 77.3 

Surface Po M1 0.1M NaOH Y = -56 + 1.0604 M1S + 247.7 S TWI 67.6% 61.3% 62.9% 308 

Surface Po M1 1.0M HCl Y = -21.2 + 1.8775 M1S - 44.2 Z Elevation 96.2% 95.5% 77.5% 166 

Surface Po M3 DDI H2O Y = -12.5 + 2.986 m3s + 17.02 S TWI 72.4% 77.1% 78.4% 43.7 

Surface Po M3 0.5M NaHCO3 Y = -4.9 + 5.380 m3s + 38.8 S TWI 74.2% 84.3% 66.0% 74.9 

Surface Po M3 0.1M NaOH Y = -50 + 18.67 m3s + 227.3 S TWI 65.9% 61.1% 61.8% 316 

Surface Po M3 1.0M HCl Y = -57.4 + 30.89 m3s 80.0% 80.9% 67.2% 379 

Subsurface Pi M1 DDI H2O Y = 0.50 + 0.08461 M1S 86.9% 58.4% 72.0% 14.5 

Subsurface Pi M1 0.5M NaHCO3 Y = 42.8 + 0.2665 M1S - 4359 PRC 70.1% 75.8% 71.0% 74.6 

Subsurface Pi M1 0.1M NaOH Y = -268.6 + 0.6357 M1S + 124.8 S TWI 81.5% 65.3% 75.9% 128 

Subsurface Pi M1 1.0M HCl Y = 4.9 + 1.2702 M1S - 37.3 Z Elevation  94.3% 95.3% 92.6% 139 

Subsurface Pi M3 DDI H2O Y = 0.01 + 1.324 m3s 65.7% 43.7% 63.9% 23.5 

Subsurface Pi M3 0.5M NaHCO3 Y = 43.6 + 4.054 m3s 52.8% 64.4% 62.6% 93.7 

Subsurface Pi M3 0.1M NaOH Y = -254.2 + 10.985 m3s + 110.5 S TWI 76.4% 62.4% 75.4% 144 

Subsurface Pi M3 1.0M HCl Y = -36.3 + 22.36 m3s - 5.72 CI 

+ 0.1441 D8 SPI 

77.6% 37.0% 32.3% 274 

Subsurface Po M1 DDI H2O Y = -29.2 + 0.15856 M1S + 19.10 S TWI 86.1% 65.6% 76.0% 27.0 

Subsurface Po M1 0.5M NaHCO3 Y = -41.8 + 0.3444 M1S + 34.0 S TWI 82.6% 76.2% 80.8% 67.3 

Subsurface Po M1 0.1M NaOH Y = -285 + 0.9512 M1S + 235.0 S TWI 66.0% 32.5% 48.1% 287 

Subsurface Po M1 1.0M HCl Y = -42.8 + 1.3785 M1S -

 48.0 Z_ELEVATIO 

91.0% 93.5% 81.8% 192 

Subsurface Po M3 DDI H2O Y = -20.0 + 2.629 m3s + 14.44 S TWI 74.4% 64.1% 72.6% 36.6 

Subsurface Po M3 0.5M NaHCO3 Y = -42.2 + 6.114 m3s + 27.8 S TWI 81.9% 81.1% 80.2% 68.5 

Subsurface Po M3 0.1M NaOH Y = -304 + 17.24 m3s + 221.5 S TWI 68.3% 34.2% 48.2% 277 

Subsurface Po M3 1.0M HCl Y = -69.3 + 22.80 m3s 76.2% 84.5% 75.5% 313 
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Table 5.8 Mean fit of Mehlich 1 & 3 models using point and field average soil test P values for 

surface, subsurface, and all data  

Modeled P fractions Soil test model term R2 

Surface 

Mehlich 1 point test values 92.4 % 

Mehlich 1 field average 85.2 % 

Mehlich 3 point test values 84.6 % 

Mehlich 3 field average 81.4 % 

Subsurface 

Mehlich 1 point test values 84.1 % 

Mehlich 1 field average 84.6 % 

Mehlich 3 point test values 54.6 % 

Mehlich 3 field average 52.4 % 

All 

Mehlich 1 point test values 89.4 % 

Mehlich 1 field average 85.1 % 

Mehlich 3 point test values 69.1 % 

Mehlich 3 field average 66.0 % 

 

  



145 
 

Chapter 6. Summary 

Summary of Findings 

P management is more than a scientific endeavor; it is an issue of science, economics, and politics. As 

such, evolving technology, changing socioeconomic factors and the current political will generates an 

elastic target in terms of what is or is not an acceptable level of P saturation in soils and dissolved P in 

surface waters. This evolving target does place some agriculturalists in some locations between the 

proverbial rock and a hard place. The availability of low cost P-rich sources of N places economic 

pressures to apply said N sources liberally at the expenses of over application of P. As the impacts of 

excessive P accumulation become more apparent, the availability of low-cost animal manure fertilizers 

decline, and the political will to regulate agriculture increases, acceptable levels of P will likely be 

lowered. It is very likely producers and conservation professionals will soon face difficult management 

decisions. How scientists, environmental mangers, conservationists, and members of the production 

agriculture community deal with this will become critical in the near future. Thus, the issues which have 

the most relevance not only in terms of best management practices moving forward but in terms of how 

environmental professionals address the problems associated with management strategies from the 

past must be addressed. This research in part addresses several of these issues. 

Bench Top Experiments 

Understanding the interactions between soils, fertilizers, and management practices is critical for 

sustainable agriculture and environmental protection (Harman et al., 2013). However, much of what is 

known in terms of such interactions comes from controlled laboratory experiments and field trials. 

Furthermore, the conditions in the lab experiments are often different from the conditions in the field. 

In particular, field trials lack the controls in place in bench top experiments. One aspect of this research 

focused on applying experimental conditions that more closely resemble field conditions to a traditional 

incubation experiment, and then characterizing the fate of that P via a sequential P extraction 

procedure. 

A sequential P fractionation is a series of chemical extractions to characterize P by the type and/or 

strength of the assumed physicochemical interactions with the soil (Bowman and Cole 1978; Hedley et 

al., 1982; Cross and Schlesinger, 1995; Negassa and Leinweber 2009; Gagnon et al., 2012). Soil from 

locations with differing management histories were incubated over a period of time following one of 

several P treatments both with and without the presence of actively growing plants. During the course 
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of this research it was determined there were significant differences between several fractions relative 

to P source and fertilization history, but no difference relative the presence of vegetation. This is a 

somewhat common approach to define changes in soil P pools (Warren et al., 2008; He et al., 2004; Qian 

and Schoenau, 2000; Yang et al., 2002; Negassa and Leinweber 2009; Gagnon et al., 2012). In general, 

the results of this research agree with other results in terms of the effect of management history (Fox 

and Kamprath, 1970; Pote et al., 2003; Bond et al., 2006). In other aspects (impact of P source on P 

distribution and fractionation) there are conflicting results. One collection of papers (Eghball et al. 2005; 

Sikora and Enkiri 2005; Zvomuya et al. 2006; Sneller and Laboski 2009) indicate source of P was not 

important in terms of P distribution and fractionation while another (Gracy 1984; Motavalli et al. 1989; 

Sharpley and Sisak 1997; Griffin et al. 2003; Miller et al. 2010) indicated it was. These results concur with 

the second group. However, results did not indicate and effect from actively growing vegetation. 

Identifying Actual Patterns in Sequentially Extracted P Fractions 

Organic P (Po) in soil is the lesser studied part of the total P pool. Understanding Po is critical in managing 

potential P loss to the environment. If one were to assume Po moves across and within landscapes, it 

would be expected that evidence of that movement would be identified when the sequentially 

extracted Po fractions are examined across management units. However, a pattern is not always 

indicative of what is assumed to be causing it. Thus, to make that distinction clearer, it requires a deeper 

examination of the data. To determine if Po has moved over time on these research sites, sequentially 

extracted P fractions were analyzed for spatial significance (an indication that the Po levels seen across 

the landscape were not random). Next statistical techniques were used to identify soil properties that 

could explain some of the patterns seen in the Po data, and other techniques were used to determine if 

the remaining variability in the Po data still exhibited spatial significance (a nonrandom pattern across 

the landscape). 

To address the issue of true spatial significance, regression and Mantel tests (Bruland and Richardson, 

2004) were used to identify those soil properties that explained a significant portion of the Po variability, 

then fixed the effect of those variables and examined the residual variability for spatial dependence. 

Results identified 0.5M NaHCO3 and 1.0M HCl extractable Po fractions as exhibiting a pure spatial 

component in their distribution (real spatial pattern not explained by changes in soil properties). Other 

extractable fractions did not exhibit such spatial structure. 
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Explaining Spatially Significant Patterns in Sequentially Extracted P Fractions 

The next logical step after determining a spatially significant pattern in sequentially extracted Po 

fractions across the study sites has occurred is to try and understand why. The initial assumption is the 

differentiation in Po fractions is related to redistribution of Po via the movement of water. There are 

numerous examples of using topographic data to model moisture, water movement, and soil properties 

(e.g., Moore et al., 1991; Hornberger & Boyer, 1995; Iverson et al., 1997; Famiglietti et al. 1998; Boerner 

et al., 2000; Gessler et al., 2000; Western et al. 2001; Mohanty and Skaggs 2001; Case et al., 2005). Thus, 

one can reasonably expect there to be some topographic metric that relates to water movement that 

will explain the variability seen in the Po data, assuming the distribution is, in fact, related to the 

movement of water. 

Among topographic data, the variables can be generally described as primary or secondary (sometimes 

called compound) attributes (Bishop and Minasny 2006). Common primary attributes are slope gradient, 

slope aspect, and slope curvature. One of the most common secondary attributes is the topographic 

wetness index (TWI) (Bishop and Minasny 2006). In general, secondary attributes tend to be more useful 

than primary attributes for predicting soil properties (Bell et al. 1994; Gessler et al., 1995; McBratney et 

al., 2000; Bishop and Minasny 2006). In particular, TWI describes the likelihood of a location to 

accumulate water due to its surrounding topography (Gruber and Peckham, 2009). Another compound 

attribute related to water movement is the stream power index (SPI), which describes erosion and 

related landscape processes (Moore et al., 1991). These compound attributes utilize variables that can 

be calculated multiple ways. In this research, the common primary and compound terrain attributes and 

the multiple ways terrain attributes can be calculated were examined to determine if terrain attributes 

explained the residual variability in Po distributions not explained by changes in soil properties. 

It is reasonable to assume one would be able to explain the Po distribution using these variables. In fact, 

Moore et al. (1993) successfully used to TWI to explain STP data at field scale. When this approach was 

applied to this data, the variability not explained by changes in soil properties was adequately explained 

by terrain attributes. Specifically, in the location with the longest history of manure applications, a 

spatial pattern in the 1.0 M HCl extractable Po fraction in the surface samples was identified, the 

combination of Mehlich 1 extractable Ca, field subdivision and topographic wetness index explained the 

spatially autocorrelated variability at the location. In the other location with an extensive history of 

manure applications (but to a muck lower extent than the previous location) showed similar patterns in 

the 0.5 M NaHCO3 extractable Po fraction from the surface samples. Similarly, when soil and 
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topographic properties were used to model variability, the spatially autocorrelated variability was full 

explained. This further reinforces the concept of Po movement by water and indicates the potential 

utility of topographic variables for modeling purposes. 

Modeling Sequentially Extracted P Fractions Across Complex Landforms 

Upon determining the topographic relationship to the observed spatial variability seen in Po fractions 

cross complex landforms, the goal was to develop predictive models for sequentially extracted P 

fractions. Knowing P mobility depends on hydrological and chemical processes (Galeone, 1996; Easton 

et al., 2009) there was a reasonable expectation that these P distributions could be modeled. Given that 

P movement follows the direction of surface and subsurface water movement (Smeck and Runge, 1971) 

and that the movement of water and other materials are controlled by slope configuration (Huggett, 

1975), one would expect topographic variables to become significant model terms. To this end, the 

spatially explicit sequentially extracted P data was divided into a model building and model testing data 

set. The data was used to establish a series of statistical soil-landscape models that best explained the 

spatial distributions these P fractions across hay and grass pastures in West Virginia, and those models 

compared to the actual values identified in the model test data set. 

Successful models were developed. The models explained between 56% and 98% of the variability in the 

data. Mehlich1 STP (M1) data generally had better R2 values then the Mehlich 3 STP (M3) data. Spatially 

explicit STP data for the most part explained a higher percentage of variability than field averages. 

However, all models (M1 vs. M3 and Point vs. Field) performed well enough to potentially be useful. 

Implications 

Existing benchtop research can be accepted at face value. The presence of vegetation does not appear 

to alter the transformations of P in incubation studies. Sequentially extracted P fractions appear to 

establish themselves across landscapes in predictable patterns. Some of the spatial variability can be 

explained by changes in soil properties. However, this could be in part related to possible collinearity 

between soil properties and patterns of water movement. When fixed for changes in soil properties, few 

fractions exhibit patterns of spatial significance. When the variability explained by TWI was taken in 

account, none of the sequentially extracted P fractions were spatially autocorrelated. However, this 

does not mean sequentially extracted P fractions cannot be modeled successfully. In fact, STP levels 

alone and in conjunction with topographic variables can be used to create adequate models. 

In time, efforts will begin to further reduce P loss into the environment. When this occurs, 

environmental managers will have the ability to identify the fractions that pose the greatest risk of loss, 
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model interception strategies, and plot regional responses. As the P source in the environment that 

needs to be sequestered is identified, environmental professionals can develop techniques to sorb, 

restrain, or otherwise physically stop the P loss. The modeling techniques outlined here would enable 

conservation professionals to better describe risk on a field by filed basis. The modeling techniques 

outlined here would enable conservation professionals to allocate funds to locations with the highest 

potential P retained per dollar spent. 
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Appendix 

Sequentially extracted phosphorus fractions (benchtop) 

History: Hi - long history of manure application Low - little to no manure application; Treatment:  C - Control , LM -Leached Manure, M - 

Manure, ML Manure Leachate, Pi - Inorganic P, Po - organic P; Vegetation: B - bare/no vegetation, V - with actively growing plants/vegetation; 

Rep: replicate sample number; Sequential extracted fraction: H2Ot - Deionized distilled water extractable total P fraction, H2Oi - Deionized 

distilled water extractable inorganic P fraction, H2Oo - Deionized distilled water extractable total P fraction, NaHCO3t - NaHCO3 extractable 

total P fraction, NaHCO3i - NaHCO3 extractable inorganic P fraction, NaHCO3o - NaHCO3 extractable organic P fraction, NaOHt - NaOH 

extractable total P fraction, NaOHi - NaOH extractable inorganic P fraction, NaOHo - NaOH extractable organic P fraction, HClt - HCl extractable 

total P fraction, HCli - HCl extractable inorganic P fraction, HClo - HCl extractable organic P fraction 
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11 HI C B 3 29.0 45.5 209 54.9 5.0 9.5 22.5 39.0 24.0 36.0 186 15.9 

13 HI C B 2 29.2 47.6 226 52.6 4.0 10.1 19.0 44.0 25.2 37.4 207 8.6 

31 HI C B 1 23.7 46.7 203 51.6 4.5 10.0 16.0 38.0 19.2 36.7 187 13.6 

10 HI C V 3 29.6 45.0 175 66.2 5.0 9.9 20.0 50.0 24.6 35.1 155 16.2 

69 HI C V 2 34.2 84.4 247 46.6 5.5 11.0 24.5 39.0 28.7 73.4 223 7.6 

71 HI C V 1 35.7 80.8 257 53.6 5.0 9.0 23.0 40.0 30.7 71.8 234 13.6 

40 HI L M B 3 63.1 42.4 216 50.0 4.5 9.0 17.5 35.0 58.6 33.4 198 15.0 

59 HI L M B 2 34.5 71.2 312 49.2 5.0 11.5 25.5 39.0 29.5 59.7 287 10.2 

66 HI L M B 1 34.2 68.4 292 56.6 5.0 10.0 23.0 47.0 29.2 58.4 269 9.6 

41 HI L M V 3 60.7 46.7 234 53.2 5.0 9.0 18.5 39.0 55.7 37.8 215 14.2 

55 HI L M V 1 36.1 71.2 283 44.1 5.5 10.5 21.0 37.0 30.6 60.7 262 7.1 

68 HI L M V 2 35.9 
 

257 50.4 4.5 
 

23.5 40.0 31.4 
 

233 10.4 

5 HI M B 1 31.0 49.8 183 62.8 4.0 10.3 23.0 44.0 27.0 39.5 160 18.8 

48 HI M B 2 63.6 43.2 225 53.1 3.5 9.9 18.0 35.0 60.1 33.3 207 18.1 

62 HI M B 3 32.4 78.9 285 51.4 4.5 10.5 23.5 43.0 27.9 68.4 262 8.4 

8 HI M V 2 35.4 49.9 215 63.8 4.5 9.3 25.0 46.0 30.9 40.6 190 17.8 

22 HI M V 3 31.2 41.2 204 64.5 4.5 9.7 17.0 47.0 26.7 31.5 187 17.5 

49 HI M V 1 33.3 84.4 268 45.8 4.5 13.5 23.0 38.0 28.8 70.9 245 7.8 

58 HI M L B 1 37.8 73.9 298 50.6 5.0 11.5 23.0 41.0 32.8 62.4 275 9.6 

61 HI M L B 3 32.8 75.1 284 39.9 4.5 9.5 21.0 33.0 28.3 65.6 263 6.9 

67 HI M L B 2 33.5 73.3 303 56.9 5.0 10.5 26.5 42.0 28.5 62.8 276 14.9 

56 HI M L V 1 34.0 71.8 283 51.3 5.0 11.0 23.0 42.0 29.0 60.8 260 9.3 

70 HI M L V 2 32.7 81.7 271 59.2 4.5 11.0 24.0 44.0 28.2 70.7 247 15.2 

18 HI Pi B 3 27.4 51.5 206 50.2 4.0 8.7 23.0 35.0 23.4 42.8 183 15.2 

36 HI Pi B 2 15.5 46.0 223 49.7 4.0 10.7 15.5 37.0 11.5 35.3 208 12.7 

57 HI Pi B 1 37.8 78.1 355 47.4 5.0 11.5 21.5 33.0 32.8 66.6 333 14.4 

19 HI Pi V 3 31.0 46.2 187 46.6 5.0 10.2 19.5 35.0 26.0 36.0 168 11.6 

25 HI Pi V 2 33.4 50.1 187 47.6 4.0 11.4 19.0 35.0 29.4 38.6 168 12.6 
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65 HI Pi V 1 38.0 70.3 300 52.4 5.0 10.0 24.5 39.0 33.0 60.3 276 13.4 

6 HI Po B 1 34.2 43.6 197 59.1 4.0 10.3 52.0 45.0 30.2 33.3 145 14.1 

46 HI Po B 2 69.2 45.7 237 49.0 3.5 9.7 17.5 33.0 65.7 36.0 219 16.0 

53 HI Po B 3 37.4 85.1 278 46.0 5.5 11.5 20.0 36.0 31.9 73.6 258 10.0 

15 HI Po V 1 31.3 41.2 253 56.6 4.0 8.5 18.0 42.0 27.3 32.8 235 14.6 

44 HI Po V 3 60.2 41.9 211 56.2 4.5 9.1 18.0 37.0 55.7 32.8 193 19.2 

51 HI Po V 2 41.6 78.5 276 43.4 5.5 11.5 23.5 36.0 36.1 67.0 253 7.4 

14 Low C B 3 1.15 12.2 47.8 0.00 1.00 1.39 2.00 2.00 0.15 10.8 45.8 0.00 

17 Low C B 1 1.53 12.9 59.2 0.00 0.50 0.41 1.50 2.00 1.03 12.5 57.7 0.00 

28 Low C B 2 1.06 12.3 53.5 0.00 1.00 0.68 1.50 1.00 0.06 11.6 52.0 0.00 

16 Low C V 1 1.23 11.2 47.5 0.00 0.50 0.64 2.00 2.00 0.73 10.6 45.5 0.00 

21 Low C V 2 1.62 12.0 53.7 0.00 0.50 0.62 2.00 1.00 1.12 11.4 51.7 0.00 

37 Low C V 3 0.41 13.2 70.6 0.00 0.50 1.13 1.50 2.00 0.00 12.1 69.1 0.00 

27 Low L M B 2 1.17 12.9 56.2 0.00 0.50 0.67 1.50 1.00 0.67 12.2 54.7 0.00 

32 Low L M B 1 1.04 13.4 60.3 0.54 2.00 0.95 3.00 2.00 0.00 12.5 57.3 0.00 

39 Low L M B 3 2.94 12.9 56.5 0.00 1.50 1.39 1.50 1.00 1.44 11.5 55.0 0.00 

12 Low L M V 3 1.89 12.5 57.7 0.00 1.50 1.76 1.50 2.00 0.39 10.7 56.2 0.00 

30 Low L M V 2 1.10 12.7 63.8 0.46 1.00 0.81 2.50 1.00 0.10 11.9 61.3 0.00 

38 Low L M V 1 0.10 13.0 57.8 0.00 0.50 1.79 2.00 2.00 0.00 11.3 55.8 0.00 

3 Low M B 1 1.63 13.5 49.1 0.00 0.50 1.54 1.50 3.00 1.13 12.0 47.6 0.00 

42 Low M B 2 2.80 12.6 61.0 0.00 1.50 1.07 2.50 3.00 1.30 11.6 58.5 0.00 

52 Low M B 3 2.44  81.5 0.75 0.50  2.00 5.00 1.94  79.5 0.00 

2 Low M V 2 1.48 13.2 61.1 0.00 1.50 1.13 2.00 2.00 0.00 12.1 59.1 0.00 

24 Low M V 1 1.17 12.9 55.7 0.00 1.00 0.65 2.00 1.00 0.17 12.3 53.7 0.00 

43 Low M V 3 2.40 12.4 76.7 0.00 1.00 0.86 3.00 2.00 1.40 11.6 73.7 0.00 

9 Low M L B 2 1.95 12.3 49.1 0.46 1.00 0.80 2.00 2.00 0.95 11.5 47.1 0.00 

20 Low M L B 3 1.39 12.4 55.3 0.00 0.50 2.44 2.00 2.00 0.89 10.0 53.3 0.00 

64 Low M L B 1 1.97 18.8 76.9 0.02 0.50 0.50 1.50 2.00 1.47 18.3 75.4 0.00 

23 Low M L V 3 1.19 11.0 57.7 0.00 1.50 0.69 2.00 2.00 0.00 10.3 55.7 0.00 

29 Low M L V 1 0.50 12.5 53.9 0.00 1.00 1.07 1.50 2.00 0.00 11.4 52.4 0.00 

50 Low M L V 2 2.33 21.6 71.7 0.61 0.50 1.00 2.00 2.00 1.83 20.6 69.7 0.00 

35 Low Pi B 2 0.04 13.1 56.2 0.00 1.50 2.99 2.00 1.00 0.00 10.1 54.2 0.00 

47 Low Pi B 1 2.51 15.2 56.4 0.00 1.50 1.01 2.50 3.00 1.01 14.2 53.9 0.00 

54 Low Pi B 3 2.03 23.0 82.7 1.55 1.50 1.50 3.00 2.00 0.53 21.5 79.7 0.00 

45 Low Pi V 2 2.78 14.7 55.2 0.00 0.50 1.87 3.00 3.00 2.28 12.8 52.2 0.00 

63 Low Pi V 1 2.20 19.2 86.5 1.45 0.50 2.00 3.00 3.00 1.70 17.2 83.5 0.00 

72 Low Pi V 3 2.11 25.8 72.5 2.27 1.50 2.00 2.50 3.00 0.61 23.8 70.0 0.00 

4 Low Po B 1 1.87 11.8 44.7 0.00 0.50 0.59 2.00 2.00 1.37 11.2 42.7 0.00 

26 Low Po B 2 2.10 13.2 53.4 0.28 1.00 1.41 2.00 2.00 1.10 11.8 51.4 0.00 
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34 Low Po B 3 0.17 12.9 61.1 0.00 0.50 1.36 2.00 2.00 0.00 11.5 59.1 0.00 

1 Low Po V 3 2.14 13.3 68.8 0.00 0.50 1.10 2.00 1.00 1.65 12.2 66.9 0.00 

7 Low Po V 1 1.84 12.9 63.5 0.34 0.50 2.08 2.50 2.00 1.34 10.9 61.0 0.00 

 

Sequentially extracted phosphorus fractions (field data) 

Horizon: S - surface, SS ; Thickness: horizon thickness in cm; Site: H1 - high one (location 1 with long history of manure application), H2 - high 

two (location 2 with long history of manure application), L1 - low 1 (location 1 with little to no history of manure application), L2 - low 2 

(location 2 with little to no history of manure application); ID: h1-10 (sample locations 1-10 in the high stratification) m1--10 (sample locations 

1-10 in the medium stratification), l1-10 (sample location 1-10 in the low stratification); Sequential extracted fraction: H2Ot - Deionized distilled 

water extractable total P fraction, H2Oi - Deionized distilled water extractable inorganic P fraction, H2Oo - Deionized distilled water extractable 

total P fraction, NaHCO3t - NaHCO3 extractable total P fraction, NaHCO3i - NaHCO3 extractable inorganic P fraction, NaHCO3o - NaHCO3 

extractable organic P fraction, NaOHt - NaOH extractable total P fraction, NaOHi - NaOH extractable inorganic P fraction, NaOHo - NaOH 

extractable organic P fraction, HClt - HCl extractable total P fraction, HCli - HCl extractable inorganic P fraction, HClo - HCl extractable organic P 

fraction 
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S 7 H1 h1 371 728 1803 2468 126 372 641 1326 245 356 1162 1142 

S 5 H1 h10 292 582 1464 2050 93.0 340 522 1052 199 242 942 999 

S 5 H1 h2 246 493 1857 1667 89.3 208 562 918 156 285 1295 749 

S 8 H1 h3 254 646 2093 2632 78.3 358 745 1508 176 288 1349 1124 

S 5 H1 h4 243 613 1373 2919 100 303 443 1604 143 310 930 1315 

S 5 H1 h5 242 623 1622 2990 100 331 575 1628 141 292 1047 1362 

S 6 H1 h6 320 692 1751 2387 138 376 610 1293 182 316 1141 1094 

S 5 H1 h7 429 668 1919 2390 191 390 538 1250 237 278 1381 1140 

S 4 H1 h8 259 600 2119 3431 108 336 785 1644 152 265 1333 1787 

S 5 H1 h9 353 670 1939 3709 136 355 643 1663 218 315 1296 2045 

S 9 H1 l1 320 748 3268 4606 115 332 832 1855 205 416 2436 2751 

S 4 H1 l10 545 1072 2857 5602 185 418 912 2194 360 654 1945 3408 

S 7 H1 l2 454 639 3043 3802 183 229 752 1728 271 410 2291 2074 

S 9 H1 l3 284 613 3012 3505 113 304 742 1651 171 310 2270 1855 

S 5 H1 l4 293 668 2803 3874 121 305 731 1661 171 362 2072 2212 

S 8 H1 l5 200 583 2572 3035 71.3 247 628 1442 129 336 1944 1593 

S 8 H1 l6 233 750 2640 4998 89.0 334 748 1903 144 416 1892 3094 

S 7.5 H1 l7 425 959 2583 5945 164 462 834 2249 261 497 1749 3697 

S 5 H1 l8 409 808 2624 4433 138 307 804 1954 271 501 1820 2480 

S 5 H1 l9 484 964 2929 5122 167 377 896 2065 317 587 2033 3057 

S 5 H1 m1 278 592 1557 2225 77.2 218 595 1204 201 374 961 1021 

S 3 H1 m10 432 700 2638 5238 166 378 857 2111 267 322 1780 3127 
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S 10 H1 m2 242 991 2008 4407 66.1 381 771 1884 176 609 1237 2523 

S 4 H1 m3 312 688 2021 2257 96.6 224 664 1244 216 464 1357 1013 

S 7 H1 m4 244 771 1817 2714 67.4 240 655 1051 176 532 1162 1663 

S 7 H1 m5 302 779 2080 2189 83.6 241 729 1193 218 538 1351 997 

S 5 H1 m6 377 909 2121 3166 140 305 746 1436 237 604 1376 1730 

S 6 H1 m7 382 800 2423 3529 141 327 859 1691 241 473 1564 1838 

S 3 H1 m8 282 750 2430 3134 81.3 291 817 1509 201 459 1613 1626 

S 3 H1 m9 311 512 2406 1750 136 216 688 930 175 295 1719 820 

S 6 H1 m1 28.8 96.2 540 47.8 0.00 2.71 16.4 43.1 28.8 93.5 524 12.9 

S 6.5 H2 h1 114 421 2415 524 0.00 160 725 219 114 261 1690 304 

S 5 H2 h10 154 527 2491 1064 55.0 233 709 551 100 294 1782 513 

S 9 H2 h2 160 538 2082 1009 35.7 235 593 510 124 303 1489 499 

S 9 H2 h3 122 344 1519 725 37.7 141 441 357 84.5 203 1078 369 

S 9 H2 h4 186 406 1469 749 56.8 171 390 359 129 235 1079 391 

S 9 H2 h5 111 403 1870 981 35.8 98.9 565 612 75.3 304 1305 370 

S 7 H2 h6 165 561 2026 944 30.7 246 529 446 134 315 1498 498 

S 6 H2 h7 177 591 2342 912 59.0 226 640 434 118 365 1701 478 

S 7 H2 h8 188 559 2597 955 68.0 235 744 444 120 324 1853 510 

S 6 H2 h9 163 562 2193 752 31.2 234 573 438 132 328 1619 314 

S 10 H2 l1 174 406 1271 962 44.1 212 414 511 130 194 857 451 

S 8 H2 l10 198 400 1697 676 84.7 162 486 311 113 238 1211 365 

S 10 H2 l2 137 404 1417 741 29.6 192 447 358 108 212 970 383 

S 10 H2 l3 153 444 873 1261 68.8 159 536 624 83.9 285 594 636 

S 19 H2 l4 80.3 316 1301 621 38.0 109 413 295 42.3 207 888 326 

S 8 H2 l5 208 498 2056 823 61.4 189 525 220 146 310 1531 603 

S 11 H2 l6 128 455 2064 1104 17.0 167 597 583 111 289 1467 522 

S 13 H2 l7 171 484 1844 677 17.4 173 480 321 154 311 1364 356 

S 9 H2 l8 149 350 1250 727 46.7 159 321 336 102 192 929 391 

S 5 H2 l9 187 434 2171 793 84.9 186 553 404 102 248 1618 388 

S 27 H2 m1 89.9 245 894 493 36.6 137 322 250 53.2 107 573 243 

S 2 H2 m10 243 498 1376 932 90.4 217 475 455 152 280 901 477 

S 9 H2 m2 172 400 1356 1334 55.4 209 483 720 117 192 873 614 

S 10 H2 m3 122 369 1387 989 52.4 180 449 608 69.4 189 939 381 

S 12 H2 m4 158 398 1361 1188 22.7 146 438 640 136 252 924 548 

S 9 H2 m5 205 442 1104 927 76.4 177 391 521 129 265 713 406 

S 10 H2 m6 130 476 1503 1277 9.19 209 549 708 121 267 954 569 

S 13 H2 m7 128 426 1262 849 16.5 137 437 457 111 289 825 392 

S 6 H2 m8 156 409 1202 934 12.0 159 430 455 144 250 772 479 

S 13 H2 m9 163 460 1352 904 19.5 157 469 470 143 304 883 434 

S 6 L1 h1 42.3 121 751 93.6 0.00 4.37 10.0 35.9 42.3 117 741 57.6 
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S 8 L1 h10 50.3 119 666 49.5 12.1 36.5 85.4 48.8 38.2 82.2 581 1.46 

S 6 L1 h2 40.4 130 750 88.6 0.00 15.2 9.78 7.68 40.4 115 741 80.9 

S 5 L1 h3 46.3 127 679 130 1.40 0.00 0.00 16.1 44.9 127 679 114 

S 6 L1 h4 54.4 98.9 831 155 0.03 24.4 35.0 47.1 54.4 74.5 796 108 

S 7 L1 h5 57.9 117 689 68.4 0.00 30.3 72.5 73.2 57.9 86.4 616 21.4 

S 7 L1 h6 83.4 133 645 86.5 0.00 48.3 72.4 157 83.4 84.8 573 8.17 

S 9 L1 h7 20.1 95.6 539 29.9 0.00 12.0 59.8 23.9 20.1 83.6 479 6.00 

S 7 L1 h8 37.1 125 655 42.0 37.4 37.4 62.2 24.9 0.00 87.3 593 17.2 

S 8 L1 h9 42.8 141 681 44.5 0.00 47.9 72.1 48.1 42.8 92.8 609 0.00 

S 8 L1 l1 19.5 79.5 547 44.4 0.45 18.5 22.2 58.8 19.1 61.0 525 0.00 

S 9 L1 l10 19.2 104 756 58.1 0.00 0.54 0.00 3.26 19.2 103 756 54.8 

S 7 L1 l2 40.8 126 433 24.5 2.73 24.2 27.7 77.1 38.1 102 405 0.00 

S 9 L1 l3 25.8 103 730 64.9 0.00 11.2 0.00 28.3 25.8 91.7 730 36.6 

S 9 L1 l4 53.0 120 573 199 8.66 13.6 9.11 40.8 44.4 107 564 158 

S 6 L1 l5 43.8 87.6 537 48.5 23.1 15.9 7.77 8.27 20.7 71.8 529 40.3 

S 8 L1 l6 29.4 88.0 522 58.3 0.00 11.2 0.76 15.2 29.4 76.8 522 43.2 

S 5 L1 l7 90.2 152 731 98.2 39.3 29.4 30.2 30.7 50.9 122 700 67.4 

S 7 L1 l8 39.1 111 719 103 0.00 12.4 4.96 19.7 39.1 98.4 715 83.1 

S 9 L1 l9 27.3 92.3 564 115 0.00 5.26 2.55 12.1 27.3 87.1 561 103 

S 5 L1 m10 73.3 192 746 68.2 19.4 50.0 8.83 95.7 53.8 142 737 0.00 

S 8 L1 m2 18.9 116 590 28.6 0.00 7.17 34.3 58.7 18.9 109 555 0.00 

S 5 L1 m3 35.9 85.1 604 67.4 0.00 4.58 4.69 59.9 35.9 80.5 600 9.17 

S 6 L1 m4 40.9 97.3 538 83.5 2.93 21.3 28.3 75.9 37.9 76.0 510 7.54 

S 7 L1 m5 40.2 125 602 52.8 4.07 21.0 30.5 71.7 36.1 104 571 7.95 

S 9 L1 m6 32.2 106 507 44.7 0.00 15.8 9.39 75.8 32.2 90.0 497 0.00 

S 8 L1 m7 39.1 122 571 35.4 2.37 26.4 33.0 80.7 36.8 96.0 538 0.00 

S 9 L1 m8 26.0 86.5 471 35.6 0.00 0.00 7.47 64.1 26.0 86.5 463 0.00 

S 6 L1 m9 46.0 126 663 73.3 2.48 16.2 10.1 69.8 43.5 110 653 15.4 

S 4.5 L2 h1 39.8 93.9 566 25.0 0.00 0.00 30.1 0.00 39.8 93.9 536 25.0 

S 5 L2 h10 21.7 97.5 453 6.98 0.00 5.31 9.49 14.3 21.7 92.1 443 2.94 

S 3.5 L2 h2 61.5 133 737 60.2 0.00 42.5 69.0 19.2 61.5 90.5 668 41.0 

S 5 L2 h3 19.5 134 568 18.9 0.00 5.29 32.6 17.9 19.5 129 535 3.98 

S 5 L2 h4 19.8 74.4 485 11.2 0.00 9.18 4.06 0.00 19.8 65.2 481 11.2 

S 4 L2 h5 11.6 121 735 54.9 0.00 10.6 61.0 18.9 11.6 110 674 36.1 

S 3 L2 h6 19.2 41.2 429 15.1 0.00 0.00 6.54 30.3 19.2 41.2 423 0.00 

S 5.5 L2 h7 23.7 49.0 417 19.5 0.00 17.4 21.1 22.4 23.7 31.7 396 5.22 

S 5 L2 h8 15.9 45.3 392 6.06 4.24 3.48 15.5 0.00 11.7 41.8 377 6.06 

S 5 L2 h9 16.4 75.1 436 4.70 0.00 1.91 14.2 4.03 16.4 73.2 421 3.95 

S 4 L2 l2 28.8 167 605 79.0 0.00 18.3 52.8 0.00 28.8 149 552 79.0 

S 6 L2 l3 18.5 97.7 387 7.48 0.00 59.6 49.2 0.00 18.5 38.2 338 7.48 
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S 5 L2 l4 20.1 158 614 53.0 0.00 22.2 40.3 29.8 20.1 136 574 23.2 

S 4.5 L2 l5 20.5 143 540 28.7 0.00 21.9 20.9 35.6 20.5 121 520 0.73 

S 4 L2 l6 23.3 123 533 46.3 0.00 25.7 51.7 15.1 23.3 96.9 481 31.2 

S 4 L2 l7 21.4 152 536 43.8 0.00 18.3 18.0 31.0 21.4 134 518 12.8 

S 5 L2 l8 35.4 255 546 22.7 6.93 21.2 38.1 0.00 28.4 234 508 22.7 

S 4 L2 l9 47.3 159 733 61.2 0.00 13.7 51.0 1.13 47.3 145 682 60.1 

S 8 L2 m1 30.6 159 781 98.8 0.00 48.6 109 48.6 30.6 110 671 50.3 

S 4 L2 m10 24.0 94.5 363 19.4 0.00 31.1 16.8 14.5 24.0 63.4 346 8.49 

S 4 L2 m2 30.8 153 759 68.3 0.00 61.0 98 36.5 30.8 92.0 662 31.7 

S 4 L2 m3 25.9 127 661 44.4 0.00 52.4 82.0 46.8 25.9 74.9 579 0.00 

S 5 L2 m4 23.5 99.0 497 21.7 18.0 24.2 72.5 24.2 5.47 74.8 424 0.00 

S 5 L2 m5 37.1 174 911 101 0.00 61.6 142 73.9 37.1 112 769 26.8 

S 7.5 L2 m6 23.6 128 653 62.0 12.3 61.3 116 73.5 11.4 66.6 537 0.00 

S 6 L2 m7 26.5 233 507 49.0 0.00 46.3 118 0.00 26.5 186 389 49.0 

S 4 L2 m8 16.5 152 467 31.5 0.00 15.7 64.1 7.93 16.5 137 403 23.5 

S 3 L2 m9 61.6 186 505 26.7 0.00 25.4 0.00 2.46 61.6 160 505 24.3 

SS 10 H1 h1 229 678 1322 2179 71.8 344 519 1191 158 334 803 988 

SS 10 H1 h10 230 487 1005 1208 86.9 285 341 648 143 202 664 560 

SS 10 H1 h2 250 612 1934 1450 89.4 278 670 782 160 334 1264 668 

SS 10 H1 h3 206 644 1778 2522 76.4 345 644 1337 130 300 1134 1186 

SS 10 H1 h4 221 674 1084 2126 86.6 350 422 1178 135 324 662 948 

SS 10 H1 h5 237 606 1413 2113 94.2 301 563 1183 142 305 850 929 

SS 10 H1 h6 231 646 1274 2174 84.0 357 570 1180 147 288 704 994 

SS 10 H1 h7 276 611 1533 2160 97.6 344 506 1146 179 267 1027 1014 

SS 10 H1 h8 253 590 1842 2138 98.7 319 660 1107 154 270 1182 1031 

SS 10 H1 h9 270 609 1505 2662 89.2 346 615 1343 180 263 890 1319 

SS 10 H1 l1 292 765 2514 3881 95.2 352 713 1765 197 413 1802 2116 

SS 10 H1 l10 392 999 2417 4517 113 422 900 2004 280 577 1518 2513 

SS 10 H1 l2 326 613 2603 2776 127 277 724 1355 198 336 1879 1420 

SS 10 H1 l3 219 502 1897 1016 71.2 239 575 511 148 263 1322 505 

SS 10 H1 l4 229 652 2265 3818 90.0 286 720 1735 139 366 1544 2083 

SS 10 H1 l5 216 656 2297 2402 86.1 289 791 1118 130 366 1506 1283 

SS 10 H1 l6 173 513 1199 2308 53.2 212 366 1113 119 301 834 1195 

SS 10 H1 l7 319 975 2123 4523 103 438 862 2005 216 537 1260 2518 

SS 10 H1 l8 320 771 2490 3035 118 230 859 1668 202 541 1632 1367 

SS 10 H1 l9 361 968 2524 3810 115 389 875 1860 246 580 1649 1950 

SS 10 H1 m1 251 574 1278 1578 75.2 216 537 865 176 358 741 713 

SS 10 H1 m10 310 837 2250 5071 110 391 849 2159 200 446 1402 2912 

SS 10 H1 m2 164 683 937 2625 39.2 287 438 1418 125 397 499 1208 

SS 10 H1 m3 234 612 1455 1068 56.4 208 592 616 178 404 863 452 
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SS 10 H1 m4 220 791 1512 2511 56.4 289 631 1285 163 502 881 1227 

SS 10 H1 m5 253 779 1988 1615 52.9 281 798 878 200 499 1191 737 

SS 10 H1 m6 286 661 1585 1880 91.1 252 656 1011 195 409 928 869 

SS 10 H1 m7 295 822 2404 2650 103 309 726 1318 192 513 1678 1332 

SS 10 H1 m8 281 812 2131 1993 79.8 261 811 1074 202 551 1320 918 

SS 10 H1 m9 314 570 2689 1870 113 194 817 1006 200 376 1872 865 

SS 10 H1 m1 13.0 56.8 368 24.7 0.00 1.02 7.41 55.5 13.0 55.7 360 0.00 

SS 10 H2 h1 89.4 368 2170 445 12.1 149 690 206 77.3 219 1480 238 

SS 10 H2 h10 102 407 1995 502 20.4 173 541 261 81.4 234 1454 241 

SS 10 H2 h2 91.0 308 1311 579 5.61 134 351 257 85.4 174 960 321 

SS 10 H2 h3 108 347 1231 418 9.10 134 361 168 99.2 214 870 250 

SS 10 H2 h4 105 307 1007 452 20.7 138 309 190 84.3 169 698 262 

SS 10 H2 h5 80.0 310 1491 538 4.51 112 420 290 75.5 198 1071 248 

SS 10 H2 h6 79.5 372 1798 524 12.1 170 501 298 67.5 201 1297 226 

SS 10 H2 h7 92.3 302 1509 609 0.00 113 412 276 92.3 189 1097 334 

SS 10 H2 h8 98.0 380 1914 627 24.4 154 572 301 73.6 226 1343 326 

SS 10 H2 h9 95.2 411 1739 717 15.0 194 445 351 80.2 217 1294 366 

SS 10 H2 l1 94.7 292 956 369 11.7 165 359 197 83.0 127 597 172 

SS 10 H2 l10 101 321 1403 580 19.4 148 393 263 81.6 173 1009 317 

SS 10 H2 l2 119 368 1074 367 8.28 188 384 160 111 180 690 207 

SS 10 H2 l3 106 359 1256 713 54.1 123 433 311 52.1 236 823 402 

SS 10 H2 l4 46.9 100 465 290 0.00 31.2 117 302 46.9 68.6 349 124 

SS 10 H2 l5 188 499 1929 702 71.8 188 580 329 116 311 1349 374 

SS 10 H2 l6 100 337 1164 547 0.85 149 321 295 100 188 843 252 

SS 10 H2 l7 212 536 1831 419 32.1 222 533 197 180 313 1298 222 

SS 10 H2 l8 128 347 1111 610 86.9 161 343 290 41.1 186 768 319 

SS 10 H2 l9 136 414 1923 512 17.0 173 534 280 119 241 1389 231 

SS 10 H2 m1 52.1 90.1 418 82.7 0.00 49.3 134 39.4 52.1 40.9 284 43.4 

SS 10 H2 m10 147 353 1230 1185 33.1 185 400 607 114 168 830 578 

SS 10 H2 m2 135 342 1075 877 8.40 185 310 485 127 157 765 391 

SS 10 H2 m3 105 320 1139 797 2.13 152 431 457 103 168 708 340 

SS 10 H2 m4 127 396 1141 616 15.8 192 447 309 112 204 694 307 

SS 10 H2 m5 148 401 953 630 4.67 115 369 339 144 286 584 290 

SS 10 H2 m6 87.0 282 763 419 0.00 129 288 218 87.0 152 475 201 

SS 10 H2 m7 82.3 257 914 515 0.00 66.2 318 260 82.3 190 596 255 

SS 10 H2 m8 145 402 1205 717 21.6 144 363 422 124 258 841 295 

SS 10 H2 m9 150 458 1230 715 35.9 218 475 373 114 240 754 342 

SS 10 L1 h1 17.8 32.9 441 48.7 0.00 0.00 0.00 3.72 17.8 32.9 441 45.0 

SS 10 L1 h10 16.1 49.0 378 15.6 0.00 37.1 61.9 24.8 16.1 11.9 316 0.00 

SS 10 L1 h2 13.4 40.1 524 99.3 0.00 1.37 1.35 27.2 13.4 38.7 522 72.1 
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SS 10 L1 h3 20.6 102 501 112 0.00 3.53 4.67 1.73 20.6 98.7 496 110 

SS 10 L1 h4 19.8 74.3 555 96.7 0.00 0.00 0.00 15.7 19.8 74.3 555 81.1 

SS 10 L1 h5 25.1 59.5 472 31.0 0.00 12.0 60.1 24.0 25.1 47.5 412 6.96 

SS 10 L1 h6 28.6 67.4 475 36.7 0.00 18.4 61.6 61.5 28.6 48.9 414 0.00 

SS 10 L1 h7 12.2 38.1 288 6.68 5.84 0.00 35.9 23.9 6.35 38.1 252 0.00 

SS 10 L1 h8 18.0 60.7 445 48.8 46.2 63.5 46.3 34.8 0.00 8.25 399 14.0 

SS 10 L1 h9 14.7 48.6 303 18.0 0.00 42.1 72.1 24.0 14.7 6.61 231 0.00 

SS 10 L1 l1 13.5 36.1 198 6.17 1.55 12.8 3.33 41.2 12.0 23.3 195 0.00 

SS 10 L1 l10 18.5 35.7 426 37.4 0.00 1.96 0.00 0.00 18.5 33.8 426 37.4 

SS 10 L1 l2 14.6 61.5 278 3.69 0.00 9.29 0.00 43.3 14.6 52.2 278 0.00 

SS 10 L1 l3 15.1 41.0 421 36.5 0.00 0.98 0.00 4.44 15.1 40.0 421 32.1 

SS 10 L1 l4 14.6 21.1 220 17.2 0.00 0.00 0.00 0.00 14.6 21.1 220 17.2 

SS 10 L1 l5 16.4 59.8 392 49.8 0.00 5.65 0.00 2.76 16.4 54.2 392 47.0 

SS 10 L1 l6 16.1 15.9 199 28.5 0.00 0.00 1.68 0.00 16.1 15.9 197 28.5 

SS 10 L1 l7 29.0 118 627 91.8 0.00 30.8 7.07 11.8 29.0 87.5 620 80.0 

SS 10 L1 l8 18.0 46.4 427 70.4 0.00 11.4 0.25 0.00 18.0 35.0 427 70.4 

SS 10 L1 l9 20.4 21.5 220 31.6 0.00 0.00 0.00 15.3 20.4 21.5 220 18.7 

SS 10 L1 m10 28.2 94.9 556 40.3 0.00 18.9 19.8 214 28.2 75.9 536 0.00 

SS 10 L1 m2 10.9 51.7 383 22.9 0.00 2.43 0.00 38.7 10.9 49.2 383 4.12 

SS 10 L1 m3 16.1 72.4 408 31.6 2.82 0.00 6.52 19.8 13.2 72.4 402 11.8 

SS 10 L1 m4 12.0 39.7 310 25.3 0.00 7.48 0.00 36.4 12.0 32.2 310 0.75 

SS 10 L1 m5 14.8 61.9 394 29.6 0.00 0.00 0.00 63.3 14.8 61.9 394 0.00 

SS 10 L1 m6 12.4 34.4 218 2.93 0.00 0.00 0.00 12.1 12.4 34.4 218 0.00 

SS 10 L1 m7 12.3 34.1 275 10.3 0.00 3.10 0.00 36.8 12.3 31.0 275 0.00 

SS 10 L1 m8 14.4 23.5 194 10.2 0.00 0.00 0.00 31.3 14.4 23.5 194 0.00 

SS 10 L1 m9 18.9 84.3 552 55.3 0.00 4.23 31.6 90.3 18.9 80.0 521 0.00 

SS 10 L2 h1 14.4 35.3 237 0.00 0.00 2.77 5.26 0.00 14.4 32.5 232 0.00 

SS 10 L2 h10 7.95 30.4 213 0.00 0.00 0.00 1.24 0.30 7.95 30.4 212 0.00 

SS 10 L2 h2 10.5 43.6 331 4.28 0.00 5.73 25.9 0.00 10.5 37.9 305 4.28 

SS 10 L2 h3 7.22 14.7 128 0.00 0.00 0.00 0.00 0.40 7.22 14.7 128 0.00 

SS 10 L2 h4 9.35 10.9 150 0.00 0.94 3.22 2.58 1.34 8.41 7.66 147 0.00 

SS 10 L2 h5 15.0 28.4 277 9.58 0.00 0.08 19.6 7.18 15.0 28.3 257 3.16 

SS 10 L2 h6 11.1 11.5 147 0.00 0.00 2.25 0.00 7.73 11.1 9.23 147 0.00 

SS 10 L2 h7 25.4 48.4 423 8.13 3.83 23.4 72.3 3.13 21.6 25.0 351 5.00 

SS 10 L2 h8 12.4 15.7 135 0.00 5.87 1.61 0.00 7.15 6.90 14.1 135 0.00 

SS 10 L2 h9 11.8 29.7 192 0.00 0.00 12.2 0.00 14.5 11.8 17.6 192 0.00 

SS 10 L2 l2 7.68 45.8 258 14.5 0.00 63.3 1.90 0.00 7.68 0.00 256 14.5 

SS 10 L2 l3 9.51 18.0 119 0.00 0.00 13.5 0.00 0.00 9.51 9.12 119 0.00 

SS 10 L2 l4 11.7 61.0 329 22.8 0.00 21.9 49.1 0.00 11.7 39.1 280 22.8 

SS 10 L2 l5 8.05 37.0 232 4.93 0.00 8.34 6.81 6.10 8.05 28.7 225 2.50 
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SS 10 L2 l6 7.36 18.9 130 1.23 0.00 3.66 6.23 0.00 7.36 15.2 124 1.23 

SS 10 L2 l7 8.17 42.2 236 18.7 0.00 15.7 17.8 10.2 8.17 26.5 218 8.52 

SS 10 L2 l8 4.18 35.3 129 0.00 7.85 9.84 8.90 0.00 0.90 25.4 120 0.00 

SS 10 L2 l9 10.3 53.1 300 0.00 0.00 20.2 29.5 0.00 10.3 32.8 270 0.00 

SS 10 L2 m1 11.6 28.2 176 0.25 31.3 55.9 80.9 37.3 4.95 0.00 94.9 0.00 

SS 10 L2 m10 4.88 15.7 123 0.00 0.00 0.68 2.95 0.00 4.88 15.0 120 0.00 

SS 10 L2 m2 10.4 55.5 330 19.1 0.00 72.4 84.5 60.5 10.4 0.00 245 0.00 

SS 10 L2 m3 15.0 28.2 190 0.72 0.00 542 71.8 72.0 15.0 0.00 118 0.00 

SS 10 L2 m4 6.68 21.6 164 0.00 0.00 60.9 61.0 24.4 6.68 0.00 103 0.00 

SS 10 L2 m5 19.2 56.5 362 25.4 5.95 66.5 139 48.3 13.3 0.00 223 0.00 

SS 10 L2 m6 11.8 24.4 168 4.37 6.13 48.6 91.0 36.3 5.96 0.00 76.8 0.00 

SS 10 L2 m7 4.10 82.4 276 15.2 0.00 14.6 8.52 0.00 4.10 67.8 267 15.2 

SS 10 L2 m8 3.65 27.0 158 0.44 0.00 0.43 27.2 0.00 3.65 26.6 131 0.44 

SS 10 L2 m9 4.52 50.2 183 0.00 0.00 1.16 92.0 0.00 4.52 49.1 91.4 0.00 
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Soil test, pH, carbon, and particle size data (field data) 

Horizon: S - surface, SS ; Thickness: horizon thickness in cm; Site: H1 - high one (location 1 with long history of manure application), H2 - high 

two (location 2 with long history of manure application), L1 - low 1 (location 1 with little to no history of manure application), L2 - low 2 

(location 2 with little to no history of manure application); ID: h1-10 (sample locations 1-10 in the high stratification) m1--10 (sample locations 

1-10 in the medium stratification), l1-10 (sample location 1-10 in the low stratification); % Carbon - % carbon; pH - pH in water; pH in CaCl - pH 

in CaCl2 ; Soil Test Results: M1 Al - Mehlich 1 extractable Al, M1 Fe - Mehlich 1 extractable Fe, M1 Ca - Mehlich 1 extractable Ca, M1 P - Mehlich 

1 extractable P, M3 P - Mehlich 3 extractable P; Soil Particle size distribution: % Sand, % Silt, % Clay. 
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S 7 H1 h1 3.68 6.32 6.05 238 12.6 3536 852 55.1 27.2 52.1 20.7 

S 5 H1 h10 3.30 6.43 6.05 210 16.9 2727 652 38.7 22.7 58.0 19.3 

S 5 H1 h2 5.20 6.25 5.87 247 12.3 2675 582 40.4 24.9 52.7 22.4 

S 8 H1 h3 4.46 6.36 5.87 284 18.0 2946 788 53.5 23.0 60.6 16.4 

S 5 H1 h4 4.38 6.45 6.03 222 12.3 3594 857 48.5 28.6 50.6 20.8 

S 5 H1 h5 3.89 6.36 5.91 238 15.4 3136 854 12.7 29.0 49.5 21.4 

S 6 H1 h6 4.63 6.38 6.00 237 13.6 3178 697 8.38 25.4 53.2 21.4 

S 5 H1 h7 4.47 6.41 6.14 256 10.8 3078 790 8.44 25.1 54.3 20.6 

S 4 H1 h8 4.56 6.48 6.05 285 16.1 3762 951 11.0 24.0 55.8 20.3 

S 5 H1 h9 4.74 6.41 6.05 251 12.6 3732 973 8.24 23.1 57.1 19.8 

S 9 H1 l1 6.22 6.48 6.23 300 19.4 4742 1448 80.0 22.5 53.9 23.6 

S 4 H1 l10 8.29 6.41 6.14 243 18.6 5757 1430 84.6 26.2 49.4 24.3 

S 7 H1 l2 4.36 6.38 5.94 280 14.1 3225 1101 56.8 30.4 49.1 20.5 

S 9 H1 l3 7.41 6.57 6.02 288 18.0 4038 1007 51.0 25.7 56.8 17.5 

S 5 H1 l4 5.78 6.75 6.39 286 15.1 3686 1192 83.6 28.6 53.2 18.2 

S 8 H1 l5 4.62 6.45 6.05 347 21.9 3977 882 63.6 23.6 56.6 19.8 

S 8 H1 l6 5.08 6.70 6.29 213 21.5 3401 1263 72.7 26.9 52.1 21.0 

S 7.5 H1 l7 7.73 6.63 6.23 250 16.5 7180 1805 106 26.7 47.7 25.6 

S 5 H1 l8 10.85 6.50 6.05 262 13.4 5229 1061 62.6 19.6 62.8 17.6 

S 5 H1 l9 5.00 6.57 6.16 369 24.0 6351 1553 87.0 25.3 54.0 20.7 

S 5 H1 m1 5.47 6.38 5.85 279 14.5 3525 751 48.6 22.6 45.3 32.1 

S 3 H1 m10 7.10 6.36 5.98 267 17.8 5486 1545 85.2 26.0 49.8 24.2 

S 10 H1 m2 5.19 6.75 6.38 215 19.6 7146 1493 88.0 26.0 52.2 21.8 

S 4 H1 m3 7.73 6.27 5.87 265 14.0 2963 711 50.5 16.9 60.7 22.4 

S 7 H1 m4 5.68 6.39 6.02 331 16.0 5300 1081 67.3 20.6 57.9 21.5 

S 7 H1 m5 5.69 5.98 5.67 278 16.6 2873 649 54.4 23.8 54.6 21.6 

S 5 H1 m6 6.34 6.68 6.29 300 14.5 4765 987 69.0 23.3 55.0 21.7 

S 6 H1 m7 5.22 6.43 6.03 369 17.7 4662 1061 66.5 23.0 53.2 23.8 

S 3 H1 m8 7.81 6.41 5.96 377 15.3 4273 755 57.5 24.4 53.8 21.8 

S 3 H1 m9 6.45 6.27 5.89 310 12.9 4174 712 48.6 27.8 47.6 24.7 

S 6 H1 m1 4.33 5.55 5.21 98.7 6.79 757 12.1 4.44 46.3 44.6 9.1 

S 6.5 H2 h1 5.67 5.33 5.13 85.9 117 1283 76.0 9.24 17.6 51.9 30.5 

S 5 H2 h10 4.29 5.60 5.42 117 98.8 1650 158 17.7 20.1 57.9 22.0 
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S 9 H2 h2 4.96 6.18 5.94 99.2 23.2 2747 219 15.6 20.6 47.0 32.4 

S 9 H2 h3 2.39 6.03 5.44 171 13.4 1621 194 20.1 23.4 52.0 24.7 

S 9 H2 h4 4.59 6.20 5.89 160 14.8 1942 285 25.2 20.8 54.8 24.5 

S 9 H2 h5 3.85 6.21 5.87 116 25.7 2170 154 12.9 20.6 53.3 26.0 

S 7 H2 h6 3.83 6.45 6.27 129 39.0 2454 237 22.6 25.4 57.3 17.4 

S 6 H2 h7 5.16 6.11 5.82 120 56.1 1793 188 20.1 17.1 53.9 28.9 

S 7 H2 h8 4.08 5.64 5.48 104 77.6 1472 186 16.0 18.3 61.5 20.3 

S 6 H2 h9 4.36 6.07 5.78 119 49.5 1787 173 18.5 20.2 57.9 22.0 

S 10 H2 l1 3.18 5.93 5.51 181 15.4 1919 244 19.5 24.8 55.7 19.5 

S 8 H2 l10 3.40 6.09 5.71 184 15.2 1929 267 23.6 25.0 52.6 22.4 

S 10 H2 l2 0.30 5.75 5.31 198 17.1 1682 256 26.0 24.8 57.1 18.1 

S 10 H2 l3 3.22 5.76 5.46 167 16.9 2242 375 25.4 37.8 38.4 23.9 

S 19 H2 l4 2.24 6.72 6.20 117 33.2 2255 99.3 7.27 35.5 39.6 24.9 

S 8 H2 l5 4.67 6.03 5.76 206 9.71 2057 305 32.0 24.6 50.5 25.0 

S 11 H2 l6 3.62 5.55 5.15 126 49.7 1560 157 18.0 30.0 46.3 23.7 

S 13 H2 l7 2.43 6.05 5.67 214 10.6 1676 253 30.4 30.7 51.0 18.4 

S 9 H2 l8 3.42 6.23 5.89 156 9.74 2011 250 23.7 27.6 51.7 20.6 

S 5 H2 l9 4.20 5.71 5.31 179 12.0 1658 198 26.5 24.3 47.0 28.6 

S 27 H2 m1 2.36 6.48 5.87 141 13.7 2081 137 9.71 24.5 48.0 27.5 

S 2 H2 m10 4.44 6.52 6.03 178 18.1 2013 320 27.6 28.9 52.2 18.9 

S 9 H2 m2 3.69 6.14 5.76 161 18.4 2441 363 26.4 26.8 50.5 22.7 

S 10 H2 m3 3.62 5.80 5.53 143 23.1 2422 246 16.4 27.4 51.1 21.5 

S 12 H2 m4 2.69 5.78 5.39 179 12.8 1745 262 25.8 31.3 53.8 14.9 

S 9 H2 m5 3.52 6.29 5.91 170 9.67 2433 357 30.9 26.2 52.6 21.2 

S 10 H2 m6 3.32 6.14 5.78 135 32.8 2386 212 16.7 28.8 49.4 21.7 

S 13 H2 m7 3.33 6.38 5.98 146 18.2 2491 187 16.0 30.9 44.0 25.1 

S 6 H2 m8 2.81 6.14 5.58 162 15.8 1569 215 24.3 30.8 50.3 18.9 

S 13 H2 m9 2.98 6.00 5.57 198 15.3 1806 293 32.0 28.2 54.0 17.8 

S 6 L1 h1 3.76 5.31 4.92 116 14.0 786 20.1 6.81 34.2 53.9 12.0 

S 8 L1 h10 3.81 5.39 4.97 89.7 23.0 574 12.8 4.96 48.0 42.2 9.8 

S 6 L1 h2 3.52 5.39 4.94 164 14.7 852 14.8 5.48 34.7 52.9 12.4 

S 5 L1 h3 3.57 5.31 4.95 121 20.2 747 17.8 7.22 65.9 28.6 5.5 

S 6 L1 h4 5.69 5.44 5.21 124 6.66 699 16.7 4.94 42.9 47.7 9.4 

S 7 L1 h5 4.51 5.53 5.22 109 6.54 876 15.5 4.78 48.4 42.8 8.8 

S 7 L1 h6 4.76 5.76 5.58 106 6.55 1167 34.4 6.34 46.4 44.3 9.4 

S 9 L1 h7 2.72 4.91 4.52 115 25.3 633 3.86 1.94 39.9 45.5 14.5 

S 7 L1 h8 3.15 5.24 4.94 126 16.1 696 12.6 6.61 50.6 41.8 7.7 

S 8 L1 h9 4.91 5.26 4.94 117 21.0 1207 11.0 4.43 31.8 53.8 14.4 

S 8 L1 l1 3.89 5.10 4.61 107 23.8 880 5.18 2.16 31.6 50.4 17.9 

S 9 L1 l10 3.91 4.97 4.61 127 17.4 528 3.31 2.20 22.1 57.6 20.3 
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S 7 L1 l2 3.47 5.73 4.86 132 12.1 503 15.2 4.96 54.7 39.1 6.2 

S 9 L1 l3 4.45 5.24 4.76 132 7.38 584 4.47 2.24 21.9 56.2 21.9 

S 9 L1 l4 5.26 5.35 4.92 113 26.7 1214 51.7 4.08 30.1 54.0 15.9 

S 6 L1 l5 3.50 5.60 5.35 128 5.55 790 10.6 6.19 69.6 26.4 4.0 

S 8 L1 l6 4.84 5.46 5.12 93.7 20.1 1102 7.40 2.24 26.1 54.7 19.2 

S 5 L1 l7 6.16 5.57 5.22 122 10.7 1210 37.1 9.77 51.5 41.6 7.0 

S 7 L1 l8 3.23 5.46 4.88 196 12.5 710 22.0 7.46 42.4 51.0 6.6 

S 9 L1 l9 4.77 5.60 5.55 114 34.6 1252 9.47 1.70 3.5 75.8 20.7 

S 5 L1 m10 7.69 5.35 5.03 88.9 22.3 1131 25.8 7.02 31.4 52.5 16.2 

S 8 L1 m2 3.11 4.97 5.61 177 14.8 441 10.6 5.06 49.4 42.4 8.2 

S 5 L1 m3 4.08 5.44 4.85 106 24.2 449 9.17 3.59 57.4 32.2 10.5 

S 6 L1 m4 5.74 5.58 5.33 85.9 6.09 1119 15.9 4.50 43.0 45.1 11.9 

S 7 L1 m5 4.64 5.31 4.88 117 9.88 615 12.3 4.76 46.5 44.0 9.5 

S 9 L1 m6 4.10 5.15 4.72 126 36.7 953 12.8 4.04 38.6 48.4 13.1 

S 8 L1 m7 4.10 5.46 5.01 132 13.0 684 16.0 6.59 53.8 40.2 5.9 

S 9 L1 m8 4.59 5.49 5.12 89.5 16.6 1068 5.85 1.63 24.1 54.2 21.7 

S 6 L1 m9 4.36 5.42 5.03 138 12.2 887 10.5 8.41 48.5 43.6 7.9 

S 4.5 L2 h1 5.62 5.19 4.68 169 59.6 842 9.04 5.52 21.4 66.4 12.2 

S 5 L2 h10 5.13 4.88 4.43 170 118 679 6.99 5.42 22.2 66.8 11.0 

S 3.5 L2 h2 8.59 4.90 4.68 186 38.8 808 21.2 4.95 16.9 63.1 20.0 

S 5 L2 h3 7.34 4.81 4.27 258 133 664 7.53 2.14 21.1 65.3 13.6 

S 5 L2 h4 4.83 5.01 4.38 252 100 513 7.97 2.28 19.3 68.8 11.9 

S 4 L2 h5 4.52 4.40 3.95 289 177 411 11.2 3.91 19.1 69.6 11.3 

S 3 L2 h6 3.77 5.40 4.86 140 43.7 974 11.9 2.28 18.0 70.1 11.9 

S 5.5 L2 h7 3.26 5.58 5.06 125 39.4 747 12.3 2.78 18.8 69.6 11.6 

S 5 L2 h8 3.09 5.08 4.56 169 84.7 509 8.59 2.86 20.0 68.7 11.3 

S 5 L2 h9 4.16 5.03 4.56 183 70.3 648 8.85 1.55 23.9 64.9 11.2 

S 4 L2 l2 4.36 4.90 4.56 162 45.9 768 17.3 5.40 19.6 67.1 13.2 

S 6 L2 l3 3.83 5.12 4.68 163 32.0 846 10.7 3.17 20.1 67.5 12.4 

S 5 L2 l4 3.79 5.08 4.77 137 27.0 756 14.6 6.00 17.0 69.6 13.5 

S 4.5 L2 l5 4.28 5.24 4.85 139 19.6 928 13.4 5.36 17.3 69.7 12.9 

S 4 L2 l6 4.08 5.22 4.99 123 27.5 759 10.4 3.85 16.1 70.4 13.5 

S 4 L2 l7 4.40 5.08 4.79 125 25.4 847 12.3 4.77 19.7 67.0 13.4 

S 5 L2 l8 6.78 4.94 4.36 219 110 494 13.3 3.67 21.9 66.2 11.9 

S 4 L2 l9 7.42 5.01 4.63 191 8.06 466 7.21 4.12 14.4 72.2 13.4 

S 8 L2 m1 6.93 4.99 4.70 189 57.3 1278 17.2 4.64 16.1 73.1 10.7 

S 4 L2 m10 3.89 5.30 4.94 129 33.1 684 12.6 3.49 23.9 64.7 11.4 

S 4 L2 m2 5.15 5.01 4.50 170 58.1 1038 14.4 4.39 17.0 72.4 10.6 

S 4 L2 m3 4.21 5.21 4.67 156 46.5 654 10.1 3.95 23.6 65.5 11.0 

S 5 L2 m4 3.39 5.26 4.59 174 57.2 662 6.96 2.53 25.5 63.6 10.8 
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S 5 L2 m5 5.51 5.13 4.76 141 44.7 974 15.5 5.32 12.5 73.1 14.4 

S 7.5 L2 m6 4.59 5.10 4.68 123 31.9 854 10.8 4.23 14.1 72.5 13.3 

S 6 L2 m7 4.95 5.06 4.81 140 52.1 585 15.9 5.88 23.1 66.8 10.1 

S 4 L2 m8 4.48 4.95 4.72 145 49.9 559 9.13 3.63 21.5 68.3 10.3 

S 3 L2 m9 5.96 5.15 4.61 174 58.9 673 24.8 5.45 20.7 67.3 12.0 

SS 10 H1 h1 2.22 6.68 6.45 243 9.31 3544 736 
 

27.9 53.3 18.8 

SS 10 H1 h10 0.79 6.59 6.14 233 12.1 2591 612 
 

27.6 53.0 19.4 

SS 10 H1 h2 2.98 6.36 5.91 315 17.4 2445 661 
 

26.1 51.9 22.0 

SS 10 H1 h3 2.28 6.63 6.12 300 21.9 3087 877 
 

27.9 51.9 20.1 

SS 10 H1 h4 1.39 6.65 6.11 237 16.5 2881 864 
 

31.6 47.7 20.7 

SS 10 H1 h5 2.11 6.32 5.85 266 17.5 2641 824 
 

28.3 52.3 19.4 

SS 10 H1 h6 1.85 6.50 6.11 261 11.1 2861 757 
 

36.9 43.3 19.7 

SS 10 H1 h7 2.74 6.29 6.00 268 10.6 2565 645 
 

27.5 52.8 19.7 

SS 10 H1 h8 3.01 6.02 5.51 345 22.3 2869 881 
 

24.5 54.6 20.9 

SS 10 H1 h9 2.11 6.14 5.89 299 14.3 2937 903 
 

27.1 54.4 18.5 

SS 10 H1 l1 2.45 6.81 6.32 334 18.0 4916 1471 
 

27.9 51.0 21.1 

SS 10 H1 l10 3.60 6.50 6.05 348 28.7 5785 1540 
 

30.1 48.0 21.9 

SS 10 H1 l2 3.99 6.18 5.89 340 17.1 3763 1162 
 

33.2 48.1 18.7 

SS 10 H1 l3 2.24 6.47 6.05 333 16.5 2222 520 
 

28.6 53.2 18.2 

SS 10 H1 l4 2.58 6.88 6.38 331 18.5 5233 1287 
 

34.3 48.7 17.1 

SS 10 H1 l5 2.62 6.57 6.12 440 19.2 3780 1102 
 

41.2 41.8 17.0 

SS 10 H1 l6 1.83 6.68 6.12 239 25.7 3233 822 
 

25.2 53.9 20.9 

SS 10 H1 l7 3.04 6.84 6.39 225 15.1 7686 1838 
 

30.0 50.5 19.5 

SS 10 H1 l8 3.81 6.07 5.73 394 28.9 4668 1167 
 

28.4 49.9 21.7 

SS 10 H1 l9 4.62 6.47 6.16 404 23.3 5462 1434 
 

28.0 50.3 21.7 

SS 10 H1 m1 2.50 6.38 5.89 326 13.2 2962 730 
 

26.4 53.9 19.7 

SS 10 H1 m10 3.10 6.47 6.03 333 24.4 6280 1648 
 

27.7 48.5 23.9 

SS 10 H1 m2 1.85 7.04 6.45 276 16.6 5307 1148 
 

24.2 54.8 20.9 

SS 10 H1 m3 2.68 5.98 5.55 314 16.1 2005 556 
 

19.7 59.1 21.2 

SS 10 H1 m4 2.77 6.43 6.00 383 18.0 4497 1107 
 

20.1 59.7 20.2 

SS 10 H1 m5 2.28 5.73 5.35 350 25.2 2250 620 
 

21.4 58.1 20.5 

SS 10 H1 m6 2.84 6.29 5.75 386 18.1 2962 844 
 

21.9 56.9 21.2 

SS 10 H1 m7 2.14 6.56 6.11 496 22.9 4052 1188 
 

24.9 52.4 22.7 

SS 10 H1 m8 3.17 5.96 5.37 473 21.3 2583 801 
 

24.6 52.7 22.7 

SS 10 H1 m9 2.76 5.58 5.15 379 22.0 2451 713 
 

29.9 47.1 23.0 

SS 10 H1 m1 1.66 5.26 4.85 147 8.49 343 6.48 
 

50.2 41.5 8.3 

SS 10 H2 h1 2.76 5.19 4.86 96.6 131 1038 40.5 
 

17.9 59.2 23.0 

SS 10 H2 h10 2.22 5.46 5.21 108 84.1 1403 114 
 

23.6 58.1 18.3 

SS 10 H2 h2 2.38 6.72 6.27 118 16.3 2211 104 
 

22.3 47.3 30.4 

SS 10 H2 h3 1.16 6.05 5.53 165 8.73 1521 179 
 

24.4 51.9 23.7 
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SS 10 H2 h4 2.04 6.30 5.85 141 11.9 1613 177 
 

22.7 54.0 23.3 

SS 10 H2 h5 2.89 6.30 5.96 109 17.8 2182 118 
 

22.1 52.7 25.1 

SS 10 H2 h6 2.21 6.41 6.07 128 68.6 1549 138 
 

27.5 56.1 16.4 

SS 10 H2 h7 1.64 6.21 5.73 128 46.3 1235 85.0 
 

16.0 62.1 22.0 

SS 10 H2 h8 2.00 5.75 5.48 114 68.2 1028 108 
 

19.8 62.5 17.7 

SS 10 H2 h9 2.42 6.05 5.69 147 53.4 1704 119 
 

20.7 58.5 20.8 

SS 10 H2 l1 1.38 6.18 5.64 176 11.1 1380 139 
 

26.7 55.2 18.2 

SS 10 H2 l10 2.04 6.14 5.75 178 13.4 1658 211 
 

29.7 50.3 20.0 

SS 10 H2 l2 3.96 6.14 5.49 211 12.5 1392 201 
 

23.9 59.6 16.4 

SS 10 H2 l3 1.62 6.11 5.57 173 13.8 1591 239 
 

26.8 48.8 24.4 

SS 10 H2 l4 1.09 7.08 6.34 115 19.8 1639 29.2 
 

34.9 39.2 25.9 

SS 10 H2 l5 2.74 6.00 5.51 243 16.3 1679 281 
 

30.7 47.6 21.7 

SS 10 H2 l6 1.63 6.21 5.60 148 11.4 1290 156 
 

31.7 49.3 19.1 

SS 10 H2 l7 1.47 5.70 5.15 248 12.9 928 214 
 

31.7 52.4 15.9 

SS 10 H2 l8 2.11 6.30 5.73 142 8.51 1451 178 
 

29.5 50.9 19.6 

SS 10 H2 l9 2.35 5.87 5.44 189 13.0 1480 181 
 

27.7 47.7 24.6 

SS 10 H2 m1 1.18 6.70 5.98 131 12.0 1653 35.0 
 

9.5 55.3 35.2 

SS 10 H2 m10 2.64 6.00 5.53 214 12.5 1901 344 
 

29.6 53.6 16.8 

SS 10 H2 m2 1.82 6.40 5.85 176 22.5 2114 309 
 

34.3 46.4 19.3 

SS 10 H2 m3 2.24 6.03 5.73 148 16.7 2119 229 
 

31.6 49.2 19.2 

SS 10 H2 m4 1.48 6.32 5.64 247 16.0 1544 284 
 

31.5 54.8 13.7 

SS 10 H2 m5 1.87 6.52 6.00 194 8.85 2204 314 
 

27.3 50.7 21.9 

SS 10 H2 m6 1.72 6.54 6.16 124 21.2 1873 94.6 
 

27.4 49.4 23.3 

SS 10 H2 m7 2.43 6.36 6.00 143 14.2 1917 128 
 

20.4 55.0 24.6 

SS 10 H2 m8 2.42 6.09 5.53 185 16.1 1667 236 
 

33.1 50.8 16.1 

SS 10 H2 m9 1.94 6.23 5.71 225 12.1 1789 287 
 

22.7 63.3 14.0 

SS 10 L1 h1 1.23 5.39 4.92 132 7.95 527 4.20 
 

33.4 55.1 11.5 

SS 10 L1 h10 1.63 5.37 4.95 108 9.59 474 2.32 
 

47.7 42.7 9.6 

SS 10 L1 h2 1.42 5.17 4.88 176 11.0 593 4.97 
 

34.9 56.0 9.1 

SS 10 L1 h3 1.90 5.62 4.99 174 18.1 623 11.0 
 

58.2 36.8 5.0 

SS 10 L1 h4 2.68 5.44 5.01 119 4.79 432 4.80 
 

51.1 41.9 7.0 

SS 10 L1 h5 2.24 5.69 5.15 126 6.32 483 5.48 
 

50.6 42.0 7.4 

SS 10 L1 h6 2.36 6.12 5.71 123 4.76 698 9.62 
 

48.0 44.4 7.7 

SS 10 L1 h7 1.66 5.58 5.12 98.8 11.2 814 1.28 
 

27.3 55.2 17.5 

SS 10 L1 h8 1.80 5.40 4.99 150 9.37 490 7.26 
 

55.5 39.4 5.2 

SS 10 L1 h9 1.79 5.51 5.04 130 17.3 878 4.15 
 

35.5 50.5 14.0 

SS 10 L1 l1 1.28 5.75 4.88 99.3 10.9 633 1.63 
 

38.4 46.9 14.7 

SS 10 L1 l10 1.62 5.40 4.85 100 7.56 391 2.10 
 

26.1 54.6 19.3 

SS 10 L1 l2 1.23 5.51 4.61 147 9.15 250 3.56 
 

59.6 35.4 4.9 

SS 10 L1 l3 2.30 5.67 5.03 109 4.13 390 1.08 
 

22.7 57.3 20.0 
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SS 10 L1 l4 1.46 5.53 5.06 105 10.8 480 1.58 
 

31.3 55.7 13.0 

SS 10 L1 l5 1.74 5.42 4.97 146 12.3 381 3.42 
 

58.0 36.8 5.2 

SS 10 L1 l6 1.12 5.82 5.01 81.8 8.57 455 0.56 
 

28.9 54.2 16.8 

SS 10 L1 l7 2.02 5.10 4.68 188 19.4 501 18.5 
 

45.0 49.1 5.9 

SS 10 L1 l8 1.63 5.73 4.98 218 18.4 266 4.74 
 

51.4 43.0 5.6 

SS 10 L1 l9 1.62 5.89 5.46 171 31.1 783 2.69 
 

26.7 49.8 23.5 

SS 10 L1 m10 4.58 5.19 4.56 126 31.5 1032 9.18 
 

36.8 48.5 14.6 

SS 10 L1 m2 1.74 5.35 4.85 176 9.00 401 4.58 
 

51.0 41.1 7.8 

SS 10 L1 m3 2.40 5.37 4.74 113 20.0 324 4.59 
 

48.6 41.7 9.7 

SS 10 L1 m4 1.54 5.82 5.17 118 5.15 382 2.78 
 

47.4 42.3 10.4 

SS 10 L1 m5 1.88 5.35 4.72 119 7.53 244 2.80 
 

50.2 40.6 9.2 

SS 10 L1 m6 1.54 5.48 4.79 123 19.2 648 4.12 
 

39.2 49.3 11.6 

SS 10 L1 m7 1.33 5.98 5.21 200 6.35 435 4.12 
 

55.7 39.0 5.3 

SS 10 L1 m8 1.53 5.67 5.08 76.3 7.13 757 1.27 
 

23.7 61.1 15.2 

SS 10 L1 m9 2.05 5.26 4.81 184 12.6 575 11.6 
 

52.4 41.7 5.9 

SS 10 L2 h1 1.80 5.06 4.32 273 109 252 3.21 
 

25.2 64.0 10.8 

SS 10 L2 h10 1.88 5.04 4.29 215 94.9 322 3.11 
 

17.5 73.6 8.9 

SS 10 L2 h2 3.24 4.83 4.32 559 62.8 220 5.24 
 

18.7 59.9 21.5 

SS 10 L2 h3 1.20 4.83 4.00 365 104 134 2.19 
 

24.2 64.4 11.4 

SS 10 L2 h4 0.93 4.95 4.04 264 47.6 78.1 2.15 
 

21.5 66.0 12.5 

SS 10 L2 h5 1.35 4.86 4.11 254 94.8 161 8.24 
 

19.6 70.0 10.3 

SS 10 L2 h6 1.37 5.66 5.01 119 44.9 589 1.99 
 

17.4 71.9 10.6 

SS 10 L2 h7 1.27 5.60 4.85 165 56.7 557 21.7 
 

21.9 64.6 13.5 

SS 10 L2 h8 0.91 5.15 4.25 214 34.7 152 1.83 
 

19.4 67.1 13.5 

SS 10 L2 h9 1.42 5.08 4.32 236 105 219 4.18 
 

28.0 62.0 10.0 

SS 10 L2 l2 1.63 5.51 4.61 170 36.3 512 6.57 
 

20.3 66.1 13.6 

SS 10 L2 l3 0.98 5.44 4.47 263 18.3 206 2.30 
 

20.1 66.7 13.2 

SS 10 L2 l4 1.57 5.57 4.88 142 32.6 434 8.36 
 

21.1 67.9 11.0 

SS 10 L2 l5 1.38 5.44 4.72 178 18.3 407 3.72 
 

22.1 66.4 11.5 

SS 10 L2 l6 1.02 5.21 4.63 136 26.0 303 2.72 
 

15.1 75.2 9.7 

SS 10 L2 l7 1.47 5.67 4.88 151 30.3 511 4.65 
 

24.3 64.6 11.1 

SS 10 L2 l8 1.68 4.89 3.96 210 8.32 494 9.01 
 

24.4 66.9 8.6 

SS 10 L2 l9 2.89 5.08 4.38 100 7.02 1253 1.37 
 

14.9 72.0 13.1 

SS 10 L2 m1 0.84 5.21 4.41 287 43.9 299 6.06 
 

22.2 64.0 13.8 

SS 10 L2 m10 1.09 5.64 4.63 157 35.3 282 2.61 
 

25.4 63.2 11.3 

SS 10 L2 m2 1.61 5.10 4.43 194 54.1 446 7.38 
 

17.3 72.3 10.4 

SS 10 L2 m3 1.11 5.62 4.58 235 38.3 304 4.14 
 

23.9 63.7 12.4 

SS 10 L2 m4 1.25 5.44 4.77 168 36.3 326 1.68 
 

26.7 64.7 8.6 

SS 10 L2 m5 1.26 5.67 4.77 150 29.0 607 11.9 
 

13.3 72.6 14.0 

SS 10 L2 m6 1.08 5.64 4.92 126 23.8 443 2.57 
 

13.3 72.5 14.1 
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SS 10 L2 m7 2.09 5.08 4.56 172 54.4 313 7.32 
 

23.9 66.8 9.3 

SS 10 L2 m8 1.14 5.22 4.41 176 34.8 230 3.20 
 

21.9 68.9 9.2 

SS 10 L2 m9 1.99 5.31 4.29 480 39.6 130 4.92 
 

19.7 68.1 12.2 

 

 

Primary spatial data 

Site: H1 - high one (location 1 with long history of manure application), H2 - high two (location 2 with long history of manure application), L1 - 

low 1 (location 1 with little to no history of manure application), L2 - low 2 (location 2 with little to no history of manure application); ID: h1-10 

(sample locations 1-10 in the high stratification) m1--10 (sample locations 1-10 in the medium stratification), l1-10 (sample location 1-10 in the 

low stratification); Z Elevation - Z score of in site elevation; Z Aspect - Z score of slope aspect; Z Slope - Z score of slope gradient; PRC - Profile 

curvature; PLC - Plan curvature; TANC - Tangential curvature; CI - Convergence index; MFD - flow accumulation (multiple directions method); D8 

- flow accumulation (deterministic 8 method); INF - flow accumulation (deterministic infinity method)   
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L2 h2 0.54 -0.024 -0.171 0.001 -0.005 -0.001 -3.20 147 108 121 

L2 h3 0.01 -0.002 -0.317 -0.006 -0.083 -0.009 2.57 244 144 196 

L2 h4 0.01 0.010 -0.361 0.006 0.008 0.001 -7.49 267 207 269 

L2 h5 -2.36 -0.047 0.133 0.009 0.025 0.005 -34.66 452 9 548 

L2 h6 -1.18 -0.012 0.049 0.009 0.034 0.006 1.89 185 72 183 

L2 h7 0.75 -0.023 0.002 -0.009 0.009 0.001 1.09 125 90 99 

L2 h8 0.50 -0.037 -0.207 0.006 0.015 0.002 -2.66 161 108 195 

L2 h9 0.66 -0.034 -0.038 -0.008 -0.049 -0.007 4.81 128 171 103 

L2 l2 0.22 -0.030 0.246 0.015 0.041 0.008 3.47 78 54 65 

L2 l3 1.95 0.019 0.088 0.010 0.060 0.010 14.93 42 36 44 

L2 l4 0.28 0.039 0.094 -0.005 -0.011 -0.002 3.74 81 81 55 

L2 l5 0.20 0.016 0.466 -0.003 0.006 0.001 10.54 53 36 46 

L2 l6 -0.19 -0.025 0.175 0.005 0.047 0.009 4.49 113 18 112 

L2 l7 0.54 0.016 -0.031 0.002 0.031 0.005 4.46 80 54 68 

L2 l8 0.80 0.113 -0.067 -0.008 0.131 0.019 4.45 37 9 24 

L2 l9 1.38 0.001 -0.034 0.008 0.093 0.014 16.94 35 45 42 
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L2 m1 -1.75 -0.031 0.081 -0.001 0.013 0.002 -8.24 199 36 137 

L2 m2 -1.65 -0.008 0.150 0.002 -0.007 -0.001 -3.58 224 126 188 

L2 m3 -0.25 0.030 0.029 -0.013 -0.012 -0.002 -0.55 108 72 80 

L2 m4 -0.90 0.030 -0.075 0.000 0.000 0.000 5.14 144 126 109 

L2 m5 -0.52 -0.004 -0.011 0.011 0.060 0.009 -2.56 131 72 126 

L2 m6 -0.97 -0.018 0.108 0.003 0.021 0.004 0.43 169 99 150 

L2 m8 -0.06 -0.023 0.012 0.004 0.018 0.003 -2.61 115 54 112 

L2 m9 1.36 0.066 0.145 0.000 0.000 0.000 5.95 35 27 36 

H1 h1 0.27 -0.012 0.350 -0.002 -0.005 -0.001 -11.56 295 343 252 

H1 h2 1.22 0.893 -0.248 0.000 0.014 0.002 10.66 161 135 163 

H1 h3 -2.33 -0.559 -0.208 0.000 0.004 0.001 0.91 200 99 202 

H1 h4 0.62 0.099 0.065 0.002 -0.003 -0.001 -8.19 160 126 153 

H1 h5 0.60 0.043 0.081 0.006 0.023 0.004 4.43 171 190 160 

H1 h6 0.33 0.002 0.345 -0.001 0.002 0.001 -13.74 226 262 164 

H1 h7 0.26 0.055 0.390 -0.001 -0.018 -0.004 -9.40 332 388 364 

H1 h8 1.02 1.197 0.171 0.006 -0.015 -0.003 -8.42 166 181 148 

H1 h9 0.17 -0.010 0.318 0.001 0.003 0.001 -15.81 242 325 204 

H1 l1 -0.28 0.033 -0.118 -0.002 0.097 0.015 31.17 47 27 30 

H1 l10 -0.94 -0.421 -0.435 0.003 0.097 0.010 36.64 26 18 16 

H1 l2 -1.80 -0.602 0.289 0.002 0.010 0.002 9.10 97 54 61 

H1 l3 0.22 0.088 -0.148 -0.002 -0.015 -0.002 24.67 100 45 103 

H1 l4 -0.01 -0.056 -0.055 0.003 0.057 0.009 30.95 75 18 59 

H1 l5 -0.16 -0.720 0.459 -0.003 -0.012 -0.003 13.67 86 81 57 

H1 l6 -0.35 0.220 0.096 0.003 0.074 0.014 16.17 49 27 33 

H1 l7 -0.62 -0.786 0.213 0.010 0.054 0.011 13.46 60 9 54 

H1 l8 -1.07 -0.520 -0.376 0.001 0.019 0.002 26.39 49 36 36 

H1 l9 -0.55 -0.965 -0.108 0.016 0.108 0.017 22.92 38 36 46 

H1 m1 0.32 -0.114 0.235 -0.001 0.012 0.003 11.56 150 36 117 
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H1 m10 -1.04 0.259 -0.292 0.003 0.003 0.000 11.85 74 90 77 

H1 m2 -0.31 0.700 0.300 0.010 0.012 0.003 8.99 70 27 42 

H1 m3 1.15 0.536 -0.114 0.000 -0.037 -0.006 8.27 112 126 108 

H1 m4 0.09 -0.021 -0.192 0.003 0.046 0.006 28.56 92 72 83 

H1 m5 -2.19 -0.392 -0.137 0.000 0.015 0.002 12.34 105 63 79 

H1 m6 0.91 -0.085 0.004 -0.001 0.005 0.001 16.24 124 54 120 

H1 m7 0.74 -0.466 -0.835 -0.002 1.091 0.031 18.68 19 9 42 

H1 m8 1.37 0.812 -0.010 -0.001 0.005 0.001 8.50 136 108 116 

H1 m9 1.65 0.738 -0.105 0.005 0.028 0.004 16.34 63 63 52 

H2 h1 -1.10 -0.701 -0.504 -0.001 -0.023 -0.001 3.38 201 304 243 

H2 h10 -0.95 -0.311 -0.352 -0.005 -0.076 -0.003 2.07 109 403 101 

H2 h2 -1.11 -0.687 -0.433 -0.001 0.048 0.002 -1.48 90 18 64 

H2 h3 1.02 -0.638 1.062 -0.004 -0.020 -0.003 2.63 70 72 101 

H2 h4 0.69 -0.003 0.090 0.003 -0.096 -0.007 2.11 152 27 164 

H2 h5 -1.37 -0.669 -0.498 -0.001 0.002 0.000 -18.30 361 90 177 

H2 h6 -0.94 2.689 -0.725 0.000 -0.424 -0.008 -16.47 1336 528 1309 

H2 h7 -1.33 2.525 -0.398 -0.001 -0.018 -0.001 -19.86 158 107 113 

H2 h8 -0.93 -0.470 -0.430 -0.003 0.000 0.000 -13.12 241 18 117 

H2 h9 -1.34 2.496 -0.434 0.000 -0.008 0.000 -19.18 180 179 136 

H2 l1 -0.68 -0.342 0.007 0.001 0.037 0.002 11.20 66 233 69 

H2 l10 1.26 -0.452 0.619 0.001 0.024 0.003 0.49 79 63 72 

H2 l2 0.57 -0.612 -0.035 0.000 0.020 0.001 29.20 66 54 48 

H2 l3 1.52 -0.561 0.679 0.003 -0.007 -0.001 17.65 25 18 28 

H2 l4 -0.48 0.172 0.341 -0.009 -0.060 -0.005 -33.68 276 107 90 

H2 l5 1.04 -0.639 0.546 0.003 0.008 0.001 24.46 75 18 69 

H2 l6 1.56 -0.462 0.224 0.002 0.009 0.001 13.60 58 45 49 

H2 l7 -0.09 -0.903 0.115 0.000 0.051 0.004 20.62 65 107 66 

H2 l8 1.34 -0.440 0.629 0.001 -0.002 0.000 9.77 82 54 67 
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H2 l9 1.38 2.351 0.215 0.019 0.216 0.017 22.88 27 9 13 

H2 m1 -1.24 -0.863 -0.462 0.001 0.044 0.002 7.81 143 90 51 

H2 m10 -0.07 -0.635 -0.524 -0.003 0.042 0.001 20.67 101 134 87 

H2 m2 0.91 -0.446 0.759 -0.003 -0.010 -0.001 -3.62 129 90 103 

H2 m3 -0.14 -0.221 -0.305 0.001 0.042 0.002 17.75 112 18 130 

H2 m4 0.14 -0.689 -0.304 0.000 0.007 0.000 18.73 122 107 102 

H2 m5 0.82 -0.473 0.564 -0.001 -0.005 -0.001 -3.17 132 90 100 

H2 m6 -0.05 -0.717 0.363 -0.007 -0.034 -0.003 -2.03 90 54 54 

H2 m7 -1.19 2.705 -0.514 0.000 0.059 0.002 13.46 73 18 47 

H2 m8 0.41 -0.347 -0.192 -0.001 0.016 0.001 9.27 111 295 109 

H2 m9 0.37 -0.659 -0.102 0.000 0.011 0.001 25.08 85 63 67 

L1 h1 1.28 -0.155 -0.127 0.003 -0.006 -0.001 -4.22 239 621 249 

L1 h10 -0.36 0.157 -0.180 0.001 -0.011 -0.001 -17.29 698 1133 539 

L1 h2 -0.20 -0.065 -0.106 0.002 -0.006 -0.001 -16.03 362 441 384 

L1 h3 1.28 -0.138 -0.077 0.001 -0.011 -0.002 -1.38 132 99 146 

L1 h4 0.42 0.096 -0.141 -0.001 -0.015 -0.002 -6.42 302 162 212 

L1 h5 0.01 0.118 -0.110 -0.003 -0.006 -0.001 -10.29 712 243 607 

L1 h6 0.13 -0.025 -0.255 0.002 -0.008 -0.001 -19.86 587 117 409 

L1 h7 -0.53 0.207 -0.024 0.009 -0.011 -0.002 -15.63 668 216 1074 

L1 h8 0.13 0.109 -0.152 0.002 0.006 0.001 -8.99 601 234 456 

L1 h9 -0.53 -0.108 -0.060 0.001 -0.019 -0.003 -10.74 432 288 418 

L1 l1 -1.55 0.047 0.422 -0.002 0.005 0.001 7.28 120 63 94 

L1 l10 -0.57 -0.048 0.171 -0.002 -0.007 -0.001 6.43 103 108 91 

L1 l2 1.07 -0.076 0.095 -0.003 0.004 0.001 13.90 105 171 92 

L1 l3 -0.73 -0.018 0.273 0.001 0.011 0.002 7.37 96 99 84 

L1 l4 -1.31 0.053 0.468 0.000 0.011 0.002 9.05 110 72 84 

L1 l5 1.15 -0.068 0.104 0.001 0.026 0.004 16.90 80 63 65 

L1 l6 -1.18 -0.020 0.245 0.000 0.007 0.001 3.92 148 153 128 
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L1 l7 1.77 -0.146 -0.155 -0.003 0.006 0.001 14.83 109 36 84 

L1 l8 1.48 -0.033 -0.204 0.003 0.038 0.004 22.21 64 99 63 

L1 l9 -1.31 0.190 0.257 -0.001 0.193 0.035 3.58 27 9 17 

L1 m1 0.46 0.009 -0.359 -0.004 0.039 0.004 18.02 96 9 71 

L1 m10 -1.68 0.045 0.338 -0.004 0.003 0.001 3.05 133 72 103 

L1 m2 0.17 -0.089 -0.038 0.000 0.002 0.000 -0.62 197 225 174 

L1 m3 0.13 0.109 -0.213 0.001 0.004 0.000 -7.98 413 207 285 

L1 m4 0.25 0.101 -0.208 0.000 -0.007 -0.001 -8.77 545 216 380 

L1 m5 0.58 -0.089 -0.062 0.000 0.002 0.000 5.72 165 369 152 

L1 m6 -1.06 -0.063 0.123 0.000 0.009 0.001 -11.90 244 189 157 

L1 m7 0.05 -0.108 -0.149 -0.002 -0.010 -0.001 1.80 190 99 171 

L1 m8 -1.10 -0.051 0.161 0.001 0.010 0.002 8.55 136 126 161 

L1 m9 1.77 0.058 -0.038 -0.002 0.000 0.000 8.99 111 117 86 

 

Compound topographic data 

Site: H1 - high one (location 1 with long history of manure application), H2 - high two (location 2 with long history of manure application), L1 - 

low 1 (location 1 with little to no history of manure application), L2 - low 2 (location 2 with little to no history of manure application); ID: h1-10 

(sample locations 1-10 in the high stratification) m1--10 (sample locations 1-10 in the medium stratification), l1-10 (sample location 1-10 in the 

low stratification); TWIs - topographic wetness index (saga method); D8 TWI - topographic wetness index (deterministic 8 method); MFD TWI- 

topographic wetness index (multiple flow direction method); D∞ TWI - topographic wetness index (deterministic infinity method); MC SPI - 

stream power index (calculated with saga modified catchment method); D8 SPI - stream power index (deterministic 8 method); MFD SPI- 

stream power index (multiple flow direction method); D∞ SPI - stream power index (deterministic infinity method) 
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L2 h2 2.47 5.12 5.43 5.23 95.0 109.4 78.0 69.8 

L2 h3 2.81 3.21 3.74 3.52 1413.3 1499.7 1135.4 834.8 

L2 h4 2.87 5.52 5.78 5.78 221.7 265.8 222.9 171.7 

L2 h5 3.12 9.11 13.02 13.21 -568.0 -639.6 -689.1 -11.3 

L2 h6 2.64 4.02 4.97 4.96 238.9 251.7 236.5 92.8 

L2 h7 2.37 6.33 6.66 6.42 20.1 22.0 15.9 14.5 

L2 h8 2.51 9.98 10.38 10.57 0.8 0.9 1.0 0.5 
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L2 h9 2.51 12.05 11.76 11.54 -63.7 -69.9 -51.4 -85.3 

L2 l2 2.29 3.78 4.14 3.96 95.7 106.1 80.1 66.6 

L2 l3 1.98 0.43 0.59 0.63 981.6 1240.4 1016.0 839.5 

L2 l4 2.36 11.30 11.30 10.92 -1554.5 -1816.8 -1063.2 -1554.0 

L2 l5 1.91 2.51 2.89 2.75 154.6 191.3 134.5 105.5 

L2 l6 2.45 9.80 11.64 11.62 -27.2 -29.8 -26.8 -4.3 

L2 l7 2.37 10.90 11.29 11.13 -30.1 -34.4 -25.6 -20.3 

L2 l8 1.92 9.11 10.51 10.07 -48.9 -50.7 -31.5 -11.9 

L2 l9 1.93 10.71 10.46 10.65 -15.2 -16.9 -18.2 -19.5 

L2 m1 2.67 1.69 3.40 3.03 1319.2 1386.7 911.1 238.7 

L2 m2 2.72 11.74 12.32 12.15 -165.1 -172.3 -138.8 -92.9 

L2 m3 2.32 4.66 5.07 4.77 73.4 82.2 54.7 49.0 

L2 m4 2.53 11.74 11.87 11.60 -248.5 -264.8 -189.4 -218.1 

L2 m5 2.49 11.18 11.79 11.74 -4.9 -5.2 -4.7 -2.7 

L2 m6 2.59 11.50 12.04 11.92 -597.4 -629.8 -530.3 -350.0 

L2 m8 2.43 5.08 5.83 5.80 38.6 41.8 37.6 18.2 

L2 m9 1.99 10.20 10.46 10.48 -30.0 -41.4 -30.6 -23.3 

H1 h1 2.73 1.76 1.61 1.45 17441.5 17641.0 14933.9 20286.8 

H1 h2 2.69 5.38 5.56 5.57 100.2 103.5 101.3 84.1 

H1 h3 2.63 3.50 4.20 4.21 600.4 630.8 608.1 298.6 

H1 h4 2.52 11.75 11.98 11.94 -45.3 -45.4 -43.2 -35.8 

H1 h5 2.57 9.55 9.44 9.38 2.3 2.3 2.2 2.6 

H1 h6 2.68 3.35 3.21 2.89 2072.1 2352.7 1505.2 2397.3 

H1 h7 2.79 12.87 12.71 12.81 -400.8 -402.2 -439.1 -468.0 

H1 h8 2.57 12.10 12.02 11.91 -15934.4 -16281.7 -14197.2 -17296.9 

H1 h9 3.09 5.33 5.03 4.86 382.9 832.6 322.8 513.7 

H1 l1 1.92 10.21 10.76 10.30 -15.8 -15.8 -10.0 -9.1 

H1 l10 2.20 3.66 4.01 3.53 11.9 11.9 7.4 8.4 

H1 l2 2.09 4.62 5.20 4.73 51.8 51.9 32.4 29.0 

H1 l3 2.30 10.72 11.52 11.54 -112.4 -112.5 -115.5 -50.5 

H1 l4 2.20 2.91 4.33 4.10 74.1 74.2 58.4 17.8 

H1 l5 1.99 5.53 5.58 5.17 27.8 27.8 18.4 26.3 

H1 l6 1.90 4.57 5.16 4.77 13.6 13.7 9.2 7.6 

H1 l7 2.10 9.11 11.00 10.90 -65.5 -65.6 -58.7 -9.8 

H1 l8 2.44 1.38 1.69 1.39 444.4 444.5 330.5 327.2 

H1 l9 2.06 10.49 10.54 10.73 -5.5 -5.5 -6.7 -5.2 

H1 m1 2.43 10.49 11.92 11.67 -72.2 -72.4 -56.2 -17.3 
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H1 m10 2.68 11.41 11.21 11.26 -16.7 -16.6 -17.5 -20.5 

H1 m2 2.05 3.49 4.45 3.93 58.2 58.4 34.7 22.4 

H1 m3 2.48 11.75 11.62 11.59 -27.7 -28.1 -26.8 -31.3 

H1 m4 2.31 1.27 1.52 1.42 1860.7 1862.7 1682.2 1457.1 

H1 m5 2.33 11.05 11.57 11.28 -81.0 -93.6 -60.9 -48.5 

H1 m6 2.41 10.90 11.73 11.70 -505.5 -509.1 -487.3 -219.9 

H1 m7 2.93 9.11 9.83 10.65 -5.0 -25.0 -11.3 -2.4 

H1 m8 2.57 -0.49 -0.25 -0.42 23989.6 24976.6 20434.9 19053.1 

H1 m9 2.33 11.05 11.05 10.86 -6.4 -7.1 -5.3 -6.5 

H2 h1 4.08 8.30 7.88 8.07 15.3 34.5 18.5 23.1 

H2 h10 4.40 5.41 4.10 4.02 197.2 1519.9 183.2 728.9 

H2 h2 3.97 3.39 5.00 4.67 54.1 210.1 38.9 10.8 

H2 h3 2.78 4.20 4.17 4.54 74.8 102.8 108.3 76.8 

H2 h4 3.20 3.27 5.01 5.08 155.3 192.7 167.6 27.4 

H2 h5 4.82 6.66 8.05 7.34 41.5 214.9 20.3 10.3 

H2 h6 4.32 13.18 14.11 14.08 -6105.0 -5479.4 -5980.3 -2413.1 

H2 h7 4.11 4.71 5.09 4.76 152.7 498.3 109.7 104.0 

H2 h8 4.30 3.35 5.95 5.22 151.9 593.1 73.5 11.3 

H2 h9 4.23 5.72 5.72 5.44 106.4 313.1 80.2 105.7 

H2 l1 3.49 6.79 5.53 5.57 17.3 38.1 18.1 61.0 

H2 l10 2.83 3.50 3.74 3.64 149.7 167.3 135.6 118.1 

H2 l2 3.03 10.89 11.09 10.79 -1.2 -1.2 -0.9 -1.0 

H2 l3 2.31 0.58 0.89 1.04 245.7 376.7 284.8 179.6 

H2 l4 4.80 11.58 12.53 11.40 -241.5 -1291.2 -78.3 -93.9 

H2 l5 3.07 3.24 4.67 4.58 52.7 53.6 48.6 12.6 

H2 l6 2.87 10.71 10.96 10.79 -623.3 -728.8 -525.2 -484.3 

H2 l7 2.95 4.34 3.84 3.85 92.0 92.0 92.6 151.0 

H2 l8 3.12 3.18 3.60 3.39 183.1 194.1 149.2 120.4 

H2 l9 2.92 9.10 10.21 9.48 -847.7 -1493.9 -406.9 -278.3 

H2 m1 4.12 5.49 5.96 4.93 52.5 156.0 18.8 33.0 

H2 m10 3.46 11.81 11.52 11.37 -5.4 -5.5 -4.6 -7.2 

H2 m2 3.07 11.40 11.77 11.55 -288.1 -309.8 -230.7 -199.7 

H2 m3 3.64 1.30 3.13 3.28 547.7 718.1 637.9 87.7 

H2 m4 3.43 3.06 3.18 3.00 615.8 616.1 513.9 543.2 

H2 m5 3.16 4.61 5.00 4.72 117.4 122.3 88.6 79.5 

H2 m6 2.93 10.89 11.40 10.90 -58.8 -79.5 -35.5 -35.2 

H2 m7 4.20 7.44 8.85 8.40 0.8 4.0 0.5 0.2 
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H2 m8 3.37 12.60 11.61 11.60 -187.9 -220.4 -185.4 -501.7 

H2 m9 3.19 11.05 11.35 11.11 -41.7 -41.7 -32.7 -30.7 

L1 h1 3.17 8.55 7.60 7.64 28.7 31.6 29.8 74.3 

L1 h10 3.51 13.94 13.46 13.20 -534.0 -536.2 -412.3 -867.7 

L1 h2 3.19 6.92 6.72 6.78 158.2 163.1 167.7 192.6 

L1 h3 2.86 4.48 4.76 4.86 148.1 166.4 163.8 111.3 

L1 h4 3.01 11.99 12.62 12.26 -28.6 -28.7 -20.1 -15.4 

L1 h5 3.43 6.45 7.53 7.37 272.7 276.2 232.3 93.0 

L1 h6 3.61 3.03 4.65 4.29 3311.1 4116.3 2307.6 659.1 

L1 h7 3.60 12.28 13.41 13.89 -17152.1 -17161.2 -27553.4 -5540.0 

L1 h8 3.35 12.36 13.31 13.03 -155.1 -156.3 -117.6 -60.4 

L1 h9 3.28 5.02 5.43 5.39 823.1 823.3 796.7 548.1 

L1 l1 2.28 11.05 11.70 11.45 -502.6 -503.1 -393.5 -262.8 

L1 l10 2.29 3.41 3.36 3.24 368.3 368.3 326.3 385.9 

L1 l2 2.54 6.76 6.27 6.13 20.8 20.8 18.2 34.0 

L1 l3 2.28 11.50 11.47 11.34 -35.9 -36.0 -31.5 -37.1 

L1 l4 2.25 11.18 11.61 11.34 -88.5 -88.6 -67.7 -58.0 

L1 l5 2.44 5.21 5.45 5.25 27.4 27.5 22.5 21.7 

L1 l6 2.45 11.94 11.91 11.76 -144.6 -144.7 -124.4 -149.2 

L1 l7 2.61 10.49 11.60 11.34 -33.3 -34.1 -25.7 -11.0 

L1 l8 2.49 11.50 11.07 11.04 -99.5 -99.8 -97.0 -153.6 

L1 l9 2.40 9.10 10.21 9.76 -18.6 -105.6 -11.9 -6.2 

L1 m1 2.57 9.10 11.47 11.17 -10.9 -10.9 -8.0 -1.0 

L1 m10 2.32 4.69 5.30 5.05 87.4 87.5 68.1 47.5 

L1 m2 2.85 3.62 3.49 3.37 1186.8 1188.1 1050.3 1354.3 

L1 m3 3.19 12.24 12.93 12.56 -888.9 -891.9 -614.0 -445.4 

L1 m4 3.30 12.28 13.21 12.85 -984.3 -990.2 -686.7 -390.1 

L1 m5 2.77 5.33 4.53 4.44 292.9 293.4 269.9 656.8 

L1 m6 3.20 5.63 5.89 5.45 165.3 276.5 106.5 127.8 

L1 m7 2.91 11.50 12.16 12.05 -40.5 -40.5 -36.3 -21.0 

L1 m8 2.45 4.04 4.11 4.28 300.9 301.0 357.4 279.7 

L1 m9 2.46 2.93 2.87 2.62 693.1 708.5 536.6 732.1 
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