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ABSTRACT 

 

Computational Strategies for Faster Combustion Simulations 

with Detailed Chemistry 

 

Jose A. Escobar-Vargas 

 
Combustion of fossil fuels is still the biggest source of power generation in the world. However, 

pollutants released to the atmosphere from combustion represent a risk for human health and the 

environment. Hence it is desirable to design a combustor that produces the maximum useful 

thermal power output while keeping low concentration levels of harmful emissions such as CO, 

P.M., NOx, and SOx. In the past, combustor design was aided by the compilation of large sets of 

experimental data and the development of empirical correlations which is an expensive process. 

Nowadays numerical simulations have become an important tool in the research and design of 

combustors. Numerical simulations allow the study of combustion systems under hazardous 

conditions and beyond their performance limits, and they are usually inexpensive and fast 

(compared to experiments). The main bottle-neck in combustion simulations is the accurate 

prediction of the concentration of the many species involved in combustion. Current computational 

fluid dynamic (CFD) simulations commonly use simplified versions of the chemical reaction 

mechanisms. But utilization of simplified chemical models comes with the associated inaccuracy 

while saving computational time. 

 

In the present study the virtues of the chemical reactor network (CRN) approach are investigated 

and a new integration method is proposed to accelerate the calculation of species concentrations 

using reduced and detailed chemical mechanisms. Utilization of the CRN approach enabled the 

implementation of a detailed methane-air chemical mechanism that incorporates 53 chemical 

species and 325 reactions. The CRN approach was applied to two combustor configurations: a 

premixed methane-air swirl burner, and a non-premixed methane-air swirl burner. The CRN was 

built using results from the CFD simulations that were obtained using simplified chemical 

mechanisms with just one or two reactions. Numerical predictions of the premixed combustor 

behavior obtained using CRN simulations were compared with other CFD simulations that used 

mechanisms with more reactions and chemical species. The CRN results closely matched the CFD 

simulations with larger chemical mechanisms, the maximum relative difference of the predicted 

concentration for the major species (i.e. O2, CO2, H2O, and N2) was 2.82% when compared to the 

CFD simulations. The calculation time of the CRN was greatly reduced, the maximum reduction of 

the CRN simulation took only one seventh of the computational time when compared with a CFD 

simulation. The CRN simulations of the non-premixed burner were also compared with 

experiments. Predicted spatial profiles of velocity, temperature, and mass fraction concentrations 

were compared with measurements. Results showed that the velocity and some mass fraction 

profiles matched the experimental measurements near the dump plane but it was found that 

downstream of the dump plane the temperature was overpredicted. Due to the temperature 



 

 
 

overprediction, the maximum difference was 250 [K], the nitrogen oxide (NO) concentration was 

overpredicted by 30 [ppm]. The relative difference of the predicted NO at the outlet of the 

combustor is 150% when compared with the experimental value. 

 

Further, a novel integration method named log-time integration method (LTIM) was developed to 

calculate the solution of ideal reactors used in the CRN simulations. The integration method 

consists of the transformation of the time variable to the logarithmic space along with the use of 

variable time steps. The LTIM approach was applied to the solution of a perfectly stirred reactor 

(PSR) using a detailed chemical mechanism. PSR-LTIM results were compared with a commercial 

PSR code which is available in the CHEMKIN software package. The maximum relatively 

difference of the concentration of the species of interest was only 1%. Calculated species 

concentration using the PSR-LTIM matched the results from CHEMKIN with comparable 

computational time, the computational time of the PSR-LTIM was 5.3 [s] and for CHEMKIN was 3 

[s]. The integration method was compared to higher order integration methods available in the 

literature producing satisfactory results with less CPU time, the LTIM approach took one fifth of 

the computational time of a higher order integration method. The LTIM was also applied to the 

solution of a premixed one dimensional methane-air flame, FLAME-LTIM, where a mechanism 

incorporating nine chemical species and five global reactions mechanism was used. Calculated 

temperature and mass fraction profiles matched closely the results obtained using the equivalent 

commercial code CHEMKIN PREMIX. The relative temperature difference at the outlet of the 

domain was 0.5% and the maximum difference in the chemical specie concentration at the outlet of 

the domain was 13.2%. 

 

The outcome of the present research can be used to perform a rapid design analysis of gas turbines 

and similar combustors to achieve low levels of emissions. 

 

Keywords: CFD, Combustion, Swirl Stabilized Combustion, Chemical Mechanism, Chemical 

Reactor Network, Stiff Equations. 
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 Introduction Chapter 1:

1.1 Motivation 

Combustion of fossil fuels remains as the largest source of power generation in the U.S in 

2014. However, pollutants released to the atmosphere from combustion units represent a risk for 

human health and the environment. In order to reduce the negative impact of fossil fuel combustion 

units the federal government has imposed controls for the regulated pollutants such as; CO, NOx, 

O3, Pb, particulate matter (PM), SOx. Environmental controls have led research to find innovative 

strategies to reduce the negative impact of combustion in the environment. In the past, combustion 

design was aided by the compilation of large sets of experimental data and the development of 

empirical correlations which made the design of new combustors an expensive enterprise. 

Nowadays numerical simulations have become an important tool in research and design of 

combustion systems. The main advantages of numerical simulations are: relatively low cost of 

development, speed (compared to experiments), and relative ease with which parametric studies can 

be conducted. Despite all the aforementioned advantages, simulation of combustion phenomena is 

far from accurate and detailed predictions. The difficulty of combustion simulation is due to the 

many physical processes that occur simultaneously such as turbulent fluid dynamics, chemical 

reactions, heat and mass transfer. 

In order to accurately predict the combustion phenomena it is necessary to resolve 

essentially all characteristic temporal and spatial scales. The Direct Numerical Simulation (DNS) 

approach solves all scales in the flow but is computationally expensive. To illustrate the dimension 

of the problem, a three dimensional computer simulation of a non-premixed CO/H2/N2-air jet flame 

reported by Hawkes (Hawkes, et al. 2005) with 12 species and 33 reactions used a computational 

mesh with 40 million cells. The calculation ran on 480 processors on the MPP2 HP-Itanium-2 

cluster at the Pacific Northwest National Laboratory (PNNL). Approximately 50 days were 



 

2 
 

required to complete the simulation. Despite the progress in parallel computing in the past decades, 

DNS of reacting systems is confined to cases with low turbulent Reynolds numbers (~Re < 10
4
 

(Versteeg and Malalasekera 2007)) and chemically simple fuels due to the spatial and temporal 

restrictions. DNS of practical combustion burners is impossible with current computational tools. 

The combustion research community has long used simplified models to study combustors 

for practical applications. Such models are mainly simplifications of the turbulence phenomena and 

the chemical mechanisms; these models will be discussed in the following chapters. However, 

detailed chemical mechanisms are necessary to study the consumption or production of the species 

involved in combustion phenomena to keep modeling errors to a minimum. Chemical mechanisms 

for common fuels contain a large number of chemical species and reactions (e.g. CH4 detailed 

mechanism contains 53 species and 325 reactions (Smith, et al. 1999)) making computer 

simulations virtually impossible due the excessive amount of Central Processing Unit (CPU) time 

needed to calculate the solution. The required amount of CPU time is large because of the 

following reasons: 

1. Number of species. Determining the concentration of each one of the chemical species 

requires the solution of a partial differential equation. 

2. Time scales. Combustion phenomena are characterized by having a wide range of time 

scales. Some species have a very small characteristic time scale (e.g. ~ 10
-6

 - 10
-8

 [s]) while 

others have long time scales (~ 10
-1
 [s]) making the system of equations stiff and the 

solution very time consuming. The time scale of the chemical species is defined as 

   (           ( ̇       ))
  

. Where            is the initial mass fraction of the specie i 

[dimensionless],  ̇  is the net reaction rate of specie i [mol/(cm
3
*s)], MWi is the molecular 

weight of specie i [g/mol],   is the density of the mixture [(g/cm
3
)]. 
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3. Low pollutant concentration. Concentration of NOx for example is limited to tens of parts 

per million in volume (ppmv) in typical combustors which means that any assumption 

made in the model could have significant effect on the species at these very low 

concentrations. 

The most restrictive of the points mentioned above is related to the time scales (stiff 

systems). Current numerical integration methods for stiff equations are computationally intensive 

and complex to program. A substantial effort has been put into resolving this issue in the past three 

decades. Two main areas can be mentioned: 

I. Explicit integrators: This kind of integrator is accurate but requires the time step dt to be 

smaller than the smallest characteristic time scale of the system otherwise the numerical 

prediction will diverge from the true solution. These integrators do not require internal 

iterations at every time step and most of them are self-starting. 

II. Implicit integrators: Here relatively large time steps can be used. The drawback is that it is 

necessary to calculate the Jacobian matrix. The size of the matrix is proportional to the total 

number of species in the system and it has to be often recalculated. The requirement for 

calculating the Jacobian inversion makes this option impractical for systems with large 

number of species. Most of the implicit integrators require a good initial guess otherwise 

the solution will diverge from the true solution. 

Another way to reduce the complexity of the problem is to reduce the size of the detailed 

chemical mechanisms using assumptions such as the quasi-steady state assumption (QSSA) and 

partial equilibrium (PE). These assumptions allow a reduction in the number of species considered 

for combustion simulations. This approach produces good results for species whose concentration 

is relatively high, however results are not as accurate for the so-called trace species. Trace species 

are, chemical species at a relatively low concentration and their actual concentration could be very 
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different than its PE or QSSA concentration. Since prediction of the pollutant concentration is one 

of the main goals in combustion simulation, accurate calculation of trace species is necessary 

because some critical pollutants (e.g. NOx) can be catalogued as trace species. 

The present study proposes the utilization of the following tools to predict detailed 

chemistry composition in the shortest time as possible: 

I. Chemical reactor network (CRN). 

II. Log-time integration method (LTIM). 

III. Perfectly stirred reactors (PSR) used with LTIM. 

In what follows each of the topics are elaborated upon in detail. 

1.2 Chemical Reactor Network 

In this study it is proposed to use the chemical reactor network (CRN) concept in order to 

predict the emissions of methane-air burners using detailed chemical mechanisms. Utilization of 

detailed mechanisms is important to accurately predict the concentration of trace pollutants. 

Assumptions taken to reduce the size of detailed mechanism could greatly impact the prediction of 

species of interest. The CRN approach ( (Novosselov 2006), (Frassoldati, et al. 2005)) used in this 

study is described below. 

First, computational fluid dynamics (CFD) simulations of the combustor are performed 

using a commercial CFD code (ANSYS-FLUENT). CFD simulations are performed using 

relatively computationally inexpensive models. For instance, turbulence modeling is simulated 

using RANS (Reynolds-Averaged Navier-Stokes) models and chemistry modeling is performed 

using reduced chemical mechanisms including global reaction mechanisms. 
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Second, an in-house computer program is used to create the reactor network layout using 

the predictions from the CFD simulations as input. The program clusters computational cells into 

zones called reactors. The clustering depends mainly on the temperature field, the flow field and the 

concentration of a chemical specie of interest. The criterion to create these zones is that 

computational cells that share similar characteristics (e.g. temperature, oxygen mass fraction, water 

mass fraction, etc.) are clustered as one reactor. The computer program also defines the 

connectivity of these reactors using the mass flux between these zones. The result is a reactor 

network in which every reactor can be modeled as a simplified element for example a Perfectly 

Stirred Reactor (PSR) is a zero dimensional unit, or as a Plug Flow Reactor (PFR) which is a one 

dimensional unit. 

The last step in the CRN approach is to model every reactor using a detailed chemical 

mechanism. Here a separate computer program reads the information from the zone clustering and 

performs the simulation for each one of the reactors using a detailed chemical mechanism. 

Simulations were performed using an iterative procedure and the results were compared with 

experiments or CFD simulations that used reduced mechanisms with more chemical species. 

1.3 Log-Time Integration Method (LTIM) 

An explicit, second order integration method is proposed for the integration of stiff 

equations. Stiff equations are characterized by large gradients (∆φ/∆t, φ being any variable) 

preceded or followed by a region with small gradient. This novel method was developed by 

transforming the time variable into the logarithmic space. The transformation of the time variable 

into the logarithmic space can decrease the steepness in the gradients thus making the integration 

more tractable. Being an explicit scheme, this method is easy to implement in problems with a large 

number of species without the requirement of inverting any Jacobian matrix. The second order 
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accuracy of the proposed method is achieved by the combination of the logarithmic transformation 

with the utilization of the modified Euler scheme. 

The LTIM performance was compared against traditional integration methods such as the 

Explicit Euler and the fifth order Runge-Kutta method. This novel method is also implemented in 

the solution of a one dimensional methane-air laminar flame. Laminar flame speeds and mass 

fraction profiles were reported and compared against a commercial software, CHEMKIN PREMIX 

(Kee, et al. 1985). 

1.4 PSR-LTIM 

Finally, the LTIM was integrated into the key element of the CRN which is the PSR. The 

goal was to develop a fast computational method that can be applied to predict the composition of a 

mixture in a PSR. Predicted mixture composition using the PSR-LTIM element matched the values 

calculated using PSR-CHEMKIN (Glarborg, et al. 1986), and the computational time needed to 

calculate the solution is in the same order of magnitude. The PSR-LTIM represents an option that 

can be used to solve stiff systems of differential equations instead of the commercial PSR-

CHEMKIN computer code. 

1.5 Objective 

The goal of this study is to reduce the computational time of combustion simulations with 

detailed chemistry. The stated objective will be achieved by the implementation of the following 

steps: 

1. Implementation of the chemical reactor network (CRN) concept in order to predict species 

concentrations using detailed chemical mechanisms. 

2. Development of a new time integration method in order to reduce the time needed to solve 

stiff equation systems. 
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3. Implementation of the integration method in idealized reactors; zero dimensional transient 

reactor, PSR, and one dimensional flame problem. 

The outlined strategy will allow the prediction of the composition of a system in less time 

than a CFD simulation using reduced chemical mechanisms. The implementation of the CRN 

reduces the complexity (i.e. going from a three dimensional problem to a zero dimensional transient 

reactor), this reduction allows the implementation of detailed chemistry. The log-time integration 

method (LTIM) enables further simplicity and robustness without a need for commercial stiff 

system solvers. 

The concepts mentioned above will be put into historical context in the literature review 

section, the implementation details will be discussed in the methodology section and finally results, 

discussion of the results, and conclusions will follow. 
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 Literature Review Chapter 2:

Combustion modeling of industrial burners is a challenging problem due to the physical 

phenomena that simultaneously occur during the combustion process, e.g. turbulent fluid dynamics, 

chemical reactions, heat and mass transfer. The coupling of the aforementioned phenomena 

produces a non-linear system which makes it extremely difficult to predict. Due to the complexity 

of the problem, the combustor design has evolved as a product of empirical cut and try process. 

Over many years, combustor design was aided by the compilation of large sets of experimental data 

and the development of empirical correlations. Odgers (Odgers 1975) presents the results of a 

questionnaire completed by combustion designers. Their response indicates a wide variety of 

design approaches and considerably lack of confidence in combustion theory. 

The ability to design new combustors has improved in the past decades mainly because of 

the utilization of computers. With the increase of computer capabilities the simultaneous solution of 

all physical phenomena occurring in the burner was envisioned. However, this has not been 

achieved because of the wide range of spatial and temporal scales that are inherent to combustion 

phenomena and the large amount of computational cells needed to correctly solve the large number 

of differential equations involved. 

Solution of the flow field is a complex task because the vast majority of modern 

combustors for industrial applications work under turbulent flow conditions. Turbulent flows are 

characterized by a velocity field which varies significantly and almost randomly both in space and 

time. Numerical solution of turbulent flows can be obtained by using the following approaches; 

Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and Reynolds Average Navier-

Stokes (RANS) simulations. DNS consists in modeling of all length scales contained in the 

turbulent flow, in order to capture all scales it is necessary to use a large number of computational 

cells (proportional to the turbulent Reynolds and the Damköhler numbers) and time steps. Gicquel 
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et al. (Gicquel, Staffelbach and Poinsot 2012) estimated the size of computational domain and the 

length of time the simulation has to run in order to resolve all the scales of the problem. According 

to Gicquel it is necessary to have N grid points in each direction of the computational domain that 

must satisfy the following relationship; 

2

Re 









Q

N
Dat

 for simulations using a reaction 

mechanism with one irreversible reaction. Here the turbulent Reynolds number is defined as 


t

t

lu
Re , u’ being the magnitude of the fluctuating part of the velocity, lt the characteristic 

turbulent length scale, and   is the kinematic fluid viscosity. The Damköhler number is equal to the 

characteristic turbulent time scale divided by the characteristic chemical time scale 
c

tDa



 . 

Finally Q is the number of grid points in the thin reaction zone (of the order of 20 for simple 

chemical schemes). Besides resolving the characteristic time scales it is needed to resolve the 

temporal behavior of the problem. To properly calculate the time statistics of the problem it is 

necessary to perform at least Mt 
3Re (M number of time steps) time integrations. Due to the 

aforementioned conditions, DNS is still limited to simple small geometries and relatively simple 

fuels. DNS for three-dimensional flows with complex geometries, high turbulent Reynolds numbers 

and burning large molecule fuels which are usually found in industrial applications are out of 

today’s present computer capabilities. 

Another numerical simulation approach is large eddy simulation (LES). In LES the 

dynamics of the larger-scale flow structures (which are affected by the flow geometry and are not 

universal) are computed explicitly, while the influence of smaller scales (which have a universal 

character) is included by relatively simple models. In computational expense, LES lies between 

DNS and RANS. Nowadays combustion research is trending towards LES to predict burner 



 

10 
 

performance. However, LES consumes a significant amount of computational time and most of the 

relations to model the small turbulent scales are still under development. 

Finally, another approach which is commonly used for the prediction of turbulent flows is 

the Reynolds Average Navier-Stokes (RANS) simulations. RANS involves the solution of the 

averaged Navier-Stokes equations. The averaged velocity field is affected by the fluctuating 

velocities represented by extra terms that appear after the averaging of the original governing 

equations. The extra terms are known as the Reynolds stresses, and these terms are usually modeled 

using the Boussinesq approximation that states that the contribution of the momentum transfer from 

the turbulent eddies can be modeled using an eddy viscosity concept. The way the eddy viscosity is 

calculated depends on the selected turbulence model. Turbulent models vary in complexity from 

zero equation models (Prandtl mixing length) to up to seven extra equations (three dimensional 

Reynolds Stress Model (RSM)). The more detailed the turbulence model, the more computationally 

intensive it becomes, but usually the RANS approach is the least time consuming when compared 

to DNS and LES approaches. 

Although turbulent flow prediction is a significant time consuming process in combustion 

simulations, the main bottle neck is due to the modeling of the chemical kinetics. Gaseous chemical 

reactions are modeled using the Arrhenius reaction rate model. The Arrhenius equation gives the 

rate for each reaction that is considered in the combustion mechanism as 

          ( 
    
  
) (2.1) 

Equation 2.1 shows the non-linear dependence of the reaction rate with the temperature, T, and 

activation energy, Eact. The activation energy dictates which reactions proceed faster and which 
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slower. As a result, it is common to have a system of equations with a wide range of time scales 

(~10
-9 
– ~10

0
 [s]), this causes stiffness in the equations. 

Every reaction included in the simulation has a forward and reverse reaction rate. The 

collection of reactions that describe the consumption or production of the chemical species is called 

the chemical mechanism. A chemical mechanism could be as simple as a single reaction global 

mechanism to a detailed description of the chemistry phenomena with several thousand reactions as 

can be seen in Figure 2.1.  

 

Figure 2.1. Dependence of the Number of Reactions and the Statistical Computational Cost in 

Commonly used Chemical Mechanisms (Lu, Law and Yoo, et al. 2009). 

Figure 2.1 shows the number of exponential operations, in the evaluation of chemical rates 

and the mixture-averaged diffusion coefficient as a function of the number of chemical species in 

various detailed and skeletal mechanisms (Lu, Law and Yoo, et al. 2009). The evolution in size of 

detailed and reduced mechanisms over the past decade can also be seen in Figure 2.1. The size of 

the mechanisms tends to grow with the size of the fuel molecule; the size also grows with time as 

new discoveries in chemical kinetics are continuously made. Figure 2.1 also shows a comparison of 
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the cost for the evaluation of the chemical source terms and the diffusion coefficient, Cchem and Cdiff 

respectively, for various detailed and skeletal mechanisms. It can be seen that Cdiff is more 

computationally expensive than Cchem because it scales quadratically with the number of species if 

detailed transport is involved. In order to reduce the computational cost of diffusion term 

calculation, a method of diffusive species bundling for mixture averaged model was developed by 

Lu and Law (Lu and Law, 2007). This model groups the species with similar diffusivities, such that 

the size of the binary diffusion coefficient matrix is reduced. It was found that n-heptane 

mechanism can be described by less than 20 species groups thus making the calculation of Cdiff 

much less computationally expensive than Cchem. It was reported by Lu et al. (Lu, Law and Yoo, et 

al. 2009) that Cchem scales linearly with the number of species making this term the bottle neck of 

the combustion simulations. 

2.1 Chemical Reactor Networks 

The chemical reactor network (CRN) concept aids in the modeling of complicated 

combustion systems by reducing their complexity, i.e. it reduces a three dimensional flow plus 

chemistry problem to a network of elements which are zero dimensional (perfectly stirred reactor) 

or one dimensional (plug flow reactor). 

The chemical reactor network concept was first proposed by Bragg (Bragg 1953). Bragg 

applied the CRN or zone modeling to the study of a combustion chamber. The combustion chamber 

was represented with two reactors; the flame region was represented with a perfectly stirred reactor 

(PSR), and the post-flame region was modeled with a plug flow reactor (PFR). Experimental 

verification of the model was carried by Longwell and Weiss (Longwell and Weiss 1955) in their 

back-mixed well stirred reactor near blow-out conditions where the back mixing of recirculation 

gas was assumed infinitely fast compared to the controlling chemical reaction rate. 
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Numerical modeling of reactors such as PSR and PFR using detailed chemistry has been an 

active research subject in the past few decades. Significant efforts were put into the development of 

computer codes capable of modeling chemical kinetics along with other processes such as 

convection and diffusion of chemical species. As a result of these efforts, Kee et al. developed a 

computer code called CHEMKIN (Kee, et al. 1996). CHEMKIN can handle chemical mechanisms 

with a large number of species and reactions and be linked to other computer programs in order to 

simulate a PSR (Glarborg, et al. 1986) or a PFR (Kee, et al. 1985). The aforementioned computer 

codes are used to simulate the reactors created from the CRN approach. 

Zonal combustion modeling was proposed by Swithenbank et al. (Swithenbank, Poll and 

Vincent 1973) as an improvement over combustion design using correlation parameters, and 

experimental testing. The reactor studied by Swithenbank was divided into zones represented by 

idealized reactor elements, such as PSRs, or PFRs as shown in Figure 2.2. 

 

Figure 2.2. Zone Modeling of a Gas-Turbine Can Type Combustor (Swithenbank, Poll and Vincent 

1973). 

In this network the PSR is represented by the well stirred reactor (WSR). Swithenbank et 

al. classified the combustor zones depending on the existing mixing level. Zones with high mixing 

were defined as WSR and zones with low mixing as PFR. This layout allowed Swithenbank to 

predict the blow-off limits and the combustion efficiency of the system. 
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2.1.1 CRN Application in Gas Turbines 

Rubins and Pratt (Rubins and Pratt 1991) applied zone modeling to simulate an ALF-502 

combustor, Figure 2.3. The author tested different possible configurations of the combustor with the 

goal of reducing carbon monoxide and NOx emissions. Their model was composed of PSR, PFR 

and MIX elements. MIX elements were used to model the later injections of air in the combustor, 

no chemical reactions occur in these elements only mixing. Rubins and Pratt first performed 

experiments in the combustor using water and a tracer with the objective to visualize the flow field. 

Flow visualization helped Rubins and Pratt to propose a zone model layout. 

 

Figure 2.3. Zone Modeling of ALF-502 Gas Combustor (Rubins and Pratt 1991). 

Andreini and Facchini (Andreini and Facchini 2004) developed a CRN in order to simulate 

diffusion flame combustors (MS7001F manufactured by GE) and premixed combustors 

(LM2500DLE manufactured by GE). Andreini and Facchini developed the CRN using only the 

combustor geometry and the observations of the flow field (it was not aided by computer 

simulation data). The CRN model was a collection of PSRs and PFRs and the final CRN computer 

code was embedded into a main computer code which simulated the entire power generation plant. 

Results obtained by Andreini and Facchini showed that the model was capable of capturing the NOx 

emissions trend when classical NOx reduction methods are used, such as steam or water injection. 
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a) b) 

  
Figure 2.4. CRN Layout of a) Diffusion Combustor, and b) Premixed Combustor (Andreini and 

Facchini 2004). 

Novosselov (Novosselov 2006) applied the CRN concept to model a generic, lean-

premixed, single-injector, can-type combustor. The CRN layout was created using data from 

computer simulations. Novosselov used two variables to perform the clustering of computational 

cells; temperature and carbon monoxide mass fraction. 

 

Figure 2.5. Zone Modeling of the Single-Injector, Can-Type, GT Combustor (Novosselov 2006). 

The model was tested by comparing the predicted NOx against experimental results. 

Novosselov tuned his model by means of increasing or reducing the volume of zones in order to 

improve the agreement of the NOx predictions with experiments. 
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Kanniche (Kanniche 2010) also developed a CRN with the results obtained from CFD 

simulations. Kanniche performed CFD simulations of a swirl non-premixed combustor using the 

RANS k-epsilon turbulence model and for the chemistry he used a one step global reaction. The 

clustering of computational cells was performed using temperature and equivalence ratio variables, 

and all zones were treated as PSR. The GRI 3.0 (Smith, et al. 1999) detailed mechanism was used 

to simulate the chemistry in the CRN. The main goal of this study was to investigate the effects of 

the ambient temperature and relative humidity on NOx emissions from a combustor. This work 

reported the following conclusions; NOx emissions increase with the increase of ambient 

temperature and they decrease with the increase of relative humidity. The predictions of the study 

were not verified against experimental data. 

a) b) 

 

 
Figure 2.6. a) Geometry of the Combustor, b) CRN Obtained by (Kanniche 2010). 

2.1.2 Other Applications of CRN 

Falcitelli et al. (Falcitelli, Pasini and Tognotti 2002) created a CRN for a glass furnace 

using information from CFD simulations. Falcitelli divided the furnace into zones using two 

variables; temperature and equivalence ratio. A third variable, the angle of the velocity vector was 

employed to determine if the zone corresponded to a PSR or a PFR. The angle of the velocity 

vector was calculated for each one of the computational cells clustered in one zone of the network. 
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If the standard deviation of the velocity angle of the zone was small, then the zone was considered 

as a PFR, or else the zone was considered as a PSR. 

a) b) 

 
 

Figure 2.7. a) Furnace Sketch, b) CRN developed by Falcitelli et al. (Falcitelli, Pasini and Tognotti 

2002). 

Falcitelli et al. built a CRN which consisted of 12 reactors. The CRN was simulated using 

an in-house chemical mechanism, (Faravelli, et al. 1997), which consists of about 200 species and 

greater than 3000 reactions and the nitrogen sub-mechanism involves about 200 reactions and 40 

species. It is reported that the simulation of the CRN took 75 [min] in a desktop computer (Pentium 

II). The reported NOx simulation values were in good agreement with the experimental values (< 

2% error). 

Niksa and Liu (Niksa and Liu 2002) also applied CRN in the computer modeling of 

furnaces. Niksa and Liu performed the zone division using the information from the characteristic 

chemical processes present in the combustion chamber, such as; main flame, recirculation zone, 

mixing layer, etc. Their model was able to depict all the important trends among the major 

intermediaries and products from a selection of different fuels. However important discrepancies 

were found in the concentration of gaseous species. The authors explained these differences as a 

result of the performance of the reaction mechanism used in the simulations. NO predictions were 

improved by tuning of the reaction mechanism. 
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2.1.3 Commercial CRN codes 

Energico is a commercially available CRN software code developed by Reaction Design 

(Kee, et al., 2008). Energico creates the CRN using previously obtained CFD simulations results. 

Using cell information such as oxygen concentration and temperature Energico divides the CFD 

domain in zones and then using extra variables it describes each zone as PSR or PFR. Finally 

detailed chemistry simulations are performed in the CRN. This process is basically the same used 

by Falcitelli et al. (Falcitelli, Pasini and Tognotti 2002) and by Niksa and Lui (Niksa and Liu 2002). 

 
Figure 2.8. CRN Layout Created using Energico Software. 

Energico relies on CHEMKIN software to solve the chemistry of the CRN. Energico was 

specially developed to predict NOx, carbon monoxide, and unburnt hydrocarbons concentrations. 

2.2 Integration Methods for Stiff Equations 

An extensive description of numerical methods for the integration of stiff equations can be 

found in Oran and Boris (Oran and Boris 2001). The integration methods can be divided in four 

categories: 

1 Implicit Methods. These methods require that at each time step several internal iterations must be 

performed in order to find the new value of the dependent variable. It is also necessary to invert the 

Jacobian matrix. Inversion of the Jacobian matrix usually needs I
3
 steps, I being the number of 

species, which makes it computationally expensive. The internal iterations for each time step 
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require a good initial guess otherwise the solution will diverge from the true solution. The 

advantage of these methods is that relatively large time steps can be used. An example of this 

approach is the Newton method. 

2 Backward Differentiation Formulas (or Explicit Methods). These methods are the most common 

methods for solving stiff systems. They do not require internal iterations every time step and most 

of them are self-starting. However these methods are constrained by the time step size. The most 

common methods are the backward Euler and Runge-Kutta methods. 

3 Exponential Methods. These methods are based on the idea that exact solutions of stiff linear 

ordinary differential equations (ODEs) behave like a decaying exponential functions. Exponentials 

are poorly approximated by polynomials when the step size is larger than the smallest characteristic 

time scale of the system, utilization of exponential approximations should allow considerably larger 

time steps. These methods can be implicit or explicit. 

4 Asymptotic Methods. For cases when the time step is large enough asymptotic solutions are 

employed. This is the case for problems where the decaying nature of the exponential relaxation 

modes makes large relative errors progressively less important because the correct equilibrium is 

being approached. These methods have an advantage over explicit or even implicit methods 

because they provide greater accuracy at large time steps. However, these methods are not 

conservative and it is necessary to re-scale the solution in order to maintain stability. 

The main challenge for the numerical integration methods is to solve systems that have a 

wide range of characteristic time scales, stiff systems. All of the methods mentioned before fairly 

predict the solution of the system as t → ∞, however transient evolution of the system is not well 

captured by implicit methods. Explicit methods have the capability to calculate more accurately the 

transient behavior of the system but they are constrained by small time steps. 
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Recently, Gou et al. (Gou, et al. 2010) proposed a method that calculates the transient 

behavior of stiff systems. The method consists in clustering chemical species in three sets 

depending on its characteristic time scale. Solution of this system results in the independent 

integration of the species clusters. For example, small time scale species are integrated in the time 

interval given by τsmall < t < τmedium, medium time scale species τmedium < t < τlarge, and finally large 

time scales species τlarge < t < τflow. This method claims to reduce the computational time by not 

integrating the entire system of equations every time step. 

Other available integration methods of stiff systems like the Runge-Kutta method require 

the evaluation of the right hand side, RHS, (e.g. sources) up to six times per time step (5
th

 order 

Runge-Kutta method (Cash and Karp 1990)). Multiple evaluation of the RHS increases the CPU 

time needed to calculate the solution of the system. 

A significant effort in the development of algorithms for the solution of stiff systems was 

conducted at the Lawrence Livermore and Los Alamos National Laboratories. The product of this 

effort is a library of solution methods for stiff systems called ODEPACK (Hindmarsh 1982). The 

library contains several solution methods but most of them are variations of the GEAR method 

(Gear 1971). 

2.3 Reduced Chemical Mechanisms 

Another approach to speed up the solution of this problem is the utilization of one (or two) 

step global mechanisms, or reduced mechanisms [(Westbrook and Dryer 1981), (Mallampalli, Chen 

and Fletcher 1998), (Sung, Law and Chen 2001)]. It has to be mentioned that time saved by the 

utilization of these simplified mechanisms correspond only to the reduction of the total number of 

chemical species needed to simulate the system. 
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One step or two steps global mechanisms (Westbrook and Dryer 1981) contain the 

chemical species whose concentration is the largest (e.g. methane, oxygen, nitrogen, water, carbon 

dioxide). These mechanisms are optimized to predict the heat release of the combustion process and 

also to calculate the laminar flame speed. Computer simulations using reduced mechanism can 

predict the adiabatic flame temperature, velocity and major species concentration fairly well. But 

they are limited in the sense that pollutants and trace species are not included (such as NO) in the 

mechanism. Nevertheless they are used in complex computer simulations where most of the 

computing power is used in the prediction of the flow field, for example in LES simulations. 

Reduced mechanisms are more complete than global reaction mechanisms because they 

include some chemical species of interest, e.g. NOx. However, reduced mechanisms failed to 

predict concentration of pollutants under certain conditions as was demonstrated in a previous work 

(Escobar, et al. 2011). In this work the NOx production for methane-air flame was calculated using 

two different detailed mechanisms, GRI 3.0 mechanism (Smith, et al. 1999) and San Diego 

mechanism (UCSD-mech 2012), and two reduced mechanisms ARM19 and ARM9. For a mixture 

with an equivalence ratio equal to 0.8 (equivalence ratio is defined as the ratio of the fuel-to-

oxidizer ratio to the stoichiometric fuel-to-oxidizer ratio) and a short residence time in the 

combustor, it was found that ARM9 was not able to calculate the NOx produced by the prompt 

pathway mainly because this mechanism assumes the concentration of the HCN chemical specie to 

be in steady state. Despite the limitations of the reduced mechanism, ARM9 is one of the most 

robust chemical mechanisms for methane-air combustion simulation and is commonly used as an 

initial step in the numerical simulations solution procedure. 

The present study focused on the development of an approach to numerically predict the 

variables of interest in combustion (e.g. velocity, temperature, chemical species concentration) 

faster than commonly used methods. In order to achieve this goal different burner set ups were 

studied using relatively inexpensive computational models (RANS along with one step global 
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mechanisms). Then the CRN method was applied in order to predict the chemical species 

concentration using a detailed chemical mechanism. Finally a novel integration method was 

implemented in the solution of the main component of the CRN, the perfectly stirred reactor (PSR). 

Solution of the PSR using this novel integration method was compared with the solution obtained 

using a commercial software (CHEMKIN). The aforementioned approach is explained in detail in 

the following chapters along with the presentation of results and discussions. 

This study hopes to contribute in the acceleration of combustion simulations by the 

development of a novel integration method and its application in the main component of the CRN, 

the perfectly stirred reactor. A library of computer programs with applications to chemical reactions 

was developed using the LTIM and it is presented in the current work. Finally, an assessment of the 

computational time needed by a CRN simulation using detailed mechanism (Smith, et al. 1999), 

CFD simulation using ARM9 (Mallampalli, Chen and Fletcher 1998), and CFD simulation using 

ARM19 (Sung, Law and Chen 2001) was performed. 
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 Burner CFD Simulations Chapter 3:

The first stage of the present study is to perform numerical simulations using a relatively 

inexpensive computational model (RANS), and one step global mechanisms or reduced chemical 

mechanisms to model the chemical reactions. In the present study numerical simulations were 

performed for swirl stabilized combustors. Here the flame stabilization is achieved by imposing a 

tangential velocity component to the inlet flow and then allowing the flow to go through a sudden 

expansion. Swirl stabilization is used in combustion applications because the swirling helps to 

obtain a short flame which improves the homogenization of the mixture and the stabilization of the 

flame (Frassoldati, et al. 2005). The shape of the flow field in the swirl combustors can be 

characterized by means of a non-dimensional variable called swirl number. The swirl number is the 

ratio of axial flow of the tangential component of the momentum to total axial momentum. The 

dimensionless swirl number is defined as follows. 

 

(3.1) 

Where Rin is the inlet radius,   is the fluid density, U is the mean axial velocity, W is the 

mean tangential velocity, and r is the radial distance. The tangential component of the inlet flow is 

usually applied in combustion applications using two approaches; 1) annular vaned swirler, 2) 

tangential flow injection.  

 

 

 

 

  
∫        
   
 

   ∫       
   
 

 



 

24 
 

a) b) 

  
Figure 3.1. Swirl Burner Inlet Configurations. a) Annular Vaned Swirler, b) Tangential Flow 

Injection (Valera-Medina, et al. 2011). 

Two of the burner configurations (NETL, and unconfined burner) used in the present study 

had a blade swirler to add the tangential velocity component to the flow. Assuming uniform 

velocity profiles Equation 3.1 can be written in terms of the swirl blade angle,       . The resulting 

swirl number is referred to as the geometric swirl number. 

      
 

 
   (      ) (3.2) 

The definition in Equation 3.2 is commonly used when the information about the velocity 

profiles is not available (Lilley 1977). The flow field is greatly affected by the value of the swirl 

number, if the swirl number is large enough a central recirculation zone appears. At high swirl 

numbers (S > 0.6) the flow field can be divided into three main zones as seen in Figure 3.2. 

 

Figure 3.2. Characteristic Flow Field of a Confined Swirl Flame (Meier, et al. 2000). 



 

25 
 

The mixing zone (A), shown in Figure 3.2, is where the exothermic reactions mainly take 

place, the central recirculation zone also known as the main recirculation zone (B) appears when 

the swirl number is S > 0.6. The recirculation zone is where the hot intermediate products are 

transported and the combustion process is completed, and the outer recirculation zones (also known 

as the secondary recirculation zone) are characterized by containing the burnt gas (C) (Frassoldati, 

et al. 2005). 

Computer simulations of swirl stabilized flames were performed in the present study using 

a commercial CFD software (ANSYS-FLUENT). Three different burners were studied in order to 

test the applicability of the chemical reactor network. The burner geometry and simulation details 

are given in the following sections. 

3.1 Mathematical modeling 

The reacting flow processes that occur in the combustor can be described using the 

following steady state governing equations: conservation of mass, a scalar transport equation for 

each one of the chemical species, conservation of momentum, and energy conservation. The steady 

conservative forms of the governing equations are written as follows: 

Continuity Equation 

       (3.3) 

Where   is the density of the mixture, and v is the velocity vector. 

Momentum equation 

            (         ̅̅ ̅̅ ̅)     (3.4) 

P represents the pressure,   is the mixture viscosity, v' is the fluctuating component of the velocity, 

and g is the gravity vector. The mixture viscosity was calculated using the ideal gas mixing law 
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model and the viscosity of the specie j was calculated using the kinetic theory model. Details of the 

ideal gas mixing law and the kinetic theory models for the calculation of the viscosity can be found 

in the user’s guide of ANSYS-FLUENT (ANSYS-FLUENT, User's Guide 2013). 

Energy equation 

  (     )    (    ∑            ̅̅ ̅̅ ̅̅

 

 

)     (3.5) 

Where cp is the specific heat of the mixture,   is the thermal conductivity of the mixture, hj is the 

enthalpy of specie j, Jj is the diffusion flux vector of specie j, K is the total number of chemical 

species, T' is the temperature fluctuation, the term Sh represents the rate of heat release due the 

production or consumption of the chemical species. All physical properties are temperature 

dependent. The calculation of the specific heat of the specie j (cp,j) was performed using piecewise 

polynomials and the thermal conductivity (  ) was calculated using the kinetic theory model. The 

mixture specific heat (cp) and the mixture thermal conductivity was calculated using the mixing law 

and the ideal gas mixing law respectively. Details of the models used to calculate the physical 

properties in the CFD simulations can be found in the user’s guide of ANSYS-FLUENT (ANSYS-

FLUENT, User's Guide 2013). The variation of,  , is related to the change of temperature and 

composition of the flow mixture and is calculated using the ideal gas law. 

Equations 3.4, and 3.5 have extra terms related to the turbulence fluctuations (velocity 

     ̅̅ ̅̅ ̅ and temperature        ̅̅ ̅̅ ̅). These terms appear after the Reynolds averaging process is 

applied. The Boussinesq hypothesis is used to evaluate the turbulence related terms as follows. 

      ̅̅ ̅̅ ̅    [    
 

 
    ]  

 

 
   (3.6) 
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(       ) 

    
   ̅̅ ̅̅ ̅̅       (3.7) 

Where   , and    represent the turbulent molecular viscosity and the turbulent thermal conductivity 

respectively,     is the transpose of the velocity gradient, I is the unit tensor, and k is the kinetic 

energy. The calculation of the turbulent viscosity and turbulent thermal conductivity depends on the 

closure approach used to model turbulence. The closure models used in this study are discussed in 

the following sections. 

3.1.1 k-epsilon Turbulence Model 

In this study two closure approaches were used; the k-epsilon turbulence model and the k-

epsilon RNG (Re-Normalisation Group) turbulence model. The k-epsilon model (Launder and 

Spalding 1972) solves the progress of the turbulent kinetic energy in the system (k) and the 

turbulent dissipation rate (epsilon) by adding two extra equations to the problem. 

       [(  
  
  
)  ]           (3.8) 

       [(  
  
  
)   ]      

 

 
(         )       

  

 
 (3.9) 

Where    term is related to the production of turbulence and    term includes the buoyancy 

effects. A detailed description of the turbulence production and buoyancy effects terms can be 

found in the theory guide of FLUENT (ANSYS-FLUENT, Theory Guide 2009). The values of the 
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coefficients used in Equations 3.8 and 3.9 are the standard values recommended by the theory guide 

of FLUENT software. These values are valid for most of the turbulent flow problems. 

The turbulent viscosity and thermal conductivity can be calculated using the following 

relationships. 

      
  

 
 (3.10) 

   
    

   
 (3.11) 

Where          , and the turbulent Prandtl number          are constants. 

3.1.2 k-epsilon RNG Turbulence Model 

The k-epsilon RNG (Re-Normalisation Group) model was also used in a second set of 

simulations. The k-epsilon RNG is similar to the standard k-epsilon model but includes the effect of 

swirl in the turbulence, and an analytical expression for the calculation of the turbulent Prandtl 

number. 

       [        ]           (3.12) 

       [        ]      
 

 
(         )       

  

 
    (3.13) 

Where    and    are the inverses of the effective Prandtl number for k and  , respectively. The 

values of the constants used in the RNG formulation vary from the values used in the standard k-

epsilon model. One of the important differences is the calculation of the turbulent viscosity, the 
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theory behind of the RNG (or renormalization) method results in a differential equation for the 

turbulent viscosity shown next. 

 (
   

√  
)      

 ̂

√ ̂      
  ̂ (3.14) 

Where  ̂  
    

 
 and       . A detailed description of the k-epsilon RNG turbulence model can 

be found in the theory guide of FLUENT software (ANSYS-FLUENT, Theory Guide 2009) and in 

Orzag et al. (Orszag, et al. 1993). 

3.1.3 Species Transport Modeling 

The evolution of the flow composition in the system is modeled by the species transport 

equation. FLUENT software solves N-1 partial differential equations, where N is the total number 

of chemical species included in the simulation. The steady state species transport equation is shown 

next. 

  (    )           (3.15) 

Where    is the mass fraction, Ji is the mass diffusion flux, and    is the net rate of production or 

consumption of the specie i. 

The mass diffusion flux is modeled using the Fick’s law including turbulent mass fluxes 

    (      
  
   
)    (3.16) 

Where     is the turbulent Schmidt number which is equal to     
  

   
    .  



 

30 
 

The net rate of production or consumption of the specie i, Ri, is determined by considering 

the rate contribution of each reaction in the chemical mechanism used. 

      ∑     

     

   

 (3.17) 

The Ri,j rate calculation depends on the turbulence-chemistry approach used. The selection 

of the model also depends on the kind of chemical mechanism used, e.g. one step global reaction 

mechanism or multi-step reaction mechanism and if the combustion is premixed or non-premixed. 

Premixed combustion refers to the case where the fuel and oxidizer are mixed before entering the 

combustion chamber whereas the non-premixed refers to the opposite case. The current study 

presents three cases where two of them are premixed and one is non-premixed. Due to these 

conditions two turbulence chemistry models were selected, 1) Finite Rate/Eddy-Dissipation, and 2) 

Eddy-Dissipation Concept. These models are briefly discussed next: 

1.- Finite Rate/Eddy-Dissipation. This model is a combination of two approaches, the finite rate 

model assumes the reaction is controlled by the chemical kinetics and uses the average temperature 

and concentration of the species to calculate the rate. The rate of consumption or production of the 

species is given by the following expression. 

     (    
      

 )(    ∏ 
   

    
 

   

   

     ∏ 
   

    
 

   

   

) (3.18) 

where     
      

  are the stoichiometric coefficients of the specie i in the reaction j, the superscripts P 

and R represent the product or reactant side of the reaction, cm,j is the molar concentration of the 

specie m in the reaction j and      is the reaction order of the specie m in reaction j. The reaction 

rate constant k is calculated using the Arrhenius equation. 
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     ( 

    

  
) (3.19) 

The variables that appear in the rate expression, Aj,   ,and the activation energy Ea,j are 

obtained from experimental measurements or from theoretical values from ab-initio calculations. 

As shown in Eq. 3.18 the rate is composed of the forward and reverse reaction rates, and the reverse 

rate is usually obtained from the following expression. 

   
    

    
 (3.20) 

Where Kj is the equilibrium constant of the reaction j. 

On the other hand, the Eddy-Dissipation model assumes that mixing of the species controls 

the rate of the reaction (if it mixes, it reacts). The reaction rate calculation is modified to take into 

account the degree of mixing of the reactants and the products as it is shown in Equations 3.21, and 

3.22. 

    
           

 

 
   (

  
       

)                   (3.21) 

    
           

 

 

∑    

∑        
 
   

 (3.22) 

where AR and AP are empirical constants. 

The Finite Rate/Eddy-Dissipation model uses the smallest rate calculated either by the 

finite rate or the eddy dissipation model,    (         
      

 ). However, this method is not suitable 
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for multi-step chemical mechanisms. It ignores the difference in the reaction rate of different 

reactions, when the controlling step is the mixing rate of the species. For this reason it should be 

used for one or two step reaction mechanisms only. A detailed description of the Eddy-Dissipation 

model can be found in Magnussen and Hjertager (Magnussen and Hjertager 1977). 

2.- Eddy-Dissipation Concept (EDC). This method was developed by Magnussen (Magnussen, 

1981) and it assumes that the reactions take place in the fine scales which are related to the 

characteristic turbulent length and time scale. The turbulent length and time scales are calculated 

using the following expressions 

     (
  

  
)

 
 
 (3.23) 

     (
 

 
)

 
 
 (3.24) 

Where       are constants and   is the kinematic viscosity. Combustion in the turbulent fine scales 

is assumed to occur as that in a constant pressure reactor with initial conditions taken as the current 

specie concentrations and temperature values stored in the computational cell. The consumption or 

production rates of chemical species are calculated using the finite rate model along with the 

Arrhenius rates; the flow residence time is given by the characteristic turbulent time scale. The 

reaction proceeds in each computational cell until the calculated residence time is reached, the 

integration is performed using a tabulation integration method better known as ISAT (Pope 1997). 

Finally the rate of the specie i is modified in order to include the effect of the turbulence in the 

chemical reaction. 
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 (  ) 

  ⌊  (  ) ⌋
(  
    ) (3.25) 

  
  is the fine-scale mass fraction of the specie i after reacting over the time   . EDC 

implementation details are explained in more detail in the theory guide of FLUENT (ANSYS-

FLUENT, Theory Guide 2009). 

3.2 Confined Premixed Swirl Burner 

3.2.1 Geometry Details and Operational Conditions 

This burner will be referred in the present study as the NETL (National Energy Technology 

Laboratory) burner. This is a laboratory scale methane-air burner located at NETL-Morgantown. 

NETL burner is an atmospheric swirl combustor (closed-open configuration) which consists of a 

quartz tube that confines the flame and also provides optical access. The quartz tube has an inner 

diameter of 80.5 [mm] and is 230 [mm] in length. The inlet nozzle and center body, which provides 

anchor for the swirler and flame, has a diameter of 21.8 [mm] and 8.8 [mm], respectively. The end 

of the center body and the dump plane are co-planar. A vane type swirler with a geometric swirl 

number (     ) equal to 0.88 is placed 50 [mm] upstream of the dump plane. Figure 3.3 shows the 

combustor setup and the swirler geometry. 

 

Figure 3.3. NETL Burner Sketch. 
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An adiabatic dump plane was used for the present simulations and the total flow rate was 

set to a constant of 100 [slpm] which gave a Reynolds number based on the hydraulic diameter of 

4,385. Simulations were performed using methane as fuel. 

3.2.2 Simulation Details 

Numerical simulations were performed in two steps: 

 First, the cold flow simulations were calculated using a three dimensional geometry which 

included the inlet nozzle, the swirler, and part of the combustor chamber. Simulation results 

were used to characterize the three dimensional flow inside the combustor. Velocity 

profiles were extracted at a line located in the middle of the distance between the swirler 

and the dump plane, Figure 3.4 a). 

 Second, the reacting flow was simulated using a two dimensional axisymmetric geometry. 

The geometry included a small portion of the inlet nozzle and the combustion chamber. 

Profiles of the three velocity components extracted from the non-reacting three dimensional 

simulations were used as inlet boundary conditions for the two dimensional axisymmetric 

simulations. 
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a) b) 

 
 

 

Figure 3.4. CFD Simulations of a) Three Dimensional Inlet Section used for Non-Reacting Flow 

Simulations and b) Two Dimensional Axisymmetric Combustor Section used for the Reacting Flow 

Simulation. 

Figure 3.4 shows the CFD geometries used, a) three dimensional non-reacting flow 

simulation and b) two dimensional axisymmetric simulations. The three dimensional inlet section 

has 800,000 hexahedral cells while the two dimensional axisymmetric section has approximately 

48,000 triangular cells. 

Table 3.1. Confined Premixed Swirl Burner Simulation Details. 
 Non-Reacting Flow Simulation Reacting Flow Simulation 

Computational Domain Three Dimensional Two Dimensional Axisymmetric 

Time Formulation Steady State Steady State 

Pressure-Velocity Coupling SIMPLE SIMPLE 

Pressure Discretization Scheme PRESTO PRESTO 

Convective Term Discretization 

Scheme 
2nd Order Upwind 2nd Order Upwind 

Turbulence Model k-epsilon RNG k-epsilon RNG 

Chemical Mechanism 

N/A 

a) One Step Global Mechanism 

b) ARM9 

c) ARM19 

Turbulence Chemistry Interaction 

Model 
N/A Eddy-Dissipation Concept (EDC) 

Chemical Species Integration N/A ISAT 

The three dimensional cold flow simulations were performed using the k-epsilon RNG 

model, while the two dimensional combustion simulations were performed using the k-epsilon RNG 

turbulence model along with the Eddy-Dissipation Concept (EDC) for the turbulence-chemistry 

interaction. 
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Chemical reactions were modeled using three chemical mechanisms, 1) one step global 

mechanism (Westbrook and Dryer 1981), 2) a 9 species - 5 reactions reduced mechanism (ARM9) 

(Mallampalli, Chen and Fletcher 1998), and 3) a 19 species - 15 reactions reduced mechanism 

ARM19 (Sung, Law and Chen 2001). Second order upwind discretization was used for all 

equations along with the SIMPLE algorithm for the velocity-pressure coupling. 

 

Figure 3.5. NETL Burner Boundary Conditions. 

Boundary conditions used in the two dimensional case are shown in Figure 3.5. On the 

combustor wall a mixed thermal boundary condition is used to include heat loss due to convection 

and radiation as the quartz tube combustor is not cooled. A heat transfer coefficient of 40 [W/m
2
K] 

was used and heat transfer due to radiation was calculated using the following expression. 

 (3.26) 

where εext is the emissivity of the external wall, in this case it was set as εext = 1.0, σ is the Stefan-

Boltzman constant, and T∞ and Tw are the ambient and wall surface temperatures, respectively. The 

thermal conductivity of the combustor wall is set to 1.92 [W/m*K] to match that of quartz (Thermal 

Properties of Fused Quartz 2014) and the rest of the walls are considered to be adiabatic. 

The inlet boundary composition was set to an equivalence ratio equal to 0.8 of methane-air 

mixture. The equivalence ratio is defined as follows 

 44

wextrad TTq  
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)
     

(
         
     

)
      

 (3.27) 

The subscript stoic refers to stoichiometric conditions. The stoichiometric mixture of a hydrocarbon 

fuel reacting with air can be calculated using the following reaction 

      (         )       (
 

 
)            

(3.28) 

The variable a in Equation 3.28 is calculated from        . In the present study methane is 

used as fuel (CH4) which yields a = 2. The mass of oxidizer shown in Equation 3.27 is calculated 

for the stoichiometric mixture in the following fashion,             (              ) 

where MWi is the molecular weight of the specie i. 

Finally, the inlet volumetric flow rate of 100 [slpm] was set giving a Reynolds number 

based on the hydraulic diameter equal to (ReDh) = 4,385. 

3.2.3 CFD Results for Non-Reacting Flow – NETL Burner 

A grid convergence study was performed for the three dimensional cold flow simulations 

using three different mesh resolutions. Approximately 400,000 cells, 800,000 cells, and 1.6 million 

computational cells were used (Mesh 1, 2, and 3 respectively). Figure 3.6 shows the calculated 

axial velocity profiles at the dump plane for the non-reacting flow simulation.  
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Figure 3.6. Grid Independence of Axial Velocity at Dump Plane, theta = 0 [deg]. 

Similar axial velocity profiles were obtained from the three meshes used as it can be seen in 

Figure 3.6 showing that nearly a grid independent solution was achieved. The shape of the axial 

velocity profile shows the maximum value near the outer wall (y/rnozzle = 1) in contrast to the 

classical velocity profile where the maximum is at the center of the annulus for the case of zero 

swirl. The distortion of the axial velocity profile from the typical turbulent velocity profile is a 

function of the swirl number (Chigier and Beer 1964). 

Experimental Particle Image Velocimetry (PIV) data (see measured axial velocity contour 

in Figure 3.7) was used to assess the numerical predictions. Strakey (Strakey 2010) facilitated the 

experimental results which were obtained for the same non-reacting flow conditions. 
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Figure 3.7. PIV Contour of Cold Flow Axial Velocity [m/s], theta = 0 [deg] (Strakey 2010). 

Figures 3.8 a) and 3.8 b) show the comparison of the axial and radial velocity profiles 

obtained from the numerical simulations (Mesh 2) with the experimental values at 1.5 [mm] 

downstream of the dump plane. Results suggest a good qualitative and a reasonable quantitative 

agreement with the experiments. Figure 3.8 c) shows a comparison of the tangential velocity 

profiles at 1.0 [mm] downstream the dump plane. For peak tangential velocity, there is an 

approximate 25% difference between the experiments and the computations. It is to be noted that 

the line profiles are captured at a particular axial-radial plane of the three dimensional simulations 

upstream of the dump plane (theta = 0 [deg]). 

a) b) c) 

 

 

 

Figure 3.8. Comparison of the PIV Measurements and the Predicted Non-Reacting Flow Velocity 

Profiles a) Axial Velocity, b) Radial Velocity, and c) Tangential Velocity. 
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Figure 3.9 shows predicted velocity profiles plotted at different theta locations along the 

tangential direction. These velocity profiles were taken in the middle of the distance between the 

swirler and the dump plane, information from these profiles was used as boundary condition in the 

two dimensional axisymmetric simulations. From Figure 3.9 it can be seen that there is some scatter 

in the values of the axial, radial and tangential velocities. Velocity profiles obtained from the three 

dimensional non-reacting flow simulations were averaged along theta direction (see Figure 3.9) and 

the average flow profiles were used as inlet boundary conditions for the two dimensional 

axisymmetric reacting flow simulations (Escobar, et al. 2010). These profiles were extracted from a 

radial-tangential plane located at 25 [mm] upstream the dump plane and averaged along the eight 

lines equally spaced in the theta direction. 

a) b) 
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c)  

 

 

Figure 3.9. Averaged Velocity Profiles [m/s] along Theta Direction, a) Axial Velocity, b) Radial 

Velocity, and c) Tangential Velocity. 

Figure 3.10 a) shows the lobed nature of the velocity flow field due to the swirler located at 

25 [mm] upstream of the dump plane, midway between the swirler and the dump plane, and at the 

dump plane Figure 3.10 b). 

a) b) 

  
Figure 3.10. Axial Velocity Contours [m/s] from Three Dimensional Non-Reacting Flow 

Simulation at; a) 25 [mm] Upstream of the Dump Plane, b) Dump Plane.  

3.2.4 CFD Results for Reacting Flow – NETL Burner 

Reacting flow simulations were performed with three chemical mechanisms for a methane-

air flame with an equivalence ratio equal to 0.8. Figure 3.11 shows the axial velocity contour with 

stream lines for the reacting flow case in which the chemistry was modeled using a one step global 
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mechanism. Results show two recirculation zones; one close to the axis of the domain (main 

recirculation zone) and another on the top left corner of the burner (secondary recirculation zone). 

The main recirculation zone is produced by the vortex breakdown, which is a typical feature of the 

flow field for swirl flows with high swirl numbers (S > 0.6) (Syred and Beer 1974). The general 

structure of the velocity field remained nearly the same for the three cases with different chemical 

mechanisms. 

 

Figure 3.11. Axial Velocity Contour [m/s] with Streamlines from Two Dimensional Axisymmetric 

Reacting Flow Simulations. One Step Global Mechanism. 

The temperature contour obtained using the one step global mechanism is shown in Figure 

3.12 a). The maximum temperature region is located at the main recirculation zone which is 

expected because of the high mixing of the combustion products. The temperature on the secondary 

recirculation zone is not as high as in the main recirculation zone because of the heat flux lost from 

the burner to the surroundings. 
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a) b) 

 

 

Figure 3.12. Two Dimensional Axisymmetric RANS Simulations. a) Temperature Contours One 

Step Global Mechanism, b) Outlet Temperature Profile using Different Chemical Mechanisms. 

The temperature profiles at the outlet of the NETL burner are shown in Figure 3.12 b). In 

the profile picture, the location r/routlet = 0 is the symmetry axis and r/routlet = 1 is the quartz wall. 

ARM19 predictions calculated the highest temperature at the center of the domain (symmetry line), 

the difference with the global mechanism is about 2.44% according to Equation 3.29. 

           [
      |                       |           

           |           

]      (3.29) 

Figure 3.13 a) and b) shows the predicted water and oxygen mole fraction profiles located 

at the outlet of the burner. 
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a) b) 

  

Figure 3.13. Outlet Mole Fraction Profile using Different Chemical Mechanisms. a) Water, b) 

Oxygen. 

Variation of the water and oxygen mole fraction at the outlet of the burner is not 

significant. Predicted profiles for using these chemical models do not show a significant variation 

neither for temperature nor mass fraction for the major species. The maximum difference in the 

water mole fraction is 1.07%, Equation 3.30, and for oxygen is 4.03%, Equation 3.31. 

              [
          |           

                |           

               |           

]      (3.30) 

             [
         |           

         |           

        |           

]      (3.31) 

Chemical species can be considered to be major when its concentration (mole fraction) is 

higher than 1x10
-3

. However significant differences are present for minor species (when 

concentration is lower than 1x10
-3

 mole fraction) as it will be discussed in detail in Chapter 4. 
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3.3 Confined Non-Premixed Swirl Burner 

The chemical reactor network was tested for a different burner set up in which the fuel and 

oxidizer were fed separately; non-premixed combustor. A swirl stabilized non-premixed methane-

air burner, TECFLAM burner, was experimentally characterized by Schmittel et al. (Schmittel, et 

al. 2000). This burner was selected because of the large amount of experimental data available. The 

experimental data includes the following; temperature profiles, axial, radial, tangential velocity 

profiles, measured oxygen, water, carbon monoxide, and carbon dioxide concentration profiles. 

3.3.1 Geometry Details and Operational Conditions 

The TECFLAM burner has a water cooled combustion chamber with an internal diameter 

DC = 0.5 [m] and a height L= 1.2 [m]. The combustion chamber has two inlets Figure 3.14, the fuel 

annulus has an inner diameter of Di,fuel = 0.02 [m] and outer diameter of Do,fuel = 0.026 [m], the air 

annulus is defined by inner diameter of Di,air = 0.03 [m] and outer diameter of Do,air = 0.06 [m]. The 

tangential velocity component was imposed by a swirler located upstream of the dump plane of the 

combustion chamber. The chamber has a bluff body at the center Dbluff = 0.02 [m] which helps 

produce a large scale recirculation zone located at the center of the chamber. The recirculation 

helps to improve the fuel-air mixing process and results in a shorter flame. 
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Figure 3.14. Schematic of the TECFLAM Burner (Meier, et al. 2000). 

The TECFLAM burner has two main recirculation zones as it can be seen in Figure 3.14. A 

main recirculation zone is located at the center of the domain and is mainly generated by the sudden 

expansion of the flow. The tangential component of the flow is imposed upstream the dump plane 

by a swirl generator. The side walls are water cooled. Table 3.2 summarizes the burner geometry 

and the operational conditions used in this study. 

Table 3.2. TECFLAM Geometry and Operational Conditions. 

Fuel Annulus Dinner = 0.02 [m] Douter = 0.026 [m] 

Air Annulus Dinner = 0.03 [m] Douter = 0.06 [m] 

Combustor Chamber Annulus Dinner = 0.47 [m] Douter = 0.5 [m] 

Combustor Chamber Length, L 1.2 [m]  

Fuel Inlet Bulk Velocity 21 [m/s]  

Air Inlet Bulk Velocity 23 [m/s]  

Equivalence Ratio 0.833  

Swirl Number, S  0.9  

Pressure 1 [atm]  

Inlet Temperature 300 [K]  
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3.3.2 Simulation Details 

Two dimensional axisymmetric simulations were performed using ANSYS-FLUENT. The 

computational domain consisted of 71,428 cells. The computational domain used is shown in 

Figure 3.15. 

a) b) 

 

 

Figure 3.15. a) Sketch of the TECFLAM Burner, b) TECFLAM Computational Domain. 

The dashed red line showed in Figure 3.15 a) represents the physical domain that was used 

in the CFD simulation. Figure 3.15 b) shows the simulated computational domain, here the inlet 

section has two annulus, the inner and outer annulus which supplied fuel and air respectively. 

Velocity inlet profiles from experiments were prescribed at the fuel and air inlets. The bottom and 

top wall were treated as adiabatic and no-slip boundaries. Side wall was set as a constant 

temperature (Twall = 1073 [K]), no-slip boundary. The outlet was set as an outflow boundary 

condition, finally the center line was set as an axis boundary condition. 
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Table 3.3. Confined Non-Premixed Swirl Burner Simulation Details. 

 Reacting Flow Simulation 

Computational Domain Two Dimensional Axisymmetric 

Time Formulation Steady State 

Pressure-Velocity Coupling SIMPLE 

Pressure Discretization Scheme PRESTO 

Convective Term Discretization Scheme 2nd Order Upwind 

Turbulence Model k-epsilon 

Chemical Mechanism Two Step Global Mechanism 

Turbulence Chemistry Interaction Model Finite Rate/Eddy-Dissipation 

Chemical Species Integration ISAT 

The prediction of the flow field is highly sensitive to the shape of the inlet velocity profiles. 

Previous studies ((Frassoldati, et al. 2005), (Chigier and Beer 1964)) and also the experience 

obtained in this study tells that the size and shape of the recirculation regions are greatly influenced 

by the shape of the inlet velocity profiles. A swirl number with the same inlet mass flow can be 

achieved by using different shapes of the velocity profiles but the predicted flow field could be very 

different. 

In order to accurately predict the flow field, the velocity profiles used at the inlet of the 

domain are taken from experiments 1 [mm] downstream of the dump plane. Cold flow simulations 

were not performed for this burner because of the availability of experimentally measured inlet 

velocity profiles. The inlet velocity profiles are shown in Figure 3.16. 

a) b) c) 

   

Figure 3.16. Measured Velocity Profiles at the Inlet of the TECFLAM Burner (Landenfeld, et al. 

1998). a) Axial, b) Radial, and c) Tangential Velocity Components. 
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The turbulence quantities were set using the turbulence intensity and the hydraulic diameter 

(8%, 30 [mm] for air inlet, 5% and 6 [mm] for fuel). These values were adapted from Frassoldati 

(Frassoldati, et al. 2005). 

3.3.3 CFD Results for Reacting Flow – TECFLAM Burner 

Due the high non-linear nature of the problem a special solution strategy was followed to 

ignite the fuel-air mixture. The solution strategy is described next; 1) a numerical simulation of the 

non-reacting (isothermal) mixture was performed in order to obtain the major flow structures (such 

as the main recirculation zone), 2) chemical reactions were activated and the temperature of the gas 

inlet was set to a high value (Tfuel,air = 1500 [K]) at this high temperature the chemical reactions 

were set in motion, 3) the gas inlet temperature was decreased until the experimental value was 

reached (Tfuel,air = 300 [K]) taking attention to prevent the flame from extinguishing. It was not 

possible to ignite the mixture if this procedure was not followed. Once the temperature of the gas 

inlets was 300 [K] the simulation was considered converged until the scaled residuals of the 

governing equations reached a minimum value of 1x10
-6

, and the monitors of the axial velocity, 

mass fraction of carbon monoxide, and temperature measured close to the dump-plane and the 

outlet of the domain did not change significatively (less than 1% change with respect the value of 

the same quantity from the previous iteration). A detailed explanation of the scaled residuals 

calculation can be found in the section 28.15.1.1 in the FLUENT’s users guide (ANSYS-FLUENT, 

User's Guide 2013). 

Simulation results were compared with experimental data measured by (Landenfeld, et al. 

1998), (Bockle, Kazenwadel and Schulz 2000). Natural gas was used as fuel in the experiments but 

in the current simulations it was approximated as 96 % (vol) CH4, 1.8 % CO2, and N2 as balance 

(Frassoldati, et al. 2005). 

 



 

50 
 

a) b) 

  

Figure 3.17. TECFLAM Burner Simulation Contours, a) Axial Velocity and Streamlines, b) 

Temperature. 

Numerical predictions of the axial velocity for a region near the gas inlet are shown in 

Figure 3.17 a). The velocity field has the expected features for a flow with a swirl number S > 0.6; 

flows with large swirl numbers have a main central recirculation zone (B) which can be detected by 

the negative values of the axial velocity, a mixing zone (A), and for confined flows there is a 

secondary recirculation zone (C) near the wall. The predicted flame has the characteristic tulip 

shape of swirl stabilized flames with vortex breakdown as shown in Figure 3.17 b). The main 

central recirculation zone has the highest temperature of the domain because it is here where the 

combustion products recirculate and the combustion process is completed; exothermic reactions 

mainly take place at the mixing zone (A), and the secondary recirculation zone (C) is composed of 

burnt products. The temperature in this region depends on the thermal boundary condition 

prescribed at the wall. 
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Figure 3.18. Axial Velocity Profiles. Circles – Experiments, Dash line – CFD Simulations. 

 

Figure 3.19. Tangential Velocity Profiles. Diamonds – Experiments, Dash line – CFD Simulations. 
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Figure 3.20. Radial Velocity Profiles. Triangles – Experiments, Dash line – CFD Simulations. 

Validation of the predicted velocity field was performed using the data obtained from the 

Laser Doppler Velocimetry (LDV) measurements of the mean velocity components (Landenfeld, et 

al. 1998). Axial, tangential, and radial velocity components were measured along the radial 

direction at different stations located in the streamwise direction of the flow. An estimate of the 

statistical error concerning the mean velocity values was reported to be 5% (Landenfeld, et al. 

1998). In the present study the radial direction was normalized with respect the outer radius of the 

air annulus inlet (rair = 0.03 [m]). 

Axial velocity profiles are shown in Figure 3.18, the first station located at 1 [mm] (z/rair = 

0.03) from the dump plane shows negative axial velocity values that indicate the presence of the 

central recirculation zone for both experiments and numerical simulations but the experiments 

indicate that near the axis (r/rair = 0) the recirculation is stronger (more negative) than predicted 

results. The next three stations (z/rair = 0.33, 0.67, and 1.00) showed a better match near the axis 

but the difference between the experiments and simulation increase again further downstream and 
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the last station shows the maximum value from experiments is shifted to the axis as compared to 

predictions. 

Predicted tangential velocity profiles (Figure 3.19) also follow the trend in the measured 

values. There is a difference in the maximum value of the tangential velocity from the second to the 

last station but the values near the axis matched the experimental values closely. In the same 

fashion as in the axial velocity profile, the maximum of the predicted profile is shifted towards the 

axis. 

Radial velocity profiles shown in Figure 3.20 closely match the experimental values near 

the axis of the domain, and then further downstream the numerical simulations underestimate the 

maximum value of the radial velocity. The largest difference is seen at the last downstream station. 

Simulations show that the main characteristic of the profiles were captured and fairly good 

agreement was obtained with measurements, but there are differences in the peak values of the 

velocity profiles. This inaccuracy can in part be attributed to the utilization of the standard k-epsilon 

turbulence model that assumes isotropic behavior of the Reynolds stress tensor, which is generally 

not the case in swirled flames. A possible improvement to the simulations could be the 

implementation of a different turbulence model, e.g. the Reynolds Stress Model (RSM). The RSM 

does not assume the Reynolds stress tensor to be isotropic; the RSM solves a transport equation for 

each of the components of the tensor which for a two dimensional simulation means the addition of 

five extra partial differential equations. The implementation of the RSM turbulence model does not 

always yield results that are clearly superior to the simpler models (such as the standard k-epsilon) 

but the computational time is exponentially increased (ANSYS-FLUENT, Theory Guide 2009), see 

Appendix 3. The goal of the current simulations was to reduce the computational time needed to 

predict behavior of a combustor. For this reason the most inexpensive turbulence model that could 

give satisfactory predictions was employed. The standard k-epsilon model was used for the same 
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experimental set up by Frassoldatti (Frassoldati, et al. 2005) and the predicted results matched the 

experimental measurements fairly well. 

 

Figure 3.21. Temperature Profiles. Left Triangles – Experiments, Dash line – CFD Simulations. 

Figure 3.21 shows the measurements of the mean temperature, the accuracy achieved for 

the mean temperature measurements was reported to be between 2-3% (Meier, et al. 2000). 

Numerical simulations were able to capture the temperature trends that were measured in 

experiments (Figure 3.21). The calculated temperature profiles showed a hotter region near the axis 

with a colder section immediately after the axis (moving in the radial direction), this cold region is 

produced by the fresh incoming mixture. The third region that forms in the radial direction for all 

the stations depicts the secondary recirculation zone, this region is not as hot as the main 

recirculation zone because it is affected by the cold wall (Twall = 1073 [K]). Temperature 

predictions showed that near to the dump plane (z/rair = 0.33, and 0.67) the calculated temperature 

close to the axis is lower than experiments but the predictions match the experiments away from the 

symmetry axis. However, numerical predictions have higher temperatures compared to experiments 
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for the rest of the stations further downstream. The discrepancies in temperature calculations can be 

partially attributed to the simplifications introduced by the chemical kinetic model used. Two step 

reaction mechanism influences the final temperature results mainly because the model neglects 

some dissociation reactions that might reduce the temperature due to its endothermic nature. The 

only dissociation reaction included in the model is the carbon dioxide decomposition into carbon 

monoxide and oxygen. The chemical mechanisms used in the present study are shown in the 

Appendix 1 section. 

 

Figure 3.22. Methane Mass Fraction Profiles. Diamonds – Experiments, Dash line – CFD 

Simulations. 

 

Mass fraction measurements were reported by Meier (Meier, et al. 2000), Meier reported an 

accuracy of the mean values of nitrogen to be 2 %, 4% for carbon dioxide, and a smaller accuracy 

for the rest of the species (values were not reported for the other species). However, Meier reported 

the accuracy for the single pulse Raman measurements of the water mass fraction to be 5-7%, 12-

15% for oxygen, 2% for methane, and 20% for carbon monoxide when the mole fraction was near 
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0.02 and 50% when the mole fraction was near to 0.02. According to the authors the accuracy of 

the mass fraction mean values is expected to be higher than the single pulse Raman measurements. 

Mass fraction profiles of methane are shown in Figure 3.22. Predicted methane mass 

fraction near the dump plane (z/rair = 0.33, and 0.67) shows lower values than the recorded 

experimental measurements. The predictions overestimated mixing near the dump plane, methane 

appears to be “diluted” with respect the concentration measured in the experiments. The agreement 

between the predictions and the experiments improves further downstream. On the other hand, the 

predicted mass fraction of oxygen (Figure 3.23) matches the experiments near the axis with the 

maximum mass fraction located at the same position as the experiments. Predictions deviate from 

the experiments as the mixture moves downstream and a large noticeable discrepancy in the results 

is seen at the last station (z/rair = 5.0). 

 

Figure 3.23. Oxygen Mass Fraction Profiles. Diamonds – Experiments, Dash line – CFD 

Simulations. 
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Figure 3.24. Carbon Dioxide Mass Fraction Profiles. Diamonds – Experiments, Dash line – CFD 

Simulations. 

 

Figure 3.25. Water Vapor Mass Fraction Profiles. Diamonds – Experiments, Dash line – CFD 

Simulations. 
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Carbon dioxide and water vapor mass fraction profiles (Figure 3.24, and 3.25) followed 

similar trends as the temperature profiles. The higher temperature near the axis means that the 

highest concentration for carbon dioxide and water was at this location because it was here where 

the combustion products recirculated and the combustion process was completed. The overall trend 

of the mass fractions of carbon dioxide and water is in agreement with experiments. There was a 

significant difference between the experiments and the simulations especially at the last 

measurement station. 

3.4 Unconfined Premixed Swirl Burner 

An unconfined premixed methane-air swirl stabilized burner was also studied. Being an 

unconfined geometry poses a challenge to implement appropriate boundary conditions that will 

allow entrainment of the surrounding fluid to the flame region. Predictions obtained using RANS 

were compared with experimental results that were previously reported in the literature. The 

experimental data of axial velocity contours, temperature, oxygen, carbon dioxide, and NO profiles 

were previously reported by Kim et al. (Kim, Arghode and Gupta 2009). The problem setup is 

discussed next along with the numerical simulations. 

3.4.1 Geometry Details and Operational Conditions 

The experimental set up for this burner is shown in Figure 3.26. A laboratory-scale 

unconfined premixed methane-air swirl stabilized burner was studied. The burner is open to the 

room and the inlet reactants enter to the swirler at room temperature.  
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Figure 3.26. Experimental Lab-Scale Swirl Stabilized Burner (Kim, Arghode and Gupta 2009). 

For the case studied in the present work only methane was used as fuel with an equivalence 

ratio of              . The swirl was applied by means of a coaxial swirler with a blade angle of 

45 [deg] that produces a geometric swirl number of 0.67 (Sgeom = 0.67). The gas exit located at the 

dump plane has a diameter of Ddump = 20 [mm]. The mass inlet flow used corresponds to 142 [slpm] 

of air and the balance of methane that satisfies the equivalence ratio. 

3.4.2 Simulation Details 

A two dimensional sketch of the burner is shown in Figure 3.27. 
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Figure 3.27. Two Dimensional Sketch of the Unconfined Swirl Stabilized Burner (Gupta and 

Khalil 2013). 

Figure 3.27 shows the dimensions in [mm] of the unconfined swirl burner. The mixed 

reactants enter to the annular section marked as inlet in the Figure 3.27. Reactants flow through the 

blade swirler to enter a convergent section that is named as cone in the sketch. Finally the reactants 

are dumped into the room where they expand due to the tangential momentum (S > 0.6) that the 

flow carries. A negative pressure gradient in the axial direction is created producing a recirculation 

zone. 

Several computational domains were used for the simulation of this burner:  

1. Two dimensional axisymmetric domain with the lateral contour of the burner. 

2. Three dimensional domain without the swirler. 

3. Three dimensional domain with the swirler section included. 
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a) b) 

 

 

c)  

 

 

Figure 3.28. Computational Domains of the Unconfined Swirl Stabilized Burner. 

Figure 3.28 shows different computational domains used to simulate the unconfined swirl 

burner configuration. The computational domains created started from the most simple geometry in 

which the swirler was not included and only a two dimensional axisymmetric domain was used, 

Figure 3.28 a). Predictions using the domain from Figure 3.28 a) did not produce satisfactory 

results because the flame thickness was not properly predicted, for this reason a three dimensional 

domain was considered. Figure 3.28 b) shows the dimensions used in the three dimensional 

simulation, the value of 20*Ddump is the diameter dimension and the length of the channel is 

40*Ddump. Three dimensional simulations slightly improved the results but they did not fairly match 

the experiments, the temperature difference between the CFD predictions and the experimental 
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measurements was 42 [°C] near the axis for the first measuring station (z = 7.62 [mm]) but then the 

difference increased to 416 [°C] near the center for the last measuring station (z = 22.9 [mm]). 

Finally a three dimensional domain in which the inlet section was included in the simulation, the 

parts added in the simulation were the annular inlet, the swirler, and the convergent section located 

just before the dump plane. The reason why the simulations were not started from the complete 

three dimensional domain including the swirler was because the information about the geometry 

was not available in the paper that contains the experimental data (Kim, Arghode and Gupta 2009). 

Thanks to the kind help from Professor Ashwani Gupta and his graduate student Ahmed Khalil 

from the University of Maryland (Gupta and Khalil 2013) who provided a sketch with the 

dimensions of the inlet section and the details of the swirler, it was possible to simulate the entire 

burner. The boundary conditions employed for each of the simulated domains are shown in Figure 

3.29. 

 

 

 

 

 

 

 

 

 



 

63 
 

a) b) 

 

 

  

  

c)  

 

 

Figure 3.29. Boundary Conditions for the Unconfined Swirl Stabilized Burner. 

Simulations were performed using uniform and non-uniform velocity profiles at the inlet, a 

detailed discussion of the shape of the velocity profiles will be given later in this chapter. A non-

slip velocity boundary condition was prescribed at the region named Wall Dump, and Side Walls 

along with adiabatic wall condition. The two dimensional axisymmetric domain 3.29 a) included a 

line that was defined as the domain axis. It must be mentioned that the case shown in Figure 3.28 a) 

used the same boundary conditions depicted in Figure 3.29 a). Pressure outlet boundary conditions 

were used for the bottom, side, and top boundaries. Pressure outlet boundary condition allowed the 

entrainment of the surrounding fluid, if outflow boundary condition was used then no entrainment 
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was present in the problem. This is basically because the outflow boundary condition extrapolates 

the velocity and pressure values from the interior of the domain but it always re-scales the velocity 

values in order to satisfy the mass balance of the problem. If incoming flow is going through the 

outflow boundary condition then the simulation becomes unstable unless the amount of entrained 

mass is specified beforehand which is not possible because it is not known a priori. The pressure 

was set equal to the atmospheric pressure of the room. 

The swirler included in the three dimensional domain is shown in Figure 3.29 c), it was 

included in order to have a better calculation of the recirculation zone located downstream the 

dump plane. Figure 3.30 shows the details of the swirler. 

a) b) 

 

 

Figure 3.30. a) Swirler, b) Computational Domain of the Inlet. 

Figure 3.30 a) is a picture of the 45 [deg] blade swirler. The swirler consists of; six blades, 

each blade with a thickness of ~ 2.6 [mm], Douter,blade - Dinner,blade =  12 [mm], the length in the axial 

direction is 16.5 [mm]. The computational domain generated from the inlet section is shown in 

Figure 3.30 b); here a uniform velocity profile was prescribed at the inlet surface. As it can be seen 

from Figure 3.30 b) the swirler is included and downstream of the swirler there is a convergent 

section denoted as cone. 
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When the initial simulations were performed no information of the velocity profiles at the 

dump plane was available, for this reason the shape of the velocity profiles was assumed. Uniform 

and non-uniform velocity profiles were specified at the dump plane (with the exception of the three 

dimensional domain that includes the swirler, the velocity profiles at the dump plane were 

calculated as part of the solution). The non-uniform velocity profiles were designed in such a way 

that the total mass coming into the domain matched the experiments and the tangential component 

was modified in order to satisfy the same swirl number as reported for the experiments. 

The velocity values for the uniform velocity profiles are the following; Uaxial = 7.8 [m/s], Utangential 

= 7.8 [m/s]. Non-uniform velocity profiles are shown next. 

a) b) 

 

 

c)  

 

 

Figure 3.31. Non-Uniform Velocity Profiles. a) Scaled from NETL Burner, b) Scaled from Chigier 

and Beer (Chigier and Beer 1964), c) Experiments (Gupta and Khalil 2013). 
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Profiles shown in Figure 3.31 a) were created using the shape of the profiles from Section 

3.2 (NETL burner), the axial velocity profiles were scaled in order to match the same mass flow 

and the tangential velocity profiles to match the swirl number (Sgeom = 0.67). No radial component 

was prescribed in this set up. Another set of profiles were assumed in order to include the effect of 

the convergent section that is located between the swirler and the dump plane (cone), Figure 3.31 

b). A similar problem setup was reported by Chigier and Beer (Chigier and Beer 1964), using the 

reported shapes the profiles were scaled in order to satisfy the constraints of mass flow and swirl 

number. The radial velocity component was included following the profile shape reported by 

Chigier and Beer. Finally a set of measured profiles (Gupta and Khalil 2013) was used as the inlet 

boundary condition, Figure 3.31 c). 

Table 3.4. Unconfined Premixed Swirl Burner Simulation Details. 

 Reacting Flow Simulation 

Computational Domain i) Two Dimensional Axisymmetric 

ii) Three Dimensional 

Time Formulation Steady State 

Pressure-Velocity Coupling SIMPLE 

Pressure Discretization Scheme PRESTO 

Convective Term Discretization Scheme 2nd Order Upwind 

Turbulence Model k-epsilon RNG 

Chemical Mechanism a) One Step Global Mechanism 

b) ARM9 

Turbulence Chemistry Interaction Model Eddy-Dissipation Concept (EDC) 

Chemical Species Integration ISAT 

Table 3.4 shows more details on the numerical model used in the simulations. The three 

dimensional domain corresponds to the cases shown in 3.28 b), and c) and 3.29 b) and c). Several 

more case simulations were performed but only the most relevant are reported in Table 3.4. 

3.4.3 CFD Results – Unconfined Premixed Swirl Burner 

Non-reacting flow simulations were performed using non-uniform profiles scaled from the 

results obtained from the NETL burner. The numerical domain consisted of 85,513 non-uniform 

cells, mesh resolution concentrated in the region where the flame and the recirculation region are 
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located. Results are compared with measured PIV data (Gupta and Khalil 2013). Results are shown 

in Figure 3.32. 

a) b) 

  
Figure 3.32. Axial Velocity [m/s] Contours Non-Reacting Flow. a) Two Dimensional 

Axisymmetric with NETL Scaled Velocity Profiles, b) Experiments (Gupta and Khalil 2013). 

In Figure 3.32 the X-direction represents the radial direction in Cartesian coordinates and 

the Y-direction is the equivalent of the axial direction. In order to have a better perspective the two 

dimensional axisymmetric results were mirrored along the axis. Predicted velocity contours using 

the non-uniform velocity profiles scaled from the NETL burner from Section 3.2 did not yield good 

results as compared to the PIV measurements (Figure 3.32). The predicted contours did not match 

the shape of the recirculation area from the experiments; the axial velocity was higher around the 

recirculation region. Due to the mismatch between the predictions and the experiments it was 

decided to use a uniform velocity profile at the inlet. 

The specified velocity values for the uniform velocity are the following; Uaxial = 7.8 [m/s], 

Utangential = 7.8 [m/s]. A reacting flow simulation was performed using the reduced methane-air 

mechanism ARM9 (Mallampalli, Chen and Fletcher 1998). The simulation was performed on the 

same mesh that was previously described. Results are shown in Figure 3.33. 
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a) b) 

  
Figure 3.33. Reacting Flow with Uniform Velocity. a) Temperature Contours [°C], b) Axial 

Velocity [m/s] Contours and Streamlines. 

Reacting flow simulations using uniform velocity profiles produced a flame with the 

expected tulip shape that is characteristic of swirl flames when the central recirculation region is 

present (Figure 3.33 a)). Figure 3.33 b) shows the streamlines and the axial velocity contours. It can 

be seen how the simulation was able to capture the entrainment of the surrounding fluid in the 

flame. Pressure outlet boundary conditions specified at the bottom, side and top boundaries allowed 

the entrainment, but similar simulations using the outflow boundary condition did not capture the 

entrainment. 
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a) b) 

  
  

c) d) 

  
Figure 3.34. Reacting Flow with Uniform Velocity Profiles. a) Temperature Profiles [°C], b) % 

Vol Oxygen, c) % Vol Carbon Dioxide, d) Nitrogen Oxide [ppm]. 

Temperature profiles (Figure 3.34 a)) show that the CFD simulation over predicts the flame 

temperature at the axis (r/Ddump = 0) and the flame area is not predicted correctly. The predicted 

flame region is narrower near the dump plane (station located at z = 7.62 [mm]) but further 

downstream it becomes wider than the experiments (stations located at z = 15.6, and z = 22.9 

[mm]). Species volume fractions calculated based on a dry analysis are also compared with 

experiments (Figures 3.34 b) and c)). Volume percentage concentration (volume percentage is 

equal to the mole fraction multiplied by 100) of oxygen and carbon dioxide captured experimental 

trend but the predicted profiles are seen to be shifted when compared with experiments (Figures 
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3.34 b), and c)). Finally the concentration of NO in parts per million [ppm] is shown in Figure 3.34 

d) where the predicted profiles have a maximum value which is not located on the axis of symmetry 

as compared to the experimental data.  

a) b) 

  
Figure 3.35. Reacting Flow with Uniform Axial Velocity [m/s] Contours. a) CFD Simulations, b) 

Experiments. 

The source of the discrepancy between the predicted temperature and species profiles can 

be explained by observing the axial velocity contours in Figure 3.35. The central recirculation zone 

shape was not properly captured by the CFD simulations; the contours showed that the predicted 

recirculation zone is smaller than what was measured in experiments. Also the shape of the 

experimental contours shows that the area of negative axial velocity located at y=0 [mm] extends 

from x=-5 to 5 [mm] in contrast the predicted contours have non negative axial velocity values only 

at x=0 [mm]. 

The results showed the importance of the shape of the inlet velocity profiles in the solution 

of the temperature and the species concentrations. Chigier and Beer (Chigier and Beer 1964) 

reported that the swirl number is not the best way to describe swirling flows because it is an integral 
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quantity and any properly scaled velocity profiles combination may produce the same swirl number 

albeit with a significantly different shape of the recirculation zone.  

The effect of the inlet velocity profiles is summarized in Figure 3.36. 

a) b) 

  
c) d) 

  
  

  

  

  

  

  

  

  

  

  

  

  

  



 

72 
 

e)  

 

 

Figure 3.36. Reacting Flow Temperature Profiles. a) Uniform Velocity Profiles, b) Non-Uniform 

Velocity Profiles Scaled from Chigier and Beer (Chigier and Beer 1964), c) Non-Uniform Velocity 

from Gupta and Khalil (Gupta and Khalil 2013), d) Three Dimensional Domain using Chigier and 

Beer Velocity Profiles, e) Three Dimensional Domain with Swirler. 

Temperature profiles shown in Figure 3.36 a) were obtained when the inlet profile was 

uniform as previously discussed.  

Figure 3.36 b) shows the predicted temperature profiles that were obtained from a 

simulation that used the scaled velocity profiles from Chigier and Beer (Chigier and Beer 1964). 

Chigier and Beer studied a similar configuration as the one reported in the experiments from Kim et 

al. (Kim, Arghode and Gupta 2009). Here the swirl component of the flow was produced by a 

coaxial vane swirler and had a convergent region just before the dump plane (similar to the set up in 

Figure 3.30 b)). These profiles were scaled in order to match the mass flow and the reported swirl 

number. The final velocity profiles are shown in Figure 3.31 b). Results in Figure 3.36 b) showed 

that the temperature was overpredicted near the axis in a greater amount than the case shown in 

Figure 3.36 a) and the trend of the temperature remained the same, the flame is narrower at station 

y=7.62 [mm] and wider in the subsequent stations. 

Experimentally measured velocity profiles provided by Professor Gupta (Gupta and Khalil 

2013) were used as inlet velocity profiles in the results shown in Figure 3.36 c). As it can be seen 
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from Figure 3.31 c), the profiles have negative values for the three velocity components near the 

dump plane. Figure 3.36 c) shows that temperature over prediction near the axis is the smallest of 

all the rest of calculations (around 400 [°C]) but the trend of the profiles remained same. 

Three dimensional simulations using the domain described in Figure 3.29 b) were 

calculated without including the swirler generator. Non-uniform velocity profiles were prescribed 

in the inlet area of the domain. Profiles shown in Figure 3.31 b) were applied on the inlet surface. 

The three dimensional computational domain was composed of 114,048 cells but still the grid 

resolution is coarser than the two dimensional axisymmetric case. Reported results in Figure 3.36 d) 

showed the temperature at station z = 7.62 [mm] closely matches the experimental value but the 

reported values at the two other stations show that the temperature is overpredicted by an average 

of 350 [°C]. The temperature at the first station is significantly lower than what was calculated 

using the same inlet velocity profiles as in the two dimensional axisymmetric domain (Figure 3.36 

b)). The reduction of temperature is due the coarser mesh used in the three dimensional domain. 

The utilization of coarse meshes in numerical simulations increases the amount of numerical 

diffusion. The numerical diffusion (or false diffusion) is a source of error in CFD calculations 

(Versteeg and Malalasekera 2007); the error introduced in the three dimensional calculation made 

the predicted temperature of the first station lower than the experiments but the calculated profiles 

of temperature were overpredicted further downstream. The difference between the maximum 

temperature of the first station with the last station is the largest in the three dimensional coarse 

mesh case than in the rest of the two dimensional cases. 

Figure 3.36 e) shows the temperature profiles obtained using the approach described next. 

First, a non-reacting flow simulation of the three dimensional domain that includes the inlet swirler 

and the cone region was performed, Figures 3.28 c) and 3.29 c). The non-reacting flow simulations 

were calculated using the steady state approach along with the standard k-epsilon model. Profiles 
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located at the dump plane were extracted and fitted with a polynomial following the same 

procedure described in Section 3.2.3. Velocity profiles from non-reacting simulations were imposed 

at the inlet region of the two dimensional axisymmetric domain described in Figures 3.28 a) and 

3.29 a). Predicted temperature profiles showed that the temperature near the domain axis is over 

predicted by 700 [°C] for the first station (z=7.62 [mm]). The temperature profiles showed the same 

trend as in the other numerical simulations but could not capture what was measured in the 

experiments. 

In summary, the closest prediction to the experiments is obtained in the case shown in 

Figure 3.36 c). This case used the experimentally measured velocity profiles at the inlet. However 

the trend of the temperature could not be captured, the predicted flame is narrower in the 

simulations for the first station (z = 7.62 [mm]) but wider for the other two stations. Nevertheless 

Figure 3.36 c) shows the importance of the shape of the inlet velocity profiles. It is seen that even 

with the axial velocity profile that match the mass flow rate and the tangential velocity profile that 

produced the desired swirl number, the shape of the recirculation area, the temperature field, nor the 

species concentrations, could not be captured as measured in experiments. 

a) b) 
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c) d) 

  
e) f) 

  
Figure 3.37. Reacting Flow Axial Velocity [m/s] Contours. a) Experiments, b) Uniform Velocity 

Profiles, c) Non-Uniform Velocity Profiles Scaled from Chigier and Beer (Chigier and Beer 1964), 

d) Non-Uniform Velocity from Gupta and Khalil (Gupta and Khalil 2013), e) Three Dimensional 

Domain using Chigier and Beer Velocity Profiles, f) Three Dimensional Domain with Swirler. 

It can be seen from the axial velocity contours shown in Figure 3.37 d) that negative axial 

velocity contour at y=0 [mm] extends the most of all the predicted contours but not as much as in 

the experiments. The recirculation zone in 3.37 d) is wider compared to experiments in the 

downstream direction. It was not possible to predict the flame with enough accuracy in the 

aforementioned simulations. Several more simulations were performed without significant 

improvement in the temperature and velocity predictions. The additional simulations included the 

utilization of different turbulence models (e.g. RSM, k-omega SST) and different higher order 

discretization schemes of the convective terms (e.g. QUICK, MUSCL). Grid refinement and 

coarsening was also performed but no significant improvement was achieved. 
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The only approach that was not used for the simulation was the Large Eddy Simulations 

(LES), this method was not employed because of the excessive amount of time needed to calculate 

the solution (around weeks) which stands against the main objective of the present study which is to 

reduce the calculation time of combustion phenomena. Due to the fact that the numerical results did 

not match the trend of the measured temperature profiles these results were not used in the chemical 

reactor network calculations. The application of the CRN approach for the previous cases are 

presented in the Chapter 4. 
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 Chemical Reactor Network Simulations Chapter 4:

The main goal of the chemical reactor network (CRN) is to simplify the domain of the 

combustor in zones that share similar conditions, these zones are called reactors. Current CFD 

solution approach consists in the simultaneous solution of momentum, energy, turbulence, and 

species transport equations. As explained in the Introduction chapter the main bottle neck in 

combustion simulations is the chemistry modelling. Even for methane which is one of the most 

commonly used fuels, CFD solution becomes impractical to simulate using detailed chemistry with 

current computational resources. The GRI 3.0 detailed mechanism (Smith, et al. 1999) is composed 

of 325 reactions and 53 chemical species. This means that 53 partial differential equations (one 

scalar transport equation for each of the chemical species) must be added to the problem in order to 

simulate detailed chemistry. Adding detailed chemistry to CFD simulations is limited to simple 

fuels (e.g. hydrogen) and to very simple problem geometries and low Reynolds numbers. In order 

to reduce the problem complexity, reduced chemistry mechanisms have been developed. These 

models start with the assumption that a limited number of chemical species play an important role 

in the problem. This assumption is partially true and depends on what the goal of the simulation is. 

For example, two step global mechanism for methane that includes six chemical species (CH4, O2, 

H2O, CO2, CO, N2) can satisfactory predict the heat release of the system, but if the goal is to 

predict the pollutant emissions, this mechanism cannot be used because it does not include NO 

specie. A popular NO mechanism for methane-air flames is the ARM9 (Mallampalli, Chen and 

Fletcher 1998) (ARM stands for Augmented Reduced Mechanism) which contains nine chemical 

species (CH4, O2, H2O, CO2, CO, N2, H2, OH, NO). The ARM9 is a reduced version of the GRI 2.1 

detailed mechanism which was modified assuming that the rest of the chemical species are in 

equilibrium or quasi steady state. A sensitivity calculation was performed in order to assess that the 

chosen chemical species do predict the system heat release and products composition. CPU time 

needed to perform CFD simulations using the ARM9 mechanism increases considerably compared 
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to that of the global step mechanisms, mostly due to the integration of the chemical source terms. 

However other CFD applications may require a better prediction of the concentration of NO. For 

the cases in which the prompt NO pathway formation is dominant (usually at low fuel-air 

equivalence ratio) the ARM9 may not give accurate predictions because it was optimized to predict 

the thermal NO but not the NO production via the prompt pathway; the HCN chemical specie is 

critical for the calculation of prompt NO but the ARM9 assumes it to be in equilibrium (Turns 

1996) leading to incorrect predictions (Escobar, et al. 2010). In order to tackle the aforementioned 

problem Sung et al. (Sung, Law and Chen 2001) developed the ARM19 reduced mechanism. This 

mechanism contains 19 chemical species (CH4, O2, H2O, CO2, CO, N2, H2, OH, NO, H, HO2, H2O2, 

CH3, CH2O, C2H2, C2H4, C2H6, HCN, NH3) HCN being a part of the solution. ARM19 mechanism 

performs better for prompt NO calculation but the computational time increases dramatically. A 

simple calculation using ARM9 may take only one day, on the other hand a solution using ARM19 

may take up to one week. Moreover the complexity that is added by the extra species and 

assumptions involved in the ARM19 mechanism makes it extremely difficult to achieve a 

converged solution. 

Due to excessive computational time needed for CFD solutions that employ detailed 

chemical mechanisms, the CRN was introduced to reduce the computational time. The CRN 

approach is based on the simplification of the physical domain using ideal reactor models. For 

example the computational domain can be divided into zones that share the same temperature and 

composition in terms of some selected species. The zones are also called reactors and can be 

simulated as an ideal zero dimensional domain, or one dimensional domain. In order to perform the 

zone division, it is necessary to know how the flow, temperature and species concentration vary 

inside the combustor. The characterization of the combustor can be performed using the results 

from CFD simulations. Temperature, flow and composition contours can be obtained from CFD 

results. In order to accelerate the simulations the present study used relatively simple computational 
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models such as two dimensional axisymmetric geometries, RANS to model the turbulent flow, and 

the implementation of simple chemical mechanisms to characterize the burner. The information 

obtained from the CFD model was used as input in a MATLAB program designed to cluster the 

computational cells into regions that share similar values of the control variables. Control variables 

are chosen by the user and usually correspond to the temperature and the concentrations of a 

selected chemical species. The volume of each region was calculated by adding the volume of 

every computational cell included in the reactor. An average temperature and concentration value 

was calculated for each reactor using the information from the CFD results. The connectivity of the 

reactor zones was given by the sign of the mass flux. Then the inlet boundary conditions are applied 

and the results are calculated using an iterative procedure. A detailed description of the process is 

given in the following sections. 

4.1 Zone Selection 

In order to create a network it is necessary to read the results from CFD simulations and 

cluster the computational cells into regions. The computer cell clustering was achieved using the 

CFD mesh information. The information needed from the computational mesh is; shape of the 

computational cells (triangles, rectangles, etc.), position of the nodes, and the connectivity between 

elements (lines). This information was obtained from the mesh files. Mesh files were imported into 

MATLAB and reconstruction of the mesh was achieved using an in-house computer program. 

 
Figure 4.1. Mesh Reconstruction using MATLAB. 
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Figure 4.1 shows the mesh reconstruction of the CFD domain using MATLAB, which will 

be referred to CRN-DIV from now on. Once the domain was reconstructed then the information 

from CFD results can be loaded. Temperature, velocity, composition, and mass flux between cells 

were written in files that were loaded in the CRN-DIV program. The values were then attached to 

the corresponding computational cell. At least two control variables can be defined by the user to 

build the CRN. The levels were defined by equally spaced ranges using 

      
                 

     
 (4.1) 

Where Var1 is the control variable #1, nvar1 is the number of levels defined by the user. The 

subscript max corresponds to the maximum value of the variable #1 in the entire computational 

domain, and min corresponds to the minimum value, finally       is the calculated relative 

difference. Then an array of length nvar1 is created for variable #1. The same procedure is applied 

for the rest of the control variables. 

In order to create a CRN that represents the combustor behavior it was necessary to 

properly select the control variables. Temperature was selected as one of the control variables due 

to the dependence of the chemical reaction to it. Because the utilization of the temperature variable 

is not enough to properly divide the combustor into several regions, for example it is possible to 

find similar temperature values near the flame and in the post flame region but these are two 

different zones because the chemical reactions are more intense near the flame than in the post 

flame region. Due this it was necessary to select a second control variable. In the present study it 

was decided to use the mass fraction of one of the combustion products, the selection of the 

chemical specie depended on the species included in the chemical mechanism used in the CFD 

simulation. It was necessary to select a chemical specie that clearly divided the reactant inlet 

section, the flame region, and the post flame region. In the present study carbon dioxide was 
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selected for the NETL burner case but water mass fraction was selected for the TECFLAM burner 

case. Water was selected for the TECFLAM burner because this configuration had walls that were 

maintained at relatively high temperature (Twall = 1073 [K]), this temperature allowed the 

dissociation of carbon dioxide into carbon monoxide making the correct division of the burner 

domain more difficult. On the other hand, water mass fraction stayed almost constant in the post 

flame region. 

The zone separation is performed by looping through all the computational cells in the 

domain and identifying the cells that fall in the levels of the control variables previously defined by 

the user as follows: 

Looping from k = 1 to ncells, CFD 
  Looping from i = 1 to nvar1 – 1 

    If Var1(i) < VarCFD(k) <= Var1(i+1) 

      Looping from j = 1 to nvar2 
        If Var2(j) < VarCFD(k) <= Var2(j+1) 

          id_cellVar,CFD(k) = (i-1)*nVar1 + j 

(4.2) 

Equation 4.2 shows that if the value of the CFD variable falls in one of the intersections of 

the two control variables a value of id_cell variable is assigned to the cell. This process is 

performed for all the computational cells loaded from the CFD simulation. Cells with identical 

id_cell values are clustered in the same reactor. An example of the cell clustering is shown in 

Figure 4.2. 
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a) b) 

 

 
Figure 4.2. Zone Division of the CFD Domain. a) Complete Domain, b) Flame Region. 

Each color in Figure 4.2 corresponds to a different zone or reactor. For each reactor the 

total volume is calculated by adding the volume of each cell contained in the zone. Reactor 

averaged value of temperature and composition are calculated using a volume weighted formulation 

using Equation 4.3. 

     
∑       
      
   

        
 (4.3) 

Where Nreact is the total number of computational cells in one reactor, Volk is the volume of the k 

computational cell,    is the variable of interest in the k cell, and Volreact is the total volume of the 

reactor. 

Once the reactors are identified the next step is to loop over all the computational cells and 

check if the neighbor cells have the same id_cell value. If two neighbor cells have a different 

id_cell value they are marked as boundaries. In order to perform this operation it is necessary to 

know the connectivity between the computational cells (i.e. the neighbors of each computational 

cell); this information is contained in the previously loaded mesh files. 
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Figure 4.3. Cell Neighbors. 

Figure 4.3 shows an example of the boundary marker process. The process starts by setting 

the pivot cell, Element #1, then the CRN-DIV program searches in the loaded mesh data for the 

neighboring cells and retrieves the results, Elements #2, #5, and #18. CRN-DIV checks the id_cell 

value of the pivot cell and its neighbors if one of the neighbors shown in Figure 4.3 does not have 

the same id_cell value as the pivot cell then the two cells are marked as being a boundary. As an 

example marked boundaries are shown in Figure 4.4 (red elements).  
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a) b) 

 

 
Figure 4.4. Zone Boundaries. a) Complete Domain, b) Flame Region. 

Mass flux between boundaries can be calculated with the boundary information. Once the 

boundaries were identified then the mass flux through the cell face is calculated using a built-in 

function in ANSYS-FLUENT called F_FLUX. As an alternative Equation 4.4 was also considered. 

 
(4.4) 

It was found that the F_FLUX produces a better mass balance than results obtained using 

Equation 4.4. F_FLUX calculates the mass flux with more accuracy because ANSYS-FLUENT 

saves the variables at the cell center. When Equation 4.4 was used the velocity was interpolated 

from the cell center to the cell face using a harmonic average but this interpolation proved to be 

problematic because the velocity used in FLUENT and in any finite volume solver depends on the 

discretization scheme used. In order to calculate the correct face velocity it is necessary to 

interpolate the velocity from the cell centers using the convective discretization scheme. For the 

current calculations a 2
nd

 order upwind scheme is used. This process turned out to be not trivial 

because of the non-uniform computational mesh used in the simulations. On the other hand the 

F_FLUX function takes into account the aforementioned details giving a better calculation of the 

facefacefaceconvective AdVm


  
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cell mass flux. Another important detail found was that the best results of the cell flux were 

achieved when the simulation not only converged to the desired scaled residuals (in this case lower 

than 10
-5
) but the values monitored at selected critical points did not change significatively (less 

than 1% change with respect the value of the same quantity from the previous iteration). 

Temperature, velocity, and mass fraction of at least one species at selected points were closely 

monitored. Once the residuals were lower than the desired value and the monitors were flat, the 

solution was considered converged. F_FLUX calculations gave better results when the two 

conditions were met and not only that the residuals were lower than the desired value. 

The total mass flux between two neighbor reactors was calculated from 

 ̇    ∑  ̇     

             

   

 (4.5) 

Where  ̇    is the mass flux between reactors i and j,               is the total number of 

computational cells in the boundary between the reactors i and j, and  ̇      is the single cell mass 

flux between reactors i and j. 

The CRN-DIV program produces two data files, one contains the total number of reactors 

with their respective volumes, and averaged quantities of temperature and composition. The second 

data file has the mass flux information between reactors along with the direction of the mass 

transfer. With the information from the second data file it is possible to know how the reactors 

connect and the direction of the mass flux. An example CRN is shown in Figure 4.5. 
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Figure 4.5. Example of a CRN Layout. 

Figure 4.5 shows a CRN layout that corresponds to the NETL-Burner. The details of the 

zone division for the NETL burner are discussed in sections 4.3.1 and 4.3.2 of the present study. 

Each square in Figure 4.5 represents a simplified reactor and its volume is given at the top of each 

element, the summation of the volumes of the reactors was equal to the total volume of the 

combustor. The connection of the network was given by the direction of the mass flux. Figure 4.5 

shows the values of the fluxes which were normalized with the total mass flux that enters into the 

combustor. It can be seen that the mass was conserved for the CRN but for reactor 3, here there was 

only mass going out however this value was extremely small (~10
-10

) and did not significantly 

affect the total mass balance (mass imbalance ~10
-8

%). What is not given by the CRN-DIV code is 

the inlet composition and temperature. This information is prescribed separately and will be 

discussed in the next section. In some cases the domain outlet is composed of several reactors. In 

this situation the outlet compositions were calculated as a weighted area average of the zones 

located at the outlet using Equation 4.6. 
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(4.6) 

Where Xj is the mole fraction of the specie j, Noutlet is the total number of reactors located at the 

domain outlet, areareactor is the area of the outlet covered by a zone reactor, and areaoutlet,combustor is 

the total area outlet of the combustor domain. 

4.2 Chemical Reactor Network Code 

In order to simulate the CRN a computer program was developed in FORTRAN. The code 

simulates each reactor of the network using a Perfectly Stirred Reactor (PSR) or a Plug Flow 

Reactor (PFR), each reactor will be briefly explained later in this chapter. The flow diagram of the 

CRN program is in Figure 4.6. 

 
Figure 4.6. Flow Diagram of the CRN Computer Program. 
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The CRN program reads the output data created in the CRN-DIV program. The inlet 

composition that enters to each one of the reactors is calculated as a weighted average from 

            ∑
 ̇ 
 ̇   

       

   

     (4.7) 

Where Nmax,in is the maximum number of reactors that deliver mass to the pivot reactor,  ̇  is the 

mole flow rate delivered by the k neighbor reactor,  ̇    is the total molar flow rate that enters into 

the pivot reactor, Xj,k is the mole fraction of the specie j in the k reactor. 

The inlet composition and temperature were set equal to the boundary conditions of the 

problem. Each reactor is simulated at constant temperature, the temperature was set equal to the 

average temperature. The reactor composition was sent as input along with the temperature and the 

volume to the external programs that solved the PSR or PFR. The GRI 3.0 detailed mechanism was 

used in the solution of the PSR or PFR. The predicted concentrations were used to calculate the 

inlet composition using Equation 4.7. The present simulations used the mole fraction of NO, water, 

and carbon monoxide as monitors. The solution procedure of the CRN is an iterative process that 

was repeated until convergence was achieved. 

Simulation of the CRN was performed at constant temperature because one of the main 

assumptions of the CRN is that the extra species included in the detailed mechanism are “minor” 

species and they do not affect significatively the temperature or the velocity field obtained from the 

CFD model. 

4.2.1 Perfectly Stirred Reactor (PSR) 

The perfectly stirred reactor (PSR) model assumes that the species are so well mixed that 

there are no spatial gradients inside the reactor. This means that the temperature and composition 
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are the same at any location inside the reactor. For this reason this reactor can be treated as a zero 

dimensional model. A diagram of the PSR is shown in Figure 4.7 

 
Figure 4.7. Perfectly Stirred Reactor (PSR) concept. 

The relevant input parameters for the PSR are: the inlet mass flow rate  ̇, the inlet 

composition Yin, the reactor temperature T, and the reactor volume V.  

The steady state specie transport equation of the PSR is given by 

 ̇       ̇(            )=0 (4.8) 

Where  ̇  is the net production rate of specie j, and MWj is the molecular weight of specie j. 

The mass inlet flow rate,  ̇, of the reactor was set equal to the calculated value from the 

CRN-DIV program. Being at constant temperature without heat loss it is not necessary to solve the 

energy equation for a PSR. Solution of Equation 4.8 is performed using the modified Newton 

method which is explained in detail in Glarborg, et al. (1986) and Turns (1996). 



 

90 
 

4.2.2 Plug Flow Reactor (PFR) 

It is necessary to include the PFR model in the combustor simulation especially in the post-

flame region where the flow is usually one dimensional and the gradients of temperature are mainly 

one dimensional as well. In order to simulate this component of the network it was decided to use 

the approach given in Levenspiel (Levenspiel 1962) which consists of the utilization of a series of 

PSRs. This was accomplished by the discretization of the PFR domain into several regions, each 

one simulated by one PSR. The simulation of the PFR was accomplished through the development 

of a driver code written in FORTRAN. The driver inputs the inlet conditions in the PSR code and 

then runs the calculations followed by the collection of the results which are used as inlet 

conditions for the next PSR. The flowchart of the driver PFR code is depicted in Figure 4.8. 

 

Figure 4.8. PFR Driver Flow Diagram. 
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Ntotal is the total number of PSRs that were used to simulate the PFR domain. In order to correctly 

represent the PFR it is necessary to use several PSRs in series. Since the PFR domain is discretized 

in several PSR regions the trend of the predicted species concentration should converge to the PFR 

profile as the number of PSRs Ntotal→ ∞. 

 

Figure 4.9. PFR Approximation Using Series of PSRs (Levenspiel 1962). 

Figure 4.9 shows the trend comparison of a A specie using the current approach. In order to 

approximate the PFR with a finite number of PSRs a “reactor independence” study was performed. 

The study consists in monitoring species concentrations at the outlet of the domain and verify that 

further increase in Ntotal does not significantly affect the predicted concentrations (less than 5% 

change). 

4.3 CRN Results 

4.3.1 Domain Decomposition – NETL Burner 

Results from CFD simulations were loaded in the CRN-DIV program. The computational 

domain was divided according to two control variables; temperature and carbon dioxide mass 

fraction. These two variables were selected because they help to characterize the burner zones in 

regions such as inlet, flame, recirculation, and post-flame. The CRN was created using CFD 

simulation results from the simplest chemical mechanism, i.e. a one step global reaction that 
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contains five chemical species (CH4, O2, CO2, H2O, N2). The contours of the control variables are 

shown in Figure 4.10. 

a) b) c) 

   
Figure 4.10. Confined Premixed Burner Predictions. a) Temperature [K] Contours, b) Mass 

Fraction of Carbon Dioxide Contours, c) Axial Velocity [m/s] Contours and Streamlines. 

Equally spaced levels were chosen for the temperature and carbon dioxide control 

variables. Streamlines (Figure 4.10 c)) show that the flow becomes one directional after the main 

recirculation zone allowing the implementation of a PFR model in this region. The rest of the 

reactors were marked as PSRs because the flow in these reactors is not clearly unidirectional. The 

id_cell contours are shown in Figure 4.11. 
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a) b) 

 
 

Figure 4.11. ID Cell Contours of the NETL Burner using CFD with Global Mechanism Data. a) 

Complete Domain, b) Flame Region. 

The created CRN consisted of ten reactors. The average temperature, average composition 

and reactor volume were calculated using the CRN-DIV code. 
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4.3.2 CRN Results – NETL Burner 

 

Figure 4.12. Outlet Mole Fractions. CRN GRI 3.0, CFD ARM9. 

Figure 4.12 shows the results obtained using the CRN method with the detailed chemistry. 

The CFD input data used in the CRN calculation was obtained using the one step global 

mechanism. CFD results showed in Figure 4.12 were obtained using the ARM9 mechanism. CRN 

results are close to the CFD simulation values as it can be seen in Figure 4.12. The difference in 

concentration of the CRN results can be attributed to the fact that the composition in the combustor 

involves more chemical species while keeping the mass in the reactor the same. That is the 

summation of the mole fraction must be equal to one. Table 4.1 shows the numerical values of the 

species shown in Figure 4.12. 
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Table 4.1. Mole Fraction Comparison. CFD ARM9, CRN GRI 3.0. 

Specie CFD ARM9 CRN GRI 3.0 <- CFD + glob. mech. 

CH4 1.745E-17 4.470E-15 

O2 3.880E-02 3.870E-02 

CO2 7.729E-02 7.770E-02 

H2O 1.553E-01 1.550E-01 

N2 7.285E-01 7.280E-01 

H2 2.721E-06 5.530E-07 

OH 7.559E-05 2.720E-05 

CO 4.480E-06 1.050E-06 

NO 2.695E-05 2.020E-05 

Mole fractions calculated from CRN match closely the CFD results of primary or major 

species such as; O2, CO2, H2O, and N2. Differences in the calculated values are relatively larger for 

H2, OH, CO, and NO. But even when the difference is seemingly significant, the absolute numbers 

show that the difference in the CO mole fraction is ~3.4x10
-6 

(3.4 [ppm]) and for NO is ~ 6x10
-6

 (6 

[ppm]). The predicted results using the CRN and CFD approaches are fairly similar. Another 

important aspect of the CRN is that it provides a concentration value for the extra chemical species 

that are not available in the CFD simulations. The extra species are shown in Table 4.2. 

Table 4.2. CRN Extra Species. CFD ARM9, CRN GRI 3.0. 

H 6.240E-09 N 1.310E-15 HCNO 6.180E-09 

O 3.050E-07 NH 1.190E-13 HOCN 5.220E-10 

HO2 4.310E-08 NH2 2.090E-11 HNCO 2.820E-09 

H2O2 1.020E-08 NH3 1.010E-09 NCO 4.430E-12 

CH3 9.620E-16 NNH 5.490E-15   

CH2O 1.840E-15 NO2 9.550E-08   

CH3OH 5.760E-16 N2O 1.860E-07   

C2H2 6.400E-13 HNO 4.840E-12   

CH2CO 3.450E-14 CN 7.410E-16   

HCCOH 4.100E-11 HCN 1.810E-10   

The following chemical species were not included because their mole fraction was less than 

1x10
-16

 which falls outside the precision of the computer; C, CH, CH2, CH2(S), HCO, CH2OH, 

CH3O, C2H, C2H3, C2H4, C2H5, C2H6, HCCO, H2CN, HCNN, Ar, C3H7, C3H8, CH2CHO, CH3CHO. 

In order to assess the results of the accuracy of the CRN results they were compared to the CFD 

results which used the ARM19 mechanism.  
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Figure 4.13. Outlet Mole Fractions. CRN GRI 3.0, CFD ARM19. 

Figure 4.13 shows that the CFD ARM19 results are relatively close to the CRN results 

when the specie concentration is above the 1 [ppm] level (1x10
-6

), when the specie concentration is 

lower than the 1 [ppm] level difference becomes significant. Table 4.3 contains the numerical 

values of the concentrations shown in Figure 4.13. 

Table 4.3. Mole Fractions Comparison. CFD ARM19, CRN GRI 3.0. 

Specie CFD ARM19 CRN GRI 3.0 <- CFD + glob. mech. 

CH4 3.427E-07 4.470E-15 

O2 3.764E-02 3.870E-02 

CO2 7.842E-02 7.770E-02 

H2O 1.565E-01 1.550E-01 

N2 7.273E-01 7.280E-01 

H2 3.877E-06 5.530E-07 

OH 8.925E-05 2.720E-05 

CO 1.252E-05 1.050E-06 

NO 8.237E-05 2.020E-05 

H 9.766E-08 6.240E-09 

HO2 1.365E-07 4.310E-08 

H2O2 8.730E-08 1.020E-08 

CH2 1.663E-08 6.400E-13 

CH2O 4.445E-08 1.840E-15 

C2H2 4.380E-07 6.400E-13 

C2H4 5.452E-07 2.24E-19 

C2H6 1.944E-09 5.61E-22 

NH3 1.708E-07 1.01E-09 

HCN 1.649E-06 1.81E-10 

Comparison between the CRN and CFD ARM19 shown in Table 4.3 follows the same 

trend as Table 4.1. Predicted mole fraction of species; O2, CO2, H2O, and N2 is similar for both 
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approaches but the difference becomes relatively significant for the rest of the species. The 

concentration obtained from CRN was one tenth smaller than the CFD predicted value for CO and 

one fourth smaller than the CFD prediction for NO. 

Computational Time 

The aforementioned calculations were performed in the CFD AMP computational cluster. 

The cluster is composed of 64 Intel Xeon processors each @ 2.33 [GHz]. CFD simulations were 

always performed in parallel which means that the workload of the calculations was divided in 

several processors, and for the CRN the calculation were always performed in one processor (serial 

calculation). The calculation time is shown in Table 4.4. 

Table 4.4. Calculation Time for Case 1 NETL Burner. 

Case Number of Processors Real Time [hrs] 

CFD with glob. mech. 8 3.44 

CFD with ARM9 4 30.13 

CFD with ARM9 + CFD with ARM19 4 30.13 + 75.4 = 105.53 

CFD with glob. mech. + CRN GRI 3.0 1 3.44 + 0.3 = 3.74 

The real time column in Table 4.4 is the actual time that took the computer to complete the 

calculation of the problem. It was not needed to parallelize the CRN program because the number 

of reactors is considerably less than the number of computational cells in the CFD simulations. 

CFD calculations were performed in eight or four processors due the availability of computer 

resources at the time when calculations were computed. Due the non-linearity present in the 

ARM19 it is necessary to start the calculations with a good initial condition otherwise the 

simulation could diverge or the flame could extinguish. The CFD simulations with ARM19 took 

75.4 [hrs] to complete but because the ARM9 was used as the initial condition the time that took for 

the ARM9 solution to converge was added to the ARM19 calculations. In the same fashion the 

CRN calculations needed the solution of the CFD global reaction in order to have the necessary 

information to build the reactor network so the time needed to the CFD with global mechanism to 

converge was added to the CRN calculations. Table 4.4 shows that the CRN calculations needed a 
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tenth of the real time of the CFD ARM9 simulation and around one twenty eighth of the real time 

of the CFD ARM19 simulation. But the time comparison using the real time and not taking into 

account the parallelization of the calculations is unfair. One way to have a level ground for all 

calculations is to perform calculations using the same number of processors, this implies that the 

CRN will have to be written in parallel. CRN parallelization is outside of the scope of the current 

study and might be pursued in the future. Another option will be to run all calculations in just one 

processor but the time required to complete the calculations will be too long and possible processor 

overload issues might arise. Instead Amdahl’s law (Gustafson 1988) was used to convert the real 

time needed by the parallel simulations to the time it will be required to complete the same 

calculations using only one processor. Amdahl’s law is used to estimate how much the computer 

calculations will speedup if parts of the program were parallelized as a function of the number of 

processors. The speedup is calculated using Equation 4.9. 

        
   

     
 (4.9) 

Where s is the percentage of the code that is computed in series and p is the percentage calculated 

using parallelization, N is the number of processors used. For simplicity the total time is set to 1 

(s+p = 1). Assuming that the percentage of the FLUENT code works in parallel is 95% (p = 0.95) 

because the parts of the code that needed to be serial are basically to read the boundary conditions 

and the operational conditions, the majority of the work is usually performed in parallel (coefficient 

calculation, solution loop, etc.). With 95% percentage the calculated speedup using the Amdhal’s 

law as a function of the number of processors is shown in Figure 4.14. 



 

99 
 

 

Figure 4.14. Parallel Speedup Calculation Using Amdhal’s Law. 

Figure 4.14 shows that the maximum speed up for a code with 95% in parallel is 20 with 

respect to the serial version. Using the data for four and eight processors it was found that the 

speedup is 3.47 and 5.92 respectively, the speedup was multiplied by the real time from Table 4.4 

and the time of the calculation as if it was performed in just one processor was found.  

 

Figure 4.15. Serial CPU Time. 
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Results showed that the time needed to complete the simulation using the CRN approach is 

one fifth of the time required for the CFD ARM9 calculations and one seventeenth of the time 

required for the CFD ARM19 calculations. 

It must be stressed that the calculation of the serial time is merely an approximation 

because the exact percentage of the ANSYS-FLUENT software that works in serial when the 

parallel option is activated is not known. Moreover there are other hardware related bottle necks 

that can affect the speedup. In this regard the results in Figure 4.15 should be viewed as an 

informed estimation. 

CRN calculations had shown to be faster than CFD with more complete chemical 

mechanisms. In order to assess the accuracy of the calculations with experiments another problem 

setup was used because no species concentration measurements were available for the current case 

at the time of the calculation. Plus it provided the opportunity to test the CRN for a different burner 

configuration. 

4.3.3 Domain Decomposition – TECFLAM Burner 

The CRN approach was also applied for the non-premixed TECFLAM burner (Landenfeld, 

et al. 1998). The CRN-DIV program used as input the results from the CFD with a two step global 

mechanism simulations presented in Section 3.2. Temperature and water mass fraction were used as 

control variables to create the reactor. CFD results of the temperature and water mass fraction are 

shown in Figures 4.16 a) and b) for the entire burner domain. Temperature and mass fraction were 

selected as control variables because it was clear to separate the burner in several characteristic 

regions namely; flame, mixing, and post flame regions. Due to the nature of the flow all the reactors 

created by in the CRN-DIV program were marked as PSRs because it was observed that the flow 

did not form a region where it is clearly one dimensional. Figure 4.16 c) shows the streamlines and 

the axial velocity contours of the flow inside the domain. Besides the recirculation zones located at 
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the flame region and on the side wall there are two extra recirculations. These recirculations appear 

due the constriction of the outlet by the top wall. The appearance of additional recirculation zones 

does not allow the flow in the post-flame region to become unidirectional as in the previous burner 

(NETL burner). For this reason all of the reactors in the CRN calculations were identified as PSRs. 

Nevertheless, additional calculations of the reactor network were performed where the region near 

the outlet was marked as a PFR but these simulations produced unsatisfactory results when 

compared with the experiments. 

a) b) c) 

   
Figure 4.16. CFD Solution Contours TECFLAM Burner. a) Temperature [K] Contours, b) Water 

Mass Fraction Contours, c) Axial Velocity [m/s] Contours and Streamlines. 
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a) b) c) 

   
Figure 4.17. ID Cell Contours TECFLAM Burner. a) nTemp = 9, nH2O = 9, b) nTemp = 18, nH2O = 18, 

c) nTemp = 36, nH2O = 36. 

Figure 4.17 shows the resulting zones when the levels of temperature and the water mass 

fraction variables were defined with nine levels. The total number of reactors were; 26, 79, and 268 

respectively. The total number of reactors is less than the total number of combinations possible, 

nTemp* nH2O, because there were no computational cells that fell in some of the bins. Figure 4.17 

shows that with increasing the number of bins the divided reactor resembles the temperature field 

from the CFD simulations. 

4.3.4 CRN Results – TECFLAM Burner 

Contour Reconstruction 

CRN predictions of the TECFLAM burner were performed using the methane-air 

mechanism GRI 3.0. Results from the CRN simulation represent the concentration for a reactor in a 

specific region of the burner, this information was used to re-construct the burner domain in order 
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to compare against the measured species mass fraction profiles. The contour reconstruction was 

performed using the mesh information, the id_cell value and the results from the CRN simulation. 

Contour reconstruction was performed by a MATLAB program that created the CFD mesh, then it 

looped through all the cells of that mesh and checked the id_cell value, finally the program looked 

for the CRN results of the id_cell and pasted them into the two dimensional mesh.  

a) b) 

  
Figure 4.18. Contour Reconstruction using Results from CRN, nTemp = 18 and nH2O = 18. a) 

Temperature [K], b) Water Mass Fraction. 

Figure 4.18 a) shows the temperature contour reconstruction using data from the CRN 

simulation nTemp = 18 and nH2O = 18. When Figure 4.18 a) is compared with 4.16 a) it can be seen 

that two contours matched very well, this means that the reconstruction was successful. Figure 4.18 

b) shows the reconstruction of the water mass fraction contour when compared with 4.16 b) the 

concentration of water mass fraction decreased at the central recirculation zone and in the post 

flame region. A detailed comparison of the CFD, CRN, and experiments is shown in Figure 4.19. 

The energy equation was not solved in the CRN simulations for this reason the CFD and CRN 
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temperature values follow the same trend as shown in Figure 4.19. CFD simulations were 

performed using a two step global mechanism which contains the following chemical species; CH4, 

O2, H2O, CO2, CO, N2. 

 

Figure 4.19. Temperature Profiles. Left Triangles – Experiments, Dash line – CFD Simulations 

with Two Step Global Mechanism, Blue Circles – CRN Simulations. 
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Figure 4.20. Methane Mass Fraction Profiles. Red Diamonds – Experiments, Dash line – CFD 

Simulations with Two Step Global Mechanism, Blue Circles – CRN Simulations. 

CRN methane profiles at station z/rair = 0.33, and z/rair = 0.67 are lower than the 

experimental and the CFD results (Figure 4.20). The low concentration of methane is because the 

reactors obtained from the CRN division are relatively bigger than the CFD cells, the reactor that is 

located at the inlet of the domain covers both the methane and air inlets. The methane concentration 

near the dump plane is the average value of both air and methane inlets. The methane mass 

fractions in the subsequent stations where the combustion was establish, high temperature region, is 

closer to the measurements and the CFD simulations. 
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Figure 4.21. Oxygen Mass Fraction Profiles. Red Diamonds – Experiments, Dash line – CFD 

Simulations with Two Step Global Mechanism, Blue Circles – CRN Simulations. 

The inlet value of the oxygen mass fraction in the CRN predictions extends longer than the 

experiments as shown in Figure 4.21. The extension of the inlet oxygen value deeper in the domain 

could be an indication that the reaction in the CRN calculations proceeds slower. On the other hand, 

CRN results are closer to the experiments when moving away from the axis, r/rair = 5. This region 

is close to a recirculation zone, recirculation zones have relatively large resident times that allow 

the reaction to proceed to completion.  
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Figure 4.22. Carbon Dioxide Mass Fraction Profiles. Red Diamonds – Experiments, Dash line – 

CFD Simulations with Two Step Global Mechanism, Blue Circles – CRN Simulations. 

Predicted CRN carbon dioxide mass fractions are closer to the experiments than the CFD 

predictions as shown in Figure 4.22. However the CRN results also show that the spatial variation 

of the carbon dioxide concentration is lower than what was measured following a similar trend as 

the oxygen concentrations. 
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Figure 4.23. Water Mass Fraction Profiles. Red Diamonds – Experiments, Dash line – CFD 

Simulations with Two Step Global Mechanism, Blue Circles – CRN Simulations. 

Water mass fractions calculated using the CRN show (Figure 4.23) a similar value in the 

regions, r/rair = 0 and r/rair = 5; this value is closer to the concentration at adiabatic flame condition 

at this equivalence ratio YH2O,ad_temp = 0.1. The same lower variation of the mass fraction is seen for 

the region that is affected by the inlet mixture. The relatively large size of the CRN reactors meant 

that the locations near or in the recirculation zones were biased to the conditions where the 

residence time is large enough that the reactions proceed to near completion. 
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Figure 4.24. Nitrogen Oxide Mass Fraction Profiles. Blue Circles – CRN Simulations. 

A feature of the CRN is the availability of extra species that are very difficult to measure 

experimentally or that were not included in the chemistry model used in CFD simulations because 

of the computing restrictions. Figure 4.24 shows the reconstructed profile of NO calculated using 

the CRN approach. The experiments did not include the profile measurements of NO; only the 

average value of NO at the outlet of the domain was reported. CFD calculations were performed 

with a two step global mechanism that did not include NO calculation either. Other reaction 

mechanisms include the NO calculation like the ARM9, however this mechanism was optimized 

for premixed combustion and could not be used for this non-premixed problem. Nevertheless in the 

current study a simulation using the ARM9 mechanism was performed but it was not possible to 

obtain a converged solution. 

Reconstructed profiles using the CRN must be used with caution. It is necessary to 

remember that these profiles are defined in relatively large zones or reactors. Profiles can be 

informative but they are averaged values, in order to have an accurate representation it will be 
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necessary to use more reactors. But using more reactors basically will take the total number of CRN 

reactors to the same scale as the computational cells used in CFD. A large number of reactors will 

increase the time of the calculation making the CRN approach computationally more expensive 

than the CFD simulation. 

Effect of the Number of Reactors 

In order to assess the effect of the number of reactors used in CRN several cases were 

simulated. The number of reactors was increased and the area averaged NO concentration was 

calculated and compared with the reported experimental value (Schmittel, et al. 2000). Table 4.5 

shows the cases used to performed the calculations, all cases used equally spaced control variable 

levels calculated using Equation 4.1. 

Table 4.5. CRN Cases for TECFLAM Burner. 

Case nTemperature nH2O nreactors 

1 9 9 26 

2 18 18 79 

3 36 36 268 

4 40 40 317 

5 45 45 399 

6 50 50 467 

7 55 55 556 

The predicted NO concentration was reported in a dry basis and corrected at 3.8% volume 

of oxygen as reported in the experiments. The correction was performed using the following 

expression obtained from Turns (Turns 1996). 

                         
        

                  
 (4.10) 

Where         is the predicted NO mole fraction in the mixture that contains water. Nmix are 

defined as follows. 
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where x and y are the subscripts of the hydrocarbon fuel molecule shown in Equation 3.28. XO2,dry is 

the dry mole fraction of the oxygen concentration (XO2,dry = 0.038) and XO2,wet is the oxygen 

concentration in the mixture that includes water. 

 

Figure 4.25. CRN Predicted NO Concentration TECFLAM Burner. 

The corrected concentration in [ppm] of NO at the outlet of the burner as calculated from 

CRN is shown in Figure 4.25. The variation of the outlet concentration can be explained as follows: 

the calculated concentration is low with a small number of reactors because the temperature in each 

zone is relatively low meaning that the production of NO is less, however as the zone division 

became finer, there were zones with high temperatures increasing the predicted NO, but as the zone 
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division became finer the size (or volume) of the reactors decreased given less time to the mixture 

to react. Nevertheless the predicted concentration at the outlet of the reactor is converges to circa 50 

[ppm]. This concentration overpredicts the measured NO concentration ~ 20 [ppm]. It was expected 

to have an over prediction of NO because the CFD results overpredicted the temperature as shown 

in Figure 3.21. It has been reported that above 1800 [K] the production of NO is mainly due to the 

thermal pathway (Turns 1996). The predicted CFD temperatures were approximately 250 [K] 

higher than the experimental values. The results of the CRN approach explored in the present study 

greatly depend on the CFD results. Due to the utilization of simple models in the predicted fields 

the results were overestimated. 

A previously reported CRN study produced better agreement to the experimental NO 

concentration by modifying the volume of the reactors of the CRN or by defining custom average 

temperatures. Such techniques were not applied in this study because it was clear that the 

temperature was overpredicted and alterations to the reactor volume of the temperature will be 

fictitious. 
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The CPU time needed to calculate the solution of the CRN is shown in Figure 4.26. 

 

Figure 4.26. CRN CPU Time TECFLAM Burner. 

The CPU time increases with the number of reactors as shown in Figure 4.26. Results from 

Figure 4.25 showed that the NO concentration converges to the value of 50 [ppm] which is close to 

the value obtained with 79 reactors. So the minimum time necessary to calculate the solution is 1.5 

[hrs]. 

The CFD solution needed 35 [hrs] running in four processors to achieved a converged 

solution. The solution took this amount of time because of the solution procedure that requires to 

start the solution with a very high temperature inlet (Tin = 1500 [K]) and then it has to be gradually 

decreased until it reaches the actual value (Tin = 300 [K]). The equivalent serial time needed to 

achieve the solution using Amdhal’s law is approximately 121 [hrs]. According to the procedure 

used in Section 4.4.2. the total time to obtain the CRN solution is the time needed by the CFD 

simulation (using relatively simple models) plus the CPU time needed by the CRN, ttotal = 122.5 

[hrs]. 
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It was not possible to compare the CFD solution of this problem with the CFD results using 

the ARM9 reduced mechanism because of numerical issues. These issues arouse because the 

ARM9 was optimized to work with premixed combustion. The present simulation of the 

TECFLAM burner is non-premixed this means that there is a wide range of fuel-air equivalence 

ratios in the simulations for which the ARM9 was tuned. 
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 Log-Time Integration Method Chapter 5:

A novel integration scheme was applied to reduce the simulation time needed by the PSRs 

and PFRs. Solution of the PSRs and PFRs was performed using the PSR code available in 

CHEMKIN (Glarborg, et al. 1986). The PSR-CHEMKIN computer program predicts the species 

concentration using the damped Newton method, the solution method uses as initial condition the 

equilibrium composition at the given pressure and temperature. In order to accelerate the 

calculations a novel solution method was proposed, namely the Log-Time Integration Method 

(LTIM) (Escobar, et al. 2012). A detailed description of this method along with its applications is 

provided next. 

5.1 Zero Dimensional Transient Model Applications 

5.1.1 Model Development 

A transient zero dimensional problem is used to explain the development of the LTIM. The 

integration method was applied to the rate equation for a chemical species given by 

 
ii

i MW
dt

Yd





 
(5.1) 

Where Yi is the mass fraction of the specie i, ρ is the mixture density, ωi is the source term 

(production or consumption) of the specie i, and MWi is the molecular weight of the specie i. 

A non-dimensional time variable is defined in terms of the chemical reaction characteristic time, 

tchem. 
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(5.2) 

In order to use large time steps during the integration, the non-dimensional time was 

transformed into the logarithmic space as follows. 
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(5.3) 

Substituting the logarithmic time variable into the governing Equation 5.1 yields. 

 
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(5.4) 

In this study it was found that α = 1 produces satisfactory results, 
*

reft  must be always equal (or 

greater) to 1 in order to avoid singularities or negative values from Equation 5.3. Al calculations 

presented in reported in this study were performed with 1* reft . 

Solution of Equation 5.4 was performed using the second order modified Euler method 

(Celik 2008). The method consists of evaluation of the right hand side of Equation 5.4 at the n (old 

time step) and n + ½ time levels. The advantage of transforming the time variable into a 

logarithmic space is that the rate of change of the function decreases in the logarithmic space 

allowing the use of larger time steps. This can be seen using the following example. 
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1)*2exp()*2000exp(  tty  (5.5) 

Equation 5.5 is plotted in Figures 5.1 a) and 5.1 b). It is seen that the transformation into 

the logarithmic space 5.1b) is favorable because the large slope near time = 0 [s] was decreased 

when compared to the real time space 5.1 a).  

a) b) 

  

Figure 5.1. a) Equation 5.5 Variation with Time [s] , b) Equation 5.5 Variation along Logarithmic 

Time Space. 

In order to quantify the performance of the LTIM with compared to other methods for the 

solution of stiff equations, the LTIM was applied to different reacting system problems which are 

presented in the following sections. 

5.1.2 Zero Dimensional Transient Model – NO System 

The LTIM was compared against the fifth order Runge-Kutta (R.K. 5
th
 order) method (Cash 

and Karp 1990). The comparison was done for an initial value problem. The problem consists in the 

prediction of the mass fraction for each of the chemical species that participate in the following 

reaction. 
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ONOON  2  (5.6) 

The Reaction described in Equation 5.6 is one of the main reactions in the calculation of thermal 

NO production, the rates of consumption or production of the chemical species are given in the 

Arrhenius form         ( 
  

  
). Rate coefficients values were found in Turns (Turns 1996) 

and are listed next;          
  [m

3
/kmol-s-K]      

    

 
      [K], and          

  

[m
3
/kmol-s-K]      

    

 
       [K], where the subscripts f and r stand for forward and 

backward respectively. Reaction rate units are [m
3
/kmol-s]. The source term in Equation 5.1 is 

calculated in the following form. 

 ̇  ∑    

 

   

 (5.7) 

Where Ri,j was calculated using Equation 3.17, j is the reaction index (for this case j=1) and the L is 

the total number of reactions. 

The integration of Equation 5.1 started from the following initial condition; mass fractions 

were set equal to 0.25 for all species, the temperature and pressure were fixed at 1000 [K] and 1 

[atm] respectively.  

The solution of equation 5.1 was compared with the R.K. 5
th
 order integration method. The 

R.K. 5
th
 order integration method was especially designed for rapidly varying functions. The 

method consists of the evaluation of six slopes. Equation 5.8 shows how mass fraction at the next 

time step is calculated. 
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         [                              ] (5.8) 

where Y is mass fraction, h is the time step, k is the right hand side of Equation 5.1 evaluated at 

different fractional time steps, and c values are constants that weight the right-hand side values 

calculated at different fractional time steps. The R.K. 5
th
 order method can be reviewed in the 

Appendix 2 section of the present study. 

a) 

 

b) 

 
Figure 5.2. Transient Solution of Reaction 5.6. a) LTIM, b) R.K. 5

th
 Order Method. 
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The predicted mass fractions (Figure 5.2) did not vary after 5x10
-5
 [s]. Results show that 

the LTIM predictions match closely the results obtained using a higher order integration method. 

But the LTIM needed 0.02 [s] CPU time to complete the simulation whereas the R.K. 5
th
 order 

method took 0.10 [s] CPU time. The CPU time was recorded in a PC with an Intel® Core Duo 2.4 

[GHz] microprocessor with 2 [GB] of RAM. The time needed for the R.K. 5
th
 order method is 

considerably larger because it needs more calculations per time step in order to calculate the six 

slopes that is required per time step. 

5.1.3 Zero Dimensional Transient Model – Methane-Air System 

The LTIM was also tested for a more complex chemical mechanism and the results were 

also compared with the R.K. 5
th
 order method. Equation 5.1 was employed to solve the evolution of 

a methane-air system at constant temperature and pressure. The mechanism employed in these 

simulations was the five step ARM9 reduced mechanism originally developed by Mallampalli et al. 

(Mallampalli, Chen and Fletcher 1998). A mixture of methane air with an equivalence ratio equal to 

0.9, T = 2135 [K], and P = 1 [atm] was used as initial condition. 

The solution of the system is carried out for a large time in order to compare the results 

with equilibrium values (t → ∞). Equilibrium results were obtained using the Gordon-McBride 

program (Chemical Equilibrium with Applications 2010). 

Table 5.1. ARM9 Mass Fractions. 

Specie Gordon-McBride LTIM R.K. 5
th

 

H2 6.79x10-5 6.79x10-5 6.77x10-5 

O2 2.13x10-3 2.30x10-2 2.30x10-2 

OH 1.85x10-3 1.72x10-3 1.71x10-3 

H2O 1.10x10-1 1.10x10-1 1.10x10-1 

CH4 1.46x10-19 1.36x10-19 1.36x10-19 

CO 2.35x10-3 2.37x10-3 2.36x10-3 

CO2 1.33x10-1 1.33x10-1 1.33x10-1 

NO 3.33x10-3 3.33x10-4 3.33x10-4 

N2 7.27x10-1 7.28x10-1 7.28x10-1 
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Table 5.1 shows that LTIM predictions matched the equilibrium values calculated using the 

Gordon-McBride program for the species; H2, OH, H2O, CH4, CO, CO2, N2 (maximum difference 

is 7%). LTIM predictions are close (maximum difference is 0.6%) to the values obtained using the 

R.K. 5
th
 order method. Both approaches, LTIM and R.K. 5

th
 order showed a significant difference 

in the predicted mass fractions of O2 and NO (maximum difference is 98%) when compared to the 

equilibrium values. This is because the NO reactions are slow and it is necessary to use a very large 

tie in order to allow the system to reach equilibrium. Since the difference between the LTIM and 

the R.K. 5
th
 order was very small (maximum difference is 6%) and the difference between the 

predicted mass fraction of the rest of the species with the equilibrium values it was decided to stop 

the simulation and not reach complete equilibrium. 

5.1.4 Zero Dimensional Transient Model – Propane-Air System 

Reduced mechanisms available in the literature were created by optimizing the reaction 

rates to match experimental results for certain operational conditions. As a product of the 

optimization, the final rates have the peculiarity of having some of the species concentrations 

elevated to a negative power which creates a very difficult problem to handle. An example of such 

reduced reaction mechanisms is the propane-air mechanism developed by Kiehene et al. (Kiehne, 

Matthews and Wilson 1987). The propane mechanism is composed of eight reactions (Table 5.2) 

and eight species (C3H8, C2H4, H2, O2, CO, CO2, H2O, N2 as an inert gas). 

Table 5.2. Summary of the Modified Eight-Step Kinetic Model. 
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With rate expressions 
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According to Kiehene et al. (Kiehne, Matthews and Wilson 1987) Rj is given in 

[gmole/cm
3
-s], T is in [K], R is the universal gas constant 1.986 [cal/K-gmole], and the specie 

concentration is in [gmole/cm
3
]. The mechanism shown in Table 5.2 was developed in such a way 

that each reaction only proceeds in the forward direction. The optimization process results in 

expressions which, in some circumstances, depend on three species as shown in Table 5.2 and not 

only in two species as it is in the elementary reactions. The feature that makes the calculation of the 

composition extremely difficult is the negative exponents that appear in the rate expressions. For 

example, in the R2 expression the power of C3H8 is negative. The propane concentration for most 

combustions problems tends to be very small in the regions where the combustion was completed 

such as post-flame regions or central recirculation zones as the ones reported in Chapter 3 of the 

present study. The problem arises when the concentration is close to zero, due the numerical errors 
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the predicted concentration tends to go to a negative value. Negative values for species 

concentrations are unphysical and in most of the codes that calculate species concentration the 

negative concentration is eliminated and the concentration is replaced by a small value (small = 

1x10
-15

). This procedure does not affect the reaction rate value when its power is a positive number 

but if the value is negative, as it is for propane, then a sudden change to a low concentration 

produces non-physical concentration values. 

Calculations using the propane-air mechanism showed that the system is very stiff; for this 

reason it was selected to test the LTIM. Calculations were performed using the LTIM procedure 

described in Section 5.1.1. The goal was to calculate the accuracy of the LTIM for the transient 

evolution of the results and to compare with the equilibrium results. LTIM results were compared 

with the simple but effective Euler method. 

The initial condition composition was set to have an equivalence ratio equal to 0.7, a 

constant temperature = 1500 [K], and pressure fixed at 1 [atm]. No analytic transient solution is 

available for the current system so the predicted transient values of the composition using the 

explicit Euler method with a very small constant time step, dt, were used as the ‘exact’ solution. 

The error was calculated as the difference between the calculated and the reference solution values. 

The explicit Euler method used in the calculation of the species concentration is given by 

  
      

    
    ̇ 
 

 (5.9) 

Where  ̇  was evaluated using the chemical species at the previous time step n. In order to 

accelerate the calculation of the Euler method a variable time step was determined using 



 

124 
 

   
     

   (   ( )     (   ( ̇ ))
 
)
 (5.10) 

Equation 5.10 shows how the dt is adjusted depending on the value of the reaction rate. In 

the current approach a maximum dtmax is selected to avoid the time step becoming too large. The 

assumption for the adjustable dt is if the reaction is happening too fast that means the reaction rate 

will become large so the dt used in the calculation will be smaller. But when the system is 

approaching the state of equilibrium, the reaction rate will tend to zero and thus to the dtmax value. 

The extra term exp(1) was added to the expression as a safety mechanism to division by zero. 

Results are shown in Figure 5.3. 
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a) b) 

  
c)  

 

 

Figure 5.3. Transient Mass Fraction of Propane-Air Mechanism, tmax = 1x10
-4
 [s]. a) Explicit Euler 

Constant dt, b) Explicit Euler Variable dt, c) LTIM. 

In the calculations using the explicit Euler method the dt was set to a constant value of 

1x10
-7 

[s]. For the variable dt case (Figure 5.3 b)) the best results were found for dtmax = 2.1x10
-6
 [s] 

and the power n = 2 in Equation 5.10. The LTIM used the following parameters;   1,     
  1, 

tchem = 1x10
-6
 [s], and 221 time steps. Figure 5.3 shows that for all cases the transient solution is 

similar. In order to assess the accuracy of each method another case with the explicit Euler method 

using a dt = 1x10
-9

 [s] was used as the reference ‘exact’ solution. 
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The L2norm of the error (Equation 5.11) is used as a metric for accuracy check. 
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(5.11) 

Here spe is the total number of species, nt is the total number of time steps, Yref is the mass fraction 

from the reference case, and Ypred is the predicted mass fraction using any of the three 

aforementioned methods. 

Table 5.3. Propane Air Mechanism Summary. 

Method Time steps CPU time [s] L2norm 

Explicit Euler  

dt = const 
1000 0.3330 7.5661x10

-6
 

Explicit Euler 

dt = var 
369 0.0986 4.9276 x10-4 

LTIM 221 0.1170 4.2110 x10-5 

Table 5.3 shows that the method that takes the least number of time steps to reach 

maximum time step is the LTIM, the fastest method is the Euler method with variable time step 

because it only requires the evaluation of one slope per time step and the LTIM requires two, and 

the smallest L2norm was obtained with the Explicit Euler with constant dt. Since the error is a 

function of the size of the time steps it is expected than the case with the smallest dt has the least 

error. 

Table 5.3 also shows that the utilization of a variable dt depending on the magnitude of the 

variation of the right hand side of the solved equation helps to increase the speed of the solution. 

This feature will be used in the following section when the LTIM is applied in the solution of a 

perfectly stirred reactor (PSR). 
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5.2 PSR Test Case 

The main component of the CRN simulations is the perfectly stirred reactor (PSR). The 

current study proposes a novel method to solve this ideal reactor with enough speed that could be 

comparable with the available commercial codes such as the PSR (Glarborg, et al. 1986) which is 

part of the CHEMKIN software. 

5.2.1 PSR-CHEMKIN 

The perfectly stirred reactor is an ideal reactor in which perfect mixing is achieved inside 

the control volume. Figure 4.7 shows a diagram of a PSR in which the mass  ̇ enters the domain 

with an inlet composition and temperature. The mixture inside the reactor changes due to the 

chemical reactions that take place. Due to the assumption of perfect mixing inside the reactor the 

composition of the mixture is same anywhere inside the reactor so the spatial dependence of the 

mixture composition disappears producing a zero dimensional transient mass conservation 

equation: 

      
  

  ̇ 
      ̇      ̇      (5.12) 

The left hand side of Equation 5.12 represents the rate at which the mass of specie i 

accumulates inside the control volume, the first term on the right hand side is related to the mass 

consumption or production of the specie i inside the control volume; the second term is the mass 

flow of the specie i into the control volume, and the last term is the mass flow of the specie i 

leaving the control volume. When Equation 5.12 is applied to the PSR assuming steady state and no 

diffusion fluxes at the inlet and the outlet boundaries of the reactor so that  ̇   ̇  , Equation 5.12 

reduces to 
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 ̇       ̇(            )    (5.13) 

Equation 5.13 is valid for all the chemical species inside the reactor. The temperature was assumed 

constant inside the PSR used for the CRN calculations for this reason it is not required to solve the 

energy equation for the current problem. 

The PSR-CHEMKIN program solves Equation 5.13 using the modified damped Newton 

method. The Newton’s method is an iterative solution procedure, it substitutes arbitrary values of 

the vector   (for the current problem     ) into the governing equations. The method iterates 

until it finds a set of values of the vector   that will generate a residual vector of the governing 

equations F equal to zero. The goal is to find   such that. 

 ( )    (5.14) 

The modified damped Newton method requires that the initial estimate of   must be a 

value close to the solution of the system otherwise the method will diverge. The PSR-CHEMKIN 

uses the equilibrium concentrations at the given temperature and pressure as the initial guess. With 

the initial estimate the Newton algorithm starts to iterate until the solution converges. The new 

iteration value of the variable   is calculated by the Newton method using the following 

expression. 

 (   )   ( )   ( )( ( ))
  
 (  ) (5.15) 

Where the Jacobian matrix, J, is equal to       , and  ( )is a damping factor. Evaluation of the 

Jacobian in Equation 5.15 makes the calculations extremely costly for this reason the PSR-
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CHEMKIN does not evaluate the Jacobian every iteration but it saves the Jacobian for several 

iterations. The value of   is restricted to be between 0 and 1; the calculation of this variable 

depends on several criteria but it is designed to keep the iteration stable and within bounds. A 

detailed description of the solution algorithm, called TWOPNT, can be found in (Grcar 1992). The 

solution is considered converged when the following condition is satisfied. 

|  |     (    | |) (5.16) 

Where A is the absolute tolerance and R is the relative tolerance. 

5.2.2 PSR-LTIM 

The LTIM was applied to the solution of a PSR. The LTIM works differently than the 

modified Newton’s damped method because it is not an iterative method. The governing equation 

solved by the LTIM is Equation 5.17. Integration of Equation 5.17 was performed until the term on 

the left hand side of the equation approaches zero, as    .  

 (       )

  
     ̇    ̇(            )  (5.17) 

During the integration process of Equation 5.17 the value of the mass fraction at the old 

time level      
 was the same as the        due to the assumption of perfect mixing in the reactor 

meaning that the concentration is same inside the reactor as what it is at its outlet. The time variable 

transformation described in Section 5.1.1 was applied to Equation 5.17 giving the following 

expression. 
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)  (    ̇     ̇  (        
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)) (5.18) 

where             
    for the current calculations, and           

   [s]. 

As discussed in the propane-air section, implementation of variable time step as a function 

of the rate of the reactions proved to be an effective strategy that reduced the computational time. 

The adaptive time step strategy was implemented to the LTIM integration method as follows: 

First Equation 5.18 is written as follows. 

  
(   )

   
( )
        (5.19) 

where all the terms shown in the right hand side of Equation 5.18 were collapsed into the RHS 

variable. Equation 5.19 shows that the mass fraction at the next time is equal to its old value plus 

the rate of change, the second term in the right hand side of Equation 5.19 can be expressed as 

  
          . It was found that if   

    was limited to change only a fraction (       ) of the 

previous time step, the system remained stable and predicted relatively accurate results. In order to 

satisfy the fractional change it is necessary to adjust the    accordingly using the following 

expression. 

   
 

       
   (

  
( )

   (   )
) (5.20) 

Since the mass fraction variable is an array whose size depends on the total number of 

chemical species it was necessary to calculate the maximum variation of the array and adjust    
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accordingly. In order to maintain the stability of the solution near the steady state, it was also 

necessary to limit the maximum    value. In this study it was found that a dtmax = 1x10
-4

 [s] 

avoided the prediction of non-physical values (the maximum dt was given in real time but it was 

adjusted to logarithmic time inside the program). 

5.2.3 Results for PSR Simulation 

The solution of the PSR calculated using the detailed chemical mechanism GRI 3.0 for 

methane-air combustion had the following conditions; T = 1800 [K], P = 1 [atm], V = 5.0 [cm
3
], 

 ̇       [g/s], and the initial composition is given in Table 5.4. Solution of the problem was 

carried out by integrating Equation 5.18 until steady state was reached. 

Table 5.4. PSR Conditions. 

Temperature [K] 1800 

Pressure [atm] 1.0 

Volume [cm3] 5.0 

Mass Flux [g/s] 1.0 

Inlet Oxygen Mole Fraction 0.158872 

Inlet Methane Mole Fraction 0.078651 

Inlet Carbon Dioxide Mole Fraction 0.01938 

Inlet Nitrogen Mole Fraction Balance 

Two solution procedures were used; first the solution was calculated using the inlet mixture 

composition as the initial composition of the reactor, the second approach used the equilibrium 

composition of the mixture at the given temperature and pressure of the reactor as initial condition.  

It was found that using the inlet composition as the initial composition restricted the size of 

the time step. When calculating the solution the         had to be limited to 5 %. But when the 

equilibrium composition was used as the initial condition the         was limited to 50 % and the 

results were within reasonable accuracy (the maximum difference was 1%) for the species of 

interest. 
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Figure 5.4 shows the transient behavior of two monitor species, namely carbon monoxide 

and nitrogen oxide. 

 

Figure 5.4. Transients of Carbon Monoxide and Nitrogen Oxide Mass Fractions from the PSR-

LTIM Calculations. 

In Figure 5.4 three sets of calculations are depicted: (i) with constant    in the logarithmic 

space, (ii) with variable    in logarithmic space, and the initial composition equal to the inlet 

composition, and finally (iii) with variable    in the logarithmic space using the equilibrium 

composition as the initial condition. Species mass fraction reached a constant value around tmax = 

0.01 [s]. Results obtained from the variable    using the equilibrium composition as the initial 

composition showed fluctuations which are higher than the other set of results, nevertheless the 

predicted values approached to the same final value reported in the other approaches. Fluctuations 

are due the variable    used for that specific time step, using large time steps increase the 

numerical error in the predictions.  
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Utilization of the equilibrium composition partially removed the stiffness of the problem allowing 

the utilization of relatively large time steps. The percentage variation reported in Table 5.5 was 

calculated using the following expression. 

      
   (                  )

          
     (5.21) 

Table 5.5. PSR-LTIM Predicted Mole Fractions of the Species of Interest. 

 Specie 
CHEMKIN 

LTIM Var 

   
LTIM Var 

   + EQ 

% diff Var 

   
% diff Var 

   + EQ 

1 H
2
 8.76x10-3 8.76x10-3 8.75x10-3 4.57x10-3 8.90x10-2 

2 O
2
 1.61x10-2 1.61x10-2 1.61x10-2 2.24x10-1 1.99x10-1 

3 OH 4.48x10-3 4.48x10-3 4.48x10-3 6.70x10-2 8.26x10-2 

4 H
2
O 1.41x10-1 1.41x10-1 1.41x10-1 2.84x10

-1
 2.77x10-1 

5 CH
4
 1.99x10-4 1.99x10-4 1.99x10-4 2.01x10-1 1.06x10-1 

6 CO 2.13x10-2 2.13x10-2 2.13x10-2 1.69x10-1 1.13x10-1 

7 CO
2
 7.45x10-2 7.45x10-2 7.45x10-2 1.21x10-2 1.21x10-2 

8 NO 6.12x10-5 6.12x10-5 6.18x10-5 8.01x10-2 1.02 

9 N
2
 7.28x10-1 7.28x10-1 7.28x10-1 2.20x10-2 1.65x10-2 

Maximum Variation % 2.84x10-1 1.02 

The results reported in Table 5.5 showed that the maximum variation for the PSR-LTIM 

using the inlet composition as the initial composition is about 0.28 % and for the case with the 

equilibrium composition as the initial composition it is 1.02 %. The rest of the species 

concentration values are reported in Table 5.6. 

Table 5.6. PSR-LTIM Predicted Mole Fractions Continued. 

 Specie CHEMKIN LTIM Var    
LTIM Var    + 

EQ 

10 H 4.07x10-3 4.13x10-3 4.02x10-3 

11 O 1.75x10-3 1.74x10-3 1.75x10-3 

12 HO2 6.31x10-6 6.38x10-6 6.24x10-6 

13 H2O2 3.05x10-7 3.05x10-7 3.08x10-7 

14 C 4.43x10-7 4.19x10-7 4.51x10-7 

15 CH 6.79x10-7 1.37x10-6 3.77x10-7 

16 CH2 3.08x10-6 1.00x10-20 4.06x10-6 

17 CH2(S) 3.15x10-7 2.80x10-5 1.00x10-20 

18 CH3 5.19x10-5 4.58x10-5 5.21x10-5 

19 HCO 3.03x10-6 3.07x10-6 2.85x10-6 

20 CH2O 2.13x10-5 1.98x10-5 2.13x10-5 

21 CH2OH 4.36x10
-7

 1.83x10
-7

 4.49x10
-7
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22 CH3O 2.92x10-8 2.28x10-8 2.88x10-8 

23 CH3OH 6.39x10-7 5.06x10-7 6.43x10-7 

24 C2H 6.25x10-10 4.10x10-10 7.86x10-10 

25 C2H2 1.63x10-7 1.64x10-7 2.08x10-7 

26 C2H3 1.76x10
-8

 1.75x10
-8

 1.79x10
-8

 

27 C2H4 1.92x10-7 1.93x10-7 1.97x10-7 

28 C2H5 3.52x10-9 3.56x10-9 3.63x10-9 

29 C2H6 1.19x10-8 1.19x10-8 1.20x10-8 

30 HCCO 2.34x10-8 2.00x10-8 2.62x10-8 

31 CH2CO 1.31x10-7 1.30x10-7 1.29x10-7 

32 HCCOH 9.12x10-10 9.15x10-10 5.87x10-10 

33 N 5.25x10-8 5.20x10-8 5.33x10-8 

34 NH 1.90x10-8 1.12x10-7 1.00x10-20 

35 NH2 1.26x10-8 1.26x10-8 1.26x10-8 

36 NH3 9.81x10-9 9.81x10-9 9.88x10-9 

37 NNH 6.12x10-9 1.00x10-20 6.52x10-5 

38 NO2 9.22x10-9 9.22x10-9 9.34x10-9 

39 N2O 1.04x10-7 1.04x10-7 1.04x10-7 

40 HNO 1.06x10
-8

 1.02x10
-8

 1.00x10
-20

 

41 CN 3.72x10-9 3.64x10-9 3.92x10-9 

42 HCN 1.13x10-6 1.13x10-6 1.13x10-6 

43 H2CN 7.17x10-11 8.54x10-11 1.00x10-20 

44 HCNN 1.02x10-9 7.74x10-10 1.26x10-9 

45 HCNO 1.71x10-8 1.71x10-8 1.74x10-8 

46 HOCN 2.27x10-9 2.27x10-9 2.28x10-9 

47 HNCO 1.78x10-7 1.78x10-7 1.79x10-7 

48 NCO 2.07x10-8 2.07x10-8 2.07x10-8 

49 Ar 1.18x10-20 9.80x10-21 9.80x10-21 

50 C3H7 8.00x10-14 7.99x10-14 7.80x10-14 

51 C3H8 3.76x10-13 3.76x10-13 3.76x10-13 

52 CH2CHO 8.60x10-10 2.67x10-9 8.59x10-10 

53 CH3CHO 7.38x10-9 7.38x10-9 7.33x10-9 

The PSR-LTIM mole fraction predictions for the rest of the chemical species of the GRI 

3.0 detailed mechanism are shown in Table 5.6. The largest difference is seen for the species whose 

concentration became negative but PSR-LTIM code changed the value to a small value (1x10
-20

).  

Numerical simulations were performed using an Intel Xeon processor operating at 2.33 

[GHz]. PSR-CHEMKIN and PSR-LTIM calculations were performed using serial computer 

programs. 
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Figure 5.5. Calculated CPU Time of the PSR Calculations. 

Figure 5.5 shows the calculated CPU time that took to calculate the solution of the PSR. 

The PSR-LTIM with variable time step using the inlet concentration as the initial composition took 

the longest time (21 [s]) because the calculation used small time steps due to the stiffness of the 

problem. But the simulation of the PSR-LTIM using the equilibrium concentration as the initial 

condition allowed the code to utilize larger time steps and the time required to calculate the solution 

was reduced to 5.3 [s]. PSR CHEMKIN took 3.0 [s] in total. Here it should be mention that the 

CHEMKIN calculation also uses the equilibrium composition as the initial guess for its iterative 

procedure and the 3.0 [s] of CPU time includes all the calculations (equilibrium calculations + 

solution of the damped Newton method). 

The equilibrium composition used in the PSR-LTIM approach was calculated using an 

open source software called CANTERA (Goodwin, et al. 2009). The CPU time it took CANTERA 

to calculate the equilibrium composition was 0.7 [s]. When this time is added to the PSR-LTIM 

approach the total time adds up to 6 [s] compared to the 3 [s] it takes to CHEMKIN to retrieve the 

solution. 
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It is considered that the PSR-LTIM is a reasonable fast approach to solve systems of stiff 

equations seen in reactive systems. The PSR-LTIM could still be optimized by reducing the time 

the code takes to call the subroutines related to the calculation of the chemical reaction source term 

(consumption or production of chemical species). The computational time could also be reduced by 

using polynomials instead of calculating logarithms and exponentials in the code because the 

computation of the aforementioned functions is computationally expensive. Another component 

that can be optimized is the calculation of the equilibrium composition using CANTERA. The CPU 

time reported here was calculated in Pentium Core Duo Machine operating at 2.4 [GHz]. Current 

equilibrium calculations were performed in the CANTERA version that is linked to MATLAB. 

MATLAB programs run significantly slower than similar versions written in FORTRAN or C++ 

languages. There is a CANTERA version in C++ so it is believed that the CPU time of the 

equilibrium calculations will be reduced if this version is used. 

5.2.4 Thin Shear Layer Reactor 

In the first stage of the present study it was envisioned to further reduce the computational 

time of the CRN by the utilization of a novel reactor which was called Thin Shear Layer Reactor 

(TSLR). It was proposed to use this reactor in the combustor region that cannot be accurately 

represented by PSRs or PFRs because the flow was basically one dimensional but the temperature 

varied perpendicular to the flow direction. This zone is usually located in the flame region (zone A 

Figure 3.2), this zone using CRN is modelled by a series of PSRs. It was intended that instead of 

using several PSRs this zone could be modeled only with one TSLR and the solution was going to 

be obtained using the LTIM. But because the PSRs are the main unit in the CRN it was decided that 

the implementation of the LTIM in the PSR solution (PSR-LTIM) will have a more impact than the 

TSLR implementation. However, the implementation of the TSLR along with the LTIM is subject 

of future work. 
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5.3 One Dimensional Flame LTIM 

The LTIM concept was applied to solve a one dimensional freely propagating flame. The computer 

program has the following characteristics. 

 Energy and species transport equations were solved using finite volume method. 

 The time dimension was transformed to a logarithm domain which allowed the use of 

relatively larger time steps. 

 Time integration was performed using the second order modified Euler method. (i.e. the 

chemical source term was evaluated at n and n + ½). 

 Energy and species transport equation were solved using the operator splitting technique. 

The transport part of the equations (convection + diffusion) was solved first then the 

chemical source term was integrated. 

 Discretization of the transport (convection + diffusion) was performed as follows; quasi-

second order upwind (QSOU) method (Amsden, O'Rouke and Butler 1989) for the 

convection part and 2
nd

 order central differences for diffusion. 

 The new code is flexible and can be used with any chemical reaction mechanism in 

CHEMKIN format; ARM9 was used for the present study. 

The physical properties and chemical source terms were calculated using CHEMKIN software 

subroutines. 

The one dimensional flame program solved the species transport equation in the conservative form. 
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(5.22) 

Where Di,m is the diffusion coefficient of the specie i in the mixture. Di,m is calculated using 

Equation 5.23. 
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The term Di,j is the binary diffusion coefficient of the specie i into the specie j calculated using 

kinetic theory. The operator splitting was done as follows. 
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Where       
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  ). Adding Equations 5.24 and 5.25 yields the 

following expression. 
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Equation 5.26 is equivalent to 5.22. The energy equation used in this one dimensional system has 

the following form. 
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(5.27) 

Where cp,m is the specific heat of the mixture, km thermal conductivity of the mixture, hi enthalpy of 

the specie i. 

Integration of the chemical source terms in Equations 5.26 and 5.27 was performed using the 

LTIM. Finally the velocity is corrected using the continuity equation given by. 
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(5.28) 

Figure 5.6 shows the flowchart of the one dimensional flame LTIM program. 
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Figure 5.6. One Dimensional Flame Program Flowchart. 

Figure 5.6 shows the calculation steps used in the one dimensional program. The program 

starts the solution reading the initial conditions supplied by the user. The transport part of the 

equations is solved first and then the transient source term is integrated using the LTIM. The 

convection and diffusion part are treated implicitly. In order to solve the implicit part the TDMA 

(Tri-Diagonal Matrix Algorithm) method is used. 

5.3.1 One Dimensional Flame LTIM Results at Fixed Temperature. 

In order to verify the correct implementation of the LTIM method the problem was solved 

for a fixed temperature problem. The solution of a methane-air flame (equivalence ratio = 0.8) at 

atmospheric pressure with a constant temperature profile is presented next. The methane-air flame 

chemistry was calculated using ARM9 mechanism. 
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The boundary conditions used in the species transport equation are the following. 

 Dirichlet (or fixed value) boundary condition. At the inlet of the domain (west boundary). 

 Neumann boundary condition, the derivative is set to zero on the exit of the domain (east 

boundary). 

 

Figure 5.7. One Dimensional Flame LTIM Temperature Profile (Fixed). 

The prescribed temperature profile has a similar trend to that seen in the cases where a 

flame is present. The fresh reactants enter from x
*
 = 0 and travel to the right of the domain, then 

there is a sudden temperature increase that represents the flame region and finally the temperature 

remains constant at post-flame region located at the exit of the x
* 

= 1.0 (   
 

    
       5 [cm]). 

Solution of Eq. 5.26 for the nine species present in the ARM9 mechanism is shown next. 
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Figure 5.8. Mass Fraction Profiles at Fixed Temperature, t = 0.1 [s]. 

The initial composition was set to the concentration of the system for an equivalence ratio 

equal to 0.8. Species profiles at t = 0.1 [s] are shown in Figure 5.8. It was found that the species 

profiles did not change after 0.1 [s]. These profiles have the expected shape, due to the temperature 

profile shown in the Figure 5.8. Profiles were obtained using the LTIM for the integration of the 

chemical source term present in the transport equations. The next step was to solve the species and 

energy equations simultaneously. 

5.3.2 One Dimensional Flame LTIM Results at Variable Temperature. 

The LTIM is also applied to a one dimensional freely propagating methane-air flame where 

the chemistry is also modeled using the ARM9 mechanism. The flame prediction is for the 

following conditions, equivalence ratio equal to 0.9, Tin = 300 [K], and P = 1 [atm]. The boundary 

conditions used in the simulations are: 
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 Dirichlet boundary condition. At the inlet of the domain (west boundary) for temperature 

and species. 

 Neumann boundary condition. The derivative for both species and temperature is set to 

zero on the exit of the domain (east boundary). 

 No heat transfer in the domain. Adiabatic conditions. 

Results using the LTIM (Flame-LTIM) approach were compared against the predictions 

obtained with CHEMKIN PREMIX software (Kee, et al. 1985) at steady state conditions. 

 

Figure 5.9. Temperature Profile Prediction. 

Results obtained using the Flame-LTIM program are in good agreement with CHEMKIN 

PREMIX results. The adiabatic flame temperature difference between the two codes is 12 [K]. 

Selected species predictions are shown in Fig. 5.10. Although NO predictions for both codes 
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suggest that the outflow boundary condition on the east boundary will fit better for this problem 

than the zero derivative boundary condition. 

a) b) 

  
c)  

 

 

Figure 5.10. Species Mass Fraction Comparison. 

The flame speed was calculated using the Flame-LTIM code by an iterative method. The 

method simulates the problem using an iterative scheme by probing various possible flame speed 

values. If the velocity proposed is larger than the flame speed the flame profile will move to the 

right, on the other hand if the velocity is smaller the flame will move to the left. 
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Table 5.7. Flame Speed Calculation for an Equivalence Ratio = 0.9, and P = 1 [atm]. 

Inlet Velocity 

[cm/s] 
40 31.9 30.6 30 

Flame 

displacement 
[Δx*] 

2.5x10-2 1.82x10-2 8.5x10-5 -8.9x10-3 

The inlet velocity of 30.6 [cm/s] moves the flame the least for this reason this velocity 

value is accepted as the flame speed of the problem. The flame velocity calculated using 

CHEMKIN PREMIX is 30.14 [cm/s]. 
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 Conclusions Chapter 6:

Several strategies to reduce the computational time for combustion simulations of 

laboratory scaled swirl stabilized burners and ideal reactors were studied. The chemical reactor 

network (CRN) model along with the log-time integration method (LTIM) was applied to different 

combustor set ups with satisfactory results. 

The success of the CRN model relies on accurate flow and temperature predictions from 

the CFD model. It was found that the NETL burner simulations can be simplified by performing 

two dimensional axisymmetric simulations of the reacting flow by specifying the inlet velocity 

profiles obtained from the three dimensional calculations as boundary conditions. However the 

closest match to measurements was obtained when the velocity profiles from experiments were 

used as inlet boundary conditions. The predicted velocity and mass fraction profiles near the dump 

plane were satisfactory but they started to deviate from measurements further downstream of the 

dump plane. This is attributed to the inability of the turbulence model to properly capture the 

velocity and temperature field for this type of flow. In this regard a detailed validation study has 

been conducted to assess the accuracy of the CFD simulations. 

It was noted that the swirl number value does not provide enough information to properly 

characterize the flow field in swirl combustors. The swirl number is a ratio of two integral 

quantities and any properly scaled velocity profile can give the same swirl number value but the 

predicted flow field could be very different. The difference can be appreciated in the 

misrepresentation of the main recirculation zone compared to experiments. It was shown that the 

shape of the tangential profile plays a critical role. 

Numerical simulation of unconfined flames is a challenging problem due to the entrainment 

of the surrounding air. Simulations of the unconfined premixed swirl burner could not capture the 

flame shape reported in the experiments. Several simulations were performed using different 
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velocity profiles and turbulence models without success. The source of this mismatch should be a 

topic of further study. 

CRN simulations for premixed and non-premixed burners were performed using a detailed 

methane-air mechanism with 53 species and 325 reactions. CRN simulations of a premixed burner 

were compared with CFD simulations that used more complete chemical mechanisms with similar 

results. The simulation time needed by the CRN was considerably lower than the CFD simulations 

with a more complete mechanism, CRN took only one fifth of the time of CFD using ARM9 and 

one seventh of the time of CFD using ARM19. The concentration of the major species (mole 

fraction above 1x10
-3

) matched closely for both CRN and CFD simulations (maximum difference 

was 2.8%) for the premixed case but there was a relatively significant difference of the 

concentration of the minor species (e.g. for NO the difference between CRN and CFD using ARM9 

was 25% and for CRN and CFD using ARM19 was 75%). It was expected that the concentration of 

the species must change because the CRN predictions included more chemical species in the 

mechanism and the concentrations have to redistribute because the total mass of the system must be 

conserved.  

CRN simulation of the non-premixed methane-air burner, TECFLAM, closely matched the 

experimental concentration of most species but overpredicted the concentration of NO (the CRN 

predicted an outlet NO concentration of 50 [ppm] whereas a concentration of 20 [ppm] was 

measured in the experiments). This was expected because the CFD simulation overpredicted the 

temperature (the maximum difference was 250 [K]). As it is stated in the literature, NO 

concentration significantly depends on the temperature especially above 1800 [K] where the 

thermal NO pathway becomes dominant. CRN results also showed dependence on the number of 

reactors. The predicted NO concentration was low for the CRN with a few number of reactors 

(nreactors = 26) because the temperature in each reactor is relatively low because the average 
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temperature value is biased towards low temperature reactors. As the number of zones increased the 

NO prediction from CRN converge to a value of 50 [ppm]. 

The computational time of the CRN is a function of the number of reactors used in the 

network but even for large chemical reactor networks the computational time is significantly lower 

than the CFD simulations with more complete chemical mechanisms. 

To further facilitate faster computations, various stiff solvers were considered. The present 

study proposed a novel integration method (LTIM) which can be applied to; closed transient 

reactors, perfectly stirred reactors, and one dimensional flames. The LTIM can be used as an option 

of the commercial software CHEMKIN.  

The LTIM was successfully applied to the solution of stiff systems. The method proved to 

be as accurate as high order integration schemes (maximum difference was 0.6%) while at the same 

time being faster (LTIM CPU is one fifth of the CPU needed by the R.K. 5
th
 order method). 

The PSR-LTIM approach with variable time step and using equilibrium concentrations as 

initial condition was shown to be as accurate as the commercial PSR-CHEMKIN computer 

program. The computational time required by the PSR-LTIM program was found to be close to the 

time required by the PSR-CHEMKIN program. The CPU time needed by the PSR-LTIM was 5.3 

[s] and for the PSR-CHEMKIN was 3 [s]. 

Finally, a one dimensional flame code was successfully solved using the LTIM for a 

premixed methane-air flame. Results of the Flame-LTIM matched the predicted values using 

CHEMKIN-PREMIX program. The temperature difference at the outlet was 0.56% and the 

difference in the flame velocity was 1.5%. 
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6.1 Future Work 

One of the outstanding issues in combustion simulation is indeed the accurate prediction of 

the flow and temperature fields. RANS turbulence models are limited in this regard. Large Eddy 

Simulations (LES) can be performed in order to improve the prediction of the temperature and flow 

fields in the combustor. 

CRN simulation can also be improved by modifying the reaction rates in order to include 

the effect of turbulent mixing. Current simulations were performed using only the finite rate 

approach but mixing can be incorporated using the same logic employed in the derivation of the 

Eddy-Dissipation concept (EDC). 

The LTIM can be improved by using a totally implicit or semi-implicit scheme. In most of 

applications the steady state solution is what is being sought. Implicit schemes are known to allow 

the use of large time steps than explicit schemes but they require a special treatment of the reaction 

rate expressions. This is a challenging problem due the complexity of the rate expressions for 

detailed reaction mechanisms. 
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Appendix 1: Chemical Reaction Mechanisms 

One step global mechanism 

The rate data for the one step global mechanism was obtained from a previously reported study by 

Westbrook and Dryer (Westbrook and Dryer 1981). The chemical reaction is defined in Equation 

A.1.1 

                 A.1.1 

The reaction rate of the one step global mechanism is defined as it is shown in Equation A.1.2 

        ( 
    
  
) [   ]

 [  ]
  A.1.2 

Where A = 2.119x10
11

, n = 0, Eact = 2.027x10
5
, a = 0.2, and b = 1.3. The units are given in [kmol-

m-s-kJ-K], and the reaction rate, k, units are [kmol/m
3
-s]. 

Two step global mechanism 

In the same fashion as the one step global mechanism the rate data was obtained from Westbrook 

(1981). The chemical reactions are given in Equations A.1.3 and A.1.4. 

    
 

 
           

A.1.3 

   
 

 
  

   
↔      

A.1.4 
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Where the f and r stand for forward and reverse, respectively. The reaction rates are defined as 

follows: 

         
    ( 

    
  
) [   ]

 [  ]
  A.1.5 

           
    ( 

    
  
) [  ]

 [   ]
 [  ]  A.1.6 

           
    ( 

    
  
) [   ]

  A.1.7 

Where for (A.1.5) A = 5.012x10
11

, n = 0, Eact = 2.0x10
5
, a = 0.7, and b = 0.8, (A.1.6) A = 

2.239x10
12

, n = 0, Eact = 1.7x10
5
, a = 0.25, b = 0.5, and c = 1.0, (A.1.7) A = 5x10

8
, n = 0, Eact = 

1.7x10
5
, a = 1.0. The units are given in [kmol-m-s-kJ-K], and the reaction rate, k, units are 

[kmol/m
3
-s]. 

ARM9 mechanism 

The five-step global mechanism with nine chemical species (ARM9) used in the present study was 

reported by Mallampalli et al. (Mallampalli, Chen and Fletcher 1998). The five reaction steps are 

shown in Equations A.1.8 to A.1.12. 

           ↔          A.1.8 

       ↔       A.1.9 
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       ↔         A.1.10 

       ↔         A.1.11 

            ↔              A.1.12 

The kinetic data file in CHEMKIN format of the ARM9 mechanism can be accessed in the 

following website; www.et.byu.edu/~tom/Papers/Hemant-WSS96/WSS.html. The website was last 

visited on May 30, 2014. 

ARM19 mechanism 

The fifteen-step global mechanism with 19 chemical species (ARM19) used in the present study 

was reported by Sung et al. (Sung, Law and Chen 2001). The fifteen reaction steps are shown in 

Equations A.1.13 to A.1.27. 

       ↔         A.1.13 

   ↔    A.1.14 

      ↔       A.1.15 

        ↔        A.1.16 
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       ↔         A.1.17 

      ↔        A.1.18 

        ↔        A.1.19 

     ↔      A.1.20 

         ↔        A.1.21 

        ↔           A.1.22 

     ↔         A.1.23 

     ↔     A.1.24 

    ↔        A.1.25 

         ↔          A.1.26 

             ↔        A.1.27 

The kinetics of the ARM19 mechanism are reported in (Sung, Law and Chen 2001). 
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Appendix 2: Fifth Order Runge-Kutta Integration Method 

The fifth order Runge-Kutta method was originally developed by Cash (Cash and Karp 1990), the 

method was developed for the solution of ordinary differential equations (ODE). The R.K. 5
th
 order 

method is an explicit integration method hence is not necessary to calculate the Jacobian matrix in 

order to solve the system of equations at every integration step. Because of the explicitness of the 

method is necessary to use small time steps in order to maintain the stability of the solution.  

In order to describe the method the following ODE is used. 

   
  

  
  (   ) A.2.1 

Equation A.2.1 is to be integrated between tn and tn+1 where the time step is h. In order to perform 

the integration is necessary to calculate the slope of Eq. A.2.1 six times as it is shown next. 

    (     ) A.2.2a 

    (            [     ]) A.2.2b 

    (            [            ]) A.2.2c 

    (            [                   ]) A.2.2d 

    (            [                           ]) A.2.2e 
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    (            [                                   ]) A.2.2f 

         [                                  ] A.2.2g 

Where yn+1 is the predicted value of the function at the new time level. The values of the a, b, and c 

constants are given next. 
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Appendix 3: k-epsilon RNG and RSM Turbulence Model 

Comparison 

It was of interest to compare the CFD simulation results using the k-epsilon RNG with the RSM 

turbulence model. A simulation of the unconfined premixed burner (described in Section 3.4) was 

performed using the RSM turbulence model. The numerical prediction was calculated using the 

inlet velocity profiles from experiments (Gupta and Khalil 2013), Figure 3.31 c). The details of the 

simulations are listed in Table A.3.1. 

Table A.3.1. Effect of the Turbulence Model - Simulation Details. 
 Reacting Flow Simulation 

Computational Domain Two Dimensional Axisymmetric 

Time Formulation Steady State 

Pressure-Velocity Coupling SIMPLE 

Pressure Discretization Scheme PRESTO 

Convective Term Discretization Scheme 1st Order Upwind 

Turbulence Model a) k-epsilon RNG 

b) RSM 

Chemical Mechanism a) One Step Global Mechanism 

Turbulence Chemistry Interaction Model Eddy-Dissipation Concept (EDC) 

Chemical Species Integration ISAT 

Numerical simulations had the same operating operation conditions that were listed in Section 3.4 

and the geometry used was shown in Figure 3.28 a) along with the boundary conditions listed in 

Figure 3.29 a). 
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a) b) 

  
Figure A.3.1. Temperature Profile Comparison, a) k-epsilon RNG, b) RSM Turbulence Model. 

Figure A.3.1 shows the temperature profile comparison between the k-epsilon RNG and the RSM 

turbulence model. Predicted results using RSM turbulence model overpredicted the temperature 

near the axis (r/Ddump = 0) by a ∆      2 [ ] compared to a ∆     5  [ ] calculated from the k-

epsilon RNG for the first station downstream the dumplane (z = 7.62 [mm]). But the RSM 

prediction was better for the station located at z = 15.6 [mm] ∆    12 [ ] compared to ∆       [ ] 

from the k-epsilon RNG. In the same fashion the difference in the third station z = 22.9 [mm] was 

close to the experiments when the RSM model was used ∆     5 [ ] compared to ∆     2 [ ]. 

However the temperature difference from the RSM increases as the position moves in the radial 

direction (r/Ddump =1). The predicted species concentrations showed no significant improvement 

when compared to the k-epsilon RNG turbulence model as it can be seen in Figures A.3.2 and 

A.3.3. 
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a) b) 

  
Figure A.3.2. % Vol Carbon Dioxide Profile Comparison, a) k-epsilon RNG, b) RSM Turbulence 
Model. 

a) b) 

  
Figure A.3.3. % Vol Oxygen Profile Comparison, a) k-epsilon RNG, b) RSM Turbulence Model. 

The predicted species profiles shown in Figures A.3.2 and A.3.3 did not show a significant 

improvement when the RSM turbulence model was employed. The prediction using the k-epsilon 

RNG turbulence behavior showed a better agreement with the experiments at locations near to 

r/Ddump = 1.  
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