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Abstract  

Synergistic Modeling of in-vitro and in-vivo data via  

Stochastic Kriging with Qualitative Factors (SKQ) 

 

Behnam Dehghan 

 

The objective of this study is to model in-vivo propranolol plasma concentration 

after administrating oral propranolol extended-release (ER) tablets. In-vivo data are 

typically expensive and scarce. To save time and cost needed to achieve high-quality in-

vivo profile, this work utilizes both in-vitro and in-vivo data.  

The ensemble of in-vitro and in-vivo data is modeled by stochastic kriging with 

qualitative factors (SKQ). It treats in-vivo and in-vitro as the two distinct levels of a 

qualitative factor. By synergistically modeling both types of data, SKQ is able to provide 

fitted in-vivo profiles whose quality is much higher than those obtained from modeling 

in-vivo data alone.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The development of a new drug takes a lot of cost and time. The expenses can be 

dramatically reduced if the in-vivo performance of drug formulation can be predicted by 

in-vitro behavior [35]. In-vitro, which means “within the glass” in Latin, refers to the 

method of running an experiment on cells or biological molecules outside of a living 

organism in a controlled environment such as cells in an artificial culture medium. On the 

other hand, in-vivo, which means “within the living” in Latin, refers to performing an 

experiment on a whole, living organism such as animal studies and clinical trials [37]. 

1.2  IVIVC 

An in-vitro in-vivo correlation (IVIVC) has been defined by the U.S. Food and Drug 

Administration (FDA) as “a predictive mathematical model describing the relationship 

between an in vitro property of an extended release dosage form (usually the rate or 

extent of drug dissolution or release) and a relevant in vivo response, e.g., plasma drug 

concentration or amount of drug absorbed” [1]. The United States Pharmacopeia (USP) 

refers to the term in vitro-in vivo correlation as “the establishment of a rational 

relationship between a biological property, or a parameter derived from a biological 

property produced by a dosage form, and a physicochemical property or characteristic of 

the same dosage form” [2]. In-vitro in-vivo correlation (IVIVC) has a significant effect 

on pharmaceutical development of dosage forms due to its application as a surrogate for 

in-vivo bioavailability and supporting biowaivers. Since a bioequivalence study is needed 

to validate a new formulation, which takes a lot of time and money, and as asserted 

before, time and money are always significant issues. Therefore, in pharmaceutical 

studies, the application of IVIVC is very important [3]. 

In order to develop an IVIVC, the observed fraction of the drug absorbed (in-vivo) and 

that of the drug dissolved (in-vitro) are needed. The observed fraction of the drug 
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absorbed can be obtained using the numerical deconvolution method which then will be 

correlated with in-vitro dissolution data. Performing the deconvolution needs a reference 

product. The reference product can be an immediate release product or an intravenous 

solution [1], which in Cheng’s et al.[3] study is the commercial immediate-release (IR) 

tablets (40 mg, AstraZeneca, London, UK). The drug input rate of the dosage form, such 

as the fraction dose absorbed for oral dosage forms, can be obtained as the result of the 

deconvolution.  

There are four categories of in-vitro in-vivo correlations including: level A, level B, level 

C, and multiple level C [1]. To develop a level A IVIVC, first the in-vivo plasma 

concentration data are deconvoluted. Then, the result, the fraction of drug absorbed 

(deconvoluted in-vivo), with the dissolution data, the fraction of drug dissolved (in-vitro), 

are used to develop the IVIVC model. The model implies a linear correlation (i.e. a point-

to-point relationship) between the fractions of the drug absorbed (deconvoluted in-vivo) 

and that of the drug dissolved (in-vitro). Based on the obtained IVIVC model, the 

predicted fraction of the drug absorbed (deconvoluted in-vivo) is calculated from the 

observed fraction of the drug dissolved (in-vitro). The predicted fraction of the drug 

absorbed (deconvoluted in-vivo) is then convoluted to the predicted plasma 

concentrations (in-vivo) [3]. 

According to Cheng et al.[3], the IVIVC refers to the relationship between in-vitro 

dissolution profiles of propranolol hydrochloride from different release rates formulations 

extended-release tablet ER-F (fast rate of release) and ER-S (slow rate of release) and in-

vivo cumulative percentage absorption rate of the same tablets calculated by using the 

numerical deconvolution approach. One issue about IVIVCs is that they are usually 

developed in the fasted state [1], like the in-vivo absorption studies performed in the 

study by Cheng et al.[3] study. In that study, all of the six male Beagle dogs were fasted 

for twelve hours before the experiment, and they just had access to unlimited water. In 

some studies, performing the experiment in the fasted state was not possible, thus they try 

a fed state [1]. Another issue is that in order to obtain the dissolution characteristics of the 

ER dosage form, the same method should be used for all formulations. In Cheng et al.[3] 

study, the release characteristic of all the propranolol extended-release tablets were 
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determined using USP apparatus I (basket) with a rotation speed of 100 rpm and 

maintained at 37°C [3]. 

1.3 Propranolol 

Propranolol is a very effective and non-selective beta-adrenergic medicine which treats 

high blood pressure, angina (chest pain), irregular heartbeat, migraine headaches, and 

tremors. Propranolol is also used to improve survival after a heart attack (i.e. it lowers the 

risk of repeated heart attacks). It works by lowering the blood pressure by changing the 

transmission of nerve impulses from the brain to the certain part of the body and relaxes 

blood vessels, which decreases heart rate and pulse. Propranolol is categorized as a beta 

blockers medication. Beta blockers, which are also known as beta-adrenergic blocking 

agents, have a variety of usages like reducing blood pressure, and treating glaucoma and 

migraines. Beta blockers block the effects of the hormone epinephrine (adrenaline) that 

slows the heartbeat, reduces blood pressure, and improves blood flow [31]. 

Propranolol is absorbed almost completely from the gastrointestinal tract after oral 

administration [32], and because of hepatic first-pass effect, its bioavailability is 

extremely limited, about thirty percent. The hepatic first-pass effect is the drug absorption 

by the digestive system and entering the hepatic portal system after oral administration, 

and then goes through the portal vein into the liver. The metabolization of the liver causes 

only a portion of the drug to go through the circulation system. In other words, the 

bioavailability of the drug is reduced by liver [31]. To treat high blood pressure, the usual 

dose of propranolol is 120-240 mg divided in 2-3 doses per day; hence, there is a need to 

study the once-daily extended-release dosage formulation. Many studies had been 

reported with respect to controlled-release formulations, while none of them had focused 

on propranolol matrix ER formulations until Cheng et al. [3] developed an IVIVC model 

for propranolol matrix ER dosage formulations. 
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1.4 Objective 

The objective of this thesis is to apply stochastic kriging with qualitative factors (SKQ) 

proposed by Wang et al. [36] to model in-vivo and in-vitro data together for improved 

fitting of in-vivo behavior. The data used in this work are taken from Cheng et al. [3]. 

SKQ is to utilize both in-vivo data, which are typically expensive and rare, and in-vitro 

data, which are usually less expensive and plentiful. By modeling both in-vivo and in-

vitro data together, SKQ-fitted in-vivo profiles are of higher quality than those estimated 

from in-vivo data alone. Hence, SKQ renders the potential to save money and cost in in-

vivo experiments. 

Compared to IVIVC modeling pharmacology, SKQ has certain advantages. As 

mentioned before, in IVIVC modeling, the numerical deconvolution method is required 

as the first step. Numerical convolution method is also required as the last step of IVIVC 

modeling. Each of these steps introduces some additional errors to the model. Whereas, 

SKQ is free of these complicated convolution/deconvolution steps, and directly models 

in-vitro and in-vivo data.  

The reminder of this thesis is organized as follows. Chapter 2 reviews the relevant 

literature. Chapter 3 describes the SKQ methodology. In chapter 4, simulation-based case 

studies are performed and illustrated the advantages of SKQ.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Previous IVIVC Studies 

About half a century ago Levy et al. (1965) [4], while working on aspirin tablets found 

out a substantial correlation between in-vitro dissolution and its in-vivo bioavailability. 

They developed a single in-vitro dissolution rate test and figured out its correlation with 

the gastrointestinal absorption of aspirin from three different types of dosage forms. 

Meanwhile, Wood [5] realized the same fact of high dependency between the drug 

absorption and dissolution rate. Wagner et al. [6] in 1973 asserted that there is a strong 

relationship between in-vitro and in-vivo data in an eight-subject two-way crossover 

study of different digoxin dosage forms. Lindenbaum et al. [7], and Johnson et al. [8] in 

that year have done the same studies on relationships between in-vitro and in-vivo data of 

different digoxin dosage forms. After these discoveries, many studies were done about in-

vitro in-vivo correlation (IVIVC) for different drugs and dosage forms. The studies were 

not limited to animals, such as rats and dogs, but they also included humans in their 

experiments [9]. 

The differences in quality of various correlations led to the discovery of different levels 

of correlation between in-vitro and in-vivo patterns. In level A IVIVC, there is a strong 

correlation in many researches between dissolution data and drug absorption in the body. 

The development and internally validation of an in-vitro in-vivo correlation for a 

hydrophilic matrix extended release metoprolol tablet was done by Eddington ND et al. 

[10]. A relationship discovered by Emami et al. [11] between in-vivo serum 

concentration profiles of the adopted sustained-release tablet of LC with a commercial 

one with the same characteristics in healthy subjects. Royce et al. [12] employed three 

distinct controlled release formulation principles in formulating 6-N-Cyclohexyl-2-O-

methyladenosine to evaluate in-vitro dissolution, in-vivo absorption and their correlation. 

On the other hand, many researches demonstrate less strong correlation between 

dissolution and absorption of a drug than level A, which are classified in Level B. El-
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Yazigi et al. [13] determined the dissolution rates of theophylline from six different 

commercially available products using the USP and rotating-filter dissolution apparatus 

to investigate the correlation between in-vitro parameters describing the dissolution 

characteristics of theophylline dosage forms and the in-vivo parameters. In another study, 

Dominguez et al. [14] evaluated the bioequivalence of three paracetamol tablets in twelve 

healthy volunteers using the American innovator product as the reference and they 

investigated the correlation between in-vitro mean dissolution time from dissolution 

profiles and in-vivo mean residence time from urinary excretion data. 

The other category of a weaker correlation is Level C; such as the study of correlation 

between dissolution profiles of eleven different brands of phenytoin sodium capsules and 

observed differences in in-vivo parameters by Shah et al. [15]. In a different study, Al-

Behaisi et al. [16] established a linear relationship between logarithmic in-vivo blood 

sampling time and in-vitro dissolution time of deramciclane containing film-coated 

tablets assigned to equal cumulative area under the curve ratios. 

Beside these three categories (levels A, B, and C), some IVIVCs belong to Multiple 

Level C, which is a powerful correlation and can be as good as Level A. Some studies 

that belong to this category are mentioned here. Volpato et al. [17] evaluated whether the 

new condition established by the US Pharmacopeia for the dissolution test would lead to 

a reasonable correlation between the bioavailability of the two levothyroxine 

formulations, and this study with levothyroxine tablets was performed on humans for the 

first time. Lin et al. [18] found the correlation between the in-vivo bioavailability of two 

different matrix-type aminophylline slow-release tablets in eight healthy male Chinese 

volunteers and in-vitro dissolution results by moment analysis. Despite the fact that many 

Level A correlation researches have been done, most of them do not provide appropriate 

predictability of the correlation assessment. A few numbers of reports include assessing 

and validation such as the study of correlation between in-vitro dissolution rate done in 

distilled water with the USP apparatus II and in-vivo after a single-dose administration in 

the morning by Humbert et al. [19] or the development of an in-vitro in-vivo correlation 

for two busprione hydrochloride extended-release formulations by Takka et al. [20]. In 

that study, the validation of IVIVC was determined using prediction errors for Cmax and 
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AUC. Although the former was -0.16%, the latter was 16.1%, which is not acceptable 

since, based on FDA guidance for Industry Extended Release Oral Dosage Forms [1], an 

average percent prediction error of less than 10% for bioavailability parameters is 

mandatory for all IVIVC studies to prove the reliability of the correlation. 

IVIVC can also be used for application of a medicine or drug through the skin 

(transdermal delivery system) to correlate in-vitro skin permeation data to the in-vivo 

drug patterns. Qi et al. [21] utilize the convoluted in-vitro skin permeation data of a rabbit 

to predict the systemic drug concentration of 2,3,5,6-tetramethylpyrazine. The predicted 

concentrations were correlated well with the observed drug absorption profile. This result 

proved satisfactory in that the skin permeation tests predict the in-vivo drug profiles. 

Fundamentals of the development of study design, lack of the appropriate dissolution 

design, and the difficulty in the measurement of the drug absorption can be different 

reasons which prohibit finding correlation between in-vivo parameters and in-vitro drug 

release data [9]. Siewert [22] classified the role of in-vitro dissolution tests in 

constructing an IVIVC at three different levels: selection of a drug product, definition of 

specific in-vitro test system, and provision of comprehensive data and derived parameters 

with respect to statistical aspects. Prasad et al. [23] show the importance of media 

selection in construction of IVIVC for quinidine gluconate. They demonstrate the 

dissolution rates of two different commercial formulations of controlled release 324 mg 

quinidine gluconate tablets were considerably diverse in water, phosphate buffer pH 5.4, 

and acetate buffer pH 5.4. 

2.2 Kriging Models 

Kriging includes a variety of Gaussian process-based modeling methods. Qian et al. [27] 

developed a general framework for deterministic kriging with qualitative factors, and an 

iterative estimation procedure for the model is developed. In 2009, a hierarchical 

Bayesian Gaussian process model was introduced by Han et al. [29]. The model 

considers both qualitative and quantitative factors assuming that the outputs relating to 

different levels of a qualitative factor are obtained from Gaussian stochastic processes 

with similar correlation structures. Zhou et al. [30] keep the flexibility of the unrestrictive 
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correlation structure for qualitative factors introduced by Qian et al. [27] while trying to 

simplify their complex estimation process using the hypersphere parameterization to 

model the correlation of the qualitative factors. This method deals with standard 

nonlinear optimization problems with box constraints instead of optimization problems 

with positive definite constraints. All these methods are for deterministic data, and Wang 

et al. [36] proposed SKQ, which models stochastic data with both qualitative and 

quantitative factors. SKQ intends to pool information from all sources of data to obtain 

the models of the highest quality.  
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CHAPTER 3 

METHODOLOGY 

3.1 Review of Stochastic Kriging with Qualitative Factors (SKQ) 

SKQ is an extension of stochastic kriging (SK). SKQ models the variability of 

quantitative factors like SK does, but it also considers the variability caused by 

qualitative factors.  

In the following, in-vitro and in-vivo are considered as two different levels of a 

qualitative factor. Therefore, the experiment is considered as an experiment with one 

quantitative factor x which is time, and one qualitative factor z with two levels. At design 

points w, we have 𝐰 = (𝑥, 𝑧)T with 𝑥 ϵ [0,24] hour, and 𝑧 ϵ {𝑐1(in-vitro), 𝑐2(in-vivo)}. 

The response at 𝐰 = (𝑥, 𝑧)T on the nth replication can be modeled as 

𝑦𝒏(𝐰) = Y(𝐰) + 𝜀𝑛(𝐰) = 𝐟(𝐰)T𝛽 + M(𝐰) + 𝜀𝑛(𝐰) 

where 𝐟(𝐰) is a vector of known functions and 𝛽 is a vector of unknown parameters that 

need to be estimated. The term M(𝐰) represents a realization of a mean zero stationary 

Gaussian random field. The M(𝐰) values related to different levels of the qualitative 

factor are drawn from Gaussian random processes with similar spatial correlation 

structures and magnitudes of variation.  𝜀𝑛(𝐰)’s are the i.i.d. mean zero errors for each 

replication at design point 𝐰 [28]. Ankenman et al. [33] refer to M(𝐰) and 𝜀𝑛(𝐰) as the 

extrinsic and intrinsic uncertainties at design point 𝐰, respectively.  

To deal with incorporating the qualitative factors in stochastic kriging, it is necessary to 

construct a valid spatial correlation functions for M. Wang et al. [36] proposed the 

following spatial correlation function for M, 

Corr[M(𝐰𝑎), M(𝐰𝑏)] = [∏ 𝜏𝑗,𝑧𝑎𝑗,𝑧𝑏𝑗

𝐽

𝑗=1

] . 𝐾(𝐱𝑎, 𝐱𝑏) 
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where a and b are two different design points, and it is assumed the case has J qualitative 

factors. ∏ 𝜏𝑗,𝑧𝑎𝑗,𝑧𝑏𝑗

𝐽
𝑗=1  corresponding to qualitative factors and the other part, 𝐾(𝐱𝑎, 𝐱𝑏), 

dealing with quantitative decision variables. Since in this research, the experiment 

consists of one qualitative factor, the correlation function is reduced to: 

Corr[M(𝐰𝑎), M(𝐰𝑏)] = 𝜏𝑧𝑎,𝑧𝑏
. 𝐾(𝐱𝑎, 𝐱𝑏) 

Despite the fact that a variety of different spatial correlation functions for 𝐾(𝐱𝑎, 𝐱𝑏) exist 

in the literature, the exponential correlation function is one of appropriate choices 

𝐾(𝐱𝑎, 𝐱𝑏) = exp {∑ −𝜃𝑖|𝑥𝑎𝑖 − 𝑥𝑏𝑖|
𝑝

𝐼

𝑖=1

} 

where 𝜃𝑖 corresponds to roughness of the response surface and they are not necessarily 

identical for different coordinates i=1,2,…,I, and such as the previous formula, a and b 

are two different design points. The parameter p is in (0,2]. If p is equal to 2, the above 

correlation function would be the popular Gaussian correlation function and the sample 

paths of a spatial process M are infinitely differentiable. Since in the experiment of this 

research there is only one quantitative factor, the spatial correlation functions for 

𝐾(x𝑎, x𝑏) is reduced to 

𝐾(x𝑎, x𝑏) = exp{−𝜃|𝑥𝑎 − 𝑥𝑏|𝑝} 

The other part of spatial correlation function for M, which is 𝜏𝑧𝑎,𝑧𝑏
, deals with spatial 

correlation of qualitative factor. This parameter measure the similarity at any two design 

points 𝐰𝑎 and 𝐰𝑏 that differs only on the values of qualitative factor. There are many 

different correlation functions for the qualitative factors available in the literature that can 

be used.  One of them is isotropic (or exchangeable) correlation functions (EC) that if it is 

applied in our experiment would be 

𝜏𝑧𝑎,𝑧𝑏
= exp{−∅ 𝐼|𝑧𝑎 ≠ 𝑧𝑏|} 

where     𝐼|𝑧𝑎 ≠ 𝑧𝑏| = {
1;             𝑧𝑎 ≠ 𝑧𝑏 ,
0;         otherwise.
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The isotropic correlation function assumes that different levels of qualitative factor are of 

isotropic nature; it means, 𝜏𝑧𝑎,𝑧𝑏
 is a constant number, exp{−∅}, for all 𝑧𝑎 ≠ 𝑧𝑏. 

Multiplicative correlation function (MC) is another correlation function for qualitative 

factors that is similar to isotropic correlation functions except that MC assigns different 

correlation values to different pairs of qualitative factor levels, as one can recognize the 

difference in the formula which applied to our experiment as follows 

𝜏𝑧𝑎,𝑧𝑏
= exp{−(∅𝑎 + ∅𝑏) 𝐼|𝑧𝑎 ≠ 𝑧𝑏|} 

In our case, because the qualitative factor has two levels, it is automatically of an 

exchangeable nature. 

Let Σ𝜀 be the 𝑘 × 𝑘 intrinsic variance-covariance matrix for the vector of averaged errors 

represented by 𝜀̅ = (𝜀(̅𝑥1), 𝜀(̅𝑥2), … , 𝜀(̅𝑥𝑘))T, where 𝜀(̅𝑥𝑖) = ni
−1 ∑ 𝜀𝑗(𝑥𝑖)

𝑛𝑖
𝑗=1  includes ni 

replications at 𝑥𝑖, 𝑖 = 1,2, … , k, assuming there are k design points. Σ𝜀 can be specified by 

Σ𝜀 = diag{
𝜎1

2

𝑛1
,
𝜎2

2

𝑛2
, … ,

𝜎𝑘
2

𝑛𝑘
} 

where 𝜎𝑖
2 = Var[𝜀𝑗(𝑥𝑖)] is the intrinsic variance at design point xi. In order to estimate 

the intrinsic-covariance matrix Σ𝜀, we can use the sample covariance matrix Σ̂𝜀 which its 

diagonal entries are 
1

𝑛𝑖(𝑛𝑖−1)
∑ (𝑦𝑗(x𝑖) − 𝑦̅(x𝑖))2 

𝑛𝑖
𝑗=1  for 𝑖 = 1,2, … , k . This estimation is 

used in the likelihood function L as follows 

ln 𝐿(𝛿2, 𝜃, Φ) = −
1

2
(𝑘 ln(2π) + ln(|Σ̂|) + 𝑦̃TΣ̂−1𝑦̃) 

where |Σ̂| is the determinant of Σ̂ which is equal to ΣM(𝛿2, 𝜃, Φ) + Σ̂ε, and 𝑦̃ = 𝑦̅ −

𝐅𝛽̂(𝛿2, 𝜃, Φ). Matlab’s non-linear optimization function, fmincon, takes care of 

maximizing the log-likelihood function by minimizing − ln 𝐿. Subsequently, MLEs for 

𝛿2, 𝜃, Φ and 𝛽 can be obtained given 𝛿2, 𝜃, Φ and Σ̂𝜀, by maximizing likelihood function 

L(𝛿2, 𝜃, Φ), and the value of 𝛽̂(𝛿2, 𝜃, Φ) would be 

𝛽̂(𝛿2, 𝜃, Φ) = (𝐅TΣ̂−1𝐅)
−1

𝐅TΣ̂−1y̅ 
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where 𝐟(𝐰1)T, 𝐟(𝐰2)T, … , 𝐟(𝐰k)T are the rows of 𝑘 × 𝑝 matrix 𝐅, respectively. In order 

to perform prediction, Chen et al. [34] proposed the MSE-optimal predictor provided by 

stochastic kriging as follows 

Ŷ(𝐰0) = 𝐟(𝐰0)T𝛃̂ + ΣM(𝐰0, . )TΣ−1(y̅ − 𝐅𝛽̂) 

Following the corresponding mean squared error of Ŷ(𝐰0) is 

MSE (Ŷ(𝐰0)) = ΣM(𝐰0, 𝐰0) − ΣM(𝐰0, . )TΣ−1ΣM(𝐰0, . ) + 𝜂T(𝐅TΣ−1𝐅)𝜂 

where 𝜂 = 𝐟(𝐰0) − 𝐅TΣ−1ΣM(𝐰0, . ). 

3.2 Simulation Model 

The simulation model used to generate simulation data mimicking real experimental data 

from the study by Cheng et al. [3], is described as follows. The true expected responses 

for the two subpopulations, in-vitro and in-vivo, respectively represented as 𝑌(𝑥, 𝑐1), 

𝑌(𝑥, 𝑐2):  

𝑌(𝑥, 𝑐1) = 3.5 × (52.26𝑒0.01984𝑥 − 49.24𝑒−0.1889𝑥) − 10.35 

𝑌(𝑥, 𝑐2) = 37182075.0989764 × 𝑒−0.22903896𝑥 − 37182073.2671591𝑒−0.2294144𝑥 − 0.0018 

Figure 3 shows the true time-response plots of propranolol plasma concentration versus 

time (in-vivo), and propranolol absorption versus time (in-vitro) together. 

 

Figure 1. True time-response plots 
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Based on Wang et al. [36], the true variance models utilized in the simulation model is 

described as follows 

𝑉𝑎𝑟[𝜀(𝑥, 𝑐1)] = (0.37 × exp(𝑌(𝑥, 𝑐1) × 0.0068) − 0.37)2;  in-vitro (q=1) 

𝑉𝑎𝑟[𝜀(𝑥, 𝑐2)] = (0.86 × 𝑌(𝑥, 𝑐2)0.41)2;     in-vivo (q=2) 

For a subpopulation 𝑐𝑞(𝑞 = 1,2) and at time 𝑥0, a random response 𝑦0 is simulated as 

𝑦 = 𝑌(𝑥, 𝑐𝑞) + √𝑉𝑎𝑟[𝜀(𝑥, 𝑐𝑞)] × 𝜀 ;  𝑞 = 1,2 

where ε is a random error provided by a standard normal random generator. The true 

standard deviations used in the simulation model are plotted in Figure 4. 

 

Figure 2. True standard deviation used in the simulation model 

  

0 5 10 15 20
0

1

2

3

4

5

6

7

Time (h)

P
la

s
m

a
 c

o
n
c
e
n
tr

a
tio

n
 (

n
g
/m

L
)

 

 

in-vitro

in-vivo



14 

CHAPTER 4 

EMPIRICL RESULTS 

In this thesis, two different cases are considered: deterministic and stochastic. In the 

former case, deterministic kriging is fitted to the expected values without considering any 

random errors. Deterministic kriging (DK) and deterministic kriging with qualitative 

factors (DKQ) are the two methods used in this section. In the latter case, stochastic, 6 

replications for in-vitro data and 6 replications for in-vivo data are considered. Stochastic 

kriging (SK) and stochastic kriging with qualitative factors (SKQ) are the methods taken 

advantage of in the latter case. 

4.1 Deterministic Case 

It should be noted that in the deterministic approach the random error for the response 

has not been taken into account. As a result, if the same input is used in the model, the 

same response will be generated from the model.  

For the deterministic case, the true expected responses for each of the two categories are 

obtained at each of the following equally spaced times 

X (in-vitro) = [ 0 , 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 ] hours 

X (in-vivo) = [ 0 , 4 , 8 , 12 , 16 , 20 , 24 ] hours 

If c1 represents in-vitro and c2 represents in-vivo, the random response y is simulated as 

y = Y(x, cq);                  q = 1,2 

where Y(x, cq), described in section 3.2, is the true expected value for subpopulation q at 

the abovementioned times. 

Table 1. In-vitro expected values 

in-vitro 
Time(h) 0 3 6 9 12 15 18 21 24 

Response(ng/mL) 0 85.77 139.98 176.62 203.65 225.61 245.10 263.62 282.04 
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Table 2. In-vivo expected values 

in-vivo 
Time(h) 0 4 8 12 16 20 24 

Response(ng/mL) 0 146.09 116.23 68.96 35.91 17.04 7.22 

 

In-vitro and in-vivo expected values mimicking the real data from Cheng et al. [3] are 

presented in Table 1 and 2, respectively. Figure 5 shows the result of the DK 

implementation. In this figure, deterministic kriging is applied to the deterministic 

(without considering any random error) in-vivo and in-vitro data, separately. 

 
Figure 3. Individual deterministic kriging on the data 

Deterministic kriging with qualitative factors (DKQ) is applied to get a better fit. Figure 6 

shows the plot of the DKQ implementation. 
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Figure 4. Deterministic kriging with qualitative factors on the data 

In order to compare the result of in-vivo DK and DKQ, both of them are plotted in Figure 

7 beside the in-vivo true response. As can be seen in the figure, the in-vivo DKQ plot is 

closer to the true response plot than the DK one. 

 
Figure 5. The result of in-vivo DK and DKQ in compare to the in-vivo true response 

Besides comparing the result graphically in Figure 7, the estimated root mean squared 

error can be used. It also helps to evaluate the accuracy of point estimate. 
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𝐸𝑅𝑀𝑆𝐸(𝐶𝑐𝑞
) = √

1

# [𝐶𝑐𝑞
]

∑ (𝑌̂(𝒘) − 𝑌(𝒘))2

𝒘∈𝐶𝑐𝑞

 

where # [𝐶𝑐𝑞
] is the number of check points used. ERMSE measures the average deviation 

of predicted response from the true response. 

To calculate ERMSE for in-vivo deterministic case, the total time range (from 0 to 24 

hours) is divided into equally spaced, 0.2-hour, intervals. Therefore, a total number of 

121 check points used to calculate the ERMSE, and consequently to evaluate the 

performances of DK and DKQ in predicting in-vivo response. 

ERMSEs are calculated for both “deterministic kriging” and “deterministic kriging with 

qualitative factors” to compare the methods. ERMSE for DK is equal to 13.41, and the 

value for DKQ is 4.73. The comparison of these two numbers indicates that the fitted 

DKQ dominates DK in terms of predicting in-vivo response surface since SKQ has less 

deviation from the true response than SK. 

4.2 Stochastic Case 

In the real world, the availability of in-vivo data is scarce due to the expense and risks 

associated with data collection. On the other hand, in-vitro data, which attained much 

easier and cheaper, can help the fitting to get closer to the true responses. 

In this thesis, the in-vitro data is the dissolution amount of propranolol hydrochloride 

extended-release at 9 equally spaced time points. In-vivo data is the plasma concentration 

of the observed propranolol from the extended-release (ER) tablets at 7 equally spaced 

time points. To simulate the data, 6 replications (explained in appendix B) have been 

considered for in-vitro data and 6 (explained in appendix B) for that of in-vivo at each of 

the following times in hours for each level of the qualitative factor 

X (in-vitro) = [ 0 , 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 ] 

X (in-vivo) = [ 0 , 4 , 8 , 12 , 16 , 20 , 24 ] 
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𝑋 = 4 for in-vivo data is a critical point because not only in-vivo data has the largest 

variance at that point, but also it is the peak of the true response figure. Therefore, 6 more 

replications are considered for 𝑋 = 4 (in-vivo). 

If c1 represents in-vitro and c2 represents in-vivo, the random response y is simulated as 

y = Y(x, cq) + √𝑉𝑎𝑟[𝜀(𝑥, 𝑐𝑞)] × ε;                  q = 1,2 

where ε is a random error provided by a standard normal random generator. The Matlab 

function, NORMRND(MU,SIGMA), was used to get this job done. 

NORMRND(MU,SIGMA) returns an array of random numbers chosen from a  normal 

distribution with mean MU and standard deviation SIGMA. Since it is a standard normal 

random generator, MU has been considered as zero and SIGMA was set equal to 1. The 

other parts, Y(x, cq) and 𝑉𝑎𝑟[𝜀(𝑥, 𝑐𝑞)], were explained in the methodology chapter, 

section 3.2. 

Figure 8 shows stochastic kriging fitting to the data, separately. In this figure, stochastic 

kriging is applied to the in-vivo and in-vitro data, separately.  

 
Figure 6. Individual stochastic kriging on the data 
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behavior. After data from both categories, in-vitro and in-vivo, were combined, the 

quantitative factor, time (x), and the response (y) were standardized, separately, by the 

following formula 

Standardized data =
real data − min

max − min
 

To apply SKQ to the aggregated data, the qualitative factor "study type” was defined; 

“in-vitro” and “in-vivo” were considered as its two different qualitative factor levels. 

Then, stochastic kriging with qualitative factors was applied to the standardized data. 

Figure 9 shows the result of this implementation. 

 
Figure 7. Stochastic kriging with qualitative factors on ERS data 

In order to compare the result of in-vivo SK and SKQ, both of them are plotted in Figure 

10 beside the in-vivo true response. As can be seen in the figure, the in-vivo SKQ plot is 

closer to the true response plot than the SK one. 

0 5 10 15 20
0

50

100

150

200

250

300

Time (h)

P
la

s
m

a
 c

o
n
c
e
n
tr

a
tio

n
 (

n
g
/m

L
)

 

 

in-vitro

in-vivo



20 

 

Figure 8. The result of in-vivo SK and SKQ in compare to the in-vivo true response 

Besides comparing the result graphically in Figure 10, the estimated root mean squared 

error can be used. It also helps to evaluate the accuracy of point estimate. 

𝐸𝑅𝑀𝑆𝐸(𝐶𝑐𝑞
) = √

1

# [𝐶𝑐𝑞
]

∑ (𝑌̂(𝒘) − 𝑌(𝒘))2

𝒘∈𝐶𝑐𝑞

 

where # [𝐶𝑐𝑞
] is the number of all check points used. ERMSE measures the average 

deviation of predicted response from the true response. 

To calculate ERMSE for in-vivo stochastic case, like the deterministic case, the total time 

range (from 0 to 24 hour) is divided into equally spaced, 0.2-hour, intervals. Therefore, a 

total number of 121 check points used to calculate the ERMSE, and consequently to 

evaluate the performances of SK and SKQ in predicting in-vivo response. 

ERMSEs are calculated for 500 macro-replications of both “individual stochastic 

kriging” and “stochastic kriging with qualitative factors” to compare the results. Each 

macro-replication refers to the process of applying SK and SKQ on one randomly 

generated data-set for both in-vitro and in-vivo using simulation model described in 

section 3.2. Then ERMSE are calculated for the in-vivo result of each macro-replication. 

Figure 11 shows the box plot of the calculated ERMSE of the 500 macro-replications.  
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Figure 9. ERMSE box plot of in-vivo stochastic kriging 

The comparison of the two box plots in Figure 11 indicates that the fitted SKQ performs 

better than SK because SKQ has less deviation from the true response in all 500 macro-

replications. It implies that taking advantage of in-vitro data gives a much better fit of in-

vivo data than applying the model on in-vivo data alone. 
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CHAPTER 5 

CONCLUSION 

This thesis applies a metamodeling technique, kriging, to approximate the response of the 

pharmaceutical in-vivo data (propranolol plasma concentration after administrating oral 

extended-release formulations). The data was generated by simulation mimicking the real 

data. Deterministic and stochastic are the two cases that were studied in this thesis. 

In the former case, the deterministic case, DK and DKQ were evaluated for the true 

expected responses. Based on calculated ERMSE, applying the DKQ on deterministic 

computer experiment provides the in-vivo response closer to the true response than 

applying DK. 

In the latter case, the stochastic case, SK and SKQ were applied to the data considering 

random errors. SK lacks information pooling ability. Therefore, a separate response SK 

model is fitted for each data source. On the other hand, SKQ benefits its ability to exploit 

information from multiple data sources. Therefore, the prediction of in-vivo response can 

be substantially improved because SKQ allows for the borrowing information from in-

vitro data. 

The comparison of SKQ over SK using calculated ERMSE for 500 macro-replications, 

indicates SKQ gives better result. Consequently, this comparison implies that involving 

the in-vitro data in the modeling gives a closer fitted model to the true response. 

For the future research, a need exists to perform design of experiment (DOE) for both in-

vitro and in-vivo experiments to determine the design points and the number of 

replications for each of the points. 
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APPENDIX 

A  Synergistic Modeling of in-vitro and deconvoluted in-vivo data  

A.1. In-vitro Dissolution Profiles of Propranolol Hydrochloride 

Cheng et al. [3] determined the release characteristics of the propranolol ER tablets using 

the basket method of USP apparatus I. The temperature was maintained at 98.5 

Fahrenheit where the propranolol tablets were kept in 900mL of gastric fluid. Samples 

were collected at different times during 24 hours in batch sizes of five milliliter at a 

rotation speed of 100 rpm. Ultraviolet spectrophotometry at 290 nm wavelength was used 

to determine the amount of drug dissolved. Figure 12 illustrates in-vitro dissolution 

profiles of propranolol hydrochloride. Most of the drug was dissolved after 12 hours. For 

instance, about eighty percent of ER tablet with a fast rate of release was dissolved after 

half a day and it was dissolved almost completely within 24 hours. 

 

Figure 10. In-vitro dissolution profiles of propranolol hydrochloride from different extended-release tablets 

The purpose of this research is to model the mean cumulative percentage absorption rate 

of extended-release propranolol. Since the data for this work is scarce and expensive to 

collect, In-vitro dissolution profiles of propranolol hydrochloride data (Figure 12) will be 
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taken into consideration as well to get a better model. The goal is pursued using 

stochastic kriging with qualitative factor proposed by Chen et al. [28]. 

A.2. Empirical Result 

In this thesis, Matlab was used for two different cases; Deterministic and Stochastic. In 

the first case, we consider the means as the only points available. Therefore this scenario 

also can be applied on an experiment without any replication. Individual kriging and 

kriging with qualitative factors are the two methods used in this section. 

In the second case, stochastic, we considered 100 replications for in-vitro data and 6 

replications for in-vivo data. Stochastic kriging (SK) and stochastic kriging with 

qualitative factors (SKQ) are the methods have been taken advantage of. 

A.2.1. Deterministic Case 

It should be noted that in the deterministic approach the random error for the response 

has not been taken into account. As a result, if the same input parameters are used in the 

model, the same response will be generated from the model in all repeated runs. 

Table 3. In-vitro in-vivo data 

time (h) in-vitro in-vivo 

0 0 0 

0.5 5.02 5.64 

1 9.48 12.10 

1.5 14.33 15.35 

2 17.80 16.65 

3 24.03 25.42 

4 30.73 28.97 

5 35.21 31.26 

6 39.50 35.90 

8 47.54 40.39 

10 53.42 40.76 

12 57.98 43.52 

24 81.22 50.27 

Table 1 shows the data obtained from Cheng et al. [3] work. Deterministic kriging is 

applied on the data. Figure 13 shows the result of the implementation. 
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Figure 11. Individual deterministic kriging on ERS data 

Deterministic kriging with qualitative factors is applied to get a better fit. Figure 14 

shows the plot of the DKQ implementation. 

 
Figure 12. Deterministic kriging with qualitative factors on ERS data 

The estimated root mean squared error is calculated to evaluate the accuracy of point 

estimate. It also helps to compare the applied DK and DKQ. 

𝐸𝑅𝑀𝑆𝐸(𝐶𝑐𝑞,𝑘) = √
1

#[𝑐𝑞 , 𝑘]
∑ (𝑌̂(𝑤) − 𝑌(𝑤))2

𝑤∈𝐶𝑐𝑞,𝑘
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ERMSEs were calculated in 100 macro-replications for both “individual kriging” and 

“kriging with qualitative factors” to compare the methods. Figure 15 shows the 

deterministic in-vivo ERMSE box plot of ERS data. 

 
Figure 13. ERMSE box plot of in-vivo deterministic kriging 

A.2.2. Stochastic Case 

In the real world, the availability of in-vivo data is scarce due to the expense and risks 

associated with data collection. However, since the in-vitro data are attained much easier 

and cheaper, a great number of these types of data are accessible. In this thesis, the in-

vitro data is the cumulative percentage of the propranolol hydrochloride extended-release 

dissolved at different time points. On the other hand, by in-vivo data we mean the 

cumulative percentage input profiles of propranolol absorbed from the extended-release 

(ER) tablets. To simulate the data, 100 replications have been considered for in-vitro data 

and 6 for that of in-vivo at each of these times  

X = [0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12, 24]. 

If c1 represents in-vitro and c2 represents in-vivo, the random response y0 is simulates as 

y0 = Y(x0, cq) + ε;                  q = 1,2 

where ε is a random error provided by a standard random generator. The Matlab function, 

NORMRND(MU,SIGMA), was used to get this job done. NORMRND(MU,SIGMA) 
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returns an array of random numbers chosen from a  normal distribution with mean MU 

and standard deviation SIGMA. MU has been considered as zero and SIGMA has been 

equaled to 5. 

After data from both categories, in-vitro and in-vivo, were combined, the quantitative 

factor, time (x), and the response (y) have been standardized by this formula separately 

data_std =
data − min

max − min
 

Stochastic kriging was applied on the standardized in-vitro and in-vivo data separately. 

To apply the stochastic kriging on aggregated data, the qualitative factor "study type” 

was defined. Hence “in-vitro” and “in-vivo” were considered as its two different 

qualitative factor levels. Stochastic kriging with qualitative factors was applied on the 

standardized data.  

Figure 20 shows an example of fitting stochastic kriging on ERS data. As in figure 16, 

individual stochastic kriging does not work quite well in many iterations. So a need is felt 

to utilize the combined in-vitro and in-vivo data to get a better fit. 

 

Figure 14. Individual stochastic kriging on ERS data 

To apply the stochastic kriging on aggregated data, the qualitative factor "study type” 
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qualitative factor levels. Stochastic kriging with qualitative factors was applied on the 

standardized data. Figure 17 shows an example of this implementation. 

 
Figure 15. An example of applied SKQ on ERS data 

As done in previous section, Deterministic, ERMSEs were calculated in 100 macro-

replications for both “individual stochastic kriging” and “stochastic kriging with 

qualitative factors” to compare them. Figure 18 shows the ERMSE box plot of in-vivo 

stochastic kriging. 

 
Figure 16. ERMSE box plot of in-vivo stochastic kriging 

Figure 18 implies the SKQ works much better than the SK. It means taking advantage of 

in-vitro data gives a much better fit of in-vivo data than applying the individual stochastic 

kriging. 
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B Determine Sample Size 

B.1. In-vitro 

The desired half-with for in-vitro at 𝑥 = 24ℎ is considered as 𝐷𝑑 = 10. A sample of size 𝑛0 = 10 

is drawn and α is considered as 5%. 

𝑛 = ⌈
(𝑡𝑛−1,1−𝛼/2 × 𝑠)2

𝐷𝑑
2 ⌉ 

𝑛 = ⌈
(𝑡10−1,1−0.05/2 × 𝑠)2

100
⌉ 

𝑛 = ⌈
(𝑡9,0.975 × 𝑠)2

100
⌉ 

𝑛 = ⌈
(2.262 × 𝑠)2

100
⌉ 

The true variance model utilized in the simulation model for in-vitro is 

𝑉𝑎𝑟[𝜀(𝑥, 𝑐1)] = (0.37 × exp(𝑌(𝑥, 𝑐1) × 0.0068) − 0.37)2 

a random response 𝑦0 is simulated as 

𝑦0 = 𝑌(𝑥0, 𝑐𝑞) + √𝑉𝑎𝑟[𝜀(𝑥0, 𝑐𝑞)] × 𝜀 

So, a generated in-vitro sample data at 𝑥 = 24ℎ would be 

285.600 288.160 262.104 277.343 267.082 

295.391 279.348 273.837 286.908 286.934 

 

and s would be 

𝑠 = 10.341 

Then, the sample size required to achieve a CI with desired half-width would be 

𝑛 = ⌈
(2.262 × 10.341)2

100
⌉ 

𝑛 = ⌈5.4715⌉ = 6 
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B.2. In-vivo 

The desired half-with for in-vivo at 𝑥 = 4.3ℎ is considered as 𝐷𝑑 = [5 , 8]. A sample of size 𝑛0 =

6 is drawn and α is considered as 5%. 

𝑛 = ⌈
(𝑡𝑛−1,1−𝛼/2 × 𝑠)2

𝐷𝑑
2 ⌉ 

𝑛 = ⌈
(𝑡6−1,1−0.05/2 × 𝑠)2

25 𝑜𝑟 64
⌉ 

𝑛 = ⌈
(𝑡5,0.975 × 𝑠)2

25 𝑜𝑟 64
⌉ 

𝑛 = ⌈
(2.570 × 𝑠)2

25 𝑜𝑟 64
⌉ 

The true variance model utilized in the simulation model for in-vivo is 

𝑉𝑎𝑟[𝜀(𝑥, 𝑐2)] = (0.86 × 𝑌(𝑥, 𝑐2)0.41)2 

a random response 𝑦0 is simulated as 

𝑦0 = 𝑌(𝑥0, 𝑐𝑞) + √𝑉𝑎𝑟[𝜀(𝑥0, 𝑐𝑞)] × 𝜀 

So, a generated in-vivo sample data at 𝑥 = 24ℎ would be 

153.751 152.997 144.993 146.013 137.805 147.975 

 

and s would be 

𝑠 = 5.8593 

 

Then, the sample size required to achieve a CI with desired half-width would be 

𝑛 = ⌈
(2.570 × 5.8593)2

25 𝑜𝑟 64
⌉ 

𝑛 = ⌈9.070 𝑜𝑟 3.543⌉ 

𝑛 = 4 𝑜𝑟 5 𝑜𝑟 6 𝑜𝑟 7 𝑜𝑟 8 𝑜𝑟 9 𝑜𝑟 10 
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Different numbers of in-vivo data replications from the obtained range, 4 to 10, are tried. 6-

replication is selected because the result is stabilized from this point on. 
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