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ABSTRACT 

Design, Construction, and Analysis of a Pilot-Scale Automated 
Drilling Platform 

Cody Smith 

This project and the associated research investigates automation techniques for 

drilling operations, along with the analysis involved in building an automated pilot-

scale drilling platform. The outcome from this research investigates feasible 

technologies and techniques that can be used to automate a pilot-scale drilling rig, 

with the intent that these practices may provide insight into the construction or 

procedures of full scale rigs. Both the theory and lab exercise components of this 

research were completed in association with the Drillbotics competition sponsored 

by the Drilling Systems Automation Technical Section (DSATS) committee of the 

Society of Petroleum Engineers (SPE). This study includes all calculations and 

research conducted during Phase 1 of the competition, which included the design 

and justification of a lab-scale drilling rig, as well as the construction and testing of 

the rig during Phase 2.  

As drilling automation continues to expand within the industry, testing new 

technologies in a reliable and transferable manner will be extremely important to 

the development of a fully automated drilling platform. The intention of this 

research is focused less on the structural analysis of industry drilling rigs, which 

has been conducted numerous times in detail, and more on design and 

construction process for inexpensive, lab-scale rigs that companies could use to 

assess new automation techniques and technologies. The rig that was designed 

and tested for the 2015-2016 Drillbotics competition was a success, allowing the 

West Virginia University team to test four different drilling bits and eight different 

rock types, and also winning the competition by drilling the provided rock sample 

with the highest Rate of Penetration (ROP). As such, the Drillbotics competition 

served as a platform to allow this research to demonstrate the process involved in 

constructing a fully automated drilling rig.  
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1. BACKGROUND 

1.1 ENERGY 

The quality of life in both developing and developed nations is intrinsically linked 

to energy consumption, which is heavily dependent on the production and 

consumption of hydrocarbons. Hydrocarbons are by far the most cost-effective 

form of energy, with renewables often requiring government subsidies to maintain 

their energy production. It is not practical to assume that developing nations will 

use their capital to install and maintain alternative sources of energy when a less 

expensive option is already in widespread practice (Mawdsley and Espey, 2011).  

In the case of more developed nations, such as Germany, there has been an 

enormous movement in the last decade to remove dependence on non-

renewables. In 2010, Germany declared their goal to cut carbon emissions by 40 

percent by 2020 (Talbot, 2013). In addition, due to the inherent safety concerns 

that are currently associated with nuclear power, they were intent on shutting down 

all of their nuclear power plants by 2022. Government subsidies and locked-in 

energy prices made developing renewable energy possible for individual citizens, 

and Germany was well on its way to this unprecedented reduction in emissions. 

However, Germany faced a problem that was somewhat unexpected: massive 

unreliability of energy output. On particularly sunny or windy days, when renewable 

power sources surged, the power grid that was in place wasn’t equipped to handle 

the excess electricity (Durden, 2013). 

 Given that the German electrical grid is years ahead of most countries and was 

still unable to handle this overflow, it seems that the idea of relying solely on wind 

and solar may not be as simple as installing the turbines and panels. On the other 

hand, on days where renewables didn’t provide enough energy, the country had 

to resort to the traditional methods. In the case of needing a “standby” fuel source 

to even out renewable production, Germany relies heavily on coal, which is easier 

to store than oil or natural gas, but also produces more carbon emissions (Martin, 

2016).  
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Thus far, renewable energy feasibility has been the topic of discussion more than 

the actual cost associated with that energy. In a study done by AltaCorp Capital in 

2011, using a cost of $50/tonne for CO2 emitted, the overall cost of each main 

energy source was discovered. The overall costs of hydrocarbon sources were 

significantly lower than the other forms of energy production, with the lowest overall 

cost for energy in natural gas, which will play a major role in energy production. 

The general trend, however, shows that hydrocarbons that are accessed by drilling 

are more cost effective than those attained by other means. The cost breakdown 

can be seen below in Figure 1.  

 

FIGURE 1 - ALTACORP ENERGY COST (MAWDSLEY AND ESPEY, 2011) 

The energy landscape of the world indicates that hydrocarbons, and particularly 

natural gas, will continue to play a major role in providing a stable fuel source to 

both developing and developed nations. Since these sources will continue to be a 

necessity, researching methods of accessing these sources more efficiently and 
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more safely will also be required. As such, the Drillbotics competition provided a 

platform to study the design and structural analysis of a lab-scale drilling rig, with 

the intention to promote rig automation on a small scale that can then be applied 

within the drilling industry. 

1.2 DRILLING PROCESS 

The objective of a drilling operation is to produce a wellbore that is ready and 

capable of producing and isolating hydrocarbons.  While many techniques and 

equipment vary rig to rig, these basic principles are widely used for standard drilling. 

From using a “spring pole” and a variety of bits or chisels to seek shallow 

groundwater, to the massive rotary drilling rigs used in today’s industry, the 

technology used in the process of delving into the earth has changed considerably 

in the last 200 years. Transitioning from an impact-style drilling to rotary based, 

with the ability to circulate fluids to clear away cuttings, dramatically changed the 

process of drilling for hydrocarbons. While some cable tool rigs are still used, the 

majority of drilling operations that take place currently employ rotary rigs, allowing 

for the development of deeper wells (De Wardt, 2012).  

Typically, the land is cleared prior to moving a rig to the location, and a drilling pad 

is set up for the one or multiple wells to be drilled from that location. The supporting 

structures and equipment, such as the pit, tanks, and compressors, are prepared 

on site. There are different methods and configurations for wells once drilling has 

commenced, but typically there is a set of conductor casing set in the shallow 

formations to maintain control of the loose strata near the surface, followed by 

surface casing to isolate the well from groundwater. As each set of casing is run 

into the hole, the annulus between the casing and the formation wall is pumped 

full of cement to isolate the wellbore from the formation. In addition, each time a 

casing is set to isolate the wellbore from the formations, successively smaller drill 

bits are used to continue.  
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1.3 DRILL RIG TYPE 

There are two distinct locations where rotary drilling rigs in use today, those used 

onshore and those used in offshore operations. While much of the equipment and 

drilling process is very similar, there are some differences between onshore and 

offshore drilling, with the most obvious being how they are supported.  

Onshore rigs, whether they are conventional or mobile, often have the benefit of 

being set up on the ground over the target hydrocarbon reserve. There are some 

circumstances that can prevent the rig from setting up directly above the reservoir, 

such as surface topography or surface rights. However, new technology is in 

development to mitigate this setback. One of the technologies that provides a 

higher degree of mobility in drill rigs is directional drilling. Directional drilling is the 

process of steering the drill bit to the target formation using Steering While Drilling 

techniques or technologies. The advancements in this technology have allowed 

drill rigs to drill multiple wells from one well pad, and to tap into reservoirs that 

could not previously be reached. Onshore rigs are most often classified based on 

the depth that they are able to drill to, as well as the overall mobility of the rig. 

Conventional onshore rigs are those that must be disassembled and reassembled 

between each drilling location, whereas mobile rigs are those that are mounted to 

tracks or wheeled trucks and are capable of moving from location to location 

without fully disassembling (Al-Azani, 2014).  

Offshore rigs can employ the same techniques to access difficult reservoirs, but 

they are supported in one of two ways, bottom-supported and floating units. As the 

names imply, bottom-supported rigs, typically used in shallower waters, have 

support columns that rest on the sea floor, whereas floating units are less 

permanent structures and use engines to keep them in the correct position while 

drilling. There is also a distinction between offshore rigs based on their mobility 

and the depth of the sea bed (Al-Azani, 2014). 

In general, necessary characteristics of any rotary based drilling platform include 

a rig’s ability to rotate the drill stem, to apply weight to the bit, and to circulate 

cuttings out of the hole. The rotation imparted to the drill stem is achieved using 
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either a top drive motor or a rotating platform built into the rig, commonly called a 

rotary table. Top drive motors allow some degree of flexibility in allowing the 

operator to add multiple lengths, or joints, of drill pipe at a time, which reduces the 

time it takes to break a connection and continue drilling. The penetration of a 

drilling rig is dependent on both rotation and the weight applied to the bit. In order 

to maintain a safe and efficient weight, drilling operators measure and control the 

amount of the drill stem that is being suspended, with the remainder being applied 

directly as weight on the bit. In addition to an appropriate weight on bit (WOB) and 

rotational speed, operators are also concerned with the circulation of fluid, ranging 

from compressed air to polymer-based liquids, which cleans the newly removed 

rock cuttings away from the bit and returns them to the surface for filtering and 

disposal. The circulation of fluid also assists in keeping the bit cool and balancing 

the pressure of fluids within the formation being drilled.  

1.4 DRILLING AUTOMATION 

Drilling system automation is the process of optimizing operating parameters by 

use of sensor input and control systems, focused on the downhole activities 

involved in the drilling of a gas or oil well. The surge in technology over the past 

several decades has produced systems and processes that will continue to have 

a substantial impact on the drilling industry. Specifically, the areas of technology 

that have improved rapidly and have had the biggest impact on the automation of 

drilling are sensors, computing techniques, and processing systems. These 

advancements, when applied to any of the various processes in drilling, allow for 

minimal human intervention, reduced safety risks, and allow for maximum 

efficiency while drilling (Macpherson et al, 2013). 

In recent decades, there has been a surge in the development and use of different 

automation techniques within the drilling industry. This is in part due to the 

relatively high risk of drilling operations, where heavy machinery and personnel 

must work together in close proximity in a variety of conditions (Thorogood et al, 

2009). The application of automation technologies has had a significant impact on 

other industries’ safety records, such as the automotive and logging industries, 
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which were two of the first to adopt the principals of automation. As an example, 

timber logging operations in Sweden began mechanizing tasks for both chainsaw 

and logging-machine operators, and saw drops in accident frequency of 48% and 

70% respectively, between 1970 and 1990 (Axelsson, 1998).  

An important distinction to make between rig automation and drilling automation is 

that rig automation, much like the automation seen in the automotive industry, 

involves the combination of hardware and software to remove human involvement 

from a process. Limited software directs machinery for a specific purpose, and the 

emphasis is often on the hardware that constructs or fulfills a specific role. Rig 

automation is very similar, and has been much more widespread than drilling 

automation, with the focus on improving and mechanizing the surface activities of 

a drilling operation (Technology, Electrical, 2015). Drilling automation, on the other 

hand, involves automating the process of drilling downhole, not automating 

processes that take place on the surface. Remote connectivity is already 

considered a prime component to the automation of other industries, but because 

there is no possibility for human involvement downhole, this technology is often 

overlooked as being a contributor towards automating the drilling process. 

Directional drilling, logging while drilling, and offsite drilling are all examples of 

drilling automation, because they employ remote connectivity to access data, 

process it, and then decisions are made by either algorithms or operators (Lund et 

al, 2007).   
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2. OBJECTIVES 

2.1 GENERAL  

The primary objective of this research was to design, construct, and test a fully 

automated laboratory-scale drilling platform, in conjunction with the constraints 

and guidelines given by the DSATS committee within the Society of Petroleum 

Engineers (SPE) for the Drillbotics competition, which will be explained in greater 

detail in section 2.2. This project and the associated research investigates 

automation techniques for drilling operations, along with the analysis involved in 

building an automated pilot-scale drilling platform. The outcome from this research 

is an investigation of feasible technologies and techniques that can be used to 

automate a pilot-scale drilling rig, with the intent that these practices may provide 

insight into the construction or procedures of full scale rigs. The research area 

focuses on land based drilling rigs, and testing of the rig consists of formations 

typically found in drilling operations.  

Previous research in this field has partially addressed the need for automation, 

and some contributors have pointed to steps that can be taken to automate a rig, 

without demonstrating any significant amount of detail (Zamora and Geehan, 

2013). That research does not offer a significant amount of practical applications 

that can be taken to systematically automate functions of a drilling operation. While 

there is fundamental value in a roadmap to improving drilling performance, there 

is also a need for testing and analysis of new techniques that could lay the 

foundation for future operations. In the absence of discovering new technologies, 

reanalyzing existing procedures and systems may also lead to insight into how 

those processes could be improved upon. In order to determine what systems are 

able to be automated, and which that are already automated can be improved, 

components of semi-automated drilling rigs were examined and, if possible, tested 

with the proposed rig to determine feasibility. Many of these components have 

become more widely available in recent years due to the advances in sensor and 

processing technology, as previously mentioned.   
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2.2 DSATS DRILLBOTICS COMPETITION 

The purpose of the Drilling Systems Automation Technical Section (DSATS) 

committee is to “accelerate the development and implementation of systems 

automation in the well drilling industry”. To this end, the committee developed a 

competition, called Drillbotics, amongst Universities with Petroleum and Natural 

Gas Engineering departments to design and build a rig, approximately seven feet 

tall, which is capable of drilling completely autonomously. Students were to submit 

a design proposal in the Fall semester, and the five teams with the best proposals 

were chosen to build their rig and test it at the end of the Spring semester. The 

budget for the rig was not to exceed $10,000, so the teams that did not have a rig 

from the previous year had to balance building the rig with the systems of 

automation that were to be used with it. Additional constraints placed on the teams 

in Phase 2 were the use of a provided drill bit, and a drill pipe made of thin-walled 

aluminum, along with a maximum Weight on Bit (WOB) of 20 lbs. West Virginia 

University’s Drillbotics team submitted their proposal in December and was 

selected to compete in the second portion of this competition.  

The constraints placed on the Drillbotics competition by the DSATS committee 

most closely resembled the limitations of land-based drilling rigs, and so the overall 

structure of the rig was made to emulate mobile land rigs. The most important 

constraints that were given were that the rig height, mobility, and the use of the 

provided bit and drill stem. Thus, designs and practices concurrent with land-based 

drilling were the focus of this research. 
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3. METHODOLOGY  

3.1  LAB SCALE DESIGN 

The steps taken to complete both this research and the competition followed a 

similar timeline, specifically the majority of the theoretical design was completed in 

the Fall Semester of 2015, and the entirety of the construction of the rig was 

completed in the Spring Semester. In order to design the rig, an analysis was first 

performed for a variety of materials that could be used to construct the rig. Included 

in the analysis were aluminum extrusions, steel, wood, and 3-D printed plastic. 

Due to the weight requirements, and the necessity for the rig to be able to 

reconfigure, aluminum extrusions were selected as the primary support material.  

After selecting materials that would be used to construct the rig, an intensive 

analysis was conducted on the thin-walled aluminum drill pipe. Selecting a drill 

motor that would be unable to shear the drill pipe allowed for the design of a motor 

mount, and the guide rails that would provide vertical travel. Different materials 

were considered for the guide rails, but after conducting beam deflection 

calculations, one-inch precision steel shafts were chosen. With the vertical travel 

system of the drill stem designed, the supporting structure could be modeled and 

tested in the software Solidworks.  

After verifying that there were no obvious flaws in the physical structure, motors 

were selected for the hoisting and fluid circulation systems. A counterweight 

concept was chosen to assist in the designation of the hoisting motor, and a closed 

loop fluid circulation system was deemed the most realistic compared to industry 

standards. Utilizing a closed loop system necessitated filtering particulates that 

might damage the pump, so a passive filtration system was also researched and 

designed prior to rig construction. Once the physical structure, hoisting, and 

circulation systems were designed and selected, the accompanying measurement 

and control systems were researched for the operation and automation of the 

drilling process.  
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3.2 BUDGET AND CONSIDERATIONS 

A major consideration with industry drilling rigs and with the rig design in this study 

was the cost of construction and operation. The 2015-2016 Drillbotics competition 

utilized a $10,000 budget constraint to both build the rig and procure the 

components to automate the drilling process. This budget was implemented both 

to provide a basis on which to judge every participating team, as well as to simulate 

industry constraints. 

The design and construction of the unit were tested and revised several times until 

an acceptable solution was achieved, as is standard practice with new technology 

in industry. Universities that had competed in the previous year were able to use 

rigs that had already been constructed, still considering the cost of components. 

This allowed previous researchers to better allocate their budget away from 

unfeasible or impractical designs. Universities that had supplies or materials from 

a previous year could then “prototype” designs without having to pay for new 

materials. As this was the first design for this research, it was necessary to balance 

the cost of the structure, tools, and control components to stay under budget, and 

the emphasis on the cost of each component was a critical factor in the design 

philosophy.  

As the objective for this task was automation, not specifically drill rig construction, 

the controls systems were budgeted for prior to the physical structure, as they were 

deemed more critical. This necessitated using lightweight and low-cost 

components to make up the physical structure, and meticulous research and 

analysis to ensure that the design was economical. For example, wood was used 

to construct the filtration box and storage tank frame, and cement with a cardboard 

mold was used as a counterweight because they could be constructed at very low 

costs. Aluminum extrusions, while being chosen primarily for their versatility, were 

prone to warping and tearing more than steel, but they were considered non-critical 

in a competition based on automation. Designing a rig with a non-conservative 

safety factor for the mechanical structure freed up funds that were instrumental in 

the success of the rig, but this may not be possible outside a laboratory 
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environment. However, the desire to keep the cost of the physical structure low led 

to the high level of analysis and scrutiny that was conducted for this research, and 

it ultimately led to a rig that was designed with a liberal factor of safety. 

Budget constraints played an important role in the selection of both the physical 

structure and the control components. The sensor system employed several 

inexpensive Arduinos to maintain control of the rig, rather than purchasing a full 

computer with functionality the rig would never use. Sensors were chosen based 

on the degree of accuracy that would be acceptable, similar to a diminishing 

returns scenario. Thus, a criticality analysis was conducted for each sensor, such 

as a flowmeter that could measure down to the 1/10th of a gallon per minute (GPM), 

rather than the flowmeter that was accurate to within 1/100th of a GPM and cost 

significantly more. For flow rates between 2 and 4 GPM that were to be used, this 

level of accuracy was deemed sufficient. The cost, accuracy, and criticality of each 

component was weighed before making any purchases, and the final cost reflected 

that at approximately $8,000. When the final design budget was analyzed, it was 

determined that the overall cost of the rig was split almost exactly in half, 50% to 

the structure and supporting components and 50% to the control and 

measurement mechanisms.  

 

 

 

 

 

 

 

 



 

12 
 

3.3MECHANICAL DESIGN 

3.3.1 STRUCTURE 

Since aluminum was chosen over steel, overdesigning the supports for the upright 

beams was both possible to achieve while maintaining a low weight and necessary 

to the design to eliminate twisting in the rig. The rig itself has four upright aluminum 

extrusions, with supports at the top, middle, and bottom to provide for a rigid 

structure. In addition to these support levels, two sets of crossing wire ropes and 

turnbuckles were run to keep the upper half of the rig in tension and in the proper 

position. The steel wire rope that was used was 1/4 inch, which was much stronger 

than the surrounding aluminum, and great care was taken to guarantee that the 

four cables were properly tensioned so as not to twist the structure. An example of 

the wire rope tensioners can be seen below in Figure 2. The initial design for the 

rig was completed using the drafting software Solidworks, and was continuously 

updated as changes were made to the rig. An example of the design can be seen 

in Figure 3, with all wiring and peripherals removed.  

 

FIGURE 2 - WIRE ROPE WITH TURNBUCKLES 
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FIGURE 3 - RIG BASE DESIGN 

The top and middle support levels also house the guide rails for drill motor travel. 

In order to ensure straight travel with minimal vibration, 1-inch precision solid steel 

shafts were used. It was decided that two shafts might allow the motor mount to 

drop unevenly and become stuck, and a four-shaft design was more than was 

necessary, especially given the weight of the four-foot-long bars, so a triangular 

guide rail design was implemented. To ensure smooth and truly vertical travel, the 

motor mount was 3-D printed to allow three flange-mounted linear ball bearings to 

be recessed into the plastic, and these would be oiled periodically to avoid any 

sticking on the shaft. In total, the three hardened steel shafts contributed to roughly 

10% of the total weight of the rig. The guide shafts and motor mount can be seen 

in Figures 4 and 5.   
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FIGURE 4 - VERTICAL GUIDE RAILS, MOTOR MOUNT, DRILL MOTOR 

 

FIGURE 5 - MOTOR MOUNT WITH RECESSED FLANGE 
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3.3.2 CONSTRUCTION MATERIALS 

The majority of the rig itself and the supporting control structure was made with 

aluminum extrusions. T-slotted aluminum was primarily chosen due to its low 

weight and adaptability. It was recognized that the initial design, which was 

submitted in December 2015, would undergo changes as new parts and sensors 

were tested, so using a material that is easy to machine and easy to reconfigure 

was essential. Wood was used for some peripheral structures to lower cost, along 

with Plexiglass to waterproof the controls table while still allowing observation while 

testing. The aluminum used in the rig structure for testing was 6105-T5 aluminum, 

with an estimated ultimate tensile strength of 45.0 ksi (310 MPa), and a modulus 

of elasticity of approximately 10,000 ksi (69 GPa), whereas steel has a tensile 

strength of 58 ksi (400 MPa) and a modulus of elasticity of 29,000 ksi (200 GPa), 

but it would have weighed 3 times as much as the aluminum (Aluminum 6061-T6 

Properties, 2016). An example of the aluminum extrusions can be seen below in 

Figures 6 and 7, along with a common connector used with the extrusions.  

 

FIGURE 6 – ALUMINUM EXTRUSION, SIDE VIEW 
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FIGURE 7 - ALUMINUM EXTRUSION, END VIEW 

3.3.3 MOBILITY 

Part of the study was to design a rig that could be easily transported from one 

location to another. The rig was designed with four heavy-weight casters attached 

to the side, which were easily removable for times when the rig was set up, but 

allowed the rig to be transported without any additional assistance. The casters 

were left on for display purposes during the actual testing, and later the rig was 

moved out of the testing lab successfully. An example of one of the casters is 

shown in Figure 8, and Figure 9 shows the rig being transported.  

Aluminum was used as the main component to keep the overall weight down, but 

there were quite a few necessary structures that raised the total weight to 
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approximately 300 pounds. While this weight is still very low, even for a pilot-scale 

drilling platform, the casters were only built to move it around inside a building.  

 

FIGURE 8 – MOUNTABLE CASTER 

 

FIGURE 9 - RIG DURING TRANSPORTATION 
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As an example of the weight of some non-aluminum components, Table 1 below 

shows some of the heavier components. Considering the three guide rails as one 

overall component, it can be shown that nearly half of the weight of the rig came 

from only five components. The drill, pump, and hoisting motors combined for 

approximately 77 pounds, but based on the criteria associated with each 

component, there was no way to reduce that weight with smaller motors. The 

counterweight, by design, had to match the weight of the drill motor, mount, 

drillpipe, Bottom Hole Assembly (BHA), and the bit, allowing for significantly less 

stress on the hoisting motor, but resulting in another 30-pound component.  

TABLE 1 - COMPONENT WEIGHT PREVIEW 

 

3.3.4 SAMPLE SUPPORT 

There were several components provided by the DSATS committee that were 

required to be used, including the sample that was to be drilled for the official 

testing. The sample that was provided for testing was simple in design, but posed 

a unique set of challenges. The test sample utilized 2-to-3-inch-thick, 12-inch-

square pieces of sandstone or siltstone with a single wooden dowel rod inserted 

between layers to introduce an angle to the formations, as shown in Figure 10. The 

top two and bottom two layers were sandstone, and a uniaxial compressive 

strength of around 5,000 psi was expected for these layers. The middle layer was 

siltstone, but its compressive strength was unknown prior to testing. However, all 

five layers were encased in a plywood and 2”x4” box so these rock layers were all 

unknown prior to testing. Some fluid loss was expected due to imperfect sealing 

between layers, but the space imparted by the dowel rods amplified that loss. 

Component: Weight (lbs)

Drill Motor, DC permanent magnet, 1/2 HP 31

Guide rails, Hardened Steel Shafts x3 32

Position Control DC Motor, NEMA 34 12

Fluid pump, Pump motor, 3/4 HP 34

Cement Counter weight 33

Total: 142
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Pictures of the competition sample, post drilling and separated, are given below in 

Figures 10 and 11. 

 

FIGURE 10 - COMPETITION SAMPLE SIDE VIEW 

 

FIGURE 11 - COMPETITION SAMPLE DECONSTRUCTED 
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Due to the unknown nature of the competition sample, a separate composite 

sample was constructed to prepare and test the rig prior to the official testing. This 

was done in part to test the low factor of safety of the rig, as well as to test the 

algorithm in samples that contained unexpected layers. The test sample was made 

using a similar wooden box for support, but contained layers of sandstone, coal, 

and a much higher compressive strength dolomite, all encased in cement. The 

rocks that were encased in the test sample were put at extreme angles, 45 degrees 

in the case of the dolomite, to further challenge the rig to maintain a low-deviation 

hole. The overall weight of the competition sample was approximately 120 pounds, 

whereas the weight of the composite test sample was approximately 180 pounds. 

In addition to creating a sample with extreme scenarios, not knowing what rock 

strata the rig was drilling gave the the opportunity to interpret the data without bias 

after drilling the sample.  

Due to the weight of the rock samples, it was determined that the rig would provide 

a “floor” for the sample to sit on, with two hold-down toggle clamps mounted above 

the sample to secure it. The toggle clamps were each rated to 1,700 pounds of 

force, and while that was excessive given the weight of the rig, they were the only 

clamps deemed physically large enough to hold the sample in place. In addition to 

the toggle clamps, a press screw mounted to an aluminum frame was used to 

secure the sample in the horizontal plane.  While the sample box was built to allow 

it to be placed on the floor and drilled without damaging the floor, it was determined 

that the added weight on the lightweight rig would help dampen vibrations. The 

toggle clamps can be seen in Figure 12, with one clamp in each position, and the 

press screw can be seen in Figure 13.  
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FIGURE 12 - TOGGLE CLAMPS, SAMPLE SUPPORT 

 

FIGURE 13 - PRESS SCREW, SAMPLE SUPPORT 

 3.3.5 TORQUE AND COMBINED LOADING 

Prior to the motor selection, a mechanical analysis was performed on the drill pipe 

that was to be used for the testing. It was assumed that the thin-walled aluminum 

drill pipe would be the component most likely to shear, and thus the motor and 
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structural component selections were based on this analysis. Industry calculations 

include the axial and hoop stresses on a drill pipe, along with the shear stresses, 

because the drill pipes used in industry applications are under extreme internal 

pressures and compressional loads. The same calculations were used for this 

research, even though the internal pressure and compressional load would be 

minimal.  

Since the rig would need to be tested prior to the competition, and changing 

damaged drill pipes would be costly in terms of time, it was determined that a safety 

factor close to 1.5 would be desirable. An initial maximum shear was determined 

based on the stall torque of a proposed motor, and in the case of the motor that 

would eventually be used, it was 50 in-lbs. of torque. After solving for maximum 

shear, Equation 1 was used to determine whether that motor would be able to 

shear the pipe, without considering the combined loading scenario initially.  

𝜏𝑚 =
𝑇∗𝑟

𝐽
=

50 𝑖𝑛−𝑙𝑏.∗0.34 𝑖𝑛

0.001092 𝑖𝑛4 = 15.6 𝑘𝑠𝑖…………………….……(1) 

Where 𝜏𝑚 is maximum shear, T is stall torque, r is mean radius of the pipe, and J 

is the polar moment of inertia. Given that the shear strength of 6061 T6 aluminum 

is approximately 30 ksi, with a yield strength of approximately 40 ksi, this motor 

was appropriately sized (Engineering Toolbox, 2016). Next, the compressional 

stress, axial stress, and hoop stress were all calculated using Equations 2, 3, and 

4.  

𝜎𝑐𝑜𝑚𝑝 =
𝐹

𝐴𝑎𝑙𝑢𝑚
=

20 𝑙𝑏𝑠.

0.04 𝑖𝑛2 = 500 𝑝𝑠𝑖……………………………..(2) 

𝜎𝑎𝑥𝑖𝑎𝑙 =
𝑃∗𝑟𝑚

2∗𝑡
=

40 𝑝𝑠𝑖∗0.34 𝑖𝑛.

2∗0.7 𝑖𝑛.
= 9.7 𝑝𝑠𝑖…………………………(3) 

𝜎ℎ𝑜𝑜𝑝 =
𝑃∗𝑟𝑚

𝑡
=

40 𝑝𝑠𝑖∗0.34 𝑖𝑛.

0.7 𝑖𝑛
= 19.4 𝑝𝑠𝑖 ……………………….(4) 
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Here F is the compressional force applied to the drill pipe (with a maximum of 20 

lbs.), Aalum is the cross-sectional area of the pipe, P is the internal pressure (which 

was at most 40 psi at 3 GPM flow), rm is the mean radius, and t is the pipe wall 

thickness. In order to find the principal stresses, forces acting inward on the pipe 

would be considered positive, and forces acting outward would be considered 

negative, as shown in Figure 14.  

 

FIGURE 14 - STRESS DIAGRAM 

The equations to solve for the principal stresses are given below, along with the 

equation for the combined stresses and overall safety factor. 

𝜎1,2 =
𝜎𝑥+𝜎𝑦

2
± √(

𝜎𝑥−𝜎𝑦

2
)

2
+ 𝜏𝑚

2 …………………………………(5) 

𝜎𝑐 = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2…………………………………………..(6) 

𝑛 =
𝑆𝑟

𝜎𝑐
……………………………………………………………………………………(7) 
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A safety factor of 1.48 allowed for the selection of a ½ HP permanent magnet DC 

motor as the main drill motor, providing an RPM range up to 1800, but keeping the 

stall torque low enough to ensure the integrity of the drill pipe.  

To demonstrate that the drill pipe was indeed the critical component, a beam 

deflection calculation was performed for each of the upright supports that would 

see the most axial force from the drill motor. These uprights were the three steel 

guide rails that the motor mount traveled along, as well as the four aluminum 

extrusions that made up the corner posts of the rig. Given than the steel shafts 

were 3.6” from the center of the motor, and utilizing the 50 in-lb. stall torque, it was 

determined that the axial force applied to the shafts would be at most 4.6 lbs. The 

largest deflection would occur with the drill motor in the middle of the 4’ shafts, so 

the deflection calculation was done assuming the motor was 24” down from the 

top. At that height, and with a polar moment of inertia of 1.69 in4 for the shafts, the 

maximum displacement of the steel would be 5.23x10-4 inches, as shown in Figure 

15.  

 

FIGURE 15 - STEEL GUIDE RAIL DISPLACEMENT 

The same calculations, done with the 7’ aluminum extrusions, given a polar 

moment of inertia of approximately 0.057 in4, resulted in a maximum displacement 

of approximately 5.96x10-2 inches at the midpoint of the beam, as shown in Figure 

16. 
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FIGURE 16 - ALUMINUM EXTRUSION DISPLACEMENT 

With the displacement of both of these uprights being negligible, it was concluded 

that the drill pipe was the critical component in the motor design, and the motor 

that these calculations were performed with was selected.  

3.4 HOISTING SYSTEM 

3.4.1 MOTOR ANALYSIS AND SELECTION 

The rig utilized a hoisting system similar to that used in industry, in that the system 

relied on the drill motor being suspended and lowered to advance the drilling, 

instead of using a piston to push the drill stem into the rock. Using a hoisting 

system allowed for the approaches that were taken in this research to be directly 

applicable to industry scale rigs. The most notable differences between the lab-

scale rig and industry rigs were the use of a counterweight, the lack of a traveling 

block, and the distribution of weight. The design of the pilot-scale rig necessitated 

the use of a position control motor that was capable of moving in very small steps, 

while still maintaining the torque required to lift the drill stem. Based on the 

estimated weight range of the drill stem, a NEMA 34 class DC position control 

motor was chosen, with a maximum RPM of 720 and 70 in-oz. of torque.   

3.4.2 COUNTERWEIGHT 

In industry rigs, the weight that is applied to the bit is mostly gained from the length 

of pipe above the bit in the hole. In wells that are thousands of feet deep, there is 

a significant amount of weight in the pipe above the bit, and normally there is a 
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point midway up the drill stem where the load is transferred to the hoisting motor, 

with the pipe above that point in tension rather than compression. This point is 

called the neutral point, and lifting or lowering the drill pipe affects where this point 

is and thus how much weight is applied to the bit. The amount of weight that isn’t 

supported by the bottom is called the “hook load”. With the current rig design, there 

wasn’t enough material to provide the maximum 20 lbs Weight on Bit (WOB) below 

the drill pipe, so the drill motor weight kept the drill pipe in compression to maintain 

WOB.    

Industry rigs generally have a very high hook load and rely on designs 

incorporating what is called a “traveling block” to lower the amount of power 

needed by the hoisting motor to raise and lower the drill stem. The traveling block 

is a series of pulleys around which the steel cable is run, and the traveling block is 

anchored at the top of the rig at the crown block. The utilization of a system of 

pulleys gives a significant mechanical advantage, dramatically decreasing the 

amount of force necessary to move the system. However, the more pulleys 

present, the farther the hoisting motor has to pull to move an equivalent distance. 

This can help in more precise movement, but in the case of the rig designed in this 

study, the position control motor was precise enough.  

To lower the drill stem into the hole, industry rigs use a spool of high-strength steel 

cable, relying entirely on the hoisting motor to hold the weight that isn’t supported 

on the bottom of the hole. The lab-scale rig used a similar hoisting motor and ANSI 

35 chain, but relied on a concrete counterweight on the other end of the chain, 

rather than a spool of extra chain. The unique benefits this provided were that the 

hoisting motor only had to overcome friction plus the small difference in weight 

between the drill stem and the counterweight, rather than supporting the weight of 

the entire drill stem. This provided more precise movement and measurement by 

the position control motor, resulting in more accurate WOB adjustments and 

position measurements. Also, the counterweight acted as a safety device in the 

event that the emergency stop was applied, or if the rig lost power. If power was 

removed from the system, the counterweight caused the drill stem to remain in 
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place, rather than slamming down if the bit was not already on bottom. An image 

of the counterweight system is shown in Figure 17. 

 

FIGURE 17- POSITION CONTROL MOTOR, COUNTERWEIGHT 

3.4.3 STRAIN GAUGE 

The design constraints limited the rig to 20 lbs. as the maximum WOB, and 

maintaining an appropriate WOB was as important to this study as it is with drilling 

operations in the field. In industry operations, limiting WOB is important to extend 

the life of a bit, and appropriate WOB for a given formation can increasing drilling 

rate. To ensure proper WOB for the competition, a strain gauge was mounted to 

the 3-D printed motor mount, which was then attached to the hoisting chain. The 

strain that this gauge measured, after the bit was in contact with rock, was directly 

related to the amount of weight that was applied to the bit, with the remainder being 

suspended by the counterweight and hoisting motor. This sensor was critical in 

determining WOB, and because WOB was one of the factors that can affect the 

Rate of Penetration (ROP), it was also a critical part of the algorithm which 
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optimized the drilling performance. A picture of the strain gauge is shown in Figure 

18.  

 

FIGURE 18 - STRAIN GAUGE 

3.5 ROTATIONAL SYSTEM 

3.5.1 MOTOR MOUNT 

The drill motor mount, along with several other components, were printed with 

Acrylonitrile Butadiene Styrene (ABS) plastic using a 3-D printer. Four iterations of 

motor mounts were tested before finalizing the one used in the testing, which by 

comparison to the previous designs was considered very low-profile. Printing the 

motor mount in plastic resulted in a very compression-resistant frame that weighed 

only about one pound. While the overall weight of the mount was low, the strength 

of the material was more than adequate, housing the mounting points for the strain 

gauge. Examples of the motor mount are given in Error! Reference source not f

ound. 5 and 18. Examples of the previous iterations can be seen below in Figure 

19. 
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FIGURE 19 - MOTOR MOUNT ITERATIONS, EARLY (LEFT) AND LOW-PROFILE (RIGHT) 

3.5.2 DRILL STEM/BHA 

The drill stem design was partially predetermined because of the prescribed usage 

of the aluminum drill pipe and drill bit, with the total Bottom Hole Assembly (BHA) 

not to exceed 13” in length. The BHA material was not specified, and so bearing 

bronze was chosen because of its weight and machinability. Since the drillpipe 

was the critical component in terms of strength, maintaining low compression as 

much as possible was necessary. In regular drill stem designs, thicker walled pipe 

called a “drill collar” is used immediately after the bit to increase the amount of 

weight below the regular drill pipe, which is comparatively lightweight. Putting 

weight below the drill pipe allows for more Weight on Bit (WOB) without 

compressing the drill pipe to such a large degree, which is important in prolonging 

the life of the drill stem. An example of the drill pipe is given in Figure 20.  
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FIGURE 20 – DRILL PIPE, FITTINGS 

This concept, along with the desire to utilize stabilizers, led to the decision to use 

bronze, rather than a heavier metal, in order to machine the BHA with relative 

ease. The inner diameter of the BHA, once a hole was bored through the center, 

was ¼”. This was more than adequate for flow inside the BHA but also left enough 

material that there was an appreciable weight below the drill pipe, approximately 

3 lbs. In addition to boring a hole through the BHA to allow flow, 4 sections on the 

BHA were trimmed down to allow for 3-D printed plastic stabilizers to be fitted. The 

purpose of the stabilizers was to keep the BHA centered in the bell nipple, and to 

allow the rig to drill with as little deviation as possible. The stabilizers were 

designed using plastic, printed in two pieces that could be glued together around 

the BHA, and plastic was the material of choice so that if the pieces came apart 

they would not significantly hinder the drilling process. The stabilizers are shown 

in Figures 21 and 22. 
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FIGURE 21 - UNATTACHED STABILIZERS 

 

FIGURE 22 - STABILIZER DESIGN 

One improvement to stabilizer design would be with the bottommost stabilizer 

position. The section of BHA that was trimmed down to allow for the stabilizer 

overlapped the part of the BHA where the interior threading for the bit was located, 

resulting in the metal being quite thin for approximately 1/4” of length along the 

BHA. This was recognized when one of the multiple BHAs that were machined for 

testing had the end of the BHA break off after drilling through the competition rock 

sample. However, that BHA had been used previously to drill through several feet 

of rock without issue, so the overall stress may not have been the only factor in its 

failure. An example of the final BHA and bit can be seen in Figure 23, and the initial 

BHA and bit is shown in Figure 24. Figures 25, 26, and 27 given below show the 

point of failure, and it was the conclusion that a single method of failure could not 

be assessed, given the shape and angle of the fracture in the bronze.  
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FIGURE 23 - COMPETITION BHA AND BIT 

 

FIGURE 24 - PRE-COMPETITION BHA AND BIT 

 

FIGURE 25 - POST COMPETITION FAILED BHA 
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FIGURE 26 - BHA FAILURE 

 

FIGURE 27 - BHA FAILURE CLOSE-UP 

3.6 MUD CIRCULATION SYSTEM 

3.6.1 PUMP ANALYSIS & SELECTION  

The need for fluid circulation and filtration is of paramount importance to a drilling 

operation. While a drilling platform could still drill for a distance without circulating 

fluid, before long the cuttings would clog the hole and make further progress 

impossible. Fluid circulation also helps by cooling the drill bit to ensure that it 
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remains in working order for as long as possible, maximizing the time the bit can 

drill, rather than tripping in and out of the well. Thus, designing a fluid circulation 

system that would enable the rapid and controlled drilling of the rock sample was 

seen as one of the highest priorities.  

With industry drilling rigs, which have to maintain control of pressure along with 

flow, a Blow Out Preventer (BOP) is typically placed at the surface and has the 

ability to close the annulus. There are a multitude of different components that can 

be used along with a BOP, including sensors to measure casing and drill pipe 

pressure, and valves to allow the operator different options for diverting fluid flow 

and pressure. A similar system was used, but only had to manage flow as fluid 

pressure was quickly brought back to atmospheric.  

Polymer mud was considered, but it was determined that with the amount of 

polymer to be mixed, the time and effort required would not outweigh the slight 

increase to viscosity. Hence, water was used in all hydraulics calculations and for 

testing purposes. Using the power-law model for the hydraulics design, the 

following equations (Lyons et al. 2012) provided information on important criteria 

in designing our circulation system for Jet velocity (Vj), Impact force (IF), Cutting 

Slip Velocity (Vs), and Cutting Transport Ratio (CTR).  

𝑉𝑗 =  
417.2∗𝑄 (𝑔𝑝𝑚)

𝛴(
𝐷𝑛

2

32
)

.
𝑓𝑡

𝑠𝑒𝑐
……………………………………….(8) 

𝐼𝐹 =  
𝑉𝑗∗𝜌∗𝑄

1930
 . 𝑙𝑏𝑓………………………………………….…(9) 

𝑉𝑠 = 0.45 (
𝑃𝑉

𝑀𝑊∗𝐷𝑝
) [

√
36800∗𝐷𝑝

((
𝑃𝑉

𝑀𝑊∗𝐷𝑝
)

2

)

 ∗ (
𝐷𝑒𝑛𝑃

𝑀𝑊
− 1) − 1] . 𝑓𝑡/ 𝑚𝑖𝑛……………(10) 

CTR =  
𝐴𝑛𝑛𝑢𝑙𝑢𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦−𝑐𝑢𝑡𝑡𝑖𝑛𝑔 𝑠𝑙𝑖𝑝 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐴𝑛𝑛𝑢𝑙𝑢𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
. %....................(11) 

 

In determining appropriate hydraulics, the cutting transport ratio should be higher 

than 50%, which it was at all tested flow rates, and the pressure loss across the bit 
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should be at or slightly above 50%. With those criteria, it was determined that a 

flow rate between 1.5 and 3 GPM would suffice to adequately clean the hole 

(Bilgesu et al. 2017). The resulting calculations at varying flow rates are given in 

Table 2.  

TABLE 2 - MUD HYDRAULICS (BILGESU ET AL. 2017) 

 

Since some fluid losses were expected from the rock at the interfaces between 

layers, it was determined that a closed loop circulating system would be the most 

beneficial. The other factor in this decision was in trying to automate every process 

of the drilling. Attempts were made to avoid a system that required a valve to be 

turned, or for a hose from a water source to limit flow rate. In addition, with the 

guidelines for disposing of fluid with rock cuttings in it, it would be impractical to 

have to store and properly dispose of all fluid between each test. 

3.6.2 FILTRATION SYSTEM 

To alleviate these concerns, a closed loop system with a filtration separator was 

used to recycle the drilling fluid. A 1 HP DC motor drove a gear pump to pull fluid 

from a reserve tank and pump it into the water swivel and down the drill pipe, where 

the fluid cleaned the cuttings from the hole after leaving the bit. The fluid then 

traveled up the annulus of the hole and exit the bell nipple/flow diverter into the 

wooden separator. The separator was a box approximately 1’ wide and 1’ deep, 

by roughly 3’ long. There were three wood-framed screens that would be inserted 

into slots in the box, allowing for different sized mesh screens to be used based 

on the material being drilled. As the main concern was filtering out particulates 

large enough to damage the pump, the screen sizes were stepped down from 60 

Pump Flow 

Rate (gpm) 

Pressure losses 

(psi) 

Annular Velocity 

(ft/sec) 

∆Pbit/Ppump 

(%) 

Impact 

Force, (lbf) 

Cutting Transport 

Ratio CTR, (%) 

1.00 23 1.5 48% 0.06 54% 

2.00 29 3.1 55% 0.23 77% 

3.00 40 4.6 58% 0.51 85% 

4.00 54 6.1 60% 0.90 88% 
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to 80 to 120. The screens were made of woven stainless steel, to minimize 

oxidation, with a 0.0036” wire diameter and a hole opening size of 0.0047” in the 

finest mesh screen. A picture of the pump and pump motor, mounted to the rig, is 

given in Figure 28.  

 

FIGURE 28 - PUMP AND PUMP MOTOR 

3.6.3 RESERVE/STORAGE TANKS 

The reserve and storage tanks were critical to the operation of the circulation 

system, and thus the rig testing. A plastic container, 10 gallons in capacity, was 

used as the main tank from which the pump would draw clean fluid. Since the 

design was meant to be autonomous, the “storage tank” was designed to allow for 

emergency fluid to be stored and released into the system. The concept of the 

storage tank was to allow a valve to be turned prior to any testing, and have the 

system be able to add fluid to the reserve tank any time it dropped below a certain 

level.  

The storage tank had PVC pipe and a ball valve attached and sealed to the side, 

where the vertical section of PVC would dip below the desired fluid level in the 

reserve tank. The storage tank was made airtight prior to opening the release valve 

on the side. Thus, when the valve would open, the only fluid that would flow out 

initially would be the amount commensurate with the expanded volume of air left 
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inside the tank. If the fluid level inside the reserve tank dipped below the PVC 

opening, air would enter the storage tank and it would release clean fluid until the 

level went back above the PVC opening. Thus, 35 additional gallons worth of 

emergency fluid capacity was added to the system. A picture of the fluid filtration 

and circulation system is given in Figure 29.  

 

FIGURE 29  - FILTRATION AND CIRCULATION SYSTEM 

During the test, the rig progressed through layers of solid sandstone and the fluid 

that returned up the hole annulus was minimal as most of it traveled between the 

rock layers and out the bottom of the sample. To mitigate this fluid loss, a plastic 

berm was placed underneath the rig to catch any lost fluid. A submersible pump 

could then be used to pump the fluid into the separator to facilitate cleaning and 

recycle the fluid.  

3.6.4 BELL NIPPLE AND CONDUCTOR CASING 

Given the desire for a closed loop system, a bell nipple/flow diverter was a 

necessary component to direct flow out of the annulus and into the separator. This 

component was the most heavily tested and redesigned because this component 

was also used as a spacer to clamp the rock sample in place. The two toggle 

clamps that were mentioned in the Sample Support section of this report utilized 

8” long threaded bolts to push the bell nipple into the rock sample, securing it in 
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place and creating a seal that would force the fluid up the bell nipple. Since the bell 

nipple was responsible for holding the rock in place, it had to be able to withstand 

a large amount of applied force. Thus, in the design and testing of multiple bell 

nipples, the fill factor that was used with the 3-D printer, which defines the 

percentage of open space versus plastic used, was set fairly high to allow for less 

open space within the form. As with the motor mount, the resulting plastic form had 

a very high compressive strength-to-weight ratio, and being able to test multiple 

designs and styles economically allowed precise adjustment of the bell nipple to fit 

the flow needs exactly. Examples of several of the designs are given in Figures 30 

and 31.  

 

FIGURE 30 -EARLY (LEFT) AND COMPETITION (RIGHT) BELL NIPPLES 
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FIGURE 31 – BELL NIPPLE ITERATIONS 

It should be noted that any interruption to the 3-D printing process resulted in an 

unfinished print, with no way to continue with printing to finish the design. This 

happened multiple times during this research, but the associated loss of time was 

deemed acceptable for the inexpensive and rapid prototyping of designs. Two of 

these unfinished bell nipples can be seen as the two rightmost designs in Figure 

31 above. 

3.7 AUTOMATION 

3.7.1 DRILLING VS RIG AUTOMATION 

There is a significant difference between drilling automation and rig automation. 

Rig automation has already been adopted to varying degrees on most rigs, in the 

form of positioning control in offshore rigs, to newer automated pipe handling and 

tripping systems. These systems are comparable to advancements that were 

made in the manufacturing industry to replace human workers with robotic 

assembly lines. Using advances in robotics, computer systems, and PLC 
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technology, companies can easily and reliably design processes that are capable 

of limiting or removing human involvement (Thorogood, 2013).  

Data collection is of paramount importance in both standard drilling and in any 

automation scheme. Since drilling involves making changes on the surface without 

any visual clues as to their effect downhole, monitoring systems are a highly 

funded and researched division of drilling automation. Some sensors can be 

placed on the drill stem itself, such as temperature and location of probes, while 

other data is collected at the surface, such as flow rate and pressure. The collection 

of downhole data can be achieved using technology termed Measurement While 

Drilling (MWD). These tools are used more frequently in wells where the inclination 

angle becomes too steep to push traditional logging tools.  

With the emphasis that has been placed in recent years on directional (horizontal) 

drilling, MWD tools that incorporate gyroscopes and accelerometers, among other 

sensors, assist the driller in maintaining the well inside a target formation. In 

addition to horizontal drilling, common practice in the industry has become to drill 

multiple wells from the same pad to save on cost. This is especially prevalent in 

areas like the Appalachian Basin where the surface topography makes it difficult 

to find flat stretches of land large enough to locate a pad. Since companies are 

now starting several wells with minimal space between them, drilling precisely has 

become important not just with regards to economics, but to safety as well.  

3.7.2 SENSOR USE 

Since the pilot-scale rig was designed to be fully autonomous, the acquisition and 

transference of sensor input was a critical component of the rig. Three Arduino 

boards were used for the control and were directly tied to maintaining sensor 

information, with the fourth Arduino was used to output data to a computer for 

recording purposes. While the scope of this study does not include the control 

algorithm and how the sensor input affected it, a brief summary of the sensors 

used will follow.  
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The most important independent sensor that the rig employed was the strain 

gauge, which was discussed earlier. The strain gauge sent data to the control box 

with regard to the weight that was seen at the bit, and the algorithm would send 

controls to the position control motor to either lift or lower, depending on whether 

more or less weight was required. Drill stem RPM was determined from the 

electrically limited drill motor, but the design included a shaft encoder that would 

verify these speeds. As RPM and WOB were the two biggest factor in the Rate of 

Penetration (ROP), these inputs were the most critical to the design of a control 

algorithm that would optimize the drilling rate.   

In addition to the RPM and WOB, a linear displacement sensor used a laser and 

backstop to determine the actual height of the drill motor. This information could 

be pulled from the position control motor, but in the case of the chain skipping or 

the system resetting, this input could be used to verify the actual position.  

Since one of the specifications was overall power consumption, a wattmeter was 

attached to the main system surge protector to measure the wattage that all of the 

components used. This was used in the determination of the total HP all three 

motors and the controls system used, which was low for the competition.  

A strain gauge was also wired to the competition drill pipe to provide information 

on the strain seen by the thin-walled aluminum, which was the component most 

likely to fail. However, only one drill pipe was fitted with the strain gauge, so when 

the drill pipe fittings failed during the testing, that information was no longer 

recorded with the subsequent pipes. Another important factor in the overall sensor 

design for the pilot-scale rig, and for industry rigs in general, is redundancy. When 

an algorithm or an operator is relying on sensor input to make decisions, a bad 

reading from a sensor can lead to inappropriate decisions being made, whether by 

an operator or an algorithm. Based on this philosophy, back up sensors were 

installed for any value deemed critical to the operational algorithm.  
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3.7.3 STATUS LIGHTS 

To provide easily interpreted, highly visible cues as to the operation of the rig, 

status lights were implemented. The lights consisted of 3 different colored LED 

strips, 2 of which were used inside the control box and 1 of which was used inside 

the frame of the rig itself. The three different colors depicted the different operating 

scenarios, where green lights in the control box indicated that the system was 

powered up, red lights on the rig frame indicated that the algorithm had been 

initiated and the rig was drilling, and yellow/orange lights in the control box 

indicated that the emergency stop button had been depressed. Green lights were 

meant to convey that approaching the controls box was acceptable, whereas red 

was designed to give the impression that a reasonable distance should be 

maintained between the rig and spectators. In aligning these colors with a 

recognizable color scheme, it was the intention that individuals who were present 

for the drilling would be aware of what state the rig was in, and whether it was 

appropriate to approach. An example of each status light can be seen in Figures 

32, 33, and 34.  

 

FIGURE 32 - GREEN RIG STATUS LIGHTS 
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FIGURE 33 – YELLOW RIG STATUS LIGHTS 

 

FIGURE 34 – RED RIG STATUS LIGHTS 

3.7.4 TEST RESULTS 

The actual test sample was used as validation for the control algorithm more than 

for the mechanical design and structure, as the mechanical design had undergone 

numerous tests to that point. Prior to the testing, dozens of feet of rock were drilled 

through successfully with no serious mechanical design failures. Approximately 30’ 

worth of 10,000 psi compressive strength sandstone was drilled, along with 4’ of 
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dolomite, 3’ of coal, and over 8’ of concrete. Throughout those tests, only one drill 

pipe, purchased separately for testing purposes, was used.  

During the testing of the unit with the supplied drill pipe, fitting and bit, 

approximately 15 minutes into drilling, the provided pipe fitting failed and the drill 

stem was unable to spin. The drill pipe was replaced with the other pipe that was 

provided, but at approximately 24 minutes into drilling, the second drill pipe failed 

in the same fashion, and it was permitted for the rig to use a drill pipe that had 

been utilized for testing the composite sample. The total drilling time to finish 

drilling the 10.5 inches of test sample was 27 minutes. 
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4. CONCLUSIONS  

In this study, a fully automated pilot-scale drilling platform was designed, 

constructed, and successfully tested. It was determined that rig component 

analysis, with regard to strength and weight, allows for a rig to be designed with 

minimum weight to support successful drilling operations. The thin-walled 

aluminum drill pipe was the obvious component for failure, an analysis was 

completed to select the drill motor based on the strength of that pipe. Once the 

analysis showed the lowest power-consuming motor that could provide the desired 

safety factor, the analysis was extended to show that the other components in the 

system were indeed less at risk than the drill pipe.  

Using structural components that were lightweight and adaptable led to lower 

construction cost and greater mobility. The design of the rig was adaptable to 

changes in expected sample size, weight, and drill pipe thickness. A more 

permanent steel structure would have been less mobile and costlier to adapt to 

changing circumstances. These conclusions support the use of t-slotted aluminum 

extrusions in the construction of lab-scale models, where different automation 

techniques can be tested with various rig configurations.  

Several BHA designs were designed and tested using bearing bronze and plastic 

non-rotating stabilizers. The BHA design successfully drilled over 40 feet of rock 

with only one mechanical failure. The stabilizer design mitigated hole deviation 

even when drilling formations at extreme angles, and gave no indication of 

disrupting the fluid flow in the annulus of the hole. In addition, the fluid circulation 

system achieved adequate hole cleaning at an overall low power consumption, 

and the filtration system allowed the system to be fully automated without any 

damage to the pump. 

 The techniques used in this study for drill stem analysis, motor selection, structure 

selection, and counterweight usage are all applicable to lab-scale models that can 

be used to test automation practices in the future. The primary outcome from the 

rig in this study was in the development of an affordable, adaptable, pilot-scale rig 
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capable of testing automation algorithms, test bits, drill stem materials, and drilling 

parameters. The work done in this research may assist companies in designing 

their own rigs, furthering work than can be done to develop automation at a lower 

cost. 
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5. RECOMMENDATIONS  

Although the designed rig was successful in drilling multiple samples, there were 

still several recommendations that could be made to improve upon the design and 

further the research into rig automation. Designing the corner posts with “quad” 

rather than “single” aluminum extrusions would add a significant amount of 

strength to the structure, which may negate the need for the steel cable and 

turnbuckles. In addition to the added structural strength, the extra mounting rail on 

each face of a quad would allow for easier attachment of outside components and 

a more general rig adaptability. Also, the difference in weight between four single 

posts at 7’ tall and four quads would only add approximately 25 pounds to the 

weight of the rig, not including any loss in weight from the steel cable.  

Another recommendation for the rig would be to use quick-connect harnesses for 

the wiring between the control table and the rig, such that the table could be more 

easily disconnected and removed. In addition to the loss of weight when 

transporting the rig, making the control table support its own weight would take 

considerable stress off the supports that were currently used to attach it to the rig. 

The four corner posts could also be mounted farther apart to allow for larger 

sample sizes if the table could be supported separately. 

The mounting points for the guide rails should also be moved further away from 

the drill motor to allow for easier access to the sensors attached to the motor 

mount. The result would be a slightly larger motor mount, adding approximately 1 

lb. of material, but significantly easier access to adjust and calibrate the strain 

gauge and distance sensor.  

Drill rig structure analysis has been extensively researched and industry rigs are 

not limited to a specific thickness of drill pipe, so this research is less applicable to 

full-scale rigs than pilot-scale in that regard. Drill stem analysis is also commonly 

studied, so the most important concepts that can be taken from the work done are 

in the principles that can be applied to designing and utilizing a lab-scale drilling 

rig to further technology being developed by the industry.   
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