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Abstract 
 

The Effect of Physicochemical Properties on the Multiwalled Carbon Nanotube-induced 
Genotoxicity and Carcinogenesis 

 
Katelyn J. Siegrist 

 
Multiwalled carbon nanotubes (MWCNT) are one of the most exciting industrial materials of our 

time.  They are used in life-saving medical therapeutics and many commercial products that could 
make day-to-day life seem effortless.  However, previous toxicological research has demonstrated this 
material to be significantly genotoxic in both in vitro and in vivo models and potentially carcinogenic in 
the lung.  The unique physiochemical properties of MWCNT make respiratory exposures likely in 
workers.  Combining the genotoxic effects with the potential for lung deposition in the workplace, 
MWCNT should be considered as a potential health hazard.  Altering the physiochemical properties of 
MWCNT has been shown to effect toxicity, however there has been limited research on how this effects 
the mechanism of genotoxicity and carcinogenicity.   

Therefore, the aim of the first study was to determine the effect of MWCNT diameter on the 
mechanism of genotoxicity.  Previous research has demonstrated that exposure to MWCNT material 
both in vitro and in vivo induces DNA damage leading to significant aneuploidy.  It is known that the 
microtubules that make up the mitotic spindle are 20 nm in diameter.  Therefore, human lung epithelial 
cells were exposed to MWCNT material 10-20 nm in diameter at occupationally-relevant doses.  
Significant genotoxicity was observed as arrests in the G1/S phase of the cell cycle.  Exposure to 
MWCNT led to significantly increased mitotic spindle aberrations that were predominately monopolar in 
morphology and fragmented centrosomes.  Exposure to the highest dose produced 62% aneuploidy 
cells that was significantly greater than control.  Aneuploidy was the result of both gains and losses of 
chromosomes 1 and 4 

The aim of the second study was to determine the effect of MWCNT chemical composition on 
the mechanism of genotoxicity.  Previous research has demonstrated that eliminating metal 
contaminates in the MWCNT through high-temperature treatment post-synthesis (MWCNT-HT) or 
incorporating nitrogen into the lattice structure of the walls of MWCNT structure during synthesis 
(MWCNT-ND) can potentially reduce the toxicity of the pristine material (MWCNT-7).  Therefore, two 
types of human lung epithelial cells were exposed to MWCNT-7, MWCNT-HT, and MWCNT-ND in a 
dose-response.  Significant genotoxicity was observed in two cell types through arrests in the cell cycle 
that indicate centrosomal damage after exposure to each MWCNT material.  Exposure to each 
MWCNT material also led to significantly increased mitotic spindle aberrations and fragmented 
centrosomes.  Exposure to the highest dose of MWCNT-7, HT and ND material produced 65, 58, and 
53% aneuploidy cells, respectively.  Detailed chromosome analysis demonstrated significantly 
increased frequency of fragmented centromeres and translocations between chromosomes 1 and 4. 

The aim of the third study was to determine the mechanism of carcinogenicity of inhaling 
MWCNT-7 material via a two-stage initiation-promotion protocol.  Previous research demonstrated the 
MWCNT-7 material to be significantly genotoxic and the potential for MWCNT material to be a tumor 
promoter.  At 17 months post-exposure, 23.2, 51.9, 26.5, and 90.5% of mice from the control, initiating 
agent only, MWCNT-7 only, or initiating agent and MWCNT-7 group, respectively, had lung tumors.  
The tumor multiplicity, potency, and volume in the latter group was significantly greater than control 
indicating that MWCNT-7 material is a strong tumor promoter.  Additionally, mice that received both 
initiating agent and MWCNT-7 demonstrated evidence of serosal tumors morphologically consistent 
with sarcomatous mesotheliomas. 

In conclusion, these studies indicate that MWCNT material, regardless of physicochemical 
modification, is significantly genotoxic by disrupting the mitotic spindle and fragmenting centrosomes 
leading to significant aneuploidy.  The MWCNT-7 material produced the greatest amount of aneuploidy.  
Inhalation exposure to this material was significantly carcinogenic and shown to work through the 
mechanism of tumor promotion rather than initiation.             

 



iii 

 

Dedication 
 

I would like to dedicate this dissertation to my parents, Andrew and Rita Siegrist, for whom this 
work would not have been possible.  Thank you for listening to me, over the last six and a half years, 
talk about strange things like nanotubes, mitotic spindles, and probes.  Not only would you both 
patiently wait until I finished rambling, you would always provide me with an insightful question and 
reassurance I was doing a good job.  You both were there when I was feeling overwhelmed and 
stressed by the demands of grad school with either a shoulder to cry on or with a good ‘ol fashioned 
tough love pep talk.  Since I can remember you both have always afforded me every opportunity to 
achieve success, both professionally and personally.  I don’t have the words to thank you properly. 

 
 

Acknowledgments 
 

 I has been an honor to work with my mentor, Dr. Linda Sargent, for the past six and a half 
years.  I met Linda while an undergrad as an intern at the wellness facility at NIOSH.  She would come 
down for a personal training session, but instead we would talk about science and research.  Needless 
to say, I was a terrible personal trainer.  But, Linda recognized my potential as a scientist and offered 
me a job immediately following graduation as a regular fellow in her lab upstairs to study carbon 
nanotubes.  I still can’t believe she kept me around this long.  I know I have not made this journey easy 
for either one of us, but I hope I have made her proud.  I am beyond grateful; I owe her my life and my 
career.  However, absolutely none of this work would have been possible without the training I received 
from a laboratory technician, David Lowry.  David is much more than a technician; he’s a brilliant mind, 
teacher, and friend.  He should also be given credit for maintaining peace and sanity within the lab!  I 
don’t know what I will do without them by my side in the lab.   
 I would like to sincerely thank my committee members, Dr. Michael McCawley, Dr. Dan 
Panaccione, Dr. Nancy Lan Guo, Dr. Dale Porter, and Dr. Travis Knuckles, for providing me with 
insightful feedback and trusted guidance regarding the science.  However, each member taught me life 
lessons that can’t be taught in the lab.  Dr. McCawley has taught me to always think outside the box, 
not be afraid to ask the hard questions, and know my worth.  Dr. Panaccione taught me that extremely 
successful scientists can also be extremely kind and patient.  Dr. Guo has taught me that success is 
not only measured from what you put on paper.  Dr. Porter has taught me to always pay attention to the 
details.  Dr. Knuckles has taught me that you have to work hard, really hard, to play hard.  In addition to 
my committee I’ve had several other mentors along the way that have helped guide me through my 
research, student life, or professional life and deserve recognition: Dr. Michael Kashon, Dr. Todd 
Stueckle, Dr. Ann Hubbs, Dr. Bob Mercer, Dr. Aaron Erdely, Dr. Christa Lilly, Dr. Doug Myers, Dr. 
Kimberly Rauscher, Dr. Keith Zullig, and Dr. Ranjita Misra.  There are many others at either NIOSH or 
the School of Public Health that have contributed to my degree.  It really takes a village.   

Lastly, I would like to thank my friends and family.  My sister and brother-in-law, Andrea and 
Scott Christophel, have always supported my decision to go back to school and fight for what I know is 
right.  My fellow classmates, Dr. Meagan Stabler, Dr. Termeh Feinberg, Dr. Amna Umer, Dr. Halima 
Ahmadi-Montecalvo, Dr. Sherry Owens, Amy Hunter MPH, Travis Goldsmith, and Maya Nye, deserve a 
medal for maintaining my sanity (however relative that is) and focus throughout my time in the graduate 
program.  It was a rough ride and you guys did a great job navigating!  Thank you to Mike and Kim 
Manuel, Adam Ware, Dr. Katie Abraham, and Anna Jaeschke, MS, MA, PhD for being incredibly 
supportive friends.  And to my dearest friends, who are more like sisters, Lauren Branch, MPH, 
Veronica Milliken, MS, Katie Wilson, MA, JD, Katie Moore, MA, and Rachel Morgenstern, MPA, “Here's 
to strong women. May we know them, may we be them, may we raise them."    
  



iv 

 

Table of Contents 

 
Abstract ................................................................................................................................................ ii 

Dedication ............................................................................................................................................ iii 

Acknowledgements ............................................................................................................................. iii 

Table of Contents ................................................................................................................................ iv 

I. Chapter 1: Introduction .................................................................................................................... 1 

Background ........................................................................................................................................... 1 

Toxicity .................................................................................................................................................. 3 

Gap in literature and purpose of research .............................................................................................. 7 

References .......................................................................................................................................... 12 

II. Chapter 2:      Genotoxicity of multi-walled carbon nanotubes at occupationally relevant 

doses  ............................................................................................................................................. 20 

Abstract ............................................................................................................................................... 21 

Introduction .......................................................................................................................................... 22 

Methods ............................................................................................................................................... 24 

Results ................................................................................................................................................ 30 

Discussion ........................................................................................................................................... 33 

References .......................................................................................................................................... 43 

III. Chapter 3: Fragmented centromeres, translocations, aneuploidy, aberrant mitotic spindles, 

and fragmented centrosomes in human lung epithelial cells exposed to Mitsui-7, heat-treated, 

and nitrogen-doped multi-walled carbon nanotubes .................................................................. 56 

Abstract ............................................................................................................................................... 57 

Introduction .......................................................................................................................................... 59 

Methods ............................................................................................................................................... 61 

Results ................................................................................................................................................ 69 

Discussion ........................................................................................................................................... 74 

References .......................................................................................................................................... 86 

IV. Chapter 4: Promotion of lung adenocarcinoma following inhalation exposure to multi-walled 

carbon nanotubes ....................................................................................................................... 104 

Abstract ............................................................................................................................................. 105 

Introduction ........................................................................................................................................ 107 

Methods ............................................................................................................................................. 109 

Results .............................................................................................................................................. 115 

Discussion ......................................................................................................................................... 119 

Conclusions ....................................................................................................................................... 125 



v 

 

References ..............................................................................................................................................  

V. Summary ...................................................................................................................................... 151 

Introduction ........................................................................................................................................ 151 

Summary of Key Findings .................................................................................................................. 151 

Discussion ......................................................................................................................................... 153 

Future research and conclusions ....................................................................................................... 158 

References ........................................................................................................................................ 160 

VI.  Appendices ................................................................................................................................. 165 

Appendix A ........................................................................................................................................ 165 

VII. Curriculum Vitae .................................................................................................................. 167 

 

 

 

 

 

 

 

 

 

 

  



1 

 

I. Introduction 

 
Multiwalled carbon nanotubes (MWCNT) are one of the most exciting industrial materials of our 

time.  The life-changing potential of this material has not gone unnoticed by the scientific community.  

Currently, millions of dollars and countless hours are poured into the research and development of 

MWCNT as life-saving medical therapeutics and commercial products that could make day-to-day life 

seem effortless; the possibilities are endless.  There is great potential for engineered nanomaterials 

such as MWCNT to positively impact human life.  However, as with any new discovery, there are risks.  

Research into the deleterious effects of MWCNT exposure on human health has indicated caution 

should be taken during the production and use of this material in the workplace [1, 2].  The global 

production of MWCNT is projected to increase to 7,000 tons by 2025 [3] due in large part to the 

alteration of the unique physicochemical properties inherent to this material and the development of 

better products.  Therefore, a thorough risk assessment of MWCNT material is imperative to determine, 

not only a safe dose, but also the mechanisms by which these physicochemical alterations affect 

toxicity specifically related to cancer.   

Background 

MWCNT are cylindrical carbon allotropes with multiple layers of graphene.  Individual nanotubes 

can have a diameter of 1-250 nm and a length of 1-10 µm.   Individual MWCNT are rigid structures 

having incredible tensional and torsional strength in relation to their weight and size.  As a bulk material 

MWCNT have an extremely high surface area due to the multiple walls and small size of the individual 

structures.  MWCNT is an extremely durable material that resists enzymatic and mechanical 

degradation due to their atomic structure.   

The high-aspect ratio, fiber-like properties, hollow core and electrical conductivity make this 

material highly coveted for industrial uses such as composite materials, pharmaceuticals, optics, 

electronics, energy production, bioengineering, and water filtration.  However, aerosolization during the 

production and use of MWCNT is likely leading to inhalation exposures in worker populations [4].  
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The production and use of MWCNT materials is a global operation with the majority of 

potentially exposed workers employed by 200 companies spanning North America, Southeast Asia, 

and Europe.  It is estimated that the global production of MWCNT material will reach over 12,800 metric 

tons which equates to a $1.1 billion industry by the end of 2016.  The MWCNT market is projected to 

increase 10.5% annually in large part due to the industrial demand for more efficient products [3].  

Therefore, the alteration of the unique physicochemical properties, thereby increasing the conductivity, 

surface area, strength, etc., of this nanomaterial has been driving the dramatic growth of this industry.  

This presents many challenges to toxicologists and other public health professionals as the risk of 

adverse health effects increases with increasing unknown variables.  However, within this complicated 

equation lies the opportunity to design a safer product whether it be through direct manipulation of the 

material or indirect administrative and engineering controls.          

Although the population of workers potentially exposed to MWCNT in the United States is small 

[5], the in vivo data from rodents exposed to MWCNT suggests the potential for serious health effects 

[1, 6].  An analysis of 8 primary MWCNT manufacturing facilities demonstrated an airborne 

concentration of 10.6 µg/m3 inhalable-sized particles and 2.65 µg/m3 respirable-sized particles in the 

breathing zone of workers [7] which is greater than the recommended exposure limit (REL) of 1 µg/m3 

[8].  A more recent exposure assessment of 14 primary and secondary MWCNT manufacturing facilities 

found a mean personal breathing zone concentration of 0.16 µg/m3 for respirable particles and 1.21 

µg/m3 for inhalable particles [9].  These exposure assessments can be used in the risk assessment of 

exposure to MWCNT.   

Due to the low density and small size, MWCNT material is easily aerosolized in the workplace 

leading to inhalation as the primary route of exposure.  The delivered dose in the lung can be modelled 

and estimated based on characteristics of the MWCNT aerosol particle.  Size of the MWCNT aerosol 

particle determines the pulmonary region of deposition.  Ultrafine particles (<100 nm in diameter) will 

deposit most frequently in the alveolar region of the lung [10].  Therefore, it is reasonable to investigate 

biological health effects associated with the alveoli and small airways, such as pulmonary 

adenocarcinoma. 
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Currently, there are no reported human health effects or cancers related to occupational 

exposure to MWCNT material.  However, a small study (sample size n=13) found significant increases 

in inflammatory markers (malondialdehyde (MDA), 4-hydroxy-2-hexanal (4-HHE), and n-hexanal) that 

were positively correlated with the presence of molybdenum, the catalyst used during synthesis of 

these particular MWCNT, in exhaled breath condensate of workers exposed to MWCNT in a 

manufacturing facility [11].   

The importance of inflammation in cancer has been well documented in animal [12, 13] and human 

studies [14].  Exposure to MWCNT material has been shown to produce significant inflammation in vitro 

[15] and in vivo [16-18].  MWCNT material has been shown to produce other significant effects 

associated with tumorigenesis such as oxidative stress [19-23], fibrosis [24, 25], and genotoxicity (to be 

discussed below) in the lung.  However, the mechanisms by which these effects are generated are 

poorly understood.  Since human studies are not available at this time, the carcinogenicity of MWCNT 

must be assessed using animal and cellular studies.     

Toxicity 

Any damage to genetic information is known as genotoxicity and it can be measured using a 

myriad of techniques.  The observance of DNA double strand breaks (dsb) through comet assay is a 

general indication of genetic damage and is commonly used in genotoxicity screening.  There are many 

techniques used to determine the mechanism of genotoxicity such as micronucleus formation, 

chromosome enumeration, cell cycle analysis, and mutagenicity assays.  Micronuclei can be formed by 

either chromosome breakage or whole chromosome loss.  Enumerating chromosomes is used to 

determine aneuploidy, otherwise known as an abnormal number of chromosomes.  Cell cycle analysis 

is used to measure arrests in the three phases of interphase during mitosis, G1, S and G2.  During 

interphase the cell is preparing to divide by duplicating the DNA and other cellular components.  There 

are checkpoints within this process to recognize and correct errors to the genetic material.  Depending 

on which phase of the cell cycle these arrests occur can be an indication as to the mechanism of 

genetic damage.  For example, an arrest in the S phase of the cell cycle could be an indication of 
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damage to the centrosomes since they are duplicated in this phase.  Mutagenicity assays are used to 

determine errors in DNA base pairs. 

MWCNT material is both passively and actively transported through the cellular membrane 

based on its physicochemical properties, most notably size [26].  However, the nuclear membrane is 

disassembled during mitosis leaving the DNA, mitotic spindle, and centrosomes vulnerable to 

interactions with MWCNT within the cellular membrane regardless or MWCNT nuclear penetration.  

The interaction between the MWCNT material and mitotic spindle is of particular importance 

given that the microtubules that make up the mitotic spindle are 20 nm in diameter [27].  Additionally, 

microtubules are dynamic structures depending on the polymerization and depolymerization of lipophilic 

tubulin proteins [27, 28].  The mitotic spindle apparatus is organized by the centrosome structure 

consisting of lipophilic centrin and pericentrin proteins at the spindle poles [28].  Therefore, it is 

reasonable to investigate mechanisms of toxicity associated with the interaction between MWCNT and 

these nuclear structures. 

Disruptions to the mitotic spindle can lead to aberrant spindle morphologies, fragmented 

centrosomes, and unequal separation of the DNA, otherwise known as aneuploidy.  Disruption of the 

mitotic spindle and aneuploidy in cultured cells is strongly correlated with in vivo carcinogenesis at 

occupationally-relevant doses [29-32].  Other genotoxic mechanisms have been observed in many 

types of cultured cells and tissues after exposure to MWCNT material, however this review will focus on 

effects specifically in the lung since it is the primary route of occupational exposure.   

Exposure to 50 µg/cm2 Mitsui-7 MWCNT material (MWCNT-7) in murine alveolar macrophages 

resulted in DNA dsb measured by the comet assay [33].  A549 cells, a human lung epithelial cell line 

derived from an adenocarcinoma, were exposed to 5-100 µg/mL MWCNT and increases in dsb were 

measured via the comet assay, however statistical significance varied with concentrations and 

exposure times [34].  DNA dsb were also observed in A549 cells following exposure to 20-40 µg/cm2 

MWCNT for 4 hours [35], 12.5 µg/mL MWCNT for 1 hour [36], and 50 µg/mL of MWCNT with varying 

diameters and length for 3 hours [37].  MeT-5A cells, an immortalized human lung mesothelial cell line, 

was exposed to 5-200 µg/cm2 MWCNT for 48 hours and a dose-dependent increase in SB was 
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observed [38].  Ursini et al. measured significant increases in dsb in A549 cells and BEAS-2B cells, an 

immortalized human lung epithelial cell line, exposed to 10 and 40 µg/mL MWCNT for 24 hours [39].         

Isolation of total lung cells in mice exposed to MWCNT via intratracheal (i.t.) instillation 

demonstrated increased DNA dsb measured by the comet assay after exposure to 128 µg/mouse [40] 

or 50 and 200 µg/mouse [22].  Poulsen et al. also exposed mice to 0, 18, 54, and 163 µg MWCNT via 

i.t. installation and found increased DNA dsb in bronchial alveolar lavage (BAL) fluid cells 3 days post 

exposure from the 54 and 163 mg doses of the MWCNT with a smaller diameter (4.5 nm) and 1 day 

post exposure from all doses of the MWCNT with the larger diameter (67 nm) [41].  Rats exposed to 

0.17, 0.49, and 0.94 mg/m3 via whole-body inhalation for 5 days demonstrated increased DNA dsb in 

pulmonary cells in a dose-dependent manner either immediately or 1 month post-exposure with 

significance achieved at the highest dose [42].     

Micronuclei formation was increased in Chinese hamster lung (CHL/IU) cells in a dose-

dependent manner exposed to 1.3-80 µg/mL MWCNT for 24 hours and 0.02-5 µg/mL MWCNT for 48 

hours [43], V79 cells exposed to 0.27, 0.53, 1.05, and 2.1 µg/cm2 MWCNT for 24 hours demonstrated a 

dose-dependent increase in MN with a decrease in mitotic index [44], rat lung epithelial cells exposed 

to 10-50 µg/mL MWCNT for 48 hours [45], and A549 cells were exposed to 10 and 50 µg/mL MWCNT 

for 24 hours [23] and 12.5 µg/mL MWCNT for 1 hour [36].  Dose-dependent polyploidy was measured 

in CHL/IU cells exposed to1.3-80 µg/mL MWCNT for 24 hours and 0.02-5 µg/mL MWCNT for 48 hours 

without structural aberrations [43].  Chronic exposure of 1 µg/mL MWCNT in the BEAS-2B cell lead to 

significant anchorage-independent clonal growth and evidence of neoplastic transformation through 

increased chromosome aberrations specific to oncogenes measured by CGH array [46].  Carbon 

nanotubes have been shown to bind to G-C rich and telomeric regions of the chromosomes resulting in 

conformational changes in the DNA structure [47, 48] which may explain the mechanism of DNA 

breakage.     

A dose-dependent increase in MN formation was measured in type II pneumocytes isolated 

from rats exposed to 0.5 and 2mg of MWCNT via i.t. installation [45].  Mutations in the gpt locus were 

observed in whole lung cell samples from ICR mice exposed to four rounds of i.t. installations of 0.2 mg 
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MWCNT [22].  Statistically significant increases in G:C to C:G transversions in lungs from gpt 

transgenic mice exposed to 0.8 mg of MWCNT via i.t. installation indicate DNA mutations caused by 

oxidative damage [22].  Kim et al 2014 exposed Fischer 344 rats to 0.17, 0.49, and 0.96 mg/m3 

MWCNT material via nose-only inhalation for 28 days and found significantly increased DNA SB in 

isolated lung cells immediately after or 90 post exposure.  There was a significant increase in ROS 

production in the lungs following exposure indicating an indirect mechanism of DNA damage [16].  

Subcutaneous tumors were formed in a xenograft mouse model with MWCNT-induced clones of BEAS-

2B chronically exposed to 1 µg/mL in culture that showed increased DNA copy number for 17 

oncogenes associated with nonsmall cell lung cancer [46].   

Asbestos fibers have demonstrated a direct mechanism of carcinogenesis through the physical 

disruption of cellular division leading to chromosome instability such as aneuploidy and structural 

aberrations [49, 50].  Asbestos fibers have an affinity for microtubules which results in interactions with 

the division apparatus (i.e. mitotic spindle) leading to multipolar mitoses, failed cytokinesis, and lagging 

chromosomes [31, 32, 51].  Such genetic effects manifested as disruptions in the cell cycle [50].  

Chromosome instability (CIN) and sustained proliferation are hallmarks of cancer and are necessary 

components in tumor progression allowing preneoplastic cells to transform into frank neoplasms [52-

55].  Single-walled carbon nanotubes (SWCNT), an extremely similar carbon allotrope material, have 

also been shown to affect cellular division leading to aneuploidy.  Exposure to SWCNT produced 

multipolar mitotic spindle aberrations in the BEAS-2B cell [56] and significant aneuploidy in the SAEC 

cell, a primary human lung epithelial cell, in a dose-dependent manner [57].     

There is evidence that MWCNT toxicity follows the fiber-induced pathogenicity paradigm, much like 

the known fibrous carcinogen, asbestos [58].  MWCNT are extremely biopersistent materials due to 

their length and chemical resiliency [59] leading to prolonged cellular exposures and the potential for 

chronic disease outcomes.  The MWCNT are able to penetrate the alveolar space, deposit, and migrate 

throughout the pleural interstitium and lining [59, 60].  Tumor formation was not observed in rasH2 mice 

exposed to 75 mg/kg MWCNT subcutaneously [61], Wistar rats exposed to 2 and 20 mg of MWCNT 

material via IP injection [62], or F-344 rats exposed to 10 mg MWCNT material via intraperitoneal 
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implantation [63].  Takagi et al. exposed p53 deficient and wild type mice to 0.003-3 mg MWCNT-7 

material through intraperitoneal (IP) injection and measured a significantly greater increase in incidence 

of mesotheliomas at all doses in p53 deficient mice compared to wild type [64, 65].  Another 

investigation found 86% of F-344 rats to have mesotheliomas after exposure to 10 mg MWCNT 

material through intrascotal injection [66].  However, these investigations did not follow the primary 

route of exposure.   

Once inhaled, the MWCNT material is able to penetrate the deep lung and deposit at the alveolar 

surface [59].  There have been very few studies investigating the formation of tumors in animals 

exposed to MWCNT material via inhalation.  Additionally, the mechanism of in vivo carcinogenicity is 

not known.  One study demonstrates MWCNT material to be a possible tumor promoter [64, 65], 

however mutagenicity data has indicated the potential for MWCNT material to be a tumor initiator [22].   

  These data indicate the tumorigenic potential of pristine MWCNT material, however differences 

have been observed regarding physicochemical characteristics.  Adenomas and adenocarcinomas 

were reported in C57BL/6 mice exposed to 0.1 mg MWCNT material via i.t. installation for six months.  

Acid-treated MWCNT were considerably shorter than the pristine MWCNT, 0.567 and 7.71 µm, 

respectively.  The pristine MWCNT material produced more tumors in the mice indicating it was more 

potent.  The difference in effects was attributed to the physicochemical differences between the two 

materials [67].  Wistar rats were exposed to a high and low dose of four types of MWCNT materials with 

varying physicochemical properties via intraperitoneal injection and each material was found to produce 

mesotheliomas.  However, MWCNT materials with curved structures were found to be less potent than 

needle-like MWCNT materials indicating that physicochemical properties can affect carcinogenicity [68].  

Additionally, it was suggested that MWCNT diameter plays a part in the carcinogenicity after exposing 

rats to MWCNT 15, 50, and 150 nm in diameter via IP injection.  Mesotheliomas were found in all rats 

exposed to 50 nm MWCNT material but none in rats exposed to 15 or 150 nm MWCNT material [69, 

70].    

Gap in literature and purpose of the research 
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There are myriad ways to alter the physicochemical characteristics of MWCNT materials and 

these changes could have effects on the toxicity [71, 72].  MWCNT material of varying physicochemical 

properties have been associated with different biological effects.  Many properties have been shown to 

affect cellular and nuclear uptake [73], oxidative potential [74], and inflammation [75, 76], however this 

review will focus on the effects specific to direct interactions between MWCNT and genetic material 

leading to genotoxicity.  Unaltered MWCNT material, otherwise known as pristine, has chemical 

impurities from residual metal catalyst material leftover from the synthesis process.  These impurities 

can be removed through exposure of the pristine MWCNT material to extremely high temperatures 

thereby producing a purified form (MWCNT-HT).  However, a reduction of metal impurities was not 

associated with a reduction of toxicity in V79 cells exposed to pristine and purified MWCNT material 

[44]. 

  During the synthesis process the length and diameter of the individual MWCNT structures can 

be altered.  MWCNT material shorter in length has been shown to cause less inflammation than longer 

MWCNT in animals exposed via IP injection [77, 78].  Long and thick MWCNT material was 

demonstrated to be more inflammogenic and damaging to the DNA than short and thin MWCNT 

material in A549 cells and C57Bl/6 mice [37].  Poulsen et al demonstrated that larger diameter was 

associated with increased genotoxicity and inflammation in C57Bl/6J mice exposed to 10 different 

MWCNT via i.t. installation [79].  Double-walled carbon nanotubes (DWCNT), pristine and purified 

SWCNT, and MWCNT material was applied to V79 cells and genotoxicity was measured using the 

comet assay.  The greatest genotoxic effect was found with exposure to MWCNT, the widest material, 

indicating that increased diameter is associated with increased toxicity [44].      

 Additionally, chemical composition of the MWCNT material can be altered through the 

synthesis process.  Nitrogen can be incorporated into the lattice structure of the MWCNT walls during 

synthesis thereby producing a nitrogen-doped MWCNT material (MWCNT-ND).  Immortalized small 

airway epithelia cells exposed to either pristine MWCNT-7 material or MWCNT-ND material 

demonstrated differences in ROS generation, proliferation, and cell cycle [80].       
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     Physicochemical alterations can be made post-synthesis through chemical functionalization 

and acid washing.  Exposing MWCNT material to a strong acid is a method of reducing residual metal 

catalyst.  This method has also been shown to produce chemically-functionalized MWCNT materials 

and MWCNT materials with shorter tube lengths.  Chemical functionalization of MWCNT material has 

been shown to be acutely less toxic than pristine MWCNT material through analysis of inflammatory 

regulators, oxidative stress factors, and morphology in vivo [81].  Carboxylated MWCNT material 

produced by washing the material with a strong acid was shown to be more genotoxic than pristine 

MWCNT material in the A549 and BEAS-2B cell types as measured via the comet assay [39].  

However, acid washing has also been shown to degrade the MWCNT material by producing shorter 

tube lengths and structural defects in the nanotube walls [82].  These data indicate a need for 

mechanistic data related to genotoxicity for MWCNT materials of different physicochemical 

characteristics.  Given the genotoxic similarities between asbestos and SWCNT material, we 

investigated the roll of diameter and chemical properties in the mechanism of MWCNT-induced 

genotoxicity and carcinogenicity.   

 There are many different types of MWCNT material and data of the carcinogenic potential for 

any MWCNT material is sparse.  However, there is sufficient evidence that demonstrated MWCNT-7 

material is uniquely toxic.  These data show MWCNT-7-induced mesothelioma in rodent models 

exposed through either i.t. installation or IP injection which is not representative of a true workplace 

exposure.  Additionally, the mechanism of carcinogenicity, following a two-stage initiation/promotion 

protocol, from exposure to MWCNT-7 material has not been determined.    

Therefore, the following studies were designed to evaluate 1) the effect of MWCNT diameter on 

the mechanism of genotoxicity, 2) the effect of chemical alterations of MWCNT on the mechanism of 

genotoxicity, and 3) the mechanism of tumorigenesis of MWCNT-7 via inhalation.  These studies will 

help in our understanding of the role physicochemical alterations play in the mechanisms of 

genotoxicity leading to tumor formation and also establish the carcinogenicity of MWCNT-7 in 

particular.  The specific aims of the studies were as follows: 
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Study 1 

To determine the effect of MWCNT diameter on the mechanism of genotoxicity human lung 

epithelial cells were exposed to MWCNT material 10-20 nm in diameter at occupationally-relevant 

doses since microtubules of the mitotic spindle are 20 nm in diameter.  Exposed cells were analyzed 

through flow cytometry for cell cycle disruptions indicating overall genotoxicity.  Confocal microscopy 

analysis of the mitotic spindle, fluorescent in situ hybridization of chromosomes, and transmission 

electron microscopy of the cells were used to determine mitotic spindle aberrations, aneuploidy, 

centrosome integrity, and DNA integrity.  It was hypothesized that MWCNT would produce significant 

genotoxicity via multipolar mitotic spindles and fragmented centrosomes leading to significant increases 

in aneuploidy.   

Study 2 

To determine the effect of chemical alterations of MWCNT on the mechanism of genotoxicity 

human lung epithelial cells were exposed to MWCNT-7, MWCNT-HT (a MWCNT-7 purified by 

exposure to high temperature), and MWCNT-ND in a dose-response since the latter two materials have 

been chemically-altered and shown to have less toxic potential.  Exposed cells were analyzed through 

flow cytometry for cell cycle disruptions indicating overall genotoxicity.  Confocal microscopy analysis of 

the mitotic spindle, fluorescent in situ hybridization of chromosomes, and transmission electron 

microscopy of the cells were used to determine mitotic spindle aberrations, aneuploidy, centrosome 

integrity, and DNA integrity.  It was hypothesized that each MWCNT material would produce significant 

genotoxicity via multipolar mitotic spindles and fragmented centrosomes leading to significant increases 

in aneuploidy, however MWCNT-7 material would be most potent followed by MWCNT-HT and ND 

material.   

Study 3 

To determine the mechanism of carcinogenicity of MWCNT-7 material six week old, male, 

B6C3F1 were exposed to MWCNT-7 via inhalation following a two-stage initiation-promotion protocol 
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since MWCNT-7 material has been shown to be significantly genotoxic and carcinogenic via other 

routes of exposure.  Mice received a single IP injection of either, methylcholanthrene (MCA, an initiating 

agent), or vehicle control (corn oil). One week after IP injections, mice were exposed to MWCNT-7 

material (5 mg/m3, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. At 17 

months post-exposure, mice were euthanized and examined for lung tumor formation.  It was 

hypothesized that mice exposed to MWCNT-7 material would have tumors in the lung and the mice 

exposed to MCA + MWCNT would demonstrate greater tumor incidence. 
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Abstract 

Carbon nanotubes are commercially-important products of nanotechnology; however, their low density 

and small size makes carbon nanotube respiratory exposures likely during their production or 

processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized 

human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we 

examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured 

cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). 

MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and 

aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 µg/cm2 MWCNT. 

Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 

0.1 µm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the 

centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer 

cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell 

cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is 

in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following 

exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both 

size and number of colonies compared to diluent control cultures, indicating a potential to pass the 

genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle 

by MWCNT at occupationally relevant exposure levels. 
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Introduction 

Carbon nanotubes (CNT) are used in many consumer and industrial products including electronic 

devices, protective clothing, sports equipment and medical devices as well as vehicles for drug delivery 

[1-3]. Due to the wide variety of applications, the nanotechnology industry is predicted to grow to one 

trillion dollars by 2015 [4]. The low density and small size of carbon nanotubes make respiratory 

exposure likely during production and processing. Indeed, recent investigations have shown that 

carbon nanotubes can be aerosolized under workplace conditions [5-8]. Although carbon nanotubes 

have a large variety of applications, their potential health effects have not been fully investigated. 

The low density, fiber-like geometry and durability of carbon nanotubes are characteristics shared with 

asbestos [9,10]. Single-walled and multi-walled carbon nanotubes have been shown to enter cells and 

induce DNA damage, sister chromatid exchange, chromosome damage and micronuclei in vitro in 

human keratinocytes, human breast cancer cell lines, human lung cancer epithelial cells and 

immortalized mouse fibroblasts (Balb/3 T3 cells) [11-15]. Micronuclear formation can result from either 

a high level of chromosome damage or mitotic spindle disruption. Research by Di Giorgio et al., 2011 

demonstrated significant chromosome breakage by analysis of chromosome spreads as well as DNA 

damage by the comet assay in a mouse macrophage cell line 24–48 hours after exposure to MWCNT 

(10–25 nm) and SWCNT (0.7-1.2 nm) material [16]. The carbon nanotube-exposed cells also had high 

levels of intracellular reactive oxygen species suggesting that carbon nanotubes can cause 

chromosome damage through reactive oxygen species [16]. Increased DNA damage due to oxygen 

radicals was also observed in imprinting control region mice (ICR) mice in vivo following intratracheal 

installation of 0.05 or 0.2 mg MWCNT/mouse [11]. Carbon nanotubes bind to DNA at G-C rich regions 

in the chromosomes including telomeric DNA [17,18]. The interaction with the DNA results in a 

conformational change. DNA intercalation and telomeric binding can induce chromosome breakage 

suggesting that interaction of the nanotubes with the DNA may also be a source of chromosome 

damage. Recent investigations have shown that acid-washed single-walled carbon nanotubes of 1–4 

nm in diameter and one micron in length induce centrosome fragmentation, multipolar mitotic spindles 

and errors in chromosome number in cultured immortalized and primary lung epithelial cells [19]. 
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Furthermore, exposure of cancer cell lines to MWCNT of 5–10 nm diameter and one micron in length 

also results in multipolar mitotic spindles [20]. 

Mitotic spindle disruption and aneuploidy are a concern because these effects have been observed with 

the carcinogenic fiber, asbestos. In vitro investigations have demonstrated that chrysotile asbestos 

exposure causes multipolar mitotic spindles and a G2/M block similar to SWCNT and vanadium 

pentoxide exposure [19,21-24]. Asbestos exposure disrupts the mitotic spindle and causes aneuploidy 

through amplification of the centrosome [21,22]. By contrast, the mitotic disruption and aneuploidy 

resulting from vanadium pentoxide and SWCNT is associated with fragmented centrosomes [19,23]. 

Furthermore, in vitro examinations of asbestos and vanadium pentoxide potency have demonstrated 

that the disruption of the mitotic spindle and aneuploidy in cultured cells is strongly correlated with in 

vivo carcinogenesis [25-28]. Together these investigations indicate the importance of genotoxicity in 

carcinogenesis as well as validating the significance of culture models to predict carcinogenesis. 

To simulate aerosol exposures in the workplace, rodents have been exposed to high aspect ratio 

particles by inhalation, pharyngeal aspiration or intratracheal installation. In a manner similar to 

asbestos, rodent pulmonary exposure to biopersistant carbon nanotubes has been shown to result in 

lung inflammation, epithelial cell proliferation, cellular atypia and mutations in the K-ras gene [29-32]. 

The lung is the principal site of carbon nanotube deposition and toxicity following aspiration or 

inhalation [31,33]. In vivo investigations have demonstrated that carbon nanotube exposure can cause 

macrophages without nuclei as well as dividing macrophages connected by nanotubes [30,31]. 

Exposure of rats to the MWCNT by pharyngeal aspiration has been shown to result in micronuclei 

formation in Type II epithelial cells further indicating the potential for genetic damage [13]. Inflammation, 

cellular proliferation, cellular atypia, mitotic spindle disruption, centrosome fragmentation and errors in 

chromosome number are linked with the development of cancer [34-40]. Chronic exposures to 

asbestos particles which induce strong inflammatory, proliferative and genotoxic responses in the lung 

are associated with an increased incidence of lung cancer in rodents [41,42]. Although the lung is the 

key target organ for particle toxicity, high aspect ratio carbon nanotubes have been shown to 



24 

 

translocate to the subpleural space indicating that the mesothelial cells are also a potential target 

[43,44]. 

The overall objective of our study was to examine the role of CNT diameter in the nanotube-induced 

genetic damage using carbon nanotubes prepared with the same acid washing procedure and one 

micron length used in our previous studies to evaluate the potential genotoxicity of the narrower 

SWCNT [24,45]. Because vanadium pentoxide has been demonstrated to induce aneuploidy and 

mitotic spindle disruption through fragmentation of the centrosome, we selected vanadium as the 

positive control for genotoxicity. Immortalized and primary lung epithelial cells were examined for the 

potential of MWCNTs to cause aneuploidy, mitotic spindle disruption, centrosome fragmentation, and 

cell cycle distribution following exposure of primary and immortalized human epithelial cells to 

occupationally relevant doses of 10–20 nm diameter MWCNT. Primary cells were used in the assays 

since the normal karyotype made it possible to determine changes in chromosome number after 

exposure. The concentrations chosen for the current investigation were selected to be relevant to 

previous in vivo exposure doses of MWCNT of 10–40 µg/mouse (0.5 µg, 1 µg, and 2 µg/kg 

respectively) reported by Porter et al. (2010) [30]. In brief, the mouse lung burdens per alveolar 

epithelial surface area of 500 cm2/mouse lung [46] correspond to in vitro concentrations of 0.02–0.08 

µg/cm2. The minimal in vitro dose of 0.02 µg/cm2 MWCNT would require 4 weeks of exposure at the 

Occupational Safety and Health Administration (OSHA) permissible exposure limit for particles with an 

aerodynamic diameter of 5 microns or less of 5 mg/m3 [47,48]. NIOSH has recently reduced the REL 

from 7 µg/m3 to 1 µg/m3 [49] . Although exposure to concentrations of carbon nanotubes equivalent to 

the current NIOSH REL of 1 µg/m3 would require 34 years to yield a equivalent exposure of the 0.024 

µg/cm2, levels of MWCNT between 0.7 and 331 µg/m3 have been measured in workplace air [6,7,50-

52]. 

Methods 

Multi-walled carbon nanotubes acid washing 

Multi-walled carbon nanotubes produced by chemical vapor deposition (Nanolab Inc. PD15L5-20) were 

acid-washed to remove iron catalyst. The MWCNT were suspended in a mixture of 3:1 v/v sulfuric acid 
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(H2SO4) (Fisher Scientific, Pittsburgh, PA): nitric acid (HNO3) (69.5%, Fisher Scientific, Pittsburgh, PA) 

for 1 hour in a water bath sonicator (Branson 2510, Fisher, Pittsburgh, PA) over ice. The mixture was 

subsequently diluted in deionized water (2 L) and filtered through a 0.2 µm polycarbonate membrane 

filter (Millipore, USA); the filtration step was repeated 6 times to remove catalysts or impurities. All cell 

exposure experiments were performed with one hour acid-washed MWCNT materials. 

Characterization of MWCNT 

Atomic force microscopy (AFM) was used to investigate the length of both pristine and acid-washed 

MWCNT. Commercial Si tips (Asylum Research, AC240TS, USA) were used at their original resonance 

frequency, varying from 50 to 90 kHz. Pristine or acid-washed nanotubes (10 µg/ml) were deposited on 

mica surfaces (9.5 mm diameter, 0.15-0.21 thickness, Electron Microscopy Sciences, USA) and dried 

overnight under vacuum. Scans of 10 µm x 10 µm were acquired using tapping mode in air. At least 30 

individual MWCNTs were analyzed to determine their length. 

Raman spectroscopy was used to characterize the structure of both pristine and acid-washed 

MWCNTs. Raman analyses were performed at room temperature using a Renishaw InVia Raman 

Spectrometer (CL532-100, 100 mW, USA). The excitation source used an argon ion (Ar+) laser 

operating at 514.5 nm. MWCNT (pristine or acid-washed, 1 mg) were mounted on a clean glass slide 

(Fisher, Pittsburgh, PA) and a 20x microscope objective was used to focus the laser beam to a spot 

size of < 0.01 mm2 and to collect the scattered light. Low energy laser of < 0.5 mV and an exposure 

time of 10 sec were used to prevent unexpected heating effects of the MWCNT samples being 

analyzed. Detailed scans ranging from 100 to 3200 cm-1 were acquired. 

The elemental analysis of the pristine and acid-washed carbon nanotubes was examined by energy 

dispersive X-ray spectroscopy (EDX). Both pristine and acid-washed MWCNT (1 mg/ml in water) were 

vacuum-dried on silica wafers. The experiments were performed using a Hitachi S-4700 Field Emission 

Scanning Electron Microscope (USA) and backscattered (BSE) electron detection in a single unit and 

operating at 20 kV. 

ICP-MS was performed to further analyze the chemical composition of the nanotubes as described 

previously. Carbon nanotubes were suspended in pure H2O (18.2 MΩ–cm) at a concentration of 1.0 
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mg/ml. One ml of each vortexed suspension was added to a 100 ml polytetrafluoroethylene digestion 

tube (CEM, Matthews, NC) along with 9.0 ml of ultrapure HNO3 and 1.0 ml of ultrapure H2O2 (Fisher 

Optima, Fisher Scientific, Pittsburgh, PA). Three replicate samples for each nanotube type were 

digested in the Microwave-Assisted Reaction System (CEM, Matthews, NC) by ramping up to 200°C for 

15 min., holding at 200°C for 30 minutes, then cooling to 22°C, adapting a procedure as previously 

described [100]. There was no visible carbonaceous material remaining in any of the samples after 

digestion. After suspension (1 mg/ml), the metal content of the nanotubes was analyzed by ICP-MS 

using the Perkin-Elmer Nexion 300D [101], using 54Fe, 60Ni, and 59Co isotopes. Standards were certified 

multi-element standards in 1% HNO3. 

Dispersity analysis 

The dispersity of pristine MWCNTs and acid-washed MWCNTs in Phosphate buffered Saline (PBS, 

Fisher, Pittsburgh, PA) was determined by centrifuging the corresponding suspensions (initial 

concentration 5 mg/mL for both pristine and acid-washed MWCNTs) at 3000 rpm for 5 min. 

Subsequently, 0.8 mL of the supernatant mixture was filtered through a 0.2 µm filter membrane. After 

complete drying under vacuum, the amount of pristine MWCNTs or acid-washed MWCNTs on the filter 

membrane was measured and the dispersity was calculated based on the starting volumes. The 

obtained values do not reflect the saturation dispersity. 

Cell culture 

Two human respiratory epithelial cell populations were used to examine the potential genetic damage 

to MWCNT exposure. Immortalized human bronchial epithelial cells (BEAS-2B, ATCC, Manassas, VA) 

cultures of passage 4–6 were used to examine the mitotic spindle integrity. The high mitotic rate of the 

BEAS-2B cells allows examination of sufficient number of mitotic spindles following treatment. BEAS-

2B cells grown in serum enriched media double every 18–20 hours and have normal mitotic spindle 

morphology. The high mitotic index of the BEAS-2B cells made it possible to analyze a sufficient 

number of mitotic spindles during the 24 hour exposure. Primary small airway respiratory epithelial cells 

(SAEC; Lonza, Walkersville, MD) from a normal human donor were used to determine the response of 

a normal cell population. In addition, the normal karyotype of the primary cells was essential for the 
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examination of aneuploidy. The SAEC cells double every 20–24 hours which allowed analysis of a 

potential change in chromosome number and centrosome morphology of cells that have divided during 

the 24 hour exposure. The low mitotic index of the SAEC cells (0.5%) prevented the analysis of mitotic 

spindle integrity in this cell population. The BEAS-2B and SAEC cells were therefore analyzed 24 hours 

after exposure to allow a sufficient number of cells that have gone through division. 

BEAS-2B cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) media supplemented with 

10% serum (Invitrogen, Grand Island, NY). The SAEC cultures were cultured following manufacturer’s 

directions and using Cabrex media (Lonza, Walkersville, MD). The cell cultures were examined by 

electron microscopy and cytokeratin 8 and 18 staining to verify the epithelial phenotype of the cells as 

described previously [102]. 

Treatment protocol 

The immortalized BEAS-2B and the primary SAEC were exposed in parallel culture dishes to MWCNT 

or to the positive control, vanadium pentoxide (Sigma St. Louis, MO). Three independent experiments 

were performed for each exposure for SAEC and BEAS-2B respectively. MWCNT and vanadium 

control were suspended in media and sonicated over ice for 5 minutes and 30 minutes respectively. 

The cells were seeded in dishes and exposed 0, 0.024, 0.24, 2.4 and 24 µg/cm2 MWCNT or to 0.031 

µg/cm2 vanadium pentoxide when the cells were 70% confluent. The one milliliter culture was treated 

with 0.024, .24, 2.4 and 24 µg/ml respectively. Twenty-four hours after exposure all cells were prepared 

for analysis of apoptosis and necrosis, integrity of the mitotic spindle, as well as the centrosome and 

chromosome number as described below. 

Viability and apoptosis 

Triplicate cultures were prepared in 96 well plates (Becton Dickinson Franklin Lakes, NJ) for the 

analysis of viability using the Alamar Blue bioassay (Invitrogen, Carlsbad, CA), following manufactures 

directions as described previously [24]. Eight wells were performed for each treatment and dose. Three 

independent experiments were performed for the analysis of cellular toxicity by Alamar Blue. Parallel 

cultures were also prepared in duplicate in one milliliter chamber slides (Nunc Rochester, NY) for the 

analysis of apoptosis using the TUNEL assay following the manufacturer’s directions (Roche, Inc., 
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Indianapolis, IN) with some modifications outlined previously [24]. A minimum of 100 cells were 

analyzed for each sample; experiments were repeated three times for a total of 300 cells for each 

treatment and dose, respectively for the analysis of apoptosis by the TUNEL assay. An additional 

positive control, 1.68 Molar DNase (Sigma St. Louis, MO) was used for the analysis of apoptosis. 

Twenty-four hours after dosing, cells in the chamber slides were fixed in 4% paraformaldehyde in 

phosphate buffer (Sigma St. Louis, MO) and stained with DAPI (Millipore Billerica, MA). The resulting 

stained samples were fluorescently analyzed using a Zeiss Axiophot fluorescent microscope (Carl 

Zeiss Microimaging Inc. Thornwood, NY). 

Mitotic spindle analysis 

BEAS-2B was cultured in 1 milliliter chamber slides as described previously. Dual chambers were 

prepared for each treatment and each cell type. Three independent experiments were prepared for 

each cell type and treatment [24]. A minimum of 100 cells of good centrosome and mitotic spindle 

morphology were analyzed for each sample; experiments were repeated three times for a total of 300 

cells for each treatment and dose, respectively. The centrosome integrity as well as the dispersion of 

carbon nanotubes in the cell cultures was evaluated The spindle integrity of the BEAS-2B cells was 

examined using dual-label immunofluorescence for tubulin and centrin to detect the mitotic spindle and 

the centrosomes, respectively. Primary rabbit anti-beta tubulin (Abcam, La Jolla, CA, USA) and mouse 

anti-centrin antibodies (a generous gift from Dr. Jeff Salisbury), and secondary Rhodamine Red goat 

anti-rabbit IgG and Alexa 488 goat anti-mouse IgG antibodies (Invitrogen, Carlsbad, CA) were used. 

The mitotic spindle and centrosome morphology were analyzed in the BEAS-2B cells using a laser 

scanning confocal microscope (LSM 510, Carl Zeiss MicroImaging Inc., Thornwood, NY) as previously 

described [103]. Briefly, a monopolar or multipolar mitotic spindle was counted as disrupted. The 

location of MWCNT was determined by differential interference contrast. Because the nanotubes block 

the light, the nanotubes produce a black image. To determine the association of the MWCNT with the 

microtubules of the mitotic spindle and the centrosome, serial optical slices was obtained to create a z-

stack and permit three-dimensional reconstruction using LightWave software [104] by TEM following 

methods outlined previously [103]. Briefly, cells were fixed in 2% glutaraldehyde in sodium phosphate 
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buffer, pH 7.2, for 2 h, postfixed in osmium tetroxide, dehydrated through an ethanol series, and 

embedded in Spurr’s resin (Sigma, St Louis, MO). Silver-gold sections were stained in 2% aqueous 

uranyl acetate and Reynolds’ lead citrate, observed using a JEOL 1200 EX electron microscope and 

recorded digitally. 

Chromosome number by fluorescence in situ hybridization (FISH) 

Due to the necessity of a normal diploid karyotype for the analysis of chromosome number, the SAEC 

cells were prepared for analysis of the chromosome number. Fluorescence in situ hybridization (FISH) 

for human chromosomes 1 and 4 was used to determine the chromosome number (Abbott Molecular, 

Des Plaines, IL) according to the guidelines of the American College of Medical Genetics [105]. Three 

independent experiments for a total of 300 cells were evaluated for each treatment and dose. A 

minimum of 100 interphase cells of good FISH morphology were analyzed to determine the number of 

chromosome 1 and 4. The SAEC cells were photographed using a Zeiss Axiophot microscope and 

Genetix Cytovision software. Cells with three copies or greater than 4 copies of chromosome 1 or 4 

were recorded as a gain for that chromosome. Cells with less than two copies of chromosome 1 or 4 

were recorded as a loss of that chromosome. The loss and gain of both chromosomes were added to 

obtain the errors in chromosome number (aneuploidy). 

Colony formation 

Triplicate cultures of SAEC cells were grown in T25 flasks. When the cells were 70% confluent they 

were treated with MWCNT. After 24 hours, the cells were trypsinized, counted and plated at 500 

cells/well in 6-well plates for analysis of colony formation. One month following exposure, the cells were 

washed with PBS, stained with 10% crystal violet solution in neutral buffered formalin (Sigma, Saint 

Louis, MO) and colonies counted. 

Cell cycle analysis for DNA content 

BEAS-2B cells were grown in six parallel T25 flasks. A total of 9 independent experiments were 

performed for the analysis of cell cycle. Twenty-four hours after exposure to 24 µg/cm2 MWCNT or to 

the positive control, 5 µM arsenic (Sigma, St Louis MO), the cells were washed twice with PBS and 

removed from the dishes with 0.25% trypsin prior to detection of the cell cycle. The cells were stained 
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according to (Invitrogen) manufacturer’s instructions. EdU (5-ethynyl-2′-deosyuridine) is a nucleoside 

analog of thymidine and is incorporated into DNA during active DNA synthesis. Detection is based on a 

click reaction- a copper catalyzed covalent reaction between an azide and an alkyne. Twenty-four 

hours after exposure to MWCNT, the cells were washed twice with PBS and incubated with EdU for 2 

hours to detect cells in S-phase. Following incubation, the cells were removed from the plate using 

0.25% trypsin. After fixation and Click-iT Saponin permeabilization, CuSO4 was added to the cells to 

detect the EdU signal. The total amount of DNA was analyzed following incubation with 7AAD (7-

aminoactinomycin D) using a LSR II flow cytometer (BD Biosciences Immunocytometry Systems, San 

Jose, CA). Data were analyzed and plotted using FlowJo v7.2.5 software. 

Statistical analysis 

All analyses were performed using SAS/STAT (Version 9.3) for Windows. Chi-square analysis was 

used to determine statistical significance for the scoring of the mitotic spindle abnormalities and the 

number of cells with abnormal chromosome number. The number of viable and apoptotic cells were 

analyzed using analysis of variance (ANOVA). The mean of duplicate samples were used for the 

analysis. For cell cycle analysis, a mixed model ANOVA was used to compare the proportion of cells in 

G1, S and G2/M phase across treatment groups. Experimental block was utilized as a random factor. 

All differences were considered statistically significant at p < 0.05. 

Results 

Characterization of carbon nanotubes 

Raman spectroscopy was used to characterize the structure of pristine and acid-washed MWCNTs and 

to determine the degree of MWCNTs functionalization after acid treatment. Figure 1A shows the 

Raman spectra of pristine and acid-washed MWCNT. There are 4 bands identified in both pristine and 

acid-washed MWCNTs samples, i.e. D band around 1350 cm-1 that reflects the level of disorder in the 

sample, the G band around 1585 cm-1 indicative of the high degree order and well-structured samples, 

the G’ band around 2690 cm-1 representing the binary disordered band and lastly the peak around 2930 

cm-1 indicative of the oxidation level of the sample being characterized. As shown, the D band was 

wider and had a higher frequency for the acid-washed sample when compared to the pristine 
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MWCNTs. The shift in the D band indicates that the acid treatment minimally altered the chemical 

structure of MWCNTs by disrupting the structured walls and introducing additional functional groups 

(carboxylic acid groups) [53]. For the acid-washed MWCNTs there was also a shift of G’ band towards 

higher frequency; this may be due to the removal of metal catalysts, increase in the number of 

functional groups having electron accepting ability and decrease in the amorphous carbon. The ratio of 

intensity of D to G peaks indicate the degree of functionalization [54-56] and was 0.59 for pristine and 

0.81 for 1 hr. acid-washed MWCNTs. This also confirms that the acid treatment increased the number 

of functional groups (i.e. free carboxylic acid groups) on the walls of the MWCNTs samples. Energy 

dispersive X-ray spectroscopy (EDX) confirmed the increase in the oxygen content due to the acid 

treatment and thus the increase in the MWCNTs degree of functionalization with free carboxylic acid 

groups as shown in Supplementary Figure 1.  Further, the acid washing also reduced the catalyst 

content in the sample (Fe, 0.81). The content of the iron, cobalt and nickel were further analyzed by 

inductively coupled plasma-mass spectrometry (ICP-MS). Specifically, the MWCNT by ICP-MS 

contained 0.03% Fe ±0 .001, 0% cobalt, and 0% Nickel [57]. 

The length distribution of pristine and 1 h acid-washed MWCNT respectively is shown in Figure 1B (at 

least 30 individual MWCNTs were measured for each sample). AFM analysis showed that pristine 

MWCNT samples had an average length of 5499 ± 3009 nm while 1 h acid-washed MWCNTs had an 

average length of 825 ±585 nm respectively indicating that acid treatment led to shortening of the 

nanotubes. The pristine and acid washed MWCNT had a diameter of 15 ±5 nm. Moreover, acid 

washing also increased nanotube solubility in DMEM + FBS by two-fold compared to pristine MWCNT 

[58] as a result of the addition of the free carboxylic acid groups [2]. 

Mitotic spindle disruption 

Two human epithelial cell populations were examined to determine whether MWCNT induced genetic 

damage. Immortalized respiratory epithelial cells (BEAS-2B) were used to determine the effects of 

MWCNT on the mitotic spindle. Primary respiratory epithelial cells (SAEC) were included in the analysis 

to determine whether MWCNT induced errors in chromosome number. Treatment with acid-washed 

MWCNT induced a dose dependent mitotic spindle disruption (Figure 2A). The disrupted mitotic 
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spindles were predominantly monopolar (Figure 2B). Figure 2C shows a 20X photomicrograph of the 

cultured cells with three monopolar mitotic spindles in one 40X field. Only 5-10% of the disrupted 

mitotic spindles were multipolar (Figure 2D). 

Chromosome number 

Primary SAEC cells from a normal donor were used to investigate the effects of MWCNT on the 

chromosome number. The normal karyotype of the primary cells made it possible to evaluate the 

treatment related changes in chromosome number. FISH analysis for either chromosome 1 or 4 

demonstrated a 2.25 ± 1.0% aneuploidy in the untreated SAEC cells (Table 1). The frequency of the 

cells with abnormal chromosome number is within the range reported in adult human cells in culture 

[59,60]. By contrast, the MWCNT-treated SAEC cells had a level of aneuploidy that was comparable to 

the vanadium pentoxide-treated positive control cells (Figure 2D; Table 1). Abnormal chromosome 

number was significantly elevated following MWCNT treatment as follows: 62 ± 7.0%, 24 µg/cm2; 59.0 

± 6.0%, 2.4 µg/cm2; 49 ± 6.0%, 0.24 µg/cm2 and 42 ± 10%, 0.024 µg/cm2 compared with control 

incidence of 2.25 ± 1.0%. Treatment with 0.31 µg/cm2 V205 resulted in 67 ± 6.0% aneuploid cells. The 

chromosome alterations in the MWCNT treated cells were predominantly gains of either chromosome 1 

or 4 (Table 1). The chromosome losses accounted for 24%, 24 µg/cm2; 13%, 2.4 µg/cm2; 8%, 0.24 

µg/cm2 and 12%, 0.024 µg/cm2. Chromosomal gains accounted for over 70% of the aneuploidy (Table 

1). There was also a dose-dependent increase in the number of cells with gains of both chromosomes 

1 and 4 indicating an increase in polyploid cells. The number of alterations of chromosome 1 was not 

statistically different than the alterations of chromosome 4, therefore; there was not a bias for a change 

of either chromosome. 

Interaction of carbon nanotubes with mitotic spindle apparatus 

The MWCNTs were 10–20 nanometers in width. Nanotubes of 10 nanometers or greater can be 

observed using differential interference contrast imaging. MWCNTs were observed in the cytoplasm 

and the nucleus (Figure 3A). The MWCNTs also had a strong association with the centrosomes as 

shown in Figure 3B. The high frequency of monopolar mitotic spindles allowed confirmation of the 

monopolar phenotype by transmission electron microscopy (TEM) as shown in Figure 3C. The 3D 
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reconstructed image demonstrates strong physical associations between the carbon nanotubes, the 

microtubules and DNA and the centrosomes (4A- B). The 3D reconstruction further demonstrated that 

MWCNTs not only associated with the centrosome but inside the centrosomal structure (Figure 4C). 

Viability and clonal growth 

Exposure to MWCNT did not reduce viability 24 hours after treatment in either the primary SAEC or the 

immortalized BEAS-2B cells (Figure 5A). Vanadium pentoxide treatment resulted in reduced viability in 

both SAEC and the BEAS-2B cells. Seventy-two hours following exposure, the viability of the SAEC 

cells was significantly reduced in cells exposed to 0.024, 0.24, 2.4 or 24 µg/cm2 MWCNT (Figure 5 B). 

Three weeks following exposure, the BEAS-2B cells had a small increase in colony formation at 0.024 

µg/cm2 (Figure 5C). One month following exposure, the SAEC cells had a reduced number of colonies 

at the highest dose; however, exposure to 0.024, 0.24 and 2.4 µg/cm2 resulted in a dramatic increase in 

colony formation (Figure 5C). 

Cell cycle 

The impact of MWCNT-treatment on the cell cycle was evaluated by Click-iT EdU Flow Cytometry 

assay. Treatment with 24ug/cm2 MWCNT induced a statistically significant increase in the percent of 

cells in S phase from 32.11% (PBS-treated) to 40.1% (Table 2). When the cells in G2 phase of the cell 

cycle were compared, exposure to the positive control, arsenic, resulted in 32.1% of the cells in G2 

compared to 18.30% of the cells in the PBS control group thus indicating an arsenic-induced block in 

G2 (Table 2, p < .05). 

Discussion 

Since their discovery in 1991 [61] carbon nanotubes have been used for a variety of applications 

including fiber optics [62], conductive plastics, molecular electronics as well as biological and 

biomedical applications [63]. Although the durability and fiber-like structure of carbon nanotubes have 

raised concerns that carbon nanotubes may have effects similar to asbestos, the health effects have 

not been fully investigated [64,65]. Our data reported here are the first to show induction of monopolar 

mitotic spindles, aneuploidy, and a G1/S block in the cell cycle as well as a dramatic increase in colony 

formation following exposure to 10–20 nm diameter MWCNT. Exposure to 0.024 µg MWCNT/cm2 
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resulted in errors in chromosome number and mitotic spindle aberrations in greater than 40% of the 

cells examined. The dramatic increase in MWCNT-induced colony formation and aneuploidy observed 

in the primary SAEC cells was significantly higher than was previously observed in SWCNT-treated 

cells. The proliferation of cells with a high degree of genetic damage could result in the expansion of a 

population of genetically-altered cells. Cell proliferation is important in the second stage of pulmonary 

carcinogenesis, tumor promotion, while genetic instability is observed during the progression of 

preneoplastic cells to frank neoplasia [40,66]. During the progression of neoplastic disease, centrosome 

disruption is observed. The degree of centrosome disruption and aneuploidy is important because it is 

correlated with tumor stage [67-69]. 

The level of centrosome fragmentation, mitotic spindle damage and aneuploidy following MWCNT 

exposure was similar to the effects of the known carcinogen and positive control, vanadium pentoxide. 

MWCNTs were found in association with the DNA, the microtubules, the centrosomes as well as inside 

the centrosome structure. A previous investigation has shown that MWCNT are incorporated into the 

microtubules during polymerization thus forming a microtubule/nanotube hybrid [70]. The mitotic 

disruption that was observed following exposure to MWCNT may be due to a number of factors 

including incorporation of the nanotubes into the centrosome and microtubules of the mitotic spindle 

resulting in failed cytokinesis, failed centrosome duplication or inhibited centrosome separation. If two 

spindle poles are not formed during cell division, the chromosomes are not divided equally and 

chromosome errors occur. 

Exposures that induce monopolar mitotic spindles produce daughter cells that fail to undergo 

cytokinesis and have double the number of chromosomes (polyploid) [71-73]. Although the data from 

the current investigation demonstrated that the aneuploidy was predominantly due to a gain of 

chromosomal material or polyploidy, the chromosomes were also lost in a significant number of cells 

suggesting that the genetic damage was due to more than a failure of cytokinesis. Akasura et al. (2010) 

observed polyploid cells in cancer cell lines following exposure to 0.25 to 50 µg MWCNT of 80 nm 

diameter [74]. Although detailed analysis of chromosome loss and gain was not possible in a cancer 

cell line, the study demonstrated a significant number of polyploid cells which they attributed to a failure 
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of cytokinesis. Carbon nanotubes have been observed in the bridge separating dividing cells [75]. 

Three dimensional reconstruction of MWCNT-exposed cells in the current study and of previously 

published SWCNT-exposed mitotic figures have shown carbon nanotubes integrated with the 

microtubules, the DNA and within the centrosome structure [19,24]. The disruption of cell division that 

has been observed following carbon nanotube exposure may be due to the incorporation of the carbon 

nanotubes into the microtubules that make up the division apparatus. 

In this study, we observed fragmented centrosomes clustered into a single pole. These results are in 

sharp contrast to the multipolar mitotic spindles that have been observed with narrower SWCNT 

[19,20]. 

Centrosomes are duplicated in early G1/S of the cell cycle. The separation of the mother and daughter 

centrosomes by proteolytic enzymes is necessary for the exit from S phase and the formation of a 

bipolar mitotic spindle [76]. Incorporation of the stiff MWCNT into the centrosome may have resulted in 

a more rigid centrosomal structure which fractured during mitosis. In addition, the integration of the 

nanotubes into the centrosome structure could have prevented the proteolysis of the linker connecting 

duplicated mother and daughter centrioles in G1/S thereby preventing the centrosome separation 

necessary for the formation of a bipolar spindle [76]. Furthermore the excess of cells in the S phase 

and significantly lower number of cells in the G2 phase in the MWCNT-treated compared to the control 

cells in the current investigation indicate a G1/S block and a failure to progress to G2. Interaction of the 

nanotubes into the microtubules would potentially impact many cellular process including cellular 

transport of organelles (lysosomes, mitochondria, Golgi apparatus and endoplasmic reticulum), RNA 

and protein transport as well as phagocytosis and cell movement [77]. Kinesin and dynein motors move 

the organelles, chromosomes, proteins and RNA. Defects in the microtubule surface have been 

reported to result in detaching of the motors from the microtubule and interruption of cell signaling [77-

80]. Aberrant cell signaling is a concern because it is important in the progression of carcinogenesis 

[81-83]. 

Although both SWCNT and MWCNT had a strong association with the microtubules that make up the 

mitotic spindle and induced aberrant mitotic spindles, the data suggests that the type of damage may 
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be determined by the diameter of the carbon nanotubes. SWCNT of 1–2 nm in diameter [45], MWCNT 

of 5–10 nm [20] and the NanoLabs 10–20 nm MWCNT form hybrids with microtubules [70]. Both the 

SWCNT and the 10–20 nm MWCNT are incorporated into the centrosome structure. The stiffness of 

the nanotubes is determined by their diameter [84]. Although, carbon nanotubes have similar 

mechanical properties to the microtubules, the stiffness of the carbon nanotubes is a thousand-fold 

greater than that of the microtubules [84]. The incorporation of the more rigid MWCNT into the 

microtubules that make up the mitotic spindle fibers and the centrosome may reduce the elasticity of 

the mitotic spindle apparatus to a greater degree than the SWCNT. The elasticity of the mitotic 

apparatus is a critical factor in the separation of the centrosomes to organize two spindle poles as well 

as in the separation of the chromosomes during cell division [85]. 

Evidence from rodent exposure studies has demonstrated that high aspect ratio nanoparticles have 

carcinogenic properties [9,64,86,87]. Inhalation exposure is the route that most closely resembles 

occupational exposure. The lung is the principal target organ for carbon nanotube exposure [43]. The 

long thin carbon nanotubes induce inflammation, cell proliferation of type II epithelial cells and cellular 

atypia [30,31,33]. Recent investigations have shown that inhaled MWCNT migrate to the subpleural 

wall [44,88]. The fiber-like structure, evidence of carbon nanotube-induced inflammation, proliferation 

and cellular atypia in the lung as well as migration to the subpleural space, inflammation, macrophage 

injury and evidence of genotoxic damage have raised concerns that the material has carcinogenic 

properties similar to asbestos [44,64,89]. The lung and parietal pleura are the sites of asbestos-induced 

carcinogenesis [64,90-93]. Injection of high doses of 100 nm diameter MWCNT into the abdominal 

cavity of p53 +/− mice has been shown to induce mesothelioma on the surface of the diaphragm [94]. 

In a more recent investigation of p53 +/− mouse exposure, Takagi et al. demonstrated a dose response 

of mesothelioma development after peritoneal injection of 3–300 micrograms of Mitsui-7 MWCNT [95]. 

Nagi et al. investigated the role of nanotube diameter in the development of mesothelioma in a rat 

model [96]. Greater inflammation and mesothelioma development were observed with the 50 nm 

diameter Mitsui-7 MWCNT of 10 microns or less in length compared to nanotubes of 145 nm diameter 

and similar length [96]. The mouse studies were criticized due to the route of exposure and the 
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sensitivity of the genetically modified p53 knock-out mouse strain; however, the induction of 

mesothelioma was significant. The demonstration of mesothelioma at high exposures combined with 

our findings revealing disruption of the integrity of the division apparatus further suggest a carcinogenic 

potential for MWCNT. A manuscript in press by Sargent et al. has demonstrated that inhaled Mitsui-7 

MWCNT material promoted the formation of lung adenocarcinomas in B6C3F1 hybrid mice following 3-

methylcholanthrene (MCA) initiation [97]. While the data did not indicate tumor initiation by MWCNT, 

the exposure resulted in lung adenocarcinoma and adenoma in 90.5% of the mice exposed to MCA 

followed by inhaled MWCNT. The mouse lung tumors were large and 15% of the tumors were 

metastatic indicating tumor progression with some forms of MWCNT. Furthermore, the strong MWCNT-

induced tumor promotion was observed in a hybrid mouse that is intermediate in sensitivity to lung 

cancer [98,99]. The exposure dose of the tumor promotion study of 32 µg/mouse is only 2.6 fold higher 

than the dose of the current in vitro investigation that shows significant chromosomal and mitotic 

spindle effects at the lowest administered dose of 0.024 µg/cm2 [19]. Although lung cancer or 

mesothelioma have not been observed in humans exposed to MWCTs, centrosome disruption, 

aneuploidy and mitotic spindle aberrations as well as recent data indicating mesothelioma as well as 

lung tumor promotion and progression are a concern and indicate that caution should be used to 

prevent respiratory exposure to workers during the production or use of commercial products. 
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Figure and table legends 

Figure 1:  A. The figure is a histogram of the Raman spectra of pristine (black) and one hour acid-

washed carbon nanotubes (red). Four independent bands have been identified for both samples, i.e., D 

band around 1350 cm-1, G band at 1585 cm-1, G’ band around 2690 cm-1, and an additional band 

around 2930 cm-1. Shifts in these bands are noticed for samples that have been treated with acid for 1 

h. B. Histograms of length distribution of pristine (a) and 1 h acid-washed MWCNTs (b) as identified by 

tapping mode Atomic force microscopy (AFM). At least 30 nanotubes have been analyzed for each one 

of the samples. C.  A representative bright-field image and Figure 1D shows the corresponding dark-

field image of the MWCNT sample. The images demonstrated that the MWCNTs have a diameter of 

10–20 nm and a typical multi-walled tubular morphology. D shows representative dark-field STEM (DF-

STEM) image of the native MWCNT sample that was acquired. The analysis demonstrated low 

amounts of the iron catalyst. E shows a representative bright-field image and F shows the 

corresponding dark-field image of the MWCNT sample. The dark-field image provides atomic number 

contrast information. The bright 10 nm particle at the end of the MWCNT in F is a catalyst particle. 

Energy dispersive X-ray spectroscopy (EDS) showed that the catalyst particle was iron-rich. Further 

analysis of the MWCNT sample identified low amounts of the iron catalyst. 

Figure 2:  A: The bar graph demonstrates the mitotic disruption 24 hours following exposure to 

MWCNT. Mitotic spindle abnormalities are expressed as a percent of total mitotic figures. The 

abnormalities are separated into monopolar and multipolar mitotic spindles. The multipolar spindles 

include tripolar and quadrapolar mitotic spindles. * indicates significantly different from the unexposed 

control cells at p < .01; ± standard deviation. B: The bar graph demonstrates the distribution of the 

mitotic spindle abnormalities in BEAS-2B cells following exposure to MWCNT. The white bars indicate 

the percent of mitotic cells with one mitotic spindle pole. The solid bars indicate the percent of total 

mitotic cells that had a multipolar mitotic spindle apparatus. The grey bars indicate the percent of 

mitotic cells with either a multipolar mitotic spindle or a monopolar mitotic spindle to show the percent of 

cells with any disruption of the mitotic spindle apparatus. *indicates significance at p <0.01.; ± standard 
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deviation. 2C: The photomicrograph of a culture exposed to 0.24 µg/cm2 MWCNT using a 40X 

objective. The yellow arrows indicate monopolar mitotic spindles. This figure demonstrates the typical 

monopolar phenotype of the cultures following exposure to MWCNT. D: The bar graph demonstrates 

the percent of SAEC with an aneuploid chromosome number after a 24 hour exposure to MWCNT or 

the positive control V205. The solid bars indicate the level of apoptosis in the exposed and control 

BEAS-2B. The hatched bars indicate the level of apoptosis in the exposed SAEC. MWCNT exposure 

induced a dramatic elevation of chromosome loss and gain at all doses of exposure at levels equal to 

the positive control V205. .* indicates significantly different from the unexposed control cells at p < .05. 

Table 1:  The distribution of the aneuploidy that was contributed by chromosome 1 and by 

chromosome 4 is detailed in the table as “Total% aneuploid cells”. The percent of cells with a gain in 

chromosome 1 and/or of chromosome 4 are indicated in the table under “Gain” of each chromosome. 

Cells with both chromosomes gained are indicated by “Gain of both chromosomes”. Cells with a loss of 

chromosome 1 and/or chromosome 4 are indicated in the table under “Loss” of each chromosome. *: p 

<0.05 of the treated cells compared to diluent control exposed cultures; ± standard deviation. 

Figure 3:  The photographs in A-C show a monopolar mitotic spindle with one pole rather than the two 

poles which would be expected in a normal cell. The details of the detection protocol for the mitotic 

spindle components and the photography using the Zeiss Confocal are in the methods section. The 

tubulin in A was stained red using Spectrum red and indirect immunofluorescence. The DNA was 

detected by DAPI and was blue. The nanotubes were imaged using differential interference contrast 

and are black. B: The nanotubes can be seen in the nucleus, in association with microtubules, the DNA 

and the centrosome. Serial optical sections at 0.1 micron intervals using confocal microscopy confirmed 

the location of the nanotubes in the nuclear DNA and the tubulin including the microtubules of the 

mitotic spindle. C: A high resolution TEM of a monopolar mitosis. The image was photographed at 

11000X magnification. 

Figure 4:  A: This 3-dimension reconstruction was created from serial optical laser scanning confocal 

microscopy sections using immunofluorescence to identify centrosomes and microtubules while 
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differential interference contrast was used to visualize aggregated MWCNT as previously described 

[24]. Briefly, nanotubes of 10 nanometers or greater could be visualized by their interference with 

transmitted light using DIC imaging. Because the nanotubes block the light, the nanotubes produce a 

black image. The reconstructed image shows aggregated nanotubes which appear as irregular tangled 

black structures located inside the cell in association with the centrosomes (green), the microtubules 

(red) and the DNA (blue). In this cell, the one spindle pole, the doughnut shaped DNA arrangement and 

the disruption of microtubule attachments to clustered centrosome fragments into a monopolar spindle 

apparatus suggest major perturbations in cell division. The yellow arrows indicate nanotubes in 

association with mitotic spindle and the DNA. B: The yellow arrows indicate the nanotubes (black) in 

association with the centrosomes (green) and the microtubules (red). C: The yellow arrows indicate 

nanotubes (black) inside the centrosome structure (green). 

Figure 5:  A: The bar graph represents viability of BEAS-2B and SAEC cells 24 hours following 

exposure to MWCNT or V205. The white bar indicates viability of BEAS-2B cells. The black bar indicates 

viability of SAEC cells. The viability was not reduced in either the BEAS-2B or the SAEC cells. Figure 

5B: The bar graph represents the viability of BEAS-2B and SAEC cells 72 hours following exposure to 

MWCNT. The white bar indicates the viability of BEAS-2B cells and the black bar indicates viability of 

SAEC cells. MWCNT exposure resulted in reduced viability in the SAEC and the BEAS-2B at 0.024, 

0.24, 2.4 and 24 µg/cm2 compared to control cells. The exposure to V205 resulted in reduced viability in 

SAEC treated cells at all doses. * indicates statistical significance of the treated cells compared to 

control cells at p <0.05. Figure 5C: The bar graph demonstrates the clonal growth in BEAS-2B cells 3 

weeks following MWCNT exposure and SAEC cells 4 weeks following exposure. The black bars 

indicate the mean number of colonies of BEAS-2B cells and the white bars indicate mean number of 

colonies in SAEC cells. *indicates significance at p <0.05 of treated cells. 

Table 2:  The table demonstrates the mean of percent of cells in G1, S and G2 phase of the cell 

division 24 hours following treatment with media, 5 µM arsenic or to 24 µg/cm2 MWCNT. The data is 

based on replicates of 6 that were repeated in 9 independent experiments. 
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*: p <0.05 of the treated cells compared to diluent control exposed cultures. 

Supplementary figure 1: Metal composition of Pristine and Acid-washed MWCNT. The histogram 

demonstrates the metal composition of the 1h acid-washed MWCNTs as measured by energy 

dispersive X-ray spectroscopy (EDX). 
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Abstract 

Multi-walled carbon nanotubes (MWCNT) have been used and studied extensively due to their unique 

physicochemical properties.  Due to their low density and small size MWCNT are easily aerosolized in 

the workplace which makes respiratory exposures likely in workers.  The International Agency for 

Research on Cancer (IARC) designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B 

carcinogen or “possibly carcinogenic to humans”, but there is insufficient data to classify all other 

MWCNT.  MWCNT exposed to very high temperatures (MWCNT-HT) or synthesized with nitrogen 

(MWCNT-ND) have altered physicochemical properties that have been shown to induce attenuated 

toxic effects.  Therefore, the objective of this study was to determine the differences in genotoxicity of 

MWCNT-HT and ND compared to MWCNT-7. To investigate genotoxicity of MWCNT-HT and ND 

compared to MWCNT-7, we used two cell types, an immortalized human lung epithelial cell BEAS-2B 

and primary lung epithelial cell SAEC.  Each MWCNT material was observed within the nucleus and 

associated with the DNA, mitotic spindle and centrosomes.  Quantification of nuclear uptake indicated 

that MWCNT-7 material was taken up at a higher rate than MWCNT-HT and ND, respectively.  Each 

MWCNT material was cytotoxic at the 24 µg/mL dose in both cell types after 24 and 72 hours of 

exposure.  Twenty-four hours of exposure to the MWCNT-7 and HT material induced a significant 

arrest in the G1/S phase in BEAS-2B cell cycle whereas the MWCNT-ND induced a G2 arrest.  Each 

MWCNT material produced a significant arrest in the G1 and G2 phases of the SAEC cell cycle after 24 

hours of exposure.  However, 72 hours of exposure resulted in a significant G1/S phase arrest.  The 

rate of mitotic aberrations was significantly increased with exposure to each MWCNT material.  Mono 

and multipolar mitotic aberrations were observed; however, the monopolar morphology predominated.  

Quantitative analysis of the centrosome and spindle pole integrity demonstrated centrosome 

fragmentation to be significantly increased after exposure to 0.024, 0.24,and 2.4 µg/mL of each 

MWCNT material and 24 µg/mL of MWCNT-HT material compared to control.  Significant aneuploidy 

was measured in a dose-dependent manner from exposure to each MWCNT material with 24 µg/mL, 

the highest dose, of MWCNT-7, HT, and ND producing a rate of 66.5, 61.1, and 55.3%, respectively.  
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Quantitative analysis of the chromosomes demonstrated significantly increased centromere 

fragmentation after exposure to each MWCNT at each dose compared to control.  Additionally, 

translocations and insertions between centromeres of chromosomes 1 and 4 were observed.  Clonal 

growth was increased following exposure to 0.024 and 0.24 µg/mL MWCNT-7, 2.4 µg/mL MWCNT-HT, 

and 0.024 µg/mL MWCNT-ND material.  These data indicate that, while each MWCNT material 

investigated in this study produced significant genotoxic effects that could have serious implications 

regarding carcinogenic potential, the physicochemical alterations of the MWCNT-HT and ND reduced 

nuclear uptake and, therefore, magnitude of genotoxic effect.      
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Introduction 
 
Since their inception several decades ago, multi-walled carbon nanotubes (MWCNT) have been used 

and studied extensively due to their unique physicochemical properties [1].  Their high aspect ratio, 

rigidity, strength, electrical conductance, and durability present myriad opportunities for enhanced 

industrial applications.  These characteristics also present opportunities for an increased risk to human 

health [2].  Recently, the International Agency for Research on Cancer (IARC) designated the pristine 

Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen or “possibly carcinogenic to humans” citing 

multiple studies that indicate tumor growth in rodents and mechanistic evidence relevant to humans [3].  

However, there is insufficient evidence to determine the carcinogenic risk imposed on workers exposed 

during the production or use of other MWCNT with physicochemical properties different from the 

MWCNT-7.  Consequently, all other MWCNT have been labelled as Group 3 carcinogens or “not 

classifiable as to their carcinogenicity to humans”.  MWCNT with altered physicochemical properties 

have been shown to elicit variable effects relating to cellular uptake, biocompatibility, cytotoxicity, 

oxidative stress and generation of reactive oxygen species (ROS), pulmonary inflammation, and 

fibrosis indicating carcinogenic potential for these materials [4-24].  Therefore, an investigation into the 

genotoxicity and carcinogenic mechanisms of such materials is needed.   

Exposure to MWCNT-7, in particular, has been shown to induce significant genotoxicity illustrated 

through several endpoints.  Mouse alveolar macrophages exposed in culture to 25-100 µg/mL 

MWCNT-7 for 24 hours had significant DNA strand breaks compared to control as measured via comet 

assay [25].  Exposure to a much higher dose of 256 µg/mL MWCNT-7 for 24 hours in primary human 

peripheral lymphocytes produced significant genotoxicity through increased micronuclei formation [26].  

However, significant increases in micronuclei were also observed in A549 cells exposed to MWCNT-7 

for 6 hours in a dose response [27].  Chinese hamster lung cells exposed to MWCNT-7 for 48 hours in 

a dose response had a significantly greater percentage of bi- and multinucleated cells compared to 

control [28].  Additionally, this study found significant polyploidy in cells exposed to 5 µg/mL for 24 

hours and 1.3 and 5 µg/mL for 42 hours [28].  Other types of pristine MWCNT with varied structure 

have been shown to produce significant genotoxicity as well. 
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Pristine MWCNT 10-40 nm in diameter produced significantly increased micronuclei formation in 

human lymphocytes exposed to 24 µg/cm2 for 72 hours [29] and lung epithelial cells isolated from rats 

exposed to 0.5 and 2 mg via intra-tracheal administration [30].  These micronuclei were found to be 

caused by both clastogenic and aneugenic effects indicating a dynamic mechanism of genotoxicity.  

RAW 264.7 macrophages were found to have significant amounts of micronuclei and structural 

chromosome aberrations following exposure to pristine MWCNT in a dose response [31].  Mice 

intratracheally-instilled with pristine MWCNT 70-110 nm in diameter had increased DNA damage in the 

lung in a dose-dependent manner as analyzed by Comet assay [27].  Increased micronuclei formation 

was observed in a dose response in type II pneumocytes isolated from rats exposed to a thinner 

pristine MWCNT via intratracheal installation [32].  Kim and associates, 2014, exposed Fischer 344 rats 

to pristine MWCNT 10-20 nm in diameter via nose only inhalation for 28 days and observed a 

significant amount of DNA damage in isolated lung cells through the Comet assay [33].  The 

genotoxicity illustrated in these studies can be the result of indirect mechanisms involving mutation, 

ROS production, and inflammatory mediators.  However, there is also evidence of genotoxicity caused 

by a direct interaction between the MWCNT and the DNA. 

Carbon nanotubes have been shown to bind to G-C rich and telomeric regions of the chromosomes 

resulting in conformational changes in the DNA structure [34, 35] which may explain the DNA breakage 

mentioned previously.  MWCNT material can also directly interact with the mitotic spindle apparatus 

including the microtubules and centrosomes [36].  Cancer cell lines [37] and immortalized human 

bronchial epithelial cells [36] exposed to MWCNT 5–20 nm in diameter resulted in both multi- and 

monopolar mitotic spindle aberrations.  The resultant disruption in the former lead to cell cycle arrest 

and aneuploidy in a primary human lung epithelial cell type.  The disruption in division in these studies 

was caused by either amplified or fragmented centrosomes.  Disruption of the mitotic spindle and 

aneuploidy in cultured cells is strongly correlated with in vivo carcinogenesis at occupationally-relevant 

doses [38-41].  Investigators using acellular systems have demonstrated that MWCNT form hybrids 

with the microtubules that are components of the mitotic spindle apparatus [42].  Given that the 

microtubules of the mitotic spindle are of similar diameter with the MWCNT material, it is theorized that 
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the alteration of MWCNT diameter can have significant influences on the genotoxicity, specifically that 

which is the result of abnormal division.    

It is suggested that toxicity of pristine MWCNT material can be mitigated by altering their 

physicochemical properties.  Acellular studies have found that MWCNT-7 material heated to over 

2000°C (MWCNT-HT) demonstrate increased crystallinity and purity of the individual structures [43-46], 

two alterations that could have significant effects on toxicity by reducing the bioavailability and reactivity 

of the material.  Doping MWCNT with nitrogen by incorporating nitrogen into the lattice structure of the 

nanotube wall during synthesis or by the addition of a nitrogen-containing functional group (MWCNT-

ND) [47, 48]  can alter the shape, strength, and diameter of the individual structure and increase the 

hydrophilicity of the raw material [47-52].  MWCNT-HT and ND material have been shown to be less 

toxic than the MWCNT-7 due to the alteration of their unique physicochemical properties both in vitro 

and in vivo [5, 20, 53, 54].  In the present study, we measured the cytotoxicity, nuclear uptake, and 

genotoxicity, as assessed through cell cycle disruption, of MWCNT-HT and ND compared to MWCNT-

7.  The mechanisms of genotoxicity for each substance were evaluated by analyzing mitotic spindle 

aberrations and subsequent aneuploidy.  The techniques used during these analyses allowed for the 

quantitative examination of centrosome integrity, spindle pole integrity, and chromosome instability 

(CIN).  Finally, the clonal growth of exposed pulmonary epithelial cells was evaluated as a measure of 

carcinogenic potential.     

 
Methods 
 
Materials 
 
The MWCNT-7 material used in this study were a gift from Morinobu Endo and Shuji Tsuruoka 

(Shinshu University, Nagano, Japan) and obtained through the Mitsui & Co., Ltd. (MWCNT-7, lot 

#05072001K28) and previously characterized [55].  The MWCNT-HT and ND material are derivate of 

the MWCNT-7 material and were a gift from Mauricio Terrones (Pennsylvania State University, College 

Park, PA).   

Characterization 
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Length and Diameter:  A protocol was established for the measurements of diameter and length of raw 

MWCNT material using an SEM/Scanning Transmission Electron Microscope (STEM, S-5500 ultrahigh 

resolution SEM with STEM capabilities, Hitachi High Technologies America Inc., Schaumburg, IL 

60173). The samples were prepared by adding a portion of the raw MWCNT material into a glass vial 

with isopropanol and sonicating for approximately 5 minutes. A TEM grid (200 mesh Cu grid coated 

with carbon, SPI Supplies, West Chester, PA) was then dipped into the suspension, producing a well 

dispersed sample.  Initially, a low magnification was used (~5-10kX) to locate fibers to measure. Once 

a fiber was located, the magnification was increased appropriately to measure width and length. Using 

the measuring tools of the electron microscope’s software, straight lines were manually drawn to 

connect the desired distances to be measured. For length measurements, the longest straight line was 

drawn between two extremities of a fiber without following the curvatures of the fiber. For the width, 

measurements were taken drawing a straight line of the distance perpendicular to the fiber’s walls. A 

minimum of 200 MWCNT were measured for each sample.   

 

Purity:  Scanning transmission electron microscopy (STEM) with energy dispersive X-ray spectroscopy 

(EDS) was used to qualitatively assess the purity of the three MWCNT materials by identifying the 

presence or absence of residual catalyst material in the MWCNT.  Bright-field and dark-field imaging 

were used to identify the catalyst material and EDS was used to confirm the elemental composition. 

High-resolution bright-field images were collected at an accelerating voltage of 200 kV (Hitachi HD-

2300A STEM, Hitachi High Technologies America, Schaumburg, IL 60173). EDS spectra were 

collected and showed the presence of Fe-rich catalyst material in the MWCNT-ND material (Bruker 

Quantax, Bruker Nano Analytics, 12489 Berlin, Germany).  

 

Suspension properties:  Dynamic light scattering techniques were used to determine the characteristics 

of the three MWCNT materials in suspension.  Hydrodynamic (DH) diameter of each material was 

measured using photon correlation spectroscopy (PCS).  Zeta potential was determined for each 

material suspended in either water or surfactant-containing dispersion media [55].  All measurements 
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were performed at 25°C with a 633 nm laser at a 90° scattering angle (Zeta-sizer Nano ZS90, Malvern 

Instruments, Worcestershire, UK). The analyses were performed assuming a refractive index of 1.332, 

viscosity of 0.890 cP, dielectric constant of 78.3 and Smoluchowski approximation, f(κa) value of 1.5.  

Each suspension of MWCNT was subject to ultrasonic agitation using a probe sonicator (XL 2000, 

QSonica, Newtown, CT) fitted with a 3-mm titanium probe tip.  The delivered energy, as verified 

calorimetrically [56], was 27,600 J per sample.  Distilled and deionized water that was passed through a 

0.025 µm pore-size membrane (Anotop 25, Whatman International Ltd, Maidstone, England) was used 

to dilute each sample prior to analysis.   

Cell culture 
 
Two pulmonary epithelial cell types were used in this study.  All cells were maintained at 37°C and 5% 

CO2 with standard aseptic procedures.  Immortalized human bronchial epithelial cells (BEAS-2B, 

ATCC, Manassas, VA) of less than 10 passages were used to examine cytotoxicity, nuclear uptake, cell 

cycle arrest, mitotic aberrations, and centrosome integrity and spindle pole integrity.  BEAS-2B cells 

were cultured in Dulbecco’s Modified Eagle Medium (DMEM) media supplemented with 10% serum 

(Invitrogen, Grand Island, NY) and 1% antibiotic-antimycotic (Corning, Corning, NY). Primary small 

airway respiratory epithelial cells (SAEC; Lonza, Walkersville, MD) from a normal human donor were 

used to examine cytotoxicity, nuclear uptake, cell cycle arrest, aneuploidy, CIN, and clonal growth.  The 

normal karyotype of the primary cells was essential for the examination of aneuploidy. The SAEC cells 

were cultured following manufacturer’s directions and using Cabrex media (Lonza, Walkersville, MD).  

Epithelial phenotype was identified in both cell types, previously, through EM analysis and staining of 

cytokeratin 8 and 18 [36].    

 
Treatment protocol 

Preparation of materials:  Stock MWCNT material was subjected to 4-6 hours of ultrasonic agitation 

using a 3-mm titanium probe tip sonicator (Sonics and Materials, Inc., Newtown, CT) set to 8 Khz for 

even dispersion.  Material was kept on ice to maintain ambient temperature.  Just prior to use, the stock 

suspensions were dispersed similarly for one minute with a 10 second pulse in order to avoid an 
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increase in temperature.  The media suspension containing the appropriate volume of stock MWCNT 

material was sonicated for 10 seconds before application to cell surface.  Vanadium pentoxide (V2O5, 

Sigma, St. Louis, MO) was suspended in dH2O and sonicated in a water bath (Branson 2510, Fisher, 

Pittsburgh, PA) with ice for 30 minutes immediately prior to addition to culture media.  Sodium arsenite 

(arsenic, Sigma, St. Louis, MO) was dissolved in dH2O.   

Cellular exposures:  The BEAS-2B and SAEC cells were seeded in parallel culture dishes according to 

assay protocol.  Cells were exposed to MWCNT material suspended in appropriate culture media for 

either 24 or 72 hours depending on assay requirements.  Three independent experiments were 

performed for each assay.     

Nuclear Uptake 

Confocal Raman spectroscopy was used to determine nuclear uptake and spatial orientation of each 

MWCNT material.  Both BEAS-2B and SAEC cells were grown on glass chamber slides until 70% 

confluence and exposed to 24 µg/mL MWCNT-7, HT or ND for 24 hours.  After exposure cells were 

washed twice with phosphate buffered saline (PBS), fixed with 100% ethanol, and analyzed.  The 

spectra of the MWCNT reference materials were generated using a Horiba LabRAM HR (Horiba 

Instruments, Edison, NJ, USA), equipped with an optical microscope, a 1024x256 pixel, Synapse CCD 

detector, a 600 grooves/mm grating, and a 473 nm argon laser.  The parameters used to obtain the 

spectral data were as follows: 100 µm pinhole, 100x objective, a neutral density filter that permitted 

10% of the laser power, which resulted in a laser power at the sample of 286 microwatts, and two 

accumulations of each spectrum, collected for 5-seconds.  A Raman map was generated to permit the 

analysis of a larger area containing the MWCNT material, and the resultant spectral data of twenty 

different locations was baseline corrected and averaged using the LabSpec 6 software package.  Cells 

were identified through brightfield imaging and Raman mapping of the cells was performed using a 

classical least squares (CLS) analysis for silica (glass slide), cellular protein, and MWCNT material 

using basis spectra.  3-D renderings were produced using these data to determine the distribution of 

the MWCNT material within the nucleus.  Raman spectroscopy was performed using an automated 

stage and exposure time set to 1 sec x 2 accumulations per pixel.  The mapped areas were 
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approximately 50x50x10 (XxYxZ) microns with a mapping step size set to 1 micron. Horiba LabSpec v6 

software was used for data reduction and analysis.    

Enhanced darkfield light microscopy was used to quantify nuclear uptake of each MWCNT material in 

the BEAS-2B cell.  At 70% confluence, BEAS-2B cells were serum starved for 24 hours and exposed to 

0.024, 0.24, 2.4 and 24 µg/mL of each MWCNT material for 24 hours.  Cells were washed twice with 

PBS and fixed with 100% ice cold methanol.  After fixation, nuclear content was fluorescently stained 

with DAPI (Vectashield, Vector Laboratories, Burlingame, CA) and individual MWCNT were counted 

using high signal-to-noise, darkfield-based illumination optics adapted to an Olympus bX-41 

microscope (CytoViva, Auburn, AL 36830).  Nuclear uptake was reported as a frequency of individual 

MWCNT penetrating the nucleus per 1,000 nuclei.       

Cytotoxicity 

Cytotoxicity of each MWCNT material was measured for both cell types.  Cells were seeded in flat-

bottom 96 well plates (Becton Dickinson Franklin Lakes, NJ) and exposed to 0.024, 0.24, 2.4 and 24 

µg/mL (0.015, 0.15, 1.5 or 15 µg/cm2) of each MWCN material for either 24 or 72 hours.  A 0.316 or 

3.16 µg/mL or (0.2 or 2 µg/cm2) dose of V2O5 was used as positive control in the BEAS-2B or SAEC 

cell type, respectively.  Each dose was performed in triplicate per 96 well plate.  Cytotoxicity was 

assessed using the alamarBlue cell viability assay protocol following manufactures directions 

(Invitrogen, Carlsbad, CA).  Fluorescence was measured using a fluorescent spectrophotometer 

(LS50B, Perkin Elmer, Bridgeville, PA) with a 570 nm excitation and 585 nm emission wavelength.  The 

fluorescence intensity was measured for each well.  Cell viability is equivalent to a reduction in 

fluorescence intensity and was reported as a mean across all three experiments normalized to control.   

Cell cycle arrest  

Bivariate flow cytometry using the Click-iT EdU Alexa Fluor 647 flow cytometry assay kit (Molecular 

Probes, Eugene, OR) with 7-aminoactinomycin D (7-AAD, Invitrogen, Carlsbad, CA) allows for a more 

accurate analysis of the cell cycle compared to single-color methods.  EdU (5-ethynyl-2'-deoxyuridine), 

a nucleoside analog of thymidine, is incorporated into DNA during the S phase of the cell cycle and 

covalently-labelled with Alexa Fluor 647 via a click chemistry reaction between an azide in the 
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fluorophore and an alkyne within the EdU.  The 7-AAD fluorophore is incorporated into the DNA of all 

fixed cells thereby staining for G1 and G2 phases of the cell cycle.  BEAS-2B and SAEC cell types 

were seeded in T25 flasks (Falcon, Corning, NY) until 70% confluence.  BEAS-2B cells were exposed 

to 24 µg/mL (2.88 µg/cm2) of each MWCNT material and 5 µM arsenic for 24 hours.  EdU was applied 

after 22 hours of exposure to allow for incorporation into the DNA.  Cells were washed twice with PBS 

(Gibco, Waltham, MA) and 0.25% trypsin in EDTA (Gibco, Waltham, MA) was used to remove cells 

from the flask surface.  Two exposures were analyzed for the SAEC cell type requiring separate 

methods.  First, SAEC cells were exposed to 10 µM arsenic or 24 µg/mL (2.88 µg/cm2) MWCNT 

material for 24 hours.  EdU was applied after 12 hours of exposure.  Cells were washed twice with PBS 

and removed from the flask with 0.25% trypsin in EDTA (Lonza, Basel, Switzerland).  Second, SAEC 

cells were exposed to 10 µM arsenic or 2.4 µg/mL (0.288 µg/cm2) MWCNT material for 72 hours.  EdU 

was applied after 12 hours of exposure.  Cells were washed twice with PBS and fresh media was 

applied for a 24 hour recovery period.  Each treatment was performed in triplicate.  Cells were stained 

according to manufacturer’s instructions and run through a flow cytometer (LSR II, BD Biosciences 

Immunocytometry Systems, San Jose, CA).  Ten thousand events were collected and the dual-labelled 

fluorescent DNA content was analyzed (FlowJo v10, FlowJo, Ashland, OR).  Gating was set to exclude 

debris, non-cellular material, and doublets.  The percentage of cells in G1, S, and G2 phases of the cell 

cycle were determined via manual gating of the bivariate analysis of the two fluorescent signals and 

reported as an average across all experiments.    

Mitotic aberrations  

Laser scanning fluorescent confocal microscopy with differential interference contrast was used to 

analyze mitotic aberrations after exposure to each MWCNT material in the BEAS-2B cell (LSM 710, 

Carl Zeiss MicroImaging Inc.,Thornwood, NY).  The relatively high mitotic index of the BEAS-2B cell 

type allows for sufficient examination of dividing cells.  Cells were seeded on glass chamber slides 

(Nunc™ Lab-Tek™ II, Waltham, MA) until 70% confluence and exposed to 0.024, 0.24, 2.4 and 24 

µg/mL (0.0042, 0.042, 0.42 and 4.2 µg/cm2) of each MWCNT material or 0.316 µg/mL (0.06 µg/cm2) 

V2O5 for 24 hours.  After exposure, cells were washed twice and fixed with 100% ice cold methanol 
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(Fisher Scientific, Waltham, MA).  Dual chambers were prepared for each dose.  The cells were stained 

for mitotic aberration analysis via fluorescent labelling of the DNA and immunofluorescent labelling of 

the mitotic spindle and centrosomes.  The DNA was fluorescently labelled using DAPI (Vectashield, 

Vector Laboratories, Burlingame, CA).  The β-tubulin of the mitotic spindle was labelled using a rabbit 

anti-β-tubulin primary antibody (Abcam, La Jolla, CA, USA)  and goat anti-rabbit IgG secondary 

antibody conjugated with rhodamine red (Invitrogen, Carlsbad, CA).  The centrosomes were labelled 

using mouse anti-pericentrin primary antibody (Covance, Austin, TX, USA) and goat anti-mouse IgG 

antibody conjugated with Alexa 488 (Invitrogen, Carlsbad, CA).  Cells were examined and divisions 

were analyzed by photographing serial slices through the z-plane based on the depth of the cell and 

optical properties of the stain (Zen, Carl Zeiss MicroImaging Inc., Thornwood, NY).  A minimum of 50 

mitotic cells of good centrosome and mitotic spindle morphology were analyzed for each dose.  Three 

independent experiments were conducted for a total of 150 cells included in the analysis.  Quantitative 

analysis of aberrant mitoses was based on spindle morphology; a mitotic cell with monopolar or 

multipolar spindle morphology was considered aberrant.  Aberration was reported as a percentage of 

total mitotic cells analyzed for each dose across all three experiments.  Centrosome and spindle pole 

integrity were assessed quantitatively.  The association between MWCNT material and the labelled 

nuclear structures was also examined qualitatively by overlaying the fluorescent images with the 

differential interference contrast filter.  The mitotic index is equivalent to the percentage of mitotic 

divisions in 100 cells per dose.   

Chromosome analysis 

Laser scanning confocal fluorescent microscopy imaging of SAEC cells with fluorescently labelled 

chromosomes was used to determine aneuploidy and CIN after exposure to each MWCNT (LSM 710, 

Carl Zeiss MicroImaging Inc., Thornwood, NY).  Cells were seeded on glass chamber slides (Nunc™ 

Lab-Tek™ II, Waltham, MA) until 70% confluence and exposed to 0.024, 0.24, 2.4 and 24 µg/mL 

(0.0042, 0.042, 0.42 and 4.2 µg/cm2) of each MWCNT material or 3.16 µg/mL (0.06 µg/cm2) V2O5 for 24 

hours.  After exposure, cells were washed twice and fixed with a 3:1 mixture of methanol and acetic 

acid (Fisher Scientific, Waltham, MA).  Chromosomes 1 and 4 were labelled via fluorescence in situ 
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hybridization (FISH) of centromeric DNA (Abbott Molecular, Des Plaines, IL) and fluorescently 

counterstained with DAPI (Vectashield, Vector Laboratories, Burlingame, CA) for nuclear content.  The 

SAEC cell type has a normal karyotype, therefore chromosome enumeration for quantitative analysis of 

aneuploidy is possible.  Cells were examined and scored according to the guidelines of the American 

College of Medical Genetics [57].  A minimum of 100 interphase cells of good FISH morphology were 

analyzed for each dose.  Three independent experiments were performed for a total of at least 300 

cells included in the analysis.  Cells with three or greater than four signals for either chromosome were 

recorded as a gain; cells with less than two signals of either chromosome were recorded as a loss.  

Aneuploidy was reported as the percentage of cells with either a gain or loss for each dose across all 

three experiments.  Use of a centromeric probe allowed for quantitative analysis of CIN through the 

frequency of centromere fragmentation including translocations and insertions between chromosomes 

1 and 4.    

Colony formation 

Enumeration of SAEC colonies was used to determine the clonal growth after exposure to each 

MWCNT.  Cells were seeded in T25 flasks (Falcon, Corning, NY) until 70% confluence and exposed to 

0.024, 0.24, 2.4 and 24 µg/mL (0.00288, 0.0288, 0.288, and 2.88 µg/cm2) of each MWCNT material or 

3.16 µg/mL (0.4 µg/cm2) V2O5 for 24 hours.  After exposure cells were washed twice and removed from 

the flask surface with 0.25% trypsin in EDTA (Lonza, Basel, Switzerland).  Cells were reseeded in 6-

well flat bottom plates (Falcon, Corning, NY) at 500 cells/well to allow for clonal growth from a single 

cell.  Colonies were grown for one month and stained with a 10% solution of crystal violet in neutral 

buffered formalin (Sigma, Saint Louis, MO) to preserve and identify clonal morphology.  A stereo 

microscope (SZX12, Olympus, Shinjuku, Japan) was used to count the colonies in each of the six wells.  

An average number of colonies was calculated and reported as a percentage of control.    

Statistical Analysis 

All analyses were performed using SAS/STAT (Version 9.4) for Windows.  All analyses were performed 

using a mixed model ANOVA to compare treatment groups to control.  Experimental block was utilized 

as a random factor. All differences were considered statistically significant at p < 0.05. 
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Results 
 
Characterization  
 
Length and width:  High-resolution STEM images revealed a tubular structure with multiple walls for all 

three MWCNT (Figure 1).  Diameter and length measurements of the MWCNT-7 were conducted 

previously and showed a mean diameter of 49.0 ± 13.4 nm and a mean length of 4.7 ± 3.7 µm [55].  

The current study found the MWCNT-HT material to have a mean diameter of 56.8 ± 23.5 nm and 

mean length of 5.1 ± 3.6 µm (Table 1).  The MWCNT-ND material was found to have a mean diameter 

of 29.8 ± 23.4 nm and mean length of 1.9 ± 3.1 µm (Table 1).  These data indicate that the three 

MWCNT materials have similar physical dimensions.   

 
Purity:  High-resolution STEM imaging identified residual catalyst material was within the MWCNT-ND 

structure (Figure 2a).  EDS analysis identified this material to be iron-rich (Figure 2b).  Catalyst material 

was not identified in the MWCNT-7 or HT samples (data not shown).  Previously, Porter and associates 

identified 0.78% trace metal content within the MWCNT-7 material through inductively coupled plasma-

optical emission spectroscopy, with sodium (0.41%) and iron (0.32%) being the two major contaminates 

[55]. 

Suspension:  Dynamic light scattering analysis indicated DH and zeta potential measurements were 

similar for each of the three MWCNT materials (Table 1).   

Nuclear Uptake 

Raman confocal spectroscopy determined unique spectra for each MWCNT material (Figure 3a).  The 

spectra from the MWCNT-ND material demonstrated differences in the D, G, D’-band intensities 

compared to the MWCNT-7 and HT material.  When normalized to the G-band, the spectra for 

MWCNT-7 and HT material were quite similar, however the intensity of peak bands was lower in the 

MWCNT-HT material (Figure 3b).  These data indicate differences between the three MWCNT 

materials regarding the carbon structure.  Raman mapping of both cell types showed MWCNT material 
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within the nucleus (data not shown) and MWCNT material was dispersed throughout the nucleus 

(Figure 4). 

Quantification of nuclear uptake was measured in the BEAS-2B cell type and reported as a rate 

of single MWCNT penetrating the nucleus per 1,000 nuclei.  Since each nucleus can contain more than 

one MWCNT, values greater than 100 are possible.  All three MWCNT materials were found to have an 

affinity for the outer surface of the nucleus (Figure 5a), however nuclear penetrations were observed 

(Figure 5b).  Rate of nuclear uptake increased in a dose-dependent manner after 24 hours of exposure 

to all three MWCNT materials (Figure 6).  MWCNT-7 consistently exhibited a higher rate of nuclear 

uptake compared to MWCNT-HT and ND.  For example, exposure to 2.4 µg/mL of MWCNT-7, HT, and 

ND demonstrated a rate of nuclear uptake of 121.09, 29.51, and 5.8%, respectively (Figure 6).  Most 

notably, at the lowest dose of 0.024 µg/mL no MWCNT-ND were observed in the nucleus, whereas at 

the highest dose of 24 µg/mL the rate of MWCNT-7 uptake was so high an accurate measurement was 

unobtainable.   

Cytotoxicity 

Measurement of fluorescence intensity using the alamarBlue cell viability assay protocol demonstrated 

a reduction in cell viability after 24 and 72 hours of exposure to each MWCNT material in both cell 

types.  In the BEAS-2B cell, viability was reduced in a dose-dependent manner after exposure to each 

MWCNT material for 24 and 72 hours with the longer exposure time producing a greater magnitude of 

effect (Figures 7a & b).  In the SAEC cell, viability was reduced in a dose-dependent manner after 

exposure to each MWCNT material for 72 hours (Figure 7d).  However, exposure to only the 0.024 and 

24 µg/mL doses of each MWCNT material for 24 hours significantly reduced in cell viability (Figure 7c).   

Cell Cycle 

Bivariate flow cytometry analyses of fluorescently-labelled DNA in the BEAS-2B and SAEC cells 

exposed to each MWCNT material demonstrated genotoxicity through significant arrests in the cell 

cycle (Table 2).    
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After 24 hours in culture, the BEAS-2B cell population demonstrated a baseline measurement of 38.2 ± 

2.1, 22.9 ± 2.4, and 36.8 ± 2.5% of cells in the G1, S, and G2 phases of the cell cycle, respectively 

(Table2a).  After 24 hours of exposure to 24 µg/mL of the MWCNT-7 and HT material a significantly 

higher percentage of cells were observed in the S phase (32.6 ± 2.9 and 34.1 ± 4.5%, respectively) 

while a significantly lower percentage of cells were observed in the G2 phase (24.6 ± 2.0 and 26.8 ± 

3.9%, respectively) compared to control.  Exposure to 5 µM arsenic (positive control) for 24 hours 

demonstrated an inverse effect with a significantly lower percentage of cells in the S phase (17.4 ± 

2.0%) and a significantly higher percentage of cells in the G1 (44.7 ± 2.8%) and G2 phase (35.3 ± 

2.2%) compared to control.  Exposure to 24 µg/mL MWCNT-ND for 24 hours produced a higher 

percentage of cells in the G1 (39.4 ± 2.3%) and S (28.0 ± 4.2%)  phases of the cell cycle that was not 

significant and a significantly lower percentage of cells in the G2 phase (30.1 ± 3.4%) compared to 

control.  These data indicate that 24 hours of exposure to 24 µg/mL of each MWCNT material produced 

an arrest in G1/S and arsenic produced an arrest in G1 and G2 phases of the cell cycle.   

After 24 hours in culture, the SAEC cell population demonstrated a baseline measurement of 61.2 ± 

2.4, 28 8 ± 2.9, and 8.1 ± 0.8% of cells in the G1, S, and G2 phases of the cell cycle, respectively 

(Table 2b).  After 24 hours of exposure to 24 µg/mL of MWCNT-7, HT, and ND material a significantly 

lower percentage of cells were observed in the S phase (10.3 ± 4.6, 4.7 ± 1.0, 13.5 ± 1.4%, 

respectively) while a significantly higher percentage of cells were observed in the G1 (76.4 ± 3.7, 81.1 ± 

1.1, 74.6 ± 0.7%, respectively) and G2 phases (10.2 ± 1.2, 10.5 ± 1.0, 9.8 ± 1.2%, respectively) 

compared to control.  Exposure to 10 µM arsenic (positive control) for 24 hours demonstrated a similar 

effect with a significantly lower percentage of cells in the S phase (25.4 ± 3.6%) and higher percentage 

of cells in the G1 (63.9 ± 2.9%) and G2 phases (8.7 ± 0.9%) that was not significant compared to 

control.  These data indicate that 24 hours of exposure to 24 µg/mL of each MWCNT material and 10 

µM arsenic produced an arrest in G1 and G2 phases of the cell cycle. 

After 72 hours in culture, the SAEC cell population demonstrated a baseline measurement of 73.8 ± 

5.2, 14.6 ± 5.7, and 11.2 ± 1.0% of cells in the G1, S, and G2 phases of the cell cycle, respectively 
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(Table 2c).  After 72 hours of exposure to 2.4 µg/mL of MWCNT-7 and ND material a significantly 

higher percentage of cells were observed in the S phase (30.5 ± 2.7 and 21.3 ± 5.0%, respectively) 

while a significantly lower percentage of cells was observed in the G1 phase (55.9 ± 2.4 and 67.7 ± 

4.8%, respectively) compared to control.  Exposure to 2.4 µg/mL MWCNT-HT material for 72 hours also 

produced a significantly higher percentage of cells in the S phase (20.5 ± 6.4%) but also a significantly 

lower percentage of cells in the G2 phase (9.5 ± 1.4%) compared to control.  Exposure to 10 µM 

arsenic for 72 hours produced a significantly lower percentage of cells in the S phase (6.9 ± 1.1%) and 

a significantly higher percentage of cells in the G2 phase (18.3 ± 1.4%) compared to control.  These 

data indicate that 72 hours of exposure to 2.4 µg/mL of each MWCNT material induced an arrest in 

G1/S and 10 µM arsenic induced an arrest in G1 and G2 phases of the cell cycle.   

Mitotic Aberration 

Confocal microscopy analysis of BEAS-2B cells with fluorescently-labelled DNA, mitotic spindle, and 

centrosomes demonstrated significantly higher frequency of mitotic aberrations with exposure to each 

MWCNT material (Table 3).  After 24 hours in culture, the BEAS-2B cell population demonstrated a 

background rate of 7.05% mitotic aberrations with a 10% mitotic index.  Exposure to 0.024 and 0.24 

µg/mL of MWCNT-7 material produced a significantly higher rate of mitotic aberrations (16.88 and 

16.87%, respectively) compared to control.  Exposure to 0.24, 2.4 and 24 µg/mL MWCNT-HT material 

produced a significantly higher rate of mitotic aberrations (20.13, 20.55, 18.07%, respectively) 

compared to control.  However, exposure only to 0.24 MWCNT-ND material produced a significantly 

higher rate of mitotic aberrations (23.75%) compared to control.  Observation of the mitotic spindle 

morphology showed that both multi-and monopolar configurations were present (Figure 8), however the 

monopolar morphology predominated (Table 3).  Exposure to each MWCNT material lowered the 

mitotic index in a dose-depended manner (Table 3).   

A quantitative analysis of the spindle pole and centrosome integrity demonstrated effects from 

exposure to each MWCNT material.  Frequency of centrosome fragmentation was significantly 

increased after exposure to 0.024, 0.24, and 2.4 µg/mL of each MWCNT material and 24 µg/mL of 
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MWCNT-HT compared to control (Figure 9).  Centrosome fragments were observed organizing into 

either bipolar, multipolar, or monopolar spindle morphologies (Figure 10) that can progress through 

mitosis (Figure 11).  However, centrosome fragmentation can also lead to severely disrupted mitotic 

spindle morphologies that cannot be classified as either morphology (Figure 12).  Lagging 

chromosomes were observed after exposure to each MWCNT material (Figure 11).  Differential 

interference contrast imaging found each MWCNT material throughout the nucleus of exposed cells 

and demonstrated an affinity between each MWCNT material and the spindle poles (Figures 10-12).     

Aneuploidy 

Confocal microscopy analysis of chromosomes 1 and 4 demonstrated significantly increased rates of 

aneuploidy with exposure to each MWCNT material in a dose response (Table 4).  After 24 hours in 

culture, the SAEC cell population demonstrated a background rate of 9.2±3.9% total aneuploidy.  

Exposure to the highest dose of 24 µg/mL MWCNT-7, HT, and ND induced a significantly higher 

frequency of aneuploidy compared to control at 65.3±2.4, 58.0±5.4, and 52.8±12.2%, respectively.  

Exposure to the lowest dose of 0.024 µg/mL MWCNT-7, HT, and ND also induced a significantly higher 

rate of aneuploidy compared to control at 53.7±11.0, 40.8±14.6, and 43.9±18.9%, respectively.  These 

effects from exposure to MWCNT were greater than that of the positive control, V2O5, at 39.4±10.6%.  

Aneuploidy was predominantly due to a loss of either chromosome 1 or 4 rather than a gain in all 

exposure groups (Table 4).  A quantitative analysis of centromere integrity demonstrated a significantly 

higher frequency of centromere fragmentation following exposure to each MWCNT material regardless 

of dose (Figure 12).  Insertions and reciprocal translocations between chromosomes 1 and 4 were 

observed in nuclei exposed to each MWCNT material (Figure 13).    

Clonal Growth 

Exposure to each MWCNT material produced significant effects on clonal growth of the SAEC cells.  A 

dramatic reduction of clonal growth was observed after exposure to 24 µg/mL of each MWCNT material 

due to inherent cytotoxicity.  Exposure to 0.024 and 0.24 µg/mL MWCNT-7, 2.4 µg/mL MWCNT-HT, 
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and 0.024 µg/mL MWCNT-ND material produced significantly greater clonal growth compared to 

control (Figure 14). 

Discussion 

Global production of MWCNT is projected to increase to 7,000 tons by 2025 in large part due to the 

manipulation of their unique physicochemical properties [58].  These characteristics present myriad 

opportunities for enhanced industrial applications albeit at a potentially increased risk to human health.  

IARC has designated MWCNT-7 to be a Group 2B carcinogen, however all other forms of MWCNT 

have been labelled as Group 3 carcinogens or “not classifiable” due to insufficient data [3].  These data 

will help fill the gap and provide mechanistic evidence of the carcinogenic potential of MWCNT with 

varying physicochemical properties compared to the MWCNT-7.  We found exposure to each MWCNT 

material produced significant genotoxicity through flow cytometry analysis of the cell cycle.  These 

exposures led to an increased rate of mitotic aberrations that were predominantly monopolar in 

morphology.  Aberrant cells had compromised spindle pole and centrosome integrity as indicated by 

fragmented and amplified centrosomes, lagging chromosomes, and abnormal alignment of the DNA.  

Significant aneuploidy was measured in a dose response from exposure to each MWCNT material 

resulting in losses rather than gains of chromosomes 1 and 4.  A quantitative assessment of CIN found 

an increased frequency of centromere fragmentation, translocations, and insertions of both 

chromosomes from exposure each material.  The genetically-altered primary human lung epithelial cells 

were also shown to proliferate in culture one month post-exposure through increased clonal growth.  

These data indicate that each MWCNT material, regardless of physicochemical alteration, cause 

significant genotoxicity and potential carcinogenicity through common mechanisms.   

Previous research has indicated the potential for reduced toxicity of MWCNT by altering their 

physicochemical properties.  MWCNT-HT have increased crystallinity and purity than the MWCNT-7, 

two properties that have been shown to significantly affect bioavailability and carcinogenicity in mice 

[17].  MWCNT-ND have defects in the lattice structure of the MWCNT wall which can alter the shape, 

strength, and bioactivity of the material [47, 49, 50, 53].  Surface characteristics of MWCNT such as 
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functionalization, hydrophobicity, and protein corona formation can affect the internalization of the 

material at the cellular and nuclear membrane.  Additionally, other physicochemical characteristics like 

length, diameter, purity, structural defects, and rigidity can affect the material’s toxicity directly by 

interacting with nuclear structures [17].  Although each MWCNT material investigated in this study 

produced significant genotoxicity compared to control, the magnitude of effect regarding cytotoxicity, 

cell cycle arrest, and aneuploidy from exposure to the MWCNT-HT and ND was consistently 

attenuated.       

In general, MWCNT material is extremely insoluble and difficult to disperse evenly due to non-covalent 

surface interactions causing a high degree of agglomeration.  However, differences between the 

surface charge of each material are negated by the protein binding in the serum containing cell culture 

medium [59] and this protein corona will affect the suspension and uptake of the material.  MWCNT-ND 

material has been shown to be relatively more soluble due to the positive charge of amine groups 

added during synthesis allowing for a more hydrophilic material [12, 60].  These effects could have 

significant implications regarding toxicity by the difference in dispersion and uptake between the three 

materials investigated in this study.  Indeed, the suspension characterization conducted has indicated 

that the MWCNT-HT and ND materials are more stable.  As noted by Beck and associates (2012), PCS 

is a light scattering technique that expresses size as an equivalent spherical diameter and hence does 

not represent the actual physical dimensions of high aspect ratio particles such as MWCNT; however, 

values can be used for relative comparison purposes [61].  We found the MWCNT-HT and ND material 

to have a larger DH and greater zeta potential than the MWCNT-7 potentially leading to greater 

deposition of the MWCNT-7 material onto the cellular surface in culture.  Quantification of each 

material’s nuclear uptake indicated this effect with MWCNT-7 having the highest frequency of nuclear 

uptake followed by MWCNT-HT and ND, respectively.   

We observed cell cycle arrests in response to exposure to each MWCNT material in two pulmonary 

epithelial cell types; BEAS-2B, an immortalized cell line with disrupted p53 regulation, and SAEC, a 

primary cell type with normal p53 function and regulation.  BEAS-2B cells exposed to each MWCNT 
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material exhibited an arrest in the G1/S phase of the cell cycle.  However, exposure to each MWCNT 

material in the primary SAEC cell type with normal p53 function lead to an expected arrest at the G1 

and G2 phases.  A prolonged 72 hour exposure to each MWCNT material followed by a 24 hour 

recovery period demonstrated an arrest in the G1/S phase.  These data could indicate either a 

proliferative effect from exposure or mitotic delay from the genetic damage.  The difference in effect 

between the cell types could be due to p53 regulation.  However, the SAEC cell type has been shown 

to be much less sensitive to MWCNT exposure (Figure 7) and has a low mitotic index.  The 24 hour 

experiments represent one round of cellular divisions with normal p53 arresting the cells at the G1 and 

G2 checkpoints.  The 72 hour experiments represent multiple rounds of divisions with genetically-

altered cells that have potentially mutated making it possible to bypass the checkpoints and propagate 

their genetic defects.  This is supported by the increase in clonal growth after exposure to 0.024 and 

0.24 µg/mL MWCNT-7, 2.4 µg/mL MWCNT-HT, 0.024 µg/mL of MWCNT-ND material.  A dose-

dependent increase in clonal growth was not observed for any of the MWCNT materials most likely due 

to differences in cytotoxicity and cellular uptake.   

An arrest in any phase of the cell cycle is an indication of genetic damage that can be the result of 

several mechanisms.  However, an arrest in the G1/S phase of the cell cycle is indicative particularly of 

centrosomal damage [62-64].  Qualitative analysis through confocal microscopy of the mitotic divisions 

revealed that each MWCNT material in this study had an affinity for the spindle poles and centrosomes 

(Figures 10-12).  Previously, exposure to MWCNT material 10-20 nm in diameter was shown to be 

incorporated into the centrosomal structure through 3D reconstruction of the confocal images leading to 

a G1/S arrest, monopolar mitotic spindle aberrations, and significant aneuploidy [36].  In the present 

study, exposure to each MWCNT material produced reduced centrosome and spindle pole integrity 

through observations of fragmented and amplified centrosomes.  These effects resulted in significantly 

increased rates of both mono and multipolar mitotic aberrations and CIN.     

Fragmented and/or amplified centrosomes can form into a functional bipolar spindle by clustering 

multiple centrosomes and centrosome fragments [65].  In the present study, the fragmented 
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centrosomes were observed clustering into a single pole with a bipolar spindle (Figure 11).  In this 

case, the DNA will be separated evenly, however the daughter cells will have an abnormal amount of 

centrosomal material leading to a loss of spindle pole integrity in the subsequent division.  Loss of 

spindle pole integrity can produce cell death or manifest as a multipolar division leading to aneuploidy 

[65].  These multipolar divisions can also show indications of centrosome clustering (Figure 10).  This 

effect has been shown previously in human breast cancer tissue [64] and was correlated with high-risk 

and more aggressive phenotype [66].  Centrosomes that duplicate or fragment but do not separate into 

two poles creating a bipolar spindle still have the ability to go through division with a monopolar spindle 

morphology (Figure 10).  Exposures that induce monopolar mitotic spindles produce daughter cells that 

fail to undergo cytokinesis and have double the number of chromosomes [65, 67, 68].  Previously, 

carbon nanotubes have also been observed in the bridge separating dividing cells as was observed in 

the present study (Figure 11) [69, 70].  This indicates that the mechanism of aneuploidy observed after 

exposure to MWCNT in this study could be the result of a direct interaction with the mitotic spindle and 

centrosome.  Interestingly, asbestos, another high aspect ratio fiber, binds to centromeric proteins 

causing cell cycle arrests and aneuploidy [71].    

Each MWCNT material in the present study was observed throughout the mitotic spindle apparatus and 

there is evidence that the tubulin of the mitotic spindle can form a biohybrid with the MWCNT material 

[42].  MWCNT have been called the nanotechnological counterpart to microtubules based on the rigidity 

and resiliency of both structures [72], however microtubule diameter is static whereas MWCNT 

diameter can be altered.  The mean diameter of the MWCNT used in the present study is slightly larger 

than that of the 20 nm microtubule.  The thicker the MWCNT the greater its stiffness and resiliency [72].  

It is thought that MWCNT can be incorporated into the mitotic spindle during tubulin polymerization of 

the microtubules at the centrosome and create a more rigid structure [36].  Therefore, changing the 

diameter of the MWCNT could change the potential genotoxicity of this material.  Our current study 

showed a significantly higher rate of mitotic aberrations after exposure to each MWCNT material, albeit 

at different and lower doses indicating greater potency.  It should be noted that the variance in effective 
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doses is most likely due to differences in cytotoxicity and nuclear uptake which is dependent on each 

material’s physicochemical properties.  Additionally, analysis of mitotic aberrations requires cells to be 

actively dividing, therefore data can be skewed given the variability of mitotic index with increased dose 

of toxic material (Table 3).     

The mitotic aberrations found in this study are due to loss of spindle pole integrity caused by the 

incorporation of each MWCNT material into the centrosome and microtubules of the mitotic spindle.  

This resulted in centrosome fragmentation and amplifications, failed centrosome duplication, inhibited 

centrosome separation, and failed cytokinesis.  Loss of spindle pole integrity can also occur when the 

chromosomes are misaligned possibly due to interactions between the MWCNT material and DNA 

leading to breaks.  Indeed, centromere fragmentation was observed following exposure to each 

MWCNT material in the present study (Figures 10-12).  There are several proposed mechanisms for 

centromere fragmentation from exposure to MWCNT.  A chromosome attaches to the mitotic spindle 

through the kinetochore, a protein complex surrounding the centromere.  Similar to centrosome 

fragmentation, the physical interaction between MWCNT and DNA could produce torsional forces 

during chromatin condensation causing kinetochore/centromeric DNA to break away.  The increased 

rigidity of the MWCNT hybrid microtubule structures could exert forces on the kinetochore and rip the 

kinetochore/centromere complex away from the chromosome.  This effect has been seen previously in 

CHO cells exposed to caffeine [73].  Additionally, a disruption in the kinetochore-microtubule 

attachment can lead to merotelic attachments where a single kinetochore is attached to microtubules 

emanating from more than one pole [74].  This is indicated by a lagging chromosome during anaphase 

(Figure 11) and is not detected by spindle assembly checkpoints throughout mitosis [75].  Cells with 

fragmented centromeres can override S and G2 checkpoints as well and progress through mitosis, 

otherwise known as mitoses with unreplicated genomes.  This will result in metaphase morphology with 

misaligned DNA with chromatin outside of the mitotic spindle and separate from their fragmented 

centromeres (Figure 12) [76].  
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Although lung cancer studies involving MWCNT exposures in humans are extremely limited due to the 

small exposure duration, several investigations in mice and rats have demonstrated increased 

mesothelioma and lung cancer after peritoneal and pulmonary exposure [17, 20, 77-80].  However, 

exposure to each MWCNT material resulted in significant aneuploidy in a dose-dependent manner with 

evidence of CIN such as translocations and insertions (Figure 14).  CIN and sustained proliferation are 

hallmarks of cancer and are necessary components in tumor progression allowing preneoplastic cells to 

transform into frank neoplasms [81-83]. However, CIN in conjunction with centrosome amplification has 

been shown to produce more aggressive and high-risk breast cancer tumors [66] and has been 

correlated with tumor stage in lung cancer [64, 84, 85] and other cancers [67-69].  Exposure to 0.024 

µg/mL, the lowest dose, of each MWCNT in the present study produced significant aneuploidy in 

primary human lung epithelial cells (Table 4).  This aneuploidy was predominately the result of a loss of 

either chromosome 1 or 4.  However, MWCNT-HT and ND produced an attenuated effect compared to 

MWCNT-7.     

The reported differences between these three MWCNT regarding solubility, suspension, and protein 

corona formation do not appear to affect the genotoxic outcomes measured in a direct way but rather 

through their effects on nuclear penetration.  These inherent differences led to less MWCNT-HT and 

ND material in the nucleus.  In a previous study by our lab we demonstrated disrupted cellular division 

leading to unequal separation of the DNA as a result of exposure to 10-20 nm diameter MWCNT [36].  

The present study suggests a similar mechanism where MWCNT were incorporated into the 

centrosome structure and tubulin of the mitotic spindle.  It was thought that the similar diameters 

between the MWCNT and the mitotic spindle were driving these effects.  The three MWCNT materials 

used in the present study were of slightly larger diameter than the MWCNT studied previously and the 

microtubule.  Therefore, we can infer that the rigidity of these three MWCNT rather than the diameter 

that is the driving force leading to significant genotoxicity.  Indeed, fibrous, and therefore rigid, MWCNT 

material produced more chromosome aberrations in CHO cells compared to tangled, and therefore 

flexible, MWCNT material [86].  The lowest dose of 0.024 µg/mL of each MWCNT material in the 

present study produced significant aneuploidy indicating that a lowest observable effect level has not 
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been reached.  This could have serious implications regarding carcinogenicity and the classification of 

MWCNT-HT and ND as a carcinogen.  However, it should be noted that these two materials 

consistently demonstrated attenuated effects in the genotoxic outcomes measured compared to 

MWCNT-7.  Therefore, we can conclude that although all three types of MWCNT material studied 

produced significant genotoxicity resulting in cell cycle arrest, mitotic aberrations, aneuploidy, CIN, and 

fragmented centromeres these data indicate that the MWCNT-HT and ND had an attenuated effect 

compared to MWCNT-7 due to the manipulation of MWCNT physicochemical properties.  The reduction 

is most likely due to the decrease in structural defects in the walls of the nanotubes, altering the 

crystallinity and rigidity, and lowering the bioavailability of the material.   
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Figure and Table Legends 

Figure 1:  Electron micrographs of MWCNT-7, HT, and ND.  The tubular structure and multiple walls 

can be observed in each MWCNT material.   

Table 1:  MWCNT-7, HT, and ND mean diameter, mean length, hydrodynamic diameter, and zeta 

potential were measured.  *Measured previously [55]. 

Figure 2:  MWCNT material was analyzed for catalyst contamination.  A.) DF-STEM image of a 

MWCNT-ND with red arrow pointing to iron-rich catalyst material. B.) EDS spectrum showing iron-rich 

catalyst contamination in the MWCNT-ND material.  The copper in the spectrum is from the copper 

TEM grid.  

Figure 3:  Raman spectra were determined for each MWCNT material.  A.) Each MWCNT material has 

a unique spectrum with differences between D, G, and D’-bands.  B.)  Although the MWCNT-7 and HT 

material had very similar spectra, intensity of peak bands was lower in the MWCNT-HT material after 

normalizing to the G-band. 

Figure 4:  A 3D rendering of a BEAS-2B cell exposed to 24 µg/mL MWCNT-HT for 24 hours overlaid 

with Raman spectra.  The red indicates silica material from the glass slide, the blue indicates nuclear 

protein, and the green indicates MWCNT-HT material.  This image shows the MWCNT-HT material 

throughout the entire nucleus. 

Figure 5:  Enhanced-darkfield light microscopy of BEAS-2B cells exposed to 24 µg/mL MWCNT-HT for 

24 hours.  The picture on the left shows the MWCNT-HT affinity for the cells.  The MWCNT appear as 

bright white fibers adhering to the surface of the nucleus.  The image on the right is a picture of the 

same cells without the bright white fibers.  However, the blue DAPI stain for DNA has been displaced 

by the MWCNT-HT material within the nucleus and, therefore, appears as a black hole (white arrows). 

Figure 6:  BEAS-2B cells were exposed to the three MWCNT in a dose-response for 24 hours.  

Nuclear uptake was reported as number of individual MWCNT structures per 1000 nuclei. MWCNT-7 
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uptake at the highest dose of 24 µg/mL were too numerous to accurately count as indicated by the 

hashed bar.  MWCNT-ND uptake at the lowest dose of 0.024 µg/mL was zero.  ¥ indicates uptake of 

MWCNT-7 material to be significantly different than MWCNT-HT and ND of the same dose, p<0.05.  * 

indicates uptake of each MWCNT material to be different from each other of the same dose, p<0.05. 

Figure 7:  BEAS-2B and SAEC cells were exposed to serial doses of MWCNT-7, HT, and ND for 24 

and 72 hours.  Viability was measured via the alamarBlue assay. A.) Significant cytotoxicity of BEAS-

2B cells exposed to 24 mg/mL of all MWCNT, 2.4 mg/mL MWCNT-7, and 0.24 mg/mL MWCNT-ND for 

24 hours.  B.) After 72 hours significant  cytotoxicity was measured in BEAS-2B cells exposed to 24 

mg/mL and 2.4mg/mL of all MWCNT, 0.24 mg/mL MWCNT-ND, and 0.02 mg/mL MWCNT-HT and 

MWCNT-ND.  C.) Significant cytotoxicity of SAEC cells exposed to 24 and 0.024 mg/mL of all MWCNT 

for 24 hours.  D.) After 72 hours significant cytotoxicity of SAEC cells exposed to 24 and 2.4 mg/mL of 

all MWCNT and 0.24 mg/mL of MWCNT-7 and MWCNT-HT. * indicates significantly different from 

control, p<0.05. 

Table 2:  The percent of cells in G1, S, and G2 phase of the cell cycle was recorded.  A.)  After 24 

hours of exposure 24 µg/mL of MWCNT-7 and HT material produced a significant arrest in the G1/S 

phase whereas MWCNT-ND material produced a significant arrest in G2 phase in the BEAS-2B cell.  

Exposure to 5 µM arsenic produced a significant arrest in G1 and G2 phases.  B.) After 24 hours of 

exposure to 24 µg/mL of each MWCNT material produced a significant arrest in the G1 and G2 phases 

in the SAEC cell.  Exposure to 10 µM arsenic produced an arrest in the G1 and G2 phases that was not 

significant.  C.) After 72 hours exposure to 2.4 µg/mL of each MWCNT material produced a significant 

arrest in the G1/S phase in the SAEC cell.  Exposure to 10 µM arsenic produced a similar effect.  

*indicates significantly different from control, p <0.05.   

Table 3:  This table demonstrates analysis of mitotic aberrations after exposure to MWCNT material in 

a dose response and 0.316 µg/mL V2O5, positive control, for 24 hours.  Each MWCNT exposure lead to 

significant increases in the rate of mitotic aberrations however a dose dependent increase was not 

achieved due to inherent cytotoxicity as shown by the mitotic index.  Monopolar and multipolar spindle 
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morphologies were observed, however monopolar predominated.  *indicates significantly different from 

control, p <0.05.   

Figure 8:  BEAS-2B cells in metaphase of cellular division after 24 hours of exposure.  DNA has been 

stained with DAPI (blue), centrosomes have been stained with fluorescently-labelled anti-pericentrin 

(green dots), and mitotic spindle has been stained with fluorescently-labelled anti-β-tubulin (red).  A.)  

Control cell with normal bipolar mitotic spindle morphology.  Two centrosomes at opposite ends of the 

mitotic spindle apparatus and the DNA in the middle.  B.)  A cell exposed to 24 µg/mL MWCNT-HT with 

monopolar spindle morphology.  C.)  A cell exposed to 2.4 µg/mL MWCNT-HT with multipolar 

morphology. 

Figure 9:  BEAS-2B cells were exposed to each MWCNT material for 24 hours and observed for 

centrosome fragmentation.  Each MWCNT material produced a significant percent of centrosome 

fragmentation at doses 0.024, 0.24, and 2.4 µg/mL.  At the 24 µg/mL dose only MWCNT-HT produced 

a significant increase in centrosome fragmentation.  *indicates significantly different from control, 

p<0.05. 

Figure 10:  BEAS-2B cells were exposed to each MWCNT material for 24 hours and observed for 

centrosome fragmentation. DNA has been stained with DAPI (blue), centrosomes have been stained 

with fluorescently-labelled anti-pericentrin (green dots), and mitotic spindle has been stained with 

fluorescently-labelled anti-β-tubulin (red).  Fragmented centrosomes can organize a bipolar spindle (A), 

monopolar spindle (B), or multipolar spindle (C).  Yellow arrow points to centrosome fragment.   

Figure 11:  BEAS-2B cells were exposed to each MWCNT material for 24 hours and observed for 

centrosome fragmentation. DNA has been stained with DAPI (blue), centrosomes have been stained 

with fluorescently-labelled anti-pericentrin (green dots), and mitotic spindle has been stained with 

fluorescently-labelled anti-β-tubulin (red).  Centrosome fragments can organize into a bipolar spindle 

and progress through mitosis (A) or produce lagging chromosomes (B).  Arrows point to MWCNT 

material. 
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Figure 12:  BEAS-2B cells were exposed to each MWCNT material for 24 hours and observed for 

centrosome fragmentation. DNA has been stained with DAPI (blue), centrosomes have been stained 

with fluorescently-labelled anti-pericentrin (green dots), and mitotic spindle has been stained with 

fluorescently-labelled anti-β-tubulin (red).  Centrosome fragmentation can be so great that a normal 

mitotic spindle cannot be formed (A&B).  Arrow points to MWCNT material at spindle pole (B).   

Table 4:  This table represents the percentage of aneuploidy in SAEC cells exposed to each MWCNT 

material and 0.316 µg/mL V2O5, positive control, for 24 hours.  Percentage is based on the total number 

of cells analyzed.  A loss or gain of either chromosome 1 or 4 was also recorded as a percentage of 

total aneuploid cells.  * indicates significantly different from control, p <0.05.   

Figure 13:  SAEC cells were exposed to each MWCNT material for 24 hours and observed for 

centrosome fragmentation.  Each MWCNT material produced a significant percentage of centromere 

fragmentation compared to control at each dose.  * indicates significantly different from control, p<0.05. 

Figure 14:  SAEC cells were exposed to each MWCNT material for 24 hours and observed for 

translocations and insertions between chromosomes 1 and 4.  Several nuclei of cells exposed to 

MWCNT material have been labelled for chromosome 1 (red dots) and chromosome 4 (green dots).  

Red arrow points to centromere fragment of chromosome 4.  Orange arrow points to chromosome 4 

inserted into chromosome 1.  White arrow points to translocation between centromeres of both 

chromosomes.      

Figure 15:  Clonal growth was analyzed in SAEC cells exposed to each MWCNT material a significant 

difference were observed.  Most notably, exposure to 24 µg/mL of each MWCNT material produced a 

dramatic reduction in clonal growth due to inherent cytotoxicity.  However, exposure to 0.024 and 0.24 

µg/mL MWCNT-7, 2.4 µg/mL MWCNT-HT, and 0.024 µg/mL MWCNT-ND material produced 

significantly greater clonal growth compared to control.  * indicates significantly different from control, 

p<0.05.   
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Abstract 

Background: Engineered carbon nanotubes are currently used in many consumer and industrial 

products such as paints, sunscreens, cosmetics, toiletries, electronic processes and industrial 

lubricants. Carbon nanotubes are among the more widely used nanoparticles and come in two major 

commercial forms, single-walled carbon nanotubes (SWCNT) and the more rigid, multi-walled carbon 

nanotubes (MWCNT). The low density and small size of these particles makes respiratory exposures 

likely. Many of the potential health hazards have not been investigated, including their potential for 

carcinogenicity. We, therefore, utilized a two stage initiation/promotion protocol to determine whether 

inhaled MWCNT act as a complete carcinogen and/or promote the growth of cells with existing DNA 

damage. Six week old, male, B6C3F1 mice received a single intraperitoneal (ip) injection of either the 

initiator methylcholanthrene (MCA, 10 µg/g BW, i.p.), or vehicle (corn oil). One week after i.p. injections, 

mice were exposed by inhalation to MWCNT (5 mg/m3, 5 hours/day, 5 days/week) or filtered air 

(controls) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for 

lung tumor formation.  

Results: Twenty-three percent of the filtered air controls, 26.5% of the MWCNT-exposed, and 51.9% of 

the MCA-exposed mice, had lung bronchiolo-alveolar adenomas and lung adenocarcinomas.  The 

average number of tumors per mouse was 0.25, 0.81 and 0.38 respectively.   By contrast, 90.5% of the 

mice which received MCA followed by MWCNT had bronchiolo-alveolar adenomas and 

adenocarcinomas with an average of 2.9 tumors per mouse 17 months after exposure. Indeed, 62% of 

the mice exposed to MCA followed by MWCNT had bronchiolo-alveolar adenocarcinomas compared to 

13% of the mice that received filtered air, 22% of the MCA-exposed, or 14% of the MWCNT-exposed.  

Mice with early morbidity resulting in euthanasia had the highest rate of metastatic disease.  Three 

mice exposed to both MCA and MWCNT that were euthanized early had lung adenocarcinoma with 

evidence of metastasis (5.5%).  Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to 
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MCA developed serosal tumors morphologically consistent with sarcomatous mesotheliomas, whereas 

mice administered MWCNT or air alone did not develop similar neoplasms.  

Conclusions: These data demonstrate that some MWCNT exposures promote the growth and 

neoplastic progression of initiated lung cells in B6C3F1 mice. In this study, the mouse MWCNT lung 

burden of 31.2 µg/mouse approximates feasible human occupational exposures. Therefore, the results 

of this study indicate that caution should be used to limit human exposures to MWCNT.   
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Introduction 

The nanotechnology industry is a multibillion dollar industry and is expected to reach a trillion dollars by 

2015 [1]. Carbon nanotubes are long thin nanoparticles that are composed of a single wall (SWCNT) or 

multiple walls (MWCNT) of graphene sheets rolled into tubes.  MWCNT have potential applications in 

many consumer and industrial settings including medical devices, batteries, the automobile industry, 

electronic processes and the aerospace industry [2, 3].  Carbon nanotubes are light and easily 

aerosolized making workplace exposure to nanoparticles a potentially significant source of human 

exposure.  The material resists degradation and may persist in the body for extended periods of time [4, 

5].  The respiratory tract is a likely route of exposure due to the low density and small size of airborne 

nanoparticles.  Similar to inhaled asbestos fibers, MWCNT deposited in the lungs of mice by 

pharyngeal aspiration or inhalation produced histologic changes including inflammation and fibrosis as 

well as hypertrophied and hyperplastic bronchiolar and alveolar epithelial cells [4, 6-8].  Additional 

changes in some alveolar epithelial Type II cells of MWCNT-exposed mice include cellular atypia [8].  

MWCNT can reach the alveolar region, the interstitium, and the pleural space after both aspiration and 

inhalation [8-10].  Some macrophages that contain MWCNT particles have been observed without 

nuclei and with MWCNT connecting dividing chromosomes indicating that carbon nanotubes may be 

capable of inducing errors in cell division in vivo following either aspiration or inhalation exposure [8].  

Type II cells from rodents exposed to MWCNT been shown to have micronuclei, indicating either a 

higher level of chromosome damage or mitotic spindle disruption [11].  In vitro investigations have 

demonstrated that carbon nanotubes disrupt the cell division apparatus and induce errors in 

chromosome number [11-14].   

The multistage nature of cancer has been described in liver, skin, mammary, and lung models for 

cancer [15-18].  Carcinogenic agents can act in one or all of the stages of the neoplastic process.  

Initiating agents typically cause a heritable change in DNA while tumor promoters induce proliferation of 

DNA damaged cells to form visible preneoplastic or benign clones [19].  During the last stage of 

neoplastic development (progression) malignant characteristics, karyotypic instability, and frank 
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neoplasms appear [19].  A complete carcinogen can act at all three stages.  Cellular proliferation is a 

feature of the second phase of pulmonary carcinogenesis (promotion) [16, 17]. Of interest, epithelial 

hyperplasia and cellular atypia were observed in mice exposed to MWCNT in vivo [8].  Therefore, the 

potential for carcinogenicity is of particular concern. In addition, previous studies have indicated the 

potential for carbon nanotubes to act during the progression of cells from preneoplastic and early 

benign lesions to carcinoma as shown by their ability to disrupt the mitotic spindle and induce 

chromosome alterations [17, 19].  Investigations of MWCNT carcinogenicity have demonstrated that 

intraperitoneal or intrascrotal injection of MWCNT results in mesotheliomas in p53 +/- transgenic mice 

and Fischer rats, respectively [20, 21].  The high-dose and agglomeration of the 3 mg MWCNT 

exposure used in the Takagi et al. study have been questioned since it resulted in a high death rate due 

to gastrointestinal occlusion [22]. However, a more recent study demonstrated the induction of  

mesothelioma after intraperitoneal injection of as little as 3 µg of MWCNT in mice [23].  Because the 

physical properties of MWCNT make respiratory exposure likely during the production and processing 

of commercial products and pulmonary exposures in rodents have indicated a potential for genotoxicity, 

inflammation, cell proliferation, cellular atypia, and migration to the pleural space in a manner similar to 

other long thin fiber-like materials that are carcinogenic, there is an urgent need to examine the 

potential for cancer in an animal model following inhalation of carbon nanotubes.     

The overall objective of this study was to determine whether inhalation of MWCNT produced lung 

tumors in adult, male B6C3F1 mice using a two-stage, initiation-promotion protocol. The B6C3F1 

mouse is the strain used by the National Toxicology Program to evaluate chemicals for potential 

carcinogenicity [24].  The B6C3F1 hybrid is of intermediate susceptibility for spontaneous lung tumor 

formation, however the strain is less sensitive than the sensitive/intermediate 020 and BALB/cByJ 

strains [25, 26].  In addition, there is a wealth of information on the spontaneous tumor response and 

lifespan of the B6C3F1 mouse strain [25, 27-29].  This is the first investigation to examine the potential 

carcinogenicity of carbon nanotubes using a multi-stage carcinogenesis model in the B6C3F1 mouse 

lung. 



109 

 

Methods   

Materials 

 

MWCNT used in this study were obtained from Hodogaya Chemical Company (Mitsui-7 MWNT-7, lot 

#061220-31) and were manufactured using a floating reactant catalytic chemical vapor deposition 

method followed by high temperature thermal treatment in argon at 2500º C using a continuous furnace 

[99].  The bulk material was characterized by high-resolution transmission electron microscopsy under 

a Philips CM 20 transmission electron microscope (TEM) with an EDS (EDAX/4p1) as described 

previously [100].  MWCNT trace metal contamination of 1.32% with iron being the major metal 

contaminant was 1.06% [101].    

MWCNT inhalation exposure and aerosol characterization 

The MWCNT aerosol was generated using an acoustical-based computer controlled whole body 

inhalation system designed and constructed by McKinney et al., 2009 [100]. In brief, the inhalation 

exposure system combines air flow controllers, aerosol particle monitors, data acquisition devices, and 

custom software with automated feedback control to achieve constant and repeatable exposure 

chamber temperature, relative humidity, pressure, aerosol concentration, and particle size distributions. 

The generator produces airborne particles continuously for long periods of time with minimal 

fluctuations during an exposure period. The uniformity of test atmosphere in the chamber was 

evaluated to have a total variation of <5%. In this study, the MWCNT aerosol mass concentration was 

continuously monitored with a Data RAM (DR-40000 Thermo Electron Co, Franklin, MA), and 

gravimetric determinations (37 mm cassettes with 0.45 µm pore-size Teflon filters) were used to 

calibrate and verify the Data RAM readings. Chen et al. have provided a detailed characterization of 

MWCNT samples taken from the animal exposure chamber  [102].  In addition, cascade impactors 

(MOUDI, Models 110 and 115, MSP Co., Shoreview, MN) were used to determine the mass-based 

particle size distributions by fractionating the particles into 15 size fractions ranging from 10 nm to 18 

µm. The mass median aerodynamic diameter was determined to be 1.59 µm and geometric standard 
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deviation of 1.69.  The count mode aerodynamic diameter was 0.42 m [101, 102].  The target 

concentration of the mouse exposure was 5 mg/m3 for a duration of 5 hours/day for 15 days, with an  

accumulative exposure dose of 375 mg/m3 x hr. The values of detailed exposure parameters were 

presented in Supplementary table 1. Based on data from Data RAM and filter samples, the mean 

concentrations among the 5 exposures were consistent at 4.6-4.7 mg/m3 with a daily variation between 

4-8 %. Depending on the concentration measured daily, the exposure time was adjusted accordingly to 

result in the target dose of 375 mg/m3 x hr. The mean exposure time per day was 320-330 minutes with 

a daily variation between 1-3 %. The accumulated dose was measured between 372 and 379 mg/m3 x 

hours and therefore was very close to the target dose of 375 mg/m3 x hr. In brief, the study was well 

conducted to fulfill the exposure design. 

Initiation promotion protocol 

Six week old male B6C3F1 mice (Jackson Laboratories, Bar Harbor, ME) were housed singly in a 

polycarbonate ventilated cage with HEPA-filtered air.  Male mice were selected for the investigation 

because the preliminary data showing dose response, proliferation of type II cells, cellular atypia and 

migration of particles following carbon nanotube exposure were gathered using male mice [7-9, 103]. 

The mice were fed ad libitum with Harlan 7913 irradiated NIH-31 modified 6% rodent chow.  The 

initiation, promotion protocol developed previously by Alvin Malkinson was followed [15].  After a one 

week acclimation period, mice (60/group) were randomly assigned to a treatment group.  The mice 

were treated following a two stage (initiation-promotion) protocol. An initiation-promotion protocol 

involved the administration of a low dose of a DNA damaging agent (methylcholanthrene, MCA) 

followed by administration of a suspected carcinogen that would promote the growth of DNA damaged 

cells (MWCNT).  All mice received a single dose of either MCA (10 µg/g BW, i.p.) or vehicle (corn oil).  

One week after receiving MCA, mice were exposed to MWCNT by whole body inhalation (5 mg/m3, 5 

hours/day) or filtered air (controls) for 15 days.   Mice were euthanized 17 months after exposure to 

allow time for tumor development.  Mice were divided into five blocks with staggered test substance 

administration start and end dates. 
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Because animals developing lung tumors have non-specific symptoms but may develop general signs 

of pain and distress, animals were monitored weekly for overt signs of morbidity and changes in body 

weight.  Animals with skin lesions, ruffled fur, lethargy, shaking, penis or anal prolapse, erratic 

movements or paralysis were closely monitored for further signs of distress. Animals that had a loss of 

20% or greater of body weight, were hunched or developed hind leg paralysis were euthanized for 

morbidity prior to the terminal sacrifice.  

Foreign material in lung tissues 

MWCNT burden determinations were made using a procedure previously developed with minor 

modification  [38].  After euthanasia, lungs were removed and frozen at -80 oC and preserved for 

further processing. The lung tissue was digested in 25% KOH/methanol (w/v) at 60°C overnight, 

followed by centrifugation at 16,000 x g for 10 minutes. The supernatant was removed; the remaining 

pellet was mixed with 50% HNO3/methanol (v/v), and incubated at 60°C overnight, followed by 

centrifugation (16,000 x g, 10 minutes). After centrifugation, the supernatant was removed, and the 

pellet was resuspended in 10% NP-40 (v/v) in dH2O, followed by 30 second sonication using cup horn 

sonicator. MWCNT standards were processed in parallel with the lung samples. The optical densities of 

the solutions were measured at 700 nm using a UV/visible spectrophotometer. Lung MWCNT content 

was determined from a standard curve. 

Necropsy, histopathology and tumor counts 

Groups of mice were divided into five blocks with staggered test substance administration start and end 

dates.  The lungs and any masses from mice euthanized early were noted and the tissues collected for 

pathological analysis.  The mice euthanized early, due to signs of morbidity [8], were analyzed 

separately from animals that were sacrificed 17 months after exposure.  Mice were euthanized with an 

overdose of ≥100 mg/kg bodyweight pentobarbital and exsanguinated.   The lungs were fixed by 

intratracheal perfusion with 1 ml of 10% neutral buffered formalin.  The mice were then necropsied 

following standard techniques [45]. Masses and lesions seen grossly were recorded on individual 

animal necropsy records (IANRs). The length, width and height of masses were measured in the MCA, 
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air, MWCNT and MCA+MWCNT-treated mice, using a digital caliper. The calculations of the tumor 

volumes for spherical masses were done using (4/3 π)(r3) and for non-spherical masses (Length x 

Width x Height). All gross lesions and masses were then collected and fixed in 10% neutral buffer 

formalin (NBF). Lungs and any lesions were trimmed the same day and processed overnight. Tissues 

were embedded in paraffin, and sectioned at approximately 5 µm. Hematoxylin and eosin (H & E) 

stained slides were prepared each of the five separate lung lobes and from masses seen at necropsy.  

The tumor counts were based on histopathological analysis.    

Slides were examined  by a board certified veterinary pathologist using light microscopy or polarized 

light, which was occasionally used to confirm the presence or absence of foreign material (presumptive 

test material). The severity of non-neoplastic lesions was graded on a 4-point scale of minimal (1), mild 

(2), moderate (3), or marked (4) using an adaptation of previously described methods [104]. 

Presumptive MWCNT (foreign material) was recorded when present without severity grade [104]. Focal 

adenomatous alveolar hyperplasia was characterized by increased numbers of crowded alveolar 

epithelial cells that outlined contiguous alveolar septa in discrete, generally random locations (Fig. 3).  

Severity was considered minimal, mild, moderate, or marked if roughly <5, 5-10, 11-20, or >20 

contiguous alveoli were affected, respectively. Severity was increased or decreased a grade based on 

cell density and crowding. Histologic diagnoses were entered into the Provantis® data collection and 

management system.  All lung slides from 10% of the mice in the terminal sacrifice were randomly 

selected for evaluation by a second board-certified veterinary pathologist who independently evaluated 

the slides while blinded to the interpretation of the study pathologist.  There was 100% concordance on 

the diagnosis of neoplasia and 87% concordance on the diagnosis of adenocarcinoma versus 

adenoma.  The differences were in the diagnosis of adenocarcinoma versus adenoma were considered 

by both the peer review and study pathologist to involve borderline lesions where such differences 

would be expected.   

Tumor multiplicity (Table 2) was analyzed two ways.  First, the number of tumors was divided by the 

number of animals that had tumors in each treatment group and was labeled “mean # of lung tumor per 
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mice with tumors”.  Secondly, the multiplicity was determined by dividing the number of tumors by the 

number of animals in the treatment group and was labeled “lung multiplicity adjusted by the total 

number of mice” (Table 2).     

Immunofluorescent detection of markers for mesothelioma   

Immunofluoresecent staining for mesothelial proteins were performed on sarcomatous tumors of the 

peritoneal and epididymal surface in mice exposed to both MWCNT and MCA.  Proteins identified by 

immunofluorescence were cytokeratins (wide spectrum), vimentin and podoplanin based upon their 

previously described expression in mouse or human mesothelioma [34, 105-107].  To localize sites of 

vimentin and podoplanin expression to sites of cytokeratin expression, the immunofluorescence 

staining used double labeling for: 1) cytokeratin and vimentin, and 2) cytokeratin and podoplanin.  

Immunofluorescence was selected because it is more sensitive for identifying fluorescence in long, thin 

cytoplasm such as in alveolar type I cells or normal mesothelial cells (Battelli et al., 2001).  

For immunofluorescent staining, slides were deparaffinized, antigenicity was retrieved using EDTA, and 

non-specific reactivity was blocked with normal donkey serum (017-000-121, Jackson 

ImmunoResearch Laboratories, West Grove, PA), as previously described [108].  Two primaries from 

different species were used for each double label.  Primary antibodies were hamster anti-podoplanin 

(NB600-1015, Novus Biologicals, Littleton, CO), mouse anti-pancytokeratin (C2652, Sigma-Aldrich, St 

Louis, MO), rabbit anti-vimentin (GTX62264, GeneTex, Irvine, CA), and rabbit anti-wide spectrum 

cytokeratin (rabbit ab9377).  Secondary anti-bodies were DyLight 488, donkey anti-mouse (715-486-

150, lot# 97733, Jackson ImmunoResearch Laboratories, West Grove, PA), DyLight 594 goat anti-

hamster (107-515-142, lot 90054, Jackson ImmunoResearch Laboratories, West Grove, PA), Dylight 

488 F(ab’)2 donkey anti-rabbit and DyLight 594 donkey anti-rabbit (711-516-152, lot 97356, Jackson 

ImmunoResearch Laboratories, West Grove, PA).   Nuclei were stained using DAPI Fluoro Pure and 

slides were cover slipped with Prolong anti-fade reagent. Negative control slides were treated 

identically except that the primary antibody was replaced with non-immune serum from the same 
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species as the primary antibody. Positive control slides were the normal mesothelial lining of the liver 

and lung.  

Enhanced-darkfield light microscopy imaging of nanoparticles 

Carbon nanotubes in sections from exposed lungs were assessed using an enhanced-darkfield optical 

system as previously described [6].  Nanomaterials, such as carbon nanotubes, have dimensions less 

than the wavelength of light, have closely packed atoms, and typically have a refractive index 

significantly different from that of biologic tissues and/or mounting medium.  These characteristics 

produce significantly greater scattering of light by nanoparticles than by the surrounding tissues and are 

visible with high contrast when examined with an enhanced-darkfield optical system designed to image 

scattered light in the section. 

The optical system consisted of high signal-to-noise, darkfield-based illumination optics adapted to an 

Olympus BX-41 microscope (CytoViva, Auburn, AL 36830).  Sections for dark-field examination were 

cut from paraffin blocks and collected on ultrasonically cleaned, laser cut slides (Schott North America 

Inc., Elmsford, N.Y. 10523) to avoid nanoparticle contamination from the ground edges of traditional 

slides.  After staining with hematoxylin and eosin, sections were coverslipped with Permount.  After 

alignment of the substage oil immersion optics with a 10x objective, sections were examined with 60x 

air or 100x oil immersion objectives.  Enhanced darkfield images were taken with a 2048 x 2048 pixel 

digital camera (Dage-MTI Excel digital camera XLMCAT, Michigan City, In 46360). 

Statistical analysis 

All analyses were performed using SAS/STAT version 9.3 for Windows.  Binary outcomes of tumor 

incidence (tumor or not) for each type and for the total were analyzed using Fishers Exact test.  Tumor 

counts were analyzed using Poisson regression for total tumor counts. In cases where Poisson 

regression demonstrated overdispersion a negative binomial regression was used.  All analyses were 

stratified by promoter.  Using the Proc Lifetest procedure in SAS, the log-rank test gave a p-value of 

0.1609 for any differences among the 4 treatment groups with respect to the survival curves. Stratifying 
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by initiator, the p-value with respect to the difference between MWCNT and Air was 0.3055, and 0.1288 

for the corn oil and MCA treated animals respectively. 

Results 

Foreign material observed during histopathology assessment 

The initial MWCNT lung burden of the mice exposed to MWCNT was determined to be 31.2 ± 0.9 µg 

MWCNT/lung. Light microscopic analysis demonstrated foreign material (presumptive MWCNT) in the 

lungs of all mice in the MWCNT and MCA+ MWCNT groups, but not in MCA or Air control animals 17 

months following exposure (Table 1).  By light microscopy, the foreign material was approximately 0.5 

to 5 µm in length, finely granular to elongated, blocked light with transmitted light (appeared black) and 

had bright whitish birefringence under polarized light (Figs. 1A and 1B). Commonly seen in the 

cytoplasm of cells at terminal bronchioles and alveolar ducts, foreign material was either in presumptive 

macrophages or epithelial cells lining the airways, or in macrophages within connective tissue adjacent 

to airway epithelium (Table 1). It was also present in macrophages that formed occasional random 

small clusters in airways or alveoli, and were seen extracellularly in connective tissue and between 

cells. The diagnostic term “foreign material” was exclusively used to indicate the presumptive test 

article (MWCNT). 

Enhanced darkfield imaging of MWCNT 

Imaging using CytoViva technology demonstrated MWCNT fibers in the lungs of MWCNT-exposed 

mice thus confirming the presence of MWCNT material observed by light microscopic analysis in the 

mouse tissues 17 months following exposure to the material.  MWCNT material was observed by light 

microscopy in the interstitium of the lung (Figure 2A).   With enhanced darkfield imaging MWCNT 

appear as bright fibrous structures.  MWCNT were observed in alveolar tissue as shown in Figure 2B.   

MWCNT were also present within the alveolar macrophages (data not shown).  In addition, enhanced 

darkfield analysis demonstrated MWCNT in the diaphragm (Figure 2C). 

Hyperplasia and macrophage infiltration in the lung 

Regenerative alveolar epithelial hyperplasia is a common reaction of the murine lung to inhaled 
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toxicants, including particles, while primary alveolar epithelial hyperplasia is believed to be a 

preneoplastic change. In humans, the form of primary bronchoalveolar hyperplasia considered 

preneoplastic is known as atypical adenomatous hyperplasia [30-33].  Therefore, in this paper, we have 

designated foci of marked, focal alveolar epithelial hyperplasia resembling human atypical 

adenomatous hyperplasia as focal adenomatous hyperplasia. Focal adenomatous alveolar hyperplasia 

was characterized by increased numbers of crowded alveolar epithelial cells that outlined contiguous 

alveolar septa in discrete, generally random locations (Figure 3).  Animals with foci of focal 

adenomatous hyperplasia and macrophage infiltration were noted.  The number of animals or incidence 

of focal adenomatous alveolar epithelial hyperplasia, macrophage infiltration, foreign material, and 

multifocal adenomatous bronchioloalveolar hyperplasia in the terminal bronchiole/alveolar duct regions 

were increased in both groups exposed to MWCNT (MCA+ and MCA-).  The incidence of focal 

adenomatous hyperplasia was greatest in the MCA+MWCNT group relative to MWCNT, MCA and Air 

groups (Table 1).    Focal alveolar epithelial hyperplasia was scored as marked (adenomatous) in 2%, 

2%, 5%, or 27% of mice in the air, MCA, MWCNT, or MCA+ MWCNT groups, respectively.  

Incidences of macrophage infiltration were higher in the MWCNT or MCA+ MWCNT groups relative to 

the air or MCA groups (Table 1). It was seen as occasional, random, small clusters of macrophages in 

airways or alveoli, or as slightly increased numbers in interstitial connective tissues often near terminal 

bronchioles or alveolar ducts. 

Lung adenoma and adenocarcinoma 

The incidences, or number of mice with tumors, of bronchiolo-alveolar adenoma, bronchiolo-alveolar 

adenocarcinoma, and their combined incidence was greatest in the MCA+MWCNT group relative to the 

other groups for each individual lung lobe and for the entire lung considered as a single tissue (Table 

2).   

Bronchiolo-alveolar adenomas were focal, densely cellular, slightly compressive masses that distorted 

alveolar architecture and replaced alveolar spaces (Figure 4). The masses were composed of 

proliferative epithelial cells that formed irregular papillary structures, ribbons, or solid clusters separated 
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by delicate, fibrovascular stroma.  The cells were polygonal, moderately uniform in size, and had small 

to moderate amounts of eosinophilic, occasionally vacuolated cytoplasm.  Nuclei were small, round to 

oval, moderately uniform with inconspicuous nucleoli, and mitoses were few to absent. At terminal 

sacrifice, the percent of mice (incidence) with bronchiolo-alveolar adenomas in the MCA followed by air 

and MCA+ MWCNT groups were 33% and 76%, respectively, exceeding the air (11%) and MWCNT 

(18%) groups.  The NTP has reported a range of 2-30% lung adenomas in vehicle control B6C3F1 

male mice thus indicating that the mice in the current study have a spontaneously-occurring lung 

adenoma incidence within the range expected in this mouse strain (Table 3) [24]. Furthermore, the 

morphology of bronchiolo-alveolar adenomas in the groups that received MCA and/or MWCNT did not 

differ appreciably from the spontaneously occurring neoplasms in the air group. 

    
In contrast to bronchiolo-alveolar adenomas, bronchiolo-alveolar adenocarcinomas had increased 

cellular atypia, higher nuclear to cytoplasmic ratios, and larger nucleoli (Figure 5A).  Several cytologic 

patterns were often present within the same mass, and included ribbons, papillary structures, or solid 

clusters (Figure 5B and 5C).  The incidences of bronchiolo-alveolar adenocarcinomas in the MCA and 

MCA+ MWCNT groups were 22% and 62%, respectively, exceeding the air (13%) and MWCNT (14%) 

groups (Table 3). The incidence of bronchiolo-alveolar adenocarcinoma in the MCA+ MWCNT group 

(62%) greatly exceeded the NTP historical vehicle control range of 4-24% for male B6C3F1 mice [24]. 

The combined incidences of bronchiolo-alveolar adenoma and bronchiolo-alveolar adenocarcinoma in 

the MCA or MCA+MWCNT groups were 51.9% and 90.5%, exceeding the air (23.2%) and MWCNT 

only (26.5%) groups, and exceeding or greatly exceeding the NTP historical vehicle control range for 

male B6C3F1 mice (14-40%), respectively [24]. 

The number of bronchiolo-alveolar adenomas and bronchiolo-alveolar adenocarcinomas was increased 

in the MCA and MCA+MWCNT groups relative to the Air or MWCNT groups (Table 3). The numbers of 

these neoplasms were greatest in the MCA+MWCNT group relative to the other groups. The 

MCA+MWCNT treated mice had a mean of 2.9 tumors/mouse compared to 0.81 in MCA, 0.25 air alone 

and 0.38 MWCNT-treated mice (Table 2). The volume of the lung occupied by tumor was greater in the 
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MCA+MWCNT compared to the other groups (Figure 6). Three mice exposed to both MCA and 

MWCNT that were euthanized early had tumors with evidence of local invasion of the lung tissue 

(5.5%). Figure 5D demonstrates lung adenocarcinoma tissue invading a vein.     

Animals that were euthanized early were analyzed separately from the mice that were euthanized 17 

months after exposure (Table 3).  Four air control mice were euthanized early due to morbidity.  

Specifically, these air-exposed control mice were terminated due to a 20% loss of their body weight.  

One of the four air controls had a dental tumor at euthanasia.  No other lesions or lung tumors were 

observed in the air mice either grossly or by pathological analysis.  Six of the animals exposed only to 

MWCNT were euthanized early due to morbidity.  These mice were euthanized due to significant 

weight loss and one animal was found to have an enlarged heart. Two of these mice had liver tumors.  

No lung tumors were observed in the early euthanized mice that were only exposed to MWCNT. Six 

animals treated with MCA followed by air were euthanized early due to a 20% or greater weight loss.  

One MCA mouse had a lung adenoma and one mouse had a lung adenocarcinoma.  Thirteen of the 

animals treated with MCA followed by MWCNT were euthanized due to significant weight loss.  Seven 

animals treated with MCA followed by MWCNT had lung tumors (Table 3).  The life table demonstrates 

the time period of early deaths (Figure 7).  The mean age of death of the animals that were euthanized 

early was as follows: 11.18 ± 2.08 months in the air group, 12.28 ± 0.72 months in the MCA group, 

10.63 ± 1.27 months in the MWCNT treatment group and 11.22 ± 1.58 months in the MCA+MWCNT-

treated group (Supplementary Figure 1).  There was not a significant difference in the age of death 

between groups.   

Serosal tumors 

Malignant serosal tumors morphologically consistent with malignant sarcomatous mesotheliomas were 

seen in five mice (9%) in the MCA+MWCNT group and one mouse (2%) in the MCA group (Table 4, 

Figure 8). Consistent with the serosal dissemination of malignant mesotheliomas, multiple tissues were 

affected in four of the six affected mice.  Spontaneous mesotheliomas in B6C3F1 mice are rare [24].  In 

recent years, a series of immunologic markers have been developed to augment the morphologic 
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diagnosis of mesothelioma in man [34, 35].  For that reason, we further characterized the serosal 

tumors by immunofluorescence (IF) for vimentin, cytokeratin, and podoplanin in at least one tumor from 

each affected mouse.    All presumptive sarcomatous mesotheliomas stained positively for podoplanin 

and vimentin.  Podoplanin staining was strongly positive in all tumors evaluated from 5 mice and in one 

mouse varied from weakly to strongly positive in three different serosal tumors.  Two wide-specrum 

cytokeratin antibodies were used because of the variable cytokeratin staining of sarcomatous 

mesotheliomas in man (Figure 9) [36, 37].  Cytokeratin staining with a mouse anti-wide spectrum 

cytokeratin antibody was negative in four mice and equivocal in two.  Cytokeratin staining with a rabbit 

anti-pancytokeratin antibody was negative in tumors from four mice and equivocal to faintly positive in 

tumors from two mice. 

Discussion 

The primary objective of this investigation was to evaluate if exposure to aerosolized MWCNT promotes 

the growth of DNA damaged cells and/or is a complete carcinogen. To accomplish this, mice were 

exposed to aerosolized MWCNT (5 mg/m3, 5 hours/day) for 15 days. Initial MWCNT lung burden in 

these mice was 31.2 ± 0.9 µg MWCNT/mouse [38]. In order to evaluate the relationship of these 

MWCNT lung burdens to human MWCNT exposures, we compared the MWCNT lung burdens in these 

mice with potential human occupational exposures. OSHA has not yet established exposure limits for 

carbon nanotubes; however, MWCNT are regulated as respirable particulates not otherwise regulated 

(PNOR).  The PNOR have an OSHA Permissible Exposure Limit (PEL) of 5 mg/m3 [39].  NIOSH 

recently published a Current Intelligence Bulletin with a Recommended Exposure Limit (REL) of 1 

µg/m3 for carbon nanotubes which is 5000-fold lower than the OSHA PNOR PEL [40].  

Assuming a mouse alveolar epithelium surface area of 0.05 m2 [41], the 31.2 µg MWCNT lung burden 

would result in 624 µg MWCNT/m2 alveolar epithelium.  Using the alveolar epithelial surface area of 

102 m2 for human, the equivalent human lung burden would be 63.6 mg [41].   

If the MWCNT mass median aerodynamic diameter (MMAD) =1.5 µm were used, minute ventilation of 

20 L/minute for a person performing light work [42] and an alveolar deposition fraction of 30% [43] (for 
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240 work days per year), the equivalent lung burden in workers exposed at the previous draft REL for 

CNT of 7 µg/m3 would be achieved in approximately 13 years [44].  This indicates that the mouse 

MWCNT lung burdens in this study approximate feasible human occupational exposures. 

Inhalation of multi-walled carbon nanotubes (MWCNT) for 15 days following a single intraperitoneal 

injection of the known initiator MCA led to increased incidence and numbers of bronchiolo-alveolar 

adenomas and bronchiolo-alveolar adenocarcinomas in B6C3F1 male mice. The combined incidence 

of bronchiolo-alveolar adenomas and bronchiolo-alveolar carcinomas of 90.5% for the MCA+MWCNT 

group greatly exceeded that in groups of mice exposed to air or MCA  and the NTP historical vehicle 

control range for B6C3F1 male mice [24]. Additionally, the numbers of bronchiolo-alveolar adenomas or 

bronchiolo-alveolar adenocarcinomas were greatest in the MCA+MWCNT group compared to other 

groups.  The data demonstrate that MWCNT may act as a carcinogen that promotes the growth of 

initiated lung cells, resulting in the development of lung adenocarcinoma. 

The strong tumor promotion that was observed in the current study may have resulted from a 

combination of effects that have been observed following exposure to carbon nanotubes.  MWCNT 

material was observed in the diaphragm and in the lungs, both within macrophages and the interstitium.  

MWCNT are internalized by macrophages following pulmonary exposure.  In addition, MWCNT material 

has been observed in the interstitium.  MWCNT exposure has been shown to induce fibrosis as early 

as seven days post-exposure [8, 10, 45]. In previous experiments, the post-exposure pulmonary 

distribution, pulmonary fibrotic response and transport of MWCNT to systemic organs was examined at 

various times post-exposure, from 1 to 336 days [46, 47].  Fibrillar collagen in the lungs was specifically 

stained and the quantity of fibrillar collagen in the alveolar region was measured by morphometry.  

These measurements of fibrillar collagen in the alveolar region of the lungs demonstrated a fibrotic 

response to inhaled MWCNT which was significantly above vehicle controls and progressively 

increased throughout the 336 days post-exposure study period [46].  These studies have demonstrated 

that inhaled MWCNTs are deposited throughout the alveolar region of the lungs and are retained in the 

alveolar tissue.  Additionally MWCNT were demonstrated in the visceral pleura, plueral space and 
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parietal space [9].  MWCNT that penetrate the visceral pleural induce pleural inflammation and cell 

proliferation in a manner similar to asbestos [8, 48, 49].  MWCNT have further been shown to penetrate 

the cytoplasmic membrane and nuclear envelope [50, 51].  

Asbestos and MWCNT also induce inflammation, fibrosis, cell proliferation and cellular atypia in the 

lung [8, 48, 49].  Cell proliferation and inflammation are important events in the promotion of cancer [16, 

17, 52-55].  Indeed in the current study, inhaled MWCNT induced dramatic hyperplasia and a moderate 

increase in adenomas however, the increase in adenomas was not statistically significant.  In addition, 

MWCNT exposure did not result in an increased number of adenocarcinomas.  The significant 

hyperplastic response that was observed after exposure to MWCNT material without prior initiation 

indicates that the material was a tumor promoter.  The dramatic increase in adenomas and 

adenocarcinomas after MCA initiation followed by MWCNT-exposure demonstrate that inhaled 

MWCNT material is a strong tumor promoter.  Strong tumor promoters increase the growth of 

chemically initiated as well as spontaneously initiated cells [56, 57].  Although the data of the current 

investigation do not indicate that inhaled MWCNT material act as tumor initiators, the data demonstrate 

the strongest promotion response observed in the lung using occupationally relevant material [15, 52, 

58-60].  The data further indicate that MWCNT may initiate lung responses similar to the carcinogenic 

fiber asbestos [4, 61-63]. 

The dimensions of the nanotubes as well as their surface properties are important in the inflammatory 

response.  Pulmonary exposure to SWCNT and MWCNT causes inflammation and fibrosis; however, 

the inflammatory response following MWCNT exposure is more pronounced than the response 

observed following SWCNT exposure [8, 64, 65].  The degree of inflammation resulting from asbestos 

and MWCNT is determined by the diameter and the length [4, 66, 67].  Carbon nanotubes of 

approximately 50 nm in diameter cause more inflammation than nanotubes of less than 20 nm or 

greater than 150 nm [67]. In addition, the rigid MWCNT of 40-50 nm diameter and at least 4 microns 

long were the most inflammatory [67, 68].   Although these studies indicate that the diameter and length 

of carbon nanotubes may alter MWCNT-induced carcinogenicity further investigations are required to 
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fully characterize the role of the dimensions as well as the physical properties in the carcinogenic 

response.   

Classical multistep carcinogenesis models involve initiation, promotion and progression. Exposure to a 

genotoxic agent initiates a population of genetically altered cells which expand in number through the 

action of promoters and undergo additional genetic changes during the progression process [16, 17, 

69].  Several studies suggest both genotoxicity and promotion from the classical carcinogenic high 

aspect ratio particle, asbestos. Oxidant generation from inflammation has been shown to damage the 

DNA and can initiate cancer [54].  Asbestos and carbon nanotubes have been shown to induce 

disruption of the cell division apparatus and errors in chromosome number (aneuploidy) in vitro [12, 14, 

70].  The long, thin asbestos fibers of less than 0.25 m diameter and at least 5 microns in length are 

the most genotoxic [71, 72].  The mutagenicity of asbestos fibers is correlated with the potency as a 

carcinogen [73].  Evidence from epidemiological studies has demonstrated that asbestos can act as a 

tumor promoter at low doses as well as a tumor initiator at longer and/or higher exposure levels [74].  In 

several human epidemiology studies, smoking exposure and asbestos interact in a more than additive 

fashion in causing lung cancer [75-79]. There are multiple mutagens in cigarette smoke that have the 

potential to initiate cancer [80].  Humans are also potentially exposed to many other mutagens that 

could initiate cancer such as radon, polychlorinated biphenyls, hexavalent chromium, naphthalene and 

benzo-a-pyrene in diesel exhaust [81-85].   Thus, it is plausible to suggest MWCNT could potentially act 

as promoters in individuals who smoke or are exposed to other initiators.    

Previous studies to examine rodent exposure to asbestos by inhalation or pharyngeal aspiration have 

shown that asbestos is carcinogenic in the rat lung by this route but only weakly positive in the mouse 

[86-88].  The data demonstrating that asbestos induces mitotic spindle disruption and aneuploidy would 

suggest that asbestos would be a strong tumor promoter; however, asbestos has not been 

administered in an initiation/promotion protocol in a mouse model.  Although lung cancer has not been 

observed in either rats or mice following the intraperitoneal injection of asbestos or carbon nanotubes, 

mesothelioma has been reported.    Abdominal or scrotal injection of mice with asbestos or long thin 



123 

 

MWCNT of at least 3.9 micron in length and 50 nm in diameter caused mesotheliomas in p53 +/- 

transgenic mice and Fischer rats [20, 21].  Recent investigations demonstrated that intraperitoneal 

injection of as little as 3 g of MWCNT in genetically modified mice (p53+/-) induced mesothelioma 

[23]. By contrast, an IP exposure of Wistar rats to short MWCNT of < 1 micron in length resulted in 

mesothelioma in 5/150 MWCNT-exposed animals but those findings were not statistically significant 

due to a high peritoneal mesothelioma rate in the control group [89].  The high background rate of 

peritoneal mesotheliomas (1/26) is unusual for the Wistar rat [89-91].  A subsequent study 

demonstrated that high exposures (1 and 10 mg/rat) of thin, rigid MWCNT by intraperitoneal injection 

caused mesotheliomas (54).  When the diameter of the nanotubes was considered, MWCNT of 50 nm 

in diameter were more carcinogenic than nanotubes of less than 20 nm or greater than 150 nm [67].  

These findings suggest that the diameter and length are critical in the carcinogenic response to 

MWCNT, a finding that is similar to classical studies of asbestos fiber carcinogenicity [92].   

A limitation of the current study is that suitable non-carcinogenic particle controls do not exist in this 

model.  We considered using the short multi-walled carbon nanotubes investigated by Muller et al, as a 

potential negative control [89].  However, since the interpretation of the Muller et al study is affected by 

the unusual high background rate of peritoneal mesothelioma in the control group, this particle cannot 

be considered a confirmed negative control nor could we identify any carbon nanotube as a confirmed 

negative particle control for a carcinogenicity study.  The identification of a suitable negative control 

nanotube will require further carcinogenicity studies that have yet to be published.   

Malignant mesothelioma in humans has three major histologic patterns:  epithelial, sarcomatous 

(sarcomatoid), and biphasic [93, 94]. Using standard histopathology, the major differential diagnoses for 

malignant mesothelioma include broncho-alveolar adenocarcinoma of the lung, metastatic carcinoma 

and metastatic sarcoma [94].The diagnosis of malignant mesothelioma in humans can be supported by 

staining for proteins commonly expressed in mesotheliomas, including calretinin, cytokeratins, 

mesothelin, WT-1 and podoplanin (D2-40) [34].Podoplanin is among the markers most consistently 

expressed in human malignant sarcomatous mesotheliomas [34, 95].The malignant serosal tumors 
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seen in the mice in our study consistently expressed podoplanin.  However, the staining for cytokeratins 

was negative to equivocal, a finding that is also sometimes seen in sarcomatous mesothelioma in 

humans [35, 36]. One review noted that only 13% of human sarcomatous mesotheliomas were positive 

for cytokeratin 5/6 and none were positive for seven other epithelial markers [37].  However, in one 

study using a cocktail of mouse anti-human monoclonal antibodies, 93% of the cases of human 

sarcomatous mesotheliomas demonstrated cytokeratin expression [96].  However, there are protein 

sequence differences between human and mouse cytokeratins.  In addition, even with blocking steps, 

indirect immunohistochemistry using mouse antibodies on mouse tissues results in some degree of 

binding of the secondary anti-mouse IgG antibody with endogenous IgG located in the mouse tissue.  It 

is for this reason that we used both a mouse monoclonal antibody and a rabbit anti-pancytokeratin 

antibody to stain for cytokeratins in this study.  However, the negative to equivocal staining of the 

serosal tumors for cytokeratins in this study should be interpreted with an understanding that 

mesotheliomas are very rare in the mouse and that techniques for identifying mesothelioma markers in 

mice are not as advanced as they are for identifying those markers in human tissue.   The negative 

staining does not mean that there are no cytokeratins in the serosal tumors of our study, only that no 

cytokeratins could be identified with the antibodies used in this study.   

In humans, podoplanin staining in the absence of cytokeratin staining can be seen in several different 

sarcomas as well as in malignant mesothelioma [34, 97].  The malignant serosal tumors seen in this 

study were morphologically consistent with malignant sarcomatous mesotheliomas with five of the six 

tumors involving multiple peritoneal serosal surfaces. The remaining malignant serosal tumor was 

limited to the male urogenital tract, a common site for mesothelioma in rats but not in control mice [98].  

In humans, a diagnosis of cytokeratin negative sarcomatous mesothelioma is usually made by 

excluding other potential diagnoses [36].  Given the rarity of mesotheliomas in the mouse, we could not 

exclude other diagnoses with absolute certainty [24]. Thus, the characteristics of these tumors are 

consistent with, but not diagnostic of, mesothelioma.  The principal differential diagnosis is pleural 

sarcoma. 



125 

 

These tumors are considered similar to the serosal tumors diagnosed as pleural sarcomas or malignant 

mesenchymal neoplasms in the classical asbestos studies in rats conducted by Stanton and co-

workers who noted their comparability to human mesotheliomas [92].  

Conclusions 

This study is the first to demonstrate that inhalation exposure to some MWCNTs promotes the growth 

of initiated lung cells in a wildtype mouse.  Ninety percent of the mice exposed to MCA followed by 

MWCNT had lung adenocarcinoma and adenomas (mean of 2.9/mouse) compared to 23% of the 

filtered air controls (mean of 0.25/mouse), 26.5% of the MWCNT-exposed (mean of 0.38/mouse), and 

51.9% of the MCA followed by air-exposure (mean of 0.81/mouse).  The data therefore demonstrate 

that inhaled MWCNT are strong promoters of pulmonary adenomas and adenocarcinomas in B6C3F1 

mice.  Furthermore, the strong tumor promotion response observed following exposure to MWCNT was 

observed in a hybrid mouse that is intermediate in sensitivity to lung cancer [25, 26].   Because this 

B6C3F1 hybrid is used by the NTP to determine potential carcinogenesis, the study can be compared 

to a wealth of historical data generated by the NTP [24].                                                                                                                

Furthermore, the current investigation suggests that inhaled MWCNT can promote the growth of 

malignant serosal tumors consistent with sarcomatous mesothelioma. MWCNT inhalation increased the 

incidence from 2% in the MCA exposed mice to 9% in the MCA+MWCNT, a 4.5 fold increase.  

However, malignant serosal tumors are uncommon tumors in mice and their potential promotion by 

MWCNT is of concern. NIOSH is undertaking an inhalation exposure designed to further evaluate the 

potential for MWCNT to cause mesothelioma. The mouse MWCNT lung burdens in the investigation 

are relevant to feasible human occupational exposures. While extrapolation to human health is 

premature, humans working with MWCNT may be exposed to numerous tumor initiators in the course 

of their daily lives.  Results from this study suggest that caution should be taken during production and 

processing to limit human inhalation exposures to MWCNT. 
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Figure and table legends 

Table 1:  The table shows the number of animals or incidence of hyperplasia, macrophage infiltration 

and foreign material that was observed by light microscopy.  The foreign material was material that 

blocked the light during microscopic evaluation during pathological examination.  The material was 

seen as black particles in the section.  The foreign material as seen in all of the animals treated with 

MWCNT.  Macrophage infiltration was observed in 5% of the Air, 9% of the MCA and, 65% of the 

MWCNT-exposed and 93% of the MCA+ followed by MWCNT-exposed.  Focal adenomatous 

hyperplasia (focal hyperplasia not considered reactive) was seen in 12.2% of the Air, 14.8% of the 

MCA+, 28.5% of the MWCNT and 64.3% of the MCA+MWCNT animals.**indicates a statistically 

significant difference at p<.05 compared to corresponding control * indicates a statistically significant 

difference at p<.0001 compared to corresponding control. 

Figure 1:  A. The figure is a low magnification image of MWCNT deposition in the lungs. Macrophages 

in alveolar spaces of the right apical lobe of the lung contain intracytoplasmic, black, elongate to finely 

granular particulate material (presumptive MWCNT).  (40x). B. Using polarized light, the low 

magnification image demonstrates presumptive MWCNT are seen in macrophages in the right apical 

lung lobe of mouse treated with MWCNT. The material in the macrophages are birefringent. (40x). 

Figure 2:  A. The figure is an example of typical images from light and enhanced darkfield imaging of 

MWCNT in lungs and diaphragm. The light micrograph of H&E stained section demonstrates MWCNT 

(black fibers) in the alveolar interstitium of a MWCNT Air exposed animal 17 months following 

inhalation exposure. This micrograph shows an example of MWCNT present within the alveolar 

interstium. Light microscope image using 100x oil immersion objective. Magnification bar is 10 microns. 

B. The micrograph is an enhanced darkfield image from the lung of an animal 17 months following 

exposure to MWCNT. The central area of the micrograph shows a region of alveolar wall with 

numerous MWCNT fibers present. The MWCNT are bright white due to imaging of scattered light over 

a broad range of wavelengths by this nanomaterial. Lung tissue, which does not significantly scatter 

light, is brown-to-orange and airspaces are black. The enhanced darkfield microscope image was 
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photographed using a 100x oil immersion objective. The magnification bar is 20 microns.  C. An 

enhanced darkfield imagine showing MWCNT in the diaphragm. MWCNT (indicated by the upper two 

arrows) are bright white. Nuclei are brown-to-orange, muscle cells are green and red blood cells are 

yellow. The parietal pleural border is indicated by the arrow in the lower part of the figure. Enhanced 

darkfield microscope image using 100x oil immersion objective.  Magnification bar is 20 microns. 

Figure 3:  Focal adenomatous hyperplasia in a mouse exposed to i.p corn oil and inhaled MWCNT. A.) 

At low magnification, a focus of bronchoalveolar hyperplasia forms a discrete, hypercellular focus that 

retains normal alveolar architecture (bar = 200 microns). B.) At higher magnification, the hypercellularity 

is attributable to a population of hypertrophied epithelial cells characterized by moderate anisokaryosis 

and mild karyomegaly. To distinguish these foci from foci of reactive hyperplasia and because of 

morphologic similarities to atypical adenomatous hyperplasia in the human lung, we have used the term 

focal adenomatous hyperplasia for these foci. MWCNT were sometimes seen within or near these foci 

(bar = 50 microns). 

Table 2:  The table shows a summary of the number of tumors identified by histopathology in the corn 

oil/air control, MCA followed by air-treated, corn oil followed by MWCNT-treated and the MCA followed 

by MWCNT exposed mice 17 months following exposure (n=56 in the air, 54 in the MCA, 49 in the 

MWCNT and 42 in the MCA followed by MWCNT groups).  The tissues were preserved by airway 

fixation using neutral buffered formalin and the number of tumors was confirmed by histological 

analysis.  * indicates significant difference from corresponding control at p<.0001. 

Figure 4:  The figure is a representative pulmonary bronchio-alveolar adenoma from a male B6C3F1 

mouse treated with MCA + MWCNT. The mass is composed of relatively uniform cells that compressed 

the surrounding lung tissue.  The photo with taken with a 4x objective. The magnification bar is 200 

microns. B. Figure 4B is a photomicrograph of a pulmonary bronchiolo-alveolar adenoma from a MCA 

+MWCNT treated mouse. The focal, moderately cellular mass involved a bronchiole. The mass was 

composed of relatively uniform cells that distorted and replaced alveolar architecture. The image was 

photographed using a 20x objective. The magnification bar is 50 microns. C. The light micrograph is a 
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higher magnification of the H&E stained section demonstrating MWCNT (black fibers) in the tissue 

surrounding the bronchiolo-alveolar adenoma (arrows 1, 2 and 3). The light microscope image was 

taken using 100x oil immersion objective. The magnification bar is 20 microns. 

Figure 5:  A. The photomicrograph shows a right cardiac lung lobe of a MCA + MWCNT-treated mouse 

that contains a bronchiolo-alveolar adenocarcinoma (white arrow). A bronchiolo-alveolar adenoma 

(black arrow) is in the adjacent lung lobe. (2x). The magnification bar is 500 microns. B. The figure is a 

photomicrograph of a bronchiolo-alveolar adenocarcinoma in the right cardiac lobe of a mouse lung 

treated with MCA + MWCNT (20x). This infiltrative adenocarcinoma filled ~85% of the lobe on histologic 

cross section. The scale bar is 200 microns. C. The photomicrograph is a higher magnification of the 

bronchiolo-alveolar adenocarcinoma of the right cardiac lobe in figure B showing heterogeneous growth 

and pleomorphic cytologic features (40x). The scale bar is 50 microns. D. The photomicrograph shows 

a metastasis of the bronchiolo-alveolar adenocarcinoma in the right cardiac lobe of a mouse lung 17 

months following treatment with MCA + MWCNT (40×). The arrow demonstrates a metastasis in a 

pulmonary vein.  The scale bar is 50 microns. 

Table 3:  The table demonstrates the pathological changes in air controls, MCA followed by air, 

MWCNT followed by air and in MCA followed by MWCNT exposure.  The MCA+MWCNT-treated group 

had a significant number of early deaths (p<.0001).  In addition, MCA+MWCNT-treated mice 

euthanized early had an elevated number of adenomas and adenocarcinomas in 62% of the mice 

treated with MCA+MWCNT compared to 33% of the MCA,  and 0% of the MWCNT or air controls. * 

indicates significance at p<.0001. 

Seventeen months following exposure, mice exposed to MCA followed by MWCNT had a significantly 

increased number of adenomas and adenocarcinomas in 90.5% of the exposed group compared to 

26.5% of the mice exposed to corn oil followed by MWCNT, 51.9% of the MCA followed by air and 

23.2% of the air controls (p<.0001).  The number of adenocarcinomas were significantly increased in 

62% of the animals exposed to MCA followed by MWCNT when compared to 22% of the MCA followed 
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by air, 13% of the air controls and 14% of the MWCNT alone groups.  * indicates significance at 

p<.0001. 

Figure 6:  The figure demonstrates the volume of the lung occupied by tumor per individual mouse. 

The volume of the lung occupied by tumor was greater in the MCA + MWCNT (361 mm3+/−18.72) 

compared to the mice treated with MCA (202.61 mm3+/−36.75).  The MWCNT group had an average 

tumor volume of 107.88 mm3+/− 28.70 compared to the negative control, Air group, with a volume of 

22.29 mm3 +/− 3.93.  *Indicates a significant difference compared to the respective air control group at 

p < .0001. 

Figure 7:  The life table in Figure 7 shows the percent of mice alive in each treatment group at 30 

weeks after exposure to the time of sacrifice 70 weeks after exposure. The MCA + MWCNT treated 

animals had a greater number of early deaths than the MWCNT, the MCA or the Air treated mice. 

Table 4:  The table demonstrates the pathological changes in 6 mice euthanized early due to signs of 

morbidity.   Five mice (9%) exposed to MCA and MWCNT and 1 (1.6%) exposed to MCA developed 

malignant serosal tumors consistent with sarcomatous mesotheliomas, whereas mice administered 

MWCNT or air alone did not develop similar neoplasms. 

Figure 8:  A. The photomicrograph shows a pulmonary vein in the right cardiac lung lobe that 

contained variably-sized polygonal to spindloid cells similar to those on the diaphragm (Figure 8B). The 

arrow indicates a metastasis of the malignant serosal tumor (20×).  The magnification bar is 50 

microns. B. The skeletal muscle of the diaphragm in the photomicrograph is infiltrated by a nodular 

mass composed of variably-sized polygonal to spindloid cells (malignant serosal tumors). (20×). The 

magnification bar is 50 microns. 

Figure 9:  In A, the lining mesothelium (solid arrows) stained positively for podoplanin in this double 

label immunofluorescent image of diaphragm. The cells beneath the mesothelial lining are also red due 

to expression of podoplanin and these are cells of a malignant serosal tumor. In B, only the single label 

green fluorescence is shown to demonstrate weak expression of cytokeratins in the lining mesothelium 
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(solid arrow), while staining of the subjacent tumor for cytokeratins is equivocal. In C, a double label 

immunofluorescent image demonstrates a malignant serosal tumor between the liver and gall bladder 

that is lined by reactive mesothelium (solid arrow) which stains red for podoplanin as well as green for 

cytokeratins. The cells of the subjacent malignant serosal tumor stain weakly red for podoplanin.  In D, 

the photomicrograph shows this same tumor but only the green fluorescence for cytokeratins. The 

reactive mesothelium lining the malignant serosal tumor (solid arrow) stains green for cytokeratins while 

the serosal tumor has no evidence of cytokeratin expression. The normal mesothelium lining the liver is 

weakly positive for cytokeratins (dashed arrow). The epithelium lining the gall bladder (open arrow) 

strongly expresses cytokeratins. Magnification bar is 50 µm. 

Supplementary figure 1:  This figure represents the average age, in weeks, of each mouse that died 

prematurely per exposure group.  Error bars represent standard deviation.  

Supplementary table 1:  The table summarizes the mean exposure concentration of MWCNT material 

in the inhalation chamber for each of the animal exposure periods. The data is expressed in milligrams 

of MWCNT per meter cubed as well as the total MWCNT concentration for 5 hours per day for a total of 

15 days. The measurements of the MWCNT material was based on data collected from Data RAM and 

filter samples. 
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V.  Summary 

Introduction 

Lung cancer is the leading cause of cancer-related deaths in the United States [1] and occupational 

exposures to carcinogens accounts for approximately 9 to 15 percent of all diagnosed cases [2].  IARC 

has recognized MWCNT-7 material as a Group 2B carcinogen; however, data are still lacking regarding 

mechanisms, physiocochemical alterations, and relatability to human exposures [3].     

Summary of key findings 

The purpose of this project was to determine the effect of physicochemical alterations of MWCNT 

on the genotoxicity and carcinogenicity of the material.  The mechanistic data collected for MWCNT 10-

20 nm in diameter (Chapter 2) and MWCNT-7, MWCNT-HT, and MWCNT-ND (Chapter 3) has helped 

fill the gap in knowledge.  The MWCNT-7 material was shown in Study 3 (Chapter 4) to be a significant 

tumor promoter and was the first study to show this effect via inhalation route of exposure.  The 

MWCNT material used in Study 1 had a mean diameter similar to the mitotic spindle which was the 

target structure involved in the hypothesized mechanism of genotoxicity.  The MWCNT-7, HT, and ND 

materials were slightly larger in diameter than the mitotic spindle with chemical alterations induced by 

high temperature treatment and nitrogen-doping during synthesis, thereby increasing purity or solubility, 

respectively.  The MWCNT-7 material has been shown previously to be genotoxic and tumorigenic in 

animals due to its rigidity and structure.  However, animal studies using this particular material have 

never been conducted using whole-body inhalation, an applicable route of exposure.   

The MWCNT material in Study 1 demonstrated a significant G1/S cell cycle arrest in the BEAS-2B 

cells after 24 hours of exposure indicating genotoxic damage.  Analysis of the mitotic spindle revealed a 

significant increase in cell division aberrations in the BEAS-2B cell after 24 hours of exposure that were 

predominantly monopolar in morphology.  This result was different from multipolar spindle 

morphologies found in previous studies of SWCNT and asbestos in culture, and, therefore, unexpected.  

The mitotic spindle aberrations led to significantly increased aneuploidy in the primary SAEC cell that 

were the result of gains rather than losses of either chromosomes 1 or 4 [4, 5].  This is an indication of 

failed cytokinesis where the incorporation of MWCNT material within the microtubule prevents the 
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separation of dividing cells.  Indeed, we observed MWCNT material in the bridge of cytokinesis and 

throughout the mitotic spindle structure.  Additionally, we observed MWCNT material interacting with 

spindle poles and centrosomes.  This interaction caused centrosomes to fragment.   

In the Study 2 the genotoxicity of MWCNT-7, HT, and ND material was measured in two cell types, 

BEAS-2B and SAEC.  In the BEAS-2B cell, 24 µg/mL of each MWCNT material produced an arrest in 

the G1/S phase of the cell cycle compared to control after 24 hours of exposure.  In the SAEC cell, 24 

µg/mL of each MWCNT material produced an arrest in the G1 and G2 phases of the cell cycle after 24 

hours of exposure.  After 72 hours of exposure, 2.4 µg/mL of each MWCNT material produced an 

arrest in the G1/S phase of the cell cycle after a 24 hour recovery.  The differences between the effects 

observed in each cell type and exposure time could be an indication of increased proliferation, mitotic 

delay, or p53 regulation.  BEAS-2B cells were exposed to each MWCNT material for 24 hours in a 

dose-response to observe mitotic spindle aberrations.  A dose-dependent effect was not observed due 

to inherent cytotoxicity of the MWCNT materials resulting in low mitotic index; however, the percentage 

of mitotic aberrations was significantly increased after exposure to each MWCNT material.  Mitotic 

aberrations were predominately monopolar in morphology, similar to study 1.  Spindle pole and 

centrosome integrity were compromised as observed through amplified and fragmented centrosomes.   

SAEC cells were exposed to each MWCNT material for 24 hours in a dose-response to enumerate 

chromosomes 1 and 4.  A dose-dependent increase in the percentage of aneuploidy was observed for 

MWCNT-7, HT, and ND material with the lowest dose of 0.024 µg/mL producing a greater effect than 

the positive control, V2O5, with 53.7±11.0, 40.8±14.6, and 43.9±18.9% aneuploidy, respectively.  

Analysis of the centromere revealed centrosome fragmentation after exposure to each MWCNT 

material.  Clonal growth assays demonstrated that cellular proliferation was increased after exposure to 

each MWCNT material in the SAEC, albeit at difference doses.  Although each MWCNT material 

produced significant genotoxicity, there was an attenuation of effect for the MWCNT-HT and ND 

material.  These effects were most likely due to the reduction in nuclear uptake of these two materials 

compared to MWCNT-7.  
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Inhalation of MWCNT-7 material was shown to produce significant tumor promotion in the B6C3F1 

mouse model.  Mice were IP injected with either MCA, known DNA damaging agent, or corn oil (vehicle 

control) and then exposed to either air or MWCNT via inhalation.  Exposure to MCA+MWCNT produced 

90.5% incidence of bronchioalveolar adenomas and adenocarcinomas, combined, whereas exposure 

to MCA alone produced an incidence of 51.9%.  Exposure to control air produced an incidence of 

23.2% and exposure to MWCNT alone produced 26.5% of mice with both bronchioalveolar adenoma 

and adenocarcinoma.  Spontaneous mesotheliomas in B6C3F1 mice are rare, however malignant 

serosal tumors morphologically consistent with malignant sarcomatous mesotheliomas were seen in 

five mice (9%) exposed to MCA+MWCNT and one mouse (2%) exposed only to MCA.  These data 

demonstrate that inhalation exposure to MWCNT material alone does not produce a significant 

increase in tumor formation, however exposure to MWCNT following exposure to an initiating 

substance produces a highly significant increase in tumor formation indicating MWCNT material to be a 

strong tumor promotor.                 

Discussion 

MWCNT are synthesized through several methods that involve the use of a metal catalyst 

attracting free carbon atoms.  A MWCNT in this state is labelled as “pristine”, but detailed physical and 

chemical analysis demonstrates otherwise.  Pristine MWCNT have many structural defects in the 

graphene lattice of its walls and contain a significant amount of metal impurities leftover from the 

catalyst.  These characteristics have been shown to negatively impact the efficiency of this material in 

industrial products.  Covalent chemical functionalization, high-temperature treatment, elemental doping 

during synthesis, and chemical coating are just a few methods that have been utilized to alter the 

characteristics of MWCNT material for industrial purposes.  These methods can change both the 

chemical and physical properties of this material and affect toxicity. 

These physicochemical changes not only affect the industrial usage of this material, but also the 

toxicological outcomes.  Gernand and Casman (2014) performed a meta-analysis of carbon nanotube 

pulmonary toxicity studies to determine this effect [6].  They found MWCNT metallic impurities, length, 

diameter, aggregate size, and surface area to be significantly correlated with toxicity endpoints 
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involving bronchioalveolar lavage fluid [6].  Additionally, Poulsen et al. (2016) investigated the in vivo 

inflammatory and genotoxic effects of MWCNT with varying physicochemical properties and found 

surface area, length, and diameter to be significant predictors of toxicity [7].     

Mitsui-7 MWCNT are the most widely studied carbon nanotube.  MWCNT have been acid 

washed which produces shorter tubes with carboxylic acid functional groups.  High-temperature 

treatment over 2200˚C anneals the outermost wall creating a more crystalline structure and removes 

catalytic impurities leftover from synthesis [8-11].  The addition of ammonia during the synthesis of 

MWCNT through catalytic chemical vapor deposition (CCVD), produces a material with greater 

electrical capacity [12, 13].  This nitrogen-doped MWCNT has nitrogen either incorporated into the 

lattice structure of the graphene wall or as an amine functional group [14, 15].  MWCNT-ND are 

typically larger in diameter and shorter due to the nitrogen incorporation [13, 16-18] .  

Pristine MWCNT (10-20 nm) have similar diameter and physical properties to that of the 

microtubules that make up the division apparatus [19] and form hybrids with the microtubules [20].  By 

altering the physiochemical properties of MWCNTs these hybrids could be eliminated and toxicity 

reduced.  Additionally, they have been shown to disrupt cellular division [21].  MWCNTs have similar 

diameter and physical properties to that of the microtubules that form the mitotic spindle and, therefore, 

form hybrids with the microtubules [20].  Furthermore, MWCNT have been observed inside the 

centrosome (mitotic spindle pole) through confocal microscopy.  These interactions with the mitotic 

spindle disrupt the separation of chromosomes into the dividing cells and causes abnormal 

chromosome numbers, otherwise known as aneuploidy [21].  Disruption of the mitotic spindle pole is 

common in many solid tumors including lung cancer [22, 23].  The resulting aneuploidy is a key event in 

the progression of cancer and is correlated with tumor stage [24].   Previously, CNT material has been 

shown to interact with the mitotic spindle and inhibit cytokinesis in vivo as indicated by the observation 

of carbon bridges observed between two daughter macrophages [25]. 

  Carbon nanotubes also have a high affinity for DNA inducing conformation changes and 

mutations [26, 27].  Specifically, CNT can intercalate with the DNA and bind to G-C rich sequences in 
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the chromosomes and cause a destabilization in the helix structure leading to chromosome breakage 

and chromosome instability [26].   

Physicochemical alterations produced differences in cellular and nuclear uptake of the material.  

Studies 1 & 2 utilized lung epithelial cells and there is debate as to the mechanism of uptake for this cell 

type.  Alveolar cells from the hamster lung have been shown to transform to actively phagocytose 

asbestos particles in culture [28].  However, CNT material has also been shown to passively diffuse 

through the cellular membrane.   

Chemical functionalization has been shown to affect nuclear uptake of nanomaterials.  Silica 

nanoparticles with amine or carboxylated functionalization remain in the cytoplasm of murine 

macrophages whereas noncharged particles can enter the nucleus [29].  However, localization in the 

nucleus is not a prerequisite for action on the DNA and other nuclear structures.  Degradation of the 

nuclear membrane is a necessary step in the process of mitosis allowing any nanomaterial crossing the 

cellular membrane to gain access to nuclear components and genetic material [30]. 

Physicochemical alterations can also have effects on the suspension properties in vitro, in vivo, 

and in the workplace.  Zeta potential is a measure of dispersion of suspended particles in a liquid 

medium and is based on the electrostatic repulsion between these two substances.  The magnitude of 

zeta potential, whether positive or negative, will indicate the degree of stability for the suspension.    

 The addition of proteins, such as pulmonary surfactants, have been shown to improve the 

stability of nanomaterials in suspension [31] .  A protein corona can surround the nanomaterial which 

affects the pharmacokinetics and pharmacodynamics of the substance leading to differences in toxicity.  

Furthermore, physicochemical characteristics of the nanomaterial can influence the protein corona.  

Pristine nanomaterials typically have more structural defects allowing for stronger electrostatic and 

covalent bonds with proteins, such as albumin and fibrinogen [32].  However, there is conflicting 

evidence since chemical functionalization with carboxyl and amine groups demonstrated lower zeta 

potentials, increased hydrodynamic diameter, and increased amounts of protein loading on CNT 

material indicating increase hydrophilicity and suspension stability [33].  Indeed, Study 2 reported a 

decrease in suspension stability of MWCNT suspended in surfactant containing dispersion media 
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measured through zeta potential.  Traditional measurement techniques for nanotoxicology have been 

debated since nanomaterials have been shown to either skew results or possess unique qualities not 

measurable with the currently technology [34].  As noted by Beck et al. (2016), PCS is a light scattering 

technique that expresses size as an equivalent spherical diameter and hence does not represent the 

actual physical dimensions of high aspect ratio particles such as MWCNT [35].  However, these values 

are used as the accepted method for zeta potential and hydrodynamic diameter.      

According to Mariato and Logorinto a tripolar cell can complete cytokinesis, maintain viability, 

yet it will be aneuploidy [36].  A quadripolar cell will not complete cytokinesis and either die when p53 is 

activated or become polyploid and cycle again if p53 is mutated.  A cell with a bipolar spindle with 

clustered centrosomes will usually maintain a normal karyotype.  However, the next cell cycle and 

division will produce aneuploidy or micronuclei due to amplified centrosomes.  A monopolar spindle will 

behave similar to a quadripolar cell by not undergoing cytokinesis and becoming polyploid.  Amplified 

centrosomes can occur from fragmentation or defects in centriole cohesion leading to premature 

separation of the centrioles during the cell cycle.  Carboxylated MWCNT material from Study 1 and 

MWCNT-7, HT, and ND material from Study 2 have the unique ability to interact with the centromere in 

addition to their affinity for tubulin and centrin.  This interaction with the centromere and ability to 

fragment has not been seen by any other carbonaceous nanomaterial.   

The objectives of Studies 1 & 2 were to determine the effect of either diameter or chemical 

alterations on the genotoxicity of MWCNT.  Each MWCNT material investigated in these studies 

produced significant effects regardless of the size or functionalization of the material.  Therefore, we 

can conclude that the rigidity and structure of the MWCNT drive the mechanism of genotoxicity, 

whereas differences can occur between material regarding cellular and nuclear uptake.  The IARC 

committee recognized gaps in mechanistic data regarding physicochemical alterations of MWCNT 

material and effects on cellular proliferation [3].  Clonal growth analysis of the MWCNT-7, HT, and ND 

material has shown that each material has the ability to significantly increase proliferation in primary 

lung epithelial cells, however the affective doses are different.  Additionally, these in vitro doses are 
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occupationally-relevant.  However, given the significant effects at the lowest dose a no observable 

effect level has not been achieved.         

The International Agency for Research on Cancer (IARC) designated the pristine Mitsui-7 MWCNT 

(MWCNT-7) as a Group 2B carcinogen or “possibly carcinogenic to humans” [37].  Without a dose-

response cancer study in vivo or epidemiological evidence of lung cancer a Group 1 classification 

cannot be reached.  There is also insufficient evidence to determine the carcinogenic risk imposed on 

workers exposed during the production or use of other MWCNT with varying physicochemical 

properties.  Therefore, all other MWCNT have been labelled as Group 3 carcinogens or “not classifiable 

as to their carcinogenicity to humans”.  MWCNT with altered physicochemical properties might have 

different health effects and must be studied extensively [38-40].  There have been several studies 

published demonstrating MWCNT-7 material to be significantly carcinogenic in rats producing bronchio-

alveolar carcinomas via inhalation [41] and malignant mesotheliomas via intratracheal installation [42].      

A significant gap remains as to the deposition of MWCNT material in the pleural mesothelium, 

chronic retention and clearance, and translocation to other organs.  Although study 3 determined that 

inhalation of MWCNT-7 following administration of DNA damaging reagent MCA induced significantly 

increased focal adenomatous alveolar hyperplastic lesions in mice providing evidence of pre-neoplastic 

changes similar to human bronchio-alveolar adenocarcinoma, the mechanism is not understood.  Gene 

expression studies have provided some information pertaining to MWCNT-induced oncogenes [43].   

The 31.2 ± 0.9 µg MWCNT/mouse lung burden achieved in Study 3 is equivalent to 266 years of 

human exposure at the National Institute for Occupational Safety and Health (NIOSH) recommended 

exposure limit (REL) of 1 µg/m3 [44] assuming the entire workplace exposure material is of inhalable 

size and a 10% alveolar deposition fraction (Appendix A).  NIOSH has recently conducted exposure 

assessments in eight MWCNT primary or secondary manufacturing facilities in the U.S. and measured 

a geometric mean concentration of 4.21 µg/m3 at the inhalable fraction [45].  The 31.2 ± 0.9 µg 

MWCNT/mouse lung burden is equivalent to 63 years of human exposure based on this recent 

workplace exposure assessment, assuming a 10% alveolar deposition fraction.  The deposition fraction 

is based on a 1.5 µm mass median aerodynamic diameter with 2 µm geometric standard deviation for 
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MWCNT material [46].  It should be noted that the exposure assessment indicated mean 

concentrations as high as 79.6 µg/m3 at one facility [45]. 

Currently, there are no data regarding length of worker exposures to MWCNT.  However, the 

worker population has been characterized as transient and growing by as much as 115% in one year 

[47].  An exposure assessment of six primary and secondary MWCNT manufacturing sites determined 

limited and improper use of PPE (respirators, surgical and dust masks) and engineering controls (fume 

hoods, glove boxes, HEPA filter vacuums, enclosed processes) [48].  The authors noted a common 

practice was to shut down engineering controls during the production and use of MWCNT materials to 

reduce the loss of product.  Therefore, it can be inferred that workers are at risk of inhaling MWCNT 

material in the workplace resulting in a tumorigenic equivalent dose.  

Future research & Conclusions 

The physical interaction between MWCNT material and nuclear structures leads to significant 

genotoxicity in lung epithelial cells and carcinogenicity in a rodent model at occupationally-relevant 

doses.  These data indicate that chemical and physical alteration of the MWCNT have only limited 

effects on the magnitude of genotoxicity specifically relating to cellular division.  However, these 

alterations can affect nuclear internalization of the material.  The overall hypothesis is that carbon 

nanotubes induce mitotic spindle disruption and aneuploidy by interaction with the lipophilic mitotic 

spindle tubulin, kinetochore fibers as well as DNA. The degree of rigidity and the lipophilicity of the 

carbon nanotubes is directly correlated to the extent of the disruption of the mitotic apparatus.  The 

most aneugenic carbon nanotubes are the most carcinogenic.   

Recently, there has been a proactive effort within the nanotechnology industry to reduce the 

dustiness of workplace environments by either coating MWCNT material (such as with metal oxides or 

polymer epoxies) or using them in composites.  These alterations have been shown reduce pro-

inflammatory and fibrogenic cytokines in the mouse lung [49, 50].  Therefore, an investigation of the 

genotoxicity, and the potential reduction, is warranted for these materials.   

In vivo data have been provided regarding indirect mechanisms leading to genotoxicity and 

carcinogenicity, such as oxidative stress and inflammation.  However, only Muller et al. have shown 
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pristine MWCNT material to interact with the DNA in type II pneumocytes isolated from the lungs of rats 

exposed via i.t. installation leading to MN with evidence of both clastogenic and aneugenic mechanisms 

[51].  Therefore, research is needed to investigate the mechanisms of genotoxicity for MWCNT-7 

material and MWCNT material with varying physicochemical properties in vivo.  The data from Study 3 

demonstrate MWCNT-7 material is a significant tumor promoter and, therefore, incomplete carcinogen.  

However, other recent studies have indicated this material as a complete carcinogen [41, 42].  

Therefore, an in vivo dose response of the carcinogenicity of MWCNT-7 material is necessary.  Since 

Study 3 and Suzui et al. have demonstrated MWCNT-7 material to produce malignant mesothelioma, 

there is a need for these mechanisms to be explored in mesothelial cells [42].  Lastly, there is a great 

need to test the various mechanistic endpoints leading to cancer, oxidative stress, inflammation, 

fibrosis, and genotoxicity, concurrently with exposure to MWVNT in vivo. 

  



160 

 

 

References  

1. (NPCR), N.P.o.C.R., United States Cancer Statistics (USCS). CDC, 2010. 

2. Alberg, A.J. and J.M. Samet, Epidemiology of lung cancer. Chest, 2003. 123(1): p. 21S-49S. 

3. Kuemple, E., et al., Seeing the Forest through the Trees:  Evaluating the Key Evidence and 

Data Gaps in Assessing the Potential Carcinogenicity of Carbon Nanotubes and Nanofibers in 

Humans Crit Rev Toxicol, 2016. 

4. Sargent, L.M., et al., Single-walled carbon nanotube-induced mitotic disruption. Mutat Res, 

2012. 745(1-2): p. 28-37. 

5. Sargent, L.M., et al., Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol 

Mutagen, 2009. 50(8): p. 708-17. 

6. Gernand, J.M. and E.A. Casman, A meta-analysis of carbon nanotube pulmonary toxicity 

studies--how physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk 

Anal, 2014. 34(3): p. 583-97. 

7. Poulsen, S.S., et al., Multi-walled carbon nanotube physicochemical properties predict 

pulmonary inflammation and genotoxicity. Nanotoxicology, 2016. 10(9): p. 1263-75. 

8. Kim, Y.A., et al., Synthesis and structural characterization of thin multi-walled carbon nanotubes 

with a partially facetted cross section by a floating reactant method. Carbon, 2005. 43(11): p. 

2243-2250. 

9. Andrews, R., et al., Purification and structural annealing of multiwalled carbon nanotubes at 

graphitization temperatures. Carbon, 2001. 39(11): p. 1681-1687. 

10. Huang, W., et al., 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature 

annealing. Carbon, 2003. 41(13): p. 2585-2590. 

11. Endo, M., et al., Comparison study of semi-crystalline and highly crystalline multiwalled carbon 

nanotubes. Applied Physics Letters, 2001. 79(10): p. 1531-1533. 



161 

 

12. Garc, et al., Magnetic and Electrical Properties of Nitrogen-Doped Multiwall Carbon Nanotubes 

Fabricated by a Modified Chemical Vapor Deposition Method. Journal of Nanomaterials, 2015. 

2015: p. 14. 

13. Terrones, M., et al., N-doping and coalescence of carbon nanotubes: synthesis and electronic 

properties. Applied Physics A, 2002. 74(3): p. 355-361. 

14. Sharifi, T., et al., Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating 

XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon, 2012. 50(10): p. 

3535-3541. 

15. Sumpter, B.G., et al., Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, 

Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007. 1(4): 

p. 369-375. 

16. Meier, M.S., et al., Tearing open nitrogen-doped multiwalled carbon nanotubes. Journal of 

Materials Chemistry, 2008. 18(35): p. 4143-4145. 

17. Ayala, P., et al., The doping of carbon nanotubes with nitrogen and their potential applications. 

Carbon, 2010. 48(3): p. 575-586. 

18. Ganesan, Y., et al., Effect of nitrogen doping on the mechanical properties of carbon nanotubes. 

ACS Nano, 2010. 4(12): p. 7637-43. 

19. Pampaloni, F. and E.L. Florin, Microtubule architecture: inspiration for novel carbon nanotube-

based biomimetic materials. Trends in Biotechnology, 2008. 26(6): p. 302-310. 

20. Dinu, C.Z., et al., Tubulin Encapsulation of Carbon Nanotubes into Functional Hybrid 

Assemblies. Small, 2009. 5(3): p. 310-315. 

21. Sargent, L., et al., Genotoxicity of multi-walled carbon nanotubes at occupationally relevant 

doses. 2013. 

22. Salisbury, J.L., A.B. D'Assoro, and W.L. Lingle, Centrosome amplification and the origin of 

chromosomal instability in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 

2004. 9(3): p. 275-283. 



162 

 

23. Lingle, W.L., et al., Centrosome amplification drives chromosomal instability in breast tumor 

development. Proceedings of the National Academy of Sciences, 2002. 99(4): p. 1978-1983. 

24. Aardema, M.J., et al., Aneuploidy: a report of an ECETOC task force. Mutation Research-

Reviews in Mutation Research, 1998. 410(1): p. 3-79. 

25. Mangum, J.B., et al., Single-Walled Carbon Nanotube (SWCNT)-induced interstitial fibrosis in 

the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique 

intercellular carbon structures that bridge alveolar macrophages In Situ. Particle and Fibre 

Toxicology, 2006. 3(1): p. 15. 

26. Li, X., et al., Carboxyl-modified single-walled carbon nanotubes selectively induce human 

telomeric i-motif formation. Proc Natl Acad Sci U S A, 2006. 103(52): p. 19658-63. 

27. Thongkumkoon, P., et al., Direct nanomaterial-DNA contact effects on DNA and mutation 

induction. Toxicol Lett, 2014. 226(1): p. 90-7. 

28. Suzuki, Y., J. Churg, and T. Ono, Phagocytic Activity of the Alveolar Epithelial Cells in 

Pulmonary Asbestosis. The American Journal of Pathology, 1972. 69(3): p. 373-388. 

29. Nabeshi, H., et al., Effect of surface properties of silica nanoparticles on their cytotoxicity and 

cellular distribution in murine macrophages. Nanoscale Res Lett, 2011. 6(1): p. 93. 

30. Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical 

nanoparticles. Int J Nanomedicine, 2012. 7: p. 5577-91. 

31. Porter, D.W., et al., Mouse pulmonary dose- and time course-responses induced by exposure to 

multi-walled carbon nanotubes. Toxicology, 2010. 269(2-3): p. 136-47. 

32. Sengupta, B., et al., Influence of carbon nanomaterial defects on the formation of protein 

corona. RSC advances, 2015. 5(100): p. 82395-82402. 

33. Shannahan, J.H., et al., Comparison of nanotube-protein corona composition in cell culture 

media. Small, 2013. 9(12): p. 2171-81. 

34. Doak, S.H., et al., Confounding experimental considerations in nanogenotoxicology. 

Mutagenesis, 2009. 24(4): p. 285-93. 



163 

 

35. Beck, S., J. Bouchard, and R. Berry, Dispersibility in water of dried nanocrystalline cellulose. 

Biomacromolecules, 2012. 13(5): p. 1486-94. 

36. Maiato, H. and E. Logarinho, Mitotic spindle multipolarity without centrosome amplification. Nat 

Cell Biol, 2014. 16(5): p. 386-94. 

37. Grosse, Y., et al., Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and 

carbon nanotubes. Lancet Oncol, 2014. 15(13): p. 1427-8. 

38. Donaldson, K., et al., Asbestos, carbon nanotubes and the pleural mesothelium: a review of the 

hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and 

mesothelioma. Part Fibre Toxicol, 2010. 7: p. 5. 

39. Murphy, F.A., et al., Length-dependent pleural inflammation and parietal pleural responses after 

deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology, 2013. 7(6): 

p. 1157-67. 

40. Nagai, H., et al., Diameter and rigidity of multiwalled carbon nanotubes are critical factors in 

mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A, 2011. 108(49): p. E1330-8. 

41. Kasai, T., et al., Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre 

Toxicol, 2016. 13(1): p. 53. 

42. Suzui, M., et al., Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce 

development of pleural malignant mesothelioma and lung tumors. Cancer science, 2016. 

107(7): p. 924-35. 

43. Snyder-Talkington, B.N., et al., mRNAs and miRNAs in whole blood associated with lung 

hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled 

carbon nanotube inhalation exposure in mice. J Appl Toxicol, 2015. 

44. NIOSH, Current intelligence bulletin 65: occupational exposure to carbon nanotubes and 

nanofibers. . 2013(Publication No. 2013–145). 

45. Erdely, A., et al., Carbon nanotube dosimetry: from workplace exposure assessment to 

inhalation toxicology. Part Fibre Toxicol, 2013. 10(1): p. 53. 



164 

 

46. Chen, B.T., et al., Multi-walled carbon nanotubes: sampling criteria and aerosol 

characterization. Inhal Toxicol, 2012. 24(12): p. 798-820. 

47. Schubauer-Berigan, M.K., M.M. Dahm, and M.S. Yencken, Engineered carbonaceous 

nanomaterials manufacturers in the United States: workforce size, characteristics, and feasibility 

of epidemiologic studies. J Occup Environ Med, 2011. 53(6 Suppl): p. S62-7. 

48. Dahm, M.M., et al., Occupational exposure assessment in carbon nanotube and nanofiber 

primary and secondary manufacturers. Ann Occup Hyg, 2012. 56(5): p. 542-56. 

49. Taylor, A.J., et al., Atomic layer deposition coating of carbon nanotubes with aluminum oxide 

alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and 

reduces lung fibrosis in mice in vivo. PLoS One, 2014. 9(9): p. e106870. 

50. Bishop, L., et al., A life cycle analysis of carbon nanotube toxicity to provide context to potential 

health effects. In press, 2016. 

51. Muller, J., et al., Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial 

cells. Carcinogenesis, 2008. 29(2): p. 427-33. 

  



165 

 

VI. Appendix 

Appendix A – Estimation of work-years to reach human equivalent dose 

Assuming a 10% deposition fraction (MMAD 1.5 µm and GSD 2 µm)  

 

Exposure assessment from Erdely et al 2013 

Human equivalent lung dose (µg) = (�����	���		
���	(�	)����������	(��) ) x HumanAlvSA (m2) 

63,852 µg = (��.�	�	�.��	��) x 102 m2 

Work years (yr) = Human-equivalent deposited lung dose (µg) / [Exposure conc (µg/m3) x Air intake 

(9.6 m3/8-hr d) x Workdays per year x DFalv] 

 

 Work years (yr) = 
�����	����������	���		
���	(�	)

� !"#$%&'	()*+,!	-.&	./012'	!	3#&2	415$	!	46178	
 

 

Air intake = 20L/min x 0.001 m3/L x 8 hr/day x 60 min/hr = 9.6 m3/d 

 

63 yr = 
9�,;��	�	

�<.��	()*+,	!		=.9	
*+
> 		!		���	?		!		�.�	

  

 

NIOSH REL  

Human equivalent lung dose (µg) = (�����	���		
���	(�	)����������	(��) ) x HumanAlvSA (m2) 

63,852 µg = (��.�	�	�.��	��) x 102 m2 

Work years (yr) = Human-equivalent deposited lung dose (µg) / [Exposure conc (µg/m3) x Air intake 

(9.6 m3/8-hr d) x Workdays per year x DFalv] 

 

 Work years (yr) = 
�����	����������	���		
���	(�	)

� !"#$%&'	()*+,!	-.&	./012'	!	3#&2	415$	!	46178	
 

 

Air intake = 20L/min x 0.001 m3/L x 8 hr/day x 60 min/hr = 9.6 m3/d 
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266 yr = 
9�,;��	�	

��	()*+,	!		=.9	
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