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ABSTRACT 

 

Estimating Bald Eagle Occupancy and Density in the Chesapeake 

Bay Watershed 

 

Bethany Drahota 

 
Bald eagles (Haliaeetus leucocephalus) are a newly recovered species, and as such, little is known 

about their modern population dynamics and how these dynamics interact with their ecology. With 

the recent expansion of eagle populations, managers have begun to question assumptions about 

bald eagles, including their sensitivity to disturbances. Discerning how eagles react to both outside 

influences and internal factors is crucial for eagle conservation, especially in focal areas of 

importance, such as the Chesapeake Bay. I used seven years of monitoring data from the Virginia 

Department of Game and Inland Fisheries (VDGIF) to determine the occupancy (chapter 1) and 

density (chapter 2) of bald eagles in concentration areas in the Bay (Rappahannock, James, 

Potomac, York Rivers) and their associations with habitat characteristics. I used robust occupancy 

models to assess habitat associations within concentration areas (chapter 1). Additionally, I used 

Royle-Nichols n-mixture models to find average abundance and multiply this across the number 

of units in the study area to determine effective density (chapter 2). Bald eagle occupancy (chapter 

1) was seasonally variable, with different covariates influencing eagles at different times of the 

year. Patterns of occupancy by non-breeding populations (summer months) responded to salinity, 

land cover, and recreational disturbance. Patterns of occupancy by bald eagles in winter (breeding 

season) responded to salinity and were age-specific. In both seasons, less saline waters (tidal fresh 

and oligohaline) were more frequently occupied than more saline waters (mesohaline). Density 

models (chapter 2) suggested that canopy cover may be important. However, the models I used 

appeared inappropriate for the data, they did not converge, and therefore my results were generally 

uninformative for this metric. Chapter one occupancy analyses show high rates of bald eagle 

occupancy and a relative resistance of eagles to recreational disturbances, which suggests that this 

population is growing, which may lead to increased management concerns in the future. Chapter 

two analyses revealed that archived data from mandated monitoring of sensitive species are 

valuable to the scientific community; however, if the models used are not appropriate for the data 

collected, the ability to answer research questions is limited. 
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ABSTRACT Bald eagles (Haliaeetus leucocephalus) are a newly recovered species, and as 

such, little is known about their modern population dynamics and how these dynamics may be 

affecting their habitat ecology. With the recent expansion of eagle populations, managers have 

begun to question assumptions about bald eagles, including their sensitivity to disturbances. 

Discerning how individual eagles react to both outside influences and internal factors is crucial 

for eagle conservation considerations. The goal of this study was to determine the habitat 

associations and occupancy of bald eagles in concentration areas within the Chesapeake Bay 

(Rappahannock, James, Potomac, York Rivers). To achieve this goal, we analyzed survey data 

collected by the Virginia Department of Game and Inland Fisheries during 2006—2012 and we 

linked these data to a suite of intrinsic and extrinsic variables that could influence occupancy. 

Bald eagle occupancy was seasonally variable, with different covariates influencing eagles at 

different times of the year. Occupancy in the non-breeding season (summer months) was 

influenced by salinity, land cover, and recreational disturbance. Patterns of occupancy by bald 

eagles in winter (breeding season) responded to salinity type and were age-specific. In both 

seasons, lower saline waters (tidal fresh and oligohaline) had the highest occupancy rates. High 

occupancy of bald eagles in the Bay and a relative resistance of eagles to recreational 

disturbances suggests that this population is growing, which may lead to increased management 

concerns in the future.

KEY WORDS bald eagle (Haliaeetus leucocephalus), Chesapeake Bay, disturbance, mark-

resight, occupancy, presence-absence, salinity. 

Understanding species distributions across a landscape is essential to address 

management concerns and gain new insights into the ecology of species of concern (Sinclair et 

al. 2006). For many species of concern, legal requirements have mandated standardized surveys 
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for monitoring purposes (USFWS 2007, USFWS 2013). However, because the primary purpose 

of this data collection is often to fulfill statutory requirements, these data are usually archived but 

not always analyzed. When available, the analysis of such stored data can provide detailed 

understanding of wildlife population dynamics and distributions to inform decision-making by 

wildlife managers. 

Distributions of wildlife are often estimated using mark-recapture and resight analyses of 

individuals, techniques that may require meticulous adherence to survey protocols (Pollock 

1982, Royle and Nichols 2003). However, a subset of existing analytical approaches does not 

have such strict requirements and can be readily applied to archived data that may have been 

originally collected for other purposes (MacKenzie et al. 2003). Occupancy models, for example, 

use presence and absence data to determine the probability of occupancy at a set of sites, and as 

such, they can be applied to a wide range of survey types. Consequently, these models have been 

used to estimate population dynamics or movements of many taxa, including ungulates 

(Duquette et al. 2014), lagomorphs (Eaton et al. 2014), insects (Ghara et al. 2014), and birds 

(Carillo-Rubio et al. 2014, Hill and Diefenbach 2014). 

Bald eagles (Haliaeetus leucocephalus) have been the subject of more monitoring than 

most other species. The context for this monitoring lies in the unique conservation history of the 

species and the legal frameworks established for their protection. Bald eagle populations in 

North America were once extensive. However, dating back as far as the 1600s, populations of 

this species declined rapidly, most notably from persecution and organochlorine poisoning 

(Gerrard and Bortolotti 1988). By 1963 only 487 nesting pairs remained in the conterminous 

U.S. (USFWS 2013). After three decades of intensifying management, populations rebounded, 

and the bald eagle was removed from the U.S. Endangered Species List in 2007. As a component 
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of their management and eventual delisting, extensive population monitoring has been either 

required or suggested by federal and state governments (USFWS 2007). 

In eastern North America, some of the largest and most diverse bald eagle populations 

are found in the Chesapeake Bay. This important watershed hosts three distinct populations that 

visit at different times in their breeding cycle (Buehler et al. 1991, Watts et al. 2007). One group 

migrates from the North during winter, another from the South during summer, and a third 

population remains on in the Bay year-round. Insights into the dynamics of eagles in this 

watershed are of increasing importance as expanding numbers cause managers to shift their 

views on eagles from that of a species of concern to one that is abundant and sometimes even a 

nuisance. 

The Virginia Department of Game and Inland Fisheries (VDGIF) and the College of 

William and Mary have, since 2006, surveyed eagle shoreline use along major tributaries in the 

Chesapeake Bay to identify winter and summer concentration areas. These data were collected 

by multiple observers with a diversity of methodologies, making traditional mark-recapture 

analysis, where birds must be individually marked to track unique histories, challenging. 

Therefore, to ascertain population dynamics of bald eagles in this area, we distilled archived 

survey data to presence and absence records and analyzed these data using an occupancy 

modeling framework. The specific objective of our study was to determine which environmental 

and population variables have the strongest effect on bald eagle occupancy along major rivers of 

the Chesapeake Bay. We evaluated patterns of occupancy as responses to eagle age, land use, 

water salinity, and recreational disturbance. 
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STUDY AREA 

The Chesapeake Bay (Figure 1) extends across three states (Maryland, Delaware, and 

Virginia), with its many tributaries spanning >250-km, from New York to the Carolinas (Buehler 

et al. 1991). Shoreline areas within the Bay are highly varied and include mixed deciduous 

forested land, industrial land, and urban residential land (Thompson et al. 2005). Salinity in the 

Bay and its adjacent tributaries includes polyhaline (>18.0–30.0 parts per thousand (ppt)), 

mesohaline (>5.0–18.0 ppt), oligohaline (0.5–5.0 ppt), and tidal fresh (< 0.5 ppt) (VIMS 2004). 

In the tributaries, fresher waters occur further inland and more saline waters occur closer to river 

mouths (Figure 2). The vegetation along the shoreline primarily consists of deciduous forest 

cover. Within the water, submerged aquatic vegetation is abundant. Taxa within the Bay include 

a variety of fish and bird populations, small mammals, amphibians, and raptors, including the 

bald eagle (Brown and Erdle 2009). 

METHODS 

Data Collection 

We used bald eagle survey data collected on the Rappahannock, James, Potomac, and 

York rivers and their major tributaries. From 2006–2008 and 2011–2012 bald eagles were 

counted repeatedly on these rivers. Summer data included surveys from June, July, and August 

in 2006–2008 and 2011–2012. Winter included surveys from December, January, and February 

in 2006–2007, 2007–2008, 2010–2011, and 2011–2012. Timing of surveys was variable, with 1 

to 2 per month completed for each river (Table 1). 

Data were collected by boat by the VDGIF or by the Center for Conservation Biology 

(CCB) at the College of William and Mary. Boat surveys (Parker center console 182 with 

Yamaha 115hp outboard motor) utilized a field crew of at least two observers. Surveyors 
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monitored one side of the shoreline on the outbound trip; on the return, they surveyed the other 

side. The boat moved approximately 15–20 kilometers per hour (weather permitting) about 200-

m offshore, although distance from shoreline varied (as close as 50-m and sometimes greater 

than 300-m) depending on water depth, submerged vegetation, and obstacles. When an eagle was 

encountered, it was marked on 1:24,000 topographical maps with the help of a hand-held 

Geographic Positioning System device (Garmin 76 GPSmap ’16) and aged into one of 7 

classes—hatch year (Y), second year (S), third year (T), fourth year (F), adult (A), juvenile 

(subadult of unknown age) (J), or unknown (U). To understand how disturbance influenced 

eagles, surveyors also noted the presence and location of other boats encountered, and classified 

the activity of their occupants (working, recreating, or fishing). Finally, when people on shore 

were observed, surveyors noted their number, location, and activity as noted above. 

Data Classification 

We divided each river into individual river segments, or “units”, using the 

“sampleperpointsalonglines” tool in the Geospatial Modeling Environment (v. 0.7.3.0 (Beyer 

2012)) within ArcMap 10.2 (ESRI 2011). To do this, we created a line that followed the center of 

the river down its length and put a marker every 1-km along this line. Then we extended each 

marker out 3-km to either side so that the river was broken up into 1-km by 6-km units down 

their entire lengths (405 units total). We assigned each boat, person, and eagle observation to a 

river unit using the point distance tool in ArcMap. 

To understand habitat associations of eagles, we linked field survey data from each unit 

to the 2006 National Land Cover Database (NLCD; Fry et al. 2011). Further, survey data were 

linked to one of the salinity classes listed above, although the polyhaline salinity class was not 

used because no survey units occurred within polyhaline areas (VIMS 2004). We distilled land 
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use and cover data into four main categories: developed, wetlands, open, and forest (deciduous, 

evergreen, and mixed cover). Within ArcMap, we calculated percent cover of land use and land 

cover in each river unit identified above. Because rivers are not static and tend to widen and 

narrow throughout their lengths, we evaluated land cover classes 3-km on either side from the 

river center line to account for these fluctuations. 

Once eagles, habitat, and disturbance data were linked to river units, we imported data 

tables into Microsoft Excel (Redmond, WA) and, for each river unit, linked rows of presence or 

absence records for eagles to habitat and disturbance data for each river unit. These lines, or 

capture histories, included survey months and years as column headings, and each river unit 

included individual rows of data for each eagle age class. We created a capture history file for 

both summer and winter. 

Data Analysis 

For both summer (post-fledging) and winter (breeding) seasons, we used a single model 

set of robust occupancy models (Royle and Nichols 2003) within Program MARK (White and 

Burnham 1999), to estimate the effects of population and environmental variables on occupancy 

along the rivers we surveyed within the Chesapeake Bay. Our robust-design models included 

both primary and secondary sampling occasions. We delineated primary sampling occasions by 

year, where survey units could become occupied or unoccupied by eagles between each occasion 

(year). We chose secondary sampling occasions by month because these were likely to be 

demographically closed without changes in occupation in survey units within a season (year). 

Our models generated estimates for 4 parameters: probability of occupancy, probability of 

emigration, probability of colonization, and probability of detecting if a survey unit is occupied. 

Mark models use the terminology emigration and colonization in their outputs. In our case, these 



8 
 

represent the probability of occupied river units becoming unoccupied (emigration) and the 

probability of unoccupied units becoming occupied (colonization). For the purposes of this 

paper, in discussing the results, we will refer to these parameters as emigration and colonization; 

in the discussion section we will refer to them within their biological context (e.g., discuss them 

in terms of becoming occupied or unoccupied). Our models gave us output estimates of 

occupancy probability by age class, of emigration and colonization among years, and of 

detection probabilities for each sampling month of each year (except for winter; see below). 

We created 16 models for each season (Table 2). We modeled occupancy, emigration, 

and colonization parameters (as year-specific estimates) as functions of age, land use and cover, 

salinity, and disturbance covariates. We used Akaike’s Information Criterion corrected for small 

sample size (AICc) to determine which of the competing models held the most support in the 

data for each season (Burnham and Anderson 2004). We modeled probability of detection as a 

response to age, forest cover, and disturbance (boats and people) for both seasons. We allowed 

detection to vary by each month of the year for summer models. However, because sample sizes 

for the winter season were smaller, we were unable to use this level of detail and instead allowed 

emigration, immigration, and detection to vary by year alone. 

RESULTS 

Summary Statistics 

The data set we evaluated included a study area of 405 river units, of which 301 units 

were routinely sampled. Within these 301 units, 7,440 eagles were encountered, 5,277 in summer 

and 2,163 during winter. There was a total of 13 surveys in the winter season and 29 surveys in 

the summer season. Eagle encounters were highest in summer (18/unit, SE=0.90 and 181/survey, 

SE=3.43) and lowest in winter (7/unit; SE=0.32 and 166/survey, SE=1.80). Of units sampled, 
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143 were in tidal fresh waters, 125 were in oligohaline, and 33 were in mesohaline areas. On 

average, observers counted 81 (SE=2.50) eagles per survey in tidal fresh water in summer and 86 

(SE=1.39) in winter. In oligohaline surveys, there were an average of 85 (SE=4.11) eagles in 

summer and 60 (SE=1.62) in winter. Mesohaline surveys held an average of 29 (SE=3.22) eagles 

in summer and 20 (SE=2.18) eagles in winter (Table 3). 

For naïve estimates, we evaluated eagle encounters within land cover class by 

considering the number of eagles present where a land cover type held greater than 30% of the 

unit. Because there was some overlap in land cover among units, units could be represented in 

more than one cover type. Consequently, this evaluation included 333 units, with 6,199 eagle 

observations in summer and 2,571 in winter. During the summer season, eagles were counted 

primarily in deciduous cover, followed by open lands, wetlands, and developed lands. The cover 

types with the lowest number of eagles seen per unit were mixed forests, followed by evergreen 

forests. In winter, we recorded high eagle presence in developed lands, open lands, and 

deciduous tree cover. Wetlands also had higher numbers of eagles per unit, while evergreen 

cover held somewhat fewer eagle observations and mixed cover did not have any at all (Table 3). 

During winter surveys, boats were observed in 57 units and people recorded in 25. There 

was some overlap in river units here as boats and people could be observed either separately or 

together in the same unit. There were 502 eagles present in units with recreational boating 

presence, an average of 9 eagles per unit (SE=1.11) and 39 per survey (SE=2.33). There were 

228 eagle observations recorded in units with people, with an average of 9 eagles per human-

occupied unit (SE=1.41) and 18 per survey (SE=1.95). During the summer, 116 units had 

boating observations and 86 had people. There was a total of 2,655 eagles recorded in units with 

boats present and an average of 23 eagles per unit (SE=1.83) and 92 per survey (SE=3.66). Units 
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with people had a total of 1,587 bald eagle observations, with an average of 18 eagles per unit 

(SE= 2.05) and 55 per survey (SE=3.53). (Table 3). 

Summer 

The top model for summer described emigration and colonization parameters as 

responses to fixed effects for salinity, land cover, and human disturbance (boats and people) 

(Table 4). Age was not a relevant factor in models for this season. Salinity, however, was a 

strongly influential variable, and was influential regardless of the effects of other environmental 

variables. 

Bald eagles occupied primarily oligohaline and tidal fresh river segments. Segments of 

rivers with mesohaline salinity levels had lower probabilities of becoming occupied by eagles 

than did lower saline areas. Further, emigration from river units was least likely in oligohaline 

areas, then tidal fresh, and most likely in mesohaline waters. Additionally, emigration from river 

units slowly declined over time within all salinity types. 

River units with deciduous tree cover were more likely to have bald eagles (tidal: 0.72, 

SE=0.11; oligohaline: 0.76, SE=0.09; mesohaline: 0.45, SE=0.14), followed by those with 

evergreen (tidal: 0.27, SE=0.15; oligohaline: 0.31, SE=0.17; mesohaline: 0.10, SE=0.08), or 

mixed forest (tidal: 0.01, SE=0.02; oligohaline: 0.02, SE=0.03; mesohaline: 0.004, SE=0.007) 

(Table 5). However, emigration from units was least likely in mixed forests, while colonization 

was more likely in evergreen and mixed forests than deciduous forests in tidal fresh (Table 6), 

oligohaline (Table 7), and mesohaline waters (Table 8). Additionally, units with evergreen 

forests were likely to be colonized, to become unoccupied, and to become occupied at low rates, 

regardless of salinity class. 
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Bald eagles had a high probability of occupancy in wetland land cover. Occupancy was 

similar between oligohaline (0.84, SE=0.07) and tidal fresh waters (0.81, SE=0.08), with lower 

rates in mesohaline waters (0.57, SE= 0.12). Probabilities of emigration from within wetland 

landscapes were consistently low over time and colonization of these areas was likewise rare. 

Further, there were low emigration rates where development was present (range 0.00—0.07) in 

fresh (Table 6), oligohaline (Table 7), and mesohaline (Table 8). However, the effects of 

development on colonization, were more varied. In some years, development meant a bald eagle 

was more likely to move into a river unit and in other years development had the opposite effect. 

Further, developed areas had varying rates of eagle occupancy, but followed previous trends in 

salinity, with oligohaline units having higher occupancy than both tidal fresh and mesohaline 

units (range 0.21—0.50; Table 5). 

Human disturbance positively influenced eagle site selection and did not appear to impact 

whether bald eagles left a river unit. Eagles were more likely to be found in areas with some 

disturbance present, although units with boats were used more than units with people (Table 5). 

Winter 

The top model for eagles in winter with the strongest support in the data had fixed effects 

for age, salinity, and disturbance (Table 4). However, the number of boat and people observed 

during this season were markedly low and the beta estimates for this sub-model were likewise 

low, meaning the disturbance variable did not have a biological effect. Considering this, and the 

small difference in AICc (Table 4) between the first and second models, we decided to evaluate 

the second model with fixed effects for age and salinity only. Occupancy estimates were highest 

in oligohaline waters, followed by tidal fresh, and then mesohaline. That said, during winter, 
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eagles were present in all salinity levels surveyed and movement rates from river units of all 

salinity levels were comparable. 

Of all age classes during winter, subadult birds had the highest probability of occupancy 

regardless of salinity class (tidal: 0.49, SE=0.07; oligohaline: 0.58, SE=0.07; mesohaline: 0.31, 

SE=0.12). Occupancy probability was intermediate for adults (tidal: 0.43, SE=0.04; oligohaline: 

0.52, SE=0.04; mesohaline: 0.26, SE=0.09) and lowest for hatch year birds (tidal: 0.40, SE=0.11; 

oligohaline: 0.49, SE=0.11; mesohaline: 0.24, SE=0.12).  Emigration rates were lower for adult 

birds than they were for all other age classes, regardless of salinity class. Hatch year birds and 

subadult eagles had comparable emigration rates always between 25 and 29% (Table 9). 

Colonization was higher for hatch year birds, followed by subadults, then adults. Adult eagles 

had the lowest probability of both emigration and colonization of river units within all salinity 

classes, while hatch year birds had the highest. 

DISCUSSION 

Our analysis illustrates how archived data collected for other purposes can, in some 

cases, be used to gain insight into the movements and habitat associations of high priority 

wildlife populations. The data we considered illustrate the relationships between eagles and the 

landscape they occupy. They also demonstrate that some of the historical ideas about bald eagle 

behavior, especially regarding their associations with human activity (Knight and Knight 1984, 

Fraser et al. 1985), may not apply in this era of high-density bald eagle populations. 

As a newly recovered species, bald eagles are particularly interesting to management 

agencies, especially in areas that attract large numbers of eagles each year. The Chesapeake Bay 

is the largest estuary in the United States and is a well-known area of convergence for 3 different 

breeding and migratory bald eagle populations (Mojica 2006, Watts et al. 2007). These unusual 
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patterns present both unique challenges and unique benefits to understanding occupancy in this 

situation. 

Summer 

In our study, salinity was a primary driver of eagle occupancy. As transitional 

ecosystems, estuaries such as the Bay host a wide range of salinity types, often with multiple 

types within a short distance. Salinity is widely known as a primary driver of processes within 

these systems, including influencing the distribution of aquatic inhabitants, such as the fish 

species that bald eagles prey upon (Watts et al. 2006, 2007). During summer, we found the 

highest proportions of eagles in tidal fresh and oligohaline areas. This result is in keeping with 

previous studies, where eagles were found more commonly near tidal fresh shorelines, perhaps 

because of the fish species present in these areas (Watts et al. 2007, Markham and Watts 2008). 

Prey density has been suggested as the main driver of eagle nesting densities (Swenson et al. 

1986, Hansen 1987) and fisheries located in lower saline waters are a likely cause for the 

influence salinity has on eagle presence (Watts et al. 2006). Additionally, seasonal fish spawning 

is a factor in eagle behavior. In our study area, there are spring spawning runs of anadromous 

Clupeidae (shad and herring), as well as resident catfish (Ictaluridae spp.; Pylodictis olivaris and 

Ictalurus furcatus). 

Patterns in land cover, as well as salinity, also influenced occupancy probability. Eagles 

particularly used areas with deciduous tree cover and wetland areas, especially in combination 

with lower saline waters. Wetlands had higher proportions of bald eagle occupancy than forested 

areas, suggesting their relative importance to eagles. As wetlands are often nearer open water 

areas and house many different fish and waterbird populations, they are likely utilized as 

foraging spaces, while forested areas are used for perching and nesting. 
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Developed lands and human recreational disturbances influenced bald eagle use in the 

Chesapeake Bay. This finding was consistent with past studies demonstrating that anthropogenic 

features (housing units, factories, etc.) are often detrimental to eagles (Stalmaster and Newman 

1978, Buehler et al. 1991, Chandler et al. 1995, Stokstad 2007). Recreational disturbances, such 

as boaters and pedestrians have likewise negatively influenced bald eagle use of the landscape 

(Andrew and Mosher 1982, Buehler et al. 1991, Buehler et al. 1992, Chandler et al. 1995, Watts 

and Whalen 1997, Brown and Erdle 2009, Saalfeld and Conway 2010). However, in contrast to 

previously reported trends, we found that bald eagle responses to disturbances and development 

were variable and not always negative. In our study, the probability of units becoming occupied 

in developed areas differed by year, but was not strongly unlikely, and the effects of human 

recreation on eagle occupancy were not markedly negative. Additionally, we found that the 

highest rates of bald eagle occupancy occurred in oligohaline waters, followed by tidal fresh and 

mesohaline waters, regardless of the land cover type present, including developed areas. This 

trend in occupancy across cover types leads us to conclude that development may not be as 

strong a deterrent as previously determined. Moreover, responses to recreational disturbance 

were atypical, with bald eagle use and recreational disturbances occurring in the same areas. This 

outcome may be linked to salinity associations with eagles, where both humans and eagles focus 

on similar prey items. Additionally, these variable associations may be an effect of growing 

eagle densities; with populations increasing and suitable habitat remaining static or decreasing, 

eagles may be forced to become more tolerant of urban areas. 

Within the summer season, the only variable we modeled that was not strongly influential 

was age structure. This was notable, as previous research found that there were specific age 

classes of bald eagles known to occupy the Chesapeake Bay, particularly subadult eagles (Watts 
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et al. 2007). However, while multiple age classes are present in both seasons, breeding bald 

eagles (in winter) are more territorial than they would be in the non-breeding season (summer), 

and therefore, it is reasonable that age would not be as impactful in the summer post-fledging 

season. Instead, they are more influenced by the cover type itself during this time. 

Winter 

The winter model with the best support in the data included parameters describing 

salinity and age structure influences on eagle site occupancy. We found that subadult birds were 

more likely than birds of any other age class to occupy river units. This is consistent with past 

research showing that the Chesapeake Bay is a winter convergence area for subadult bald eagles 

(Watts et al. 2007). Age also influenced movement between units, or the probability of a site 

becoming unoccupied (extinction rates). The value of this parameter was low for adult eagles, 

suggesting that they are less inclined to leave an already occupied site. As this is the breeding 

season in the Bay, bald eagles are likely remaining in set territories near their nest sites. This 

tendency of adults to stay in specific areas also may be a result of space limitations. Hatch year 

and subadult bald eagles did not commonly abandon river units, although they did so with more 

regularity than adults. This could be a result of being excluded from river units near more 

established birds. 

In addition to age, and comparable to summer, salinity strongly influenced bald eagle 

occupancy during winter. Eagles were found in tidal fresh and oligohaline (low salinity) waters 

more commonly than mesohaline waters, and there were no occupied units in polyhaline waters 

within our study area. This link to low salinity waters may be a result of prey concentration areas 

(Markham and Watts 2008). In the winter, bald eagles split their prey focus and hunt both fish 
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(primary summer prey) and waterbirds, which migrate to the Bay in winter (Markham 2004, 

Watts et al. 2007). 

Our best model in winter included far fewer environmental variables than we saw during 

the summer season. This was a surprising finding that may inform about eagle ecology during 

breeding and nesting times. In winter, age structure was influential where it was not in summer, 

and neither land cover nor recreational disturbance were important. This lack of influence may 

be due to breeding bald eagles’ drive to find and occupy areas with high prey densities, to the 

exclusion of most else, in order to feed nestlings. Additionally, the lack of age as a driving force 

in the summer season is indicative of a lack of territoriality in post-fledging eagles, while 

territoriality was high in the winter breeding season, and therefore, age was an important factor 

in bald eagle occupancy. These findings may inform future management activities in winter in 

that they imply a need to focus on prey management during the winter season, rather than land 

cover alterations. 

MANAGEMENT IMPLICATIONS 

As apex predators, bald eagles play an important role in ecosystems and they interact 

with humans in many ways, often sharing spaces (Harvey et al. 2012). A surprising outcome of 

our study was that bald eagles only sometimes showed a negative response to human 

disturbance. This finding is concordant with earlier work done with this species (Andrew and 

Mosher 1982, Watts et al. 2006), suggesting that as bald eagle populations increase, individuals 

may be forced to adapt to human influences in their environment. The implications of our work 

include the importance of continued monitoring of bald eagle responses to increasing 

development, as well as managing for habitat in lower saline areas, with a focus on the fish, 

waterbird, and waterfowl populations therein. Further, both wetlands and deciduous cover types 
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were favored by bald eagles during summer and may be important areas to manage for foraging 

and nesting purposes. 
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FIGURE CAPTIONS 

Figure 1. Map showing the location of the primary study area within the Chesapeake Bay region 

of Virginia, USA, where bald eagles were observed and counted (study period 2006–2012). Map 

also shows locations of bald eagle observations (counts) within the study area (grey dots) as well 

as an inset of the United States highlighting the study area within a black circle. 

 

Figure 2. Map showing the salinity class breakdown covering the study area within the 

Chesapeake Bay region of Virginia, USA. 
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TABLES 

Table 1. This table shows the number of surveys conducted along the James, Rappahannock, 

York, and Potomac Rivers from 2006 to 2012 in the Chesapeake Bay. ‘Entire River’ is a 

reference to if the survey was conducted all the way to the mouth of the Bay (Y) or only focused 

on the inland areas (N).  

River Year No.# Surveys Entire River (Y/N) 

James 2006 2 N-Close to mouth 

2011 3 N 

2012 2 N 

York 2006 2 N (tributaries) 

Rappahannock 2006 2 N 

2007 7 N 

2008 5 N 

2011 2 N 

2012 3 N 

Potomac 2006 8 N 

2007 9 N 

2008 4 N 

2011 1 N 
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Table 2. A key to the model set showing the 16 individual models that were created to test for the 

effects of intrinsic (age) and extrinsic (environmental) variables on bald eagle occupancy in the 

Virginia region of the Chesapeake Bay from 2006 to 2012. Occupancy, emigration, and 

colonization parameters were all varied by the same factors within a model. The detection 

parameter varied by forest cover and disturbance in every model, and because of that, this 

parameter is not shown in the table below. 

Occupancy, Emigration, & Colonization Parameters Model Number 

Age, Salinity, Land Cover, Disturbance 1 

Age, Salinity, Land Cover 2 

Age, Land Cover, Disturbance 3 

Age, Salinity, Disturbance 4 

Salinity, Land Cover, Disturbance 5 

Salinity, Disturbance 6 

Salinity, Land Cover 7 

Age, Disturbance 8 

Age, Land Cover 9 

Age, Salinity 10 

Land Cover, Disturbance 11 

Age 12 

Salinity 13 

Land Cover 14 

Disturbance 15 

Null 16 
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Table 3. Summary statistics from both summer and winter datasets of bald eagles in the 

Chesapeake Bay from 2006 to 2012. Values calculated below include the overall average number 

of eagles per river unit as well as the average number of eagles seen per survey. Values are also 

shown for the number of eagles per unit (Avg./Ut.) and per survey (Avg./Survey) based on 

different salinity and land use values. Values are calculated for each season and include their 

corresponding standard errors (SE). 

 

 

 

  

  

 Season 

 Summer  Winter 

Variable Avg./Ut. SE Avg./Survey SE  Avg./Ut. SE Avg./Survey SE 

Overall 17.532 0.896 181.966 3.344  7.186 0.323 166.384 1.801 

Tidal Fresh 16.476 1.127 81.241 2.503  7.846 7.846 86.308 1.387 

Oligohaline 19.648 1.979 84.690 4.108  6.272 0.522 60.308 1.618 

Mesohaline 14.091 3.023 16.034 3.225  7.788 1.367 19.769 2.178 

Developed  14.034 2.208 14.034 2.208  8.655 1.686 19.308 2.518 

Wetlands 15.720 1.976 44.448 3.323  7.293 0.810 46.000 2.034 

Open  19.270 1.949 66.448 3.619  7.590 0.552 58.385 1.531 

Deciduous  22.440 1.870 84.345 3.625  8.349 0.642 6.706 1.860 

Evergreen  11.455 2.708 4.345 1.668  4.818 1.757 4.077 1.616 

Mixed Tree 2.000 0.000 0.138 0.000  0.000 0.000 0.000 0.000 

Boats 22.888 1.832 91.551 3.663  8.807 1.115 38.615 2.334 

People 18.453 2.050 54.724 3.531  9.120 1.409 17.538 1.953 
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Table 4. Estimates for changes in Akaike’s Information Criterion (AICc) between the top three models of best fit for bald eagles in 

each season (2006 to 2012) in the Chesapeake Bay and the weights of each model. 

Season Occupancy, Emigration, Colonization Detection  AICc Weight 

Summer salinity, land cover, disturbance  disturbance, forest cover 0.000 0.995  
age, salinity, land cover disturbance, forest cover 10.474 0.005 

 salinity, disturbance disturbance, forest cover 20.927 <0.001 

Winter age, salinity, disturbance disturbance, forest cover 0.000 0.521 
 

age, salinity disturbance, forest cover 0.189 0.474 

 age, salinity, land cover disturbance, forest cover 9.461 0.005 
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Table 5. Summer estimates of probabilities of occupancy and their associated standard errors 

(SE) for each environmental variable within each salinity class. These results show the 

probabilities of bald eagles occupying certain areas of the landscape in the Chesapeake Bay 

(2006 to 2012) given the salinity present in the summer season. Probabilities of eagles occupying 

river units with boats and/or people present were calculated in both deciduous and developed 

cover to inform on occupancy likelihoods in different cover types. 

 

 Salinity 

 Tidal Fresh  Oligohaline  Mesohaline 

Variable Probability SE  Probability SE  Probability SE 

Developed 0.446 0.123  0.503 0.134  0.206 0.086 

Wetlands 0.806 0.076  0.840 0.066  0.573 0.119 

Deciduous 0.718 0.105  0.763 0.088  0.451 0.140 

Evergreen 0.266 0.151  0.314 0.174  0.105 0.076 

Mixed Forest 0.015 0.021  0.019 0.026  0.005 0.007 

Other 0.681 0.100  0.729 0.096  0.408 0.108 

Boats (in developed) 0.754 0.102  0.795 0.096  0.497 0.139 

Boats (in deciduous) 0.907 0.042  0.925 0.032  0.758 0.096 

People (in developed) 0.535 0.122  0.593 0.126  0.271 0.102 

People (in deciduous) 0.785 0.093  0.822 0.075  0.541 0.147 
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Table 6. Summer estimates of the probabilities of bald eagle emigration and colonization in the 

Chesapeake Bay from 2006 to 2012 (standard errors (SE)) in tidal fresh waters, within different 

land cover types between study years. 

 

  Emigration Colonization 

Variable Year  Probability  SE  Probability SE 

Developed 2006-07  0.054  0.100  0.180 0.237 

2007-08  0.055  0.090  0.094 0.145 

2008-11  <0.001  <0.001  0.042 0.079 

2011-12  0.004  0.015  0.079 0.139 

Wetlands 2006-07  0.074  0.096  <0.001 0.001 

2007-08  0.075  0.101  <0.001 <0.001 

2008-11  <0.001  <0.001  <0.001 <0.001 

2011-12  0.005  0.012  <0.001 <0.001 

Deciduous 2006-07  0.745  0.329  <0.001 0.002 

2007-08  0.746  0.279  <0.001 <0.001 

2008-11  <0.001  <0.001  <0.001 <0.001 

2011-12  0.155  0.549  <0.001 <0.001 

Evergreen 2006-07  0.973  0.115  1.000 <0.001 

2007-08  0.973  0.117  1.000 <0.001 

2008-11  <0.001  <0.001  1.000 <0.001 

2011-12  0.690  1.188  1.000 <0.001 

Mixed Forest 2006-07  0.013  0.080  0.999 <0.001 

2007-08  0.013  0.079  0.999 <0.001 

2008-11  <0.001  <0.001  0.999 <0.001 

2011-12  <0.001  0.006  0.999 <0.001 

Other 2006-07  0.015  0.023  0.030 0.056 

2007-08  0.015  0.027  0.015 0.030 

2008-11  <0.001  <0.001  0.006 0.016 

2011-12  0.001  0.003  0.012 0.025 

Boats (in developed) 2006-07  0.035  0.059  0.833 0.290 

2007-08  0.036  0.058  0.702 0.452 

2008-11  <0.001  <0.001  0.495 0.560 

2011-12  0.002  0.009  0.661 0.529 

Boats (in deciduous) 2006-07  0.651  0.262  0.014 0.028 

2007-08  0.653  0.235  0.007 0.013 

2008-11  <0.001  <0.001  0.003 0.006 

2011-12  0.105  0.344  0.005 0.011 

People (in developed) 2006-07  0.031  0.052  0.036 0.052 

2007-08  0.031  0.048  0.018 0.027 

2008-11  <0.001  <0.001  0.007 0.015 

2011-12  0.002  0.008  0.015 0.027 

People (in deciduous) 2006-07  0.621  0.351  <0.001 <0.001 

2007-08  0.623  0.307  <0.001 <0.001 
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2008-11  <0.001  <0.001  <0.001 <0.001 

2011-12  0.093  0.332  <0.001 <0.001 
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Table 7. Summer estimates of the probabilities of bald eagle emigration and colonization in the 

Chesapeake Bay from 2006 to 2012 (standard errors (SE)) in oligohaline waters, within different 

land cover types between study years. 

 

   Emigration Colonization 

Variable Year  Probability  SE  Probability  SE 

Developed 2006-07  <0.001  <0.001  <0.001  0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 

2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 

Wetlands 2006-07  <0.001  <0.001  <0.001  <0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 

2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 

Deciduous 2006-07  <0.001  <0.001  <0.001  <0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 

2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 

Evergreen 2006-07  <0.001  0.004  1.0000  <0.001 

2007-08  <0.001  0.004  1.0000  <0.001 

2008-11  <0.001  <0.001  1.0000  <0.001 

2011-12  <0.001  <0.001  1.0000  <0.001 

Mixed Forest 2006-07  <0.001  <0.001  0.997  0.030 

2007-08  <0.001  <0.001  0.993  0.064 

2008-11  <0.001  <0.001  0.982  0.155 

2011-12  <0.001  <0.001  0.991  0.079 

Other 2006-07  <0.001  <0.001  <0.001  <0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 

2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 

Boats (in developed) 2006-07  <0.001  <0.001  0.008  0.021 

2007-08  <0.001  <0.001  0.004  0.011 

2008-11  <0.001  <0.001  0.002  0.005 

2011-12  <0.001  <0.001  0.003  0.010 

Boats (in deciduous) 2006-07  <0.001  <0.001  <0.001  <0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 

2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 

People (in developed) 2006-07  <0.001  <0.001  <0.001  <0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 

2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 

People (in deciduous) 2006-07  <0.001  <0.001  <0.001  <0.001 

2007-08  <0.001  <0.001  <0.001  <0.001 
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2008-11  <0.001  <0.001  <0.001  <0.001 

2011-12  <0.001  <0.001  <0.001  <0.001 
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Table 8.  Summer estimates of the probabilities of bald eagle emigration and colonization in the 

Chesapeake Bay from 2006 to 2012 (standard errors (SE)) in mesohaline waters, within different 

land cover types between study years. 

 

   Emigration   Colonization 

Variable Year Probability  SE  Probability  SE 

Developed 2006-07 0.070  0.130  <0.001  <0.001 

2007-08 0.071  0.116  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.005  0.020  <0.001  <0.001 

Wetlands 2006-07 0.095  0.123  <0.001  <0.001 

2007-08 0.096  0.128  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.007  0.025  <0.001  <0.001 

Deciduous 2006-07 0.793  0.312  <0.001  <0.001 

2007-08 0.795  0.270  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.194  0.656  <0.001  <0.001 

Evergreen 2006-07 0.979  0.086  1.0000  <0.001 

2007-08 0.979  0.087  1.0000  <0.001 

2008-11 <0.001  0.001  1.0000  <0.001 

2011-12 0.745  1.023  1.0000  <0.001 

Mixed Forest 2006-07 0.017  0.104  <0.001  <0.001 

2007-08 0.017  0.102  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.001  0.008  <0.001  <0.001 

Other 2006-07 0.020  0.030  <0.001  <0.001 

2007-08 0.020  0.035  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.001  0.004  <0.001  <0.001 

Boats (in developed) 2006-07 0.046  0.078  <0.001  <0.001 

2007-08 0.046  0.075  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.003  0.012  <0.001  <0.001 

Boats (in deciduous) 2006-07 0.710  0.286  <0.001  <0.001 

2007-08 0.712  0.262  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.133  0.423  <0.001  <0.001 

People (in developed) 2006-07 0.041  0.069  <0.001  <0.001 

2007-08 0.041  0.063  <0.001  <0.001 

2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.003  0.011  <0.001  <0.001 

People (in deciduous) 2006-07 0.683  0.361  <0.001  <0.001 

2007-08 0.685  0.321  <0.001  <0.001 
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2008-11 <0.001  <0.001  <0.001  <0.001 

2011-12 0.119  0.412  <0.001  <0.001 
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Table 9. Estimates of bald eagle probabilities and their associated standard errors (SE) for each 

model parameter (occupancy, movement, colonization) by age and salinity class. These results 

show the probabilities of different aged bald eagles occupying certain salinities in the 

Chesapeake Bay in the winter seasons (2006 to 2012). 

 

  Occupancy Emigration Colonization 

Salinity Age Probability SE Probability SE Probability SE 

Tidal Fresh Hatch Year 0.396 0.105 0.295 0.153 0.728 0.131 

 Subadult 0.492 0.076 0.286 0.125 0.523 0.139 

 Adult 0.431 0.045 0.150 0.045 0.174 0.042 

Oligohaline Hatch Year 0.486 0.108 0.260 0.144 0.358 0.173 

 Subadult 0.523 0.074 0.252 0.120 0.186 0.116 

 Adult 0.523 0.045 0.129 0.049 0.042 0.026 

Mesohaline Hatch Year 0.235 0.125 0.027 0.000 0.438 0.232 

 Subadult 0.312 0.111 0.026 0.000 0.242 0.145 

 Adult 0.263 0.093 0.012 0.000 0.058 0.066 
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increasingly looking to evaluate population numbers and growth in focal areas of importance, 

such as the Chesapeake Bay on the East coast of the United States. Our study used seven years of 

mark-resight data from the Chesapeake Bay to determine the density of bald eagles in the region 

and their associations with land cover and salinity. We used Royle-Poisson occupancy models to 

find average abundance and multiply this across the number of units in our study area to 

determine effective density. Models suggested that canopy cover type may be important. 

However, the models we used appeared inappropriate for the data and therefore, they did not 

converge, and our results were generally uninformative. We suggest that future monitoring in the 

region be done with specific models and objectives in mind and use a single sampling strategy. 

Archived data from mandated monitoring of sensitive species are valuable to the scientific 

community; however, if the models used are not appropriate for the data collected, the ability to 

answer specific research questions becomes limited. 

KEY WORDS bald eagle, Chesapeake Bay, density, mark-resight, Poisson, presence-absence. 

Estimating abundance and density is essential in the study of wildlife ecology (Krebs 

2001, Chandler and Royle 2013, Ivan et al. 2013, Dennis et al. 2015). In practice, density 

(number of animals per unit of area; Anderson et al. 1983) is often easier to interpret than is 

abundance (number of animals of a species present; Kéry et al. 2005). However, given the 

mobile nature of wildlife, density estimates can be more difficult to obtain because they require a 

clearly defined geographic extent (Anderson et al. 1983, Chandler and Royle 2013). 

Nevertheless, both density and abundance are valuable metrics as they can capture population 

variations over time. 

In mark-resight studies where individuals are often unmarked, as opposed to mark-

recapture studies, n-mixture models (Royle 2004) are often employed to obtain more accurate 
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density estimates (MacKenzie et al. 2009, Chandler and Royle 2013). These models are used 

with datasets that were collected at a set number of k sites with t replications at each site 

(Chandler and Royle 2013). These methods can then be used to obtain abundance estimates for 

individual sites, for average abundances across sites, and for density across a geographic range. 

N-mixture models can also be used to estimate the effect of external factors, such as land cover, 

on population estimates (Royle 2004, Chandler and Royle 2013). Finally, these models also 

allow for more cost-effective sampling designs than traditional methods that rely on animal 

capture and marking (i.e., mark-recapture, multiple observer, etc.; Royle 2004, Dennis et al. 

2015). N-mixture models are especially useful for species with extensive monitoring histories, 

where archived data are readily available. 

The unique conservation and management history of bald eagles (Haliaeetus 

leucocephalus) has caused them to be heavily monitored. In the past, eagle populations were 

negatively impacted by persecution, poisoning, and habitat deterioration and, subsequently, 

enhanced by management action (Seasholes 2013). Listed at different times as an endangered 

and then a threatened species, and then removed from the Endangered Species List in 2007, the 

bald eagle is still considered a species of concern throughout North America. As such, density 

and abundance of bald eagles is of conservation importance. The goal of this study was to use n-

mixture models to estimate the abundance and density of bald eagles in three tributaries of the 

Chesapeake Bay in Virginia, USA. 

Our specific study objectives were to: (i) use n-mixture models to estimate density of 

bald eagles along the James, Rappahannock, Potomac, and York Rivers in summer; (ii) use those 

same models to evaluate how landscape features (salinity and land cover type) influenced that 
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density; and (iii) understand how n-mixture models may be useful in the context of archived 

data. 

STUDY AREA 

The Chesapeake Bay watershed extends from New York to the Carolinas (Buehler et al. 

1991). with tributaries spanning greater than 250-km. Data for this study were collected from 

along four major rivers in the Southern Chesapeake Bay: Rappahannock, Potomac, James, and 

York. Landcover along these rivers included forested land, wetlands, and developed areas, both 

industrial and residential (Thompson et al. 2005). Salinity within the Bay varies, ranging from 

polyhaline (30—18 ppt, near river mouths) to tidal fresh (< 0.5ppt, inland areas) (VIMS 2004). 

The vegetation along the shoreline primarily consists of deciduous forest cover. Within the 

water, submerged aquatic vegetation is abundant. Taxa within the Bay include a variety of fish 

and bird populations, small mammals, amphibians, and raptors, including bald eagles (Brown 

and Erdle 2009). 

METHODS 

Data Collection 

Data were collected via repeated transect surveys during summer (June, July, August) 

and winter seasons (December, January, February) 2006–2012. Sampling occurred 1 to 2 times 

per month on each river and year. Surveys were done by both boat and fixed-wing aircraft by the 

Virginia Department of Game and Inland Fish (VDGIF) and by the Center for Conservation 

Biology (CCB) at the College of William and Mary (Table 1). 

Boat surveys had a minimum two-person field crew per survey. Observers monitored one 

side of the shoreline on the outbound trip and monitored the opposite side on their return. Boats 

moved approximately 15–20 kph (weather dependent) about 200-m offshore. Aircraft surveys 
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were conducted from a 172 High-wing Cessna (Crabbe Aviation, Hanover, MA) with one eagle 

spotter, one mapper (who also assisted with spotting), and the pilot. For both survey types, the 

crew noted eagle observations on regional 1:24,000 topographical maps and coordinates were 

recorded into a hand-held Geographic Positioning System (Garmin 76 GPSmap 2016). Observers 

on boat surveys classified birds into one of seven classes: hatch year, second year, third year, 

fourth year, adult, juvenile (subadult of unknown age), or unknown. Observers on aircraft 

surveys placed bald eagles into one of two classes: adult or juvenile (any bird younger than 

adult). 

Data Classification 

We used the Geospatial Modeling Environment (v. 0.7.3.0 (Beyer 2012)) within ArcMap 

10.2 (ESRI 2011) to divide each river into individual units. Each unit was 1-km length-wise by 

6-km width-wise. The units originated from each river mouth and continued over the entire 

portion of the river covered by our surveys (Figure 1). Data collected were linked to both salinity 

estimates (VIMS 2004) and to the 2006 National Land Cover Database (NLCD; Fry et al. 2011). 

We condensed land use and cover into five separate categories: developed, wetlands, 

cultivated areas, open, and canopy cover (deciduous, evergreen, and mixed cover). We 

calculated and assigned percent land cover to each river unit using ArcMap. Further, survey data 

were linked to one of four classes (tidal fresh (<0.5 ppt), oligohaline (0.5–5.0 ppt), mesohaline 

(>5.0–18 ppt), and polyhaline (>18.0–30.0 ppt)) using published salinity data (Figure 2; VIMS 

2004). 

We used the point distance tool in ArcMap to link each eagle observation to a river unit 

and imported these data into Microsoft Excel (Redmond, WA). We used pivot tables to create a 

single line of eagle presence or absence records for each age class on each river unit. 
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Data Analysis 

The two lines of eagle presence or absence records formed the capture histories that we 

imported into Program MARK for subsequent analysis. To estimate the density of bald eagles 

(objective i), we used a Royle-Poisson count model (n-mixture model; Royle 2004) within 

Program MARK (White and Burnham 1999). This model type estimates mean population sizes 

and individual detection probabilities (modeled estimates), as well as occupancy and average 

detection probabilities (derived estimates). Density can then be calculated from site-specific 

population estimates. To evaluate how landscape features influenced that density (objective ii), 

we ran a sub-set of 7 models that included combinations of land cover types and their effects on 

the modeled and derived estimates (see Table 2). These models were set up to look in-depth at 

the effects of both individual characteristics (i.e., wetlands, salinity) and the effect of multiple 

characteristics combined (i.e., terrestrial land cover vs. land cover with salinity, Table 2). These 

analyses allowed us to understand how archived data may be useful in the context of n-mixture 

models (objective iii). 

RESULTS 

Summary Statistics 

The dataset we modeled included 810 river units in summer with 29 total surveys. We 

observed 29,719 bald eagles with an average of 37 eagles/unit (SE=2.26) and 1,023 

eagles/survey (SE=11.763). Of the units sampled, 252 units were in tidal fresh waters, 247 were 

in oligohaline, 296 were in mesohaline, and 15 were in polyhaline waters. In tidal fresh water 

there were an average of 538 eagles/survey (SE=13.528), compared to 364 eagles/survey 

(SE=12.353) in oligohaline waters, 123 eagles/survey (SE=7.290) in mesohaline, and 30 

eagles/survey (SE=16.516) in polyhaline waters (Table 3). 
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We evaluated eagle observations within land cover class by considering the number of 

eagles present where a land cover type held greater than 30% of the river unit. Because there was 

some overlap in land cover among units, a given unit could be represented in more than one 

cover type. In summer, the raw data we recorded averaged higher numbers of eagles in 

croplands, wetlands, deciduous tree cover, and open lands. Overall canopy cover (all three forest 

classes) also had relatively high numbers of eagles present. There were lower numbers of eagles 

recorded in evergreen tree cover, developed lands, and mixed forests (Table 3). Winter bald 

eagle observations had the highest number of eagles recorded in croplands, deciduous cover, 

canopy cover (all three forest types), and open lands. Somewhat fewer eagles were in evergreen 

cover and developed lands, and much fewer eagles were seen in mixed forest cover (Table 3). 

Bald Eagle Density 

For this analysis, we only considered data collected during the summer season (810 

units). Even with the use of n-mixture models, model results were generally poor and somewhat 

uninformative. The model with the best support in the data was the null or intercept model 

(AICc: 0.00; model weight: 0.71) (Table 2). In this model, estimates of mean population size and 

individual detection probability were generated, but the estimates were zero across all age classes 

(Table 4). Additionally, real estimates had standard errors of zero (Table 4). Further, derived 

estimates of average detection probabilities could not be calculated within Program MARK, and 

derived occupancies were uninformative, making calculations of bald eagle densities impossible 

(Table 4). 

The summer model with the most support in the data was the null model that did not 

include any environmental effects. From this model, the probability of either an adult bald eagle 

or a juvenile bald eagle being individually detected were 0.00, an indication that results are not 
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meaningful. The average population size for adult eagles was 1.65x1031 and 1.50x1033 for 

juveniles (Table 4). With these values, the density of adult bald eagles in the survey area (810 

river units) was 1.34x1034 and juvenile density in the survey area was 1.22x1036 (objective i). 

Considering the total number of eagles observed in summer was 29,719, the model estimate of 

bald eagles’ density is extremely high and is another indicator that the model did not perform 

well and was not estimating population size effectively. The effect of landscape features on the 

density (objective ii) was limited, and bald eagles did not appear to select spaces based on any 

outside factors. Estimates of occupancy were 1.00 within our study area and because of this 

100% occupancy rate combined with high abundances, average detection probabilities could not 

be calculated and not all outputs were given a numerical value (Table 4). 

The second-best model within the set, canopy cover (AICc: 4.00; model weight: 0.0196), 

suggested that the probability of detecting an adult bald eagle within canopy cover (deciduous, 

evergreen, or mixed) was 0.00 and juveniles was 0.00 also. Real estimates from this model 

likewise rounded to show a probability of detection of 0.00. 

DISCUSSION 

Data collected for legally mandated wildlife monitoring purposes are collected to meet 

those specific monitoring objectives. Therefore, those data may or may not be well suited to 

incorporation into demographic modeling. Although occupancy analyses tend to work well with 

data that were not collected with a priori hypotheses, we were unable to obtain informative 

estimates of population size with the data we considered. Given the ineffectiveness of n-mixture 

models to produce reasonable estimates in this situation, we believe the data were insufficient for 

these models to converge properly. As such, it was difficult to use these models to understand 

density and habitat use by eagles (objectives i and ii), and we focus our discussion only on 
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interpreting naïve estimates of density and on the applicability of these archived data for use in 

n-mixture models (objective iii). 

Archived Data for Modeling 

The count-based occupancy models used in this study do not require marking individuals 

and are thought to work well with sampling designed for other objectives (i.e., data collected at 

uneven intervals or missing data). However, there were some inconsistencies in sampling that 

made it challenging for us to use n-mixture models with these data. Here we discuss some of the 

challenges we faced with utilizing n-mixture models to reach our objectives. 

Because the data set we considered was so large scale and long term, multiple sampling 

teams collected data, and each used slightly different approaches to field work. Furthermore, 

there was inconsistency in sampling vessel types (i.e., aircraft versus boat). Observers on boat 

surveys classified bald eagles into seven different age classes (i.e., hatch year, second year, third 

year, fourth year, adult, juvenile, and unknown) and collected information on recreational 

activities (boats and people). However, observers did not range far into the center of the bay and 

so some land cover and salinity areas were sampled unevenly (i.e., they primarily sampled low 

salinity areas). Observers on aerial surveys classified bald eagles into one of two age classes 

(juvenile and adult) and did not note any recreational presence. However, they did collect eagle 

observations over a broader geographic range, catching more variation in land cover and salinity 

type. To have sufficient sample sizes to model occupancy, and density by extension, we needed 

to merge the two survey types, which resulted in a loss of detail. We were unable to include 

individual age classes or recreation in our density analysis, and the study area was heavily 

skewed to more inland areas. All these factors likely influenced the utility of the data set for the 

modeling approach we used. 
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Another limiting factor was the irregularity of survey periods. Long-term mandated 

surveys often end up being conducted whenever there are time and people available. Likewise, 

variation in seasonal weather conditions influenced survey effort, especially in winter when 

rivers froze over and surveying windows were small. Although this was reasonable given the 

goals of the data collection, these irregularities made it challenging for us to scientifically 

interpret these data. Surveys were not always done in the same months each year and some years 

had no surveys at all. These irregularities created holes in our input file, making proper 

numerical convergence hard to obtain, even with so many data. 

With many models that estimate abundance, collected data must be subject to geographic 

and population closure over the course of the study (Dennis et al. 2015). This was unlikely in our 

study as it is unreasonable to assume geographic and population closure over such a large area 

and multiple years of surveys with a migratory species. Additionally, accounting for imperfect 

detection is fraught with challenges in most models (MacKenzie et al. 2009), and our study was 

no exception. While the ability to obtain abundance estimates without marking individuals is an 

appealing option, this is extremely difficult and mostly unreasonable to achieve (Barker et al. 

2017). 

While our results were limited and none of the effect sizes differed, we did see a general 

pattern that results tended to be stronger without any of the environmental variables that we 

tested (canopy cover, wetlands, open, development, and cultivated lands). This could mean that 

bald eagles are not nearly as selective in choosing landscape spaces as was previously thought 

(Buehler et al. 1991). Additionally, looking at other models from our dataset, three models were 

tied for second (AICc: 4.00; weight: 0.096). These were canopy cover, anthropogenic 

(development), and wetlands. Although these models were not the most supported, they do 
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provide insight into what environmental factors, if any, might influence bald eagles. These 

results were surprising, given the extensive research showing the importance of salinity and land 

cover type for eagle habitat (Buehler et al. 1991, Watts et al. 2006, Watts et al. 2007). However, 

given that none of the models provided accurate estimates, it is likely that the data were not fitted 

well and drawing conclusions from these models may be inappropriate. Future research should 

look at this further and see if these results hold up with a more appropriate dataset. 

Naïve Estimates 

Occupancy models provide us with valuable information on the influence of detection 

probability on population size. Knowing detection rates is essential to the comprehensive 

understanding of patterns in demographic changes. However, in the absence of detection rates, 

naïve estimates of demographic rates may be somewhat informative, if interpreted with caution, 

and provided that resight probability did not have a greater effect on the naïve estimates than the 

actual population size (i.e., if population size remained constant between sampling occasions, 

then resight probability may have been responsible for the different counts observed). Given the 

challenges we faced in obtaining estimates from occupancy modeling, we found it worthwhile to 

look at the naïve estimates of bald eagles in our study area. In this setting, the bald eagles we 

monitored showed trends in environmental preferences that provide some limited insight into the 

relative importance of different habitat types to eagles. 

Naïve estimates derived from survey data suggested that river units containing tidal fresh 

waters held greater numbers of eagles than any of the other habitat types we considered. 

Considering this, naïve estimates of bald eagles’ presence suggest that lower saline waters are 

used with more frequency, a pattern that is comparable to those previously reported and 

potentially linked to distribution of prey populations (Buehler et al. 1991, Watts et al. 2006, 
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Watts et al. 2007). It is noteworthy that several previous studies looking at salinity use by bald 

eagles drew conclusions from naïve estimates (Watts et al. 2006, Watts et al. 2007), some of 

which may have been based on the same data we use in this analysis. 

Of the land cover characteristics we considered, cultivated croplands had the highest 

average number of bald eagles per unit, followed by wetlands. Both mixed forests and developed 

areas had very low numbers of eagles, while open areas, deciduous forests, and overall canopy 

cover were comparable and relatively high. High numbers of eagles in cultivated croplands was a 

surprising find and may suggest higher tolerance by bald eagles to landscape changes. Given the 

openness of these areas, it’s possible eagles are using croplands for perching and observing prey. 

Alternatively, this may simply be a result of higher visibility in open areas and thus, higher 

detection of bald eagles. Wetland areas were likely used by higher numbers of eagles because of 

their foraging potential, as these areas are often nearer to open water and house many different 

fish and waterbird populations. Further, finding high numbers of bald eagles in river units with 

canopy cover was unsurprising because trees are commonly used for both perching and nesting. 

The results of our modeling suggested that the covariates with the strongest influence on 

bald eagle distribution were canopy cover, wetlands, and development. Considering these results, 

we would have expected the naïve estimates to show that these three cover types were likewise 

inhabited by higher numbers of eagles. However, developed lands held very few eagles 

compared to canopy cover and wetlands. In fact, the three cover types with the highest naïve 

estimates of eagle density were croplands, wetlands, and deciduous forests. This disparity is 

likely caused by the models’ ability to incorporate the probability of detecting an eagle into 

estimates and gives insight as to the value of our occupancy models, even with poorer results. 
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Next Steps 

We could improve model estimates by altering sampling and modeling strategies. 

Consistency in data collection and gearing sampling towards a specific modelling approach 

would be the most important changes. This includes consistency in sampling periods (i.e., having 

a predetermined number of surveys; minimizing missing data will strengthen these data for later 

modeling); sampling methods (i.e., consistent transportation type; boat vs. plane); and 

consistency in bald eagle age classifications. To this end, if managers are looking to obtain 

information on bald eagle age distributions, boat surveys are the ideal option as observers can 

classify eagle ages more accurately at close range. On the other side, if information on overall 

bald eagle distributions are the research goal, then aerial surveys would be a better option as 

these survey types are better able to observe larger numbers of eagles in shorter time periods. 

Additionally, to obtain informative estimates, we needed to meet expectations of geographic and 

demographic closure, which can be a challenge in broad-scale study areas. Sampling within 

smaller time windows (1–2 months post migration in either season) could help with demographic 

closure because observations would be limited to set populations rather than during migration 

periods when populations are in flux. Given that data were collected in a set study area, 

geographic closure was well accounted for; however, this could be made simpler by focusing on 

fewer rivers or otherwise limiting the area. 

Model estimates may also be improved by selecting a study design prior to sampling and 

setting a priori hypotheses or objectives. For example, rather than trying to obtain abundance and 

density estimates, we could look at basic occupancy, movement, or changes in age structure. 

Occupancy models, such as the n-mixture model that we employed, are one of the only model 

types able to fit data without individually marked animals (Barker et al. 2017). However, if these 



52 
 

models cannot be used to meet study objectives, it may be necessary to switch to a model that is 

appropriate for the data. One potential solution could be to use methods that estimate resight 

probability in order to correct population counts. If those counts are linked to a known study 

area, they could be used to estimate density (Duerr et al. 2015). 

MANAGEMENT IMPLICATIONS 

Archived data can be ecologically valuable and provide insight into species 

demographics. These data can be useful for making future management decisions, as sensitive 

species require continual monitoring, and may have a plethora of data available. Through 

occupancy modeling, these data can be utilized effectively if they are collected consistently and 

with clear modeling objectives prior to sampling. 
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FIGURE CAPTIONS 

Figure 1. Map showing the location of the primary study area within the Chesapeake Bay region 

of Virginia, USA, where bald eagles were observed and counted (study period 2006–2012). Map 

also shows locations of bald eagle observations (counts) within the study area (dark grey dots). 

 

Figure 2. Map showing the salinity class breakdown covering the study area within the 

Chesapeake Bay region of Virginia, USA. 
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TABLES 

Table 1: The number of surveys conducted along the James, Rappahannock, York, and Potomac 

Rivers from 2006 to 2012 in the Chesapeake Bay. ‘Entire River’ is a reference to if the survey 

was conducted all the way to the mouth of the Bay (Y) or only focused on the inland areas (N). 

‘Aerial’ references whether the survey was conducted by air (Y) or by boat (N). 

River Year No. Surveys Entire River (Y/N) Aerial (Y/N) 

James 2006 2 N-Close to mouth N 

2007 2 Y Y 

2008 3 N Y 

2009 1 Y Y 

2010 1 Y Y 

2011 3 N N 

2012 2 N N 

York 2006 2 N (tributaries) N 

2007 2 N Y 

2008 2 N Y 

2009 1 N Y 

Rappahannock 2006 2 N N 

2007 2 N Y  
7 N N 

2008 1 N Y  
5 N N 

2009 1 Y Y 

2010 1 Y Y 

2011 2 N N 

2012 3 N N 

Potomac 2006 8 N N 

2007 2 N Y  
9 N N 

2008 2 N Y  
4 N N 

2009 1 Y Y 

2010 1 Y Y 

2011 1 N N 

Nanticoke, MD 2007 1 Y Y 

Pocomoke 2007 1 Y Y 
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Table 2. Table showing the model set with the 7 individual models that were created to test for 

the effects of land cover and salinity on bald eagle density in the Virginia region of the 

Chesapeake Bay (from 2006 to 2012). 

Model Name Mean population size and individual detection probability of bald eagles 

Terrestrial Land Cover Developed, Wetlands, Canopy cover, Open 

Salinity Tidal, Oligohaline, Mesohaline 

Habitat Tidal, Oligohaline, Mesohaline, Developed, Wetlands, Canopy, Open 

Canopy Deciduous, Evergreen, Mixed forest 

Wetlands Wetlands 

Anthropogenic Developed 

Intercept None 
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Table 3. Table showing the summary statistics from summer datasets from 2006 to 2012 in the 

Chesapeake Bay, Virginia. Values calculated include the overall average number of eagles per 

river unit and survey and the average number of eagles seen per river unit (Avg./Ut.) and per 

survey (Avg./Survey) based on different salinity and land use values. Values include their 

corresponding standard errors (SE). 

VALUE Avg./Ut. SE Avg./Survey SE 

Overall 36.690 2.226 1023.310 11.763 

Tidal Fresh Water 61.968 4.589 538.483 13.528 

Oligohaline Water 42.700 4.233 363.690 12.353 

Mesohaline Water 12.014 2.282 122.621 7.290 

Polyhaline Water 57.667 22.965 29.828 16.516 

Developed Land 11.660 3.381 20.103 4.440 

Wetlands 47.538 6.234 173.759 11.919 

Cultivated Cropland 57.548 6.657 250.034 13.876 

Open Lands 32.664 3.793 261.310 10.729 

Deciduous Cover 37.885 5.755 215.552 13.729 

Evergreen Cover 21.944 8.198 27.241 9.134 

Mixed Cover 5.500 1.565 1.138 0.712 

Combined Canopy 34.388 2.989 540.724 11.854 
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Table 4. Model estimates from the null (intercept) model. Estimates are from bald eagles in the 

Chesapeake Bay (2006 to 2012). Both real and beta estimates are of the individual detection 

probability for both adult and juvenile bald eagles and site-specific mean population sizes of bald 

eagles by age class. Derived estimates are of site-specific bald eagle occupancy by age and 

average detection rates of each age class. Standard errors (SE) and confidence intervals are listed 

for each parameter. 

Parameter Estimate SE Confidence Interval 

Beta Estimates   

Individual Detection Probability of Adults -346.859 0.000 -346.859 to -346.859 

Individual Detection Probability of Juveniles -307.961 0.000 -307.961 to -307.961 

Mean Population Size of Adults 76.393 0.000 76.393 to 76.393 

Mean Population Size of Juveniles 71.883 0.000 71.883 to 71.883 

Real Estimates    

Individual Detection Probability of Adults <0.001 0.000 <0.001 to <0.001 

Individual Detection Probability of Juveniles <0.001 0.000 <0.001 to <0.001 

Mean Population Size of Adults 1.654x1031 0.000 1.654x1031 to 1.654x1031 

Mean Population Size of Juveniles 1.503x1033 0.000 1.503x1033 to 1.503x1033 

Derived Estimates    

Occupancy of Adults 1.00 0.00 1.000 to 1.000 

Occupancy of Juveniles 1.00 0.00 1.000 to 1.000 

Average Detection Probability of Adults Not a Number 0.00 N/A 

Average Detection Probability of Juveniles Not a Number 0.00 N/A 
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