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ABSTRACT

Exploring Essential content of Defect Prediction
and Effort Estimation through Data Reduction

Divya Ganesan

Mining Software Repositories provides the opportunity to exploit/explore some of the be-
haviors, distinct patterns and features of software development processes, using which the
stakeholders can generate models to perform estimations, predictions and make decisions on
these projects.

When using data mining on project data in software engineering, it is important to
generate models that are easy for business users to understand. The business users should be
able to gain insight on how to improve the project using these models. Software engineering
data are often too large to discern. To understand the intricacies of software analytics, one
approach is to reduce software engineering data to its essential content, then reasoning about
that reduced set.

This thesis explores methods (a) removing spurious and redundant columns then (b)
clustering the data set and replacing each cluster by one exemplar per cluster then (c) making
conclusions by extrapolating between the exemplars (via k=2 nearest neighbor between
cluster centroids).

Numerous defect data sets were reduced to around 25 exemplars containing around 6
attributes. These tables of 25*6 values were then used for (a) effective and simple defect
prediction as well as (b) simple presentation of that data. Also, in an investigation of
numerous common clustering methods, we find that the details of the clustering method are
less important than ensuring that those methods produce enough clusters (which, for defect
data sets, seems to be around 25 clusters). For effort estimation data sets, conclusive results
for ideal number of clusters could not be determined due to smaller size of the data sets.
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Chapter 1

Introduction

1.1 Motivation

To efficiently sieve through to the essential section of data, it needs to be reduced into a

subset that represents the very salient information. Within a data set, the most common

redundancy to potentially exist is in the number of features. The features that are irrelevant

do not contribute to accuracy of prediction and in addition might actually negatively impact

it. Reducing the number of attributes is desirable because it reduces the overall complexity

of the data, and a model generated using the selected attributes is easier to understand [15].

The other possible reduction opportunity is to cluster data to derive a condensed data set,

find one exemplar that effectively represents a set of instances. The data set can be clustered

to find groups of similar instances and replace them with the centroid of a cluster [2] [23].

The thesis attempts to explore the following research questions

• RQ1: What are the different clustering techniques that can be employed for efficient

instance reduction and what are their impacts on predictive ability? Do some clus-
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tering methods perform significantly better than others? Various clustering methods

were applied to condense data sets effectively and the predictive ability of 2-Nearest

Neighbour(2-NN) algorithm run over condensed data sets generated was evaluated.

• RQ2: Will large data reduction result in information loss and predictive ability of

learners trained on them? When data reduction is performed, there is removal of

irrelevant data, but some essential information could be lost as well. Hence, this thesis

will assess the value of various clustering methods by applying data mining to the

clustered data.

• RQ3: What is the optimal number of clusters and how much data reduction is too much?

The size of the condensed data set should be optimal in striking a balance between

simplifying the data to enable user engagement and minimizing information loss if

any due to reduction of data. The predictive ability of the clustering techniques with

different number of clusters and various parameter values were evaluated to analyze

the impact of size of condensed data set on performance.

1.2 Context: Data Mining in Software Engineering

This thesis explores the above in the context of data mining for Software Engineering.

Software Engineering projects go through a process of planning, creating requirements,

realizing it with software code, testing it to identify defects and errors and releasing it to be

available for users.

A defect is a behavioral or functional non-compliance of the software to the specifications

provided in the requirements. It is usually found during the testing phase, however it could

be identified during any phase of the project. The defects need to be fixed or resolved so

that the project can comply with the requirements.
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The presence of defects in the software comes at a cost associated with it. While cost

per defect used to be an overall metric, there could be different cost associated with the

defects identified in different phases of the project. Defects found during requirements cost

$250, during design costs $500, during coding and testing costs $1250 and after release costs

$5000 [18]. The defects are unavoidable, but predicting the defects in advance will result in

mitigation of risks, cost savings and better adherence to project plan.

The effort in the project is the time or money needed to develop the project. This would

include all the phases and resources in the project. The effort estimation is predicting the

amount of time or money needed to develop the project.

Effort estimation is key to the planning of the projects. A survey by Standish Group’s

’Chaos Report’ shows an average of 89% cost overrun [27] while other recent surveys report

a 30 to 40 % [22] much less, yet high percentage of overrun. This cost can pose risks in the

project and can be avoided with better estimation techniques.

It is imperative, in a project, to arrive at a better estimation, and predict the defects in

the project. Being able to gain the defect prediction and effort estimation through effective

mining of the project data using tools and techniques will give the project team, the capability

to better estimate and execute the project.

The two main factors which need to be considered while presenting the results to the

project team are (i) it should predict the defective models or estimate the effort with high

accuracy (ii) it should provide insight to the factors affecting the prediction and estimation.

Lots of research, in effort estimation for example, concentrate on the evaluation of the

estimation methods, but have very less focus on associating these estimation models to

the needs of the users (about 61% of topics collected in a study over 300 papers from 76

journals) [3].

Many software engineering mining research is done on improving accuracy of defect pre-
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dictions using complex learners (boot strapping, assorted analogy methods such as nearest

neighbor, non-linear model such as decision trees) without considering the level of under-

standing that the project team needs. This is not an efficient solution to the players involved

in the project. It has shown to affect the adaptability of the learners and prediction models

in industrial practice, which continues to follow standard regression-based algorithm [17].

The effort estimation and defect prediction techniques and methodologies should not be

a black box to the project team. The techniques should provide some specific details on the

results and possibly offer information about the factors which directly impact them. This

would help them to use the techniques as a leverage to take an action on the results obtained

and tune the project code to minimize the defects and estimate it better [4].

Large amount of data available from the project can be used to derive these values.

But, this poses the cumbersome task of mining through the entire data set to identify and

generate meaningful information. The study done on software defect prediction in the NASA

aerospace domain, Turkish whitegoods control software, and other open source software

shows that the performance of data mining plateaus early in the data set, inferring that

the regular patterns in the software projects convey that one can generate effective defect

predictors with small subset of the information.

The research on the effort estimation using the COCOMO features on COCO81 data

also shows similar patterns. The studies conducted on unrelated domains prove that the

regularities are not just quirks within one domain and are rather evident regularities of

software engineering projects [28].

In summary, in several software engineering domains, it is useful to divide the data before

reasoning about it; hence, thesis studies different methods for clustering.
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1.3 Statement of Thesis

The research work of the thesis can be summarized by the following statement:

The software engineering data can be summarized to generate concise models

using feature and instance reduction. In case of defect data the choice of clustering

method employed for instance reduction becomes less significant when sufficient

number of clusters are generated

1.4 Contribution of the Thesis

The contributions of the thesis can be summarized as follows:

• Data reduction using feature selection and instance selection was explored. Experi-

mental results show that data reduction can be done with minimal loss of information.

• The efficiency of various clustering techniques for instance selection was evaluated. The

results of the study shows the some standard clustering methods applied in the study

perform better than standard learners and PEEKING2, a data reduction approach.

• The optimal value for number of instances in the reduced data set was investigated.

1.5 Structure of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 describes the related work done in mining software repositories for defect and

effort data. This provides information on recent research conducted in data reduction

for Software Engineering.
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• Chapter 3 provides a brief introduction to feature selection and explores the theory

behind various types of clustering techniques used in the study. This chapter provides

information on data sets and describes the approach followed in the experiments to

perform attribute and instance reduction. This chapter also explains the measures and

rationale behind the choices made in comparing the different techniques.

• Chapter 4 presents the results of experiments in detail.

• Chapter 5 discusses the threats to the validity of the results of the study.

• Finally, Chapter 6 summarizes the observations of the experiments and items identified

for further research.
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Chapter 2

Related Work

2.1 Feature Selection

Feature selection is a widely studied area in the field of Data Mining. Feature selection is

used as a part of data pre-processing before clustering or classification algorithms are applied

on the data. Guyon and Elisseeff [15] defines the objectives of feature selection and discusses

feature construction, feature ranking, multivariate feature selection, efficient search methods,

and feature validity assessment methods. Liu and Yu [20] surveyed existing feature section

and propose an integrated approach to feature selection. The paper also provides guidelines

for selecting appropriate feature selection algorithm.

The importance of feature selection to remove irrelevant attributes in field of Software

Engineering is explored in the following papers. Chen et al. [5] applied wrapper based

feature selection techniques on software cost or effort estimation data and observed that

reduced data could improve the estimation. Rodriguez et al. [25] evaluated three filters and

wrappers by applying them to five software engineering data. They observed that reduced

data sets with fewer features had predictability comparable to the original data set. They

concluded that wrapper methods performed better than filter however, computational cost
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for wrapper methods were much higher.

More recent study by Gao et al. [14] applied seven feature ranking methods along with

three feature subset selection methods to software defect data found that performance of

most of the feature selection methods to be similar. Based on the experimental results,

they recommend the feature the following feature selection techniques: Information gain,

Gain Ratio and Kolmogorov-Smirnov statistic. They also observed performance of defect

prediction models improved or remained unchanged even when over 85% of the features were

eliminated.

These related the work focus on evaluating different feature selection techniques to im-

prove the performance of the learner, this thesis work focuses on applying feature selection

together with instance reduction to effectively condense the data.

2.2 Instance Reduction

Most of the signals from software engineering data comes from a small section of data.

Some data sets have extraneous instances or noise in them. The presence of redundant

and confusing instances affect the performance of the model generated by learner. Instance

selection can help mitigate the issue. Turhan et al. [29] explore instance sampling for software

defect prediction. In the paper, the authors performed microsampling wherein N defective

instances and non-defective instance were randomly selected from total instances. The results

showed that for most data sets predictive ability of models did not improve by increasing

the size of N beyond 25.
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2.3 Data Reduction Methods

IDEA introduced in [2] performs data reduction by the following steps, dimensionality re-

duction using FastMap [10], hierarchical clustering and then feature selection using entropy.

The IDEA was tested on multiple effort data set and its performance was compared with

10 methods and 9 pre-processors. The results indicated that there was no significant loss of

essential information

PEEKING2, an improved version of IDEA, used optional feature selection by INFOGAIN

and Nearest Neighbor method to extrapolate between centroids. PEEKING2 was tested on

defect and effort data sets [23]. The performance of PEEKING2 was found close to standard

learners. However, for some of the defect data sets, only PEEKING2 applied on all features

performed well.

This thesis explores alternative for clustering technique used in PEEKING2, five widely

used clustering techniques are evaluated for instance reduction. The experiments also at-

tempts to find the optimal number of instances in the reduced data set. The results of the

study shows the some standard clustering methods applied in the study perform better than

PEEKING2 and standard learners.
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Chapter 3

Methods

3.1 Feature Selection

Feature Selection is process used to reduce the number of features or attributes by selecting

most promising/ relevant features which will improve the predictive accuracy of the learner.

The presence of irrelevant features have been shown to deteriorate performances of decision

trees (C4.5) and instance based learners. While some learners like Naive Bayes are robust

to irrelevant features, redundant features can still impact the performance.

In addition to improving the accuracy of a learner, feature selection can also help to

understand the data. It identifies features which influence the target variable the most. The

two common types of feature selection methods are filters and wrappers. In filter methods,

feature selection is done as a part of pre-processing step without considering the impact of

the feature selection on the actual performance of the learner. The filters, in general, rank

a feature or a subset of features based on the relevance to the class variable. The metric

or measure of the relevance influences the selection of features. However, the selection of

features is independent of the learning algorithm used.
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In wrappers, subset of features are formed and the predictive ability of the learner when

trained on the feature subset is evaluated. Wrappers explores different feature subsets and

evaluate by training the actual learner on the corresponding features. The feature subset is

then scored based on the accuracy of the learned model. Wrappers are more computationally

intensive than filters, because the actual learner is run for each feature subset. For large data

sets, convergence of a wrapper is not guaranteed when exhaustive search is used to evaluate

all possible subsets of features. Consequently, wrappers use greedy search algorithms to

converge to locally optimal solutions.

3.1.1 Information Gain (InfoGain)

A simple filter method is used to rank features based on the relevance of features to the class

variable. Information Gain is used as the relevance measure. The idea of Information Gain

is better understood with the notion of Decision Trees and Entropy.

Decision Tree: The decision tree is a simple tree with the root node representing a question,

each branch acting as choices that lead to other nodes representing an attribute within the

training set. These lead to the leaf nodes with the decision or outcome for condition or

question posed in the root node.

Entropy: The entropy is defined as the disorder in predictability of the nodes and the

branches in the decision tree. In a given set S, the entropy is

Entropy (S) = − Positive(S) log2 Positive(S) − Negative(S) log2 Negative(S)

where Positive(S) is the proportion of the positive values in the set and Negative(S) is the

proportion of the negative values in the set. So, if there are all positive values and no negative

values in Set S, then Positive(S) is 1, Negative(S) is 0, then the entropy would be 0. If there

are equal number of positive and negative values, then Positive(S) is 0.5, Negative(S) is 0.5
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and Entropy is 1. If the Positive(S) is 0.25 and Negative(S) is 0.75, then the Entropy is

0.811. This means that the more impurities, the Entropy leads towards 1. So, the entropy

should be reduced for making optimal decisions at each node.

Information Gain: The Information Gain is defined as the Expected reduction of the

above defined Entropy of the set, in relation with the given attribute in the node where the

decision is being made.

Gain (S, A) = Entropy (S) −

|Sv|

____

|S|∑
v=1 to n

Entropy (S)

These values give the uncertainty of each attribute. The information gain can be used to

rank the attributes and build a new decision tree. This tree will show the attributes with

the highest information gain. After all features are ranked, a specified percentage of features

with the highest Information Gain are selected.

3.2 Clustering Methods

Clustering is an unsupervised machine learning technique where data instances are grouped

into several subsets based on the similarity between the instances. Hence, it is important

to define the similarity or the distance measure used to compare two instances. Clustering

techniques vary in both the induction principle and distance/similarity measure used. Many

different classification of clustering techniques has been suggested based on the two criteria

[16] [9]. The common classifications of clustering methods are:

• Hierarchical clustering. The clusters are formed by recursively partitioning the

instances by using a top-down or bottom-up approach. In Agglomerative Hierarchical
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clustering, each instance is initially considered as a cluster, clusters are merged in

successive iteration based on similarity measures. In divisive hierarchical clustering,

all instances are initially considered it to be in one cluster, which is divided in in

successive iteration. The hierarchical clustering method produce a dendrogram which

shows the nested grouping of instances and with value of similarity measure for each

group. The clusters are obtained by cutting off the dendrogram based threshold value

for similarity measure.

• Partitioning clustering. The methods form a set of clusters initially, and then

refines them by moving instances between clusters. In general, Partitioning methods

require the user to select the total number of clusters to be formed. Partitioning

clustering algorithm use greed search algorithm to optimize the clusters. Partition

based clustering methods typically use distance measures and form clusters which are

spherical in shape.

• Density-based clustering. The density based clustering is based on the assumption

that clusters are dense region in the dataspace surrounded by noise (low density region)

[16]. Density based methods can form methods of arbitrary shape.

In this study we chose five clustering methods based on different underlying principles.

3.2.1 K-Means

K-Means uses a simple iterative method to identify a predetermined number (k) of centroids

on a data set and clustering the data points to those centroids. The algorithm was originally

proposed by Lloyd (1957) as a method in signal processing, later published by Forgy (1965).

In addition, to coining the name "k-means", it was used by MacQueen (1967). A more

refined, efficient and generalized versions were proposed later by Hartigan and Wong (1975).

This is widely used in the field of data mining today [32].
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Figure 3.1: K-Means clustering taken from [24]

The steps that are involved in the k-means algorithm are:

1. Initialize a predetermined number (k) for number of clusters. This needs to be specified

by the user.

2. Select k data points in the given data set as the centroids.

3. Assign all the other data points to the nearest centroid.

4. Once the clusters are formed, calculate the centroid of each cluster, creating a new set

of k centroids.

5. Iteratively repeat steps 3 to 5 until the centroids do not move and the data set is

converged into k clusters.

The above figure shows how k means is performed on a data set with a value of k set to 2 in

the clusters. a) This represents the initial data set. b) The red and blue data points are the
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two random centroids. c) The other data points are assigned to the centroids as either blue

or red depending on each data points distance from the centroids, forming two clusters. d)

The new centroids are identified by calculating the mean of the two clusters formed. e) The

data points are reassigned by calculating the distance between them and the new centroids.

f) This shows the converged data set with the two clusters after some iterations.

The initial number of clusters has to be set by the users. The initial k centroids points

can be selected by mere random selection of k data points. The nearest centroid is calculated

using the Euclidean distance, hence the cost function

N∑
i=1

 argmin

j
||xi − cj||

2

2


will climb towards zero, so that the convergence will be happen within the subsequent iter-

ations forming a final set of clusters within limited iterations.

For a data set of size N and number of centroids k, the algorithm will need to compare k

X N times within each iteration. This defines the complexity of each iteration and the total

number of iterations depends on the size of N.

The k-means algorithm is very simple in its nature and is not complex to implement.

It is guaranteed to provide the clusters within limited iterations and has proven to be very

useful in clustering. This is one of the reasons why it is widely used in data mining.

The algorithm, like any other has its disadvantages. The main limitation is that the

cluster set depends on the number of clusters, k, provided by the user without predetermined

knowledge about the data and its characteristics within the data set. The clustering also

depends on the initial data points, randomly chosen as the centroids, causing good or bad

results on the same data set. The data points are assigned to the centroid merely on the

closeness of the data point. So, if the original data set is not formed by spherical or convex

shaped clusters, this algorithm might not provide good results. This could be resolved by
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using a different method of measuring the distance.

One of the disadvantages being the initial choice of k, the number of clusters, the desirable

value of which, if not known in advance could cause bad results. This can be addressed by

choosing increasing number for k and choosing the better result.

The mean method to identify the centroid might not be the suitable statistical measure

in some cases, like when there are very small clusters. Combining small clusters to a larger

cluster could fix this issue.

3.2.2 Mini-batch K-Means

Mini-batch K-Means (MB K-Means) is a variant of K-Means which addresses the issue of

scalability of K-Means [26]. Instead of processing all input records at once, mini-batch K-

Means samples B random input records at each iteration. This helps mini-batch k-means to

converge much faster than K-Means for larger data sets. This method has a faster processing

time, while producing results very close to those of K-Means.

Mini-batches are subsets of the training set, which are randomly chosen in every iteration.

This significantly reduces the computation involved in the convergence into the initial number

of clusters.

The steps that are involved in the Mini-batch k-means algorithm are:

1. Initialize a predetermined number (k) for number of clusters. This needs to be specified

by the user.

2. Select k data points in the given data set as the centroids.

3. Select b samples randomly from the data set to form a Mini-batch. Assign them to

the nearest centroid.
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4. Once the clusters are formed, calculate the centroid of each cluster, creating a new set

of k centroids. The centroids are calculated by getting the streaming average of all the

samples and the previous samples that were assigned to that centroid

5. Iteratively repeat steps 3 to 5 until the centroids do not move and the data set is

converged into k clusters.

This sampling instead of assigning the entire data set to the centroids decreases the rate

at which the centroids change. With less amount of calculation each iteration and reducing

overall number of iteration by faster convergence, this algorithm improves the performance.

But, the results are slightly worse than the original K-Means. Even with the difference in

the results, it is only slightly worse, proving to be useful in some cases.

3.2.3 DBSCAN

DBSCAN stands for Density Based Spatial Clustering of Applications with Noise. This is

developed to address the below data set requirements

(i) There is limited domain knowledge of the data set to provide the input parameters

(ii) To identify arbitrary shaped clusters

(iii) Efficient performance on large data sets

These requirements are satisfied by DBSCAN which relies on density based clusters based

on the assumption that the data set contains clusters which are high density areas and noise

with low density area [8]. The method was proposed by Martin Ester, Hans-Peter Kriegel,

Jorg Sander, Xiaowei Xu in 1996. It is one of the most cited algorithm and has been very

robust in its performance and application on different data sets over years.

In DBSCAN, there are two necessary inputs:
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• textbfMinPts - A predetermined number of points. This is generally set little low and

there are methods to determine this without knowing the domain of the data set.

• textbfEps(ε) - This is the neighborhood where there are minimum MinPts points.

DBSCAN begins by scanning an arbitrary point p, retrieving all points, which are density

reachable from point p.

• If p is a real core point, many points will be reachable from that and will form a cluster.

• If p is not a core point, it would not form the cluster. If p is a border point, DBSCAN

moves to the next one, labeling that as noise. However, it could still be picked up as

part of another cluster, if it is reachable by that cluster later in the program.

• If MinPts are higher, a recursive call will be necessary.

The running time of this algorithm is O(n log n). DBSCAN identifies all the clusters and

noise points too. It does not need the pre-determined number of clusters, which is the case

in k-means. It is also not very sensitive to the quality of the data set. The issue with this

algorithm is that there could be points that are density reachable by more than one core

point. This might assign the point to an incorrect cluster. If the input data set has high

differences in density and low separation of the data points, DBSCAN does not perform well

in properly clustering the input set.

3.2.4 Expectation Maximization

Expectation Maximization(E-Max) is a Gaussian mixture model algorithm. The algorithm

initially forms random components. It then calculates a probability that any given point is

generated by each component of the model. The algorithm then changes its parameter value

to maximize the likelihood of the data given those assignments [7].
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Expectation Maximization is an iterative process of estimating the Maximum Likelihood

of the data set, that contains hidden information. Given two clusters, when the parameters

like means and standard deviations for each cluster and the probabilities are unknown, the

EM algorithm utilizes the k-means algorithm iteratively. The initial parameters are just

guesses which are used to calculate the probability of each cluster. With the values obtained

from this, the parameters which were initially guessed are re-estimated and the iteration is

continued. It basically involves the following steps:

1. Calculate the expected values, called the Expectation step. The expectation z of the

hidden variable is

E[zij] =
p (x = xi | = j)∫ k

n=1
p (x = xi | = n)

2. Calculate the distribution of parameters, called the Maximization step, to increase the

chances of the distribution with the available data.

µ←
∫ m

i=1
E[zij] xi∫ m

i=1
E[zij]

Expectation Maximization algorithm increases the cluster probabilities by iteratively re-

estimating the parameters after guessing the initial parameters.

While the iterations with different values have to be performed, it is still a very fast algo-

rithm; it just relies on the speed of the K-Means algorithm performed within the iterations.

With various values, it maximizes the likelihood of the unbiased clusters, without pushing

the means towards zero.

Since the values are different, instead of converging, the results in different iterations

could diverge it to irregular output.
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3.2.5 Ward

Ward’s method is a criterion in hierarchical clustering approach where the merge criteria for

two clusters is an objective function, per the usersâĂŹ needs. This was suggested by Joe

H. Ward in 1963 as a grouping approach to optimize and objective function. Each point in

dataspace is initially considered to be in a cluster of it own, and the clusters are merged in

successive iteration such that intra-cluster distance is kept to the minimum [30]

If there are n subsets, two subsets are merged, giving n-1 sets. This similarity is deter-

mined by specific characteristics. So, the n subsets are reduced to n-1 mutually exclusive

subsets by checking the union of possible k(k-1)/2 pairs that can be formed while accepting

the union with which an optimal value of the objective function is associated. This process

is repeated till the subsets are in one group.

Since Ward’s method uses agglomerative hierarchical clustering approach, the algorithm

itself begins at the leaf, going through the branches and then the trunk. It is a bottom

up approach starting at its own cluster. The criterion used by Ward is called the Ward’s

minimum variance criterion.

The implementation of the hierarchical clustering using the Ward’s method has the following

steps:

Let p denote the smaller of the two numbers used to identify the subset in the n original

subsets.

Let q denote the larger of the two numbers used to identify the subset in the n original

subsets.

1. Set k (number of groups) to n (number of elements)

2. Set the best value Z[pk−1, qk−1, k-1] to an initial worse value.
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3. Set i to the smallest active number.

4. Set j to the first active number which is more than i.

5. Compute best value Z[i, j, k-1] associated with the union of sets i and j.

6. If Z[i, j, k-1] is better than the previous initial Z[pk−1, qk−1, k-1], continue, otherwise

go to step 8.

7. Replace initial Z[pk−1, qk−1, k-1] with new Z[i, j, k-1].

8. If j is not equal to the last active number, continue, otherwise go to step 10

9. Set j to the next active number, go to step 5.

10. If i is not equal to the last active number, continue, otherwise go to step 12.

11. Set i to the next active number, go to step 4.

12. The best union is identified by pk−1, qk−1along with its value Z[pk−1, qk−1, k-1].

13. Identify the new union by the pk−1. Set qk−1as inactive.

14. If k (number of groups under consideration) equals 2, stop the program, otherwise

continue.

15. Set k to k – 1. Go to step 2.

Ward’s method shows that the distance between the clusters A and B is the amount by

which the sum of squares would increase while merging

∆ (A,B) =
∑

i∈AUB

||−→x i −
−→mAUB||

2 −
∑
i∈A

||−→x i −
−→mA|| −

∑
i∈B

||−→x i −
−→mB||

where mj is the center of cluster j and nj is the number of points. ∆ is the cost to combine

A and B.
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The sum of the squares begin at zero growing slowly as the clusters are merged. It follows

a greedy approach to form the clusters.

In hierarchical clustering, to calculate the distance, any valid distance measure can be

used. So, Ward’s method for using the objective function permits the user’s choice of function

that reflects the purpose of clustering. Just like DBSCAN, this method does not need

preceding knowledge of the number of clusters required.

In some cases, Ward’s method could be sensitive to noise in the data and will not perform

well with clusters of varied sizes. It also has a very slow running time of O(n2log n).

3.3 PEEKING2

PEEKING2 is an algorithm which condenses the data set to create a summary of the data,

making it easy for business users to review. It accomplishes this by using feature reduction

and row reduction techniques on the raw data set. PEEKING2 was developed by Papakroni

[23] by extending IDEA, originally introduced by Menzies and Borges [3].

IDEA uses feature projection, clustering and feature selection on the project data set to

reduce the data. It then visualizes this reduced data using rule reduction. This visualization

shows and recommends how the effort can be reduced on the projects. PEEKING2 improves

upon IDEA to accomplish the data reduction and support both defect prediction and effort

estimation. The steps involved in PEEKING2 are

• Feature Selection using INFOGAIN To remove irrelevant features, PEEKING2

uses Information Gain, which is a technique that splits the training instances using the

value of the feature. This assigns the ranks on the attributes with respect to the class

variable. The selection method is to simply choose the ones with highest information

gain.
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• Projection via FASTMAP The FASTMAP is an algorithm for projecting the fea-

ture in an n-dimensional space in the direction where there is highest variability. This

is achieved in linear time.

• Grid Clustering The Grid clustering uses recursion to large clusters into smaller

chunks and associate them with each higher level cluster creating a tree.

• Plotting PEEKING2 calculates the centroid of each of these clusters formed in the

Grid Clustering step. The centroids are plotted to show defective and non-defective

modules and the purity of each module. This creates a visual that is very easy for

business users to comprehend quickly and make decisions using these.

The algorithm was applied to a data set of size 800+ rows and 20+ columns, resulting

in 10 to 30 rows and 6 columns, which is 2.5% of the original rows and 25% of the original

number of columns. Even with so much reduction, it was proven to be have the same per-

formance or better performance than NaÃŕve Bayes and Random Forest in defect prediction

and Linear Regression and M5P in effort estimation.

The algorithm is extremely fast with output running times as low as milliseconds with

a reasonable computational capabilities (3 GHz and 4 GB RAM) on 10 data sets, with the

running time only increasing linearly with larger data sets.

The algorithm has a very good performance in comparison to other learners. It is an im-

provement from IDEA, in that it provides defect prediction as well, uses k Nearest Neighbor

(kNN), uses intrinsic dimensionality to make decisions, uses local learning to build predictive

models.

There has been some experiments which show PEEKING2 under performs with some

direct relationship to the quality of the features (purity of the clusters). This necessitates

some analysis of the data to determine whether it is recommended to use PEEKING2 to

make decisions. The performance and effectiveness of PEEKING2 can also be affected by the
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Figure 3.2: Example of FastMap projection, Grid-Clustering, and centroids estimation ap-
plied on POI-3.0 data set that contains 442 examples. Top Row: Data transformations
applied on the entire set of attributes. Each point represents a 20-dimensional instance.
Bottom Row: Data transformations applied on 25% of the attributes with the highest in-
formation gain). Each point represents a 5-dimensional instance. Column A (left-hand-
side): Raw data projected into the first 2 dimensions found by FastMap. Blue points denote
non-defective modules. Red points denote defective modules. Column B (middle): The re-
gions of data found in the leaves of a recursive grid-clustering. Each final cluster contains no
more than 2 ∗

√
442 ≈ 40 instances.Column C (right-hand-side): after grid-clustering,

each cluster is represented by its centroid. Blue points denote clusters with a majority of
non-defective modules. Red points denote clusters with a majority of defective module. The
size of each point is in proportion to the “purity” of the respective cluster. Note that the
hundreds of original data points are have been now condensed to a few dozen centroids.
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choice of learners used to compare PEEKING2 with. Where PEEKING2 might work better

in most cases on most data sets, it might not perform in comparison with some learners on

some data sets.

3.4 Data Sets

The data sets used in the study were taken from PROMISE repository, a widely used source

for software engineering mining data sets. When multiple versions of a data set were available

in the repository, the latest version of the data set was used for the study.

The defect data sets contains information of open source JAVA projects. Table 3.1 lists

the total number of instances, number of defective instances and percentage of defective

instances in each data set. Each instance in the data set provides information about a class

in the project.

Table 3.1: Description of Defect Data Sets

Data set # Instances # Defects % Defects

ant-1.7 745 166 22
ivy-1.1 111 63 57

jedit-4.1 312 79 25
log4j-1.1 109 37 34

lucene-2.4 340 203 60
poi-3.0 442 281 64

synapse-1.2 256 86 34
velocity-1.6 229 78 34
xalan-2.6 885 411 46
xerces-1.4 588 437 74

There are 20 independent attributes and a boolean dependent attribute in each instance.

A short description of the features is provided in Table 3.2. The dependent variable indicates

whether any defect was found in a module post-release of the project. The data sets contain

attributes based on Chidamber and Kemerer(CK) metrics designed to capture static features

25



of programs developed with Object Oriented methodology [6].

Table 3.2: Description of attributes in the defect data sets

amc average method complexity e.g. number of JAVA byte codes
avg_cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method pa-

rameters in every method divided by a multiplication of
number of different method parameter types in whole
class and number of methods.

cbm coupling between methods total number of new/redefined methods to which all the
inherited methods are coupled

cbo coupling between objects increased when the methods of one class access services
of another.

ce efferent couplings how many other classes is used by the specific class.
dam data access ratio of the number of private (protected) attributes to

the total number of attributes
dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is coupled

(includes counts of methods and variables inherited)
lcom lack of cohesion in methods number of pairs of methods that do not share a reference

to an instance variable.
locm3 another lack of cohesion measure if m, a are the number of methods, attributes in a class

number and µ(a) is the number of methods accessing an
attribute,
then lcom3 = (( 1

a

∑a
j µ(aj))−m)/(1−m).

loc lines of code
max_cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class
mfa functional abstraction number of methods inherited by a class plus number of

methods accessible by member methods of the class
moa aggregation count of the number of data declarations (class fields)

whose types are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to

the object.
wmc weighted methods per class
defect defect Boolean: where defects found in post-release bug-

tracking systems

The effort estimation data sets contain information about software projects and the ac-

26



tual effort spent to develop them. Table 3.3 lists the effort data sets used in the study.

The COCOMO, NASA and data sets derived from them contains metrics defined by the

COCOMO effort estimation model developed by Bohems [1]. Table 3.4 provides the descrip-

tion of various factors affecting the effort required to develop a software. These factors are

labeled as effort multipliers in the COCOMO model. Actual development effort is linearly

dependent on the multipliers. In addition to the effort multipliers listed in the table, Line of

code (LOC) affects the effort exponentially.

Table 3.3: Description of attributes in the effort data sets

Effort

Data set # Features # Instances Min Median Mean Max

china 16 499 26 1829 3921 54620
cocomo81 18 63 6 98 683 11400
cocomo81e 17 28 9 354 1153 11400
cocomo81o 17 24 6 46 60 240
cocomo81s 17 11 6 156 850 6400
miyazaki 8 48 6 38 87 1586
nasa93 21 93 8 252 624 8211

nasa93c1 20 12 24 66 140 360
nasa93c2 20 37 8 82 223 1350
nasa93c5 20 40 72 571 1011 8211

The other data sets, china and miziyaki are not based on COCOMO model. Data set

china is based on Function Point Analysis metrics, while miziyaki provides information on

COBOL software development.

The dependent feature of the data set, effort is a continuous variable denoting actual

effort measured in man-months with an exception of china. The measure of effort used in

china is man-hours. Man-hours is defined as a unit of one hour’s work by a person. A

man-month is consists of 160 man-hours.
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Table 3.4: COCOMO effort multipliers. Taken from [21]

upper: acap: analysts capability
increase pcap: programmers capability
these to aexp: application experience
decrease modp: modern programming practices
effort tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
lower: data: data base size
decrease turn: turnaround time
these to virt: machine volatility
increase stor: main memory constraint
effort time: time constraint for cpu

rely: required software reliability
cplx: process complexity

3.5 Experimental Design

The experimental design of the study attempts to identify most suitable clustering technique

to be used for instance reduction step and also determine ideal number of clusters or instances

to be retained in the reduced data set.

The performance of clustering techniques were assessed by employing stratified M × K

cross-validation. Herein K-fold cross-validation is repeated M times. In this study, 5 × 5

cross-validation was used. This mitigates the impact of the order of instances that is shown

to have on the performance of some techniques [12].

In each run, a training set and test set are generated. The training set contains ap-

proximately fourth-fifth of the instances present in the data set. The following steps are

executed

• Feature Reduction

Feature Reduction is achieved by feature selection using InfoGain. Features are ranked

based on Information Gain value and top 25% of features are retained. For applying

InfoGain the both independent and dependent features needs to be discrete. Hence,

any continuous valued feature is discretized. In case of effort estimation, the class

28



variable is discretized by creating two classes, instance with effort above median value

of effort across the data set are placed grouped together. Independent attributes are

discretized using Fayyad-Irani method. The algorithm recursively partitions the con-

tinuous attribute values in such a way that maximizes the Information Gain of the

attributes [11].

• Instance Reduction

After number of columns are reduced, the data is clustered using the clustering al-

gorithms described in 3.2. The goal is to find one exemplar per cluster, this is done

by finding the centroid of the instances present in a cluster. In case of continuous or

numerical attribute, mean of the attribute value is calculated while mode is calculated

for discrete or nominal attributes.

For defect data, the class attribute defect value is a boolean attribute that denotes

whether the majority of instances in the cluster are defective or not. Additionally,

a numerical attribute defect rate is calculated to represent the fraction of defective

instances in the cluster. For effort data, the class attribute is the average of actual

development effort of all instances in the cluster.

This effectively reduces the number of instances in the reduced data set to the number

of clusters form by the clustering techniques.

• Prediction

K-Nearest Neighbor is used to predict the class of an instance based on the class value

of the k nearest centroids. The K-NN computes a weighted average of defect value of

the centroids. If this value is greater or equal to a threshold, the instance is classified

as defective.

Instances in the test data were classified by extrapolating values of the condensed data

set by applying K-NN (k=2) learner with a threshold of 0.5. In case of defect data,

test instance is either classified as defective or non-defective. In addition to classifying

an instance, the K-NN can also compute probability of defectiveness of an instance by
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calculating the weighted average of the defect rate of the neighboring centroids. This

can be useful to assess the confidence of the defect prediction. For effort data, the

development effort for a given test instance was estimated.

Selection of parameter values

The selection of parameter values influences the performance of the clustering tech-

nique.The clustering techniques used in the study (with an exception of DBSCAN) require

the number of clusters to be provided as an parameter. Hence, it is important to determine

appropriate value for number of clusters to generated.

Experiments were conducted using the same methodology outlined in this section to

determine optimal values for the parameters of the clustering techniques. The number of

clusters (k 5̄, 10, 25, 50) were evaluated for K means, Expectation maximization, Mini Batch

K-Means and Ward.

For DBSCAN, the following ε values: 0.01, 0.05, 0.1, 0.2 were chosen. The parameter

values were then selected based on the median f-measure and rank obtained in experimental

runs.

Implementation

The implementation of the experiments was done using Python. The clustering methods

and learners were used from SciKit-Learn or Weka. SciKit-Learn is a python package which

provides implementation of various machine learning algorithms. Weka is a java based data

mining tool kit. Weka offers command line invocation of its methods which can be used to

run clustering algorithms from a python program. Standard implementations of clustering

techniques and learners were used to avoid potential errors in implementation and also

ensure that the study can be repeated. PEEKING2 used in the study was implemented by

Vasil Papakroni for his thesis work [23]. The data structure for storing the input data and

supporting library functions were also reused from the work.
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3.6 Statistical Methods

The definitions of the measures employed to compare the performance of the clustering

methods can be found in Table 3.6. The definitions are based on the confusion matrix show

in Table 3.5.

Table 3.5: Confusion Matrix

Actual
Non-Defective Defective

Predicted Non-Defective TN FN
Defective FP TP

Table 3.6: Performance Metrics

Measure Formula

Recall (pd) TP/(TP+FP)
Precision (prec) TP/(TP+FN)
F-Measure (2*pd*prec)/(pd+prec)
Accuracy (TP+TN)/(TP+TN+FP+FN)

• Recall (pd) represents the probability of detection of a defective module.

• Precision (prec) is the probability that a module identified as defective is actually

defective.

Ideally, a good defect predictor should have both high recall and high precision. However,

an attempt at improving one of these measures might result in less than ideal value in the

other measure. Hence, in our study we use f-measure, which is calculated from both pd and

prec as the primary metric to compare the performance of clustering techniques.
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For effort estimation, absolute residual error and magnitude of relative error is calculated.

The definition of the measures are as follows:

• Absolute Residual error (AR) =| actuali − predictedi |

• Magnitude of Relative Error (MRE) = |actuali−predictedi|
actuali

where actuali is the actual effort of a given test instance and predictedi is the estimated

effort.

The Absolute Residual error measures the error in estimation in actual effort units, while

Magnitude of Relative Error measures the estimation error in proportion to the actual effort

of the project.

The clustering techniques are then ranked based on f-measure for defect data on values

obtained over the 25 cross-validation runs(5 repeats × 5 folds).

Win-Tie-Lose based on Wilcoxon statistical method was used to compare the populations of

f-measure values of the clustering algorithms as shown below.

Algorithm 1: Algorithm for Ranking learners based on F-Measure
if WILCOXON(Pi, Pj) > 95 or equals(fi,fj)
then

tiei = tiei + 1;
tiej = tiej + 1;

else
if greater(fi,fj) then
wini= wini + 1
lossj = lossj + 1

else
wini = winj+ 1
lossi = lossi + 1

end if
end if

32



If two populations Pi, Pj (with median f-measures fi and fj respectively) are not statis-

tically different according to Wilcoxon test at 95% confidence or if their median f-measures

are equal, Pi and Pj are said to be tied. If not, the population with greater value for median

f-measure is said to have won. The clusterers are then ranked based on the number of losses

(lower values are ranked the better). The rank of a clustering method enables us to evaluate

whether its observed advantage is statistically significant or not.

For effort estimation the ranking is done based on Absolute Error and Magnitude of

Relative Error instead of f-measure in the above pseudo code.
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Chapter 4

Results

The results of the empirical study are discussed in this chapter.

4.1 Defect Prediction

Number of Clusters

When evaluating the choice of the number of clusters, the predictive ability of the reduced

data sets with 2-NN algorithm in 5×5 experimental run were compared individually for each

clustering algorithm. The ranks were calculated based on median f-measure using the ranking

algorithm described in Section 3.For each clustering algorithm and number of clusters, Table

4.1 lists the number of times it was ranked in the given position. The number number of

clusters is diplayed in rows and ranks in columns. In case of DBSCAN, the different ε values

are listed.

The table 4.1 shows that for all but one clustering method the number of clusters, N

= 25 was consistently ranked higher than the other values of N. It is seen that increasing
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Table 4.1: Comparing ranks of clustering techniques with different number of clusters

K-Means # Clusters Rank1 Rank2 Rank3 Rank4

5 4 1 4 1
10 5 3 2 0
25 7 2 1 0
50 7 2 0 1

Mini Batch K-Means # Clusters Rank1 Rank2 Rank3 Rank4

5 1 4 2 3
10 2 5 3 0
25 4 4 2 0
50 6 1 2 1

EM # Clusters Rank1 Rank2 Rank3 Rank4

5 1 2 3 4
10 6 1 2 1
25 7 2 1 0
50 4 3 2 1

Ward # Clusters Rank1 Rank2 Rank3 Rank4

5 3 3 1 3
10 4 4 2 0
25 7 0 2 1
50 3 5 2 0

DBSCAN Epsilon Rank1 Rank2 Rank3 Rank4

0.01 2 3 3 2
0.05 2 3 3 2
0.1 4 4 2 0
0.2 5 2 1 2

value of number of clusters beyond 25 often resulted in decrease in the performance of model

trained over the reduced data set.

Consequently, for comparing different clustering techniques, the number of clusters to be

generated was set to 25 based on the above results. The ε value for DBSCAN was chosen to

be 0.1. This choice was based on the total number of times a parameter value was ranked

first or second.

Data Reduction

High degree of data reduction was achieved by application of InfoGain along with clustering

techniques.Table 4.2 shows data reduction achieved on the training data set when the number

of clusters equals 25 for Expectation Maximization, K-Means, Mini Batch K-Means andWard
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clustering techniques. Table 4.3 and 4.4 lists the data reduction on the training data set

using PEEKING2 and DBSCAN respectively(These models do not have a fixed number of

clusters). The tables display the number of instances in the training data set (# Instance

and in reduced data set (# Clusters), percentage decrease in instances, followed by number

of cells in training data (# Cells), percentage decrease in cells after data reduction is applied.

The size of the training data set is four-fifth of the actual data set.

Table 4.2: Defect data reduction k=25 number of clusters and InfoGain(25%))

Data set # Instances % Reduction # cells % Reduction

ant-1.7 596 96 11920 99
ivy-1.1 88 72 1760 91

jedit-4.1 249 90 4980 97
log4j-1.1 88 72 1760 91

lucene-2.4 272 91 5440 97
poi-3.0 354 93 7080 98

synapse-1.2 205 88 4100 96
velocity-1.6 183 86 3660 96
xalan-2.6 708 96 14160 99
xerces-1.4 471 95 9420 98

Median 90 Median 97

Table 4.3: Defect data Reduction using PEEKING2

Data set # Instances # Centroids % Reduction # cells % Reduction

ant-1.7 596 28 95 11920 99
ivy-1.1 88 19 78 1760 95

jedit-4.1 249 16 94 4980 98
log4j-1.1 88 19 78 1760 95

lucene-2.4 272 19 93 5440 98
poi-3.0 354 21 94 7080 99

synapse-1.2 205 16 92 4100 98
velocity-1.6 183 16 91 3660 98
xalan-2.6 708 28 96 14160 99
xerces-1.4 471 21 96 9420 99

Median 93 Median 98

The data reduction is quantified by total instances and by total information (instances
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Table 4.4: Defect data reduction using DBSCAN(ε = 0.1)

Data set # Instances # Centroids % Reduction # cells % Reduction

ant-1.7 596 28 95 11920 99
ivy-1.1 88 19 78 1760 95

jedit-4.1 249 16 94 4980 98
log4j-1.1 88 19 78 1760 95

lucene-2.4 272 19 93 5440 98
poi-3.0 354 21 94 7080 99

synapse-1.2 205 16 92 4100 98
velocity-1.6 183 16 91 3660 98
xalan-2.6 708 28 96 14160 99
xerces-1.4 471 21 96 9420 99

Median 93 Median 98

× attributes). For DBSCAN and PEEKING2, the median instance reduction was 93%

and median total information reduction was 98%. For other clusters, the median instance

reduction was 90% and median total information reduction was 97%. It is essential to ensure

there is no significant information loss due to the process.

Performance of Defect Prediction Models

The performance of the reduced data sets with 2-NN algorithm in 5×5 cross validation runs

is shown in Table 4.5. For each data set, the results are sorted in decreasing order of f-

measure. The performance of Random Forest trained on the training data set is used as the

baseline. No instance or feature selection was applied for baseline result. While comparing

the performance, we use the term "almost equal" or "close" to denote that the median

f-measure is less than 2% or 5% different respectively.

• For 8 out of 10 data sets, the predictive ability of 2-NN learner on at least two of the

reduced data sets are better than or almost equal to the predictive ability of RF. For

the other two data sets, synapse-1.2 and xalan-2.6, RF was clearly the winner.
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Table 4.5: Comparison of Defect Predictive ability of models based on different algorithms

Data Learner Instances Prec PD F Rank Data Learner Instances Prec PD F Rank

ant-1.7 K-Means 25 0.65 0.44 0.53 1 poi-3.0 RF 354 0.83 0.86 0.84 1
MB K-Means 25 0.62 0.41 0.51 2 Ward 25 0.86 0.82 0.84 1
PEEKING2 28 0.67 0.41 0.51 3 MB K-Means 25 0.86 0.82 0.83 1

E-Max 25 0.63 0.42 0.5 2 K-Means 25 0.85 0.82 0.82 4
Ward 25 0.64 0.42 0.5 2 E-Max 25 0.84 0.82 0.82 5
RF 596 0.56 0.44 0.48 5 DBSCAN 17 0.83 0.82 0.81 6

DBSCAN 15 0.64 0.36 0.48 6 PEEKING2 21 0.84 0.82 0.81 6
ivy-1.1 PEEKING2 19 0.69 0.69 0.72 1 synapse-1.2 RF 205 0.62 0.56 0.59 1

MB K-Means 25 0.71 0.69 0.72 1 MB K-Means 25 0.6 0.47 0.54 2
E-Max 25 0.73 0.69 0.71 1 K-Means 25 0.62 0.47 0.53 3

K-Means 25 0.73 0.75 0.71 2 PEEKING2 16 0.64 0.41 0.52 4
Ward 25 0.73 0.69 0.71 1 E-Max 25 0.59 0.44 0.52 3
RF 88 0.69 0.69 0.69 1 Ward 25 0.6 0.41 0.5 5

DBSCAN 6 0.71 0.5 0.6 7 DBSCAN 10 0.62 0.29 0.42 7
jedit-4.1 E-Max 25 0.64 0.5 0.58 1 velocity-1.6 DBSCAN 9 0.53 0.5 0.56 1

MB K-Means 25 0.67 0.5 0.57 2 RF 183 0.55 0.5 0.54 2
Ward 25 0.67 0.5 0.56 2 Ward 25 0.67 0.5 0.53 1
RF 249 0.62 0.47 0.55 4 K-Means 25 0.58 0.44 0.52 2

K-Means 25 0.64 0.5 0.55 4 MB K-Means 25 0.64 0.44 0.5 2
DBSCAN 7 0.67 0.47 0.52 5 E-Max 25 0.6 0.44 0.48 4

PEEKING2 16 0.67 0.44 0.5 5 PEEKING2 16 0.58 0.38 0.48 7
log4j-1.1 E-Max 25 0.75 0.62 0.67 1 xalan-2.6 RF 708 0.76 0.7 0.72 1

K-Means 25 0.75 0.57 0.67 1 DBSCAN 32 0.8 0.57 0.68 2
MB K-Means 25 0.8 0.57 0.67 1 MB K-Means 25 0.8 0.59 0.67 2

Ward 25 0.8 0.57 0.67 1 E-Max 25 0.81 0.57 0.67 2
RF 88 0.71 0.62 0.63 5 K-Means 25 0.82 0.57 0.66 4

PEEKING2 19 0.75 0.43 0.6 6 Ward 25 0.81 0.56 0.66 4
DBSCAN 5 0 0 0 7 PEEKING2 28 0.77 0.57 0.66 7

lucene-2.4 DBSCAN 8 0.7 0.8 0.74 1 xerces-1.4 RF 471 0.94 0.97 0.95 1
K-Means 25 0.7 0.78 0.74 1 E-Max 25 0.92 0.98 0.95 2

MB K-Means 25 0.71 0.76 0.73 3 PEEKING2 21 0.91 0.98 0.95 3
RF 272 0.71 0.73 0.73 4 Ward 25 0.92 0.98 0.95 3

E-Max 25 0.7 0.76 0.73 4 MB K-Means 25 0.91 0.98 0.94 4
Ward 25 0.7 0.78 0.73 4 K-Means 23 0.92 0.98 0.94 6

PEEKING2 19 0.7 0.76 0.73 6 DBSCAN 18 0.91 0.97 0.94 7

• For 5 out of 10 data sets, the predictive ability of 2-NN learner on all reduced data

sets are close to each other, i.e. the difference in F measure between the highest and

lowest was less than 5%.

• For 8 out of 10 data sets, performance of the clustering algorithm with fixed number of

clusters (n = 25), are close to each other. Large variations in performance are seen with

DBSCAN and PEEKING2 where the number of clusters formed cannot be specified

directly and is based on other parameters. In particular, DBSCAN performed very

poorly in log4j-1.1.
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The above results indicate that the performance of models trained on reduced data sets is

comparable to standard learners for most data sets.

The data reduction technique can be used to summarize data and aid in data visualiza-

tion. Table 4.6 shows the condensed data set of Ant-1.7 obtained by applying InfoGain(25%)

and K-Means(k=25). The training data set consists of 596 instances and 20 features. In

the table size displays the number of instances that the were grouped together in the clus-

ter. The values for the top 25% of features (cluster centroid) is listed along with the defect

classification and defect rate of each cluster.

Table 4.6: Ant-1.7 data set condensed using InfoGain(25%) and K-Means(k=25)

cluster size loc rfc cam wmc lcom defect defect rate

1 45 723 89 0 29 132 1 0.76
2 10 50 13 1 5 8 0 0.20
3 24 447 63 0 26 133 0 0.42
4 51 180 27 0 8 4 0 0.14
5 15 672 67 0 19 115 0 0.47
6 28 258 41 0 21 128 0 0.29
7 14 263 37 1 5 4 0 0.43
8 26 15 5 1 2 1 0 0.08
9 19 719 90 0 26 133 1 0.74
10 40 222 36 0 14 65 0 0.18
11 40 184 27 0 6 5 0 0.15
12 18 597 80 0 20 49 1 0.61
13 15 551 66 0 11 18 1 0.60
14 21 96 16 1 8 15 0 0.00
15 42 310 42 0 12 14 0 0.26
16 4 673 12 0 5 1 0 0.00
17 52 35 8 1 4 2 0 0.00
18 38 128 22 0 10 28 0 0.18
19 21 395 51 0 16 61 1 0.57
20 16 116 21 1 3 3 0 0.19
21 69 90 16 0 5 4 0 0.09
22 8 16 0 0 0 0 0 0.00
23 38 29 8 1 4 4 0 0.03
24 32 110 18 1 3 2 0 0.03
25 59 8 3 1 1 0 0 0.03
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4.2 Effort Estimation

Number of Clusters

The size of the data sets used in Effort Estimation is much smaller than the Defect Set used.

Hence, the evaluation of number of clusters, N = 5, 10, 25 ,50 was not feasible. Additionally,

given the large variability in the size, the attempt to find a single value for number of clusters

yielded in poor performance of the learned model. Consequently, the following approach was

used, if the total instances in training data set was less than or equal to 30, the number of

clusters was set to half of total instances. In all other cases, 25 clusters were generated.

Data Reduction

Table 4.7 shows data reduction achieved by E-Max and K-Means along with feature selection

using InfoGain(25%).Table 4.8 shows data reduction by Peeking2 along with feature selection

using InfoGain(25%).

Table 4.7: Effort data reduction when k=25 for K-Means and E-Max

Data set # Instances # Centroids % Reduction # cells % Reduction

china 399 25 94 6384 98
cocomo81 50 25 50 900 86
cocomo81e 19 9 53 342 87
cocomo81o 19 9 53 342 87
cocomo81s 9 4 56 162 88
miyazaki 38 25 34 304 84
nasa93 74 25 66 1554 92

nasa93c1 10 5 50 210 88
nasa93c2 30 15 50 630 88
nasa93c5 31 25 19 651 81

Median 51 Median 87

The tables list the total instances in training data set, total instances in reduced data

set(# Centroids), percentage reduction in number of instances, Cells in the training data set
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Table 4.8: Effort data reduction using PEEKING2

Data set # Instances # Centroids % Reduction # cells % Reduction

china 399 19 95 6384 99
cocomo81 50 16 68 900 91
cocomo81e 19 10 47 342 85
cocomo81o 19 9 53 342 87
cocomo81s 9 6 33 162 81
miyazaki 38 15 61 304 90
nasa93 74 17 77 1554 95

nasa93c1 10 6 40 210 86
nasa93c2 30 10 67 630 92
nasa93c5 31 9 71 651 93

Median 64 Median 91

(Number of Instances × Numner of features) and the percentage reduction in total number

of cells of the data set.

The median instance reduction is 51% for K-Means and E-Max and 64% for PEEKING2.

The median information reduction is 87% for K-Means and E-Max and 91% for PEEKING2.

The median value for instance reduction for effort data much less when compared to instance

reduction of defect data.

Performance of Effort Estimation Models

The tables 4.9 and 4.10 display the performance of effort estimation models generated by

2-NN trained on reduced data. The performance of M5P and LR are used as baseline.

For each learner, Actual Residual Error (AR) and Magnitude of Relative Error (MRE) are

calculated from 25 experimental runs. For both measures, the table lists the median value

for the measure, the Inter Quartile Range (IQR), Spread and Rank obtained when compared

to other learners.

Table 4.9 lists the data sets were models based on reduced data set performs better or

comparable to M5P and LR. Table 4.10 lists data sets where M5P performed better than
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Table 4.9: Results of Effort Estimation- Part 1

AR MRE

Data Learner # Instances Median IQR Spread Rank Median IQR Spread Rank

cocomo81 K-Means 25 92.17 265.51 10717.36 1 0.71 1.73 27.86 1
E-Max 20 101.63 364.54 10835.75 2 0.79 2.78 45.83 2

PEEKING2 16 177.63 639.45 10900.76 3 0.92 3.89 161.61 3
M5P 50 180.31 447.70 10038.28 3 1.49 4.79 92.87 4

DBScan 2 417.43 374.32 11135.59 5 2.67 11.75 124.45 5
LR 50 546.53 786.36 8734.68 6 4.26 15.78 310.50 6

cocomo81e K-Means 9 283.26 558.42 10480.05 1 0.73 1.84 58.74 1
E-Max 9 307.24 693.95 10561.66 1 0.81 2.42 66.06 1
M5P 19 330.26 806.73 10968.17 3 0.85 2.97 49.58 3

PEEKING2 10 352.72 571.88 23707.60 3 0.86 2.09 61.26 3
DBScan 1 865.75 725.83 10661.83 5 1.74 7.77 168.34 5

LR 19 1588.05 4198.74 15321.74 6 3.08 12.84 495.35 6
cocomo81o E-Max 9 22.63 30.67 178.83 1 0.47 0.86 18.68 1

PEEKING2 9 23.61 32.12 160.56 1 0.48 0.95 7.44 2
DBScan 1 23.73 33.33 192.84 2 0.50 2.01 9.80 3
K-Means 9 25.73 37.55 193.08 4 0.50 0.79 18.53 3

M5P 19 34.22 35.18 239.26 5 0.54 1.16 10.28 5
LR 19 38.67 38.67 180.09 6 0.89 1.42 17.91 5

cocomo81s PEEKING2 6 182.93 877.68 6381.10 1 1.00 4.94 137.31 1
E-Max 4 365.66 876.09 6381.54 2 1.49 8.84 236.84 2

LR 9 410.29 2274.60 6114.05 3 3.42 25.17 173.67 3
K-Means 4 869.81 1277.30 6505.92 4 3.90 11.75 121.95 3

M5P 9 944.91 648.82 6059.96 4 4.68 26.31 126.34 5
DBScan 1 1112.36 1516.47 6241.84 6 5.37 68.11 195.65 5

miyazaki K-Means 25 14.11 22.01 1448.45 1 0.43 0.61 8.33 1
PEEKING2 15 14.40 23.63 1461.68 2 0.43 0.61 10.87 1

E-Max 18 14.78 27.37 1415.87 3 0.45 0.61 8.33 3
LR 38 19.79 24.99 1561.02 3 0.51 0.58 7.72 4

DBScan 2 27.12 42.35 1692.27 5 0.60 1.18 17.13 5
M5P 38 28.47 47.31 1539.36 5 0.67 1.06 9.56 5

the other models. However, it can be seen that the performance of 2-NN trained on reduced

data sets is much better than LR.

The performance of DBSCAN was much poorer compared to other models. This can

be attributed to the very few clusters generated by the technique. However, no appropriate

value for parameters were found during the experimental study.

The IQR shows the consistency of the estimation made by the models in the experimental

runs. It can be seen that the IQR of the clustering methods are comparable to M5P.
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Table 4.10: Results of Effort Estimation- Part 2

AR MRE

Data Learner Instances Median IQR Spread Rank Median IQR Spread Rank

nasa93 M5P 74 122.73 303.77 6595.05 1 0.49 0.80 43.64 1
K-Means 25 140.79 455.21 6935.43 2 0.57 1.21 50.94 2
DBScan 4 171.21 350.93 7834.44 3 0.68 0.57 41.87 2

PEEKING2 17 202.79 607.04 7094.54 4 0.72 1.70 157.34 4
E-Max 18 225.36 532.60 7265.87 4 0.72 1.89 108.11 5

LR 74 501.71 326.56 7686.16 6 1.48 8.02 81.04 6
nasa93c1 M5P 10 35.80 163.57 302.16 1 0.33 0.30 0.74 1

E-Max 3 37.48 72.09 140.52 2 0.47 2.01 7.24 2
PEEKING2 6 79.72 140.05 317.37 3 0.54 0.60 7.49 2

K-Means 5 91.96 140.31 245.62 4 0.64 0.93 6.13 3
LR 10 96.17 108.36 260.46 5 1.15 1.08 5.67 5

DBScan 1 104.60 83.72 203.77 6 1.17 1.57 5.83 6
nasa93c2 M5P 30 31.61 117.93 1195.57 1 0.37 0.99 52.93 1

K-Means 15 52.75 160.48 1199.90 2 0.61 0.73 36.14 2
PEEKING2 10 57.92 196.95 1287.23 3 0.68 0.94 25.74 3

DBScan 3 86.86 235.85 1236.27 4 0.70 1.22 24.81 4
E-Max 11 87.69 151.75 1213.81 5 0.70 1.71 36.41 4

LR 30 172.91 93.04 1152.94 6 1.93 3.77 29.24 6
nasa93c5 M5P 31 342.00 726.83 6433.71 1 0.69 1.24 15.70 1

K-Means 25 396.07 807.29 6457.50 1 0.69 1.06 11.52 2
PEEKING2 9 402.32 603.40 7114.48 1 0.70 1.26 13.96 2

DBScan 2 543.66 592.18 7617.42 4 0.78 1.35 13.59 4
E-Max 11 620.37 912.69 6813.94 5 0.81 2.12 13.81 5

LR 31 703.86 525.04 7558.40 5 0.93 2.40 15.33 6
china M5P 399 188.90 457.09 22528.31 1 0.12 0.20 23.24 1

K-Means 25 492.84 1282.75 50316.80 2 0.30 0.50 18.84 2
E-Max 25 512.88 1191.86 50523.86 3 0.31 0.46 20.18 3

DBScan 17 627.29 1530.02 50672.55 4 0.42 0.48 21.78 4
PEEKING2 19 849.83 2417.19 49385.47 5 0.45 0.78 31.55 5

LR 399 853.76 1624.88 45988.81 6 0.49 0.83 40.35 6
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Chapter 5

Threats to Validity

Empirical studies are susceptible treats to validity. It is essential to discuss the potential

treats to validity of the conclusions the experimental study. This chapter discusses concerns

of validity: construct validity, internal validity and external validity.

5.1 Construct Validity

Construct validity refers to whether the study, models and measures the intended metrics

relevant to it. It is necessary to construct the experiment to study the parameters pertinent

to the research questions.

This study attempts to effectively summarize software engineering data by discarding

superfluous information present in it. Hence, information loss due to data reduction is an

important metric to be studied. However, this information loss cannot be quantified hence

the loss of information due to data reduction is gauged indirectly by the predictive ability

of the 2-NN algorithm used over the condensed data set when compared with a standard

learner trained with the original data set. The rationale being that any loss of information
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in reduced data set would lead to poor predictive ability compared to the standard methods.

Consequently, the choice of the learner used as baseline influences the outcome of the

experiments. Random Forest was chosen for defect data because it has been known to be

successfully applied in software engineering data mining [13] [19]. However, there are other

learners that are being widely used as well.

The other choices that might have influenced the results are the metrics used to measure

the performance, statistical method employed to compare the predictive ability, the clustering

algorithms used in the study, the number of clusters or other parameter values required by

the clustering algorithms.

5.2 Internal Validity

Internal validity refers to risk due to presence of confounding variables that would explain

the observed results. It is essential to identify extraneous variables the might influence the

conclusion of the study.

Software Engineering research is more susceptible to selection bias [31]. The data used

for study controls the outcomes of the result. However, researchers using data available in

the mining repositories do not have control have over the data collection process. To avoid

data quality issues, the data sets used in the study were taken from the PROMISE repository

and are widely used in software research projects.

5.3 External Validity

External validity refers to ability to generalize the results of an empirical study to other sub-

jects in the domain. Software development process varies greatly based on the development

45



paradigm, programming language etc.

The defect data sets used are based on open-source Java projects. The development

process of open source projects are remarkably different than proprietary projects. Hence,

the conclusion of the study may not hold for other kinds of software. Therefore, this empirical

study should to be repeated with other data sets based on different development models and

programming languages to be able to generalize the results.
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Chapter 6

Conclusion

This chapter presents the conclusions drawn from the results of the empirical study and

addresses the research questions raised. In summary, the study explores the impact of data

reduction in Software Engineering data and evaluates the performance of various clustering

techniques that can be used for instance reduction.

• RQ1: What are the different clustering techniques that can be employed for efficient

instance reduction and what are their impacts on predictive ability? Do some clustering

methods perform significantly better than others?

Some of the common clustering methods used in data mining were included in the

study. While selecting clustering techniques methods based on different categories like

hierarchical clustering, spectral clustering, density based clustering etc were included.

The performances of Expectation Maximization, K-Means, Mini-Batch K-Means and

Ward were close to each other in most of the defect data sets. However, high variation

in the performances of PEEKING2 and DBSCAN were observed. One explanation

might be that these two clustering techniques on an average generate less number of

clusters compared to the other clusters. Based on the results it can be concluded

that when sufficient number of clusters are generated, there does not seem to be one
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clustering technique that is clearly better than the rest.

For effort estimation, K-Means, Expectation Maximization, DBSCAN were evaluated

along with PEEKING2. The performance of PEEKING2 was much better in effort

estimation when compared with its performance in defect prediction. However, per-

formance of DBSCAN was worse than other models used.

• RQ2: Will large data reduction result in information loss and predictive ability of

learners trained on them?

The goal of the study is reduce large defect data down to a concise form that can

then be used to generate simple models. The concise data should also enable software

engineering practitioners to analyze it based on expert knowledge. Given these goals,

it is difficult to directly measure information loss. However, the performance of 2-NN

algorithm over the condensed data set is comparable to the standard learner on most

(8 out of 10) of the defect data sets or even better in some of the data sets.

For effort estimation, in 5 out of 10 effort data sets, the models based on reduced data

out performed or matched the accuracy of M5P and LR. In the rest, models built on

condensed data sets fared better than LR. This indicates that essential information

contained in the data set is not compromised by data reduction.

• RQ3: What is the optimal number of clusters and how much data reduction is too

much?

The number of clusters should be compact enough for viewing the data manually but

large enough to retain essential information without information loss. Based on the

experimental results, we found 25 to be the optimal value for the clustering techniques

for defect data sets used in the study. This represents the median instance reduction

of 90% and median information (instances×attributes) reduction of 97%. The original

number of instances in the training data sets varied between 88 and 708.

The size of the data sets used in Effort Estimation is much smaller than the defect

data used. The original number of instances in the training data sets varied between
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9 and 399. Given the very small size of some data sets, the attempts to find a single

value for number of clusters yielded in poor performance of the learned model. The

data reduction in smaller data sets is much less than what can be achieved with larger

data sets.

The goal of the study is not to challenge the current state of the art learners but to

evaluate and suggest techniques for effective data reduction without much loss in terms of

predictive ability. The results of the experimental study concurs with the objectives of the

study. While the results of the study are not conclusive, they are promising to warrant

further research using the data reduction technique.
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Appendix A

Code Listing

The Appendix provides source code implemented to conduct this emprical study. It has to

be noted code provide is not complete and only major modules have been included in this

section.

A.1 Experiment.py

This python file contains the implementation of functions necessary to conduct the experi-

mental method describe in Section 3.5. The datasets and learners to be used are specified

in the function Experiment. For each dataset, learners are run 25 times using different set of

training data and test data. The training and testing data are derived from original dataset

by stratified sampling. In any given run, all learners are trained and test the same sets of

data. Performance is calculated and logged for each run of a learner for a given dataset. The

performances of all the learners are compared and ranked for each dataset.

Experiments . py

def experiment ( ) :

#This i s the main func t i on used to s t a r t the exper imenta l runs

55



s r cD i r = " data_ar f f /" #Path o f Input da t a s e t s

l ogDi r = " l o g s /" #Path fo r Output f i l e s and l o g s

f o l d s = 5 #I n i t i a l i z i n g number o f f o l d s

r epea t s = 5 #I n i t i a l i z i n g number o f r epea t s

dataSets=[ ’ ant −1.7 . a r f f ’ , ’ ivy −1.1 . a r f f ’ , ’ j e d i t −4.1 . a r f f ’ , ’ l og4 j −1.1 . a r f f ’ ,

’ lucene −2.4 . a r f f ’ , ’ poi −3.0 . a r f f ’ , ’ synapse −1.2 . a r f f ’ , ’ v e l o c i t y −1.6 . a r f f ’ ,

’ xalan −2.6 . a r f f ’ , ’ xerces −1.4 . a r f f ’ ]

#The da t a s e t s used are s p e c i f i e d

l e a r n e r s = [ ’K−Means (25) ’ , ’PEEKING2 ’ , ’DBSCAN(0 . 1 ) ’ , ’Ward(25) ’ , ’E−Max(25) ’ , ’MB␣

K−Means (25) ’ , ’RF ’ ]

#The l ea rne r s and c l u s t e r i n g t echn i ques to be used are s p e c i f i e d

c l a s sVa l = "1"

#For c l a s s i f i c a t i o n problem c la s sVa l conta ins the t a r g e t c l a s s f o r which the

performances va lue s are pr in t ed . De f e c t i v e data i s i nd i ca t ed by 1

strD = getCurrentDate ( )

gene ra lLogF i l e = open( l ogDi r + "log_" + strD + "_1 . txt " , "w" )

gene ra lLogF i l e2 = open( l ogDi r + "log_" + strD + "_2 . txt " , "w" )

#The 5X5 cross−v a l i d a t i o n i s run fo r each da ta s e t s p e c i f i e d

for dataSet in dataSets :

ind = dataSet . r f i n d ( " . " )

dataSet = dataSet [ 0 : ind ]

CompareLearnersC ( s r cD i r + dataSet + " . a r f f " , l e a rn e r s , no i s eLeve l s , strD ,

genera lLogFi l e , genera lLogFi l e2 , c l a s sVa l , repeats , f o l d s )

gene ra lLogF i l e . c l o s e ( )

gene ra lLogF i l e2 . c l o s e ( )

def CompareLearners ( dataSetName , l e a rn e r s , strD , genera lLogFi l e , genera lLogFi l e2 ,

c las sValue , repeats , f o l d s ) :

#This func t i on t e s t s a l l the s p e c i f i e d l e a rne r s on the g iven data s e t .

#dataSetName − the name of the data s e t

#l ea rne r s − a l i s t conta in ing the d e f i n i t i o n o f a l l the l e a rne r s to be t e s t e d

#strD − date and time when the experiment has s t a r t e d to execute ( s e r ve s as id f o r

the current experiment )

#genera lLogFi le , genera lLogFi l e2 − the main f i l e s o f the experiment ( the s c r i p t

wr i t e s a summary o f the exper i emta l r e s u l t s f o r a l l the data s e t s )
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#clas sVa l − in case o f c l a s s i f i c a t i o n problem t h i s v a r i a b l e conta ins the t a r g e t

c l a s s f o r which the performances va lue s are pr in t ed

#repea t s − number o f r epea t s f o r the cross−v a l i d a t i o n experiment

#f o l d s − number o f f o l d s f o r the cross−v a l i d a t i o n experiment

( procFileName , logFileName ) = DefineFileNames ( dataSetName , strD )

l o gF i l e = open( " l o g sDe f e c t /" + logFileName , ’w ’ )

dataSet = ReadDataSet ( dataSetName )

#The da ta s e t i s read from the input f i l f o l d e r and s to red in o b j e c t dataSet

performances = In i t i a l i z eP e r f o rman c e s ( l e a rn e r s , n o i s eLev e l s )

#The ob j e c t w i l l contain the performance r e s u l t s c o l l e c t e d on each exper imenta l run

for i in range ( r epea t s ) :

c rossValDataSets = dataSet . s p l i t ( f o l d s )

#The order o f in s tance s i s randomized and the da ta s e t i s s p l i t by the

number o f f o l d s

In i t i a l i z ePer fo rmanceForRepeatStep ( performances , i )

for j in range ( f o l d s ) :

print str ( i ) + "␣" + str ( j )

( trainDs , testDs ) = GetTrainAndTestSets ( crossValDataSets , f o l d=j )

RunLearners ( l e a rn e r s , trainDs , testDs , performances , run=i , f o l d=j )

#Each Learner i s t ra ined and t e s t e d and the corresponding r e s u l t s

are s to red in performances o b j e c t

PrintPerformancesForExperimentalRun ( l o gF i l e , performances , trainDs ,

testDs , c las sValue , run=i , f o l d=j )

#The performances r e s u l t s f o r the current exper imenta l run i s

wr i t t en in the s p e c i f i c l o g f i l e

winTieLoss = ComparePerformances ( dataSet . i sClassNumeric , per formances )

#The Win, Tie , Loss va lue s are c a l c u l a t e d f o r performance measures by app ly ing

Wilcoxon s t a t i s t i c a l t e s t s

PrintComparisons ( dataSet . i sClassNumeric , l o gF i l e , winTieLoss , c l a s sVa lue )

#The Win, Tie , Loss va lue s are wr i t t en in the s p e c i f i c l o g f i l e f o r the da ta s e t .

PrintSummary ( dataSet . i sClassNumeric , genera lLogFi l e , genera lLogFi l e2 , procFileName ,

winTieLoss )

#A summary o f r e s u l t s i s wr i t t en on the genera l l o g f i l e ( s )

l o gF i l e . c l o s e ( )

def ReadDataSet ( dataSetName ) :

#Reads the in s tance s from . a r f f f i l e s and loads the va lue s in to da ta s e t

#dataSetName − Name of input f i l e

dataSet = readAr f f ( dataSetName )

#The a r f f f i l e i s read and ins tance s are loaded in the dataSet
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dataSet . c omputeC la s sS ta t i s t i c s ( )

#c l a s s s t a t i s t i c s are computed f o r performance eva lua t i on

return dataSet

def GetTrainAndTestSets ( crossValDataSets , f o l d ) :

#The func t ion forms t ra in and t e s t da ta s e t from s t r a t i f i e d s p l i t s o f the o r i g i n a l

data

crossValDataSets1 = crossValDataSets [ : ]

te s tDs = crossValDataSets1 [ f o l d ]

crossValDataSets1 . remove ( testDs )

tra inDs = mergeDataSets ( crossValDataSets1 )

return ( trainDs , testDs )

def RunLearners ( l e a rn e r s , trainDs , testDs , performances , run , f o l d ) :

#The func t ion execu te s exper imenta l runs f o r each l ea rner

for l e a r n e r in l e a r n e r s :

learnerName = GetLearnerName ( l ea rne r , no i s eLeve l , n o i s eLev e l s )

RunLearner ( learnerName , testDs , performances , run , f o l d ) #tra in in

noisy data

def RunLearner ( l ea rne r , trainDs , testDs , performances , repeat , f o l d ) :

#The func t ion i s used to run the experiment f o r a l ea rner

( learnerName , params ) = ParseLearner ( l e a r n e r )

#Input S t r ing c on s i s t i n g o f Learner name and params i s parsed .

#Parameter va lue s are s e t

s t o p i n gC r i t e r i a = ’C ’ #Spe c i f i e s the c r i t e r i a f o r s topp ing i t e r a t i o n fo r PEEKING2

f s sPe r c en tage = 0.25 #Spe c i f i e s the percentage o f f e a t u r e s which are to s e l e c t e d

by InfoGain

theta = 0 .5 #Spe c i f i e s the t h r e s ho l d f o r d e f e c t c l a s s i f i c a t i o n

k = 2 #Spe c i f i e s the number o f k va lue to used by K−NN algor th im

normal ize = 1 #Spe c i f i e s whether the f e a t u r e s have to be normalized (1 =

normal ize )

numK=0 #Defau l t va lue f o r number o f c l u s t e r s ( In case o f DBSCAN,

repre s en t s e p s i l on va lue )

p r ed i c t i o n s = None

dataSet = None

runtime = None

i f learnerName == "RF" :
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( p r ed i c t i on s , dataSet , trainTime , testTime , allRunTime ) =

RandomForest ( trainDs , testDs )

e l i f learnerName == "PEEKING2" :

( p r ed i c t i on s , dataSet , trainTime , testTime , allRunTime ) = PEEKING2( trainDs ,

testDs , s t op i ngCr i t e r i a , k , f s sPercentage , theta , normal ize )

e l i f learnerName == "LR" :

( p r ed i c t i on s , dataSet , trainTime , testTime , allRunTime ) =

LinearRegre s s i on ( trainDs , testDs )

e l i f learnerName == "M5P" :

( p r ed i c t i on s , dataSet , trainTime , testTime , allRunTime ) = M5P( trainDs ,

testDs )

else :

( p r ed i c t i on s , dataSet , trainTime , testTime , allRunTime ) =

Clu s t e r i ng ( learnerName , trainDs , testDs , k , f s sPercentage , theta ,

normal ize , numK=f loat ( params [ 0 ] ) )

EstimatePerformanceForExperimentalRun ( performances , p r ed i c t i on s , dataSet ,

trainTime , testTime , allRunTime , repeat , f o ld , l e a r n e r )

#The Performance measures are c a l c u l a t e d f o r the exper imenta l run

def ParseLearner (command) :

#The method parses the g iven command s t r i n g f i nd in g the l ea rner and the

corresponding parameters

command = command . s t r i p ( )

learnerName = ""

parameters = [ ]

ind1 = command . f i nd ( " ( " )

ind2 = command . f i nd ( " ) " )

i f ind1 == −1 or ind2 == −1:

learnerName = command

else :

learnerName = command [ 0 : ind1 ]

parameters = command [ ind1+1: ind2 ] . s p l i t ( ’ , ’ )

for i in range ( len ( parameters ) ) : parameters [ i ] = parameters [ i ] . s t r i p ( )

return ( learnerName , parameters )

def Clus t e r i ng ( l ea rne r , trainDs , testDs , k , f s sPercentage , theta , normal ize ,numK) :

#The method i s used to t r a in and t e s t the models us ing reduced data
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t1 = datet ime . now( )

condensed = Cluster ing_Train ( l ea rne r , trainDs , s t op i ngCr i t e r i a , f s sPercentage ,

normal ize ,numK)

t2 = datet ime . now( )

p r e d i c t i o n s = Cluster ing_Test ( testDs , condensed , k , theta , normal ize )

t3 = datet ime . now( )

trainTime=t2−t1

testTime=t3−t2

allRunTime=t3−t1

return ( p r ed i c t i on s , condensed , trainTime , testTime , allRunTime )

def Cluster ing_Train ( l ea rne r , trainDs1 , f s sPercentage , normal ize ,numK) :

#The method i s used to reduce data .

f s sTra inDs = FeatureSe l ec t i onVia In foGa in ( f s sPercentage , tra inDs1 )

#Feature Se l e c t i on i s performed using InfoGain (25%)

normTrainDs = NormalizeTrainDataSet ( normal ize , f s sTra inDs )

#The t r a in i n g da ta s e t i s then normalized

numInstances = normTrainDs . NrInstances ( )

#The number o f in s tance s in the da ta s e t

numAttributes = normTrainDs . NrAttr ibutes ( )−1

#The number o f dependent a t t r i b u t e s in the da ta s e t

#The da ta s e t i s transformed to an arrary format which can be input to the var ious

c l u s t e r i n g methods

c lu s t e rData = np . ndarray ( shape=(numInstances , numAttributes ) , dtype=f loat )

for i in range ( numInstances ) :

for j in range ( numAttributes ) :

c lu s t e rData [ i ] [ j ] =

f loat ( normTrainDs . i n s t an c e s [ i ] . a t t r i bu t eVa lue s [ j ] )

i f l e a r n e r == "DBScan" :

l a b e l s = DBScanClustering ( c lusterData ,numK)

numK = −1

for i in range ( len ( l a b e l s ) ) :

l a b e l s [ i ]= l a b e l s [ i ]+1

i f ( l a b e l s [ i ]>numK) :

numK = l a b e l s [ i ]

numK = int (numK) + 1

e l i f l e a r n e r == "K−Means" :

l a b e l s = KmeansClustering ( c lusterData ,numK)

e l i f l e a r n e r == "E−Max" :
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l a b e l s = EMClustering ( c lusterData ,numK)

e l i f l e a r n e r == "MB␣K−Means" :

l a b e l s = miniBatchKmeansClustering ( c lusterData ,numK)

e l i f l e a r n e r == "Ward"

l a b e l s = WardClustering ( c lusterData ,numK)

else :

raise Exception ( "RunLearner␣−␣unknown␣ l e a r n e r : ␣" + str ( l e a r n e r ) + " ! " )

c l u s t e r s = FormClusters ( normTrainDs , l ab e l s , int (numK) )

#The c l u s t e r s are formed to based on the l a b e l s ob ta ined

condensed = GetClusterCentro ids ( c l u s t e r s )

#The da ta s e t i s condensed by reducing each c l u s t e r to one ins tance

return condensed

def Cluster ing_Test ( testDs1 , condensed , k , theta , normal ize ) :

#The func t ion p r e d i c t s c l a s s va lue f o r in s tance s in the t e s t data

f s sTestDs = ApplyFeatureSelectionOnTestData ( testDs1 , condensed . a t t r i b u t e s )

#Only f e a t u r e s s e l e c t e d by InfoGain in t r a i n in g data i s r e ta ined

testDs = NormalizeTestDataSet ( normal ize , f ssTestDs , condensed . a t t r i b u t e s )

#Pred i c t i ons are c a l c u l a t e d f o r each ins tance

p r ed i c t i o n s = [ ]

for i n s t anc e in testDs . i n s t an c e s :

p r e d i c t i o n s . append ( ( i n s t ance . c la s sVa l ,

condensed . est imateClassFromNearestNeighbors_Exponentia l ( ins tance , k ,

theta ) ) )

return p r ed i c t i o n s

def FeatureSe l ec t i onVia In foGa in ( f s sPercentage , t ra inDs ) :

#The func t ion runs InfoGain and s e l e c t s the percentage o f ins tance g iven as

parameter

dataSet = Discret izeNumericClassByMedian ( tra inDs )

#The numeric c l a s s va lue i s d i s c r e t i z e d in to two c l a s s e s by us ing median va lue

i f f s sPe r c en tage != None :

discTrainDs = dataSet . Fayyad I r an iD i s c r e t i z e r ( " c l a s s " )

#Fayyad−I ran i a lgor i thm i s used to d i s c r e t i z e numerical dependant f e a t u r e s

s e l e c t edFea tu r e s = discTrainDs . f eatureReduct ionViaIn foGain ( " c l a s s " ,

f s sPe r c en tage )

#Ranks f e a t u r e s based on InfoGain and re turns the s e l e c t e d f e a t u r e s

return tra inDs . applyFSS ( s e l e c t edFea tu r e s )

#The number o f f e a t u r e s in t r a i n in g da ta s e t i s reduced

else :
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return tra inDs

def ApplyFeatureSelectionOnTestData ( testDs , a t t r i b u t e s ) :

#The func t ion reduces the t e s t da ta s e t by r e t a i n in g only f e a t u r e s s e l e c t e d by

InfoGain app l i ed on t r a i n in g data

i f len ( a t t r i b u t e s ) != len ( testDs . a t t r i b u t e s ) :

s e l e c t edFea tu r e s = getColumnIndexForAttributes ( a t t r i b u t e s )

return testDs . applyFSS ( s e l e c t edFea tu r e s )

else :

return testDs

def NormalizeTrainDataSet ( normal ize , t ra inDs ) :

#The func t ion noraml izes the va lue s o f the f e a t u r e s in t r a in da ta s e t

i f normal ize == 0 :

return tra inDs

e l i f normal ize == 1 :

return tra inDs . NormalizeDataSet ( out l i e rRemoval=True ) #Removes o u t l i e r s

a f t e r normal i za t ion o f data

e l i f normal ize == 2 :

return tra inDs . NormalizeDataSet ( out l i e rRemoval=False )

else :

raise Exception ( "Unknown␣ normal ize ␣parameter : ␣" + str ( normal ize ) )

def NormalizeTestDataSet ( normal ize , testDs , a t t r i b u t e s ) :

#The func t ion noraml izes the va lue s o f the f e a t u r e s in t e s t da ta s e t

i f normal ize == 0 :

return testDs

e l i f normal ize == 1 :

return testDs . ApplyNormalization ( a t t r i bu t e s , out l i e rRemoval=True ) #Removes

o u t l i e r s a f t e r normal i za t ion o f data

e l i f normal ize == 2 :

return testDs . ApplyNormalization ( a t t r i bu t e s , out l i e rRemoval=False )

else :

raise Exception ( "Unknown␣ normal ize ␣parameter : ␣" + str ( normal ize ) )

def DBScanClustering ( c lusterData , eps1 ) :

#Runs DBSCAN implementation in SciKit−Learn ( sk l ea rn . c l u s t e r .DBSCAN)

db = DBSCAN() . f i t ( c lusterData , eps=eps1 , min_samples=3)

l a b e l s = db . labe l s_
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return l a b e l s

def KmeansClustering ( c lusterData ,numK) :

#Runs K−Means implementation in Scipy ( s c i py . c l u s t e r . vq )

cent r i ods , var i ance = vq . kmeans ( c lusterData ,numK)

l ab e l s , d i s t anc e = vq . vq ( c lusterData , c en t r i od s )

return l a b e l s

def miniBatchKmeansClustering ( c lusterData ,numK) :

#Runs Mini Batch K−Means implementation in SciKit−Learn

( sk l ea rn . c l u s t e r . MiniBatchKMeans )

miniBatchKMeans = MiniBatchKMeans (numK) . f i t ( c lu s t e rData )

l a b e l s = miniBatchKMeans . labe l s_

return l a b e l s

def WardClustering ( c lusterData ,numK) :

#Runs Ward implementation in SciKit−Learn ( sk l ea rn . c l u s t e r .Ward)

wd = Ward( n_c lus te r s=numK) . f i t ( c lu s t e rData )

l a b e l s = wd . labe l s_

return l a b e l s

def EMClustering ( c lusterData ,numK)

#Runs Mini Expectat ion Maximization implementation in SciKit−Learn

( sk l ea rn . mixture .GMM)

em = GMM(n_components=numK) . f i t ( c lu s t e rData )

l a b e l s = em. p r ed i c t ( c lu s t e rData )

return l a b e l s

def RandomForest ( trainDs1 , testDs1 , d i s c r e t i z e=True ) :

#Runs Random Forest Learner from WEKA t o o l k i t

t = datet ime . now( )

tra inDs = tra inDs1

testDs = testDs1

i f d i s c r e t i z e == True :

t ra inDs = tra inDs1 . Fayyad I r an iD i s c r e t i z e r ( " c l a s s " )
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testDs = testDs1 . d i s c r e t i z eDa taSe t ( tra inDs . a t t r i b u t e s )

l e a r n e r = "weka . c l a s s i f i e r s . t r e e s . RandomForest"

parameters = "−I ␣10␣−K␣0␣−S␣1"

p r ed i c t i o n s = WekaLearner ( trainDs , testDs , l ea rne r , parameters )

overallRunTime = datet ime . now( ) − t

return ( p r ed i c t i on s , trainDs , None , None , overallRunTime )

def LinearRegre s s i on ( trainDs , testDs ) :

#Runs Linear Regress ion Learner from WEKA t o o l k i t

t = datet ime . now( )

l e a r n e r = "weka . c l a s s i f i e r s . f un c t i on s . L inearRegre s s i on "

parameters = "␣−S␣0␣−R␣ 1 .0E−8␣− i "

tra inDs . computeC la s sS ta t i s t i c s ( )

p r e d i c t i o n s = WekaLearner ( trainDs , testDs , l ea rne r , parameters )

overallRunTime = datet ime . now( ) − t

return ( p r ed i c t i on s , trainDs , None , None , overallRunTime )

def M5P( trainDs , testDs ) :

#Runs M5P Learner from WEKA t o o l k i t

t = datet ime . now( )

l e a r n e r = "weka . c l a s s i f i e r s . t r e e s .M5P"

parameters = "␣−M␣4.0 ␣− i "

tra inDs . computeC la s sS ta t i s t i c s ( )

p r e d i c t i o n s = WekaLearner ( trainDs , testDs , l ea rne r , parameters )

overallRunTime = datet ime . now( ) − t

return ( p r ed i c t i on s , trainDs , None , None , overallRunTime )

def WekaLearner ( trainDs , testDs , l e a rne r , parameters ) :

#The func t ion i s used to c a l l WEKA func t i ons us ing command l i n e op t ions

#Weka func t i ons r e qu i r e t r a in and t e s t data in . a r f f format

j a r = "/ usr / share / java /weka . j a r ␣" #Path o f weka ja r

weka = " java ␣−Xmx2048M␣−cp␣" + j a r

exportDataSetToArff ( trainDs , " t r a i n . a r f f " ) #Creates a . a r f f f i l e from the t r a i n in g

da ta s e t

exportDataSetToArff ( testDs , " t e s t . a r f f " ) #Creates a . a r f f f i l e from the t e s t

da ta s e t

cmdLinux = weka + l e a r n e r + "␣−p␣0␣" + parameters + "␣−t ␣ t r a i n . a r f f ␣−T␣ t e s t . a r f f >␣

r e s u l t s . txt "

#The c a l l s t r i n g f o r Linux
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cmd = " java ␣" + l e a r n e r + "␣−p␣0␣" + parameters + "␣−t ␣ t r a i n . a r f f ␣−T␣ t e s t . a r f f ␣>␣

r e s u l t s . txt "

#The c a l l s t r i n g to used in Windows environment

os . system ( cmdLinux ) #Execute the command

#The output o f the c a l l execu t ion i s formatted and saved in " p r ed i c t i on s "

i = 0

p r e d i c t i o n s = [ ]

f = open( " r e s u l t s . txt " , " r " )

for l i n e in f :

i += 1

i f i > 5 :

tokens = s p l i t ( l i n e )

i f len ( tokens ) < 4 : continue

ac tua l = tokens [ 1 ]

p r ed i c t ed = tokens [ 2 ]

i f tra inDs . i sClassNumer ic == True : #regre s s i on

p r ed i c t i o n s . append ( ( f loat ( ac tua l ) , f loat ( p r ed i c t ed ) ) )

else : #c l a s s i f i c a t i o n

ind1 = s t r i n g . r f i n d ( actua l , " : " )

ind2 = s t r i n g . r f i n d ( pred ic ted , " : " )

i f ind1 >= 0 and ind1 < len ( ac tua l )−1:

a c tua l = ac tua l [ ind1 +1: ]

i f ind2 >= 0 and ind2 < len ( p r ed i c t ed )−1:

p r ed i c t ed = pred i c t ed [ ind1 +1: ]

p r e d i c t i o n s . append ( ( actua l , p r ed i c t ed ) )

f . c l o s e ( )

return p r ed i c t i o n s

A.2 Evaluation.py

This file contains code which is used to calculate the performance measure of each learner

and also compare the performances of different learners.
Evaluat ion . py
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def EstimatePerformanceForExperimentalRun ( performances , p r ed i c t i on s , dataSet , trainTime ,

testTime , overallRunTime , repeat , f o ld , l e a r n e r ) :

#The func t ion i s used to c a l c u l a t e performance measures f o r each run

i f trainTime != None : trainTime = f loat ( trainTime . microseconds ) / f loat (1000)

i f testTime != None : testTime = f loat ( testTime . microseconds ) / f loat (1000)

i f overallRunTime != None : overallRunTime =

f loat ( overallRunTime . microseconds ) / f loat (1000)

i f dataSet . i sClassNumer ic :

meanError = UpdateErrors ( performances , l e a rne r , p r e d i c t i o n s )

meanMRE = UpdateMREs( performances , l e a rne r , p r e d i c t i o n s )

scoreRange = dataSet . maxScore − dataSet . minScore

per formances [ l e a r n e r ] [ r epeat ] [ f o l d ] = {"mean_error" : meanError , "mmre" :

meanMRE, " i n s t an c e s " : len ( dataSet . i n s t an c e s ) ,

" columns" : len ( dataSet . a t t r i b u t e s ) , " scoreRange " : scoreRange ,

"trainRunTime" : trainTime , "testRunTime" : testTime , "overallRunTime" :

overallRunTime}

else :

confus ionMatr ix =

EstimateConfusionMatrix ( dataSet . a t t r i b u t e s [ len ( dataSet . a t t r i b u t e s ) −1] ,

p r e d i c t i o n s )

performance = Eva l u a t eC l a s s i f i c a t i o n ( confus ionMatr ix )

expectedEntropy = None

i f hasattr ( dataSet , ’ expectedEntropy ’ ) :

expectedEntropy = dataSet . expectedEntropy

performances [ l e a r n e r ] [ r epeat ] [ f o l d ] = {" class_measures " : performance ,

" i n s t an c e s " : len ( dataSet . i n s t an c e s ) ,

" columns" : len ( dataSet . a t t r i b u t e s ) , " entropy " : expectedEntropy ,

"trainRunTime" : trainTime , "testRunTime" : testTime , "overallRunTime" :

overallRunTime}

def UpdateErrors ( performances , l e a rne r , p r e d i c t i o n s ) :

#Ca lcu l a t e s Abso lute Residua l Error

sumError = 0

for pred in p r ed i c t i o n s :

a c tua l = f loat ( pred [ 0 ] )

p r ed i c t ed = f loat ( pred [ 1 ] )

e r r o r = math . fabs ( ac tua l − pred i c t ed )

sumError += e r r o r

per formances [ l e a r n e r ] [ " a l l_ e r r o r s " ] . append ( e r r o r )

return f loat ( sumError ) / f loat ( len ( p r e d i c t i o n s ) )
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def UpdateMREs( performances , l e a rne r , p r e d i c t i o n s ) :

#Ca lcu l a t e s Magnitude o f Re l a t i v e Error

sumMRE = 0

for pred in p r ed i c t i o n s :

a c tua l = f loat ( pred [ 0 ] )

p r ed i c t ed = f loat ( pred [ 1 ] )

i f ac tua l == 0 : ac tua l = 0.00000000001

mre = math . f abs ( ac tua l − pred i c t ed ) / ac tua l

sumMRE += mre

performances [ l e a r n e r ] [ "all_MRE" ] . append (mre )

return f loat (sumMRE)/ f loat ( len ( p r e d i c t i o n s ) )

def EstimateConfusionMatrix ( c l a s sAt t r i bu t e , p r e d i c t i o n s ) :

#The fun t ion c a l c u l a t e s confus ion matrix f o r c l a s s i f i c a t i o n problem

confus ionMatr ix = {}

for c l a s sVa lue in c l a s sA t t r i bu t e . a t t r i bu t eVa lue s :

a = 0 # true nega t i v e s

b = 0 # f a l s e nega t i v e s

c = 0 # f a l s e p o s i t i v e s

d = 0 # true p o s i t i v e s

for p r ed i c t i o n in p r ed i c t i o n s :

i f p r ed i c t i o n [ 1 ] != c la s sVa lue and p r ed i c t i o n [ 0 ] != c la s sVa lue :

a += 1

e l i f p r ed i c t i o n [ 1 ] != c l a s sVa lue and p r ed i c t i o n [ 0 ] == c la s sVa lue :

b += 1

e l i f p r ed i c t i o n [ 1 ] == c la s sVa lue and p r ed i c t i o n [ 0 ] != c l a s sVa lue :

c += 1

e l i f p r ed i c t i o n [ 1 ] == c la s sVa lue and p r ed i c t i o n [ 0 ] == c la s sVa lue :

d += 1

confus ionMatr ix [ c l a s sVa lue ] = [ a , b , c , d ]

return confus ionMatr ix

def Eva l u a t eC l a s s i f i c a t i o n ( confus ionMatr ix ) :

#The func t ion c a l c u l a t e s prec i s ion , r e c a l l , accuracy and F−Measure f o r

c l a s s i f i c a t i o n problem

performance = {}

for c l a s sVa l in confus ionMatr ix :

pd = None

pf = None

prec = None

acc = None

fMeasure = None
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a = confus ionMatr ix [ c l a s sVa l ] [ 0 ]

b = confus ionMatr ix [ c l a s sVa l ] [ 1 ]

c = confus ionMatr ix [ c l a s sVa l ] [ 2 ]

d = confus ionMatr ix [ c l a s sVa l ] [ 3 ]

i f (b+d) != 0 : pd = f loat (d) / f loat (b+d)

else : pd = f loat (0 )

i f ( a+c ) != 0 : pf = f loat ( c ) / f loat ( a+c )

else : p f = f loat (0 )

i f (d+c ) != 0 : prec = f loat (d) / f loat (d+c )

else : prec = f loat (0 )

i f ( a+b+c+d) != 0 : acc = f loat ( a+d) / f loat ( a+b+c+d)

else : acc = f loat (0 )

i f prec != None and pd != None and ( prec + pd) != 0 : fMeasure =

2∗( f loat ( prec ∗pd) / f loat ( prec+pd) )

else : fMeasure = f loat (0 )

#ba l = 1 − ( ( ((0− p f ) ∗∗2 + (1−pd ) ∗∗2) ∗∗0.5 ) / (2∗∗0.5) )

i f pd != None and pf != None and (pd + (1−pf ) ) != 0 : g = f loat (2 ∗ pd ∗

(1−pf ) ) / f loat (pd + (1−pf ) )

else : g = f loat (0 )

performance [ c l a s sVa l ] = [ pd , pf , prec , fMeasure , acc , g ]

return performance

def ComparePerformances ( isClassNumeric , per formances ) :

#The func t ion i s used to compare performances o f d i f f e r e n t l e a rne r s f o r a da ta s e t

i f i sClassNumer ic == True :

return ComparePerformances_Regression ( per formances )

else :

return ComparePerformances_Class i f i cat ion ( per formances )

def ComparePerformances_Regression ( per formances ) :

#The func t ion i s used to compare performances o f d i f f e r e n t l e a rne r s f o r a da ta s e t

when c l a s s i s nurmeric

for l e a r n e r in performances :

comparison_Instances = GetMedians ( performances , " i n s t an c e s " )

comparison_Columns = GetMedians ( performances , "columns" )

comparison_error = ComparePerformanceMeasure ( performances , " a l l_ e r r o r s " ,

None , None , 0 . 5 , " l e s s e r " )

comparison_mmre = ComparePerformanceMeasure ( performances , "all_MRE" , None ,

None , 0 . 5 , " l e s s e r " )
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#comparison_avgDist = GetMedians ( performances , " avgDis t ")

comparison_range = GetMedians ( performances , " scoreRange " )

return {"mean_error" : comparison_error , "mmre" : comparison_mmre ,

" i n s t an c e s " : comparison_Instances , "columns" : comparison_Columns , " score_range " :

comparison_range}

def ComparePer formances_Class i f i cat ion ( performances ) :

#The func t ion i s used to compare performances o f d i f f e r e n t l e a rne r s f o r a da ta s e t

f o r two c l a s s problem

for l e a r n e r in performances :

comparison_PD = ComparePerformanceMeasure ( performances , " c lass_measures " ,

"1" , 0 , 0 . 5 , " g r e a t e r " )

comparison_PF = ComparePerformanceMeasure ( performances , " c lass_measures " ,

"1" , 1 , 0 . 5 , " l e s s e r " )

comparison_Prec = ComparePerformanceMeasure ( performances , " c lass_measures " ,

"1" , 2 , 0 . 5 , " g r e a t e r " )

comparison_F = ComparePerformanceMeasure ( performances , " c lass_measures " ,

"1" , 3 , 0 . 5 , " g r e a t e r " )

comparison_Acc = ComparePerformanceMeasure ( performances , " c lass_measures " ,

"1" , 4 , 0 . 5 , " g r e a t e r " )

comparison_G = ComparePerformanceMeasure ( performances , " c lass_measures " ,

"1" , 5 , 0 . 5 , " g r e a t e r " )

comparison_Instances = GetMedians ( performances , " i n s t an c e s " )

comparison_Columns = GetMedians ( performances , "columns" )

comparison_entropy = ComparePerformanceMeasure ( performances , " entropy " ,

None , None , 0 . 5 , " g r e a t e r " )

return {"pd" : comparison_PD , " pf " : comparison_PF , " prec " : comparison_Prec ,

" f " : comparison_F , " acc " : comparison_Acc ,

"g" : comparison_G , " i n s t an c e s " : comparison_Instances ,

"columns" : comparison_Columns , " entropy " : comparison_entropy}

def ComparePerformanceMeasure ( performances , key , c la s sVa l , measureIndex , alpha , c r i t e r i a ) :

#The func t ion i s used to rank perfomances o f d i f f e r e n t l e a rne r s f o r a g iven metric

us ing wi lcoxon s t a t i s t i c a l method

#wi lcoxon implementation i s used from SciPy ( sc ipy . s t a t s . wi lcoxon )

l e a rn e r Indexe s = [ ]

popu la t i ons = [ ]

medians = [ ]

mins = [ ]

maxs = [ ]

q1s = [ ]

q3s = [ ]
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spreads = [ ]

for l e a r n e r in performances :

populat ion = GetMeasuresPopulation ( per formances [ l e a r n e r ] , c l a s sVa l , key ,

measureIndex )

#popu la t ion = a l lPopu l a t i on s [ l ea rner ]

i f populat ion [ 0 ] == None : continue

l e a rn e r Indexe s . append ( l e a r n e r )

popu la t i ons . append ( populat ion )

quan t i l e s = mquant i les ( populat ion , [ 0 , 0 . 25 , 0 . 5 , 0 . 75 , 1 ] )

mins . append ( quan t i l e s [ 0 ] )

q1s . append ( quan t i l e s [ 1 ] )

medians . append ( quan t i l e s [ 2 ] )

q3s . append ( quan t i l e s [ 3 ] )

maxs . append ( quan t i l e s [ 4 ] )

spreads . append ( quan t i l e s [ 3 ] − quan t i l e s [ 1 ] )

#i n i t i a l i z e wintTieLoss matrix

winTieLoss = [ ]

for i in range ( len ( popu la t i ons ) ) :

winTieLoss1 = [ ]

for j in range ( len ( popu la t i ons ) ) :

winTieLoss1 . append (None )

winTieLoss . append ( winTieLoss1 )

for i in range ( len ( popu la t i ons ) ) :

for j in range ( i +1, len ( popu la t i ons ) ) :

median_i = medians [ i ]

median_j = medians [ j ]

z_ s t a t i s t i c , p_value = wilcoxon ( popu la t i ons [ i ] , popu la t i ons [ j ] )

i f p_value > alpha or median_i == median_j :

#the popu la t ion are s t a t i s t i c a l l y the same

winTieLoss [ i ] [ j ] = 0

winTieLoss [ j ] [ i ] = 0

else :

i f c r i t e r i a == " g r ea t e r " :

i f median_i > median_j :

winTieLoss [ i ] [ j ] = 1

winTieLoss [ j ] [ i ] = −1

e l i f median_i < median_j :

winTieLoss [ i ] [ j ] = −1

winTieLoss [ j ] [ i ] = 1

else :
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winTieLoss [ i ] [ j ] = 0

winTieLoss [ j ] [ i ] = 0

e l i f c r i t e r i a == " l e s s e r " :

i f median_i > median_j :

winTieLoss [ i ] [ j ] = −1

winTieLoss [ j ] [ i ] = 1

e l i f median_i < median_j :

winTieLoss [ i ] [ j ] = 1

winTieLoss [ j ] [ i ] = −1

else :

winTieLoss [ i ] [ j ] = 0

winTieLoss [ j ] [ i ] = 0

else :

raise Exception ( "ComparePerformanceMeasure␣−␣

Unknown␣ c r i t e r i a : ␣" + c r i t e r i a )

t i e = {}

win = {}

l o s s = {}

medians1 = {}

mins1 = {}

maxs1 = {}

q1s1 = {}

q3s1 = {}

spreads1 = {}

for i in range ( len ( l e a rn e r Indexe s ) ) :

l e a r n e r = l ea rn e r Indexe s [ i ]

medians1 [ l e a r n e r ] = medians [ i ]

mins1 [ l e a r n e r ] = mins [ i ]

maxs1 [ l e a r n e r ] = maxs [ i ]

q1s1 [ l e a r n e r ] = q1s [ i ]

q3s1 [ l e a r n e r ] = q3s [ i ]

spreads1 [ l e a r n e r ] = spreads [ i ]

t i e [ l e a r n e r ] = 0

win [ l e a r n e r ] = 0

l o s s [ l e a r n e r ] = 0

for j in range ( len ( l e a rn e r Indexe s ) ) :

i f i != j :

r e t = winTieLoss [ i ] [ j ]

i f r e t == 1 : win [ l e a r n e r ] += 1

e l i f r e t == −1: l o s s [ l e a r n e r ] += 1

else : t i e [ l e a r n e r ] += 1
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return [ medians1 , win , t i e , l o s s , mins1 , q1s1 , q3s1 , maxs1 , spreads1 ]

def GetMeasuresPopulation ( performance , c la s sVa l , key , measureIndex ) :

populat ion = [ ]

i f key . s t a r t sw i t h ( " a l l " ) == True :

return performance [ key ]

for i in performance :

i f isinstance ( i , int ) == False : continue

for j in performance [ i ] :

i f measureIndex != None :

populat ion . append ( performance [ i ] [ j ] [ key ] [ c l a s sVa l ] [ measureIndex ] )

else :

popu lat ion . append ( performance [ i ] [ j ] [ key ] )

return populat ion

def GetMedians ( performances , key ) :

#The func t ion c a l c u l a t e s the median fo r a measure

medians = {}

for l e a r n e r in performances :

populat ion = GetMeasuresPopulation ( per formances [ l e a r n e r ] , None , key , None )

medians [ l e a r n e r ] = np . median ( populat ion )

return [ medians ]

def PrintWinTieLoss ( l o gF i l e , comparison_results , measureName , c la s sVa l , c r i t e r i a ) :

#The func t ion p r i n t s the Win Tie Loss S t a t i s t i c f o r metric g i v e in param

measureName .

medians = compar i son_resu l ts [ 0 ]

win = compar i son_resu l ts [ 1 ]

t i e = compar i son_resu l ts [ 2 ]

l o s s = compar i son_resu l ts [ 3 ]

#sor t by median

i f c r i t e r i a == " g r ea t e r " :

l e a r n e r s = sorted ([(0− value , key ) for ( key , va lue ) in medians . i tems ( ) ] )

e l i f c r i t e r i a == " l e s s e r " :

l e a r n e r s = sorted ( [ ( value , key ) for ( key , va lue ) in medians . i tems ( ) ] )

else :

raise Exception ( "PrintWinTieLoss ␣−␣Unknown␣ c r i t e r i a : ␣" + c r i t e r i a )

l o gF i l e . wr i t e ( "\n" )

l o gF i l e . wr i t e (measureName + "␣ r e s u l t s " + "\n" )

i f c l a s sVa l == None :
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l o gF i l e . wr i t e ( "Learner , " . l j u s t (30) + "Median , ␣" + "␣Win , ␣" + "␣Tie , ␣" +

"Loss " + "\n" )

else :

l o gF i l e . wr i t e ( "Learner , " . l j u s t (30) + " c l a s s , ␣" + "Median , ␣" + "␣Win , ␣" + "␣

Tie , ␣" + "Loss " + "\n" )

for pa i r in l e a r n e r s :

l e a r n e r = pa i r [ 1 ]

l i n e = ( l e a r n e r + " , ␣" ) . l j u s t (30)

i f c l a s sVa l != None :

l i n e += c l a s sVa l . r j u s t (5 ) + " , ␣"

l i n e += ( ’%.2 f ’ % medians [ l e a r n e r ] ) . r j u s t (6 ) + " , ␣"

l i n e += str (win [ l e a r n e r ] ) . r j u s t (4 ) + " , ␣"

l i n e += str ( t i e [ l e a r n e r ] ) . r j u s t (4 ) + " , ␣"

l i n e += str ( l o s s [ l e a r n e r ] ) . r j u s t (4 )

l o gF i l e . wr i t e ( l i n e + "\n" )

A.3 Library.py

The data structures used to store the input data sets, instances and attributes were originally

implemented by Vasil Papakroni as part of PEEKING2 [23]. The data structures enabled

storing input data sets, clusters, condensed data sets and other intermediate results.
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