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Abstract 

 

The Electrochemistry of Metal Carbides: From Salt Melt Synthesis to Voltammetry of 

Microparticles 

Rachel Lee Tani Walker 

Metal carbides have gained attention for their unique properties which lie at the 

boundary of high-performance ceramics and metals. These properties indicate their 

potential applications in many different areas.  They have been studied as precursors for 

carbon nanomaterials with tunable structures using halogenation, vacuum decomposition 

or hydrothermal synthesis routes. More recently, they have gained ground in the literature 

for direct application as electrode materials and catalyst support in fuel cells. In this work, 

we present a hitherto unexplored method for producing graphitic materials from calcium 

carbide in salt melts and galvanic reactions in nonaqueous electrolytes. Results and 

characterization of the carbon material produced from these reactions by scanning electron 

microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron 

spectroscopy (XPS) and micro-Raman spectroscopy are described. These results introduce 

a new avenue to carbons and new opportunities for their materials design.  

Although there has been much recent work focused on their applications in 

electrochemical devices, there are comparatively fewer studies investigating the basic 

electrochemistry of these systems. Therefore, we have initiated voltammetry of 

microparticles (VMP) at a solid electrode experiments for the electrochemical solid-state 

analysis of various metal carbides with varying properties.  For this purpose, we fabricated 

a paraffin impregnated graphite electrodes (PIGE) and a glassy carbon electrode (GCE). A 

thorough characterization of the PIGE morphology and electrode behavior via micro-

Raman spectroscopy, SEM, XPS and cyclic voltammetry (CV) is presented. Challenges 

arising from the application of PIGE in nonaqueous electrolytes will also be discussed. 

Results of VMP analyses of various carbides at a PIGE electrode in in aqueous electrolyte 

and at a GCE electrode in nonaqueous electrolyte are also described. 
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Chapter 1: Introduction 

1.1 The Chemistry of Carbides 

Carbides are a family of refractory materials traditionally used in high-temperature processes. 

Carbide materials have wide variations in structure and properties and rich history of research from 

many different fields. There are few texts in the literature containing comprehensive, 

interdisciplinary reviews on the subject of metal carbides. Of these the first was Kosolapova’s 

Review “Carbides” translated from the original Russian in 1968.1 The most recent “The Physics 

and Chemistry of Carbides, Nitrides and Borides” 1990. Both however lack information on recent 

work on nanophase carbide materials.2  

Recently, there has been growing interest in studying carbides, particularly nanophase and 

ternary carbides, to exploit their unique properties for a new generation of materials for electronic 

and energy devices and catalysis. For example, calculations for the electronic densities of states 

(DOS) of tungsten carbide (WC) showing platinum-like behavior ushered in studies of the catalytic 

properties of transition metal carbides.3 However, there are still significant gaps in the literature 

regarding the basic chemistry of various metal carbides. For instance, there are few studies of the 

electrochemical stability of pure transition metal carbides. To date most electrochemical studies 

investigating these compounds are corrosion studies of carbide coatings, alloys or composites due 

to their historical use as metallurgical and refractory materials. 

In view of the attention metal carbides are receiving for their potential electrochemical 

applications, a more detailed understanding of their basic electrochemical mechanisms is 

necessary. Therefore, the overall aim of this work is to fill these gaps in the literature and contribute 

information on the electrochemical stability and mechanisms of various carbides in various 
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environments. Older research on the oxidation of ionic carbides in salt melts has been revisited 

and expanded. In addition, research in the electrochemical of microparticles of metal carbides has 

also been explored. 

1.2 Carbide Materials and their Classification 

Carbides have rich diversity in stoichiometries and structure which give rise to unique and 

varied physical and chemical properties. It is customary to group carbides according to their 

structure and the supposed nature of their bonding, i.e. metallic, ionic, covalent etc. However, this 

is not always satisfactory as the structures of the carbides can be very complex and the nature of 

carbide bonds can be mixed and shifts in properties can be observed in the carbide of one metal 

depending on changes in its structure, e.g. the carbide phases of chromium.4,5 It should be noted 

that this circumstance is not exclusive to carbides, and that this oversimplification of the nature of 

bonding in chemical compounds applies to borides, sulfides, silicides etc.  Nevertheless, it is 

commonly accepted that carbides can be broadly classified into four major families of compounds. 

Ternary, composite, alloys, intermetallic complexes and solid solutions of metallic carbides are 

not included in the following brief survey but have been reviewed elsewhere.6–12 

Carbides can be divided into four different categories: (1) salt-like carbides, (2) covalent 

carbides, (3) interstitial carbides and (4) intermediate carbides. The salt-like carbides can be further 

separated into three groups: (1a) the methanides, (1b) acetylides and (1c) sesquicarbides, named 

as such because upon hydrolysis these carbides yield methane, acetylene and methyl acetylene 

respectively. The covalent carbides are inert upon hydrolysis and consist of carbon and another 

atom close to carbon in electronegativity. The interstitial carbides are compounds in which the 

carbon anions fit into the tetrahedral holes of the close packed lattice of metal atoms. Intermediate 

carbides have multiple stoichiometries and react upon hydrolysis with dilute acids to yield 
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hydrocarbons and hydrogen. The classification of carbides and some examples are shown in Figure 

1.1. 

 

Figure 0.1 Classification scheme for carbides.13 

1.2.1 Covalent Carbides 

The covalent carbides are the carbides of silicon and boron. They are referred to as such 

because boron and silicon are more electronegative metalloids, so their bonding with carbon is 

more covalent in nature.  The definite structure of boron carbide, traditionally given the structural 

formula, B4C, has been disputed since it was synthesized in by H. Moissan in 1899. It is now 

believed that the correct formula is B13C2,
14 but there can be a wide variation composition for this 

phase due to vacancies or substitutions in the boron icosahedra.1,15 Due to boron carbide’s high 
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melting point, thermal stability and hardness it is commonly used in high temperature processes 

as coatings for heat and abrasion resistance.16 

250 polymorphs of silicon carbide have been identified in the literature; however, only the 

cubic, hexagonal and rhombohedral structures have been observed. The cubic phase is referred to 

as β-SiC and the hexagonal and rhombohedral phases are designated α-SiC.17 In general, silicon 

carbide has a wide range of applications used as abrasives, coatings for tools, crucibles and 

automobile parts.15 Silicon carbide has found prolific use in electronic circuit elements as a 

semiconductor material. Recently, new research applications for silicon carbide has developed 

such as the use of β-SiC for heterogeneous catalyst support (citation) and hexagonal SiC for the 

production of graphene by epitaxial growth.18 

1.2.2 Transition Metal Carbides 

The most well studied group of carbides are the transition metal carbides. The following 

sections provide an overview of these compounds. For further information on the transition metal 

carbides, the author recommends Pearson’s Handbook19 and the works of Ward, de Novion2 and 

Lengauer.20 They are closely related to the transition metal nitrides and borides in terms of 

structure and properties. Transition metal carbides exhibit a mixture of metallic, covalent and ionic 

bonding,21 and may be split into two categories based on their structure and stoichiometries: 

interstitial and intermediate. 

1.2.2.1 Interstitial Carbides 

It is most appropriate to describe the transition metals of Group 4 and 5, M = Ti, Zr, Hf, V, 

Nb, Ta, Mo, W, as interstitial carbides, and the empirical formula is MC.15 This classification is 

based more on structure type than bonding type, in which the C atoms occupy the interstitial 

octahedral holes in the close packed metal lattice. In this case the metal ions must have an atomic 

radius >135 pm to accommodate the C atom in the octahedral interstices.22 These carbides are 
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known to have high hardness and high thermal stability with melting points in excess of 3000°C. 

They also exhibit metallic properties such as high electrical conductivity and luster. The properties 

of these carbides have led to their use in a wide range of applications from coatings for high 

temperature processes, abrasives, industrial machinery and tools, armor and ammunitions to 

jewelry. Tungsten carbide (WC), specifically, is a neutron reflector23 and played a critical role in 

the early development of nuclear weapons.     

1.2.2.2 Intermediate Carbides 

Metals or metallic ions with radii < 135 pm form carbides with highly varied structures and 

stoichiometries (Table 1.1).15 These are classed as intermediate transition metal carbides. Metals 

with these smaller radii and a close-packed hexagonal arrangement only have half the octahedral 

interstitial sites occupied by a C atom. This leads to variations in stacking sequence, oxidation 

number and defects leads to wide variation in stoichiometries and structure.  

Vandium Chromium Managanese Iron Cobalt Nickel 

V2C, V4C3, 

V6C5, V8C7,  

VC 

Cr23C6 

Cr7C3 

Cr3C2 

Mn23C6, 

Mn15C4 

Mn3C, Mn5C2 

Mn7C3 

Fe3C, Fe7C3 

Fe2C 

Co3C 

Co2C 

Ni3C 

Table 0.1 Table of intermediate stoichiometries of transition metal carbides 

Cr, Mn, Fe, Co and Ni carbides are more reactive than interstitial transition metal carbides 

and can hydrolyze with dilute acids and sometimes water to produce H2 and a mixture of 

hydrocarbon gases. For example hydrolysis of Mn7C3 yields manganese hydroxide, methane and 

a C1n hydrocarbon series which decreases in concentration as shown in R 1.1.24 The hydrocarbon 

series is produced from polymerization reactions of methane triggered by the activated hydrogen 

radical, H•. This specific behavior is attributed to the metallic nature of the bonding in transition 

metal carbides. 
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 𝑀𝑛7𝐶3 + 14𝐻2𝑂 → 7𝑀𝑛(𝑂𝐻)2 + 3𝐶𝐻4 + 2𝐻
∙ →∑𝐶1𝑛

𝑛

 
R 0.1 

 

 

Lanthanum dicarbide, LaC2 follows a similar pattern:25 

 𝐿𝑎𝐶2 + 2𝐻2𝑂 → 𝐿𝑎𝑂(𝑂𝐻) + 𝐶2𝐻2 + 𝐻
∙ →∑𝐶2𝑛

𝑛

 
R 0.2 

 

Intermediate carbides are hard, refractory materials with industrial applications similar to other 

transition metal borides, nitrides and silicides. Cementite (Fe3C) is an important component in cast 

iron and steel,26 and Cr3C2 is used as temperature and corrosion resistant coatings or additives for 

metallurgical parts.27  

Figure 1.2 illustrates the versatility in structure of the intermediate carbides, using the 

carbides of chromium as an example. The stable forms of chromium which have been 

experimentally observed are Cr23C6, Cr7C3 and Cr3C2. CrC, hexagonal (h-CrC) and cubic (c-CrC) 

and Cr3C are metastable phases. Li et al. used first principles calculations to determine electronic, 

mechanical and theoretical hardness of all six chromium carbide phases. Their calculations 

indicated that although all bonding six phases was a combination of metallic, covalent and ionic, 

the metallic nature roughly increases from h-CrC < c-CrC < Cr3C <Cr23C6 < Cr7C3. The theoretical 

hardness increases with increasing carbon concentration.4 
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Figure 0.2 Structures of Cr23C6, Cr7C3 and Cr3C2. CrC, hexagonal (h-CrC) and cubic (c-CrC) and 

Cr3C4 

Carbides of the post-transition metals, particularly Zn, Cd, Hg or Pb, are either poorly 

characterized, highly unstable or do not exist.15 

1.2.3. Alkali-metal Graphite Intercalation Compounds (GICs) 

Graphite can react with strong oxidizing and reducing agents to form graphite intercalation 

compounds (GICs). This process is usually reversible. 

 𝐶𝑛 +  𝑀 → 𝐶𝑛𝑀 R 0.3 

 

In these reactions, the guest ion (M) inserts between the planes of the graphite lattice (Cn), and the 

graphite layers remain intact.28 The increase in electrical conductivity of GICs indicates that the 
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bonding between occurs via transfer of electrons from the metal atoms to the conduction band of 

the graphite host.15   

The first reported and most well studied GIC system was with the alkali metal, potassium. 

C8K was prepared by reaction of potassium vapor and graphite at 300°C. GICs of rubidium and 

cesium may be prepared in a similar fashion.29 Intercalation has only been observed with the most 

electropositive elements. Theoretical calculations have shown that Na and Mg do not readily 

intercalate due to competition between ionization of the metal atoms and the ion-substrate 

coupling.30 The stoichiometry MC6 has been observed for smaller ions, M = Li+, Sr2+, Ba2+, Eu2+, 

Yb3+ and Ca2+.31,32 These compounds can also be synthesized by electrolysis of molten alkali-

metal salts with graphite electrodes and by reaction of graphite with nonaqueous solutions 

containing M+. 

GICs of successively decreasing metal content can be prepared by heating at low pressures at 

approximately 360°C.33 

 𝐶8𝑀 (𝑏𝑟𝑜𝑛𝑧𝑒 − 𝑟𝑒𝑑) → 𝐶24𝑀(𝑠𝑡𝑒𝑒𝑙 − 𝑏𝑙𝑢𝑒) → 𝐶36𝑀(𝑑𝑎𝑟𝑘 𝑏𝑙𝑢𝑒)
→ 𝐶48𝑀(𝑏𝑙𝑎𝑐𝑘) → 𝐶60𝑀(𝑏𝑙𝑎𝑐𝑘) 

R 0.4 

 



9 

 

 

Figure 0.3 Structure of varying stoichiometries of potassium intercalated graphite. Source: 

https://catalog.flatworldknowledge.com/bookhub/4309?e=averill_1.0-ch21_s03 

Alkali-metal GICs are highly reactive and can spontaneously ignite in open atmosphere. They react 

with water or alcohols to hydrogen, graphite and metal hydroxides. 

 𝑀𝐶𝑛 + 𝐻2𝑂 → 𝐶𝑛(𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) +𝑀𝑂𝐻 + 𝐻2 R 0.5 

 

Due to graphite’s ability to undergo successive reduction and oxidation with subsequent 

intercalation of metal guest ions, it has been widely used as an anode material for commercial, 

rechargeable lithium ion batteries.34,35 

1.2.4 Nanophase Metal Carbides – MXenes and Met-cars 

Among the newest developments in the materials chemistry of binary metal carbides is the 

preparation of transition metal carbides with novel nano-phase structures and stoichiometries. 

Metallocarbohedrenes, often abbreviated as met-cars, were first synthesized in 1992 by vaporizing 

a metal with a laser in the presence of a hydrocarbon gas and detected by means of mass 

spectrometry (Figure 1.4).36,37 These nano-clusters have the general formula M8C12, and it was 

initially proposed that their crystal structure was similar to fullerenes, with Th symmetry (Figure 

https://catalog.flatworldknowledge.com/bookhub/4309?e=averill_1.0-ch21_s03
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1.5). However, further experimental and computational data now indicate that met-cars with M8C12 

predomninat isomer has Td symmetry(Figure 1.5).38–40  

 

Figure 0.4 Mass spectrum of met-car Ti8C12
36,41 

 

Figure 0.5 Pentagonal dodecahedron structure, Th point group. Titatanium atoms (dark 

spheres) appear at the edge of a cube-like arrangement and are similarly coordinate to 

three-carbon atoms (light spheres) at all equivalent positions40 
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Met-cars of vandadium,36 chromium and metals of Group 5 and 642 have also been produced. 

Investigations into the mechanism and cluster growth of zirconium carbon clusters led to the 

detection and identification of met-cars with stoichiometries Zr13C22, Zr14C23, Zr18C29 and 

Zr22C35,
36 Although it has been suggested that met-cars have promise as catalysts43 and as high-

surface area materials for hydrogen fuel storage,44 research on these carbides has declined since 

the early 2000s. This may be due to the difficulty in purification and large scale synthesis of met-

cars clusters.40,45  

 The MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides or 

carbonitrides. This brief review will only consider the MXene binary carbides, which have the 

general formula Mn+1Xn, where M is the transition metal and X is carbon. These compounds are 

synthesized by selective etching of ternary carbides, also known as MAX6,10–12 phases with general 

formulas of  Mn+1AXn, where M = transition metal, X = carbon, and A = atoms which are extracted, 

usually an element from Group IIIA and IVA. The name “MXene” originate from the fact that the 

2D morphology is similar to that of graphene. The research teams of Gogotsi and Barsoum were 

the first to synthesize an MXene compound, Ti3C2 by etching Ti3AlC2 with hydrofluoric acid (HF) 

at room temperature (Figure 1.6).46  

 This etching proceeds by the following reaction: 

 
𝑇𝑖3𝐴𝑙𝐶2 + 3𝐻𝐹 → 𝐴𝑙𝐹3 +

3

2
𝐻2 + 𝑇𝑖3𝐶2 

R 0.6 

 

R 1.6 is then followed by R 1.7 and/or R 1.8 in which the carbide nano-sheet is end terminated 

with –OH and/or –F groups. 
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 𝑇𝑖3𝐶2 + 2𝐻2𝑂 → 𝑇𝑖3𝐶2(𝑂𝐻)2 + 𝐻2 R 0.7 

 𝑇𝑖3𝐶2 + 2𝐻𝐹 → 𝑇𝑖3𝐶2𝐹2 + 𝐻2 R 0.8 

 

These reactions are supported by the data presented below in Figure 1.6. The bottom black 

spectrum in Figure 1.6 a) shows the XRD pattern of Ti3AlC2, the purple spectrum is the XRD 

pattern after HF treatment and the pink is after sonication which leads to loss of diffraction in the 

out-of-plane direction and, thus, peak broadening. The gold and red spectra shown in the middle 

are simulated XRD patterns for Ti3C2F2 and Ti3C2(OH)2 respectively, which show good agreement 

with the post-HF spectrum (purple curve). 

 

Figure 0.6 Analysis of Ti3AlC2 before and after exfoliation, a) XRD results before HF treatment, 

compared with simulated XRD patterns of Ti3C2F2 and Ti3C2()H)2 and measured XRD patterns of 

Ti3AlC2 after exfoliation, b) Raman spectra of Ti3AlC2 before and after HF treatment, c) XPS 

spectra and SEM d) of Ti3AlC2 before and after HF treatment, and e) a cold-pressed 25 mm disk of 

etched and exfoliated material46. 
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Figure 1.6 b) shows Raman spectra of Ti3AlC2 before and after HF treatment, in which the peaks 

I, II, and III assigned to Al-Ti vibrations vanish after etching. The XPS spectra in Figure 1.6 c) 

shows the presence of the Ti-O and Ti-C bonds in both spectra, supporting the formation of 

Ti3C2(OH)2 in reaction R 1.7. The SEM image in Figure 1.6 d) demonstrates the planar 

morphology of the Ti3C2 nano-sheets, and Figure 1.6 e) shows the material cold pressed into a 

pellet. 

   In addition to Ti3C2, other MXenes have been synthesized and characterized including 

Ti2C, Nb2C, V2C, Ta4C3, and complex, ternary MXenes such as (Ti0.5,Nb0.5)2C, (V0.5,Cr0.5)3C2, 

Ti3CN.47,48 Extraction of A in MAX phase carbides can also be accomplished via heating under 

vacuum or protective atmosphere or through halogenation. However, the heat treatment can lead 

to significant structural changes including the loss of layering.49 Additionally, halogenation at high 

temperatures removes the M atoms as well as the A atoms leaving behind porous carbon material 

which is referred to as carbide derived carbons (CDCs).50 The high surface area morphology in 

combination with good electrical conductivity and chemical and thermal stability exhibited by 

MXenes have spurred interest in their applications for energy storage devices such as rechargeable 

lithium ion batters, capacitors and pseudocapacitors.51 These exceptional properties have also 

shown promise for catalyst support in solid oxide fuel cells (SOFC),52 adsorption materials for 

hydrogen storage53 and additives to lubricants.54   

1.2.5 Ionic or Salt-like Carbides 

This family of carbides is termed “salt-like” or ionic because the bonding in these 

compounds is characterized as more polar or ionic, as illustrated by their reactivity with water and 

dilute acids to produce hydrocarbon gases and metal hydroxides. Salt-like carbides can be further 
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divided into three subcategories, methanides, acetylides and sesquicarbides, based on the structure 

of the carbon anions.  

Inclusion of graphite intercalation compounds (GICs) of the alkali metals in the 

classification of carbides varies in the literature. Kosolapova considers alkali-metal GICs carbide 

phases,1 whereas Greenwood and Earnshaw group them as a separate family of carbon 

compounds.15 However, alkali-metal GICs readily hydrolyze to form H2, metal hydroxides and 

graphite. Additionally, studies indicate that electrons are transferred from the metal to the 

conduction band of the graphite which accounts for the enhanced electrical conductivity of these 

compounds. Based on this reasoning, alkali-metal GICs have been included as a subgroup of the 

salt-like carbides in this work.  

1.2.5.1 Methanides 

The carbon anions in this class of carbides consist of individual carbon anions, which yield 

mainly methane, CH4, upon hydrolysis. Aluminum carbide (Al4C3) and beryllium carbide (Be2C) 

are the best-known examples. Be2C may be synthesized directly from the elements55 or from BeO 

and carbon at 1900-2000°C. Density functional theory (DFT) calculations indicate that the Be and 

C are significantly ionized, with a nominal ionic charges of Be2+ and C4- on the constituent atoms.56 

To the best of the author’s knowledge aluminum carbide is the only methanide 

commercially available. Therefore, Al4C3 is the representative compound from this family of 

carbides which was studied in this work. An overview of aluminum carbide is given in the 

following section. 

1.2.5.2 Aluminum Carbide Structure and Properties 

Aluminum carbide is most commonly used as an abrasive material for cutting tools. 

However, it is also recognized as an important component in the production and synthesis of 
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certain ceramics57 and aluminum metallurgy.58 Formation of aluminum carbide and alumina has 

been observed in situ during aluminum alloying after the addition of organic process control 

agents. This lowers the tendency of the metal to creep or resist strain due to mechanical stress.58,59 

TEM and EDS studies of carbon fiber reinforced aluminum alloys have shown that aluminum 

carbide forms at the interface of the fiber and metal, nucleating heterogeneously on the fiber and 

growing into the alloy matrix.60  A 2004 study on diamond synthesis the Al-C system under high 

temperatures and high pressures reported that the reaction first forms Al4C3 which melts after 

formation and diamond crystallizes in the aluminum-carbide melt.61  

Al4C3 is the only stable phase in the aluminum carbon system.1,15,62 It has a complex 

rhombohedral crystal structure in which alternating layers of Al2C and Al2C2 are stacked in the c-

direction.62,63 The carbon atoms in the Al2C layers coordinated to 6 aluminum atoms in a distorted 

octahedron at a distance of 217 pm. The carbon atoms in the Al2C2 are coordinated to 4 aluminum 

atoms at a distance of 190-194 pm and a fifth Al atom at 221 pm. The smallest C to C distance is 

316 pm. Although the accepted formal description of the separation of charge in this compound is 

(Al3+)4(C
4-)3 may not be a true representation of the charge distribution in this carbide over such 

large interatomic distances.15 
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Figure 0.7 Crystal structure of aluminum carbide62 

Aluminum carbide can be prepared from reaction of aluminum and carbon in an electric 

arc furnace at temperatures of 1200-1400°C: 

 4𝐴𝑙 + 3𝐶 → 𝐴𝑙3𝐶3 R 0.9 

 

Additionally, aluminum carbide can be prepared by the reduction of alumina by carbon at 

2000°C.  

 2𝐴𝑙2𝑂3 + 9𝐶 → 𝐴𝑙4𝐶3 + 6𝐶𝑂 R 0.10 

 

Studies of the Al2O3-Al4C3 system reveal that the reaction proceeds via two oxycarbide 

intermediates, Al4O4C and Al2OC.64 In 1957 Union Carbide filed a patent for the synthesis of 

aluminum carbide from powdered aluminum, carbon in the form of lamp black or carbon black 

and a catalyst, cryolite (Na3AlF6).
65 The catalyst enables the reaction at much lower temperatures, 

i.e. 700°C, and significantly increases the rate of reaction. The method used to produce the 
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aluminum carbide in this dissertation is proprietary, but it is likely that Union Carbide’s method 

or some variation thereof may be used.  

The hydrolysis of aluminum carbide produces methane and aluminum hydroxide hence it’s 

classification as a methanide. Note the striking difference in the hydrolysis behavior of the 

transition metal carbides (R 1.1 and R 1.2) and ionic carbides (R 1.11). Whereas the hydrolysis of 

Mn7C3 yields the metal hydroxide and methane and a complex mixture of other hydrocarbons, 

hydrolysis of aluminum carbide only produces methane as the hydrocarbon product. This 

contrasting hydrolysis behavior and the low electrical conductivity of aluminum carbide imply a 

strong ionic bonding character. 

 𝐴𝑙4𝐶3 + 12𝐻2𝑂 → 4𝐴𝑙(𝑂𝐻)3 + 3𝐶𝐻4 R 0.11 

 

The physical and chemical properties of aluminum carbide that are reported in the literature 

is limited compared to the breadth of research on calcium carbide. Due to aluminum carbide’s 

historical applications in metallurgy and ceramic processes, many of the properties in the literature 

were measured at high temperatures. For example, the free energy of formation (ΔG) of Al4C3 at 

1873 K and its resistivity (ρ) at 1225 K are presented in Table 1.1 below. These data indicate that 

although aluminum carbide may be an insulator at high temperatures it is semiconducting. 
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Properties Values Reference(s) 

Melting point 2100°C38 66 

Boiling point >2200°C38 66 

Density 2.36 g/cm3(38) 66 

∆𝐻𝑓
0 -208 ± 5 kJ/mol 

 

67 

 -150.1 ± 12.5 kJ/mol39 

 

68 

 -215.69 kJ/mol69 69 

ΔG -88.8 ±11.2 kJ/mol at 1873 K 70 

ρ 250 Ω·cm at 1225 K 71 

Table 0.2 Properties of aluminum carbide 

1.2.5.2 Acetylides 

Carbides containing acetylide (C2
2-) units are the most well studied group of the salt-like 

carbides. They typically form with the alkali (M2C2), alkaline earth metals (MC2) and lanthanoids 

(LnC2 and Ln4(C2)3).
25,72 Carbide compounds containing the noble metals of Group 11, Cu, Ag 

and Au, also form acetylides which are shock sensitive explosives.73 By far the most well-known 

and industrially important carbide in this family is calcium carbide, CaC2. Calcium carbide is 

discussed in detail in the following section. 

1.2.5.3 Calcium Carbide Structure and Properties 

CaC2 is the only carbide phase in the calcium-carbon system known to exist. Four crystal 

structures have been observed: CaC2-I has a face centered tetragonal lattice, CaC2-II has a triclinic 

structure, CaC2-III has a monoclinic structure and CaC2-IV has a face centered cubic structure.74 

The tetragonal structure is the only phase stable at room temperature. It forms a distorted rock-salt 
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structure with 6 calcium cations in the corners of the unit cell and one in the center. The acetylide 

units are aligned along the c-axis (Figure 1.7). 

 

Figure 0.8 Crystal structure of calcium carbide1 

The most commonly used production method is the reaction of calcium oxide in the form 

of lime and carbon containing materials such as anthracite, coke and wood charcoal at 2200-

2250℃.  

 𝐶𝑎𝑂 + 3𝐶 → 𝐶𝑎𝐶2 + 𝐶𝑂 R 0.12 

 

Metallurgical grade coke is usually the carbon feedstock used in carbide production and is 

comprised of 85-88% carbon, 9-11% ash and 2% volatiles.75 The predominant use for calcium 

carbide is the production of acetylene, so methods for purity and grade specifications are primarily 

based on gas yield analyses. Phosphorous, sulfur and arsenic content are determined from analysis 

of phosphine, hydrogen sulfide and arsine levels in evolved acetylene during hydrolysis.75 Typical 

impurities in industrial calcium carbide are shown in Table 1.2. 
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Calcium Carbide % 

CaC2 79.0 

CaO 13.2 

C 0.7 

CaS 0.9 

Mineral impurities 

(Al2O3, SiO2, MgO, FeSi) 

6.2 

Table 0.3 Typical certificate of analysis for industrial grade calcium carbide.75 

Calcium carbide production is accomplished on an industrial scale in an electric arc furnace. The 

capacity of these furnaces range from 25,000t/y to 130,000t/year depending on their power 

requirements. A diagram of a 40MW electric arc furnace is shown below (Figure 1.8).  
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Figure 0.9 Diagram of calcium carbide furnace. The crucible (A) is made of brick walls and 

a carbon lined bottom, which is cooled by a fan (B). A cover (C) isolates the furnace. The 

hydraulic cylinders (E) support and move the electrodes (D) in and out of the furnace and 

are fitted with a slipping device (F). The contact plates (G) connect the the transformer (H) 

to the electrodes. The tapping electrode (I) directs the liquid carbide from the taphole (J) to 

a cart for cooling (K).  Bins (L) store raw precursors and charging chutes (M) introduce 

them to the furnace. Particulate raw precursors are stored in bins (N) and supplied 

through a screw conveyor (O), connector (P) and hollow electrode (Q). Gasses escape 

through duct (R). A crane (U) charges fresh electrodes and operations are monitored from 

control room (V).75 

 

Hydrolysis of calcium carbide produces calcium hydroxide and acetylene. This hydrolysis 

behavior contrasts with that of lanthanum dicarbide (LaC2) which also has structural acetylide 
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units but generates a mixture of hydrocarbon gases (R 1.13). The production of only acetylene 

implies primarily ionic bonding. 

 𝐶𝑎𝐶2 + 2𝐻2𝑂 → 𝐶2𝐻2 + 𝐶𝑎(𝑂𝐻)2 R 0.13 

 

This reaction is the basis for calcium carbide’s main industrial application. Production of 

acetylene, which is a precursor for many commodity chemicals, accounts for 94% of calcium 

carbide production.75 

Other applications of calcium carbide include the desulfurization in iron and steel making (R 1.14), 

 𝐶𝑎𝐶2 + 𝑆 → 𝐶𝑎𝑆 + 2𝐶 R 0.14 

 

and to produce calcium cyanamide, a fertilizer (R 1.15). 

 𝐶𝑎𝐶2 + 𝑁2 → 𝐶𝑎𝐶𝑁2 + 𝐶 R 0.15 

Therefore, high purity calcium carbide is not generally commercially available because high purity 

is not a necessity for its primary uses. Most calcium carbide is technical grade (80-88% purity). 

The calcium carbide used in this research was technical grade, and analyses of its impurities are 

reported in Appendix A.   

Properties of calcium carbide are in Table 1.3 below. Information on its electrical 

conducting properties is conflicting. Some sources describe CaC2 as an electrical insulator,13,15,75 

which is consistent with its characterization as a salt-like carbide with mostly ionic bonding 

character. However, measurements have indicated that calcium carbide is seminconducting even 

at low temperatures, e.g. 24 Ω·cm at 20℃.76 This attributed to the anisotropy of the acetylide units 

in calcium carbide. Conductivity is also dependent on the carbide’s purity and thermal 

treatment.1,77 The outer layers of a calcium carbide ingot, which cool more rapidly, have higher 

resistivity than the inner layers, which cool slowly. Annealing calcium carbide at temperatures 

above 500℃ irreversibly decreases the resistivity.76  
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Properties Values Reference(s) 

Melting point 2300°C 66 

Boiling point NA  

Density 2.22 g/cm3 1,66,75 

∆𝐻𝑓
0 -59.8 kJ/mol38 68,75 

 -58.9 ± 8.4 kJ/mol 66 

∆𝑆𝑓
0 70.0 J/mol K38 66 

∆𝐺𝑓
0 -64.9 kJ/mol38 66 

Cp
 62.7 J/mol K38 66 

ρ (20°C) 24.0 ohm-cm 76 

Table 0.4 Properties of calcium carbide 

 

1.2.5.3 Sesquicarbides 

The sequicarbides, which contain the linear C3
4- unit, have been suggested as a synthetic 

route to the theorized one dimensional carbon allotrope, carbyne, which is expected to have 

superior electronic and mechanical properties.78 In spite of this hypothesized application for 

sesquicarbides, their own interesting properties and possible applications, the literature regarding 

these compounds is sparse relative to the other classes of metal carbides. 

Only a few of these compounds have been identified and characterized. None are 

commercially available due to their high reactivity, thermal instability and difficulty in synthesis. 

The first to be discovered, magnesium sesquicarbide, Mg2C3, was synthesized and identified in 

1910,79 but direct characterization of its structure (Figure 1.9) by powder X-ray and neutron 

diffraction was not accomplished until 1999.80 Li4C3 was synthesized by the reaction of carbon 

vapor and lithium at 800-850°C and characterized by indirect analysis of the carbide’s hydrolysis 

products via mass spectrometry,81 and directly via nuclear magnetic resonance (NMR).82 
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Figure 0.10 Crystal Structure of magnesium sesquicarbide.80 

Scandium carbide (Sc3C4) and the ternary compound calcium chloride carbide, Ca3Cl2C3, 

are the most recently studied sesquicarbides. Sc3C4 is produced from reaction of scandium and 

graphite under inert atmosphere at 900°C,83 and Ca3Cl2C3 is produced from the reaction of CaCl2 

and graphite at the same temperature. Huckel calculations and fragment molecular orbital analysis 

(FMO) indicated the interaction between Ca and Cl in the ternary carbide was mostly ionic and 

the energy levels of the C3 units relatively unchanged, suggesting that this carbide is insulating. 

The same analyses show that Sc3C4 have partially filled Sc “d” orbitals and C2 bands indicating 

that the compound is a metallic conductor Pauli paramagnetism.84   

1.3 Methods of Carbide Production 

There are many techniques for preparing metal carbides and there is considerable overlap with 

each other. Historically, high temperature processes were first used to obtain carbides.  High 
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temperatures (1500-2300K) are necessary to overcome diffusion limitations in the solid-state. 

Recently, methods with lower working temperatures have been developed with the aim of 

obtaining nanostructured carbide materials. However, prolonged high temperature treatment 

promotes aggregation of particles into bulk product, impedes the synthesis of metastable products, 

and can compromise electrical and magnetic properties. Recent interest in nanostructure carbons 

has dramatically increased. Due to the great number of techniques only a few examples will be 

highlighted. Nano-structured carbides are not directly aligned with our work, but a brief review is 

given of their synthesis methods because this is the “hot” topic currently in carbide research.  

1.3.1 Carbothermal Reduction of Metal Oxides 

Carbothermal reduction consists of the reduction of a metal oxide by a carbon precursor to 

produce the metal carbide. This is the primary chemistry for the preparation of non-oxide ceramics 

including carbides, nitrides and borides. The carbon source can take on a variety of forms such as 

petroleum coke, graphite, carbon black, pyrolyzed organics, e.g. polymers, cellulose etc. These 

reactions are usually carried out under atmospheric pressure but at extremely high temperatures, 

i.e. > 1500℃. The crude products are composed of the desired carbide material and residual traces 

of the unreacted raw starting materials. Carbon monoxide (CO) is also generated as a byproduct. 

These reactions require extremely high temperatures to be thermodynamically favorable. Table 

1.3.1.1 from Weimer’s text85 show the minimum temperatures required for the synthesis of various 

carbides via reduction of their oxides. 
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Reaction T at ΔG = 0 (K) ΔH at ΔG = 0 

(kJ/kg) 

2𝐴𝑙2𝑂3 + 9𝐶 → 𝐴𝑙4𝐶3 + 6𝐶𝑂 2239 +16478 

2𝐵2𝑂3 + 7𝐶 → 𝐵4𝐶 + 6𝐶𝑂 1834 +29901 

3𝐶𝑟2𝑂3 + 13𝐶 → 2𝐶𝑟3𝐶2 + 9𝐶𝑂 1383 +5966 

2𝑀𝑜𝑂3 + 7𝐶 → 𝑀𝑜2𝐶 + 6𝐶𝑂 742 +3265 

𝑆𝑖𝑂2 + 3𝐶 → 𝑆𝑖𝐶 + 2𝐶𝑂 1788 +14688 

𝑊𝑂3 + 4𝐶 → 𝑊𝐶 + 3𝐶𝑂 950 +2338 

Table 0.5 Reaction temperature of various carbides from their metal oxides.85 

This carbothermal reduction of metal oxides to produce carbides is usually accomplished 

on an industrial scale in an electric arc furnace. The process of producing calcium carbide from 

lime and coke in an electric arc furnace is reviewed in Section 1.2.5.3. Silicon carbide, however, 

is produced from silica (SiO2) and graphite in an Acheson furnace (Figure 1.11). This furnace 

configuration consists of heating by direct resistance in which two electrodes connect to a graphite 

core within a mixture of carbon and SiO2. Current passing through the graphite core causes 

resistive heating of reactants. Figure 1.12 shows the form of the products in the Acheson process. 

The production of CO acts as a transport mechanism for crystal growth. The escaping gas lead to 

a hollow cylinder the center of which is the graphite core. The layer surrounding the core is SiC 

product, which varies in purity and crystal quality with distance from the core. The outer reaction 

zone consists of metal oxides and unreacted material. The Acheson furnace can reach temperatures 

of 1700-2500 K allowing for the formation of α-SiC.85 
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Figure 0.11 Schematic of Acheson furnace for SiC production. Image source: 

http://materials.iisc.ernet.in/~govind/silicon_carbide_manufacture.htm  

 

 

Figure 0.12 Cross-sectional view of SiC melt in Acheson furnace. Image source: 

http://materials.iisc.ernet.in/~govind/silicon_carbide_manufacture.htm 

 

Other reactor and furnace configurations used in carbide production include tube/pusher/moving 

bed furnaces, rotary tube reactors and fluidized bed reactors.  

1.3.1.2 Synthesis from the elements 

Synthesis of carbides from their constituent elements can be carried out in an electric arc 

furnace, in the presence of a protective gas,22 under vacuum or in a liquid metal bath, which is 

often referred to in metallurgical literature as, menstruum.86 Tunsten carbide (WC), for example, 
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is most commonly prepared from fine tungsten metal powder and carbon heated under a hydrogen 

atmosphere. 

 𝑊 + 𝐶
1400−1600℃
→         𝑊𝐶 

R 0.16 

 

1.3.1.3 Carburization by combustion 

Carburization by combustion synthesis takes advantage of highly exothermic reactions of 

ceramic, intermetallic and composite materials. Once the reaction has been initiated a substantial 

amount of energy is released resulting in self-propagation of the reaction. Thus, these processes 

are also termed self-propagating high-temperature synthesis (SHS).87 The Ti-C system is 

considered a model for SHS processes.88 

 𝑇𝑖 + 𝐶
1700−2200℃
→          𝑇𝑖𝐶 

R 0.17 

 

This process involves a solid mixture of metal and carbon powders, which is pelletized to increase 

contact between reactants. The pellet is placed in a container composed of a refractory material. 

The reactants are degassed and ignited under vacuum or inert atmosphere via electrical, chemical 

or localized heating methods.85 Figure 1.13 below shows an example of the solid-solid phase 

combustion synthesis of Ti and C. 



29 

 

 

Figure 0.13 Schematic of solid-solid combustion synthesis using Ti-C as a model.85  

SiC, WC, W2C, Mo2C, TaC, NbC, and ZrC89 can also be prepared via SHS processes as well as 

carbide composites and solid solutions, e.g. TiC-Al2O3, SiC-Al2O3.  

1.3.1.4 Gas Phase Synthesis Processes 

Gas phase synthesis produce films and fine carbide powders of high purity. These 

processes are also high yield and fast using thermal aerosol,90 laser91 or plasma reactor types.92 In 

general gaseous reactants are fed into a heated reactor. Solid products are collected via filtration, 

electrostatic precipitation or cyclones. The morphology, yield and crystallinity of the carbides are 

highly dependent on reaction temperature and residence time. 

Reactants for this synthesis route are gaseous metal hydrides, such as silane (SiH4) for the 

production of SiC, or gaseous metal halides. Hydrocarbon gases serve as the source of carbon.  
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1.4 Molten Salt Technology 

Molten salts used as chemical reaction media in a wide range of applications are referred to as 

salt melts, fused salts and salt fluxes. Their excellent properties offer potential for many uses. 

Molten salt media are used industrial for preparing carbide, nitride, boride and oxide surface 

coatings for tools. Several texts cover their chemistry and applications.93–95 Other applications of 

molten salt technology include processing of chemical and nuclear waste,96 metallurgical 

extraction and processing (new processes for electro-winning and electrolysis of aluminum from 

Molten Salts Chemistry and Tech), preparation of ceramics composites and generation of power. 

Electrochemical energy storage which was realized in the Andasol solar power station which 

utilizes tanks of a liquid mixture of 60% sodium nitrate and 40% potassium nitrate for thermal 

energy storage which allows the continued generation of electricity when there is no sunlight.97  

Molten salts have a wide thermal stability range, low vapor pressures, the ability to dissolve 

solid compounds such as oxides, carbides and nitrides, which are insoluble in low temperature. As 

such salt melts are useful in solvents for solid state synthesis.94,98–101 In addition, their wide 

electrochemical window allows the electro-winning of electropositive metals or the synthesis of 

highly electronegative elements. The following sections will discuss on molten salts for reaction 

media for solid-state synthesis with a focus on previous work that has been done with carbide 

materials to put our molten salt syntheses into proper context. 

1.4.1 Salt Melt Synthesis (SMS) 

It is necessary to briefly review the field of molten salt synthesis so that we may put our 

carbide molten salt exploratory experiments in the proper context. Molten salt synthesis is 

referred to in the literature as salt melt synthesis (SMS), salt flux synthesis, fused salt synthesis 

or high temperature solutions98,100,101. Note that here we differentiate molten salt from ionic 
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liquids (ILs) as reaction media comprised of simple inorganic compounds (i.e. halide salts, metal 

oxides, metal hydroxides etc.) which melt at temperatures in excess of 100ºC. By contrast, ILs 

are defined most often in the literature as salts which melt at or below 100ºC and are composed 

of a charged organic cation and a weakly coordinating inorganic anion.102,103 Henceforth, we will 

use Liu et al.’s terminology for molten salt reactions: salt melt synthesis (SMS). 

Considered by some researchers to be of limited application, this area has received less 

attention that it deserves, especially in the wake of research in ILs. With the rise of ILs study of 

molten salts was thrust into relative obscurity, but they are once again gaining attention.  

1.4.1 Studies of Salt-like Carbides in High Salt Melts    

Interest in the chemistry of CaC2 in melts was driven by carbide applications in 

metallurgical processes such as the use of carbide slags for desulphurization and 

dephosphorization. Even so there are relatively few reports investigating calcium carbide in melts 

and molten salt systems. Calcium carbide forms eutectics with CaO and CaCN2. Barber and 

Sloan104 investigated the solubility of CaC2 in alkali and alkaline earth salt melts. Carbide 

composition of cooled solid mixture was determined by precipitation of the carbide as copper 

acetylide, and copper concentration was determined colormetrically.  The results of their study are 

displayed in Table 1.6 below. Incidental to this work, it was noted that the salts ZnCl2, PbCl2 and 

CdCl2 were investigated, but the carbide was reduced by the metals in these salt melts.105 

 

Solvent Temperature (K) Mole% calcium carbide 

LiF 1273 45.0 

LiCl 1093 10.0 

LiBr 1093 8.0 

CaF2 1673 20.0 

CaCl2 1093 10.4 

BaCl2 1273 4.3 
Table 0.6 Solubility of calcium carbide in different salt melts106 
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1.4.2 Electrochemical Studies of Calcium Carbide 

Bonomi and colleagues107 studied galvanic cells comprised of calcium carbide and lithium 

nitride solutions in molten salts in order to demonstrate the feasibility of free energy and activity 

measurements of these materials in the molten state. In the case of the calcium carbide, the cell 

was heated under argon from temperatures between 873-973°C. The electrolyte was a eutectic 

mixture of LiCl and CaCl2. An iron crucible was used as the anode and the Li-Ca alloy electrode 

was made by cathodic deposition onto an iron microelectrode. The authors claimed different 

behavior from technical grade calcium carbide compared with pure calcium carbide. The pure 

CaC2 showed two anodic waves due the oxidation of calcium and the oxidation of the carbon 

anion. The technical grade carbide showed only one anodic wave attributed to the oxidation of the 

carbon anion alone. This difference was explained by the authors’ belief that the pure CaC2 has a 

higher calcium content than technical grade CaC2. The dependence of the emf values of the carbide 

cell on the logarithm of the ratio of the concentration of calcium carbide to the saturation of the 

cell is shown. In addition, the authors calculate a standard potential value for CaC2 (E
0 = ~0.425V) 

from free energy of formation values found in the literature. No additional detail is provided on 

how this value was determined. 

The 1974 publication by White and Morris108 presents a review of electrochemical studies 

performed in molten halide salts. The solubility of calcium carbide in multiple halide salts is 

tabulated, and the authors note that, excluding magnesium carbide, the alkaline-earth carbides are 

typically soluble in molten halide salts of their parent alkaline-earth metal. Thus, most of the 

studies focus on CaC2-CaCl2 systems. Graphite electrodes were developed which could respond 

to the activity of carbon in solids or melts. The behavior in these molten systems is complex and 

different from that of solution chemistry. The authors believe that the transfer of the alkali metal 

from the anode to the cathode is accomplished through a non-faradaic process which was 
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hypothesized by Hesson, Foster and Shimotake108. This process was called self-discharge and is 

attributed to the equilibrium of dissolved alkali metal, electrons and alkali metal ions. The resulting 

current due to self-discharge is equal to the current density of the flux of the alkali metal as well 

as the electrons. The potential measurements included in this review list a measured value for 

Eo
CaC2 at 815°C as 350 ± 40 mV. It also contains an anodic linear scan voltammogram, termed by 

the authors iV curve, of a 810°C CaC2-CaCl2 melt at a graphite electrode.  The half wave potential 

of this LSV was determined to be 0.100V with respect to the unpolarized graphite electrode. 

1.4.3 Salt Melt Synthesis of Metal Carbides 

Use of salt melts for solid-state synthesis is enjoying renewed attention, this includes the 

use of salt melts for the preparation of carbide phases. Leonard and coworkers109 recently 

synthesized the chromium carbide phases CrC, Cr2C, Cr23C6, Cr3C2 and Cr7C3 via salt melt 

syntheses, termed salt flux synthesis in their publication. The chromium carbides were prepared 

from chromium metal powder and multi-walled carbon nanotubes (MWCNTs) in eutectic molten 

salt mixtures. The eutectic mixture used for preparing Cr3C2 was 67 wt% lithium chloride and 33 

wt% lithium fluoride. The eutectic for preparing the other carbides was 58 wt% lithium chloride, 

40 wt% potassium chloride and 2 wt% potassium fluoride. The use of low temperature eutectic 

salt fluxes enabled the synthesis of the rarely observed, meta-stable phases Cr2C and CrC. 

1.5 Electrochemical Studies of Carbides 

Most electrochemical studies of metal carbides are corrosion studies of alloys, coatings and 

composites of which the metal carbide is one of several phases. For context we will review the 

electrochemical studies pertaining to the carbide phases studied in this work: SiC, WC, Cr3C2 and 

Cr23C6.  

Xiang, Sujuan and Han110 developed a stripping method for the determination of M6C, 

M23C6 and MC of metals Fe, Cr, W, V and Co in high-speed steels as an alternative to 
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determination by X-ray diffraction. A conventional three electrode set-up was used in conjunction 

with a potentiostat. The reference electrode was a saturated calomel electrode and a cylindrical 

sample of high-speed steel served as the working electrode. Stripping voltammetry results in 10% 

NaOH + 2% tartaric acid at 0.83 mV/s showed that samples containing M6C had a peak potential 

at -200 mV, samples containing M23C6 had an anodic peak potential at 200 mV and samples 

containing MC, M23C6 and M7C3 had an anodic peak potential at 400 mV. They determined that 

M6C was etched while MC remained insoluble. Differential etching of M6C + M3C and MC was 

achieved in a 1% H2Cr2O7 electrolyte, anodic peak current for the oxidation and dissolution of MC 

was observed at 1400 mV (v. SCE). The presence of M7C3 and M23C6 does not interfere with the 

analysis of MC. 

Chromizing is a metallurgical technique used to create coatings of metals that offer high 

temperature surface protection and resistance to corrosion and wear. Tsai et al.111 have 

characterized the dual phase Fe-24%Mn-8.3%Al-5%Cr-0.38%Si-0.34%Mo-0.45%C alloy 

coating. The coating was prepared by pack cementation at 100ºC for 1-16 hours. The surface 

morphology of the coating was characterized by SEM. These SEM studies revealed aluminum and 

manganese oxide particles that, although rare, were believed to negatively impact corrosion 

resistance. XRD analysis identified the dominant phases in layers of the coating. The surface to 5 

microns beneath the surface had Cr23C6 and the (Cr, Fe)2N1-x alloy as the primary phase followed 

by an intermediate layer of Cr7C3. Samples coated with the alloy had greater corrosion resistance 

than uncoated samples and a high surface hardness of 2015 to 2485 HK. This improvement in 

chemical and mechanical properties is attributed to the presence of the chromium carbide surface 

layers. 
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WC has drawn recent attention for its promising application as an electrocatalyst in fuel 

cells and photoelectrochemical cells. Chen et al.112 presented a comprehensive study on the 

electrochemical stability of WC and W for comparison over a wide pH and potential range. They 

utilized cyclic and linear voltammetry (CV and LSV), chronoamperometric and 

chronopotentiometric titration techniques and XRD, SEM and XPS to investigate the oxide species 

formed on the WC surface under different conditions. Electrochemical measurements were 

performed in a 3-electrode cell. Pt mesh was the counter electrode, saturated calomel electrode 

(SCE) was the reference electrode and W or WC served as the working electrodes. 

Chronoamperometric titrations indicated that the oxidation behavior of W and WC at different pH 

values are similar. However, WC has a larger passivation region than W that extends to higher pH 

values and more positive potentials. Ex-situ characterization with XPS confirmed that the oxide 

formed on the surface were stable in acidic solution but dissolved in basic conditions. 

Roman-Leshkov et al.113 have investigated the effect of alloying tungsten carbide (WC) 

and tantalum with the aim of increasing the electrochemical stability of WC while maintaining its 

catalytic properties. The bimetallic carbide nanoparticles, TaxW1-xC, were synthesized via a 

reverse microemulsion technique which allows for the synthesis of nonsintered metal-terminated 

carbide particles and enables tailoring of size and phase.  Linear scan voltammetric (LSV) analyses 

show that the incorporation of Ta into WC increases the nanoparticles’ resistance to oxidation 

while preserving WC’s catalytic activity for the HER. Measurements with X-ray absorption near-

edge structure (XANES), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption 

fine structure (EXAFS) suggest that the increased electrochemical stability of the Ta0.3W0.7C 

nanoparticles is due to the presence of passivating TaOx surface layer and the well-mixed nature 

of the alloy. It is interesting to note that the LSVs showing the electrochemical stability of β-WC 
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nanoparticles exhibited two oxidation peaks at ~+0.4V and +0.7V and onset of passivation occurs 

at +0.2V. The authors attribute the presence of two oxidation peaks to the difference in 

electrochemical stability between the two crystal planes, (111) and (200) of β-WC. The alloying 

of WC with Ta changes this behavior significantly. For the alloyed nanoparticles, onset of 

passivation occurs at +0.45V and there is only one oxidation peak at +0.75V. The follow up work 

of Ledendecker et al.114 is discussed in more detail and compared to our VMP results of WC in 

Chapter 6. 

Silicon carbide, SiC, is electrically insulating unless doped to bring about semi-conducting 

properties. Thus, SiC is more “ceramic” in regards its properties and classification. Most ceramic 

materials have a high degree of thermal and electrochemical resistance. Thus, ceramics are used 

in highly corrosive environments. Nevertheless, ceramics can corrode under these aggressive 

conditions, albeit very slowly. Therefore, it is important to investigate corrosion of ceramics in 

order to understand their corrosion behavior and the implications this behavior has for their 

applications.  Traditional procedure in the literature for measuring corrosion in ceramics involves 

immersing a sample in the corrosive medium and measuring mass loss, corrosion layer depth, 

surface morphological changes and ion concentration in corrosion media. Historically, direct 

electrochemical methods have not found as much use because most ceramics are poor electronic 

conductors. These methods enable the investigation of the electrochemical stability window of the 

material and the determination of the corrosion mechanism. However, over time electrode and 

sample preparation techniques have been developed for the electrochemical analysis of insulating 

solid materials. Andrews et al.115 report on the corrosion behavior of solid phase sintered SiC 

(SSiC) and liquid phase sintered SiC (LPS SiC). SSiC is prepared in the solid phase at 2200ºC 

with small amounts of boron, carbon and aluminum additives to aid in densification. When 
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alumina, yttria, or AlN are used as additives a liquid phase is formed with the trace SiO2 surface 

layers lowering the sintering temperatures to < 2000ºC. This procedure is used to prepare LPS SiC.  

Polarization measurements and Tafel analyses and suggest SiC corrosion in acidic media 

proceeds via oxidation of the SiC to produce elemental carbon and a passivating SiO2 surface 

layer. Corrosion in basic electrolyte proceeds via oxidation of SiC to produce elemental carbon 

and dissolved SO3
2- species. SEM images confirm that the corrosion preferentially occurs at grain 

boundaries in the LPS SSiC due to the presence of alumina and yttria. The corrosion current 

densities of the LPS SiC materials were much lower than those for the SSiC samples. The authors 

attribute this difference in current density to the oxidation and dissolution of the alumina and ytrria 

at SiC grain boundaries. This reaction is a hydrolysis reaction in which no electrons are exchanged, 

therefore no contribution to measured current. This explanation is supported by ICP-OES analyses 

of dissolved Al, Si and Y ions in electrolyte solutions post corrosion testing. The corrosion 

potential measurements for the LPS SiC samples were not reproducible. This irreducibility was 

attributed to the heterogeneity of the chemical composition due to the presence of the alumina an 

ytrria additives. 

Corrosion potentials and corrosion current densities were obtained from polarization 

curves and Tafel analyses. Potential scan rates was 1 mV/s from -200 mV to 1000 mV. A platinum 

wire served as the counter electrode and the reference electrode was a saturated calomel electrode 

(SCE). The measured current corrosion densities ranged from 0.04 µA/cm2 to 40 µA/cm2 for the 

SSiC samples in various media and 0.6 to 1.8 µA/cm2. These faradaic currents are very low and 

difficult to distinguish from charging current when using voltammetric methods typical for the 

analysis of ions in solution. 
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1.6 Relevance of This Research 

This dissertation reports on explorations of the oxidation of calcium carbide in late 

transition metal halide salt melts first reported by Barber and Sloane.104 We expand on this work 

by reporting the characterization and analysis of the carbon produced from this reaction. Moreover, 

we have also investigated the oxidation of aluminum carbide in tin chloride melts and described 

the characterization and analyses of the reaction products. To the best of our knowledge, this is the 

first report on the salt melt synthesis of carbon material from aluminum carbide.  

We also describe explorations of the oxidation of ionic carbides by metal cations in solution 

via galvanic reaction and controlled potential electrolysis between a calcium carbide cell in an 

ethanol solution of saturated calcium chloride and a zinc cell in an ethanol solution of saturated 

zinc chloride. Results on a controlled potential electrolysis experiment are also reported. Although 

results from solution state experiments indicated that calcium carbide had been oxidized to 

elemental carbon, many questions remained unanswered and problems originating from 

experimental design remained unresolved.  

There were several unknown variables in these experiments that hindered more meaningful 

measurements. These variables include the parasitic reaction of calcium carbide with ethanol and 

the corrosion of the stainless-steel electrode that housed the carbide. Although separation of the 

two half-reactions allowed us to measure current exchanged, the corrosion products from the 

stainless steel and the products from the reaction of the ethanol and the carbide may have resulted 

in unknown interactions in these experiments. In order to measure the potential for the carbide 

half-reaction with thermodynamic meaning, a methodology for the electrochemical study of solid 

carbide microparticles was adapted. The results showed the electrochemical stability of tungsten 

carbide (WC), two chromium carbide phases (Cr3C2 and Cr23C6), silicon carbide (SiC) in sulfuric 
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acid electrolytes and the electrochemical stability of aluminum carbide and calcium carbide in 

nonaqueous electrolytes. The best of this author’s knowledge this is the first report on the 

electrochemical stability of microparticles of chromium carbides, aluminum carbide and calcium 

carbide in a liquid electrolyte.  
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Chapter 2: Experimental Methods 

This chapter describes the experimental methods for the investigation of ionic carbide 

reactions with post transition metal salts in the molten and solution state. The methodology for the 

study of the electrochemistry of carbide micro particles at a solid electrode is also presented. The 

objectives of the molten salt experiments were to determine whether the metallic cation in the 

molten state would oxidize the carbide to elemental carbon and to determine the form of carbon 

produced. The objectives of the solution state experiments were to determine: 1) if the metallic 

cation in solution state would oxidize the carbide to elemental carbon, 2) the form of the carbon 

produced, and 3) measure the current exchanged during the redox process. The goal of the 

voltammetry of microparticles (VMP) experiments were to study the electrochemical behavior of 

metal carbides isolated and immobilized on an inert, solid electrode. Specifically, the objectives 

of these experiments were: 1) to examine the electroactivity of carbide microparticles, 2) measure 

the potentials at which the carbide microparticles are oxidized or reduced and 3) determine whether 

this behavior is reversible. 

2.1 Molten Salt Reactions 

This research reports on investigations of the reactions between calcium carbide and 

molten zinc chloride (Nasco Scientific, Lab grade) (R 2.1) and aluminum carbide and tin chloride 

(Acros Organics, 98%) (R 2.2). The reactants were prepared under an argon atmosphere. In each 

case, powdered carbide and anhydrous salt were mixed together in a mortar and pestle. The amount 

of salt used was always in 100% stoichiometric excess. In the case of calcium carbide (Fisher 

Scientific, 75-80%), it was usually ground to 20 mesh particle size to increase the carbide surface 

area. The aluminum carbide (Alfa Aesar, 99%) is only available in in one particle size, ~325 mesh 

or ~45 microns.  

 𝐶𝑎𝐶2 + 𝑍𝑛𝐶𝑙2 → 2𝐶 + 𝐶𝑎𝐶𝑙2 + 𝑍𝑛
0 R 0.1 
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 𝐴𝑙4𝐶3 + 6𝑆𝑛𝐶𝑙2 → 3𝐶 + 4𝐴𝑙𝐶𝑙3 + 6𝑆𝑛
0 R 0.2 

The mixed reactants were loaded into a glass ampoule. The neck of the glass ampoule was cut and 

then loaded into a pipe bomb reactor and sealed. Figure 2.1 shows the pipe bomb reactor and glass 

ampoules.  

 

Figure 0.1 Pipe bomb reactor and glass ampoules for molten salt reactions 

The temperature necessary for reaction had to be high enough to melt the salt but not high enough 

to boil. Table 2.1 presents the liquid range of the metal chloride salts used in this research. In 

experiments with calcium carbide and zinc chloride, the reaction was heated to 302℃ for a 

residence time of 72 hours. Experiments with aluminum carbide and tin chloride the reaction 

temperature was 257℃ and the residence time was 72 hours.  

Metal Chloride Salt Melting Point (ᵒC) Boiling Point (ᵒC) E0 of metallic cation 

(V) 

SnCl2 247 632 -0.13 

ZnCl2 290 732 -0.76 
Table 0.1 Selected properties of metal chloride salts used in this research. Note: E0 are standard 

state potentials. 
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 The physical form of the raw products for each reaction was a heterogeneous, solid mixture 

of metal salts, unreacted carbide, carbon, elemental metal and metal oxides and hydroxides. This 

mixture was characterized via SEM studies prior to chemical separation of the products.1–3 Tin 

oxides (SnO, SnO2), zinc oxide (ZnO), aluminum hydroxide (Al(OH)3) and calcium hydroxide 

(Ca(OH)2) are amphoteric and insoluble in water. Therefore, these oxide and hydroxide products 

and byproducts were separated chemically via reaction and dissolution with 6M hydrochloric acid 

(HCl). The chemical reactions involved in the separation process with dilute hydrochloric acid are 

shown below. 

 𝐶𝑎𝐶2 +𝐻𝐶𝑙 → 𝐶2𝐻2 + 𝐶𝑎𝐶𝑙2 R 0.3 

 𝐴𝑙4𝐶3 + 12𝐻𝐶𝑙 → 4𝐴𝑙𝐶𝑙3 + 3𝐶𝐻4 R 0.4 

 𝑍𝑛 + 2𝐻𝐶𝑙 → 𝑍𝑛𝐶𝑙2 + 𝐻2 R 0.5 

 𝑆𝑛 + 2𝐻𝐶𝑙 → 𝑆𝑛𝐶𝑙2 +𝐻2 R 0.6 

 𝐶𝑎𝐶2 + 𝐻2𝑂 → 𝐶2𝐻2 + 𝐶𝑎(𝑂𝐻)2 R 0.7 

 𝐴𝑙4𝐶3 + 12𝐻2𝑂 → 4𝐴𝑙(𝑂𝐻)3 + 3𝐶𝐻4 R 0.8 

 𝑍𝑛𝑂 + 2𝐻𝐶𝑙 → 𝑍𝑛𝐶𝑙2 + 𝐻2𝑂 R 0.9 

 𝐶𝑎𝑂 + 𝐻2𝑂 → 𝐶𝑎(𝑂𝐻)2 R 0.10 

 𝐶𝑎(𝑂𝐻)2 + 2𝐻𝐶𝑙 → 𝐶𝑎𝐶𝑙2 + 2𝐻2𝑂 R 0.11 

 𝐴𝑙(𝑂𝐻)3 + 3𝐻𝐶𝑙 → 𝐴𝑙𝐶𝑙3 + 3𝐻2𝑂 R 0.12 

 𝑆𝑛𝐶𝑙2 + 𝐻2𝑂 → 𝑆𝑛(𝑂𝐻)𝐶𝑙 + 𝐻𝐶𝑙 R 0.13 

 

The remaining carbon material was isolated via vacuum filtration, washed with distilled water and 

methanol and dried in an oven to evaporate off residual methanol. 

The process of chemical separation of the carbon product from the byproducts was often 

laborious. The metal oxides and hydroxides, particularly Al(OH)3, often precipitated in a gel that 

blinded the filters.  This situation necessitated further treatment with acid or base to shift the 
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equilibria to the soluble aluminum complex. Additionally, treatment with dilute acids proved 

sufficient in isolating the carbon products in all cases with the exception of tin oxides, which can 

form due to moisture and oxygen impurities. SnO2 is insoluble in water and not as readily reactive 

with hydrochloric acid. Therefore, reactions with tin chloride required a further chemical 

separation step with hot, concentrated potassium hydroxide, which yields a soluble potassium 

stannate complex (R 2.14). 

 𝑆𝑛𝑂2 + 𝐾𝑂𝐻 → 𝐾2[𝑆𝑛(𝑂𝐻)6] R 0.14 

2.2 Solution State Reactions 

We hypothesized that reactions R 2.1 and R 2.2 would proceed at lower temperatures in 

the solution state. The primary reason these reactions are spontaneous in the molten state is the 

fact that the ionic salts in the liquid state completely dissociate into their constituent ions.4 Thus, 

mass transport of the metal ions is much higher allowing the oxidation of the carbide to occur at 

much higher rates. Dissolution of the same salts in nonaqueous solvents should also increase the 

rate of mass transport. Additionally, the lower temperatures and milder environment allowed for 

the construction of reaction vessels with stirring that further increased the rate of mass transfer.  

Moreover, separation of the two half-reactions in a two-compartment reaction cell accomplished 

two things: 1) enabled monitoring of the current exchanged during the redox reaction and 2) easier 

isolation of carbon produced during the reaction. 

Preliminary experiments with aluminum carbide and salts dissolved in anhydrous, 

nonaqueous solvents indicated that aluminum carbide was not reactive with late transition metal 

salts in the solution state.2 Thus, only the reaction of calcium carbide and zinc chloride was 

investigated.  This reaction can be separated into two half-reactions: 

 𝐶𝑎𝐶2 → 𝐶𝑎
2+ + 2𝑒− + 2𝐶 R 0.15 
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 𝑍𝑛2+ + 2𝑒− → 𝑍𝑛 R 0.16 

R 2.15 is the oxidation of the carbon anion in calcium carbide at the anode, and R. 2.16 is the 

reduction of zinc ion at the cathode. The chloride anion is a spectator ion and is not included in the 

half-reactions.  

The nonaqueous solvent chosen for these experiments was ethanol (CH3CH2OH). 

Although, ethanol does react with calcium carbide this reaction (R 2.17) is slow compared with 

the oxidation of calcium carbide by dissolved zinc ions.  

 𝐶𝑎𝐶2 + 𝐶𝐻3𝐶𝐻2𝑂𝐻 → 𝐶𝑎(𝑂𝐶𝐻2𝐶𝐻3)2 + 𝐻2𝐶2 R 0.17 

 

Additionally, metal chloride salts are insoluble in  aprotic solvents because chloride anions require 

hydrogen bonding for stabilization with the solvent5. For example, metal chloride salts are more 

soluble in methanol, but we found that the parasitic reaction between methanol and calcium carbide 

was faster than the reaction between calcium carbide and ethanol. Thus, the choice of ethanol as a 

solvent was a compromise between zinc chloride’s solubility and the solvent’s reactivity with the 

carbide. The ethanol (PTI Process Chemicals, denatured) was prepared by distillation and drying 

with molecular sieves according to standard methods in the literature6. Saturated ethanol solutions 

were prepared by dissolving anhydrous zinc chloride (Nasco Scientific, laboratory grade) and 

calcium chloride (Nasco Scientific, desiccant grade) in dry ethanol. 

Section 2.2.1 details the experimental methods and cell design for the galvanic reactions. 

Section 2.2.2 describes the experimental methods and cell design for the controlled potential 

electrolysis experiment. 
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2.2.1 Galvanic Reactions of Calcium Carbide and Zinc Chloride 

Figure 2.2 shows the two-compartment cell used for the galvanic reactions. The anode 

compartment of the cell was filled with the saturated calcium chloride solution and the cathode 

compartment was filled with the saturated zinc chloride solution. Each compartment was sealed at 

frosted joints with glass caps fabricated with nipple openings to permit the insertion of the 

electrodes.  A salt bridge in the form of a glass tube with a glass frit and stopcock valve separated 

the two compartments. 

 

Figure 0.2 Two compartment cell with glass fritted salt bridge for solution reactions 

The cathode was a polished zinc rod. The zinc rod was inserted into the nipple openings 

on the caps and nestled within flexible Tygon tubing also attached to the nipple openings. The 

cathode compartment was sealed by tightening a hose clamp on the flexible tubing. The anode 

took the form of a stainless steel, perforated, hollow sphere that could be opened and closed via a 

rotational mechanism. The stainless-steel sphere was connected to a hollow stainless steel tube. 

The stainless-steel tube was nestled in flexible Tygon tubing, which connected to a bubbler filled 

with methanol to prevent moisture from re-entering the cell. A hole drilled in the side of the 

stainless-steel tube allowed vapors produced during the experiment to escape through the bubbler. 
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Calcium carbide pieces were loaded into the anode. An advantage of the stainless-steel anode was 

that calcium carbide pieces could be tightly loaded within the sphere ensuring good electrical 

contact during the experiment. A disadvantage was the steel’s susceptibility to corrosion in 

chloride electrolytes.  

Electrolyte solutions were prepared, magnetic stir bars were added to each compartment 

and the cell was assembled under argon atmosphere in a glove box. After sealing the cell by 

tightening the hose clamps on the flexible tubing around the electrodes, the cell was carefully 

removed from the glove box to a hood. Each compartment of the cell was placed on a magnetic 

stirring plate. The cell and bubbler was clamped to a ring stand assembly for stability. The current 

was monitored with a multimeter connected to the two electrodes in series. The reaction was 

allowed to proceed for 2 to 4 days. 

After 2 to 4 days the cell was disassembled. The contents of the anode were added to 6M 

HCl solution to separate any carbon produced by the reaction from unreacted carbide and calcium 

oxide and hydroxide. The carbon was isolated by vacuum filtration, washed with DI water and 

methanol and dried for characterization and further analysis. 

 

2.2.2 Controlled Potential Electrolysis 

Figure 2.3 shows a diagram of experimental set-up for the controlled potential electrolysis 

experiment. This experiment utilized the same two-compartment cell, electrolytes, anode and 

cathode. However, a third reference electrode was added so that the potential could be controlled 

by a potentiostat. This reference electrode was a double junction Ag/AgCl electrode. The reference 

electrode was connected to the reference lead, the carbide electrode to the working electrode lead 

and the zinc rod the counter electrode lead of the potentiostat. The poteniostat was a BASi CV-27 
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voltammograph connected to a BASi PWR-3 Power Module. A multimeter was also connected in 

series between the zinc and carbide electrodes.  

First, the current at 0V was measured. At this point the potential at which calcium carbide 

oxidizes was still unknown. Therefore, a potential of +14V was applied in an attempt to drive an 

oxidation at the carbide electrode. The electrolysis was allowed to run for 4 days. During this time, 

current and observations of visual changes in the cell were recorded. The cell was disassembled, 

the contents of the anode were added to 6M HCl to separate any carbon produced by the reaction 

from unreacted carbide and calcium oxide and hydroxide. The carbon was isolated by vacuum 

filtration, washed with DI water and methanol and dried for characterization and further analysis. 

 

Figure 0.3 Diagram of three-electrode set-up for controlled potential electrolysis experiment in two-

compartment cell. 
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2.3 Electrochemical Methods 

The following sections describe the methodology developed and adapted to study the 

electrochemical behavior of carbide microparticles immobilized on the surface of an inert, solid 

working electrode.  

2.3.1 General Experimental Considerations for Electrochemical Analyses 

Before electrochemical analyses may be performed, an appropriate experimental system 

must be designed. The primary parameters to be considered are a suitable electrolyte and 

supporting electrolyte pairing, an appropriate electrochemical cell configuration and an 

appropriate working electrode.5,7–10 

The requirements on a suitable electrolyte are as follows. The electrolyte must be a solvent 

that is unreactive with the electroactive species under study. The solvent must also have a high 

dielectric constant for sufficient ionic conductivity and the ability to dissolve appreciable amounts 

of salts, which support the conductivity of the electrolyte. These salts are termed the supporting 

electrolyte. Voltammetric studies of ionic carbides, i.e. calcium carbide and aluminum carbide, 

were performed in nonaqueous, anhydrous electrolytes due to their water reactivity. Therefore, the 

solvent used was HPLC grade acetonitrile (MeCN, Fisher Scientific) which was dried over 

molecular sieve by standard methods.6 The supporting electrolytes were potassium 

hexafluorophosphate (KPF6, Acros Organics, 99%), tetrabutylammonium hexafluorophosphate 

(TBAHFP, TCI, >98%) or calcium triflate (CaTf, 99.5%). Voltammetric studies of tungsten 

carbide (WC, Alfa Aesar 99%), two chromium carbide phases (Cr3C2 and Cr23C6, both Alf Aesar, 

99.5%), and silicon carbide were performed in aqueous electrolyte. The supporting electrolyte for 

aqueous electrolytes was 0.5M sulfuric acid, prepared with de-ionized water (18 MΩ·cm). 
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Figure 2.1 shows the configuration of the electrochemical cell used for this research. A 

three-electrode configuration consisting of a working electrode (WE), reference electrode (RE) 

and a counter electrode (CE). For measurements in nonaqueous electrolytes, a homemade glassy 

carbon electrode (GCE) was used as the WE and a platinum wire was used as a pseudo reference 

electrode. For measurements in aqueous electrolytes, a paraffin impregnated graphite electrode 

(PIGE) was used as the WE and a Ag/AgCl 3 M NaCl reference electrode was used.  A textured, 

platinum wire was used for the CE in all cases. As shown in Figure 2.1, each electrode was 

contained in a compartment separated by a glass frit to ensure there would be no contamination 

from products resulting from electrochemical processes at the counter electrode. 

 

Figure 0.4 Schematic of three compartment electrochemical cell 

In addition to a suitable electrochemical cell configuration, an appropriate working 

electrode (WE) must be chosen. The WE is the transducer in electrochemical analyses, e.g. 

converting the rates of charge and mass transfer into electric current as in voltammetry. In most 

cases it is necessary that the WE is a good electronic conductor, presents no chemical interference 
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with the electroactive species of interest and is electrochemically inert. Two working electrodes 

were used for VMP studies: a glassy carbon electrode (GCE) and a paraffin impregnated graphite 

electrode (PIGE). More detailed discussion of the choice of WE is presented in the following 

sections. The determination of the inert potential window for specific electrochemical systems is 

almost impossible ab initio. Therefore, a systematic experimental methodology was employed to 

establish the inert potential window of each system before analysis of carbide microparticles took 

place. We followed a method adapted from the recent report of Jaramillo et al.11 The results and 

discussion of the potential window studies are presented in Appendix B.  

A PalmSens Emstat Blue 3+ potentiostat, shown in Figure 2.5, was used for voltammetric 

measurements. Before measurements were initiated, the electrolyte was always sparged with UHP 

argon for 20 minutes to remove any dissolve oxygen.  

 

Figure 0.5 PalmSens Potentiostat model Emstat blue 3+ (Left) and electrochemical cell (Right) 
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2.3.2 Open Circuit Potentiometry 

Potentiometric analysis methods involve measuring the potential between two electrodes 

in the absence of current. One of the electrodes is a reference electrode (RE). The second electrode 

is called an indicator electrode, rather than working electrode (WE) as in voltammetry. In 

potentiometry, the potential measured at the indicator electrode is dependent on the activity of a 

specific ion in the test solution. Examples of indicator electrodes include electrodes selective for 

metallic cations in solution, fluoride ions and pH meters.12 

Open circuit potentiometry (OCP) is a standard measurement to perform prior to 

voltammetric experiments when one does not know what the standard redox potential or the redox 

state of the system under study9. This may be done in the same electrochemical cell for the 

voltammetric measurements, using the same RE and the WE as the “indicator electrode.” The CE 

is not electrically connected for OCP measurements. It can be assumed that in the absence of 

current no significant electrochemical reactions are occurring. Thus, the measured OCP may be 

used as the initial potential, Ei, from which voltammetric sweep may be initiated. Initial potentials 

for the voltammetric studies in this work were determined with OCP. 

 

2.3.2 Cyclic Voltammetry (CV) 

Voltammetry is a category of electroanalytical techniques in which the current of an 

electrochemical system is measured in response to an applied potential. If the applied potential is 

thermodynamically favorable, the species under study can either be oxidized or reduced (R 2.18). 

The faradaic current response when the species is reduced is called cathodic current and when it is 

oxidized is anodic current. 

 𝑂𝑥 + 𝑒− ↔ 𝑅𝑒𝑑 

 

R 0.18 
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The Nernst Equation establishes the relationship between the activities of the oxidized (Ox) and 

reduced species (Red) at equilibrium: 

 
𝐸 = 𝐸0 −

𝑅𝑇

𝑛𝐹
ln
𝑎𝑅𝑒𝑑
𝑎𝑂𝑥

 
E 0.1 

 

E is the potential at the working electrode, E0 is the standard reduction potential of the Ox/Red 

redox couple, and aRed and aOx are the activities of Ox and Red. It is important to distinguish 

between the use of E0 and E0’. E0 is the standard reduction potential of a half-cell at standard state 

measured against the standard hydrogen electrode (SHE) reference cell. E0’ is the formal potential 

which is a value measured at conditions deviating from the standard state.  

 In cyclic voltammetry (CV) an initial potential (Ei) is applied to the working 

electrode. The potential is chosen such that no redox process can occur. The excitation potential is 

scanned at a constant scan rate, ν, from the initial potential (Ei) to a final potential (Ef). An example 

of this potential waveform is shown in Figure 2.6. The initial potential is selected positive of E0’, 

the thermodynamic potential at which the oxidized species (Ox) is reduced. At these potentials 

only nonfaradaic (charging) current flows. As the potential approaches E0’ reduction starts, and the 

current begins to rise. As the applied potential passes E0’ the current continues to rise, and mass 

transfer of the Ox reaches a maximum rate and the current peaks at Ep
c. The current drops off as 

the concentration of Ox at the WE surface is depleted.7 
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Figure 0.6 Plot showing excitation signal vs. time in CV experiments. 

The peak currents for a reversible reaction is given by the Randles-Sevcik equation given 

below. 

 
𝑖𝑝 = (2.69 × 10

5)𝑛
3
2⁄ 𝐴𝐷0

1
2⁄ 𝜈
1
2⁄ 𝐶0 

E 0.2 

The peak currents ip depend upon the number of electrons exchanged (n), the area of the WE (A), 

the diffusion coefficient (D0), the scan rate ν and the bulk electrolyte concentration (C0). 

Information such as the number of electrons exchanged or the diffusion coefficient for the system 

may be extracted if all other variables are known. 

The electron transfer kinetics of a system may be examined via CV by varying the scan 

rate and observing the change in the current peak position. If the electron kinetics are fast the 

magnitude of the peak current will rise but occur at the same potential. If the current peak positions 

shifts with increasing scan rates then the electron kinetics are considered slow relative to the scan 

rate. 
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Cyclic voltammetry is similar to LSV. In this case the potential is swept from an initial potential 

(V1) to a second potential (V2), now termed the switching potential, and then reversed at a constant 

scan rate back to the initial potential. The potential excitation signal versus time and the resulting 

faradaic current response versus applied potential for an ideal, one electron reversible redox couple 

is shown in Figure 2.7. A reversible redox system is both thermodynamically reversible as well as 

kinetically reversible in terms of electron transfer between the redox species and working 

electrode. This example is presented in the American convention.  

The separation (ΔE) between the anodic (ip
a) and cathodic peak currents (ip

c) of an ideal, 

reversible redox couple is 

 
∆𝐸 = 𝐸𝑝

𝑎 − 𝐸𝑝
𝑐 =

59

𝑛
𝑚𝑉 

 

E 0.3 

In practical applications cell resistance may increase the peak separation beyond the ideal value. 

However, if ΔE is less than 100/n mV and independent of scan rate the redox couple is 

electrochemically reversible.13 Cyclic voltammetry can also yield information on the number of 

electrons exchanged, the diffusion coefficient, kinetics and the reversibility of the system. Thus, 

CV is typically used as the first diagnostic tool to analyze an electrochemical system. 



61 

 

 

Figure 0.7 Cyclic voltammogram of 6mM K3Fe(CN)6 in 1 M KNO3. Scan initiated at 0.8V v. SCE in 

the negative direction at 50 mV/s at a platinum WE. 

2.3.3 Methods for the Electrochemical Analysis of Solids in Liquid Electrolytes 

This section is a brief review of the different methods for investigating the electrochemical 

behavior of solid compounds in liquid electrolytes. Furthermore, we explain the reasons we chose 

the technique voltammetry of microparticles (VMP) for our research.  

In a broad sense, the electrochemistry of solids at a liquid electrolyte phase boundary are 

studied by three methods. These three methods include the use of a working electrode comprised 

of the solid to be studied, incorporation of the solid into a composite electrode, or by attaching 

particles of the solid to the surface of an electrode. The first method in which the WE is the solid 

itself is the historical and primary method used in corrosion studies of the oxidation and dissolution 
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metals and metal alloys.14,15 This method requires that solid has good electronic conductivity in 

order to obtain results. Figure 2.8 shows a typical electrochemical cell used for corrosion studies. 

In this particular study, the WE is a sample of 316L stainless steel in artificial bone fluid solution 

to determine the steels suitability for use in joint implants. 

 

Figure 0.8 The electrochemical cell for a corrosion study of 316L stainless steel samples in artificial 

bone fluid solution. This experimental set up consists of a graphite counter electrode, a sample of 

steel as the working electrode and a reference electrode with a Luggin capillary to minimize iR 

drop16. 

Tallman and Peterson17 define a composite electrode as a surface that consists of arrays or 

ensembles of conductor regions separated from one another by an insulator. Many electrochemical 

studies of solid materials utilize electrodes that fall within this definition. The second method 

entails the mixing the solid with conductive powder (usually carbon powder such as carbon black, 

graphite etc.) to support electronic conductivity and a binder to form a composite electrode. There 

are many composite electrode variations depending on the type of solid compound under study, 

the type of information desired and the applications. The earliest example of this is the carbon 

paste electrode developed by Ralph Adams in 1958.18 CPEs are now utilized in many fields for 
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biological and analytical applications because of the ease of incorporating chemical modifiers into 

the paste to improve selectivity for certain analytes.19–21 Figure 2.9 shows the specific process and 

paste recipe for a CPE modified with multi-walled carbon nanotubes (MCNTs) for the selective 

accumulation and determination of trace amounts of bismuth using differential pulse anodic 

stripping voltammetry.22  

 

Figure 0.9 Process for fabrication of carbon paste modified with MCNTs for the selective 

determination of trace bismuth using differential pulse anodic stripping voltammetry. The paste is 

prepared by mixing carbon powder, mineral oil as a binder and MCNTs together in a mortar and 

pestle. The paste is packed into an electrode body and inserted into an electrochemical cell for the 

acquisition of data. 

In the study of solids, CPE has proven useful for the analysis of poorly conducting materials such 

as lead oxides,23 silver halides,24 and metal chalcogenides.25,26 However, most CPE binders are 

miscible in organic solvents.27,28 Thus, the CPE is not compatible with nonaqueous electrolytes.  

Researchers in the battery field routinely use composite electrodes to study the 

electrochemical behavior of electrode materials. In lithium ion battery (LIB) research, battery 

electrodes are prepared from the electrode material, which has reversible electrochemical behavior 

(e.g. LiCoO2), an additive to support conductivity and a binder. The conductive support is typically 

carbon powder and the most common binder is polyvinylidene fluoride (PVDF). These 

components are mixed together in a slurry in a solvent with a high solubility for the binder such 

as N-methyl-2-pyrrolidone (NMP). The slurry is cast or “doctor bladed” onto a current collector, 

and the solvent is evaporated off to leave behind a solid, composite electrode for electrochemical 

analysis.29 However, in these composite electrodes, the interfaces between the particles of 
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electroactive material and conductive support is often interrupted by pores or the insulating binder, 

leading to slower charge transfer kinetics. Thus, voltammetric scan rates in the μV/s range are 

required to compensate for the slow charge-transfer processes. Fiedler, Besenhard and Fooken 

demonstrated that the electrochemical characterization of battery electrode materials can be 

conveniently achieved via VMP at faster scan rates up to mV/s range.30 By mechanically 

immobilizing ensembles of particles on the surface of a WE, the process of incorporating the solid 

particles into a composite electrode is no longer necessary, eliminating the porosity and insulating 

binder that slows charge transfer kinetics.  

2.3.3.1 Voltammetry of Microparticles (VMP) for the Electrochemical Analysis of Solids 

 

Voltammetry of microparticles (VMP) refers to a technique for immobilizing ensembles 

of solid microparticles or crystals on the surface of a solid electrode (Figure 2.10). Fritz Scholz 

first reported on this technique in 1989,31,32 and the abbreviations VIM and VIMP are also used to 

refer to it. These modified electrodes can be prepared by deposition of solids from a suspension in 

a volatile solvent, and the solvent is evaporated off. Single crystals have been attached to electrode 

surfaces using a needle under a microscope. Microparticles from powders may be immobilized on 

electrode surface by mechanical transfer or abrasion. In this method the electrode surface is rubbed 

in a sample spot of the powder. This method of sample preparation has been heavily utilized due 

to its simplicity. In some cases, solid microparticles may be transferred from the polished surfaces 

of larger, compact solids.33,34 

Despite the ease of sample transference and electrode modification, this technique has a 

few disadvantages. The first of these is the lack of control of the amount of sample loaded. 

Variations in the amount of sample on the electrode leads to variations in peak currents and peak 

potentials. However, the dependence of peak potential on the activity of the solid can be 



65 

 

surmounted by employing a calibration curve.35 Additionally, the particle size, shape36 and 

distribution on the electrode surface affect the shape of the voltammetric peaks. Voltammetric 

peaks of ensembles of micrparticles are broader than those obtained from single particles.30    

    

 

Figure 0.10 Ensembles of solid-microparticles (in red) immobilized on the surface of a solid 

working electrode (WE) 

When it comes to electrochemical analyses there are three types of solid compounds: 1) 

those which are electrochemically inactive, 2) those which are irreversibly destroyed by oxidation 

or reduction, 3) those which can undergo reduction and oxidation reversibly8. The electrochemical 

activity of the solid depends on several factors including thermodynamic stability, electronic 

density of states and charge transfer kinetics at the interfaces of the solid and the ion conductor 

(electrolyte) and electronic conductor (working electrode).37  

There is no limitation on the electrochemical analysis of solids with respect to electrical 

conductivity; the electrochemical analysis of insulating compounds by VMP is well 

established.34,38,39 Solid compounds that undergo reversible reduction and oxidation have the 
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ability to exchange electrons with the electrode and ions with the electrolyte. This ability requires 

that the compound has structural features, such as cavities, channels or interlayers, which can 

house the ions. Thus, these types of solids have mixed ion and electronic conductivity.40 A well-

studied example of a solid with reversible redox behavior in aqueous electrolyte is Prussian blue.41–

44 

Carbon electrodes are well suited to VMP studies because they are good electronic 

conductors, inexpensive, and have a wide inert electrochemical window. The hardness of the 

carbon electrode, and therefore ability to adhere solid particles, is dependent upon the carbon 

structural phase. As a soft material graphite is appropriate for the mechanical adhesion of hard, 

inorganic microparticles. Soft organic particles adhere preferentially to harder surfaces such as 

glassy carbon. However, mechanical adhesion between hard, ceramic particles and harder glassy 

carbon can be achieved through surface roughening.30,45 

2.3.3.4 Analytical Information Accessible via VMP 

A great deal of qualitative and quantitative information can be obtained from solid-state 

electrochemical analysis (SSEAC) utilizing VMP. This includes determination of elemental 

composition, phase composition, structural information, reactivity and mechanistic information, 

and calculation of thermodynamic data measured potentials.  

Scholz and Meyer calculated the standard Gibbs energies of transformations of various 

sulfosalt minerals (R 2.19) based on measurements of the cathodic peak potentials of the reduction 

and dissolution of microcrystalline samples immobilized on the surface of a graphite electrode. 

 𝐴𝑔3𝐴𝑠𝑆3(𝑥𝑎𝑛𝑡ℎ𝑜𝑐𝑜𝑛𝑖𝑡𝑒) → 𝐴𝑔3𝐴𝑠𝑆3(𝑝𝑟𝑜𝑢𝑠𝑡𝑖𝑡𝑒) R 0.19 

Other thermodynamic data that has been obtained by this technique includes the calculation of 

stability constants for solid lead and mercury dithiocarbamate complexes,46 redetermination of 
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solubility products of insoluble compounds such as CuSe47 and examination of the 

thermodynamics of mixing of solid solutions and nonstoichiometric compounds.48  

Although solid-state electrochemistry cannot provide absolute structural data like x-ray 

diffraction, it is possible to derive reliable structural information from the “fingerprint” 

electrochemical response of solids similar to many spectroscopic techniques.49 Enable 

identification and differentiation between structural polymorphs which the same chemical 

composition due to differences in electrochemical responses. For example, Grygar showed that 

hematite (α-Fe2O3), maghemite (γ-Fe2O3), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH) 

undergo reductive dissolution at different rates and different peak potentials.50 

Additionally, the relative quantification of Fe(III), Fe(II)51 and zirconium52 has been 

determined in archaeological ceramics by Doménech’s group who have used solid-state 

electroanalytical chemistry and VMP extensively in archaeometry.33,53–57 The Fe(III)/Fe(II) ratios 

in ceramic samples were determined from peak area measurents in linear scan voltammograms 

and from a semi-empirical method based on peak current measurements during CV cycling. 

Zirconium was determined via a standard addition method using ZnO as a reference compound.   

Unambiguous phase identification and quantitative analysis of minerals covellite-

klockmannite (CuSxSex-1) and emplectite-chalcostibite (CuBixSb1-xS2) has been demonstrated via 

VMP abrasive stripping methods. Figure 2.11 a) shows the reduction voltammograms of CuS, 

CuSe and nonstoichiometric compound CuSe0.4S0.6. Figure 2.11 b) shows the reduction 

voltammogram of a 1:2 mechanical mixture of CuS and CuSe. There is one peak for CuS around 

-0.3V and a peak for CuSe around -0.5V. The nonstoichiometric compound has one peak at a 

potential between the peak potential values for pure CuS and CuSe. However, a sample which is 
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just a mechanical mixture of pure phases CuS and CuSe yields two separated voltammetric peaks 

with peak currents corresponding to the relative amounts of sample.   

 

Figure 0.11 Cathodic voltammograms of a) CuS, CuSe and CuS0.6Se0.4 and b) a mechanical mixture 

of CuS and CuSe (1:2). Electrolyte: 1 M H2SO4, scan rate: 0.011V/s47 

Electrochemically driven, topotactic transformations have been observed with VMP 

coupled with in situ techniques such as XRD58 and atomic force microscopy (AFM).59 Figures 

2.12 a), b) and c) present the data from these studies. Figure 2.12 a) displays the reduction 

voltammogram of tetragonal PbO (litharge) to cubic Pb. Figure 2.12 b) shows the X-ray pairs of 

reflections collected in real-time as the crystal of PbO is reduced. Before reduction, only the 

reflections for PbO at 2.51 A is detected. These reflections decrease at the onset of reduction and 
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the reflections for Pb at 2.48 A simultaneously increase. This instantaneous solid-state 

transformation from PbO to crystalline, cubic Pb was confirmed by in situ AFM results. Figure 

2.12 c) shows an AFM micrograph of a PbO crystal after a 1s reduction, showing the reaction front 

on the crystal in the midst of its transformation. 

 

Figure 0.12 Electrochemical reduction of red tetragonal PbO (litharge) in situ coupled with X-ray 

diffraction. PbO was mechanically immobilized on the surface of a paraffin impregnated graphite 

electrode, electrolyte: 1 M KCl, a) linear sweep voltammogram with scan rate 0.1mV/s, b) 

corresponding diffraction pattern showing simultaneous decrease in PbO reflection and increase in 

Pb reflections. Signal pairs between -0.5 and -0.8V are PbO reflections at d = 2.51 A, signal pairs 

between -1.1 and -1.5V are Pb reflections at d = 2.48 A (for further details see text58), c) atomic 

force micrograph of a PbO crystal on a gold surface in 1 M KCl after a reduction for 1 showing a 

step at the reaction front of the PbO to Pb transformation.59 

2.3.3.3 Preparation of Paraffin Impregnated Electrode (PIGE) 

PIGE is particularly suited to the mechanical attachment of solid microparticles as graphite 

is both a good conductor and a soft material. Wax impregnation further improves the electrode 

performance by increasing the electrodes adhesive properties and decreasing the amount of 

charging current observed in voltammograms by inhibiting intercalation of the supporting 

electrolytes into the graphite. The PIGE was prepared from a graphite rod (Alfa Aesar) of high 

purity of dimensions 6.15 mm in diameter and 152 mm in length. Paraffin wax was melted in a 
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vacuum oven and the rod was placed in the melt. The oven was then evacuated. After a minimum 

of four hours the oven was re-pressurized, the rod was removed from the liquid wax and polished 

gently on paper after cooling.  

After this process, solid particles may be mechanically attached by rubbing the polished 

end of the PIGE into the powdered sample spot dispersed on a glass plate. The PIGE is then 

inserted into the cell and raised so that the modified surface just touches the electrolyte. Cleaning 

the solids off the PIGE after experiments involves polishing the PIGE on clean paper until a blank 

CV is obtained.  

 

Figure 0.13 Preparationg of PIGE: a) high-purity graphite rod in b) paraffin wax assembly which is 

placed in c) vacuum oven at 125ºC for 2-4 hours. 

2.3.3.4 Surface Preparation of Glassy Carbon Electrode (GCE) 

A glassy carbon electrode (GCE) was machined from a glassy carbon rod (Alfa Aesar, ash 

< 100 ppm) with dimensions 100 mm in length and 4 mm in diameter and an aluminum rod. The 

aluminum rod provided the electrical contact between the potentiostat and the GCE. There was no 

insulating covering over the body of the GCE. During measurements, the GCE was lifted up and 
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secured so that only the circular face of the GCE was touching the electrolyte to maintain a constant 

electrode area.  

Abrasive attachment of carbide particles damages the surface of the GCE. Therefore, GCE 

surface was rigorously cleaned and polished between every experiment. The GCE was soaked in 

3M HCl to remove any residual carbide, oxide or hydroxide particles for a half hour and sonicated 

in DI water. The GCE was then polished successively with medium emery paper, fine emery paper 

until the surface appeared homogenous under a magnifying glass. Then the electrode was sonicated 

in DI water to remove dislodged carbon particles from the surface. The GCE was then polished on 

carbimet emery paper of 1200 grit or 12 microns. Following sonication, the electrode underwent 

further polishing in slurries of DI water and alumina of particle sizes 1.0, 0.3 and 0.05 microns. 

The electrode was rinsed with DI water, isopropanol and sonicated in between each polishing step. 

The GCE was then stored over charged silica in a vacuum desiccator.   

2.3.2.5 Sample Preparation for VMP experiments 

In all cases, solid carbide particles were attached to the surface of carbon working 

electrodes via mechanical abrasion. All carbides studied in this research with the exception of 

calcium carbide are commercially available as powders and were used as received. Small samples 

of carbide powder were transferred to a clean, smooth glass plate. The circular face of the carbon 

electrode was carefully rubbed in the sample spot on the plate. Excess powder was removed by 

gentle tapping of the electrode before insertion into the electrochemical cell.  

In the case of calcium carbide, a small calcium carbide piece was selected and roughly 

crushed with a diamonite (synthetic sapphire) mortar and pestle.  Samples of calcium carbide were 

chosen for analysis from the powder that had originated from within the carbide piece to avoid 

surface samples with oxide and hydroxide contamination.  
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Chapter 3: Characterization Methods 

This chapter briefly reviews the instrumental techniques used for supporting analyses in 

this research. These analytical techniques were used primarily to characterize the carbon materials 

produced in molten salt and solution state reactions of ionic carbides with post-transition metal 

salts. These characterization methods include micro-Raman spectroscopy, scanning electron 

microscopy (SEM) coupled with electron dispersive spectroscopy (EDS), x-ray photoelectron 

spectroscopy (XPS) and powder x-ray diffraction (XRD). Additionally, SEM, Raman and XPS 

were utilized to characterize the carbon electrodes used for VMP studies and investigate the 

interactions between the carbon electrodes and nonaqueous electrolytes. Thus, reviews of each 

technique will have a focus on the techniques’ applicability to carbon materials’ characterization. 

3.1 Micro-Raman Spectroscopy 

The Raman Effect is a phenomenon in which incident light is inelastically scattered by 

molecular vibrations in a material. It is a heavily used analytical and characterization technique 

due to its wide applicability in many fields. Most molecular samples – e.g. solids, thin films, gels, 

liquids, mixtures, etc., yield Raman spectra. The spectra of materials are unique to the chemical 

compositions of these materials, and are used as chemical “fingerprints” for materials 

identification in many fields.1–5 Quantitative, structural and morphological analyses can also be 

obtained with specialized Raman spectroscopic methods such as resonance Raman spectroscopy 

(RRS),6,7 surface enhanced Raman spectroscopy (SERS), and polarized Raman spectroscopy. This 

survey of Raman spectroscopy is not meant to be exhaustive, but a brief review to give context for 

the analyses presented in this work. Raman spectroscopy was utilized in our research for the 

characterization of solid materials, especially the carbon materials produced from molten salt and 

solution reactions with aluminum and calcium carbide.  
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Instrumentation for Raman spectroscopy consists of a laser excitation source, a sample 

illumination system and a spectrometer.8 When the sample illumination system coupled to the laser 

and spectrometer is an optical microscope, micro-Raman spectroscopy can be performed. The 

intensity of a peak in the Raman spectrum of any compound is inversely proportional to the fourth 

power of the wavelength of the laser9 while the spatial resolution of the incident laser is directly 

proportional it. The wavelengths at which scattering and spatial resolution is optimal lie in the 

ultraviolet to near-infrared region. However, UV-Vis wavelengths may suffer from fluorescence 

interference. This can be mitigated by using NIR wavelength excitation.10  

A Renishaw InVia Raman Microscope with laser excitation of 532 nm with a maximum 

power of 100 mW, 1800 l/m grating was utilized for Raman analyses and characterization. Spectra 

were taken on the 50x objective typically at 10% unless otherwise stated. 
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3.1.1 Raman Spectroscopy of Solids 

The selection rules for Raman spectroscopy of solids differ from those for molecular 

spectroscopy and require some knowledge of solid-state physics for rigorous interpretation.3,11,12 

A brief introduction on solid-state Raman spectra is provided in this section. For a more complete 

review, we refer to references.3,11,13–15 

In addition to molecular point group symmetry, vibrations within the solid, in which the 

atomic vibrations are coupled to each other throughout the lattice must be considered. Therefore, 

both molecular and crystal symmetry must be taken into account. Lattice vibrations, called 

phonons, are characterized by wave vector, K. The length of K is equal to 2π/λ, where λ is the 

wavelength. There are two types of phonons: optical and acoustical. The former may be observed 

Figure 0.1 Renishaw inVia Raman Microscope 
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by optical spectroscopy, whereas the latter phonon type corresponds to sound waves traveling 

through solid media.  

 

Figure 0.2 The right panel shows the phonon dispersion curve for a lattice with two atoms in a unit 

cell. The left panel shows the density of states curves for both the optical and acoustical phonon 

branches.12 

The phonon frequency, 𝜔̅𝑲, depends on the length and direction of wave vector K. 

Dispersion curves such as the one shown above in Figure 3.2, illustrate the relationship between 

K and , 𝜔̅𝐾. The range from –π/a ≤ K ≤ π/a is called the first Brillouin zone (BZ), which is the 

zone physically relevant for spectroscopy. Raman scattering requires that energy be conserved 

 ℎ𝑐𝜔̅ − ℎ𝑐𝜔̅′ = ±ℎ𝑐𝜔̅𝑲 

 

E 0.1 
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where 𝜔̅, 𝜔̅′, and 𝜔̅𝑲 are the frequencies for incident light, scattered light and the phonon which 

is either created (+) or destroyed (-). Thus, the conservation of momentum in terms of wave vectors 

is  

 𝒌 − 𝒌′ = ±𝑲 E 0.2 

 

where k, k’, and K are the wave vectors for the incident light, scattered light and phonon 

respectively. Taking into account the geometry of the Raman experiment and the wavelength of 

the laser excitation require that K = 0 for a Raman process involving one phonon. In the simplified 

example in Figure 3.2 this corresponds to the phonon frequency, 𝜔̅0for the optical branch at K = 

0. In terms of molecular spectroscopy, this frequency can be considered the fundamental transition 

and in solid-state physics is termed the first order spectrum.  

Second order bands occur in Raman spectroscopy in which a two-phonon process occurs 

in the phonons propagate in opposite directions and are equal in magnitude, such that the solid-

state selection rule K = 0 is still satisfied. Second order bands are analogous with overtones and 

combination bands in molecular spectroscopy. 

Second order spectra can be interpreted by considering the vibrational density of states 

shown to the left in Figure 3.2. The density of states,𝑔(𝜔̅𝑲), is inversely proportional to the slope 

of the dispersion curve: 

 
𝑔(𝜔̅𝑲) =  𝛼 (

𝑑(𝜔̅𝑲)

𝑑𝑲
)

−1

 
E 0.3 

 

Thus, the density of states for the optical phonons are highest at the flat parts of the 

dispersion curve. In Figure 3.2, this occurs at the zone center, K = 0, and the zone boundary. In a 
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two-phonon process, sampling of phonons is not restricted to the zone center, and all K values are 

allowed provided that the selection rule K = 0 is still met. This means that for a two phonon, second 

order process the two phonons must have wave vectors that are equal in length but opposite in 

direction. In principle, all phonons on the dispersion curve in a second order process can be 

observed. Nevertheless, the maximum contributions come from the points at which the density of 

vibrational states is highest, at the zone center and zone boundary. 

The situation again becomes more complex when considering crystal size and semi 

crystalline and amorphous solid phases. The extreme case of true amorphous materials, e.g. 

glasses, lack long-range order resulting in the loss of translational symmetry. This wide range of 

molecular environments leads to broadened peaks and high scattering backgrounds. Semi-

crystalline phases have some long-range order and their spectral band activity is determined by the 

symmetry of chains or sites within the crystal. The spectra of semi-crystalline materials have a 

combination of crystalline and amorphous characteristics. This can be seen clearly in the 

comparison of spectra of amorphous type carbon materials, such as coke and glassy carbon, with 

crystalline carbon materials in the following section 3.1.3 Raman Spectroscopy of Carbon 

Materials.  

Furthermore, crystal size and lattice defects introduce additional spectral features. For 

example, point group theory assumes an infinite lattice, so when crystals are sufficiently small, i.e. 

10 nm or less, their symmetry is not accurately defined by the space group. This can lead to the 

activation of bands that were previously forbidden by theory. A classic example of this, is the 

activation of the silent A1g mode in small finite graphite crystals now known as the “D” peak in 

the spectra of graphitic materials.16 Similarly, lattice defects in sufficient concentrations also 

disrupt crystal symmetry, which can result in activation of forbidden bands or phonon confinement 
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in nanosized materials. Phonon confinement is a consequence of the localization of a phonon in a 

small region of space. This confinement introduces uncertainty in the phonon’s momentum and 

phase angle due to the uncertainty principle. The uncertainty in the phase angle gives rise to shifts 

and broadening of Raman bands. Osswald et al. have observed this phenomenon in nanodiamonds, 

studying the correlation of phonon confinement with both crystal size and lattice defects.17 

3.1.2 Artifacts and anomalies in Solid-State Raman Spectroscopy 

The anomalies and artifacts that occur in both solid-state and molecular Raman 

spectroscopy are similar. “Hot pixels” in CCD array detectors and low-level radiation events such 

as cosmic rays can cause sharp, irregular spikes to appear in spectra.9 Peaks due to cosmic rays 

appear randomly in the spectra most often at intensities higher than the Raman signals. Hot pixels 

are sharp and can be lower in intensity. Spectral artifacts due to hot pixels may be recognized by 

performing a dark noise scan, and they can be removed via software.  

3.1.3 Interpretation of Raman Spectra of Carbon Materials 

Raman spectroscopy is the gold standard for the characterization of carbon materials. 

Figure 3.3 shows the structures for a selected number of carbon allotropes. Raman characterization 

of carbon materials has been reviewed extensively in the literature.5,18–22 The Raman spectra of all 

carbon materials contain similar features, but are also highly sensitive to small structural changes. 

Here we will review the spectral features of amorphous, graphitic carbons, diamond and graphene, 

which are the most relevant to the research in this work. For details on the Raman spectra of 

nanomaterials such as carbon nanotubes5,23 and fullerenes24,25 the author refers to these 

reviews.23,25–27 
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Figure 0.3 Selected allotropes of carbon: a) diamond, b) graphite, c) lonsdaleite, d-f) fullerenes (C60, 

C450, C70); g) amorphous carbon, h) carbon nanotube. Source: 

https://courses.lumenlearning.com/introchem/chapter/allotropes-of-carbon/ 

 

3.1.3.1 Amorphous Carbons 

As mentioned in an earlier section, the Raman bands associated with glassy and amorphous 

type carbons are broad due to lack of long-range order and loss of translational symmetry, which 

results in a broad distribution of states. There are many different types of amorphous carbons and 

they are typically differentiated by their physical properties and applications. Glassy carbon, a 

non-graphitizing carbon, combines glassy and ceramic properties with those of graphite such as 

electrical conductivity and high temperature resistance. The Raman spectra of glassy carbon28 has 

two broad bands at 1340 and 1590 cm-1 shown in Figure 3.4.  Acetylene black, another type of 

amorphous carbon material made from the incomplete combustion of petroleum products has 

broad bands centered at 1355 and 1575 cm-1 similar to glassy carbon.29 The spectra of coals and 

cokes30,31 have broad bands around 1360 and 1600 cm-1. The bandwidths and position can vary 

with the rank of coal and the degree of order or graphitization in cokes. The Raman spectra of two 

https://courses.lumenlearning.com/introchem/chapter/allotropes-of-carbon/
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different types of coke are shown in Figure 3.4 for comparison with glassy carbon. Needle coke, 

so named because the anisotropic microstructure gives it a needle like appearance, has broad bands 

at 1348 and 1597 cm-1. The spectra of a sample of coke lacking this anisotropic microstructure is 

shown below it, with broad bands at 1370 and 1599 cm-1. Our results are comparable to the Raman 

studies on cokes performed by Green et al.31  

Even though coal is not strictly a pure carbon material, Tsu et al. showed that the Raman 

spectra of different coals were surprisingly similar to the Raman spectra of polycrystalline graphite 

in spite of the complexity and mineral deposits present in coal.30 The spectra consisted of broad 

peaks at 1370 and 1606 cm-1.  Although the Raman spectra of amorphous carbons look very 

similar, they do exhibit small differences in intensity and wavenumbers. These differences can be 

correlated with differences in microstructure, but this is beyond the scope of this overview.  

 

Figure 0.4 Raman spectra of amorphous type carbon materials glassy carbon, coke and needle 

coke. 
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Figure 0.5 Raman spectra of carbon materials ranging from amorphous to highly ordered. 

The π states in amorphous carbon are more polarizable than σ bonds, so sp2 carbon has a larger 

Raman cross-section. In addition, sp2 bonds are more resonant with visible to near IR light and 

dominate the spectra compared to sp3 vibrational modes which are resonant with UV light. 

 

3.1.3.2 The Raman spectra of diamond 

The first order Raman spectra of single crystal, gem quality diamond has only one sharp 

peak around 1332 cm-1 which corresponds to the T2g mode.32  
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Figure 0.6 Raman spectrum of diamond 

A second order peak33 (2467 cm-1) and third order peaks34 (3300 and 3825 cm-1) are much 

less intense by several orders of magnitude and are therefore difficult to observe without 

specialized instrumentation and heating the sample to high temperatures. Additional peaks have 

been observed in the spectra of nanodiamonds grown by chemical vapor deposition (CVD). Most 

CVD diamonds are polycrystalline with amorphous carbon at their grain boundaries. As the crystal 

size decreases the Raman bands broaden and new peaks can be observed in the Raman spectra due 

to the breakdown of selection rules. Table 3.1 lists Raman peaks typically observed for 

nanodiamonds and CVD diamond films. 

Position (cm-1) Assignment Reference 

1100-1150 Transpolyacetylene at grain 

boundaries 

34,35 

1332 First-order Raman peak, due 

to sp3 vibrations 

36 

1345 sp2 amorphous carbon (D 

peak) 

34 

1430-1470 Transpolyacetylene at grain 

boundaries 

37 

1520-1580 sp2 amorphous carbon (G 

peak) 

34 

Table 0.1 Raman band assignments for diamond and nanodiamond 
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3.1.3.3 The spectrum of graphite and graphene 

The first Raman spectrum of graphite was measured in 1970 by Tuinstra and Koenig.38 The 

spectrum of pristine, single crystal graphite consisted of one sharp peak at 1575 cm-1. This peak 

was attributed to the doubly degenerate E2g mode corresponding to the in plane stretching modes 

of the sp2 carbon bonds in graphite. This peak was thenceforth dubbed the “G” peak in the literature 

for carbon materials analysis by Raman spectroscopy. Other graphitic materials showed a second 

peak at ~1350 cm-1. Tuinstra and Koenig originally attributed this band to an A1g mode associated 

with in plane “breathing mode” vibrations with symmetry Dh3. They believed that this mode was 

activated by crystal size and defects in the graphite lattice. Whereas this mode is inactive for an 

“infinite,” single crystal of graphite because the changes in polarizability cancel, this is not the 

case for polycrystalline graphite. Thus, activation of this mode was initially attributed to the 

relaxation of the Raman selection rules as a consequence of small crystal size.  

Other peaks in the Raman spectra of defected graphite, single layer and multi-layer graphene 

and other carbon nanomaterials launched a debate over the Raman solid-state processes in 

graphene which spanned several decades. Andrea Ferrari and Denis Basko39 summarized the 

current understanding of these processes and the interpretation of the resulting spectra. 

Defect free graphite and graphene both have G peak (~1581 cm-1) and 2D peak ~2700 cm-1. 

The G peak is the high frequency band of the doubly degenerate E2g mode of corresponding to the 

in-plane stretching of the sp2 carbon bonds. The low frequency E2g band16,40 has been observed 

around 40-50 cm-1 but does not receive as much attention in the literature as the G band because it 

is much lower in intensity and frequency. The D band (~1350 cm-1) which is only observed in 

polycrystalline or defected graphite is now thought to be due to transverse optical (TO) phonons 

at the Brillion Zone (BZ) center K. It is activated by double resonance, which requires electronic 
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backscattering from the defect. It is dispersive with excitation wavelength due to a Kohn anomaly 

at K. The 2D band is the second order, overtone of the D band in which two phonon states are 

excited which have equal energy but opposite wave vectors. 

Position (cm-1) Name Assignment 

~1100 D” One phonon, defect assisted scattering process 

1350 D One phonon, electron-defect assisted scattering 

process 

1570 G E2g mode corresponding to in-plane sp2 stretching 

1620 D’ One-phonon, electron-defect assisted scattering 

process 

2450 D+D” Combination band of the D phonon and the D” 

phonon from the LA branch 

~2700 2D Second order, over tone of D band, two phonon 

process 

2950 D+D’ Combination band of the D and D’ phonon 

3250 2D’ Second order, overtone of 2D band, two phonon 

process 
Table 0.2 Raman band assignments for graphite and graphene 

Multi-phonon processes up to 6 phonons can be observed, however this is rarely reported 

because most Raman spectra are only collected up to ~3300 cm-1. 

3.1.3.4 Distinguishing between graphene and graphite 

Both graphene and graphite have the G and 2D bands in their spectra. Peak C at ~42 cm-1 is 

called the shear mode in few layer graphene (FLG) and is attributed to the low-frequency E2g 

mode. The position of C shifts to lower wavenumbers and decreases in intensity with decreasing 

graphene layers. The C band should be absent from single layer graphene (SLG) since it involved 

the out of plane displacements and interaction between two adjacent graphene planes. The C mode 

is very low in energy and is below the filter cut-offs of most Raman spectrometers. Detection of 

the C band would require a triple spectrometer or a BragGrate notch filter with a single 

spectrometer like the one was used by Tan et al.41  



90 

 

Bands attributed to layer-breathing modes (LBM) at ~ 80-300 cm-1 due to the interlayer 

vibrational modes in few layer graphene have also been observed.42 These bands are very low in 

intensity. Much of the guidelines found in the literature for differentiating graphite and graphene 

is qualitative. The two most commonly cited qualitative characteristics are the shape of the 2D 

peak the ratio of the intensities of the 2D peak and G peak. Single layer graphene has a 2D peak 

which is symmetrical or referred to as Lorentzian. The 2D peak loses its symmetry with increasing 

number of graphene layers. 

Additionally, several empirical methods for determining the number of graphene layers from 

Raman have been reported in the literature. The number of layers can be determined by peak fitting 

of the 2D band. Increasing the number of graphene layers lowers the symmetry of the graphene 

plane resulting in a splitting of vibrational modes which overlap to form a wider, less symmetric 

2D band.43 The G band is also highly sensitive to the number of graphene layers. Therefore, the 

graphene layer thickness (n) may be calculated from the shift in the G band position (E 3.4).36 

 𝜔0 = 1581.6 + 11/(1 + 𝑛
1.6) E 0.4 

 

The number of layers can also be calculated from the shift in the shear mode, C, using the 

following equation:41 

 

𝑃𝑜𝑠(𝐶)𝑛 = √
2𝛼

𝜇
√1 + cos (

𝜋

𝑛
) 

E 0.5 

 

where n is the number of layers, α = 12.8 x 1018 N m-3 is the interlayer coupling, and μ = 7.6 x 

10-27 kg Ȧ-2 is the graphene mass per unit area. 

Lui and Heinz reported an equation for calculating the number of graphene layers from 

the LBM (E 3.6), 
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 𝜔𝑁(𝑛) = 𝜔0 sin[(𝑁 − 𝑛)𝜋/2𝑁] E 0.6 
 

where ω0 = 132.3 cm-1 is the frequency of out of plane optical mode for bulk graphite, n is the 

index where n = 1, 2,…, N-1 and N is the number of graphene layers.  

3.2 Scanning Electron Microscopy (SEM) 

A Hitachi S-4700 Scanning Electron Microscope, picture in Figure 3.7, was used for 

characterization of samples. 

 

Figure 0.7 Hitachi S-4700 Scanning Electron Microscope 

In scanning electron microscopy, an electron beam is scanned across the surface of a 

specimen in a raster pattern. When the primary electrons, that is the incident beam of electrons, 

contact the sample, they can interact with the sample in three ways. Secondary electrons may be 

emitted from the K shell of the sample atoms by inelastic collisions with the primary electrons 

(Figure 3.8A). Detection of these secondary electrons is the most common imaging mode in SEM. 

Alternatively, the primary electrons may be elastically scattered by the nuclei of the atoms in the 
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sample. These electrons are referred to as back scattered electrons (Figure 3.8B). The larger the 

nuclei the more backscattering of the primary electron beam occurs. Images generated from the 

detection of BSE can provide information on the distribution of elements in a specimen. When a 

primary electron pushes out a secondary electron from an inner shell, a higher energy electron 

drops down to take its place, releasing energy in the form of a characteristic X-ray (Figure 3.8C). 

Collection of these characteristic x-rays provide information on the elemental composition of the 

sample. This mode of detection is referred to as energy dispersive X-ray spectroscopy EDAX or 

EDS20.  

 

Figure 0.8 Mechanisms in SEM 

 SEM is frequently used for characterization of carbon materials.44–47 For example, Kagi et 

al.47 investigated graphite inclusions within and coated on diamond in ultrahigh-pressure 

metamorphic minerals. Figure 3.9 shows SEM images of various morphologies observed in one 

of these samples. Large, well-formed single crystals of graphite are depicted in Figure 3.9 (a), (b) 

and (e).  
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Figure 0.9  SEM images of different morphological types of graphite inclusions observed in 

ultrahigh-pressure metamorphic minerals. (a-d) Detailed morphology of graphite coatings; (e, f) 

single graphite crystals; (b), (d) and (f) are enlargements of (a), (c) and (e), respectively. Gr-L 

denote large graphite crystals; Gr-S denote small graphite crystals. 
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3.3 X-ray Photoelectron Spectroscopy (XPS) 

In 1887 Heinrich Hertz observed that metals emit electrons when irradiated with photons 

of sufficient energy. This was later explained by Albert Einstein in 1905 and termed the 

photoelectric effect. These discoveries finally culminated in the development of Electron 

Spectroscopy for Chemical Analysis (ESCA). ESCA can be split into two types of analysis: ultra-

violet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS).48,49 

Excitation by UV light causes the emission of valence electrons, and irradiation by higher energy 

X-rays result in the emission of core electrons. 

 

Figure 0.10 PHI 5000 VersaProbe X-ray Photoelectron Spectrometer 

Incident radiation of energy, hν, must exceed the minimum amount of energy required to 

remove an electron from a solid to a point in vacuum in order to induce the emission of a 
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photoelectron. This energy minimum is termed the work function (Wf or φ) and is material 

dependent. The emitted photoelectron will travel from the surface of the solid with a certain kinetic 

energy (Ekin) which will be equal to the energy of the incident x-rays minus the work function of 

the material and the binding energy of the electron (Eb). This process is shown below in Figure 

3.11. 

 

Figure 0.11 Mechanism of XPS, Image Source: https://www.ifw-dresden.de/de/institute/institut-

fuer-komplexe-materialien/abteilungen/mikro-und-nanostrukturen/available-methods/xps/ 

The value of the binding energy is dependent upon the energy level or orbital from which 

the photoelectron was emitted. Changes in the local bonding environment changes the energies of 

the orbitals in the solid, and these changes are reflected in changes in binding energies in the XPS 

spectra. These shifts in binding energy are termed chemical shifts. They provide information on 

the chemical state of the material.  Therefore, XPS provides information on the elemental 

composition and chemical states of materials. XPS is not to be confused with energy dispersive X-

ray spectroscopy or EDS. In EDS the excitation source can be an x-ray or electron beam and will 

eject an electron out just like XPS. However, when the electron is ejected another electron falls in 
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energy and emits X-rays to fill the hole left by the ejected electron. It is the emitted x-rays from 

this secondary process, which is the detected signal in EDS. As such, EDS can provide elemental 

composition but no structural information. 

XPS is a widely used tool for studying the surface chemistry of carbon materials50–52 and 

the intercalation mechanisms in graphite anodes for lithium batteries.53–56 XPS can differentiate 

between different carbon allotropes due to the energy differences the C-C bonding environments. 

However, caution must be used in detailed interpretations of XPS spectra because of the 

technique’s high sensitivity to structural defects and charging effects. In an example pertinent to 

our research, Sato et al. recently resolved the controversial assignments of the C1s peak of 

diamond and graphite.57 Reports in the literature prior to the work of Sato et al. for the assignments 

of binding energies for the C1s peak for photoelectrons from sp3 and sp2 C-C bonds were 

conflicting, some works assigning one higher or lower than the other.  

Compare the conflicting C1s peaks for diamond and graphite in the spectra from a 

commonly used XPS reference website, xpssimplified.com with spectra obtained in our lab (Figure 

3.12). In our spectrum (Figure 3.12 a)) the C1s peak for diamond occurs at a higher binding energy 

than the C1s peak for graphite. An argon ion gun was used to compensate for the charging effect 

of the CVD diamonds. Although both spectra have the shoulder peak, known as the shake-up 

feature, the peaks for diamond and graphite occur at different binding energies. Therefore, Table 

3.3 presents assignments for the C1s peak suggested by Sato et al. 
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Figure 0.12  a) C1s peak of graphite and diamond from XPS spectra obtained in our lab and b) C1s 

spectra of diamond and HOPG on XPS reference website: 

https://xpssimplified.com/elements/carbon.php 

Chemical State C1s Binding Energy (eV) 

C-C, sp3 283.4 

C-C, sp2 283.8 

sp3C-O-sp3C, epoxy 284.1 

sp3C-O-sp3C, ether 284.3 

sp2C=O 284.7 

sp2C-O-sp2C, epoxy 284.9 

sp3C=O 285.1 
Table 0.3 Suggested C1s peak assignments for the interpretation of XPS spectra in carbon57 

 A PHI 5000 VersaProbe XPS was used in this research surface characterization of carbon 

materials produced by reactions of calcium carbide with zinc chloride in the molten or solution 

state. XPS was used for study the degree of oxidation and chemical state of the surface of these 

carbon products. Additionally, this technique was utilized to study nonaqueous electrolyte 

interactions with the carbon electrodes used in the VMP experiments. However, as noted earlier, 

detailed interpretation is not trivial and is beyond the scope of this work. 

3.4 X-ray Powder Diffraction (XRD) 

 The theory of single crystal x-ray diffraction and crystallography has been 

described in detail elsewhere.8,58–60 This research utilized powder XRD for supporting analyses 
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and characterization. Powder XRD has several advantages over single-crystal XRD, which are 

beneficial to our research.61,62 In powder XRD diffraction, data may be obtained without the 

necessity of a large (~100 μm) single crystal. In addition, phase and structure identification can be 

accomplished quickly by comparing the diffraction patter to a database of known materials and 

mixtures of two or more crystalline phases can be accurately identified. Moreover, powder 

diffraction may be applied to bulk materials, thin films, and polycrystalline samples.61 This 

technique is useful for characterizing structural changes in poorly crystalline and amorphous 

materials.  

For example, Rosalind Franklin63,64 demonstrated the applicability of x-ray crystallography 

to amorphous materials through her work on the study of structural changes in coal, graphite and 

non-graphitizing carbons. Figure 3.13 below shows diffraction data obtained of an amorphous, 

non-graphitizing carbon produced from pyrolysis of the polymer polyvinylidene chloride, 

(C2H2Cl2)n. Curve I is the diffraction curve corrected for absorption, polarization and angle 

variance, where the diffraction peaks for the (002) and (hk0) reflections are noted. Franklin used 

Fourier integral analysis and Warren’s equations for diffraction of random-layer lattices65 to 

interpret the data. Her findings indicated that 65% of the carbon consists of perfect graphite 

crystallite layers with an average diameter of 16 A, and 35% has no long-range structure. Roughly 

55% of the graphite crystallites are structured in layers with an interlayer distance of 3.7A, while 

45% of the remaining layers have no definite orientation with respect to each other. This work is 

considered the first reliable description of the structure of a char, which is a solid material 

important in combustion, carburization, charring and pyrolysis66.  
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The instrument utilized in this work was a PANalytical X’Pert Pro X-ray Diffractometer. 

This XRD had a Cu-kα1 8047.2 eV x-ray source and an angular range of 0˚< 2θ < 100˚. Powder 

XRD was used to characterize the structure and phase of carbon material produced from carbide 

reactions in molten salts. 

  

Figure 0.13 Diffraction data for powder analysis of non-graphitizing carbon 

produced by pyrolysis of (C2H2Cl2)n. Curve I, corrected intensity curve. Curve II, 

independent scattering curve. Where intensity is plotted against s = 2 sinθ/λ 
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Chapter 4: Molten Salt Reactions of Salt-like Carbides 

 This chapter describes the results of the molten salt reactions between two ionic carbides, 

aluminum carbide (Al4C3) and calcium carbide (CaC2), and late transition metal salts. The 

objectives of the molten salt experiments were to determine whether the metallic cation in the 

molten state would oxidize the carbide to elemental carbon and to determine the form of carbon 

produced. Previous exploratory work indicated that the covalent carbide, silicon carbide (SiC) was 

unreactive with molten, late transition metal halide salts, specifically tin chloride and tin fluoride.1  

The results of reactions of aluminum carbide and tin chloride (R 4.1), calcium carbide and 

tin chloride (R 4.2) and calcium carbide and zinc chloride (R 4.3) are reported in this chapter.   

  

 𝐴𝑙4𝐶3 + 𝑆𝑛𝐶𝑙2 → 3𝐴𝑙𝐶𝑙3 + 𝑆𝑛
0 + 3𝐶 R 0.1 

 𝐶𝑎𝐶2 + 𝑆𝑛𝐶𝑙2 → 𝐶𝑎𝐶𝑙2 + 𝑆𝑛
0 + 2𝐶 R 0.2 

 𝐶𝑎𝐶2 + 𝑍𝑛𝐶𝑙2 → 𝐶𝑎𝐶𝑙2 + 𝑍𝑛
0 + 2𝐶 R 0.3 

 

The results indicate the carbide was oxidized by the transition metal cation in the molten state to 

produce elemental carbon. The oxidation of calcium carbide by molten, late transition metal salts 

was first noted by Barber and Sloane.2 However, no analysis or characterization of the carbon 

product was provided. Therefore, the following sections present the analysis and characterization 

of the carbon produced and isolated from these reactions. 

4.1 Reaction of Aluminum Carbide with Tin Chloride 

Salt melt syntheses were carried out between aluminum carbide (~325 mesh, 99.5% purity) 

and anhydrous tin chloride by the methodology as described in Chapter 2 Experimental Methods. 

The carbon remaining after separation of the raw products was characterized via powder X-ray 
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diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray 

spectroscopy (EDS). 

Figure 4.1 shows the third party XRD analysis of the carbon material carried out by David 

Anderson.3  Peaks in the spectrum were identified through software which matches peaks with 

materials in the Joint Committee of Powder Diffraction Standards (JCPDS) database. The only 

identifiable peaks are the (002) reflection for graphite at 26º and the (111) reflection for diamond 

at 44º. The (101) peak for graphite also occurs at this angle, however, it is unlikely to occur without 

the (100) graphitic peak at 42º. Therefore, the most likely assignment for this peak is the (111) 

reflection for diamond. This supports the presence of diamond or diamond related material. 

However, the unidentified peaks are not typical of pure diamond material. Additionally, the high 

degree of background scattering suggests that the predominant carbon phase is amorphous. 

Anderson’s SEM and EDS analyses also indicated the presence of metal (potassium, tin) and 

mineral impurities (mostly SnO2). 

 

Figure 0.1 XRD pattern of carbon material from aluminum carbide and tin chloride reaction, 

called “WVU black powder,” from Anderson’s report3. 

Gr(002) Diam(111)?
In WVU XRD

In WVU XRD

JCPDS diamond peaks

JCPDS diamond peaks
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 Figure 4.2 displays SEM images of typical morphologies observed in the analysis of 

reaction products from aluminum carbide and tin chloride. Figure 4.2 a) shows a metallic sphere 

of tin about 55 microns in diameter. Beads of reduced tin metal were commonly observed. The 

reduction of the tin cation to tin metal confirms the oxidation of the carbon anion in the aluminum 

carbide. The reason there are beads of tin as byproducts because the reaction temperature is above 

the melting point of tin. Reduction of the tin occurs in the liquid state and the molten metal forms 

beads due to surface tension. When the reaction products are cooled the tin is prevented from 

crystalizing and this preserves the spherical morphology.4 

Figure 4.2 b) displays SEM image of a thin film from the same sample with a surface 

morphology which appears to be comprised of many small platelets. Figure 4.3 shows EDS 

spectrum corresponding to this SEM image indicating the majority composition of this film is 

carbon. Figures 4.2 c) and d) show morphologies of products from another aluminum carbide and 

tin chloride reaction.1 The mass of the products remaining after chemical separation indicated a 

70% yield for this reaction. Figure 4.2 c) shows an SEM image at higher magnification illustrating 

the features of a large area of the sample. This image shows large crystalline specimens that appear 

to be larger than the initial size of the aluminum carbide, 44 microns. Figure 4.2 d) shows a close 

up of one of these crystals, corresponding EDS (not shown) indicates that these crystals are 

composed of carbon. The morphology in this image is crystalline with sharp edges and smooth, 

planar faces. However, there is no layering which is indicative of graphite. 
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Figure 0.2 SEM images of reaction products typical of aluminum carbide and tin chloride, a) a 

bead of reduced tin metal, b) thin film of aggregates of carbon platelets, c) image of bulk sample at 

higher magnification, d) close-up of a carbon crystal. 
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Figure 0.3 EDS spectrum corresponding to thin film of carbon platelet aggregates in Figure 4.2 b) 

There have been relatively few studies on producing carbon materials from aluminum 

carbide. One example is the recent work of Walton et al. investigating the production of carbide-

derived carbons (CDCs) from aluminum carbide shows promise for synthesizing activated carbons 

with tunable pore size. Etching of the carbide by chlorination at varying temperatures enabled 

control of the crystallinity, surface area and residual aluminum content (R 4.4, R 4.5). Etching 

temperatures ranged from 300 to 900 and reaction time was 1 hr. Higher etching temperatures 

produced carbon that is more ordered and graphitic5 The ratio of formation of the monomer and 

dimer of aluminum chloride is also temperature dependent.  

 𝐴𝑙4𝐶3 + 6𝐶𝑙2 → 4𝐴𝑙𝐶𝑙3 + 3𝐶 R 0.4 

 𝐴𝑙4𝐶3 + 6𝐶𝑙2 → 2𝐴𝑙2𝐶𝑙6 + 3𝐶 R 0.5 

 

Although Walton et al.’s synthesis route led to graphitic and amorphous carbons, the 

characterization data of products from salt melt synthesis with tin chloride indicate the presence 

of amorphous carbon and diamond-related material. It is possible that the carbon produced via 

reaction R 4.1 is diamond-like carbon (DLC), a type of amorphous carbon with properties similar 
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to that of diamond due to the high content sp3 hybridization.6–9 The work of Hayashi et al. supports 

this hypothesis. Hayashi and cohorts prepared carbon nano-onions10,11 from diamond nanoparticles 

through high temperature annealing9. Initial XRD patterns of the diamond nano-particles contain 

broadened peaks for the (111), (220) (322) and (400) diamond reflections, and a small satellite 

peak for (002) reflection of graphite. The XRD patterns showing the evolution of the diamond 

nano-particles to carbon onions show the decrease of the (111) diamond reflection and the increase 

of the (002) graphite reflection. These results demonstrate the transformation of predominantly sp3 

type bonding material to sp2 type.  

There are very few studies on diamond-related materials involving aluminum carbide, and 

all of them have been performed at high temperatures and pressures. Britun et al. studied the 

crystallization of diamond assisted by aluminum carbide formation at temperatures and pressures 

of 2270-2470 K and 8GPa. Their experiments were performed in a recessed-anvil toroid-type high-

pressure apparatus. The carbon source was high purity graphite sandwiched between aluminum 

foil and a cBN substrate. Characterization by TEM indicated that a diamond layer crystallizes via 

two routes. First of these is the incongruent melting of aluminum carbide (R 4.6), and the second 

is the recrystallization from graphite within the aluminum-carbide melt. The authors believed the 

difference in solubility between metastable graphite and stable diamond under high temperatures 

and pressures drives this second process.12 

 𝐴𝑙4𝐶3 → 𝐿(𝐴𝑙, 𝐶) + 𝐶(𝑑𝑖𝑎𝑚𝑜𝑛𝑑) 
 

R 0.6 

At this point assignment of the carbon product produced to a single carbon allotrope would be 

premature. Many interesting and varied carbon morphologies have been observed, and it is still 

unclear which is the dominant morphology.  
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4.2 Reaction of Calcium Carbide with Tin Chloride 

Salt melt syntheses were carried out between calcium carbide (CaC2, 72-82%) and 

anhydrous tin chloride (R 4.2) by the methodology as described in Chapter 2 Experimental 

Methods. The carbon remaining after separation of the raw products was characterized via 

scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). 

Figure 4.4 displays SEM images of typical morphologies observed in the analysis of 

reaction products from calcium carbide and tin chloride4. Figure 4.4 a) shows metallic spheres of 

tin sitting on a bed of amorphous material. Again, the reduction of the tin cation to tin metal 

confirms the oxidation of the carbon anion took place in the calcium carbide as well. In addition 

to the amorphous material, other morphologies were observed such as aggregates of thin films and 

stacks of plates of carbon as shown in Figure 4.4 b). Corresponding EDS spectrum is shown in 

Figure 4.4 c).  

Stacks of planar carbon sheets are characteristic of graphitic carbons. Moreover, graphite 

is the carbon phase most likely to be produced by oxidation of calcium carbide considering the 

anisotropy of the acetylide anions within the carbide’s structure which form a near hexagonal 

arrangement. The amorphous carbon may originate from the elemental carbon impurities in 

calcium carbide from unreacted coke as discussed in Appendix A. It is unclear if and how this 

amorphous carbon influences the reaction pathway of R 4.2. Barber and Sloane’s report2 only 

referred to the reduction of ZnCl2, PbCl2 and CdCl2 molten salts by calcium carbide; thus, the 

research presented here would be the first report of a similar reaction in a SnCl2 melt. 
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Figure 0.4 SEM images of reaction products typical of calcium carbide and tin chloride, a) tin 

beads resting on a bed of amorphous material, b) stacks of planar sheets of carbon with spheres of 

tin on their surface, c) EDS spectrum of b). 

4.4 Reaction of Calcium Carbide with Zinc Chloride 

Salt melt syntheses were carried out between calcium carbide (CaC2, 72-82%) and 

anhydrous zinc chloride (R 4.2) by the methodology as described in Chapter 2 Experimental 

Methods. The carbon remaining after separation of the raw products was characterized via 

scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), micro-

Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). 

Results of characterization and analyses indicated that the zinc cation in the molten state 

had oxidized the calcium carbide to produce graphite and amorphous carbon of varying 
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morphologies. Large, pristine single crystals of graphite were often observed in the products of 

these reactions. In the optical microscope viewing field specimens which are flat, reflective and 

angular are easily recognized as graphitic crystals. Figures 4.5 and 4.6 c) and d) show SEM and 

optical microscope images which display large, euhedral graphite crystals some of which are 

isolated single crystals and some of which are polycrystalline aggregates. However, there were 

also amorphous carbon microstructures such as the sphere of thin carbon in Figure 4.6 a) and the 

aggregate of amorphous structures in Figure 4.6 b). Observation of these samples via optical 

microscopy and SEM indicated that graphite crystals often obscured by amorphous carbon, which 

is dark, non-reflective, and out of focus.  

Results of preliminary experiments suggested that a hydrogen peroxide/trifluoroacetic acid 

(H2O2/TFA) treatment used for oxidizing coal13 may be a route to separating the amorphous carbon 

from the graphite, as large, hexagonal single crystals were easier to find in samples post-oxidation 

treatment. First reported by Deno,14 it has been proposed that the oxidative degradation and 

dissolution of coal proceeds by the carboxylation of alkyl bridges between aromatic groups, which 

is followed by cleavage into smaller groups. We have initiated experiments exploring H2O2/TFA 

as a route for the chemical separation of graphitic and amorphous carbon. Figures 4.6 c) and d) 

show single crystals in samples that had undergone the oxidative treatment with H2O2/TFA. The 

absence of amorphous material on and around the graphitic crystals suggest that this may be a 

promising method for further purification to a single carbon phase. 

Note that no beads of zinc metal were observed in analyses. The reason zinc metal is absent 

in analyses is because the temperature of the zinc chloride melt was below the melting temperature 

of zinc. Therefore, when the metal cations are reduced in the melt the are likely reduced to fine 
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nanoparticles of zinc which are quickly reacted away in the chemical separation step with 

hydrochloric acid.  

 

Figure 0.5 Optical microscope of a) carbon product from reaction of calcium carbide and zinc 

chloride before oxdiation treatment with H2O2/TFA and b) after oxidation treatment. 
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Figure 0.6 SEM images of a) and b) carbon product from reaction of calcium carbide and zinc 

chloride before oxidation treatment. Image in a) displays spherical structure of thin carbon film 

and b) shows aggregates of amorphous carbon. SEM images in c) and d) show hexagonal, single 

crystals of graphite after oxidation treatment. 

Raman spectra were collected of the hexagonal crystals confirming the identification of 

graphite. Figure 4.7 shows the Raman spectrum of one of these crystals. The most intense peak in 

the spectrum occurs at 1570 cm-1 and corresponds to the G band sp2 vibrations in graphite. The 

second most intense peak is the 2D band at ~2700 cm-1. There is a small, satellite peak at ~2450 

cm-1 which is known as the D+D”. It is important to note the absence of the D band at 1350 cm-1. 

The D band is a one phonon, electron scattering process which is only activated in the presence of 

defects or in polycrystalline samples of very small crystal grains.15 Thus, D band is absent for this 

crystal due to its large size and pristine structure.  
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Figure 0.7 Raman spectrum of single crystal of graphite shown in inset optical microscope image in 

right hand corner. Laser wavelength 532 nm, 50x objective, 10% of 100 mW.  

 Figure 4.8 shows an XPS spectrum presenting the surface characterization of the carbon 

material produced in reaction R 4.3. The most intense peak is the C1s band in agreement with the 

composition of the sample. The presence of the O1s and O2s peaks can be attributed to epoxy and 

hydroxy surface groups. The Cl2s and Cl2p peaks indicate the presence of residual chloride from 

the reaction, and the Si2s and Si2p peaks are likely due to SiO2 or SiC impurities. 
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Figure 0.8 XPS spectrum of carbon material produced from reaction of calcium carbide and molten 

zinc chloride. 

To the best of our knowledge there are no studies characterizing the carbon products from 

the salt melt syntheses in reactions R 4.1, R 4.2 and R 4.3. As mentioned earlier Barber and Sloane 

noted that metals in ZnCl2, CdCl2 and PbCl2 melts were reduced by calcium carbide, but they did 

not pursue this further.  
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Chapter 5: Solution State Syntheses 

5.0 Reactions of Ionic Carbides with Metal Chloride Salts in the Solution State 

Results presented in Chapter 4 showed that metallic cation in salt melt reactions had 

oxidized the carbon anion in calcium and aluminum carbide and produced elemental carbon (R 

5.1. R 5.2 and R 5.3). Reactions show again for convenience: 

𝐴𝑙4𝐶3 + 𝑆𝑛𝐶𝑙2 → 3𝐴𝑙𝐶𝑙3 + 𝑆𝑛
0 + 3𝐶 R 0.1 

𝐶𝑎𝐶2 + 𝑆𝑛𝐶𝑙2 → 𝐶𝑎𝐶𝑙2 + 𝑆𝑛
0 + 2𝐶 R 0.2 

𝐶𝑎𝐶2 + 𝑍𝑛𝐶𝑙2 → 𝐶𝑎𝐶𝑙2 + 𝑍𝑛
0 + 2𝐶 R 0.3 

The carbon material produced in reactions with calcium carbide ranged from graphitic to 

amorphous in structure. Results suggested that the oxidation of aluminum carbide by tin chloride 

melts was amorphous with diamond related structure.  

We wished to determine whether this reaction would proceed at room temperature with the 

metal chloride salts dissolved in anhydrous solvents. Preliminary experiments with aluminum 

carbide and salts dissolved in anhydrous ethanol indicated that aluminum carbide was not reactive 

with late transition metal salts in the solution state, and similar experiments with calcium carbide 

and tin chloride were inconclusive.1 Thus, only the results from calcium carbide reactions with 

zinc chloride dissolved in ethanol is presented. These results support the hypothesis that the zinc 

cation in solution oxidizes the carbon anion in the calcium carbide. This reaction can be separated 

into two half-reactions (shown again for convenience): 

 𝐶𝑎𝐶2 → 𝐶𝑎
2+ + 2𝑒− + 2𝐶 R 0.4 

 𝑍𝑛2+ + 2𝑒− → 𝑍𝑛 R 0.5 

Section 5.1 presents the results of the solution state galvanic reactions of calcium carbide 

and zinc chloride. Section 5.2 presents the results of a controlled potential electrolysis experiments 
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in which we have attempted to drive the reactions R 2.15 and R 2.16 by applying a potential with 

a poteniostat.  

5.1 Solution State Galvanic Reactions 

Solution state galvanic reactions were carried out between calcium carbide and zinc 

chloride dissolved in anhydrous ethanol via the methodology described in Chapter 2 Experimental 

Methods. The zinc electrode and the carbide electrode were connected electrically, and the current 

was monitored with a multimeter. A nonzero current was immediately noted implying that 

electrons were flowing through the external circuit between the electrodes and charged species 

(Cl-) were flowing through the salt bridge between the two cells. Additionally, closing the stop 

cock in the salt bridge resulted in zero current further supporting this interpretation. Over time the 

precipitated zinc chloride in the saturated zinc half-cell disappeared, implying that the zinc cation 

had been consumed. The average current measured between the half-cells fluctuated between 0.5 

and 2.0 over the course of 2 to 4 days2.  

The carbon material remaining after chemical separation of the raw products was 

characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy 

(EDS), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. 

Figure 5.1 shows SEM images representative of carbon morphologies observed in the 

analysis of products from the galvanic, solution reactions of calcium carbide and zinc chloride. 

Figures 5.1 a), c) and d) display either large single crystals of graphite or polycrystalline aggregates 

comprised of smaller, well formed crystal grains. The graphite crystals in Figures 5.1 c) and d) 

appear to be covered in a fine film and amorphous material. Figure 5.1 b) displays a carbon 

microstructure with morphology that is not characteristic of graphite. This sphere of carbon has a 

40 micron diameter and is likely amorphous. These results indicate oxidation of the calcium 
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carbide by the zinc cation in the solution state did occur to some degree. The images and EDS 

spectra show that the remaining carbon material has a mixture of graphitic and amorphous 

morphologies. 

 

Figure 0.1 SEM images of products typical of galvanic, solution calcium carbide and zinc chloride 

reactions: a) polycrystalline aggregates of small, hexagonal grains, b) a carbon crystal with 

spherical morphology, c) aggregates of single crystals of graphite which appear to be covered in a 

film, d) crystals of graphite covered in amorphous material. 

 Raman spectra from different areas in the same sample support this interpretation. Figure 

5.2 a) – c) show optical microscope images of the viewing field of the Raman microscope from 

which the spectra in Figure 5.2 were collected. The Raman laser was always focused in the middle 

of the microscope’s viewing field. Figures 5.2 a) and b) show specimens dispersed on the slide 

that are too small to bring into focus in the microscope. However, there is a small, highly reflective 
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crystal to the right in Figure 5.2 b). Figures 5.2 c) and d) display larger specimens which have 

morphology indicative of graphitic crystalline material. These crystals are not euhedral, single 

crystals, but they are reflective, with flat faces and sharp edges. These specimens are likely 

aggregates of polycrystalline graphite. 

 

Figure 0.2 Optical microscope images displaying morphologies of the specimens yielding the Raman 

spectra in Figure 5.3. Image a) corresponds to the red spectrum, b) corresponds to the black 

spectrum, c) corresponds to the green spectrum and d) corresponds to the blue spectrum. 

Figure 5.2 displays the Raman spectra corresponding to the optical microscope images in 

Figure 5.2. The red spectrum was collected from the sample area in Figure 5.2 a) and the black 

spectrum from the sample area in b). The broad, merged D and G peaks in both spectra as well as 

the high background scattering indicate the amorphous nature of the material in these images. The 
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green Raman spectrum of the crystals in Figure 5.2 c) and the blue Raman spectrum of the large 

crystal in Figure 5.2 d) show a narrowing of the D, G and 2D bands and a decrease in background 

scattering. This is consistent with the increasing size of the crystals and increasing crystallinity. 

The Raman spectrum of the specimen in Figure 5.2 d) indicates that this specimen is graphite. 

However, the presence of the D peak suggests that it is polycrystalline.   

 

Figure 0.3 Raman spectra of different areas of the same sample from galvanic, solution reactions of 

calcium carbide and zinc chloride. Laser wavelength 532 nm, 50x objective, 10% of 100 mW. 

Figures 5.4 and 5.5 shows XPS spectra of different carbon with large particle size and small 

particle size. These samples were roughly separated by particle size by the settling rate method. In 

Figure 5.4, the most intense peak is the C1s, however, in the spectrum of the smaller particle size 

the O1s peak is the most intense. This increase in intensity of the O1s band is in agreement with 

the increase in epoxy and hydroxyl groups due to increased surface area. The Cl2s and Cl2p peaks 

indicate the presence of residual chloride from the reaction, and the Si2s and Si2p peaks are likely 

due to SiO2 or SiC impurities. The Ar2p band is likely from implanted Ar ions from the Ar gun. 
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Figure 0.4 XPS spectrum of large particle size carbon material produced from reaction of calcium 

carbide and zinc chloride. 

 

Figure 0.5 XPS spectrum of small particle size carbon material produced from reaction of calcium 

carbide and zinc chloride. 
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5.2 Solution State Controlled Potential Electrolysis 

A controlled potential electrolysis experiment was conductive in an attempt to drive the 

reactions R 2.15 and R 2.16 following the methodology described in Chapter 2 Experimental 

Methods. When a potential of 0V was applied a current of 5 µA was measured. The applied voltage 

was increased to +14V to drive an oxidation at the carbide electrode. With this increase in applied 

potential and increase in current from 5 μA to 100 µA was observed. This significant increase in 

current implies an increase in the overall reaction rate upon application of +14V. Over time the 

precipitated zinc chloride in the saturated zinc half-cell dissolved, indicating that the zinc cation 

in solution had been consumed. More zinc chloride was added to the zinc half-cell until saturation 

was reached. The current reached a maximum of 200 µA over the course of 4 days. On the fourth 

day, both cells were opaque white implying the production of calcium chloride in the carbide half-

cell to the point of over saturation. The white precipitate in the zinc cell is likely due to zinc oxide 

and hydroxide formation from reaction with oxygen and moisture impurities. 

The carbon material remaining after chemical separation of the raw products was 

characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy 

(EDS) and micro-Raman spectroscopy. Figure 5.6 presents SEM images of various morphologies 

observed in the carbon collected after the controlled potential electrolysis of calcium carbide and 

zinc chloride. Figure 5.6 a) shows an image of the bulk material in which flat, stacks of graphite 

crystals in many different orientations are sitting on the surface of amorphous. The fibers are silica 

fibers from the glass fiber filters used to isolate the carbon after treatment with hydrochloric acid. 

The cross-sections of the crystals were not constant, and the sizes were highly variable (Figure 5.6 

b)); however, this sample had a high number of graphitic crystals. The image in Figure 5.6 c) 

depicts graphitic crystals, which are less well formed and seem to have a higher degree of 

disorientation. Figure 5.6 c) displays a very unusual structure which had that had never been 
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observed before. This structure was a network of porous amorphous carbon according to elemental 

analysis via EDS. Also depicted in Figure 5.6 c) is one of the glass fibers from the filtration 

process. 

 

Figure 0.6 SEM images of various morphologies observed in the products from the controlled 

potential electrolysis of calcium carbide and zinc chloride: a) image polycrystalline aggregates of 

small, hexagonal grains sitting on amorphous carbon, b) close-up of the stacks of graphite crystals 

in a), looser, more disoriented aggregates of graphite crystals c) aggregates of single crystals of 

graphite which appear to be covered in a film, d) porous, amorphous structure that was identified 

as carbon by EDS and a fiber from the glass fiber filter used for isolation of the carbon. 

 Figure 5.7 shows Raman spectra collected from various areas of the carbon material 

produced from the controlled potential electrolysis experiment of calcium carbide and zinc 

chloride. The spectra indicate that the material is highly graphitic. However, variability in 

intensities and breadth of the bands, particularly the D and 2D peaks, also suggest significant 
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differences in defects and crystallinity within the sample. The green spectrum which was collected 

from the specimen shown in the inset photo of Figure 5.7 has the highest scattering background. 

The large background scattering in this spectrum may be due to the high degree of disorder in the 

area from which it was collected. 

Figure 0.7 Raman spectra of different areas of the same sample from the controlled potential 

electrolysis reaction of calcium carbide and zinc chloride. Inset photo is optical microscope image of 

the specimen from which the green spectrum was collected. Laser wavelength 532 nm, 50x objective, 

10% of 100 mW. 

Recently, Li et al.3 reported on the preparation of mesoporous carbon materials through 

mechanochemical reaction of calcium carbide with anhydrous, transition metal chlorides (ZnCl2, 

FeCl3 and CuCl). A comparison of our results with those of Li et al. may be instructive. The 

mechanochemical reaction was carried out by ballmilling 100 mesh CaC2 (75 wt%) with 

anhydrous metal chloride (MCln) at ambient temperature. The ball mill was evacuated, and 

reactants were milled for 3 hours at different milling speeds, from 600 to 150 rpm. No reaction 

occurs at speeds below 150 rpm. Afterwards the reaction products were treated with dilute nitric 

acid to remove metals, salts and any unreacted carbide. The carbon material was then washed with 

distilled water and filtered. 
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The authors propose a reaction mechanism, which proceeds in a stepwise manner. As an 

example, the first step of the reaction between calcium carbide and iron (III) chloride involves an 

interfacial, metathesis reaction, forming calcium chloride and a complex iron carbide (R 5.6). This 

complex iron carbide decomposes to a metastable carbide, FeCx, and carbon in R 5.7. FeCx 

decomposes further into elemental iron and carbon (R 5.8). To support this reaction mechanism 

the raw reaction products were washed only with ethanol to remove calcium chloride and other 

salts. The XRD results of the products post-ethanol treatment show peaks for FeC15.1, graphite 

(102) and Fe. Only Zn and Cu were detected in XRD results from the products of reactions with 

the zinc and chloride salts after washing with ethanol. This is consistent with the well-known 

instability of the carbides of zinc and copper.  

 𝐶𝑎𝐶2 + 𝐹𝑒𝐶𝑙3 → 𝐹𝑒2(𝐶2)3 + 𝐶𝑎𝐶𝑙2 R 0.6 

 𝐹𝑒2(𝐶2)3 → 𝐹𝑒𝐶𝑥 + 𝐶 R 0.7 

 𝐹𝑒𝐶𝑥 → 𝐹𝑒 + 𝑥𝐶 R 0.8 

 

The morphology of carbon materials resulting from these reactions was considerably 

different from the morphology observed in the carbon products from our molten salt and solution 

reactions. XRD patterns of the carbon products from all three reactions had two peaks 

corresponding to the (002) and (101) planes of graphite. Carbon from reactions with FeCl3, CDC-

Fe, had sharper peaks than CDC-Zn and CDC-Cu, indicating higher crystallinity. Figure 5.8 

displays TEM and SEM images of the carbon materials (referred in to in the text3 as carbide 

derived carbon CDC) produced by mechanochemical reaction with ZnCl2, FeCl3 and CuCl. The 

carbon products from all three reactions are composed of aggregated nanoparticles of varying size. 

CDC-Zn had a looser structure and CDC-Fe had small spheres dispersed throughout the sample. 
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The authors believe these spheres may be an Fe-C alloy. The higher Fe content in the 

accompanying elemental analysis supports this suggestion. 

 

Figure 0.8 SEM and TEM images of the CMs. SEM: (a’) CDC-Fe, (b’) CDC-Zn, (c’) CDC-Cu. 

TEM: (a) CDC-Fe, (b) CDC-Zn, (c) CDC-Cu.3 

Figure 5.9 presents the Raman spectra of the carbon materials from all three reactions. All 

three spectra contain the D peak at ~1330 cm-1 and the G peak at ~1580 cm-1 characteristic of 

carbon materials. Only the CDC-Cu and CDC-Fe have the 2D peak at ~2700 cm-1. The poor 

separation of the D and G peaks and peak intensity ratio (ID/IG) of 2.0 indicate in all three spectra 

suggest high degree of amorphous character. This contrasts with our observations of carbon 

materials ranging from amorphous to highly graphitic in structure. The authors of this study 

attribute the disorder of their carbon products to the damage induced by intense mechanical stress 

due to the mechanochemical reaction conditions. Moreover, the authors believe that the metal 
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aggregates and transition metal carbide intermediates formed during reaction disrupt the 

polymerization and rearrangement of the C-C bonds inhibiting a more ordered, layered structure. 

 

Figure 0.9 Raman spectra of carbon materials (CDC) produced from mechano-chemical reaction of 

calcium carbide with FeCl3 (black), ZnCl2 (red) and CuCl (blue).3 

 There were no mechanical stressors in the molten salt or in the solution reactions to induce 

damage during carbon crystal growth. Secondly, the mechanochemical reaction described by Li et 

al. is a solid-solid phase reaction. The reactions described in this dissertation are heterogeneous 

reactions occurring between a solid carbide and a transition metal ion either in the liquid or solution 

state. The transition metal ion is reduced to elemental, metal nanoparticles (or liquid metal in the 

case of molten reactions with tin). Simultaneously the carbon anion in the carbide is oxidized and 

a calcium cation must leach out of the solid to maintain charge balance within the solid. Therefore, 

there is no formation of intermediate transition metal carbides and aggregates of metal 

nanoparticles have less opportunity for disrupting crystal growth. These milder reaction conditions 

may preserve the anisotropic arrangement of the acetylide anions in the tetragonal crystal structure 

of calcium carbide and allow for C-C polymerization to graphite. 
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Chapter 6: Voltammetry of Carbide Microparticles at a Solid Electrode 

This chapter describes the full characterization of paraffin impregnated graphite electrodes 

(PIGE), the preparation of which is communicated in Chapter 2 Experimental Methods. Also 

described are results indicating the PIGE’s incompatibility with nonaqueous electrolytes. 

Additionally, this chapter reports on results of VMP experiments of covalent and transition metal 

carbides at a PIGE in 0.5M H2SO4 and results of VMP experiments on aluminum carbide and 

calcium carbide at a glassy carbon electrode (GCE) in various nonaqueous electrolytes. 

6.0 Preparation and Characterization of a Paraffin Impregnated Graphite Electrode 

Characterization of the graphite before and after wax impregnation was carried out with 

Raman spectroscopy and scanning electron microscopy (SEM). The Raman spectra in Figure 6.1 

A) of bare graphite and PIGE are very similar confirming that the wax fills the pores of the graphite 

without significant effects on the chemical bonding of the graphite. Figure 6.1 B) and 6.1 C) 

compare the morphology of the bare graphite and PIGE. The rough microstructure may be due to 

polishing of the electrodes with emery paper that is too rough. 

 

Figure 6.1 Panel A) compares the Raman spectra of the bare graphite rod before and after wax 

impregnation. SEM images show the coarse surface microstructure of B) bare graphite and C) 

PIGE after polishing with emery paper. 
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CV scan rate studies with ferrocene were performed to compare the electrode behavior of 

graphite before and after wax impregnation (Figure 6.2). Ferrocene is commonly used as a redox 

standard because it is a compound which displays ideal, reversible oxidation and reduction with 

fast kinetics. Scan rate studies were also performed with a gold working electrode for comparison. 

The results are presented in Table 6.1. The gold working electrode was a thin gold wire that 

displayed microelectrode behavior1 at scan rates < 0.25 V/s. However, at faster scan rates the 

separation between the anodic and cathodic peak potentials was relatively constant at 80-85 mV, 

indicating fast charge transfer kinetics.  For the graphite electrode and the PIGE, the peak splitting 

between the anodic (ipa) and cathodic (ipc) peak currents increased with increasing scan rate. This 

indicates that the electron kinetics of ferrocene is slower with the PIGE than at metal working 

electrodes like gold.  

 

Figure 6.2 CV scan rate studies, scan rates ranging from 0.01 to 0.50 V/s, of ferrocene in 0.1M 

KPF6/MeCN at A) a graphite electrode before wax imregnation and B) after wax impregnation 

(PIGE). The diameter of the PIGE and graphite is 6.15 mm. 
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Gold Graphite PIGE 

ν (V/s) ΔEp
 (V) ν (V/s) ΔEp (V) ν (V/s) ΔEp (V) 

0.01 0.550 0.01 0.100 0.01 0.090 

0.02 0.380 0.02 0.090 0.02 0.080 

0.05 0.442 0.05 0.105 0.05 0.090 

0.10 0.330 0.10 0.125 0.10 0.095 

0.20 0.255 0.20 0.160 0.20 0.105 

0.25 0.090 0.25 0.175 0.25 0.110 

0.30 0.085 0.30 0.185 0.30 0.125 

0.40 0.085 0.40 0.210 0.40 0.125 

0.50 0.085 0.50 0.230 0.50 0.135 
Table 6.1 Scan rates (ν) and peak potential splitting (ΔE) for ferrocene scan rate studies at gold, 

graphite and PIGE working electrodes.  

We believe these results indicate that the PIGE behaves as a microelectrode array with 

many small, conductive sites fixed on an insulating surface. This is consistent with the Tallman 

and Petersen’s definition for composite electrodes.2 Additionally, the CVs show that the wax 

impregnation inhibits intercalation of the supporting electrolyte, thus significantly decreasing the 

charging current that distorts and obscures the peak currents in the bare graphite CV.3 

6.1 PIGE and Nonaqueous Electrolyte Compatibility 

When initial experiments were performed with PIGE in 0.1M KPF6/MeCN to establish the 

potential window of the system, i.e. the potential interval in which only minimal charging current 

is observed, faradaic peaks at ~1.5V and -0.6V were observed (Figure 6.3). Comparison of CVs 

performed with bare graphite under the same conditions showed similar redox behavior. These 

peaks were likely due to the anodic oxidation (R 6.1) and cathodic reduction (R 6.2) of the graphite 

and subsequent intercalation of the supporting electrolyte ions.4  

 𝐶𝑛 + 𝑃𝐹6
− ↔ 𝐶𝑛𝑃𝐹6 + 𝑒

− R 0.1 

 𝐶𝑛 + 𝐾
+ + 𝑒− ↔ 𝐾𝐶𝑛 R 0.2 
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This was surprising because the PIGE literature indicates that the wax impregnation prevents the 

intercalation of the supporting electrolyte into the graphite without significant compromise of 

electrical conductivity.  

 

Figure 6.3 CVs in 0.1M KPF6/MeCN at scan rates 0.1 V/s. Both scans were initiated in the 

positive direction. The red CV was obtained using the PIGE and the blue CV obtained 

using bare graphite 

We performed XPS studies to investigate this phenomenon in the PIGE. Figures 6.4 A) 

and 6.4 B) show the XPS spectra of bare graphite and PIGE before CV experiments in 0.1M 

KPF6/MeCN. The graphite spectrum has a C1s peak and a small O1s peak likely due to hydroxyl 

and epoxy surface groups. Interestingly, after wax impregnation, i.e. in the PIGE sample, no 

surface oxygen was detected. 
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Figure 6.4 XPS spectra of a sample of A) a bare graphite electrode and B) a PIGE before CV 

studies in 0.1M KPF6/MeCN 

Figures 6.5 A) and B) show XPS spectra of graphite and PIGE after CV experiments. The 

graphite spectrum has strong potassium, fluorine and phosphorous signatures and the PIGE shows 

only a weak potassium signal. XPS spectra were collected again on the same samples after removal 

of 20 nm of the surface by sputtering. The potassium, fluorine and phosphorous peaks in the 

graphite spectrum were still strong, while the weak potassium peak in the PIGE spectrum 

completely vanished (spectra not shown). This implies that the intercalation into the PIGE is a 

surface sensitive process. 
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Figure 6.5 XPS spectra of samples of A) the bare graphite electrode and B) the PIGE after CV 

studies in 0.1M KPF6/MeCN 

 Experiments in which we attempted to eliminate the intercalation phenomenon yielded 

mixed results. These attempts included using a supporting electrolyte with larger cations that 

would inhibit the intercalation effect, such as tetrabutylammonium hexafluorphosphate (TBAHFP) 

and polishing the PIGE with smooth paper rather than rougher emery paper so that the wax would 

not be disturbed. Results from these experiments were inconclusive. Thus, it appeared that the 

PIGE was not suitable for analyses in nonaqueous electrolytes. 
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6.2 CV Analyses of various Metal Carbide Particles Immobilized on a Solid Electrode 

The fundamental electrochemistry of ionic carbides has received little attention in the 

literature, with only a few reports investigating calcium carbide in molten salts5,6. The 

electrochemical analysis of ionic carbides presents two main challenges: 1) they are water reactive, 

and 2) they are insoluble solids which are electrically semiconducting at best. The first challenge 

means that experiments must be conducted in a nonaqueous electrolyte and care must be taken to 

maintain a moisture free system. To address the second problem we have employed the method of 

voltammetry of micro particles (VMP) at a paraffin wax impregnated graphite electrode (PIGE) 

developed by Fritz Scholz.3  

 The electrochemistry of covalent and transition metal carbides microparticles were also 

explored via the VMP technique for comparison to results on ionic carbides and the results of other 

researchers using other techniques. Covalent carbides and transition metal carbides do not 

hydrolyze as readily as salt-like carbides, so their analyses were carried out in 0.5M H2SO4 at a 

PIGE. VMP experiments on aluminum carbide and calcium carbide were carried out in various 

nonaqueous electrolytes at GCE due to the PIGE’s incompatibility with nonaqueous electrolytes. 

The results of these studies are presented in the following sections. 

6.2.1  Analysis of SiC in 0.5M H2SO4 immobilized on a PIGE 

The first non-ionic carbide tested was silicon carbide (SiC), a covalent carbide. The SiC 

was in the form of a fine green powder, mesh size 200-450 (74-38 microns), is α-phase, hexagonal, 

subclass, 6H polytype.  

The SiC particles were attached to the face of a polished PIGE by gently polishing the 

electrode face into the powdered sample on a clean glass plate. Excess, poorly adhered particles 

were removed by gentle tapping of the PIGE. Inspection of the surface under a magnifying glass 

showed that SiC particles were adhered, but the mechanical abrasion also had caused significant 
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damage to the surface. The OCP was measured for five minutes beforehand and remained 

relatively constant. Five CVs of the SiC crystals were collected at 10 mV/s in 0.5 M H2SO4 and 

compared with the CV blank (see Figure 6.6 below). There are no faradaic peaks due to the 

oxidation or reduction of the SiC in the voltammograms. However, the first scan (red trace, Scan 

1) shows increased background current compared with the blank CV collected before modification 

with SiC. Subsequent scans show that the background current decreases to the level measured in 

the blank CV, indicating passivation and possibly some SiO2 formation. This experiment was 

repeated several times initiating the scans in the positive and negative direction with the same 

results. 

 

Figure 6.6 CVs of SiC + PIGE compared with Blank CV of PIGE (blue) in 0.5M H2SO4, 10 mV/s, 

initiated from the OCP vs. Ag/AgCl 3M NaCl  

There are no VMP analyses of SiC in the literature. However, SiC is known as a corrosion 

resistant ceramic, so there are few electrochemical studies in the literature.  For example, Michaelis 

et al. reported on the electrochemical corrosion of silicon carbide. The SiC in their study was a 

commercially available, α-phase, sintered SiC, embedded in an epoxy resin to form a composite 

electrode. This composite electrode was used as the working electrode in their electrochemical 
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system. Their corrosion studies were performed in several aqueous electrolytes 0.5M H2SO4, 1M 

NaOH and 1M HCl. 

CVs of SiC corrosion in both 0.5M H2SO4 and 1M NaOH at 10 mV/s scan rates are 

displayed where the oxidation of the SiC samples are denoted with an arrow (Figure 6.6 a) and b) 

below). This arrow is necessary because the potential range in the CVs was scanned to oxidative 

and cathodic break down of the electrolyte. Therefore, the oxidation peak for the SiC in both 

electrolytes is not visible because the peaks for the oxygen and hydrogen evolution completely out 

scale it7. The corrosion potential and corrosion current density of the sintered SiC samples were 

determined by linear scan voltammetry (LSV) at a scan rate of 0.5 mV/s. In 0.5M H2SO4 the 

corrosion potential was -0.131 vs. SCE and the current density was 0.133 μA/cm2. Analysis of SiC 

samples after corrosion experiments show pitted areas along SiC grain boundaries with SiO2 

inclusions.   
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Figure 6.7 CVs of SSiC-1 in 0.5M H2SO4 (a) and 1 M NaOH (b), scan rate = 10 mV/s8 

The following schemes for the oxidation of SiC in acidic media are given below: 

 𝑆𝑖𝑂2 + 4𝐻
+ + 4𝑒− ↔ 𝑆𝑖 + 2𝐻2𝑂 R 0.3 

 𝑆𝑖𝑂2 + 𝐶 + 4𝐻
+ + 4𝑒− ↔ 𝑆𝑖𝐶 + 2𝐻2𝑂 R 0.4 

 𝑆𝑖𝑂2 + 6𝐻
+ + 𝐶𝑂 + 6𝑒− ↔ 𝑆𝑖𝐶 + 3𝐻2𝑂 R 0.5 
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 𝑆𝑖𝑂2 + 8𝐻
+ + 𝐶𝑂2 + 8𝑒

− ↔ 𝑆𝑖𝐶 + 4𝐻2𝑂 R 0.6 

 𝐶𝑂2 + 4𝐻
+ + 4𝑒− ↔ 𝐶 + 2𝐻2𝑂 R 0.7 

The results of our VMP analyses of SiC are not in agreement with those of Michaelis et al. 

However, there are 250 known polymorphs of SiC9, and although their SiC sample was also α-

phase, they did not specify the polytype. In addition, the SiC sample was sintered and contained 

aluminum and boron additives which dramatically increased the electrical conductivity. The 

corrosion response of SiC is strongly dependent on both factors.  

6.2.2 Analyses of WC in 0.5M H2SO4 immobilized on a PIGE 

A binary transition metal carbide, tungsten carbide (WC), was also analyzed at a PIGE in 

0.5M H2SO4. The WC was in the form of a dull, dark gray powder, 100-270 mesh (53-140 

microns), 99.5% pure. Modification of the PIGE with the WC particles was achieved in the same 

manner as before. The OCP was measured at zero current and changed by more than 10 mV over 

the span of five minutes. This instability in the OCP may indicate that they system had not yet 

achieved equilibrium.  

Five CVs of the WC crystals were collected at 10 mV/s in 0.5M H2SO4 and compared with 

the CV blanks (see Figure 6.8 below). All scans were initiated in the positive direction. During the 

first scan after WC attachment there is a large peak at ~1.18V due to an irreversible, oxidative 

process (orange trace, Scan 1). There are no peaks corresponding to a reduction process on the 

return positive scan, although the currents are higher than those observed in the blank CVs. This 

may be due to the surface roughening that occurs as a result of the abrasive attachment of the 

carbide powder. The second scan in light blue shows the same oxidative process but with a much 

lower peak current. The following three scans show that the peak current due to this oxidation has 

reduced to near background levels. 
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Figure 6.8 CVs of WC + PIGE compared with five blank CVs of PIGE in 0.5M H2SO4, 10 mV/s, 

initiated in the positive direction from the OCP = 0.398V vs. Ag/AgCl 3M NaCl 

The Figure 6.9 shows five CVs of WC attached to the PIGE compared with a blank CV. In 

this experiment, all scans were initiated in the negative direction to drive a reduction. The orange 

trace is the first scan of WC and a large reduction appears at ~-0.77V with a peak current of 1.5 

mA. This is likely the reduction the hydrogen evolution reaction (HER, R 6.8) catalyzed by the 

WC.  

 2𝐻+ + 2𝑒− → 𝐻2 R 0.8 

The scan in the positive direction shows the same oxidative process seen in the CVs that 

were initiated in the positive direction. The following cycles show a dramatic decrease in in the 

reduction process attributed to HER to near background levels. The current peaks for the oxidation 

process seen in the first cycle decreases with each subsequent scan. These results indicate that the 

WC is oxidized and irreversibly destroyed, almost completely, in the first scan.10–12  

 𝑊𝐶 + 5𝐻2𝑂 → 𝑊𝑂3 + 𝐶𝑂2 + 10𝐻
+ + 10𝑒− R 0.9 
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Figure 6.9 CVs of WC + PIGE compared with 5 blank CVs of PIGE in 0.5M H2SO4, 10 mV/s, 

initiated in the negative direction from the OCP vs. Ag/AgCl 3M NaCl. 

The recent results on WC’s electrochemical stability at positive potentials by Ledendecker 

et al. confirm this interpretation.12 Ledendecker modified a glassy carbon (GC) electrode with WC 

by casting an aliquot of WC suspended in ultrapure water, 5 wt% Nafion solution in isopropanol 

onto the GC surface. Electrochemical measurements were performed in a scanning flow cell 

coupled to an inductively coupled mass spectrometer (SFC-ICP-MS) to monitor the dissolution of 

WC, W and WO3 rate over time. W concentration in the electrolyte was monitored via the 184W 

isotope to determine dissolution rates upon cycling at different oxidative potentials.  The 

electrolyte was 0.1M HClO4, a graphite rode served as the counter electrode and all potentials were 

reported vs the RHE. The CVs from Ledendecker et al.’s study are shown in Figure 6.10 below.  
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Figure 6.10 a) CV of 1 ug spot of WC pretreated with NaOH and the corresponding background 

CV of a glassy carbon plate (GC) at 2 mV/s in 0.1M HClO4, b) the corresponding dissolution rate 

profile of WC12. 

Figure 6.10 a) shows two irreversible oxidation peaks at ~1.1V and ~0.97V which are 

attributed to oxidation at two different crystal planes of WC. Comparison with our results in Figure 

6.8 shows an irreversible oxidation peak is shifted to potentials that are more positive. The reason 

for this shift is likely the differences in particle size. The WC microparticles in our study are much 

larger than those in the studied by Ledendecker et al., e.g. 53 microns vs 190 nm. Samples of larger 

particle size have lower surface energy and thus have higher corrosion resistance. Otherwise our 

results appear to be in good agreement. 
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6.2.3 Analysis of Cr3C2 in 0.5 H2SO4 immobilized on a PIGE 

Two chromium carbides were examined as representatives of the intermediate transition 

metal carbide group. The two carbide phases were Cr3C2 and Cr23C6. The first chromium carbide, 

Cr3C2, was in the form of a dull, light gray powder, ~325 mesh (~44 microns), 99.5% pure. 

Microparticles of the carbide were attached to the PIGE surface in the same way as previously 

described.  

CV results with Cr3C2 were qualitatively similar to WC. Figure 6.11 shows five blank CV 

scans collected with the unmodified PIGE prior to carbide attachment. The CVs show the same 

features discussed in Appendix B. Electrochemical Window Experiments. The peak current at the 

positive limit due to oxygen evolution reaction (OER) is no larger than 25 μA and the peak current 

at the negative limit before the onset of the hydrogen evolution reaction is no larger than -5 μA. 

The presence of the reductive shoulder from -0.270 to -0.770V is attributed to reduction of oxide 

groups on the surface of the electrode or proton intercalation.13  

 

Figure 6.11 Five CVs of unmodified PIGE initiated in positive direction from the OCP = -0.382V to 

+1.528V to -0.786V at 10 mV/s. 
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Initiation of potential scans in the positive direction from the open circuit potential (OCP), 

resulted in large oxidative currents (Figure 6.12). This is indicated by the blue scans, “Scan 1”, in 

both Figures 6.12 and 6.13. However, the anodic peak potentials occurred at more positive 

potentials (~1.5V) than the oxidation of WC and the peak currents were more than ten times larger 

than those observed with WC. The increased oxidative current could be a result of variations in 

absolute amount of sample immobilized on the electrode and smaller overall particle size or due 

to the differences in electrical conductivity of the two carbides. Cr3C2 has a bulk resistivity of 75 

μΩ-cm14,15 while resistivities of WC are between 250-535 μΩ-cm.16 

Initiation in the positive direction destroyed most of the Cr3C2 in the first scan, although 

the higher peak current at the positive limit in the first scan and the smaller, but still distinguishable 

anodic peak currents in the second scan (red, Scan 2) indicate that a significant amount of Cr3C2 

remained after the first scan. The current levels for subsequent scans decreased to near background 

levels indicating that all the carbide had been consumed. 
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Figure 6.12 CVs of Cr3C2 + PIGE compared with five blank CVs of PIGE in 0.5M H2SO4, 10 mV/s, 

initiated in the positive direction from the OCP vs. Ag/AgCl 3M NaCl. 

The Figure 6.13 below shows CV scans of Cr3C2 initiated in the negative direction 

compared with a blank CV. The current at the positive potential limit is highest in the first scan 

(blue, Scan 1) at a peak current of ~ -0.55 mA. The literature indicates that this dramatic increase 

in current at the positive limit is the HER,17,18 catalyzed by Cr3C2. When the potential is scanned 

in the positive direction, the carbide is oxidized and a large quantity of it destroyed. Thus, on the 

second cycle (red, Scan 2) the current at the negative limit for the HER catalysis decreases 

significantly as does the anodic peak current for the oxidation of the carbide. The peak current for 

both processes continues to decrease in subsequent scans to near background levels. 
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Figure 6.13 CVs of Cr3C2 + PIGE compared with five blank CVs of PIGE in 0.5M H2SO4, 10 mV/s, 

initiated in the negative direction from the OCP = -0.039V. 

As mentioned previously, Leonard et al. have recently reported on the catalytic activity of 

various chromium carbide phases for the HER.17,18 Most electrochemical studies are corrosion 

studies of chromium carbide coatings,19,20 alloys21,22 and composites.23,24 To the best of our 

knowledge, there are no similar studies in the literature that examine the electrochemical stability 

window of Cr3C2. However, Tyurin has reported on thermodynamic electrochemical equilibria of 

the Cr-C/H2O system.25 According to this reference, the following equilibria may be involved with 

the oxidation and dissolution of Cr3C2: 

 2𝐶𝑟3𝐶2 + 9𝐻2𝑂 → 4𝐶(𝑔𝑟. ) + 3𝐶𝑟2𝑂3 + 18𝐻
+ + 18𝑒− R 0.10 

 

 𝐶𝑟2𝑂3 + 6𝐻
+ + 2𝑒− → 2𝐶𝑟2+ + 3𝐻2𝑂 R 0.11 

   

 𝐶𝑟2𝑂3 + 6𝐻
+ → 2𝐶𝑟2+ + 3𝐻2𝑂 R 0.12 
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6.2.4 Analysis of Cr23C6 in 0.5 M H2SO4 immobilized on a PIGE 

The second chromium carbide investigated was the Cr23C6 phase. The Cr23C6 was in the 

form of a light gray powder, 99.5% pure, ~325 mesh (~44 microns). After the collection of CV 

scans of the unmodified PIGE, microparticles of the carbide were attached to the PIGE surface in 

the same way as previously described. 

CV results for Cr23C6 were similar to WC and Cr3C2. Initiation of potential scans in the 

positive direction from the open circuit potential (OCP), resulted in large oxidative currents 

(Figure 6.14). However, the anodic peak potentials occurred at more positive potentials (~1.4V) 

than the oxidation of WC but shifted by -0.1V compared to the oxidation potential of Cr3C2. This 

is consistent with Tyurin’s thermodynamic calculations predicting the higher stability of the Cr3C2 

phase.25 The current peaks are similar in magnitude with those observed in the CVs of Cr3C2. 

Initiation in the positive direction destroyed most of the carbide in the first scan (orange trace, 

Scan 1). The current levels for subsequent scans decreased to near background levels indicating 

that all the carbide had been consumed. 
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Figure 6.14 CVs of Cr23C6 + PIGE compared with 5 blank CVs of PIGE in 0.5M H2SO4, 10 mV/s, 

initiated in the positive direction from the OCP = 0.219V over a potential range of 1.528V to -

0.768V. 

Figure 6.15 below shows CV scans of Cr23C6 initiated in the negative direction compared 

with blank CVs. The current at the positive potential limit is highest in the first scan (blue, Scan 

1) at a peak current of ~ -0.75 mA. Again, the literature indicates that this dramatic increase in 

current at the positive limit is the HER,17,18 catalyzed by Cr23C6. When the potential is scanned in 

the positive direction, the carbide is oxidized and a large quantity of it destroyed. Thus, on the 

second cycle (red, Scan 2) the current at the positive limit decreases significantly as does the anodic 

peak current for the oxidation of the carbide. The peak current for both processes continues to 

decrease in subsequent scans to near background levels. 
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Figure 6.15 CVs of Cr23C6 + PIGE compared with five blank CVs of PIGE in 0.5M H2SO4, 10 mV/s, 

initiated in the negative direction from the OCP = 0.310V to -0.768V to 1.528V. 

Cr23C6 was one of the carbide phases studied by Leonard et al. in their research on the 

catalytic activity of various transition metal carbides for the HER.17,18 Most electrochemical 

studies involving the analysis of the Cr23C6 phase are corrosion studies of chromium carbide 

coatings,26,27 alloys28 and composites.29,30 To the best of our knowledge, there are no similar 

studies in the literature that examine the electrochemical stability window of Cr23C6. However, 

Tyurin’s publication on the thermodynamic electrochemical equilibria of the Cr-C/H2O system 

indicates that the corrosion of the Cr23C6 may proceed through a solid-state transformation to 

chromium carbides of lower chromium content (See Figure 6.16).25  
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Figure 6.16 The potential-pH value of the Cr23C6-H2O system at 25℃, 1 atm (air), and ai = 1mol/l 

(unhydrated form of oxides)25. 

Therefore, oxidation and dissolution of the Cr23C6 phase may proceed by the following 

equilibria: 

 𝐶𝑟23𝐶6 → 2𝐶𝑟7𝐶3 + 9𝐶𝑟
+ + 18𝑒− R 0.13 

 

 2𝐶𝑟7𝐶3 → 3𝐶𝑟3𝐶2 + 5𝐶𝑟
+ + 10𝑒− R 0.14 

 

 𝐶𝑟3𝐶2 → 2𝐶(𝑔𝑟. ) + 3𝐶𝑟
2+ + 6𝑒− R 0.15 

 

6.2.5 Analysis of Al4C3 in 0.1 M KPF6/MeCN immobilized on a GCE 

Aluminum carbide (Al4C3) was one of the two ionic carbides investigated via VMP 

analysis at a glassy carbon electrode (GCE). The aluminum carbide was in the form of a fine light 

brown to yellow powder, ~325 mesh (~44 microns), After the collection of CV scans of the 
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unmodified GCE, the electrode was rinsed with dry MeCN and dried with a kim wipe. As discussed 

in Appendix B. Electrochemical Window Experiments, cycling the GCE in 0.1M KPF6/MeCN 

reduced the electrochemical signals due to impurities to low levels that were stable and 

reproducible. Microparticles of the aluminum carbide were attached to the GCE surface by 

mechanical abrasion as previously described. Inspection of the surface under a magnifying glass 

showed that Al4C3 particles were adhered, but the mechanical abrasion also had caused significant 

damage to the surface. 

Figure 6.17 shows five CV scans of the GCE in 0.1M KPF6/MeCN after modification with 

aluminum carbide. The scans were initiated from the OCP in the positive direction in order to drive 

an oxidation. However, there are no features in the first scan (blue, Scan 1) until the reverse scan 

in the negative direction. This feature is a broad peak at ~ -1.74V that is ten times in magnitude 

above the background current due to a reductive process. When the potential is scanned back to 

the OCP two small, oxidative peaks appear. Upon initiation of the second scan (red, Scan 2) in the 

positive direction, a second oxidative process is observed, yielding a broad peak at ~ 0.57V. The 

return sweep and subsequent scans yield CVs with the same features as the CVs of the unmodified 

GCE. 
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Scans initiated in the negative direction from the OCP showed similar features. There is a 

broad peak in the negative region due to a reductive process during the first scan. When the 

potential was swept in the positive direction a small oxidation peak appeared followed by a broad 

peak due to a second oxidative process. The electrochemical features in subsequent scans were the 

same as those in the CVs of the unmodified GCE. The electrochemical features in the first scan of 

Figure 6.18 have lower peak currents, shifted peak potentials, and broadened shapes compared 
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Figure 6.17 CVs of Al4C3 + GCE compared in 0.1M KPF6/MeCN, scan rate 10 mV/s, initiated in the 

negative direction from the OCP = -0.286V over the potential range +2.00V to -2.00V. 
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with the current peaks in Figure 6.17. This may be due to the variation in amount of sample loading 

inherent to the VMP technique. 

 

 

Figure 6.18 CVs of Al4C3 + GCE compared in 0.1M KPF6/MeCN, scan rate 10 mV/s, initiated in the 

negative direction from the OCP = -0.331V over the potential range +2.00V to -2.00V. 

The presence of impurities in the system makes interpretation of these results difficult. 

However, the fact that the electrochemical features associated with the unmodified GCE are 

suppressed after introduction of aluminum carbide to the electrode strongly suggests that particle 

samples are interrupting direct contact with the electrode surface and the electrolyte. Moreover, 

the new features that are present in the first scans after aluminum carbide introduction and the 

general reproducibility of these features further indicate that the aluminum carbide particles are 

electrochemically active. Therefore, we tentatively assign these peak currents to the reduction of 

aluminum carbide followed by oxidation processes in which the carbide is irreversibly destroyed.   

More detailed interpretation will require further analyses, and to the best of this author’s 

knowledge, there are no electrochemical analyses of aluminum carbide in the literature to aid us 
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in our interpretation. However, as a starting point we may hypothesize possible half-reactions 

based upon the structure of aluminum carbide. 

Al4C3 has a rhombohedral structure with alternating layers of Al2C and Al2C2 units stacked 

in the c-direction. If we assume separation of charge based on this structure the oxidation and 

reduction pathways may be: 

 𝐴𝑙2𝐶 + 6𝑒
− → 2𝐴𝑙 + 𝐶6− R 0.16 

 𝐴𝑙2𝐶2 + 6𝑒
− → 2𝐴𝑙 + 2𝐶3− R 0.17 

 

Oxidation: 

 𝐴𝑙2𝐶 → 2𝐴𝑙
3+ + 𝐶 + 6𝑒− R 0.18 

 𝐴𝑙2𝐶2 → 2𝐴𝑙
3+ + 2𝐶 + 6𝑒− R 0.19 

 

It is likely that the above proposed half-reactions are an oversimplification. The carbon anions 

with such large negative charges would be highly unstable and have never been observed in 

experiment. Additionally, the closest C-C atomic distance in Al4C3 is 316 pm, and it is thought 

that such a large separation of charge is unlikely to occur over such a great distance. Instead, the 

electrochemical processes may be more complicated and may involve oxidation and reduction of 

nonstoichiometric species or the carbide may undergo multiple oxidation and reduction steps due 

to the chemically different aluminum and carbon species involved. 

6.2.6 Analysis of CaC2 in 0.1M TBAHFP/MeCN immobilized on a GCE 

Due to the quasi-reversible redox feature observed at potentials >-1.1V (discussed in 

Appendix B), the potential window used for calcium carbide experiments in 0.1M 

TBAHFP/MeCN was -1.069V to 1.931V. The OCP was measured at zero current for five minutes. 
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Blank CVs of the unmodified GCE were collected by initiating scans in the positive direction from 

the OCP to the positive potential limit, then to the negative potential limit and back to the OCP. 

 After the collection of the blank CVs, the GCE was rinsed in dry MeCN and dried with a 

kimwipe. The calcium carbide analyzed was in the form of 6.4 to 12.7 mm granules, Lab grade. 

The appearance of the calcium carbide pieces were gray to white solids with varying degrees of 

oxidation and impurities. Some small pieces were completely white indicating the surface was 

covered with calcium oxide. Other pieces had faces with thin black layers. These layers are likely 

elemental carbon impurities. A small piece of calcium carbide was selected. This carbide piece 

was small and gray in appearance and appeared to have less surface oxides. This piece was crushed 

in a diamonite (synthetic sapphire) mortar and pestle. The resulting powder was coarse and 

heterogeneous in appearance. The powder was mostly brown with darker, reflective crystals 

dispersed within it. A small portion of the powder which had come from inside the carbide piece 

was placed on a piece of clean paper on a glass plate. This powder was attached to the GCE in the 

same way as before. 

 The OCP of the GCE + CaC2 varied from -0.051 to -0.013V over five minutes. Figure 6.19 

show five CVs of the CaC2 modified GCE compared with five blank CVs. There are no features 

indicating faradaic processes in any of the voltammograms. The first scan of the CaC2 modified 

GCE (orange, Scan 1) in Figure 6.19 shows elevated background current compared with the blank 

CVs. After the first scan the background current decreases, indicating passivating process has 

taken place. The lack of electrochemical features in the voltammograms indicate that the calcium 

carbide is either electrochemically inactive in this potential window or that the contact between 

the calcium carbide particles and the GCE was insufficient, i.e. the calcium carbide did not adhere 

to the GCE surface. 
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Figure 6.19 CVs of GCE1 modified with calcium carbide compared to blank CVs of unmodified 

GCE1. Scan rate = 10 mV/s, scans initiated in the positive direction from the OCP = -0.013V (for 

CaC2 modified electrode). 

6.2.7 Analysis of CaC2 in 0.1M CaTf/MeCN immobilized on a GCE 

Calcium carbide microparticles were also analyzed in a 0.1M CaTf/MeCN electrolyte at a 

GCE. Processing of the calcium carbide to a powder and immobilization of the powder to the GCE 

was achieved in the same way as described earlier. It was hypothesized that the oxidation and 

reduction of calcium carbide may be a reversible process due to the anisotropic arrangement of the 

acetylide anions in calcium carbide’s structure (R 6.20). The supporting electrolyte calcium 

triflate, provides the calcium cation to test this hypothesis. 

 𝐶𝑎𝐶2 ↔ 𝐶𝑎2+ + 2𝑒− + 2𝐶(𝑔𝑟. ) R 0.20 

Figure 6.20 shows five CVs of the GCE post calcium carbide modification compared with 

a CV of the unmodified GCE (teal, Blank CV5) in 0.1M CaTriflate/MeCN at 10 mV/s. The scans 

were initiated in the positive direction from the OCP to 2.102V, scanned in the negative direction 

to -2.398V and back to the OCP. Similar to the CVs in the TBAHFP/MeCN electrolyte, there are 

no faradaic peaks in the CVs post modification with calcium carbide. The first scan (orange, Scan 
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1) shows elevated background current in the positive potential region and the impurity oxidation 

peaks are suppressed. In the following scans the background current decreases to the level 

observed in the blank CVs and the oxidation peaks attributed to impurities are once again visible. 

 

The lack of electrochemical features in the voltammograms also indicate that the calcium 

carbide is either electrochemically inactive in this potential window or that the contact between 

the calcium carbide particles and the GCE was insufficient, i.e. the calcium carbide did not adhere 

to the GCE surface. However, the fact that the impurity oxidation peaks were suppressed in the 

first scan post calcium carbide attachment suggests that the surface of the electrode was covered 

with the carbide. It is possible that the activity of the calcium carbide is hidden by processes due 

to the impurities. It is worth emphasizing the preliminary nature of these results. Further 

experimentation is required. 
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Chapter 7: Conclusion and Future Work 

We have reported on explorations of the oxidation of calcium carbide in late transition 

metal halide salt melts first reported by Barber and Sloane.1 We expanded on this work by 

reporting on the characterization and analysis of the carbon produced from these reactions. 

Moreover, we have also investigated the oxidation of aluminum carbide in tin chloride melts and 

described the characterization and analyses of the reaction products. To the best of our knowledge, 

this is the first report on the salt melt synthesis of carbon material from aluminum carbide. In the 

future, salt melt mixtures utilizing eutectics for lowering the reaction temperature could be 

explored. Data in the literature indicates that calcium carbide is somewhat soluble in lithium 

halides, which should improve mass transport; therefore, syntheses in lithium halide melts should 

be investigated.  

Further characterization of the carbon products materials properties, such as resistivity, 

thermal and chemical stability, etc., must be carried out to determine their potential for application 

in electrochemical devices. For example, Antonetti et al.2 have noted that salt melts can act as 

activators and porogens in the synthesis of microporous carbons from biomass, polymer and other 

hydrocarbon precursors. Thus, it should be determined whether the salt melts also take on this 

additional role in the oxidation of calcium carbide and aluminum carbide.    

We also describe explorations of the oxidation of ionic carbides by metal cations in solution 

via galvanic reaction and controlled potential electrolysis between a calcium carbide cell in an 

ethanol solution of saturated calcium chloride and a zinc cell in an ethanol solution of saturated 

zinc chloride. Results on a controlled potential electrolysis experiment are also reported. Although 

results from solution state experiments indicated that calcium carbide had been oxidized to 

elemental carbon, many questions remained unanswered and problems originating from 
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experimental design remained unresolved. The observation of the oxidation of calcium carbide in 

the solution state to graphite coupled together with calcium carbide’s structural similarity with 

graphite led to the question of whether the oxidation of calcium carbide and the assumed de-

intercalation of the calcium cation was reversible. This observation would be significant 

considering recent interest in identifying and investigating electrode materials for the development 

of a calcium ion battery.3–8  

The voltammetry of microparticles experiments (VMP) were undertaken to explore the 

possibility of the reversible charge transfer reactions in carbides, as well as the possibility of 

synthesizing the carbon materials produced via ionic carbides in salt melts but in low temperature 

salt solutions driven by controlled potential electrolysis. Additionally, we discovered that there 

were very few studies on pure phase, microparticles of covalent and transition metal carbides 

despite their growing importance as catalyst support and electrode materials. Therefore, VMP 

investigations were expanded to include representatives of each category of carbide as well as the 

ionic carbides. 

The VMP results from experiments with the ionic carbides indicated that their 

electrochemistry in nonaqueous electrolytes was very different from their behavior in melts of 

transition metal halide salts. Cyclic voltammetric (CV) analyses showed that aluminum carbide 

microparticles immobilized on a glassy carbon electrode (GCE) only underwent an oxidation after 

a reduction event. This behavior was reproducible within the limitations of the technique. This 

contrasts with the oxidation of aluminum carbide to elemental carbon by a tin chloride melt.  

The VMP analyses were also conducted on calcium carbide particles immobilized on a 

GCE in two different nonaqueous electrolytes, 0.1M tetrabutylammonium hexafluorphosphate in 

acetonitrile (TBAHFP/MeCN) and 0.1M calcium triflate in acetonitrile (CaTf/MeCN). The second 
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supporting electrolyte, CaTf, was chosen to provide a source of solvated calcium ions to establish 

the hypothesized reversible charge transfer equilibria discussed earlier. After modification of the 

electrode with calcium carbide, higher background currents were observed indicating the 

passivation of material which had not been there previously. However, no distinct faradaic peaks 

were observed that could be attributed to the carbide. The lack of electrochemical features post 

carbide modification suggests that either calcium carbide is electrochemically inactive, signals due 

to its activity are not observed due to interference with impurities or there was insufficient 

electrical contact between the calcium carbide particles and the GCE. 

We believe the latter is the cause of the apparent inactivity of the calcium carbide modified 

GCE. Calcium carbide is not commercially available in high purity. Most vendors sell calcium 

carbide as industrial grade, which is 75-80% pure. The calcium carbide used for the VMP 

experiments was industrial grade, and upon initial inspection it was clear the carbide had 

undergone significant decomposition due to hydrolysis with ambient moisture. Although care was 

taken to process the carbide to a powder with minimal hydrolysis of the carbide, further 

decomposition undoubtedly occurred before modification of the electrode. Additionally, 

comparing the standard free energies and enthalpies of aluminum carbide and calcium carbide, 

calcium carbide should be more thermodynamically accessible than calcium carbide.  

Thus, VMP experiments on the ionic carbides, particularly calcium carbide analyses, posed 

a significant hinderance. These impurities include contaminants in both the nonaqueous 

electrolytes and in the calcium carbide, the latter of which we believe prevented observation of its 

electrochemical activity in this work. Taking this into consideration, we recommend identification 

and elimination of the impurities in the nonaqueous electrolytes and repeating the VMP 

experiments with the ionic carbides. Specifically, supporting analyses with SEM/EDS, ICP-OES 
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and Raman should be conducted to elucidate the chemistry and mechanisms of the electrochemical 

behavior of aluminum carbide. We also recommend synthesizing pure calcium carbide for VMP 

analysis since it cannot be obtained commercially. The author recommends pursuing the micro-

wave assisted, solid-state synthesis method reported by Iyere et al.9 This method has a higher yield 

than the electric arc method and can produce calcium carbide of high purity if graphite is used as 

the carbon precursor. 

Results from VMP experiments on SiC, a covalent carbide, and several transition metal 

carbides, WC, Cr23C6 and Cr3C2, indicated chemistry very different from the electrochemistry of 

the ionic carbides. Results indicated that in 0.5M H2SO4 SiC microparticles had very little 

electrochemical activity, with only a slight increase in background current indicating passivation 

and SiO2 formation. CVs of WC microparticles showed the catalysis of the HER in the cathodic 

potential region and the irreversible, oxidative destruction of WC to WO3 at 1.18V. These results 

are in good agreement with the work of others on the subject.10,11 The VMP analyses of the 

chromium carbides showed the catalysis of the HER in the cathodic region and the irreversible, 

oxidative destruction of the chromium carbides, Cr3C2 oxidation at 1.5V and Cr23C6 oxidation at 

1.4V. Although there have been some corrosion studies on chromium carbide coatings,12,13 alloys14 

and composites,15 to date there have been few electrochemical studies on pure phase microparticles 

of chromium carbides.  

 In their electrochemical analyses of WC nanoparticles, both Roman-Leshkov et al. and 

Ledendecker et al. observed two oxidation peaks which they attributed to differences in the 

electrochemical activity of two different crystal planes of WC. The onset of WC oxidation in 

Ledendecker’s work was at more positive potentials than those reported in the work of Roman-

Leshkov. Ledendecker postulated that this difference in potential to the larger particle size of the 
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WC. These suppositions merit further exploration to determine the effects of crystal size on the 

electrochemical behavior and appearance of the voltammogram and to confirm the differences in 

electrochemical activity of different crystal planes. VMP of single crystals with in situ XRD could 

shed light on these matters.  

Finally, in a broader scope, the author hopes to bring more attention to the voltammetry of 

microparticles as an electrochemical technique. Although VMP for the electrochemical analysis 

of solids was first reported in 1989,16 use of this technique seems to have remained limited to two 

groups: the Scholz group and the Doménech group. Both groups have decisively established the 

versatility of this technique. Demonstrations of VMP’s universal applicability include but are not 

limited to the phase identification and quantification of alloys,17 and metal salts,18 the in-situ 

monitoring of solid-state structural changes in oxides that are driven electrochemically19 and the 

immobilization of organic droplets and thin films for measuring the free energy of ion transfer 

across the interface of two immiscible liquids.20   

Perhaps VMP has been overshadowed by the electrode and sample preparation of 

composite electrodes which are standard practice in battery research. Although these composite 

electrodes demonstrate clearly how these materials would perform as electrodes in batteries, VMP 

has several advantages which should not be overlooked. As Besenhard21 noted, analysis of micro 

and nanocrystals immobilized on an electrode that are free of a porous matrix will faster. 

Additionally, VMP analyses may better enable the elucidation of the electrochemical mechanisms 

inherent to the material as a pure phase, and allows for the observation of topotactic, solid-state 

phase transformation driven electrochemically via in situ techniques. 

Investigation of structural changes that are instigated electrochemically are very important 

in the research of electrochemical devices. For example, it was once accepted in the lithium ion 



166 

 

battery field that fast, reversible Li+ intercalation required the that the electrode material consist of 

a single structural phase. However, it has recently been demonstrated that fast, reversible 

intercalation can proceed unhindered in solids that undergo simultaneous phase transitions.22 This 

has led to the pursuit of conversion electrodes, which are materials that change crystal structures 

while undergoing a solid-state redox reaction and lithiation/de-lithiation23. In this category 

specifically, metal halides are predicted to have high theoretical and volumetric capacities, 

however their realization as electrodes are hindered by their poor electronic conductivities. We 

envision that VMP may be a powerful technique for studying conversion electrodes because of the 

techniques demonstrated applicability for the analysis of insulating solids. 
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Appendix A. Analysis of Calcium Carbide and Aluminum Carbide and Their Impurities 

Calcium carbide is most commonly produced in an electric arc furnace from a mixture of 

lime, a source of CaO, and coke, a source of elemental carbon. This reaction (see below) is carried 

out at approximately 2200℃.  

 𝐶𝑎𝑂 + 3𝐶 → 𝐶𝑎𝐶2 + 𝐶𝑂 R 0.1 

Calcium carbide for industrial use ranges from 70-85% purity. Typical impurities leftover from 

lime feedstock include but are not limited to CaCO3, Na2O, MgO, P2O5, SiO2, SO3, Al2O3, Fe2O3, 

and K2O
1. Impurities from the bituminous coal used to make the coke feed stock may include 

arsenate and pyrite minerals, iron oxides and magnesium and aluminum oxides and silicates2–5.  

The most common uses for calcium carbide are the production of acetylene and calcium 

cyanimide, which is a fertilizer. These processes do not require high purity starting material, so it 

is very difficult to find “reagent grade” quality calcium carbide, if not impossible. In the pastFor 

example, we procured calcium carbide from Fisher Scientific that was advertised as 97+% pure 

based on a water titration assay but not a trace metals analysis. Upon purchase and inspection, 

large pieces of what appeared to be metallic iron could be seen poking out from the surface of 

some of the pieces of carbide.  

This appendix contains the results the elemental analysis and characterization of the 

impurities in calcium carbide used in this research. Analysis of these impurities is necessary for 

two reasons. The first reason is impurities that are electrochemically active must be identified 

because they may produce electrochemical signals, which interfere with the analysis of the calcium 

carbide. Secondly, one of the impurities in calcium carbide is elemental carbon from unreacted 

coke (R 7.1). Characterization of this carbon impurity is important so that we can differentiate it 

from the carbon produced by the oxidation of calcium carbide in molten salt and solution state 
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syntheses. Additionally, the carbon impurity may have an influence on the reaction pathway, 

nucleation and growth of the carbon product. Therefore, thorough characterization of the 

composition and morphology of the residual elemental carbon is necessary.  

A.1 Methodology for Analysis of Calcium Carbide Impurities 

Three pieces of calcium carbide procured from Carbide Industries, LLC. Each piece was 

loaded into glass jars with glass lids that met at frosted joints in a glove box under argon 

atmosphere. The mass of the glass jars were recorded on an analytical balance before and after the 

addition of carbide. The calcium carbide pieces were hydrolyzed to completion with 6M 

hydrochloric acid (R 7.2).  

 𝐶𝑎𝐶2 + 2𝐻𝐶𝑙 → 𝐶𝑎𝐶𝑙2 + 𝐻2𝐶2 R 0.2 

 

Completion of reaction was assumed when the evolution of acetylene ceased and the solid carbide 

leaving behind small amounts of gray to black residue. This black residue was assumed to be the 

elemental carbon contaminant. Silver membrane filters were weighed and used to filter the carbide 

and acid reactions. The carbon reside, which collected on the silver membrane filters, was washed 

with distilled water and methanol several times. The carbon residue on the silver filter was allowed 

a week to dry and the weight of the carbon residue was obtained from the difference. The filtrate 

was collected and diluted using volumetric glassware until a pH of approximately 2.0 was 

obtained. The filtrate was then taken to the analytical lab in the National Research Center for Coal 

and Energy (NRCCE). The filtrate was tested for the metal cations that would be the most likely 

impurities in calcium carbide. This was accomplished with inductively coupled plasma optical 

emission spectroscopy (ICP-OES). The carbon contaminant collected on the silver membrane filter 

was analyzed using Raman Spectroscopy and scanning electron microscopy (SEM). 
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A.2 ICP-OES Results and Analysis  

Table 7.1 shows the mass percent of metal cations calculated from ICP-OES analysis of 

the calcium carbide after complete hydrolysis. The carbon mass % was determined by weighing 

the solid residue remaining after hydrolysis.  Treatment with hydrochloric acid is sufficient to 

remove most metals, salts and other mineral impurities via reaction and dissolution. These 

impurities were separated into the filtrate and detected by ICP-OES. Therefore, until further 

analysis it was assumed that composition of the remaining solid residue was pure carbon. 

 Al % Ca % Fe % Mg % Mn % C% 

Sample 1 0.662 63.2 0.262 0.085 0.023 2.13 

Sample 2 0.345 48.1 0.058 0.016 <0.002 1.02 

Sample 3 0.441 70.3 0.033 0.033 <0.002 0.504 

Average 0.483 60.6 0.118 0.0445 0.0089 1.22 
Table A.1 . Mass percent of elements detected after hydrolysis via ICP-OES elemental analysis. 

Carbon amount determined by weighing; however, analysis of carbon residue by SEM/EDS indicates 

the residue is not pure carbon. 

A.3 SEM and EDS Analysis of Carbon Residue 

A scanning electron microscope (SEM) was used to obtain images of the carbon 

contaminant from sample 4 and 5 in order to determine its dominant morphology, which we believe 

should be amorphous. The energy dispersive x-ray spectroscopy (EDS) capability was not 

available at the time. Samples were prepared by scraping carbon off silver membrane filters and 

pressing double sided copper tape to SEM pin and then onto silver filter. It is possible this could 

have induced changes in the morphology of the samples and introduce some fibers from the filter. 

However, no fibers were seen during these analyses. 5.0 kV scanning voltage was used to reduce 

the possibility of damaging the samples. All samples had issues with charging to varying degrees. 

This could be due to the amorphous nature of the carbon and/or the presence of residual salts and 

mineral impurities. Therefore, samples were sputter coated for 120 seconds with Au/Pd resulting 

in a coating of approximately 15 nm. EDS will yield more definitive information.  
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Figure 7.1 show SEM images of the carbon contaminant from all three samples. The 

Morphology of both samples looked mostly amorphous with little long-range order on a 20-30 

micron scale. The images on a 5 and 10 micron scale also show what appears to be mostly 

disordered carbon as well. However, the some images showed more crystalline features Figures 

7.1 a) and b). These features include flat faces and sharp edges that could have graphitic structure. 

Figure 7.1 c) shows a globular crystal with a rough surface morphology. This area of the sample 

in particular experienced heavy charging even after sputter coating. Figure 7.1 d) shows another 

interesting morphology – a flattened sphere with a smooth surface.  

 

Figure A.1 SEM images of different morphologies observed in the samples of carbon residue 

remaining after hydrolysis of calcium carbide. Figures a) and b) show features which appear more 
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crystalline with flat faces, straight edges and sharp angles. Figures c) and d) show examples of 

irregular morphologies such as the smooth, spherical shape in d) and the rough globular pieces in c).  

The elemental composition of these morphologies was determined by EDS analysis and mapping 

on specific areas in Figures 7.1 b), c) and d). Figure 7.3 b) shows the EDS spectrum of the crystal 

in the middle of the SEM image in Figure 7.1 b). Table 7.2 lists the elemental composition of this 

crystal. Although the crystal has a flat face and sharp edges, only 44.14% of this crystal is carbon. 

The remaining composition is 24.00% silicon, 10.58% aluminum, 8.42% oxygen and 7.26% 

nitrogen. The gold is from the sputter-coated layer.  

 

Figure A.2 a) selected area of crystal shown in previous SEM image with b) EDS spectrum of selected 

area. 

Element Weight % Atomic % 

C K 21.38 44.14 

N K 4.10 7.26 

O K 5.43 8.42 

Al K 11.51 10.58 

Si K 27.18 24.00 

Au M 

 

13.77 

 

1.73 

 
Table A.2 Elemental composition selected area in Figure 7.2 a) 

EDS analysis of the spherical particles with rough, heterogeneous surface had even lower carbon 

content at 34.63% and higher oxygen (30.24%) and silicon content (28.97%) indicating that these 
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spheres may be a mixture of amorphous carbon and silicate minerals. Full elemental composition 

of particle in Figure 7.3 a) is presented in Table 7.3. 

 

Figure A.3 a) SEM image of one of the particles shown in figure 7.1 c) showing more detailed 

morphology and b) EDS spectrum of particle shown in a).  

Element Wt % Atomic % 

C K 19.94 34.63 

N K 1.70 2.54 

O K 23.19 30.24 

Al K 2.86 2.21 

Si K 39.01 28.97 

Au M 13.31 1.41 
Table A.3 Elemental composition selected area in Figure 7.3 a). 

Figure 7.4 a) shows a particle with particle morphology differing than those discussed previously. 

This particle is round and has a smooth surface. Interestingly, the EDS spectrum (Figure 7.4 b)) 

for this particle had the highest carbon content at 85.95%. Table 7.4 presents total elemental 

composition of material in SEM image in Figure 7.4 a). 
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Figure A.4 a) SEM image of one of the particles shown in figure 7.1 d) showing more detailed 

morphology and b) EDS spectrum of particle shown in a).  

Element Weight % Atomic % 

C  K 61.15 85.95 

O  K 5.78 6.1 

F  K 3.73 3.32 

Si K 4.11 2.47 

Au M 25.23 2.16 
Table A.4 Elemental composition selected are in Figure 7.4 a). 

 

A.4 Raman and Optical Microscopy Analysis of Carbon Residue 

The carbon residue isolated from the hydrolysis in all three carbide samples was analyzed 

by micro-Raman spectroscopy. Spectra were collected through the 50x objective on the 

microscope at 1% laser power (532 nm) in order to reduce the possibility of interference from 

luminescence. Five accumulations for each spectrum were collected to increase the signal to noise 

ratio of the Raman response. Errant bands due to hot pixels or cosmic rays were removed via the 

spectra software, and the intensity was normalized on the y-axis. The spectra did not receive any 

other data processing. Spectra and optical microscope images were collected from four different 

areas of each sample in an effort to present data that is representative of the carbon residue. 

The optical images (Figure 7.5) show that the morphology of the surface appeared rough 

with irregular surface heights making it difficult to focus the microscope. There were areas that 
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were reflective, but there were also dark areas that the microscope was unable to bring into focus. 

It is likely that these dark, unfocused areas are amorphous material, e.g. the left image. Some areas 

of the sample had crystalline specimens on which the microscope could be focused. These 

reflective areas looked more crystalline with straight edges and flat, textured faces (middle and 

right image in Figure 7.5). 

 

Figure A.5 Optical images of carbon residue remaining after hydrolysis of calcium carbide. Images 

were captured through the Raman microscope on the 50x objective. 

When crystalline specimens were present in the viewing field of the microscope, spectra 

were collected by focused on these crystalline pieces because it was easier to focus the laser on 

something that was flat and reflective. The spectra of each carbon sample are shown below in 

Figures 7.6 a), b) and c). Many of the spectra had broad backgrounds with no identifiable peaks. 

The few sites that gave some discernable peaks, again appeared around the wavenumbers 

characteristic of carbon materials, ~1390 and ~1600 cm-1, but were broad and low in intensity 

compared to the background. Figure 7.6 d) displays these features in more detail. The broad and 

mostly featureless spectra seem to imply that the elemental carbon is mostly amorphous, and the 

peaks that can be resolved suggest the residue is amorphous carbon from unreacted coke in the 

calcium carbide production process. Literature supports this interpretation showing a correlation 

between order in carbon materials and the broadening and diminished peak intensity in Raman 

spectra6,7. 
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Figure A.6 Raman spectra from four different areas on residue remaining after calcium carbide 

hydrolysis for a) sample 1, b) sample 2 and c) sample 3 and d) enlargement of Raman bands from 

spectra in c). 

Figure 7.6 d) show Raman bands in one of the spectra in Figure 7.6 c) in to the 1100-2000 

cm-1 range. Broad, low intensity peaks can be seen around 1390 and 1600 cm-1 a few of the 

samples. These coalesced peaks are common to amorphous carbon materials and are reminiscent 

in appearance of coal and cokes8,9 and glassy carbon10. However, these bands in the Raman spectra 

of the carbon residue left over after carbide hydrolysis are much lower in intensity if they appear 

at all. Niwase has shown the evolution of Raman spectra amorphization of graphite by ion-

bombardment. The spectrum for graphite becomes broad and featureless with increasing disorder 

eventually becoming a broad background with no discernable peaks11. This supports the hypothesis 

that the majority of the carbon material contaminating the calcium carbide is disordered and 

amorphous. However, follow up Raman analyses with lasers of different wavelengths would 

definitively eliminate the possibility of luminescence interference and confirm the interpretation 

of these results12,13. 
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A.5 SEM Analysis of Aluminum Carbide 

Aluminum carbide can be prepared by the reduction of aluminum oxide by carbon reducing 

agents at temperatures 1400-1900℃. It can also be obtained by heating aluminum metal with 

calcium carbide, reducing aluminum oxide with calcium carbide in an electric arc furnace and 

reducing sodium aluminate with carbon at 2000℃. Best results come from using graphite as the 

carbonaceous reducing agent over cokes and coals14. This may be why aluminum carbide is 

available in much higher purity than calcium carbide. 

Union Carbide filed a patent in 1957 for the production of aluminum carbide at much lower 

temperatures. This was done using a catalyst fluoride salts and heating powdered aluminum metal 

and carbon or lamp black to 700℃15. The technique used to produce the aluminum carbide we 

have procured is proprietary information. However, it is likely that it is a method similar to that 

described in Union Carbide’s patent. The elemental composition of aluminum carbide studied in 

this research, provided by Alfa Aesar the manufacturer, is presented in the Table 7.5 below.  

Element Atomic % 

Carbon 24.6 

Aluminum 72.0 

Iron  0.1 

Oxygen  0.9 

Nitrogen  1.4 
Table A.5 Elemental Composition According to Alfa Aesar’s Certificate of Analysis 

A sample of aluminum carbide was prepared by pressing an SEM stub with double sided 

carbon tape into aluminum carbide powder. The stub was quickly inserted into the SEM in order 

to minimize reaction with ambient moisture. The sample experinced minimal charging with no 

sputter coating. Figure a) and b) present SEM images of the aluminum carbide powder. The 

particle size of the aluminum carbide is ~325 mesh which equates to ~44 μm. However, the images 

show that there is a range of particle size, with many crystals less than 44 microns. The morphology 
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of the aluminum carbide is crytalline, rhombohedral as expected. Quantitation from EDS spectra 

(Figure c)) of the aluminum carbide showed an elemental composition of 56.41% carbon, 33.67% 

aluminum, and 9.92% oxygen. The increased oxygen content indicates the carbide has undergone 

some hydrolysis due to exporsure to ambient moisture. The extremely high carbon content (higher 

than 24.6% in the certificate of analysis, Table 7.5) is likely due to the presence of the carbon tape 

on which the carbide is mounted. Nevertheless, these analyses confirm the high purity of the 

aluminum carbide. 

 

Table A.6 EDS spectrum of aluminum carbide powder 

Element Weight % Atomic % 

C  K 38.84 56.41 

O  K 9.1 9.92 

Al K 52.06 33.67 
Table A.7 Elemental Composition Determined via EDS 
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Appendix B. Experiments to Establish Working Potential Window of Each System 

 

B.1 Working Potential Window of PIGE in 0.5M H2SO4 

The following methodology, adapted from the work of Jaramillo et al1, was used to 

establish the inert potential window for the PIGE 0.5M H2SO4 system prior to VMP experiments. 

The open circuit potential (OCP) was determined by measuring the potential at zero current. The 

OCP of an unmodified PIGE or GCE usually stabilized within 5 minutes. Progressive potential 

scans were applied in increasing potential increments of 100 mV from the OCP at 25 mV/s. The 

anodic and cathodic potential limits were increased until a current density of 2 mA/cm2 or -2mA/V 

was achieved respectively. Jaramillo et al. consider current density of 50 μA/cm2 above the 

baseline capacitance as the limit at which the system is no longer electrochemically inactive. This 

electrochemical inactivity refers to whether there are any redox features or changes in background 

current. 

Figure 8.1 shows CV curves generated using the described methodology in 0.5M H2SO4 

electrolyte with a PIGE WE. Oxidative current did not significantly increase until potentials more 

positive than 1.532V. The sweep over the largest potential range (red curve in Figure 8.1) shows 

large anodic current at the positive limit corresponding to the oxidation of the electrolyte or oxygen 

evolution reaction (OER, R 8.1). 

 2𝐻2𝑂 → 4𝑒
− + 4𝐻+ + 𝑂2 R 0.1 

 

 There is also a small reductive feature that may be due to the reduction of the evolved oxygen. 
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Figure B.1 Progressive CV scans at PIGE in 0.5M H2SO4 at 25 mV/s, initiated from the OCP vs. 

Ag/AgCl 3 M NaCl reference electrode. 

Cathodic current due to the hydrogen evolution reaction (HER, R 8.2) caused by the 

breakdown of the electrolyte does not dramatically increase until -0.778V.  

 2𝐻2𝑂 + 2𝑒
− → 2𝑂𝐻− + 𝐻2 R 0.2 

 

However, a reductive shoulder appears when potentials are scanned past -0.568V (Figure 8.2). 

This reductive shoulder may be due to the reduction of oxide groups on the surface of the graphite 

or proton intercalation. This reductive shoulder has also been observed at highly oriented pyrolytic 

graphite (HOPG) electrodes sulfuric acid1. The reductive shoulder was always present in blank 

CVs scanned to a cathodic limit of -0.778V in H2SO4 electrolytes.  

 

-1,500

-1,000

-500

0

500

1,000

1,500

2,000

2,500

-1.168 -0.668 -0.168 0.332 0.832 1.332 1.832

C
u

rr
en

t/
µ

A

Potential/V



183 

 

 

Figure B.2 Enlargment of CVs in cathodic region in Figure 8.1 showing the evolution of the 

reductive shoulder. 

Based on the results of these experiments, the potential window chosen for the analysis of covalent 

and transition metal carbides in 0.5M H2SO4 at a PIGE WE was -0.768V to +1.528V. 

B2. Working Potential Window of GCE in 0.1M KPF6/MeCN 

The working potential window of the glassy carbon electrode (GCE) in 0.1M KPF6/MeCN 

was determined by a similar method. The open circuit potential (OCP) of the system was measured 

at zero current. Progressive CV scans were initiated from the OCP in the positive and negative 

directions in increments of 0.10V at a scan rate of 25 mV/s. The general electrochemical behavior 

of this system was reproducible. Figure 8.3 displays progressive CV scans over the potential range 

from -1.951 to 1.549V that is representative of the electrochemical features typically observed in 

this system. 

 A reduction peak first appears around -0.8V which is followed by an oxidation peak that 

decreases and eventually disappears upon subsequent scans. However, the reduction peak 
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decreases but remains stable over 5 cycles. A small peak which may be an oxidation peak appears 

around +1.3V.  

 

Figure B.3 Progressive CV scans at a GCE in 0.1M KPF6/MeCN at 25 mV/s, initiated from the OCP 

= -0.251V vs. a Pt pseudo reference electrode. 

It is also important to note that in voltammograms with scan rates of 10 mV/s the oxidation peak 

appeared to split into two peaks (Figure 8.4). These two oxidation peaks decreased to background 

levels on subsequent scan with only the decreased reduction peak remaining, similar to CV scans 

performed at 100 mV/s and 25 mV/s. 

-20

-15

-10

-5

0

5

-1.951 -0.951 0.049 1.049

C
u

rr
en

t/
µ

A

Potential/V



185 

 

 

Figure B.4 CV scans at a GCE in 0.1M KPF6/MeCN initiated in the positive direction from OCP = -

0.120V over +2.0 to -2.0V. Scan rate = 10 mV/s, vs. Pt pseudo reference 

Ideally, the potential window of an electrochemical system is the range of potentials where 

working electrode and electrolyte are completely inert. Our results indicate that the potential 

window of GCE in 0.1M KPF6/MeCN is especially limited in the negative potential region. 

According to the literature, the inert potential window of acetonitrile electrolytes should extend to 

at least -2.0V in the negative direction2,3. Thus, the features in the cathodic region are likely due 

to impurities in the electrolyte. Experiments with a commercially available GCE eliminated the 

possibility of our home made GCE as the source of the impurities. Nevertheless, these experiments 

have shown that cycling the GCE in 0.1M KPF6/MeCN can reduce the electrochemical behavior 

of the impurities to a stable, reproducible response. Therefore, VMP analyses of aluminum carbide 

were carried out in this system over the potential window -2.0V to +2.0V after cycling the 

unmodified GCE in 0.1M KPF6/MeCN five times to reduce contributions from the impurity.  

B3. Working Potential Window of GCE in 0.1M TBAHFP/MeCN 

A methodology similar to the one outlined previously was used to establish the potential 

window of the GCE in 0.1M TBAHFP/MeCN. The open circuit potential (OCP) was determined 
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by measuring the potential at zero current. Progressive potential scans were applied in increasing 

potential increments of 100 mV in the positive direction from the OCP at 25 mV/s. The positive 

potential limit was increased until the current significantly increased. When a new feature 

appeared, the scan was repeated 3 times to determine whether it was stable over time. Once 

significant current was observed at the positive limit. The same process is repeated in the negative 

direction.  

Figure 8.4 shows all the progressive CV scans in both the negative and positive directions 

at a GCE in 0.1M TBAHFP/MeCN. There are no significant features in the positive scans.  

 

Figure B.5 Progressive CV scans at a GCE in 0.1M TBAHFP/MeCN initiated  in the positive 

direction and the negative direction from the OCP at 25 mV/s vs. Pt pseudo reference electrode. 

Potential range is -1.969V to +1.931V. 

The positive-going scans are shown in more detail in Figure 8.5 b). There is a quasi-

reversible redox couple in the cathodic region of the CVs (Figure 8.5 c)). The electrochemical 

processes in the cathodic region are shown in more detail in Figures 8.5 a) and c). Figure 8.5 a) 

shows the onset of the reduction at ~-1.17V of the redox couple. As the potential is scanned to 
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values more negative than -1.17V, the reduction peak increases and broadens. After a negative 

limit of -1.27 an oxidation peak appears around -1.11V. This oxidation peak also grows and shifts 

to more positive potentials (~-1.10V) as the potential limit is widened to more negative potentials. 

The peaks due to this redox couple are stable over 3 scans (Figure 8.5 c)). 

 

Figure B.6 Enlargments of a) progressive scans in the negative direction showing the onset of 

reduction, b) progressive scans in the positive direction, and c) the quasi-revserisble redox couple in 

the cathodic region. 

 The results indicate that an electroactive impurity also restricts the working potential 

window of this system in the negative direction. This impurity may be the same impurity observed 

in the 0.1M KPF6/MeCN electrolyte. However, the electrochemical behavior is markedly different. 

The onset of reduction is at a more negative potential and oxidation signal which follows does not 

decrease. Instead, the impurity has a stable, quasi-reversible redox response and the peak currents 

were relatively high, e.g. cathodic peak current ~ 150 μA. Therefore, the potential window used 
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for VMP experiments was -1.069V to +1.931V to see if there would be any change in the CVs 

post-calcium carbide modification of the GCE. 

B4. Working Potential Window of GCE in 0.1M CaTf/MeCN 

The same methodology outlined previously was used to establish the potential window of 

the GCE in 0.1M CaTriflate/MeCN. The open circuit potential (OCP) was determined by 

measuring the potential at zero current. The OCP ranged from 0.078 to 0.102V over five minutes. 

Progressive potential scans were applied in increasing potential increments of 100 mV in the 

positive direction from the OCP at 25 mV/s. The positive potential limit was increased until the 

current significantly increased. When a new feature appeared, the scan was repeated 3 times to 

determine whether it was stable over time. Once significant current was observed at the positive 

limit. The same process is repeated in the negative direction.  

Figure 8.6 shows all the progressive CV scans in both the negative and positive directions 

at the GCE in 0.1M CaTriflate/MeCN. There are no significant features in the positive scans when 

scanned up to 2.102V. The limiting current increased with the progressively increasing the limiting 

potential as expected. No electrochemical features were observed in the cathodic region, which 

were scanned up to -2.398V. However, it was noted afterwards that the limiting current increased 

with increasing limiting potential in the negative direction until -1.498V, where it started 

decreasing with increasing limiting potential. This may indicate that there is a reductive process at 

this potential. This is supported by the blank CVs shown in Figure 8.8. 
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Figure B.7 Progressive CV scans in both the positive and negative directions initiated from the 

OCP = 0.102V at a GCE in 0.1M CaTf/MeCN. Potential range is from 2.102 to -2.298V in 0.10V 

increments, scan rate = 25 mV/s, vs a Pt pseudo reference electrode.  

Figure 8.8 shows five CV scans of the unmodified GCE in 0.1M CaTriflate/MeCN at a 

scan rate of 10 mV/s. The scans were initiated in the positive direction from the OCP to 2.102V, 

scanned in the negative direction to -2.398V and back to the OCP. The first scan (light blue) shows 

a sharp oxidation peak at ~1.48V. This peak is absent in the later four scans. Two small, broad 

peaks appear after the first scan and appear to be stable over four cycles at 0.63V and 1.3V. All 

scans have a broad feature in the cathodic region due to an unknown reductive process, which was 

suggested by the decreasing limiting current with increasing limiting potential in the progressive 

scans. However, this reductive process was not followed by any oxidation. The three oxidation 

peaks in the CVs shown in Figure 8.8 were unnoticed in the earlier progressive scans. This may 

be because the progressive scans were done at a faster scan rate (25 µA) or they were not easily 

recognized due to the nature of the progressive scans. 
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Figure B.8 CVs of GCE vs. Pt pseudo reference electrode, scan rate = 10 mV/s, scans initiated in the 

positive direction from the OCP = -0.377V 

These results indicate that there are impurities in the CaTf/MeCN electrolyte as well. 

Nevertheless, the low peak currents indicate the impurities are in low concentration. Therefore, 

the potential window used for VMP experiments with calcium carbide was -2.398V to +2.102V.  

All experiments indicate the presence of impurities in the acetonitrile electrolytes that limit 

the working potential window of the systems and may cause interference with electrochemical 

analyses of the carbides. Experiments with a gold working electrode further suggests the presence 

of impurities. Presently, the origin of these impurities is still unclear. The electrochemical response 

of the impurities changes depending on the working electrode used, e.g. gold WE vs. PIGE or 

GCE. The unwanted faradaic peaks limiting the potential window with carbon electrodes may be 

due to intercalation phenomena due to surface roughness of the homemade carbon electrodes. 

However, experiments with a commercial GCE indicate this may not be the case. It has been noted 

in the literature that freshly polished GCE’s have a tendency to adsorb organic impurities in 
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nonaqueous electrolytes due to activation of the carbon surface4,5. However, it is unlikely that the 

impurities are trace organics because the acetonitrile used was HPLC grade. 

The electrochemical response also seems to vary with different supporting electrolytes. One 

possibility could be contamination of dissolved oxygen in the acetonitrile. The reversible reduction 

of dissolved oxygen (R 8.3) in acetonitrile and other nonaqueous media has been investigated by 

many researchers6–8. Different supporting electrolytes affect the reversibility of the O2/O2
-· couple. 

For example, the redox couple exhibits ideal reversibility in aprotic solvents containing 

tetraalkylammonium salts due the increased stabilization of the superoxide anion8. 

 𝑂2 + 𝑒
− ↔ 𝑂2

−∙ R 0.3 

 

However, all electrolyte solutions were sparged with UHP argon for a minimum of 20 minutes to 

remove all dissolved oxygen.  Additionally, if the impurity was oxygen its reversible reduction 

would have been observed with a gold working electrode7, but this was not the case.  

Another possibility for the origin of the unwanted faradaic peaks we attribute to impurites 

could be intercalation phenomena that is observed with graphitic carbons9–11. It is possible that 

these peaks are due to the reduction of the carbon electrode and intercalation of supporting 

electrolyte cations into crevices or pores on the due surface roughness. However, the same results 

were obtained with the commercial GCE that is polished per analytical standards and was used as 

received. Thus, this explanation seems to be in conflict with glassy carbon’s ubiquitous use as a 

working electrode in nonaqueous electrolytes in the literature. 
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