
Graduate Theses, Dissertations, and Problem Reports

2005

Generalization of an integrated cost model and extensions to Generalization of an integrated cost model and extensions to

COTS, PLE and TTM COTS, PLE and TTM

Lin Yang
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Yang, Lin, "Generalization of an integrated cost model and extensions to COTS, PLE and TTM" (2005).
Graduate Theses, Dissertations, and Problem Reports. 2257.
https://researchrepository.wvu.edu/etd/2257

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2257?utm_source=researchrepository.wvu.edu%2Fetd%2F2257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Generalization of an Integrated Cost Model and Extensions to COTS, PLE and TTM

Lin Yang

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
In partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

Ramana Reddy, Ph.D., Chair
Ali Mili, Ph.D.

Jim Mooney, Ph.D.
Ming-jeng Hwang, Ph.D.

Sumitra Reddy, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2005

Keywords: Reuse, COTS, PLE, TTM, NPV, and ROI

Copyright 2005 Lin Yang

Abstract

Generalization of an Integrated Cost Model and Extensions to COTS, PLE, and TTM

Lin Yang

There have been existing software reuse cost models related to estimating costs of software reuse,
for example, COCOMO II, COCOTS, and so on. Chmiel’s model [Chmiel 2000] is a
generalization of these cost models. This model is different from others in that the decisions are
composed of four levels and treats reuse projects from a point of view of long term run. Each
level corresponds one engineering cycle. Each level is a decision making process based on
calculation of NPV, ROI, and other economic indices. Reuse investment decisions are made on
different levels from the corporate to the programming.

Chmiel’s model doesn’t cover Commercial-Off-The-Shelf (COTS), Product Line Engineering
(PLE) and benefits due to shortened Time-To-Market (TTM) and can only deal with internal
traffic since the model assumes all of the reusable components are built from scratch in house.
For example, Extra efforts caused by the use of COTS, assessment, tailoring, glue code and
COTS volatility, are not covered in this model. And this model doesn’t treat the benefits of TTM,
for example, business performance.

By extending Chmiel’s model, the new model is applied to CBSE (Component-Based Software
Engineering), COTS reuse systems and PLE. In addition, attempts of quantifying benefits of
shortened TTM are made within this study and a TTM submodel is developed to cover this issue.

This study also addresses the issue to analyze and optimize corporate Return On Investment
(ROI). The rational is that optimizing (maximizing) the corporate ROI under the condition that
all other ROI's are positive. By designing an algorithm and applying it to the data, this study
discovers the method how to make the maximized value of corporate ROI.

And this model is supported through a tool based on the model rationale. Users to this tool are
corporate management and development engineers. The supporting tool has user-friendly
interface and allows users to input values of related parameters. A detailed report is produced,
which is composed of details about costs and benefits, final Net Present Value (NPV) and ROI of
each cycle.

 iii

Acknowledgements

It’the eighth year in this country since I came to US in 1997. After obtaining degrees of bachelor
and master in computer science at WVU, I began the Ph.D. program from January 2001.

First I would like to say thanks to Dr. Ali Mili. He assigned me this topic and continued to
support me after he left WVU for NJIT. Without his advising, I can not go through it.

I also want to express my thanks to Dr. Ramana Reddy. After Dr. Mili’s leaving, Dr. Reddy took
the position being my committee chair so that I could finish this project properly.

I would like to thank my father Weixi Yang. He suggested me to continue to work on Ph.D.
program after I got my master five years ago. He always give me great support and help.

Lastly, I would like to say my thanks to Dr. Kurishinkal Cleetus. He has been funding me since
2004 so I don’t have to worry about the funding issue.

Thanks all for great support though I know these simple words cannot express my appreciation
and feeling.

 iv

Table of Contents

Abstract... ii

Acknowledgements.. iii

Table of Contents .. iv

Table of Figures .. viii

Table of Tables .. ix

Chapter 1 Introduction .. 1
1.1 Software reuse... 1

1.1.1 Advantages of software reuse ...2
1.1.2 Disadvantages of software reuse ...4

1.2 Problem statement and objectives... 5
Chapter 2 COTS, PLE and TTM... 7

2.1 COTS (Commercial-Off-The-Shelf).. 7
2.1.1 COTS definition..7
2.1.2 COTS-Based System (CBS) ...9

2.2 PLE (Product Line Engineering) .. 10
2.3 TTM (Time-To-Market) .. 12

2.3.1 Sales revenues ...12
2.3.1.1 Quantify sales revenues...12
2.3.1.2 Earlier TTM resulting in a positive NPV ..13

2.3.2 Stock value..13
2.3.2.1 Why stock value determining..13
2.3.2.2 Factors influencing share price..14
2.3.2.3 Economic Value Added (EVA) theory..15
2.3.2.4 Earlier TTM resulting in share value increase...18

Chapter 3 Software Economics Cost models .. 21
3.1 COCOMO (COnstructive COst MOdel).. 21

3.1.1 COCOMO Equations ..21
3.1.2 Equivalent delivered source instructions (EDSI) ..22
3.1.3 Summary ...24

3.2 Chmiel’s Integrated Cost model.. 24
3.2.1 Model introduction..24
3.2.2 Summary ...28

3.3 COCOTS (COnstructive Commercial-Off-The-Shelf).. 28
3.3.1 Introduction...28
3.3.2 Efforts estimation and calculation in COCOTS ..30

3.3.2.1 Initial filtering effort..30
3.3.2.2 Final selection effort..30
3.3.2.3 Tailoring effort calculation..30
3.3.2.4 Glue code development and test effort calculation..31
3.3.2.5 Application Effort Due to COTS Volatility...32

3.3.3 Summary ...33

 v

Chapter 4 Economic Techniques .. 34
4. 1 Net Present Value (NPV) .. 34
4.2 Return On Investment (ROI) .. 35
4.3 Relative Cost of Writing for Reuse (RCWR) ... 36

Chapter 5 Extensions of Chmiel’s Model to COTS, PLE, and TTM... 37
5.1 Model architecture ... 37
5.2 Component Engineering Cycle.. 40

5.2.1 Initial costs (y = starting year (SY))..40
5.2.1.1 Mine legacy software (Mine inside corporation)...40
5.2.1.2 Develop from scratch ..40
5.2.1.3 COTS...41

5.2.2 Annual costs (SY<y≤SY+Y-1)..42
5.2.2.1 Mine legacy software and Develop from scratch ..42
5.2.2.2 COTS...43

5.2.3 Initial Benefits (y=SY)..44
5.2.3.1 Develop from scratch ..44
5.2.3.2 Mine legacy software and COTS...44

5.2.4 Annual Benefits (SY<y≤SY+Y)..45
5.2.4.1 Develop from scratch and mine legacy software...45
5.2.4.2 COTS...45

5.3 Domain Engineering Cycle .. 46
5.3.1 Costs (SY≤y≤SY+Y)...46
5.3.2 Benefits (SY≤y≤SY+Y) ..46

5.4 Application Engineering Cycle.. 48
5.4.1 Initial costs (y=SY) ...48

5.4.1.1 Develop from scratch and mine legacy software...48
5.4.1.2 COTS...48

5.4.2 Annual costs (SY<y≤SY+Y)...49
5.4.3 Initial benefits (y=SY)...50
5.4.4 Annual benefits (SY<y≤SY+Y) ..50
5.4.5 Sum of costs and benefits in AEC (SY≤y≤SY+Y)..51
5.4.6 TTM submodel..53

5.4.6.1 Benefits of shortened TTM ...53
5.4.6.2 Quantify benefits of TTM ...53
5.4.6.3 TTM Conclusion ...56

5.5 Corporate Engineering Cycle .. 57
5.5.1 Initial Costs (y=SY) ..57
5.5.2 Annual Costs (SY<y≤SY+Y)..57
5.5.3 Benefits (SY≤y≤SY+Y) ..57

5.6 NPV and ROI .. 58
Chapter 6 An Example of Application of Model .. 59

6.1 Component Engineering Cycle.. 59
6.1.1 Mine inside (component 1) ...59
6.1.2 Develop from scratch (component 2 and component 3)..62

6.1.2.1 Component 2 ...62
6.1.2.2 Component 3 ...64

6.1.3 Buy from market (component 4) ...66

 vi

6.2 Domain Engineering Cycle .. 69
6.3 Application Engineering Cycle.. 71

6.3.1 Application 1...72
6.3.2 Application 2...76

6.4 Corporate engineering cycle .. 81
7 Optimal Corporate ROI .. 83

7.1 Algorithm design... 83
7.2 Algorithm results .. 87
7.3 Optimal corporate ROI analysis ... 88

Chapter 8 Reuse Expert: the Supporting Tool.. 89
8.1 Introduction .. 89
8.2 Development Environment .. 89

8.2.1 Hardware...89
8.2.2 Software ..89

8.3 Basic processing structure of Reuse Expert ... 89
8.4 Reuse Expert screens.. 91

8.4.1 Starting Page ...91
8.4.2 Corporation Cycle Input..93
8.4.3 Domain Cycle Input ..95
8.4.4 Component Cycle Input ..96
8.4.5 Application Cycle Input I..98
8.4.6 Application Cycle Input II ..100
8.4.7 Default Arguments Input...102
8.4.8 Overall Reuse Info Viewer..104
8.4.9 Component Cycle Report I..106
8.4.10 Component Cycle Report II ..107
8.4.11 Domain Cycle Report..108
8.4.12 Application Cycle Report..109
8.4.13 Corporate Cycle Report...110
8.4.14 Optimal Corporate ROI Report ...111

Chapter 9 Conclusion .. 112
9.1 Motivation ... 112
9.2 Summary ... 112
9.3 Future Work ... 112

References .. 114

Appendix A LinkySky Data.. 117
Appendix A.1 Data Collection Questionnaire .. 117
Appendix A.2 LinkySky Data.. 118

Appendix A.2.1 Component Engineering Cycle..118
Appendix A.2.2 Domain Engineering Cycle..118
Appendix A.2.3 Application Engineering Cycle..118
Appendix A.2.4 Corporate Engineering Cycle ..120

Appendix B Reuse Expert Database Design and Schema.. 121

 vii

Appendix B.1. Database Relationships ... 121
Appendix B.2. Tables (alphabetical order)... 122

Appendix C List of Acronyms.. 127

Vita.. 129

 viii

Table of Figures

Figure 1: Software Engineering Institute: A Framework for Software Product Line Practice..... 11
Figure 2: More sales revenues caused by earlier TTM... 13
Figure 3: EVA = 0 .. 16
Figure 4: EVA > 0 .. 17
Figure 5: EVA < 0 .. 18
Figure 6: stock value increase caused by earlier TTM ... 19
Figure 7: Software Reuse Model [Chmiel 2000].. 26
Figure 8: Cascade of Costs through Investment Cycles [Chmiel 2000]....................................... 27
Figure 9: COTS efforts distribution over 4 phases [Ray 2004] .. 29
Figure 10: Integrated model extended to COTS, PLE and TTM.. 38
Figure 11: Integrated model extended to COTS, PLE and TTM.. 39
Figure 12: processing structure of Reuse Expert .. 90
Figure 13: Starting Page.. 92
Figure 14: CEC Input.. 94
Figure 15: DEC Input.. 95
Figure 16: COEC Input... 97
Figure 17: AEC Input I ... 99
Figure 18: AEC Input II.. 101
Figure 19: Default Arguments Input... 103
Figure 20: Overall Viewer .. 105
Figure 21: COEC Report .. 106
Figure 22: COEC Report .. 107
Figure 23: DEC Report ... 108
Figure 24: AEC Report ... 109
Figure 25: CEC Report ... 110
Figure 26: Optimal ROI .. 111
Figure 27: Database Relationships.. 121

 ix

Table of Tables

Table 1: Comparison of cost reductions [Neilsen 2000] .. 3
Table 2: COTS examples .. 8
Table 3: COCOMO development mode ... 21
Table 4: COCOMO parameters .. 22
Table 5: Value ranges of effort multipliers and nonlinear scale factor [Abts 1997] 32
Table 6: RCWR Values over 12 organizations [Poulin 2002].. 36
Table 7: COTS efforts distribution ... 49
Table 8: List of Acronyms .. 128

 1

Chapter 1 Introduction

1.1 Software reuse

Nowadays, software reuse has been playing a more and more important role in software industry.
At the same time, new challenging issues have come up. How to estimate the costs and benefits
in the fields of COTS and PLE? How to quantify the real world benefits due to these reuse
activities? For example, besides the gains in quality and productivities, how to quantify the
business performance such as shortened TTM is another primary concern in software reuse
research.

Software reuse is the process of implementing or updating software systems using existing
software assets [DOD 1996]. Assets can be architectures, source code, data, designs,
documentation, estimates, human interfaces, plans, requirements, and test cases. These assets can
be reused in different contexts. Software reuse may occur within a software system across
similar systems, or in widely different systems [Hudson 2001]. Basically, the goal of reuse is to
use as much software data as possible from previous development efforts in order to reduce time,
cost, and risks associated with redevelopment.

The definition of software reuse from SEI is as followed:

The purpose of software reuse is to use existing software assets in new contexts, either in
existing systems or in new applications, to increase development productivity and increase
product quality. Cumulative, long-term benefits of reuse to an organization require the evaluation
of an organization's reuse potential, creation or acquisition of reusable assets, asset management,
and asset use. An organization's software development process contains reuse practices and
activities aimed at exploiting the organization's software assets and ensuring the maintenance of
existing assets and the addition of new assets with high reuse potential. Reusable software assets
may consist of any software artifacts such as requirements, design, code, documentation, plans,
procedures, and manuals [SEI 2004].

Software reuse is a consequence of good product design. Full and effective software reuse can
only be achieved if much attention is paid to reuse at the requirements analysis stage of the
component developing life cycle. Domain analysis needs to consider both the reusability of
components in later stages and the reuse of existing analysis deliverables. In order to make a
component reusable in the future, more efforts are needed, for example, more efforts on design,
domain analysis, and implementation. The design phase of the component should be object-
oriented, focusing in particular on encapsulation to ensure that objects can be reused. Standard
good programming practices, such as maximal cohesion, modular design, and minimal coupling
between code modules, should be employed to help make software components more reusable.

There are three kinds of improvements by taking software reuse. These advantages that software
reuse can bring are recognized by software engineering community.

 2

• Productivity: That means less code needs to be written by using reusable components

instead of developing the same functionalities from scratch. Under this assumption, that
also means development time is shortened and development costs are decreased.

• Quality:

(1) Reusable assets proven in one project can be carried through to the next.
(2) In addition, less code means more opportunities for testing. Less code makes
possible for software engineers to spend more efforts to test and validate.

• Business performance: Software reuse can also result in lower costs, shorter time to
market, and customer satisfaction. That makes corporation get more market gains in
market share and market sales by delivering the products to market earlier. Especially,
there are no competing products due to earlier TTM than competitors. In addition, by
satisfying customer and industry, the possibility of rising on stock market has greatly
increased.

So far most existing cost models only cover the first two issues and give their solutions to
estimate the costs and benefits in productivity and quality. There is no such a model, which
formally and completely deals with the third one: business performance. Business performance is
the most concern for corporate managers. Besides the gains in productivity and quality obviously,
as the decision makers, they are more interested in how much benefit using reusable components
can bring.

After reviewing and analyzing the literature of software reuse, this research finds that the
definition of software reuse has been widening over the past decades. On technical level,
software reuse not only deals with the use of existing reusable components, but also the
implementation and creation of them. On a higher level of reuse economics which corporate
management is more interested in, software reuse also addresses the decision making based on
economics of the whole life cycle.

Based on the current situation of cost models, besides covering the main software reuse fields
nowadays: CBSE and COTS, this study also gives solution to analyze and quantify the benefits
due to shortened TTM.

1.1.1 Advantages of software reuse

General improvements incurred by software reuse are discussed in last section. Based on these,
there are detailed advantages by taking software reuse, which can describe these improvements.

• Initial Development Savings
• Reduced cost to design the component
• Reduced cost to implement the component
• Reduced cost to test the component

 3

• Reduced cost to document the component
• Ongoing maintenance savings
• Reduced cost to fix defects in the component
• Reduced cost to enhance the software product of next generation
• Shortened time-to-market

One of the hidden benefits of reuse is that development must follow good software engineering
practices and that prototyped projects tend to be designed and developed sooner due to the wide
usage. This earlier development allows the application to enter the market sooner and reap the
additional benefits that result from this earlier marketing of the application. If the application
was built without reuse it would run the risk of having another application take over the market
and losing the additional benefits gain with early marketing [Neilsen 2000].

Software reuse can greatly reduce development costs. Toshiba Software Factory has a set of
statistics to show a comparison of cost reductions realized by different methods.

Methods to achieve productivity and quality Cost reduction
Reuse 52.1%
Improve procedures and environments 18.0%
Application of new software tools 9.7%
Improvement on functional descriptions 7.2%
Use of higher level languages 6.3%

Table 1: Comparison of cost reductions [Neilsen 2000]

Reuse can save costs on testing, verification and validation. Especially when purchasing COTS
components, the development team knows the components are tested and has functionalities as
specifications indicate. Also, cost on documentation decreases due to the reusable documentation.
The Product Line Engineering makes reduced cost to enhance the software product of next
generation, since some components have property to be reused and they are validated and
verified. These make these components be used in the next generation [SEI 2003].

Reuse improves productivity because the life cycle now requires less effort to obtain the same
outcome and reduces the amount of time and labor needed to develop and maintain software
products. Furthermore, because work products are used multiple times, the defect fixes from
each reuse accumulate, resulting in higher quality. The defining characteristic of "good reuse is
not the reuse of software per se but the reuse of human problem solving [Barnes 1991]." Reuse
allows for this expertise to be extended to projects/companies that cannot afford such expertise,
thereby improving productivity. The producer and consumer of reusable assets can avoid
duplication of effort by centrally maintaining the reuse components, managing their evolution,

 4

and propagating upgrades using reuse technology. Furthermore, using reusable black box
components allows further enhancement and correction quicker and at a lower cost [Malan 1993].

The following corporations reported the improvements by taking reuse. DEC had cycle time 67-
80% lower at reuse rate of 50-80%. Fujitsu experienced a proportion of projects on schedule
increased from 20-70% and effort to customize package reduced from 30 person months to 4
days. Hewlett-Packard had defects up to 76% lower, productivity up to 57% higher and time to
market 42% lower. NEC made productivity 6.7 time higher and quality 2.8 time better. Raytheon
had a productivity of 50% higher at reuse level 60%. Toshiba had defects 20-30% lower at reuse
level 60% [Neilsen 2000].

Another big benefit is that software reuse can improve a product's time to a market. If the
product reaches the market earlier, then there will be more revenue. Software reuse can save
development time and thus the product can be delivered earlier than if all the software is written
from scratch.

Here are some statistics that can show the comparison between earlier and later TTM.

• Projects on time and 50% over budget earn 4% profit over 4 years [Market Forecasters].
• Projects 6 months late and on budget earn 33% less profit over 5 years [McKinsey].

Herbsleb and Anita Carleton states that the time to market actually suffered for the first year or
so as the reusable components were being developed. During this period, the development time
is delayed due to extra efforts spent to pay more attention to design and domain analysis and
implement reusable components. After two-three years, the time to market dropped very rapidly
since it’s the time to gain benefits from reuse. These reusable components can be used in
application engineering and thus shorten time to market. In the end, the time to market will be
shortened. The yearly reduction in time to market has a range of 15%-23% and a median of 19%.
For all software products, improved quality through reuse reduces costs of maintenance [Griss
1993].

1.1.2 Disadvantages of software reuse

However, software developers have to pay extra costs and risks that software reuse brings
besides the advantages. There are also existing disadvantages.

• More upfront investment
• More risk on the future
• It can end up costing more, if not done properly
• It can induce errors, if not done properly
• It must be used cautiously in safety-critical domains

Software reuse usually results in more initial costs. For example, purchasing COTS can increase
costs. In order to get the reusable components, the project managers probably have to purchase,

 5

for example, COTS. That means more upfront investment. And if the corporation decides to
develop reusable components from scratch instead of buying or using existing, the development
process will cost more than that of developing normal application.

There is also safety issue in safety-critical system. In this kind of system, safety is the most
important issue. Sometimes inappropriate use of reusable components can result in system crash.
Using reusable components should be cautious since development team has to rely on some
components that are not implemented by itself but through a purchase. For example, usually the
source code of COTS components is not accessible to users. In this situation, using reusable
assets could also bring more risk in the future. If the development team doesn’t have the source
code of the components, it could take more time and cost to do preliminary steps for sure of
safety.

And if the reusable components are not used properly, it can result in more errors. For example,
if a component is modified and then used, that could probably cause more problems if validation
and verification are not conducted after the modification.

Another disadvantage is the high costs of the reuse itself. For example, library insertion and
acquisition, and development of reusable components make reuse more expensive comparing not
using or developing reusable components. If these cost factors are not processed properly, the
costs of using reusable components can outweigh the benefits.

1.2 Problem statement and objectives

There have been existing software reuse cost models related to estimating costs of software reuse,
for example, COCOMO II, COCOTS, and Chmiel’s. This research has found that there does not
exist an effective and validated one which incorporates both the technical and non-technical
facets of software reuse and showing its impact on time to market. Some of these models are
immature and only in experiment phase. And some of them can only cover partially. For
example, COCOTS can only give solutions to the initial phase and cannot treat a long term
running reuse project. This study discovers that the critical problem in today’s practice of
software reuse is there is no such a model to conceptualize, define and develop necessary details
to support a valid COTS software use process mode and PLE based on software economics. In
addition, there is no such a model, which covers COTS, PLE, and TTM properly and completely.

Chmiel’s model [Chmiel 2000] is a generalization of these existing reuse cost models. The idea
of Chmiel’s model is that the decisions are composed of four levels and treats reuse projects
from a point of view of long term run. Each level corresponds one engineering cycle. Each level
is a decision making process based on calculation of NPV, ROI, and other economic indices.
Reuse investment decisions are made on different levels from the corporate to the programming.

• At the corporate level, management determines if the reuse investment will be
worthwhile.

 6

• At the managerial level, domain engineering managers determine which assets that have
good reuse potential and create them. And the application managers determine the
worthiness of incorporating reusable assets into a project.

• At the programming level, named Component Engineering Cycle, programmers
implement reusable assets based on the decision from its upper level, domain level.

These decisions of different levels are reflected in the following 4 investment cycles:

• Corporate investment cycle.
• Domain engineering investment cycle.
• Application engineering investment cycle.
• Component engineering investment cycle.

This model doesn’t cover COTS and PLE and benefits due to shortened TTM and can only deal
with internal traffic since the model assumes all of the reusable components are built from
scratch in house. For example, Extra efforts caused by the use of COTS, assessment, tailoring,
glue code and COTS volatility, are not covered in this model. And this model doesn’t treat the
benefits of TTM, for example, business performance.

Based on Chmiel’s model, this research adds new features that cover COTS-based system and
PLE completely with detailed quantification. In addition, benefits of shortened TTM are also
addressed in this model. After analyzing the challenging issues resulted from software reuse
nowadays, this research focuses on these issues and gives solutions to them. By adding new
features to Chmiel’s model, the approach proposed by this research is applied to COTS reuse
systems and PLE. In addition, attempts of quantifying benefits of shortened TTM are made
within this study and a TTM submodel is developed to cover this critical issue.

 7

Chapter 2 COTS, PLE and TTM

2.1 COTS (Commercial-Off-The-Shelf)

2.1.1 COTS definition

A COTS software product is a product with the following properties [Meyers 2001].

• sold, leased, or licensed to the general public
• offered by a vendor trying to profit from it
• supported and evolved by the vendor, who retains the intellectual property rights
• available in multiple, identical copies
• used without modification of the internals

Vigder defines that a COTS software component is software that is acquired from a commercial
source and is integrated into a working system [Vigder 1998]. The driving force behind making
using of COTS has been economics. COTS based systems are constructed by integrating large-
scale components acquired from third parties. One of advantages of the COTS approach is
flexibility. Flexibility arises from the ability to replace the COTS components used at a fraction
of the cost normally required to develop those components from scratch [Erdogmus 2000].

The rationale for building COTS-based systems is that they will involve less development time
by taking advantage of existing, market proven, vendor supported products, thereby reducing
overall system development costs [Abts 1999]. There are two defining characteristics of COTS
software, and they drive the whole COTS usage process:

• COTS product source code is not available to the application developer, and
• The future evolution of the COTS product is not under the control of the application

developer.

There are several groups of COTS products that have been successfully used in software
development [Vidger 1998]:

• Geographic Information Systems (GIS)
• Graphics User Interface (GUI) builders
• Office automation software, such as calendars, word processors, spreadsheets, etc.
• E-mail and messaging systems
• Databases
• Operating systems, including low-level software such as device drivers, window systems,

etc.

 8

Following is a table to show some examples of COTS software and brief description to them.

COTS name Domain/ Functionalities
STK: Satellite Tool Kit Orbit determination and mission planning
Oracle Database administration and management
Labview Data acquisition, analysis and visualization
Autocon Orbit determination
Altair Control System Mission Control Mission control
Microsoft Office Office application
Probe Data analysis
Crystal Reports Report generator
GensAa Spacecraft monitoring, commanding, fault

detection and isolation
GTDS Orbit determination
PhotoShop 2 dimension graphic design
Builder Xcessory, X-Software, Shared-X,
Visual Optimization package, X Runner

GUI, GUI builders

Matlab Computing environment, data visualization,
application development

Windows XP Operating system

Table 2: COTS examples

There is a spectrum of COTS software. Packaged software or solution software, for example,
Office applications in the table 1, is designed with well-understood and specific tasks. There is
little need for customization and the integration process is usually defined as COTS-solution
System. What customers do is simply buy it and use it. On the other hand, information
management software, for example, ERP, has a large and complex scale. Data is also large and
complex. There is great temptation for customization. After purchasing, customers must
implement based on their own specific situations before use these COTS software and this is
usually define as COTS-Intensive or COTS-Integrated system. Both of the two approaches
belong to COTS-Based System.

For the purposes of this study, the term COTS means a software product, supplied by a vendor,
which has specific functionality as part of a system and whose source code is not accessible,
which is composed of COTS components and extra efforts on tailoring and glue code are needed.
In projects the COTS component is a piece of pre-built software that is integrated into the system,
for example, COTS components such as GUI and report generator.

 9

2.1.2 COTS-Based System (CBS)

A COTS based software system is a system that has been built primarily by assembling a set of
COTS software. The integrator responsible for building the system does so by buying the
components and assembling them into a complete system. This involves minimal code
development as most of the components are not developed from source but are purchased off-
the-shelf [Vigder 1998].

COTS-based systems include COTS products besides newly written (in-house) software, for
example, glueware. The most important features of COTS products are their suitability for
integration into different systems and commercial availability. These aspects allow COTS
products to provide high quality prepackaged functionality. Therefore, the use of COTS products
as components of a new system can reduce development effort and increase system quality. As a
result, CBS development can significantly aid developers in building a better product in a shorter
time.

For example, a COTS finance package could take as much as five years to develop with a team
of 15 to 20. That would be a cost of well over $15 million. Using a COTS package could be
accomplished in two years or less with about 10 staff. That would be a cost of about $3 million.
The savings is potentially substantive, and the time saving is 60 percent [Whitemarsh 1997]. The
main benefit is that a CBS involves the minimum of code implementation since most of
components are not developed from scratch but purchased off-the-shelf. There is still some
coding coming from:

 Tailoring a commercial software to a specific requirement.
 Building functional components that are not being supplied through commercial sources.
 Integrating the customized components into the CBS.

COTS-based systems comprise a spectrum, ranging from COTS-solution systems at one extreme,
to COTS-integrated systems at the other extreme. COTS-solution systems are pre-integrated
systems that are customized and deployed for use; examples include enterprise resource
management packages and payroll packages. In COTS-solution systems, few customizations are
needed on client side. COTS-integrated systems are assembled from (frequently many) COTS
components provided by different vendors [Wallnau 1998]. This type of COTS-based system
needs more extra efforts on tailoring and glue code.

Similar to Wallnau, Carney identifies three types of COTS-based systems based on the number
of COTS used and their influence on the final system [Carney 1997].

1. Turnkey systems are built around a (or a suite of) commercial products, such as
Microsoft Office or Netscape Navigator. Only one COTS package is used, and
customization does not change the nature of the initial COTS.

2. Intermediate systems are built around one COTS (e.g. Oracle) but integrate other

 10

components, commercial or developed in house.
3. Finally other systems are built by integrating several COTS, all on the same level of

importance.

In this study, COTS projects deal with the third category. It means a project may use several
COTS. The corporation and project management needs to determine whether or not to purchase
them instead of developing from scratch.

2.2 PLE (Product Line Engineering)

A software product line is a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way.

The key to successful software product lines is systematic management of planned variations
across the product line, while exploiting the commonalities. This commonality permits reuse of a
multitude of shared assets, including everything from architecture and reusable components,
schedules and budgets, test cases and performance modeling, training and documentation, to
marketing plans and literature. When building a new product in a product line, programming is
de-emphasized.

The vision of PLE is that:

 Product line development is a low risk/high return proposition.
 Techniques for finding and exploiting system commonalities and for controlling

variability are standard software engineering practice in DoD, government, and industry.

A product line involves core asset development and product development using the core assets,
both under technical and organizational management. Core asset development and product
development from the core assets can occur in either order: new products are built from core
assets, or core assets are extracted from existing products. Often, products and core assets are
built in concert with each other. Core asset development has also been called domain engineering.
Product development from core assets is often called application engineering.

 11

Figure 1: Software Engineering Institute: A Framework for Software Product Line Practice

Software product lines are rapidly emerging as a viable and important software development
paradigm. A software product line is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way [SEI 2003].

The basic idea of PLE is that the application engineering utilizes core assets from domain
engineering. The product line is composed of products currently, probably more in the future,
and the development of these similar products which share same architecture.

The reusable core assets include requirements and domain model, software architecture that the
products will share, software components, design documentation, and etc. there are mainly three
ways that these assets are imported into domains:

• Develop from scratch
• Mine legacy software inside corporation
• Buy from market, COTS

All of the three ways are covered in this study.

 12

2.3 TTM (Time-To-Market)

Time is money and essence for the payoff of a software product. Besides technical benefits, such
as higher quality and lower maintenance, the use of COTS or other reusable core assets can
reduce time to market. The effects of shortened TTM come from more sales revenues and
increase of stock value of a corporation.

2.3.1 Sales revenues

2.3.1.1 Quantify sales revenues

Software reuse can improve a product's time to a market. Higaki states that buying software
saves development time and thus the product can be delivered earlier if all of the software are
written from scratch [Higaki 1995]. Earlier TTM can result in increased profits from two effects:
added profits from delivering the product earlier to marketplace, and added benefits from
increase market share of over the life of the product [Smith and Reinertsen 1991]. Therefore, the
direct effects of shortened TTM are more market share and more sales revenues. For example, if
the product reaches the market two months earlier with the same functionality, then there will be
an additional two months' revenue. To estimate this effect, Patterson [Patterson 1993] uses the
projected annual sales and estimates the improvement in TTM:

MVI TSS =

Where

SI: sales increase resulting from earlier TTM
SV: original projected volume per month
TM: improvement in TTM in month

Nakano have the same ideas as Patterson and suggests a formula to calculate TTM benefits
[Nakano 2000].

TTM Benefit = (schedule acceleration) x (achieved revenue/year)

Where

Schedule acceleration is how much faster a product goes to marketplace.

For example, suppose achieved revenue is 12 million/year and the schedule acceleration is two
months. The TTM benefit is calculated as followed:

TTM Benefit = (schedule acceleration) x (achieved revenue)

 = (2/12 year) x ($12 million/year) = $2 million

 13

2.3.1.2 Earlier TTM resulting in a positive NPV

This study proposes the rationale that more market sales revenues are caused by the earlier TTM
due to integrating COTS and other types of reusable components instead of implementing from
scratch.

Figure 2: More sales revenues caused by earlier TTM

The TTM submodel in this study quantifies how much time earlier that product is delivered to
market.

2.3.2 Stock value

2.3.2.1 Why stock value determining

Management’s basic, overriding goal is to create value for stockholders. Managers seek to
maximize the values of their firm’s stocks [Brigham 1999]. Therefore, stock maximization
should be the primary concern and goal of corporation management. Managers want to know if
the stock value of the firm increases or not after the product is delivered to market. Earlier TTM

 14

can result in increased profits and shows R&D capabilities of a corportaion. Consequently, by
increasing the market value, earlier TTM causes increase on stock value. The consequence can
also definitely satisfy customers, industry, and stockholders. When a company delivers its
products to market sooner than its competitors, not only more market sales and sales revenues
are gained, but also the increase on stock value by showing public its innovation capabilities and
ability on product development.

In fact, the incentive of maximizing stock value is not only the economic concern from
corporation managers, but also concern related to corporation control. The question of control
has become a central issue in recent years. Managers who don’t have majority control (more than
50 percent of their firm’s stock) are very much concerned proxy fights [Brigham 1999].
Stockholders of a firm don’t want an incompetent and inefficient management. The majority of
the stockholders have the right to reelect new manages to take place of the inefficient ones. If the
management can not bring stock price up, the stockholders are more likely to fire the
management. This makes managers have to focus on stockholder concerns, which means the
maximization of stock price.

Brigham states that 45 percent of U.S. adults own stocks directly, and 80 percent own stocks
through retirement programs. Thus, most members of society have stake in the sock market
[Brigham 1999]. A product with earlier TTM can attract more attention from public. Stock
analyzers and investment bank would like to give more credits on this earlier delivery. Earlier
TTM brings more market sales revenues and makes the project positive NPV. Brigham states
that if a firm takes on a project with positive NPV, the wealth of the stockholders is improved
[Brigham 1999]. As with any asset, the market value of a share of common stock is determined
by the present value PV of its expected future cash flows [Vetzal 2003].

2.3.2.2 Factors influencing share price

A number of factors influence stock prices. These include internal factors and external factors.
Internal factors can be:

• earnings growth
• sales growth
• product release
• leadership changes
• lawsuits pending

External factors can be:

• new market competition
• economic news such as interest rates and inflation
• government policy changes

 15

A report about the increased profits, earnings growth, and sales growth of a company usually
indicates that the company has ability to gain profits and may increase its dividends. This may
draw investors and increase the price of the stock.

If a corporation postpones its products delivery time to market, its stock price usually drops
down. For example, over the past years, Apple Computer Inc. postponed its products several
times due to technical difficulties and its stock prices dropped down, since public doubted its
capability to earn profits. On the contrary, if a corporation delivers its products earlier to market,
public will give more credits on the capability of earning profits and R&D. For example, there
has been a well-known competition between AMD and Intel in IT industry. Before 2000, AMD
was left behind by Intel since AMD CPU clock speed couldn’t compete with Intel. In March
2000, AMD began shipping a microprocessor that achieved an industry milestone with a clock
speed of one gigahertz. At the same time, Intel didn’t have the same product in market. It’s the
first time Intel was beat by AMD. The fact is that since AMD beat industry leader Intel for the
fastest microprocessor with earlier TTM and also took market shares away from Intel, share
price of AMD increased.

A corporation is owned by its shareholders and the shareholders’ equity is the portion of total
assets that belong to the shareholders. The value of shareholders’ equity as recorded on the
balance sheet is the book value of equity; dividing the book value of equity by the number of
outstanding shares gives the book value per share [Vetzal 2003]. Stock share price is based on
the investment returns or cash flows that the investor expects to receive from owning the share
(depends on the ability of the company to earn a profit), As proved in last section, earlier
delivery to market can result in more sales revenues and the positive cash flows increase the
wealth of the corporation and thus the increased profits on balance sheet increase the stock value
per share.

The market value of each share is the price required to purchase a share in the firm from a trade
on a stock exchange; multiplying the share price by the number of outstanding shares gives the
market value of equity. In general, these two equity values (book vs. market) are seldom equal,
for most healthy firms, market value exceeds book value.

2.3.2.3 Economic Value Added (EVA) theory

Makelainen states that the real profit that is of interest to investors is the profit after deducting
the capital costs. This profit figure is often called Economic Value Added, EVA (or Economic
Profit or Residual Income) [Makelainen 1998]. EVA is operating profit (after taxes) of a
company subtracted with the total cost of capital. The definition is depicted in the equation as
followed:

EVA = Net operating profits after taxes – Cost of capital

Financial theory suggests that the market value of a company depends directly on the future
EVA-values. EVA is a measure of surplus value created on an investment [Damordoran 2002].

 16

The market value of a company
= Book value of equity + Present value of future EVA [Makelainen 1998]

The equation above is based on discounted cash flows. An essential component of EVA is the
Weighted Average Cost of Capital (WACC).Generally speaking, the assets of a company are
financed by either debt or equity. WACC is the average of the cost of each of these sources of
financing weighted by their respective usage in the given situation. By taking a weighted average,
we can see how much interest the company has to pay for every dollar it borrows.

EVA is estimated based on a NPV technique as followed:

∑
= +

=
n

i
i

i

WACC
EVA

EVA
1)1(

Where

EVA: Economic value added
n: number of years
WACC: Weighted Average Cost of Capital

There are three situations based on the value of EVA.

1. EVA = 0 market value keeps the same.

Figure 3: EVA = 0

 17

0
)1(

...
)1()1(2

2
1

1 =
+

++
+
−

+
+

= nWACC
EVAn

WACC
EVA

WACC
EVAEVA

In this situation, the company produces a return that is equal to capital costs. That means there
are no profits gained and market value does not increase. Then the market value of the company
will equal the current book value of equity (no premium or discount).

2. EVA > 0 market value increases.

Figure 4: EVA > 0

0
)1(

...
)1()1(2

2
1

1 >
+

++
+

+
+

= nWACC
EVAn

WACC
EVA

WACC
EVAEVA

Positive EVA adds a premium to the market value of equity of a corporation. The positive EVA
comes from a positive NPV based on future cash flows.

3. EVA < 0 market value decreases.

 18

Figure 5: EVA < 0

0
)1(

...
)1()1(2

2
1

1 <
+
−

++
+
−

+
+
−

= nWACC
EVAn

WACC
EVA

WACC
EVA

EVA

Negative EVA causes discount to the market value of equity of a corporation. The negative EVA
comes from a negative NPV based on future cash flows.

Stock prices reflect the future EVA expectations. Makelainen states that the bigger expected
EVA the company has, the bigger is the market value of the company and the stock price.
Especially profitable growth (growth in EVA) gears up stock prices [Makelainen 1998]. This
study treats the NPV of a project using COTS and other types of reusable components as EVA.
The extra benefits due to use of all of reusable components are the positive added value to the
project.

2.3.2.4 Earlier TTM resulting in share value increase

There are so many factors who can affect stock price. Based on the factors related to earlier TTM,
such as corporation wealth and cash flows, this study states that earlier TTM can result in more
sales revenues from market. The more sales revenues make corporation more positive cash flows
and thus a positive NPV in the end. Obviously, the book value will increase. And from external
factors, product with earlier TTM can beat competitor and gain more credits from stock market
analyzer and investment banks. This rationale proposed by this study based on earlier TTM can
be depicted as followed:

 19

more credits from stock market analyzer and investment banks. This rationale proposed by this
study based on earlier TTM can be depicted as followed:

Figure 6: stock value increase caused by earlier TTM

Similar to Makelainen, Damordoran also proves the firm value is determined by NPV of future
projects, which is named economic value added in EVA theory. The equation from Damordoran
is as followed:

Value of Firm = Value of Assets in Place + Value of Future Growth
 = Value of Assets in Place + NPV of all future projects [Damordoran 2002]

As shown in the equation above, a positive NPV of a project can increase a firm’s market value.
This study deals with the second item, NPV of all future projects.

 20

This study treats the increase on stock value as a further benefit after more sales revenues occur
due to earlier delivery to market. Basically, the earlier TTM results in more market share and
helps corporation make the project a positive NPV. At the same time the positive cash flows
increase the wealth of the corporation and stockholders. As proven in the EVA theory and
Damordoran’s equation, therefore, the stock market value of the corporation also increases.

Is it a 100% certainty that stock price must increase? The answer is that if the project has a
positive NPV, then the certainty is higher since if a firm takes a project, which yields a positive
NPV. That means the wealth of stockholders increases and firm value also increases. However,
the stock price is not only determined by internal factors, such as firm value, positive NPV. As
discussed in previous section, external factors, such as governmental policy, industry
competition, can also affect the variations of the stock price. And if the project has a negative
NPV, at a higher rate of expectation, we can draw a conclusion that the stock price will decrease.

The benefit of stock value increase belongs to non-technical issue and so far there is no such a
mode formally validates and covers this issue. A few models mentions and recognizes the benefit
due to shortened TTM caused by using reusable components but doesn’t put more efforts on
quantifying this. Most other models simply ignore it. This study more focuses on internal factors
such as profit, earning growth, and sales growth. Based on these internal factors, this study
attempts to resolve this challenging issue by proposing a TTM model. The quantification part is
covered in TTM submodel section.

 21

Chapter 3 Software Economics Cost models

3.1 COCOMO (COnstructive COst MOdel)

The most fundamental calculation in the COCOMO model is the use of the Effort Equation to
estimate the number of Person-Months required developing a project. Most of the other
COCOMO results, including the estimates for Requirements and Maintenance, are derived from
this quantity. The COCOMO calculations are based on estimates of a project's size in estimated
thousand delivered source instructions (KDSI).

Intermediate COCOMO estimates for the time of development and the amount of effort needed
for software development. It was later discovered that the schedule and effort are influenced by
certain factors related to the difficulty of the project. The level of difficulty (or familiarity) is
broken down into 3 modes [COCOMO 1994]:

1. Organic mode is used to calculate the effort for a project where constraints upon
development are mild. In addition, the given project has been pre-dated by a number of
similar projects that could assist in defining the agenda of development.

2. Semi-detached mode is used for a project where the constraints on the project are greater
than organic mode, but there still remains some flexibility. The project may only be pre-
dated by a few similar projects.

3. Embedded mode is used for a project that has very tightly defined constraints. The
project as a whole is a trailblazer and therefore cannot rely upon previous projects
completed.

Project Characteristics Development
Mode Size Innovation Deadline/Constraints Dev. Environment

Organic Small Little Not tight Stable
Semi-detached Medium Medium Medium Medium
Embedded Large Greater Tight Complex

Hardware/customer
interface

Table 3: COCOMO development mode

3.1.1 COCOMO Equations

There are two main equations in COCOMO.

1. Development effort

 22

bKDSIaPM ×=

This equation is based on PM - person month / staff-month. COCOMO defines there are 152
hours per Person month. According to organization this values may differ from the standard by
10% to 20%.

2. Effort and development time (TDEV)

cPMTDEV ×= 5.2

This equation estimates how much time to spend to develop with a unit in month.

The values of a, b, and c are based on different modes.

Mode a b c
Organic 3.2 1.05 0.38
Semi-detached 3.0 1.12 0.35
Embedded 2.8 1.20 0.32

Table 4: COCOMO parameters

Here is an example to show how these two equations work. Development team plans to
implement a database system for an office automation. The project is in organic mode (a=3.2, b
= 1.05, c=0.38) and there are 4 modules to implement:

• Data entry: 0.6 KDSI
• Data update: 0.6 KDSI
• Query: 0.8 KDSI
• Report generator: 1.0 KDSI
• Total System SIZE: 3.0 KDSI

14.1017.32.332.3 05.1 =×=×=PM (PM)

03.614.105.25.2 38.0 =×=×= cPMTDEV (Calendar Months)

The value of TDEV indicates that the development time for this project will last more than 6
months. The TDEV equation is used in this study to estimate how much time can be saved to
deliver to market.

3.1.2 Equivalent delivered source instructions (EDSI)

Equivalent delivered source instructions (EDSI) is calculated from the following estimated
adaptation quantities [COCOMO 1994]:

 23

• Adapted Delivered Source Instructions (ADSI). The number of delivered source

instructions adapted from existing software used in developing the new product.
• Percent of Design Modification (DM). The percentage of the adapted software’s design

 that received modification to fulfill the objectives and environment of the new product.
• Percent of Code Modification (CM). The percentage of the adapted software’s code

that receives modification to fulfill the objectives and environment of the new product.
• Percent of Integration Required for Modified Software (IM). The percentage of effort

needed for integrating and testing of the adapted software in order to combine it into the
new product.

The equations for calculating EDSI involve an intermediate quantity, the adaptation adjustment
factor (AAF), as followed:

)(3.0)(3.0)(4.0 IMCMDMAAF ++=

100
)(AAFADSIEDSI =

Following is an example to show how EDSI works. Suppose we are converting a 50-KDSI
organic-mode Fortran electronic circuit analysis program from a Univac 1110 computer to an
IBM 3033. Typically, for this situation, we would have

DM = 0 (no change in the program’s design)
CM = 15 (perhaps 15% of the lines of code will change because of compiler change,

operating system interfaces, job control language changes, and so on)
IM = 5 (a small amount of effort required to integrate the above changes)

The resulting adaptation calculations would be

6)5(3.0)15(3.0)0(4.0 =++=AAF

3000)
100

6)(000,50(==EDSI

Using the COCOMO organic-mode estimation equation, the resulting conversion effort would be

MMKEDSIMM 6.7)3(4.2)(4.2 05.105.1 ===

The result shows that 7.6 MM effort will be added to integrate this software component into a
new environment.

 24

3.1.3 Summary

The original COCOMO model has been successful, but it doesn't apply to newer software
development practices as well as it does to traditional practices. In addition, the other problem
with this model is that it assumes no reuse and few changes in the requirements after they are
identified. Thus, this model does not reflect the assumptions of reuse. The first and primary
approach modeled by COCOMO is the use of system components that are built from scratch, that
is, new code. Hence, the original COCOMO doesn’t apply to CBSE and COTS. COCOMO is
good for a traditional approach, and uses a 3GL (third generation language), such as C,
FORTRAN, or COBOL and the original COCOMO will give good results. If development tools
and processes haven't changed much in recent years, COCOMO might be the right model.

This study utilizes these basic equations in COCOMO as a tool to estimate the development
efforts and time of developing from scratch without software reuse.

3.2 Chmiel’s Integrated Cost model

3.2.1 Model introduction

This model is different from others in that the decisions are composed of four levels and treats
reuse projects from a point of view of long term run. Each level corresponds one engineering
cycle. Each level is a decision making process based on calculation of NPV, ROI, and other
economic indices. Reuse investment decisions are made on different levels from the corporate to
the programming.

• At the corporate level, management determines if the reuse investment will be
worthwhile.

• At the managerial level, domain engineering managers determine which assets that have
good reuse potential and create them. And the application managers determine the
worthiness of incorporating reusable assets into a project.

• At the programming level, named Component Engineering Cycle, programmers
implement reusable assets based on the decision from its upper level, domain level.

These decisions of different levels are reflected in the following 4 investment cycles:

• Corporate investment cycle.
• Domain engineering investment cycle.
• Application engineering investment cycle.
• Component engineering investment cycle.

 25

Corresponding to these four cycles, there are four stakeholders in the software reuse lifecycle.
Each stakeholder is responsible for a key decision in the corresponding cycle. The basic structure
of this model is that it utilizes a cascade pattern. For example, the costs and benefits in
Component Engineering Cycle are cascaded into Domain and Application Engineering Cycles.
In the end, the costs and benefits of the latter two cycles are cascaded into Corporate Engineering
Cycle and the decision is made based on the cascaded costs and benefits.

These investment cycles are characterized analyzed by the following cost factors:

• Investment costs, IC measured in person months.
• Periodic costs at year y, C(y) measured in person months at year y, including the costs of

creating, retrieving, and using reusable assets.
• Periodic benefits at year y, B(y) measured in person months at year y, gained by creating,

using, and classifying a reusable asset.
• Discount rate, d measured in person months at year y
• Duration, Y measured in number of years and ranging typically 3 to 5.

The four decisions are based on the economic rationale.

• Net Present Value (NPV),
• Payback Period (PB),
• Average Return on Book Value (ARBV),
• Internal Rate of Return (IRR),
• Return on Investment (ROI),
• Profitability Index (PI).

For each cycle, these values are calculated and the decision is based on the values. Here is a
figure showing the structure of the model.

 26

Figure 7: Software Reuse Model [Chmiel 2000]

Corporate Cycle
 Investment Costs

 Reuse Infrastructure
 Episodic Costs

 Episodic Benefits

 Episodic Benefits

Domain Engineering Cycle
 Investment Costs

Domain Analysis Cost
 Episodic Costs

 Episodic Benefits
Cost Transferred from Projects

Component Engineering Cycle
Investment Costs Episodic Costs Episodic Benefits
Develop for Reuse Library Overhead Sale of Asset

Application Engineering Cycle
Investment Costs Episodic Costs Episodic Benefits
Training Reuse Overhead Productivity gains
Process Impact Reuse Risks Quality Gains

 27

This model assumes reusable components are analyzed and developed in Component
Engineering Cycle and Domain Engineering Cycle. In Application Engineering, application
engineers get benefits by using these reusable assets.

Figure 8: Cascade of Costs through Investment Cycles [Chmiel 2000]

The costs and benefits of components developed for domain engineering comprise the periodic
costs of the domain engineering cycle. These costs plus the initial costs of domain analysis
during the domain engineering cycle propagate to the corporate engineering cycle. Thus, the
component engineering cycle is a subset of the domain engineering cycle which is a subset of the
corporate engineering cycle. By minimizing the costs of component engineering and domain

 28

engineering, the costs of the corporate engineering cycle can therefore be minimized. The
benefits of application engineering follow a similar pattern [Chmiel 2000].

The figure above shows the basic cost and benefit structure of Chmiel’s model. Besides initial
investment costs, periodic costs and benefits of Corporate Engineering Cycle are cascaded from
Domain and Application Engineering Cycles. On a lower level, the costs and benefits from
Component Engineering Cycle are cascaded into Domain and Application Engineering Cycles.

The rationale of this model is that to maximize the ROI at the corporate level, one must
maximize the ROI at each of the intermediate levels (domain, application, and component)
[Chmiel 2000].

3.2.2 Summary

Chmiel’s model is based on time value of money and has its advantages on quantifying
productivity and quality gains in much more details than other models. The classification of the
four engineering cycles and the cascade pattern in Chmiel’s model can represent the basic
process and cost structure of COTS and PLE. This study inherits this classification and the
cascade pattern.

This model doesn’t cover COTS and PLE and benefits due to shortened TTM and can only deal
with internal traffic since the model assumes all of the reusable components are built from
scratch in house. For example, Extra efforts caused by the use of COTS, assessment, tailoring,
glue code and COTS volatility, are not covered in this model. And this model doesn’t treat the
benefits of TTM, for example, business performance.

3.3 COCOTS (COnstructive Commercial-Off-The-Shelf)

3.3.1 Introduction

COCOTS is a model complementary to COCOMO II, capturing costs that traditionally
have been outside the scope of COCOMII. The model focuses on estimating the cost, effort, and
schedule associated using COTS components in a software development project.

A definition of COTS components is: commercial software product - sold, leased, licensed at
advertised prices, source code unavailable, usually periodic releases with feature growth
(obsolescence), future development not under control of application developer [Clark 2003].

There are some basic risks inherent using COTS components: immaturity of the product and/or
the vendor, inexperience of integrators and/or users with the product, incompatibility of the
product with the larger application, platform, or other COTS components in the system, lack of
control over the product's current and future functionality (COTS is evolutionary (volatility)),

 29

customer/user view that COTS integration is Plug-and-Play (for example, the assumption that
use of COTS means zero development time).

COCOTS analyzes the benefits and costs of initial integration of COTS. OCOCOTS is composed
of four related submodels (Assessment, Tailoring, Glue Code, and Volatility), each addressing
individually the four primary sources of COTS software integration costs.

The deficiency of COCOTS is that COCOTS currently deals only with initial integration efforts.)
Initial integration costs are due to the effort needed to perform as followed [Boehm 1998]:

• Assessment Effort: Candidate COTS component assessment,
• Tailoring Effort: COTS component tailoring
• Glue code Effort: The development and testing of any integration or "glue" code needed

to plug a COTS component into a larger system
• Volatility Effort: Increased system level programming and testing due to volatility in

incorporated COTS components. It is the additional effort that results from the impact on
the larger system of the effects of swapping COTS components out of the system with
newer version of those components that have been released by the COTS vendors.

By collecting data and analyzing COTS-Based projects, Madachy [Ray 2004] gives COTS
activity efforts percentage.

Figure 9: COTS efforts distribution over 4 phases [Ray 2004]

The following equations are used in COCOTS to apply to initial integration of COTS [Boehm
1998].

 30

3.3.2 Efforts estimation and calculation in COCOTS

3.3.2.1 Initial filtering effort

)/)((# CandidateEffortFilteringAverageCandidatesCOTSEffortTotal =

3.3.2.2 Final selection effort

∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

attributes
tAssessemen Candidate

domaingivenin
attributeforeffortAssessmentAverage

CandidatesCOTSEffortTotal)(#

The assessment attributes are listed as below:

1. Correctness
2. Availability/Robustness
3. Security
4. Product Performance
5. Understandability
6. Ease of Use
7. Version Compatibility
8. Inter-Component Capability
9. Flexibility
10. Installation/Upgrade
11. Portability
12. Functionality
13. Price
14. Maturity
15. Vendor Support
16. User Training
17. Vendor Concessions

Assessment Effort = Filtering Effort + Final Selection Effort

3.3.2.3 Tailoring effort calculation

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑ domaininlevel

complexitytailoringateffortAverage
levelcomplexityattailored

CandidatesCOTS
EffortTotal

The sum is over the complexity levels that are rated based on the following tailoring activities:

 31

1. Parameter specification
2. Script Writing
3. I/O Report and GUI Screen Specification and Layout
4. Security/Access Protocol Initialization and Setup
5. Availability of COTS Tailoring Tools

3.3.2.4 Glue code development and test effort calculation

∏
=

××=
14

1

][
i

i
B EMSizeAEffortTotal

Where

0.12=A
)04.0(00.1 SFB ×+=

⎟
⎠
⎞

⎜
⎝
⎛ +×=

100
1 BrakKSLOCSize

A: Constant, provisionally set to 12.0
Brak: Breakage: Percentage of COTS glue code thrown away due to requirements volatility
KSLOC: Size of COTS component glue code expressed in
EM: Effort Multipliers: ACIEP, ACIPC, AXICP, APCON, ACPMT, ACSEW, APCPX, ACPPS,
ACPTD, APVOL, ACREL, AACPX, ACPER, ASPRT
SF: Scale Factor, AAREN

The effort multipliers are:

1. ACIEP: COTS Integrator Experience with Product
2. ACIPC: COTS Integrator Personnel Capability
3. AXCIP: Integrator Experience with COTS Integration Processes
4. APCON: Integrator Personnel Continuity
5. ACPMT: COTS Product Maturity
6. ACSEW: COTS Supplier Product Extension Willingness
7. APCPX: COTS Product Interface Complexity
8. ACPPS: COTS Supplier Product Support
9. ACPTD: COTS Supplier Provided Training and Documentation
10. APVOL: COTS Product Volatility
11. ACREL: Constraints on System/Subsystem Reliability
12. AACPX: Application Interface Complexity
13. ACPER: Constraints on System/subsystem Technical Performance
14. ASPRT: System Portability

The nonlinear scale factor is:

AAREN: Application Architectural Engineering

 32

How adequate/sophisticated were the techniques used to define and validate the overall
systems architecture?

Driver
Rating 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ACIEP ACIPC AXICP APCON ACPMT ACSEW APCPX ACPPS ACPTD APVOL ACREL AACPX ACPER ASPRT
VL 1.34 1.60 1.58 1.45 1.20 0.71
L 1.16 1.27 1.12 1.26 1.20 1.07 0.82 1.14 1.09 0.84 0.88 0.84
N 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H 0.86 0.79 0.89 0.80 0.83 0.94 1.22 0.88 0.91 1.19 1.14 1.19 1.11 1.07

VH 0.75 0.62 0.79 0.63 0.69 0.88 1.48 0.77 0.84 1.33 1.30 1.42 1.22 1.14

Linear Scaling Factor Nonlinear Scaling Factor
A AAREN

12.0 VL L N H VH
4.00 3.00 2.00 1.00 0.00

Table 5: Value ranges of effort multipliers and nonlinear scale factor [Abts 1997]

3.3.2.5 Application Effort Due to COTS Volatility

Approximate model

COTSEAFCOTSBRAKEffortnApplicatioEffortTotal)(
100

)(⎥⎦
⎤

⎢⎣
⎡=

Detailed Model with COCOMO II Parameters

COTSEAF
BRAK

COTSBRAKEffortnApplicatioEffortTotal)(1
1

1)(
01.1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

∑
⎟
⎠
⎞

⎜
⎝
⎛

+
+=

+

Where

• BRAK COTS: % application code breakage due to COTS volatility
• BRAK : % application code breakage otherwise
• S : COCOMO II scale factor
• EAF : Effort Adjustment Factor (product of effort multipliers)

The application Effort Due to COTS Volatility is based on the following scale factor:

• Precedentedness
• Development Flexibility
• Architecture/Risk Resolution

 33

• Team Cohesion
• Process Maturity

Hence

Total Integration Effort (in Person-Months) = Assessment Effort
 + Tailoring Effort
 + Glue Code Effort
 + Volatility Effort
Where

Total integration Cost = (Total Integration Effort) ($$/Person-Month)

3.3.3 Summary

COCOTS primarily focuses on initial development since COCOTS views costing as a one-time
activity. However, CBS is an ongoing activity based on the whole life cycle of a project. For
example, volatility cost happens every year and should be estimated based on time value of
money in a long run project, but COCOTS treats it as a one-time activity. COCOTS more
focuses on integration costs and does not support continuous development efforts estimation
from a whole-life viewpoint. There are other costs and benefits that COCOTS doesn’t cover. For
example, COCOTS doesn’t consider the costs of reusable library and other episodic operation
costs. By using volatility cost factor, COCOTS solves the maintenance costs, but it treats it as a
one-time activity. In fact, maintenance costs happen every year of a project and should be
estimated based on time value of money. Therefore, COCOTS cannot deal with a reuse project
lasting years.

COCOTS only estimates the efforts and costs of assessment, tailoring, glue code, and volatility.
COCOTS doesn’t count into other costs and benefits due to the use of COTS, for example, the
cost of maintenance and the benefits of earlier time to market. In COCOTS, time value of money
is not considered. COCOTS does not treat the long term operation and maintenance. In addition,
COCOTS is not fully formulated and validated since COCOTS only deals with initial integration.
COCOTS is still immature.

 34

Chapter 4 Economic Techniques

This integrated empirical model with TTM submodel is based on NPV and ROI. Followings are
introductions to the involved economic techniques in this study.

4. 1 Net Present Value (NPV)

The value today of a future cash flow or series of cash flow is called the present value. Net
Present Value is the cumulative present worth of income (positive values) and a series of future
payments (negative values) from a series of investment cash flow using a discount rate to handle
time values of money [Brigham 1999].

∑
= +

=
+

++
+

+
+

+=
n

t
t

t
n k

CF
k

CFn
k

CF
k

CFCFNPV
0

2
2

1
1

0)1()1(
......

)1()1(

Where

CFt: the expected net cash flow at period t
k: discount rate
n: project life

NPV is present value of all cash inflows is compared to the present value of all cash outflows.
The investment project is acceptable if NPV > or = Zero [Agrizzi 2003]. The rationale for NPV
is that an NPV of zero signifies that the project’s cash flows are just sufficient to repay the
invested capital. If a project has a positive NPV, then it is generating more cash that is needed to
service its debt and to provide the required return to shareholders, and this excess cash accrues
solely to the firm’s holders [Brigham 1999].

The advantages of NPV are:

• Based on cash flow
• Considers all cash flows
• Incorporates the time value of money

The disadvantages of NPV are:

• must forecast all cash flows
• considers all cash flows, sometime it can be hard to estimate discount rate

NPV is the most widely accepted criterion for project evaluation in corporate finance [Ross
1996]. In corporate finance, NPV is the standard for making capital budgeting decisions. The
NPV of a project is given by the sum of its discounted future cash flows. The discounting takes

 35

into account time value of money, or the notion that money that is yet to be expended or received
is worth less today than it is in the future. The NPV rule states that only projects with positive
NPV are worth undertaking, and a project with a higher NPV is preferable to a project with a
lower NPV.

This study uses NPV as a main estimation technique to calculate COTS strategy and helps
corporate management make decision to take the CBS strategy or not.

4.2 Return On Investment (ROI)

This study deals with a project that can last long life cycle, for example, several years. The long
length time of a software development project makes capital expenditures more risky than other
investments. Before beginning a capital expenditure program that involves a large outlay of
investment funds on purchasing COTS, which will probably last several years, corporation
management should seek assurance that they will receive an acceptable return on investment.

In order to make the decision of whether or not to purchase COTS components instead of
developing from scratch, the predicted cash flows must be compared to the required investments
to determine if the return generated from using COTS meets or exceeds what management
considers acceptable.

Return On Investment (ROI) analysis allows decision makers to determine the financial return by
comparing net program benefits (benefits minus costs) to costs [Careertools 2000]. The purpose
of this ROI evaluation technique is to assist corporation managers in evaluating whether or not to
pay price for use of COTS components. The basic equation of ROI is as followed:

100
cosPr

×
−

=
tsogram

CostsBenefitsROI

For example, a project results in $1,500 in benefits and $1,000 in total costs. The NPV of this
project is (1500-1000)/1000 = 0.5. That means the project yields a ROI of 50%.

This calculation of ROI, also known as the book value rate of return, is commonly used because
it is based on the accrual method of financial statement preparation, and is easy to apply. Its
weakness is that is fails to consider the time value of money. Therefore, this study uses a
combination of NPV and ROI, since NPV is based on time value of money. This combination
assures the accuracy of calculating and evaluating the benefits and costs of COTS components.

For ROI calculations, rationale is that the higher the percentage, the more desirable the project.
When ROI is equal to zero, that means there is no net benefits gained back. When ROI value is
greater than zero, that means the project is worth to undertake.

 36

This study also uses ROI to determine if COTS strategy is worth to carry out. For example, only
if the final ROI value of analysis of COTS strategy is greater than zero, the COTS strategy would
give corporate management more confidence to take it.

4.3 Relative Cost of Writing for Reuse (RCWR)

RCWR is the ratio of the effort it takes to develop reusable software to developing it from
scratch.

asset use-single developing ofCost
asset reusable developing ofCost

=RCWR

The value of RCWR is based on environmental factors like experience, reuse organization, and
software complexity. Here is a table showing summary of RCWR values.

Organization RCWR
Caldwell 1.23-1.3
Favaro 1.0-1.2
Gaffney and Cruickshank 1.5
IBM 1.25-2.0
Jones 1.5
Lim 1.11-1.8
Margano and Rhoads 2
Reifer 1.1-1.36
Tracz 1.6
Bardo, et al 1.15-1.25
Lockheed Martin Federal Systems 1.86
Pant, et al 1.55

Table 6: RCWR Values over 12 organizations [Poulin 2002]

This study takes value of 1.5 as default. However, users to the supporting tool have privilege to
set up a RCWR value as they wish.

 37

Chapter 5 Extensions of Chmiel’s Model to COTS, PLE, and TTM

5.1 Model architecture

Based on inheriting the basic structure of Chmiel’s model, the integrated cost model with TTM
submodel is composed of four engineering cycles and one TTM submodel:

 Corporate Engineering Cycle, which reflects the corporate management point of view and
determines the long-term benefits of a reuse program. Based on the costs and benefits in
the project and plus the benefits of shortened TTM, the corporate makes final decision to
initiate reuse activities.

 Domain Engineering Cycle, which reflects the domain manager point of view. The
domain engineers in this cycle commit domains analysis initiative and analyze candidate
COTS components or existing reusable components for assessment.

 Component Engineering Cycle in which the benefits and costs of the existing reusable
components or the COTS component are calculated. For each reusable component or
COTS component, it corresponds to a Component Engineering Cycle.

 Application Engineering Cycle, in which Application engineers use the retrieved COTS
or reusable Components. The application engineers put efforts on tailoring and gluing
code. In addition, covering the cost of system volatility is also the issue that application
engineers have to face. In this cycle, cost factor of benefits due to shortened TTM is
calculated through TTM submodel. TTM submodel covers the costs and benefits of
shortened TTM due to the use of core assets. They are increased sales revenues and stock
value. By incorporating the benefits of shortened TTM into application engineering cycle,
the corporate will make more reasonable decisions based on a long term point of view.

 38

Figure 10: Integrated model extended to COTS, PLE and TTM

As Figure 10 indicates, life cycles of projects can be shortened by utilizing core assets from
domains in domain engineering cycle. The benefits of earlier TTM are handled in TTM
submodel section as showed in Figure 11.

 39

Figure 11: Integrated model extended to COTS, PLE and TTM

The integrated cost model can cover COTS, PLE and TTM with projects duration of several
years long. It can treat long term project and incorporates the benefits of shortened TTM. Final
NPV and ROI of corporate engineering cycle are calculated plus considering benefits due to
shortened TTM derived from TTM submodel. The economic functions are used for corporation
management to make final decision of initiating reuse activities. The quantifications are detailed
in the following sections.

 40

5.2 Component Engineering Cycle

The stakeholders in this cycle are component development engineers. There are three ways of
core assets imported into domain and each core asset corresponds to a component engineering
cycle.

• Develop from scratch
• Mine legacy software inside corporation
• Buy from market, COTS

And each component engineering cycle has a years-duration investment cycle. The ways of the
core asset imported into domain carry different set of cost and benefit parameters.

5.2.1 Initial costs (y = starting year (SY))

The costs occur at the starting year of the investment cycle.

5.2.1.1 Mine legacy software (Mine inside corporation)

The costs are from:

• Assessment Cost: Analysis and selection efforts are spent to select and identify reusable
components from existing resources inside corporation.

• Library Insertion: cost for a component to be inserted into reusable library.

Therefore, the total initial costs are:

LIACCOECIC +=][

Where

IC[COEC]: Initial Costs of Component Engineering Cycle
AC: Assessment Cost
LI: Library Insertion

5.2.1.2 Develop from scratch

The costs are from:

• Development Cost: cost spent to develop the component for reuse
• Library Insertion: cost for a component to be inserted into reusable library.

 41

Therefore, the total initial costs are:

LIERCOECIC +=][

Where

IC[COEC]: Initial Costs of Component Engineering Cycle
ER: Development Cost for reuse
LI: Library Insertion

If ER is not available, the development cost can be derived by using the following equation
derived from COCOMO [COCOMO 1994].

)(ERCWRER =

)(bSaE =

Where

ER: Development Cost for reuse
E: cost of development from scratch for single use
RCWR: Relative Cost of Writing for Reuse
a, b: COCOMO parameter, dependent on project characteristics
S: Size of component in thousand lines of code

5.2.1.3 COTS

For the components, which are purchased from market, the initial costs are composed of:

• Assessment Cost: Analysis and selection efforts are spent to select and identify reusable
components from market.

• Purchase Cost: the cost of a COTS component. The cost occurs at the beginning of the
project to get the reusable asset. The corporate pays to purchase COTS component.

• Library Insertion: cost for a component to be inserted into reusable library.

Therefore, the total initial costs are:

LIPurchaseACCOECIC ++=][

Where

IC[COEC]: Initial Costs of Component Engineering Cycle
AC: Assessment Cost
Purchase: price paid to purchase COTS component from Vendor
LI: Library Insertion

 42

5.2.2 Annual costs (SY<y≤SY+Y-1)

The costs occur at the years after the first year of the investment cycle, which include operating
the reuse library and maintenance cost of the components.

Y: the number of years of the cycle.

5.2.2.1 Mine legacy software and Develop from scratch

• Maintenance: The maintenance costs can be derived from the COCOMO maintenance-
effort equations. Annual Change Traffic (ACT) is the ratio of the yearly maintenance cost
to the development cost and is typically around 0.15 [Boehm 1981] since annual
maintenance is 15% of the cost of development from scratch for single use. Annual
Change Traffic for reusable assets (ACT') is around 0.09, because the operating cost
differential due to software reuse is 9% of the development effort [Chmiel 2000

• Cost of operating the reuse library: the cost of operating the reuse library prorated to a
single component. The operating costs can be derived from dividing the labor costs of
operating the library by the size of the library. For example, there are total n reusable
components in library and the cost of operating one component is the total cost divided
by n.

Therefore, the total annual costs are:

)()()]([yOCyMNyCOECAC +=

)(09.0)(EyMN =

n
LyOC =)(

Where

AC[COEC](y): Annual Costs of Component Engineering Cycle at year y
MN(y): Maintenance cost at year y
OC(y): Operating Cost at year y
E: cost of development from scratch for single use
L: Number of librarians
n: Total number of reusable assets in library

 43

5.2.2.2 COTS

By using COTS components, corporation can save efforts and costs on maintenance. Harris
states that the software maintenance costs for internally developed software are about 55% of the
total cost of the product life cycle. This includes costs associated with fixing defects as well as
implementing enhancements [Harris 1992]. NASA Manager's Handbook for Software
Development states that the maintenance can be 70% [Honeywell 1996].

For example, a project lasts four years, assuming that the maintenance cost is evenly distributed
over the four-year life cycle. The project plans to purchase a GUI COTS component instead of
developing from scratch. Suppose the actual costs to design, implement, test, and integrate the
GUI module is $50,000. The estimated maintenance cost is

==)000,50)($45.0/55.0(MC $61,111.11

The maintenance cost of each year would be ($61,111.11)/4 = $15,277.78

Therefore, the NPV of the saved maintenance cost at 10% discount rate is

∑
= +

=
3

0)10.1(
78.277,15$

n
nCostSaved = $53,271.36

Therefore, the annual costs of a COTS component are composed of:

• Annual license fee: the cost to pay annual license for the COTS component if applied.

• Cost of operating the reuse library: the cost of operating the reuse library prorated to a
single component. The operating costs can be derived from dividing the labor costs of
operating the library by the size of the library. For example, there are total n reusable
components in library and the cost of operating one component is the total cost divided
by n.

Therefore, the total annual costs are:

)()]([yOCALyCOECAC +=

n
LyOC =)(

 44

Where

AC[COEC](y): Annual Costs of Component Engineering Cycle at year y
AL: Annual license fee
OC(y): Operating Cost at year y
L: Number of librarians
n: Total number of reusable assets in library

5.2.3 Initial Benefits (y=SY)

The benefits occur at the starting year of the investment cycle.

5.2.3.1 Develop from scratch

There is no initial benefit for this kind of core asset.

0][=COECIB

Where

IB[COEC]: Initial benefits of Component Engineering Cycle

5.2.3.2 Mine legacy software and COTS

The initial benefits for these two are development costs are saved. This benefit results from the
labor cost saved in Component Engineering Cycle by mining existing components or purchasing
COTS components. Therefore, the initial benefits of Component Engineering Cycle are:

ERCOECIB =][

))((bSaRCWRER =

Where

IB[COEC]: Initial benefits of Component Engineering Cycle
ER: Development Cost for reuse

 45

5.2.4 Annual Benefits (SY<y≤SY+Y)

The benefits occur at the years after the first year of the investment cycle. Only if the core assets
are utilized by application engineering cycle, the value of the core assets can be realized.
Otherwise, costs to assess, develop, or purchase these assets won’t get paid back.

Here are three main factors determining how much benefit these core assets can bring.

• Relative Black Box (RBP): price of black box use selling to application engineers. This
study uses the default value Chmiel provides, 0.4, or it can be set in the supporting tool.
COTS components are utilized this way.

• Relative White Box (RWP): price of white box use selling to application engineers. This
study uses the default value Chmiel provides, 0.15, or it can be set in the supporting tool.

5.2.4.1 Develop from scratch and mine legacy software

RWP)E(FreqW(y) RBP)E(FreqB(y))]([+=yCOECAB

)(bSaE =

Where

AB[COEC]: Annual benefit of Component Engineering Cycle at year y
FreqB(y): Frequency of black box reuse of the component at year y
FreqW(y): Frequency of white box reuse of the component at year y
RBP: Relative Black Box
RWP: Relative White Box
S: Size of component in thousand lines of code
a, b: COCOMO parameters

5.2.4.2 COTS

 E)(RBP)(FreqB(y))]([=yCOECAB

)(bSaE =

Where

AB[COEC]: Annual benefit of Component Engineering Cycle at year y
FreqB(y): Frequency of black box reuse of the component at year y
RBP: Relative Black Box
S: Size of COTS component in thousand lines of code

 46

a, b: COCOMO parameters

5.3 Domain Engineering Cycle

In Domain Engineering Cycle, domain engineers define the domain characteristics, generic
attributes and architecture, collect data, analyze domain artifact for its reusability, define
reusability guidelines, and analyze reuse structure.

5.3.1 Costs (SY≤y≤SY+Y)

• Domain analysis cost: analysis of reuse structure and architecture
• Costs cascaded from costs in Component Engineering Cycle

The annual costs in Domain Engineering Cycle are cascaded from Component Engineering
Cycles.

Where

AC[DEC](y): Annual Costs of Domain Engineering cycle at year y
C[DOM]i(SY): cost of domain i at year y
DAi: Domain Analysis costs of domain i
C[COEC]j(SY): cost of component j at year y
m: number of domains in the domain engineering cycle
n: number of components in the domain

5.3.2 Benefits (SY≤y≤SY+Y)

The benefits in Domain Engineering Cycle are cascaded from Component Engineering Cycles.

∑
=

=
m

i
i yDOMByDECB

1
)(][)]([

∑
=

=
n

j
j yCOECByDOMB

1
)(][)]([

∑
=

=
m

i
i yDOMCyDECC

1
)(][)]([

∑
=

+=
n

j
jii yCOECCDAyDOMC

1

)(][)(][

 47

Where:

B[DEC](y): Benefits of Domain Engineering Cycle at year y
B[DOM]i(y): Benefit of domain i at year y
B[COEC]j(y): Benefit of component j at year y
m: number of domains in the domain engineering cycle
n: number of components in the domain

 48

5.4 Application Engineering Cycle

In Application Engineering Cycle, application engineers pay extra more efforts on reuse
adoption, tailoring, glue code, and system volatility due to the use of core assets. The cost factor
of benefit of shortened TTM is also incorporated in this cycle.

5.4.1 Initial costs (y=SY)

5.4.1.1 Develop from scratch and mine legacy software

• Cost of acquiring black box assets for the application
• Cost of acquiring white box assets for the application
• Cost of EDSI
• Cost of glue code

Cost of EDSI and glue code can be derived from COCOMO effort equation as depicted in
Chapter 3.

bnm

i
iikj GCEDSIaEWPERBPPRJIC ⎟
⎠

⎞
⎜
⎝

⎛
+×+×+×= ∑∑∑

+

=== 1

n

1k

m

1j
)(R][

Where

IC[PRJ]: Initial Costs of a project
m: number of mine-inside or develop from scratch components black-box-used in a project
n: number of mine-inside or develop from scratch components white-box-used in project
GC: Glue Code size

5.4.1.2 COTS

The initial costs include:

• Cost of acquiring COTS assets for the application
• Tailoring Effort
• Glue code Effort

Therefore, the initial costs are:

 49

∑∑
==

×+×=
n

i
ii GEEBPPRJIC

1

n

1i 5.45
2.73 R][

Where

IC[PRJ]: Initial Costs of a project
n: number of COTS components in project
GC: Glue Code size
GE: glue code effort

5.4.2 Annual costs (SY<y≤SY+Y)

For components of develop from scratch and mine legacy software, there are no periodic costs.
For COTS, volatility cost occurs. Volatility in this context refers to the frequency with which
new versions or updates of the COTS software being used in a larger system are released by the
vendors over the period of the project development. The vendors usually release new versions
every 10 months and this study assumes an annual COTS volatility in each calendar year. This
study assumes that the volatility cost is evenly distributed over the Y-year life cycle.

Following is a table showing COTS efforts distribution [Madachy 2004].

COTS development phase Efforts percentage (%)
Assessment 7.8
Tailoring 27.7
Glue code 45.5
Volatility 19.0

Table 7: COTS efforts distribution

Therefore, the volatility cost is calculated as followed:

∏
=

××=
14

1

][
i

i
B EMSizeAGE

0.12=A

)04.0(00.1 SFB ×+=

⎟
⎠
⎞

⎜
⎝
⎛ +×=

100
1 BrakKSLOCSize

 50

GEVC ×=
5.45

19

Where

VC: Volatility Cost
GE: Glue code cost

Therefore,

Y
VCyPRJAC

n

i
i

1)]([
1

×⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

]12/[STTMFloorPDY −=

Where

AC[PRJ]: Annual Cost of a project
n: number of components
Y: Actual number of years of the project
PD: Planned duration of the project in year
STTM: earlier time to market in month, details covered in TTM submodel section.

5.4.3 Initial benefits (y=SY)

The initial benefits are due to development cost saved by utilizing core assets.

bn

i
iSaPRJIB ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=1
][

Where

IB[AEC]: Initial benefits of Application Engineering Cycle
S: size of a component in K
n: number of components

5.4.4 Annual benefits (SY<y≤SY+Y)

 51

The annual benefits are due to quality gains. This assumes that a component developed with
reuse (especially if it is a black box component) is of better quality than a component developed
from scratch for single use since it has been designed more carefully, tested more thoroughly,
and documented more precisely [Chmiel 2000].

Since ACT is around 0.15 and Annual Change Traffic for reusable assets (ACT') around 0.09,
because the operating cost differential due to software reuse is 9% of the development effort
[Chmiel 2000]. Therefore, the quality gains are:

EACTACT ×−)('

For COTS components, there are no efforts on maintenance.

Therefore,

bn

i
iSaACTACTPRJAB ⎟
⎠

⎞
⎜
⎝

⎛
×−= ∑

=1

')(][(SY<y<SY+Y)

RISaACTACTPRJAB
bn

i
i +⎟
⎠

⎞
⎜
⎝

⎛
×−= ∑

=1

')(][(y=SY+Y)

Where

AB[PRJ]: Annual benefits of a project
n: number of components
RI: Revenue Improvement. More sales revenues are gained and RI is derived from TTM
submodel.

This study assumes that TTM of the project can be shortened by utilizing core assets instead of
developing from scratch for application engineers. Thus, as depicted in previous chapter, more
sales revenues are gained in the earlier TTM period. The benefits of TTM are detailed in TTM
submodel section.

5.4.5 Sum of costs and benefits in AEC (SY≤y≤SY+Y)

The costs and benefits in AEC are cascaded from all of the projects being carried on in the cycle.

∑
=

=
n

i
i yPRJCyAECC

1

)(][)]([

 52

∑
=

=
n

i
i yPRJByAECB

1

)(][)]([

Where:

C[AEC](y): Costs of Application Engineering Cycle at year y
B[AEC](y): Benefits of Application Engineering Cycle at year y
C[PRJ]i(y): Cost of project i at year y
B[PRJ]i(y): Benefit of project i at year y
n: number of projects in AEC

 53

5.4.6 TTM submodel

As discussed in previous chapter, Application engineers will get rewards from more market sales
after the project is done and the product goes to public. The task of this submodel is to quantify
these rewards.

5.4.6.1 Benefits of shortened TTM

The benefits are gained outside the application cycle and gets reward after the project is done and
product is delivered to market.

• Shortened TTM (STTM): This benefit is the total time saved of the whole life cycle of

the project. This factor will be used to calculate how much more sales revenues to
achieve with shortened TTM for this product.

• Revenue Improvement (RI): More market share and more sales revenues. If the product
goes to public earlier, it will obtain more market share and more sales revenues;
especially there are no competing products.

• Stock Improvement (SI): Increase or decrease of stock value of the corporation. Stock
dealers and analyzers give more credits based on the better performance and balance
sheet of a corporation, since using COTS saves development cost with long term run and
a better cash flow shows up on balance sheet. Customers like to see the new products
going to public and it would be better to satisfy the stock holders with earlier TTM. And
earlier TTM can result in more sales revenues and then makes the project a positive. If a
firm takes on a project with positive NPV, the wealth of the stockholders is improved
[Brigham 1999]. Therefore, the share value increases.

Following is a detailed description on how to quantify these elements that are composing the
whole costs and benefits due to shortened TTM.

5.4.6.2 Quantify benefits of TTM

This submodel attempts to quantify the effects of shortened TTM due to use of core assets. As
described in last section, the related cost and benefit factors are taken into account and estimated
in a quantitative approach.

Shortened TTM (STTM)

By using existing core assets instead from developing from scratch, the application engineering
cycle saves. This calculation is based on the equations from intermediate COCOMO, which
calculate labor and time effort of development [COCOMO 1994].

 54

cPMTDEV ×= 5.2

Where

TDEV: Effort and development time
PM: Person Month

This equation estimates how much time to spend to develop with a unit in month. Therefore, the
shortened TTM can be derived as followed:

 21 TTSTTM −=

cbn

i
iSaT

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
××= ∑

=1
1 5.2

cbn

i

n

i
ii GCEDSIaT

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+××= ∑ ∑

= =1 1
2 5.2

T1: Time to develop from scratch
T2: Time on efforts with reuse
S: size of a component in K
EDSI: Equivalent delivered source instructions in K
GC: glue code size in K
n: number of components reused

Revenue Improvement (RI)

This benefit results from more market share and sales revenues due to shortened TTM.

)12/(STTMASRRI ×=

Where

RI: Revenue Improvement
ASR: Annual Sales Revenues
STTM: Shortened TTM, total time saved in month due to use of reusable components

USPNCASR ×=

Where

 55

NC: estimated number of copies of the product sold annually on market
USP: Unit Sale Price

⎟
⎠
⎞

⎜
⎝
⎛×=

NC
DCBCUSP

Where

BC: benefit coefficient
DC: development cost
NC: estimated number of copies of the product sold annually in market

∑
−

= +
+=

=
1

0)1(
))((Y

y
yd

ySYyCDC

Where

SY: starting year
d: discount rate
Y: duration of project, number of years

Therefore,

)12/)((STTMDCBCRI =

Benefit factor is a coefficient that the corporation set up for product price to make profit on
market. Before the corporation can decide upon a fair price for product, it needs to know how
much it's costing

Once development costs are identified, the corporation can determine your break-even point.
This is the point at which te neither make nor lose money in producing a product. For example, it
would be at the break-even point if it cost $100 to produce a product that it sells for $100.

Stock Improvement (SI)

This benefit results from possible increase of stock value of the corporation as EVA theory
indicates. The positive NPV pf a project increases the market value of a corporation.

TS
PRJNPVSI)(

=

Where

 56

SI: stock improvement
NPV(PRJ): Net present value of project
TS: Total number of Shares

5.4.6.3 TTM Conclusion

Therefore, the total benefits due to shortened TTM are calculated below:

∑∑
==

=
n

i
i

n

i
i SIRIBTTM

11
U

Where

BTTM: Benefits of shortened TTM
RIi: Revenue improvement of project i
SIi: Stock improvement of project i
n: number of projects in AEC

 57

5.5 Corporate Engineering Cycle

Corporate Engineering Cycle is the highest cycle in which a final decision is made based on all
of the costs and benefits from other three engineering cycles and TTM submodel.

5.5.1 Initial Costs (y=SY)

The up-front costs in Corporate Engineering Cycle result from building reuse structure, training,
other, and those cascaded from Domain and Application Engineering Cycles.

)]([)]([)]([SYAECCSYDECCISSYCECIC ++=

Where

IC[CEC]: Initial Costs of Corporate Engineering Cycle at year SY
IS: Infrastructure Costs
C[DEC](SY): Costs of DEC at year SY
C[AEC](SY): Costs of AEC at year SY
DEC: Domain Engineering Cycle
AEC: Application Engineering Cycle

5.5.2 Annual Costs (SY<y≤SY+Y)

)]([)]([)]([yAECCyDECCyCECAC +=

Where

AC[CEC](y): Annual Costs of CEC at year y
C[DEC](y): Costs of DEC at year y
C[AEC](y): Costs of AEC at year y

5.5.3 Benefits (SY≤y≤SY+Y)

The benefits are cascaded from Domain and Application Engineering Cycle.

)]([)]([)]([yAECByDECByCECB +=

Where

B[CEC](y): Benefits of CEC at year y
B[DEC](y): Benefits of DEC at year y

 58

B[AEC](y): Benefits of AEC at year y

5.6 NPV and ROI

Here are the equations to calculate NPV and ROI for each cycle.

∑
−

= +
−

=
1

0)1(
)]([)]([)(

Y

y
yd

yCycleCycycleBCycleNPV

][
)(

CycleIC
CycleNPVROI =

Where

Cycle: COEC, DEC, AEC, and CEC
B[Cycle](y): Benefits of cycle at year y
C[Cycle](y): Costs of cycle at year y
IC[Cycle](y): initial costs of cycle
Y: number of years of investment cycle
d: discount rate

 59

Chapter 6 An Example of Application of Model

LinkySky Science and Technology, INC. is a high-tech company set up by returned overseas
students. The company is located in Beijing, China. The company engages in network systems
integration, systems design and implementation, as well as E-business.

In 2000, a domain is developed for reusable assets. From 2001 to 2003, the company developed
two projects, which are based reusable components and share the same architecture. The projects
characteristics are semi-detached. The average FTSP of the company is equivalent to 9K/year in
US dollar. There is one software engineer responsible for reuse library. The discount rate is 10%.
Since the company is not a public one, the data of number of shares of the company is not
available.

6.1 Component Engineering Cycle

There are four reusable components in reuse library. One of them is mine legacy software,
component 1. Two are develop from scratch, component 2 and 3. The left one is buy from
market, component 4.

Component Type Size(in K)
Component 1 Mine 6.5
Component 2 Develop 12.5
Component 3 Develop 8
Component 4 Buy 22

6.1.1 Mine inside (component 1)

Component 1 has a size of 6.5K.

The initial cost includes
Assessment and identification cost (AC) is 5PM.
Library insertion cost (LI) is 2PM

PMSaE b 41.24)5.6(3)(12.1 ===

Therefore, the initial cost for this component in 2001 is

 60

250,5$)
12
9$(7725)2001(===+=+==

kPMLIACyC

The annual costs include maintenance and operating reuse library after 2000.

)()()(yOCyMNyC +=

12
09.0)(FTSPEyMN ××

=

12
)(

×
×

=
n

FTSPLyOC

Where

Maintenance cost is

745,2$)
12
9$(66.366.3)41.24(09.0)(09.0)2001(=====>

kPMEyMN

Operating reuse library cost is

375$)
12
9$(25.025.0

4
1)2001(====>

kPMyOC

Therefore, the annual cost is

120,3$375$745,2$)2000()2000()2001(=+=>+>=> yOCyMNyC

The initial benefit due to development cots saved is

465,27$)
12
9$(62.3662.36)41.24(5.1)(5.1)()2000(=======

KPMEERCWRyB

Year FreqB FreqW
2000 0 0
2001 2 0
2002 0 0
2003 0 0

Componen 1

 61

The table above shows the frequency of component 1, which is used as black box. The annual
benefit is

ERWPFreqW(y) ERBPFreqB(y))(××+××=yB

The benefit in year 2001 is

646,14$)
12
9$(53.1953.1924.41)(2(0.4))2001(=====

KPMyB

The benefit in year 2002 is

0)2002(==yB

The benefit in year 2003 is

0)2003(==yB

Year Cost Benefit
2000 $5,250 $27,465
2001 $3,120 $14,646
2002 $3,120 $0
2003 $3,120 $0

Component 1

Following is the equation to calculate NPV of this cycle.

∑
=

= +
+−+

=
1

0)1(
)()(Y

y
yd

ySYCySYBNPV

NPV: net present value
SY: starting year
Y: duration of investment cycle in years
d: discount rate

Following is the equation to calculate ROI of this cycle.

IC
NPVROI =

ROI: return on investment
IC: initial cost

 62

Following is to calculate NPV of Component 1.

771,27$
)1.01(

120,3$0
)1.01(

120,3$0
)1.01(

120,3$646,14$
)1.01(

250,5$465,27$
)1(

)2003()2003(
)1(

)2002()2002(
)1(

)2001()2001(
)1(

)2000()2000(

3210

3210

=
+
−

+
+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Component 1.

29.5
250,5$
771,27$

===
IC

NPVROI

6.1.2 Develop from scratch (component 2 and component 3)

Component 2 has a size of 12.5K and Component 3 has a size of 8K.

6.1.2.1 Component 2

The initial cost includes development cost and library insertion. The library insertion cost is 4PM.

The development cost is

128,57$)
12
9$(17.7617.76)78.50(5.1)5.12)(3(5.1))((12.1 ======

KPMSaRCWRER b

The library insertion cost is

000,3$)
12
9(44 ===

KPMLI

Therefore, the initial cost is

128,60$000,3$128,57$)2000(=+=+== LIERyC

The annual costs include maintenance and operating reuse library after 2000.

Maintenance cost is

 63

715,5$)
12
9$(62.762.7)78.50(09.0)(09.0)2000(=====>

kPMEyMN

Operating reuse library cost is

375$)
12
9$(25.025.0

4
1)2000(====>

kPMyOC

Therefore, the annual cost is

090,6$375$715,5$)2000()2000()2000(=+=>+>=> yOCyMNyC

Year FreqB FreqW
2000 0 0
2001 2 1
2002 0 0
2003 0 0

Componen 2

The table above shows the frequency of component 2, which is used as black box and white box.
The annual benefit is

ERWPFreqW(y) ERBPFreqB(y))(××+××=yB

The benefit in year 2000 is

0)2000(==yB

The benefit in year 2001 is

180,36$)
12
9$(24.4824.4850.78)(1(0.15)) 50.78(2(0.4))2001(===+==

KPMyB

The benefit in year 2002 is

0)2002(==yB

The benefit in year 2002 is

0)2003(==yB

 64

Year Cost Benefit
2000 $60,128 0
2001 $6,090 $36,180
2002 $6,090 0
2003 $6,090 0

Component 2

Following is to calculate NPV of Component 2.

382,42$
)1.01(

090,6$0
)1.01(

090,6$0
)1.01(

090,6$180,36$
)1.01(
218,60$0$

)1(
)2003()2003(

)1(
)2002()2002(

)1(
)2001()2001(

)1(
)2000()2000(

3210

3210

−=
+
−

+
+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Component 2.

70.0
128,60$
382,42$

−=
−

==
IC

NPVROI

6.1.2.2 Component 3

The initial cost includes development cost and library insertion. The library insertion cost is 3PM.

Development cost is

650,34$)
12
9$(2.462.46)8.30(5.1)8)(3(5.1))((12.1 ======

KPMSaRCWRER b

Library insertion cost is

250,2$)
12
9$(33 ===

KPMLI

Therefore, the initial cost is

900,36$250,2$650,34$)2000(=+=+== LIERyC

The annual costs include maintenance and operating reuse library after 2001.

 65

Maintenance cost is

465,3$)
12
9$(62.462.4)8.30(09.0)(09.0)2000(=====>

kPMEyMN

Operating reuse library cost is

375$)
12
9$(25.025.0

4
1)2000(====>

kPMyOC

Therefore, the annual cost is

840,3$375$465,3$)2000()2000()2000(=+=>+>=> yOCyMNyC

Year FreqB FreqW
2000 0 0
2001 2 1
2002 0 0
2003 0 0

Componen 3

The table above shows the frequency of component 3, which is used as black box and white box.

The annual benefit is

ERWPFreqW(y) ERBPFreqB(y))(××+××=yB

The benefit in 2000 is

0)2000(==yB

The benefit in 2001 is

945,21$)
12
9$(26.2926.29) 30.8(1(0.15) 30.8)(2(0.4))2001(===+==

KPMyB

The benefit in 2002 is

0)2002(==yB

The benefit in 2003 is

 66

0)2003(==yB

Year Cost Benefit
2000 $36,900 0
2001 $3,840 $21,945
2002 $3,840 0
2003 $3,840 0

Component 3

Following is to calculate NPV of Component 3.

500,26$
)1.01(

840,3$0
)1.01(

840,3$0
)1.01(

840,3$945,21$
)1.01(
900,36$0$

)1(
)2003()2003(

)1(
)2002()2002(

)1(
)2001()2001(

)1(
)2000()2000(

3210

3210

−=
+
−

+
+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Component 3.

72.0
900,36$
500,26$

−=
−

==
IC

NPVROI

6.1.3 Buy from market (component 4)

Component 4 has a size of 22K. The purchase fee is $2,230 and the annual license fee is zero.

The initial cost includes assessment, purchase and library insertion. The assessment is 8PM. The
library insertion cost is 5PM.

PMSa b 64.953(22))(E 1.12 ===

The initial cost is

 67

980,11$750,3$230,2$000,6$)
12

$9K(5230,2$)
12

$9K8(2000)C(y =++=++==

The annual cost includes annual license fee and operating reuse library.

188$)
12
9$(25.00)2000(=+=>

KyC

The initial benefit due to development cost saved is

520,107$)
12
9$(36.14346.1431.5(95.64))()2000(======

KPMERCWRyB

Year FreqB FreqW
2000 0 0
2001 2 0
2002 0 0
2003 0 0

Componen 4

The table above shows the frequency of component 4, which is used as black box and white box.
The annual benefit is

 ERBPFreqB(y))(××=yB

The benefit in 2001 is

383,57$)
12
9$(51.7651.76) 95.64(2(0.4))2001(=====

KPMyB

The benefit in 2002 is

0)2002(==yB

The benefit in 2003 is

0)2003(==yB

 68

Year Cost Benefit
2000 $11,980 $107,520
2001 $375 $57,383
2002 $188 $0
2003 $188 $0

Component 4

Following is to calculate NPV of Component 4.

069,147$
)1.01(

188$0
)1.01(

188$0
)1.01(

375$383,57$
)1.01(

980,11$520,107$
)1(

)2003()2003(
)1(

)2002()2002(
)1(

)2001()2001(
)1(

)2000()2000(

3210

3210

=
+
−

+
+
−

+
+

−
+

+
−

=

+
−

+
+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Component 4.

25.12
11980$

069,147$
===

IC
NPVROI

 69

6.2 Domain Engineering Cycle

The costs of domain cycle include domain analysis and costs cascaded from component
engineering cycles. The domain is built in 2000 and contains four reusable assets. The table
below shows the cost and benefits of each component engineering cycle.

Year Cost Benefit Cost Benefit Cost Benefit Cost Benefit
2000 $5,250 $27,465 $60,128 0 $36,900 0 $11,980 $107,520
2001 $3,120 $14,646 $6,090 $36,180 $3,840 $21,945 $375 $57,383
2002 $3,120 $0 $6,090 0 $3,840 0 $188 $0
2003 $3,120 $0 $6,090 0 $3,840 0 $188 $0

Component 1 Component 2 Component 3 Component 4

The domain analysis cost is 30PM.

The cost in 2000 is

758,136$258,114$500,22$980,11$900,36$128,60$250,5$)
12
9$(30)2000(=+=++++==

KyC

 The cost in 2001 is

238,13$188$840,3$090,6$120,3$)2001(=+++==yC

The cost in 2002 is

238,13$188$840,3$090,6$120,3$)2002(=+++==yC

The cost in 2003 is

238,13$188$840,3$090,6$120,3$)2003(=+++==yC

The benefits of domain cycle are cascaded from component cycles.

The benefit in 2000 is

985,134$520,107$465,27$)2000(=+==yB

The benefit in 2001 is

154,130$383,57$945,21$180,36$646,14$)2001(=+++==yB

 70

The benefit in 2002 is

0)2002(==yB

The benefit in 2003 is

0)2003(==yB

Year Cost Benefit
2000 $136,758 $134,985
2001 $13,238 $130,154
2002 $13,238 $0
2003 $13,238 $0

Domain 1

Following is to calculate NPV of Domain 1.

628,83$
)1.01(
238,13$0

)1.01(
238,13$0

)1.01(
238,13$154,130$

)1.01(
758,136$985,134$

)1(
)2003()2003(

)1(
)2002()2002(

)1(
)2001()2001(

)1(
)2000()2000(

3210

3210

=
+

−
+

+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Domain 1.

61.0
758,136$

628,83$
===

IC
NPVROI

 71

6.3 Application Engineering Cycle

The table below shows the basic info of each reusable component.

Component Type Size(in K) E (PM)
Component 1 Mine 6.5 24.41
Component 2 Develop 12.5 50.78
Component 3 Develop 8 30.80
Component 4 Buy 22 95.64

There are two applications starting from 2001, application 1 and 2. The table below shows the
frequency of each component used in each year and application.

Year Black White Black White Black White Black White
2000 0 0 0 0 0 0 0 0
2001 App1&2 0 App1&2 App 1 App1&2 App 2 App1&2 0
2002 0 0 0 0 0 0 0 0
2003 0 0 0 0 0 0 0 0

Component 4Component 1 Component 2 Component 3

 72

6.3.1 Application 1

The table below shows the components used.

Black White Black White Black White Black White
Com 1 Com 2
Com 2
Com 3
Com 4

2001 2002 20032000
Application 1

The table below shows the glue code for each component.

Component Type Size(in K) Glue Code
Component 1 Mine 6.5 4
Component 2 Develop 12.5 5
Component 3 Develop 8 3
Component 4 Buy 22 8

Application 1

Cost to acquire component 1, 2 and 3 is

∑
=

×
× n

1i

12 iEFTSPRBP

515,37$)
12
9$(02.5062.74.42)0.15(50.7830.8)50.780.4(24.41 ==+=+++

K

For the white box use of component 2,

DM CM IM
0 15 5

 73

)(3.0)(3.0)(4.0 IMCMDMAAF ++=

100
)(AAFADSIEDSI =

Therefore, the adaptation adjustment factor (AAF) is

Cost of EDSI and glue code in 2001 for component 1, 2 and 3 is

Component 4 is COTS and glue code is 8K. The costs in 2001 include acquire reusable asset,
tailoring and glue code. The following steps show the statistics to calculate.

The cost to acquire component from domain cycle is

692,28$)
12
9$(26.3826.38 0.4(3)(22)1.12 ===

KPM

Linear scaling factor A is a constant. The value is 12.0.
Non-linear scaling factor AAREN SF is 2.0.
Breakage is 0%.

The values of effort multipliers are

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ACIEP ACIPC AXICP APCON ACPMT ACSEW APCPX ACPPS ACPTD APVOL ACREL AACPX ACPER ASPRT
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Therefore, the glue code cost is

031,85$)
12
9$(38.11338.113)1()8(12][08.1

14

1

====××= ∏
=

KPMEMSizeAGE
i

i
B

KBrakKSLOCSize 8)
100

01(8
100

1 =+=⎟
⎠
⎞

⎜
⎝
⎛ +×=

08.1)2(04.01)04.0(00.1 =+=×+= SFB

6)5(3.0)15(3.0)0(4.0AAF =++=

K75.0)
100

6(5.12EDSI ==

401,56$)
12
9$(2.752.75)75.17(3)75.03554(3 12.112.1 ====++++

KPM

 74

The tailoring cost is

Therefore, costs of component 4 in 2001 is

Therefore, the cost of application 1 in 2001 is

850,253$492,165$401,56$515,37$)2001(=++==yC

Volatility cost in year after 2001 is

The benefits in 2001 are due to development cost saved by utilizing core assets.

845,226$)
12
9$(46.30246.302

)5.61(3)2285.125.125.6(3)2001(12.112.1

===

=++++==
KPM

yB

Annual benefit after 2001 is

Therefore,

613,13$)2002(==yB

501,243$888,229$613,13$613,13$)2003(=+=+== RIyB

769,51$)
12
9$(02.6902.69)

5.45
7.27(38.113 ===

KPM

755,17$)
12
9$(67.2367.23)

2
38.113)(

5.45
19()2002(=====

KPMyC

492,165$769,51$031,85$692,28$ =++

755,17$)2003(==yC

613,13$)
12
9$(15.1815.18)09.015.0(46.302)(46.302 ' ===−=−

KPMACTACT

 75

Year Cost Benefit
2001 $253,850 $226,845
2002 $17,755 $13,613
2003 $17,755 $243,501

Application 1

Incorporation of TTM into Application 1

Discount rate d is 10%.

The shortened TTM in calendar month is

()[] ()[]
Month

SSTM
33.5)25.538.7(5.2)08.114(5.2)46.302(5.2

75.08355435.22285.125.125.635.2
35.035.0

35.012.135.012.1

=−=−=

+++++−++++=

The cost of Application 1 is

ASR is 5,000 copies. BC is 2.0. Therefore, revenue improvement is

Following is to calculate NPV of Application 1.

633,141$
)1.01(

755,17$501,243$
)1.01(

755,17$613,13$
)1.01(

850,253$845,226$
)1(

)2003()2003(
)1(

)2002()2002(
)1(

)2001()2001(

321

321

=
+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CBNPV

786,258$
)1.01(

755,17$
)1.01(

755,17$
)1.01(

850,253$
32 =

+
+

+
+

+
=DC

888,229$)
12
33.5)(786,258($2 ==RI

 76

Following is to calculate ROI of Application 1.

56.0
850,253$
633,141$

===
IC

NPVROI

6.3.2 Application 2

The table below shows the components used.

Black White Black White Black White Black White
Com 1 Com 3
Com 2
Com 3
Com 4

2001 2002 20032000
Application 2

The table below shows the glue code for each component.

Component Type Size(in K) Glue Code
Component 1 Mine 6.5 3
Component 2 Develop 12.5 4
Component 3 Develop 8 92) 3 (3)
Component 4 Buy 22 8

Application 2

Cost to acquire component 1, 2 and 3 is

265,35$)
12
9$(02.4762.44.420.15(30.8)30.8)50.780.4(24.41 ==+=+++

K

For the white box use of component 3

DM CM IM
0 20 10

 77

Therefore, the adaptation adjustment factor (AAF) is

Cost of EDSI and glue code in 2001 for component 1, 2 and 3 is

Component 4 is COTS and glue code is 8K. The costs in 2001 include acquire reusable asset,
tailoring and glue code. The following steps show the statistics to calculate.

The cost to acquire component from domain cycle is

692,28$)
12
9$(26.3826.38 0.4(3)(22)RBP(a)(S) 1.12b ====

KPM

Linear scaling factor A is a constant. The value is 12.0.
Non-linear scaling factor AAREN SF is 2.0.
Breakage is 0%.

The values of effort multipliers are

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ACIEP ACIPC AXICP APCON ACPMT ACSEW APCPX ACPPS ACPTD APVOL ACREL AACPX ACPER ASPRT
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Therefore, the glue code cost is

031,85$)
12
9$(38.11338.113)1()8(12][08.1

14

1

====××= ∏
=

KPMEMSizeAGE
i

i
B

KBrakKSLOCSize 8)
100

01(8
100

1 =+=⎟
⎠
⎞

⎜
⎝
⎛ +×=

08.1)2(04.01)04.0(00.1 =+=×+= SFB

16)10(3.0)20(3.0)0(4.0AAF =++=

K2)
100
16(5.12EDSI ==

709,46$)
12
9$(28.622.75)15(3)23343(3 12.112.1 ====++++

KPM

 78

The tailoring cost is

Therefore, costs of component 4 in 2001 is

For App 2, the cost in 2001 is

466,247$492,165$709,46$265,35$)2001(=++==yC

Volatility cost in year after 2001 is

The benefits in 2001 are due to development cost saved by utilizing core assets.

335,208$)
12
9$(78.27778.277

)57(3)22885.125.6(3)2001(12.112.1

===

=++++==
KPM

yB

Annual benefit after 2001 is

Therefore, the benefit in 2002 is

769,51$)
12
9$(02.6902.69)

5.45
7.27(38.113 ===

KPM

755,17$)
12
9$(67.2367.23)

2
38.113)(

5.45
19()2002(=====

KPMyC

492,165$769,51$031,85$692,28$ =++

755,17$)2003(==yC

500,12$)
12
9$(67.1667.16)09.015.0(78.277)(78.277 ' ===−=−

KPMACTACT

 79

500,12$)2002(==yB

The benefit in 2003 is

341,239$841,226$500,12$500,12$)2003(=+=+== RIyB

Year Cost Benefit
2001 $247,466 $208,335
2002 $17,755 $12,500
2003 $17,755 $239,341

Application 2

Incorporation of TTM into Application 2

Discount rate d is 10%.

Shortened TTM in calendar month is

()[] ()[]
Month

SSTM
38.5)02.517.7(5.2)52.100(5.2)78.277(5.2

28334335.222885.125.635.2
35.035.0

35.012.135.012.1

=−=−=

+++++−++++=

The cost of Application 2 is

BC is 2.0. Therefore, the revenue improvement is

Following is to calculate NPV of Application 2.

841,226$)
12
38.5)(982,252($2 ==RI

982,252$
)1.01(

755,17$
)1.01(

755,17$
)1.01(

466,247$
32 =

+
+

+
+

+
=DC

 80

564,126$
)1.01(

755,17$341,239$
)1.01(

755,17$500,12$
)1.01(

466,247$335,208$
)1(

)2003()2003(
)1(

)2002()2002(
)1(

)2001()2001(

321

321

=
+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Application 2.

51.0
466,247$
564,126$

===
IC

NPVROI

 81

6.4 Corporate engineering cycle

Infrastructure cost: $20,000
Training cost: $10,000
Operational impact: $5,000
Management restructuring: $3,000
Others: $2,000

Total is $40,000.

The balance of domain engineering cycle is

Year Cost Benefit
2000 $136,758 $134,985
2001 $13,238 $130,154
2002 $13,238 $0
2003 $13,238 $0

Domain 1

The balance of Application 1 is

Year Cost Benefit
2001 $253,850 $226,845
2002 $17,755 $13,613
2003 $17,755 $243,501

Application 1

The balance of Application 2 is

Year Cost Benefit
2001 $247,466 $208,335
2002 $17,755 $12,500
2003 $17,755 $239,341

Application 2

 82

The balance of corporate is

Year Cost Benefit
2000 $176,758 $134,985
2001 $514,554 $565,334
2002 $48,748 $26,113
2003 $48,748 $482,842

Corporate Cycle

Following is to calculate NPV of Corporate 1.

825,311$
)1.01(

748,48$842,482$
)1.01(

748,48$113,26$
)1.01(

554,514$334,565$
)1.01(

758,176$985,134$
)1(

)2003()2003(
)1(

)2002()2002(
)1(

)2001()2001(
)1(

)2000()2000(

3210

3210

=
+
−

+
+
−

+
+
−

+
+
−

=

+
−

+
+
−

+
+
−

+
+
−

=
d
CB

d
CB

d
CB

d
CBNPV

Following is to calculate ROI of Corporate 1.

76.1
758,176$
825,311$

===
IC

NPVROI

 83

7 Optimal Corporate ROI

There are four stakeholders: Corporate, Domain, Application and Component and each has a
ROI. In order to optimize the corporate ROI, all of the four ROI’s should be positive. In this
model, all of costs and benefits are finally cascaded into corporate engineering cycle as followed:

 Investment Costs

Episodic Costs Episodic Benefits

Corporate
Engineering
Cycle (CEC)

Infrastructure costs;

From DEC;

From AEC;

Application
Engineering
Cycle (AEC)

Training;
Process impact;

Reuse overhead;
Reuse risks;

Productivity gains;
Quality gains;

Domain
Engineering
Cycle (DEC)

Domain analysis;

From COEC Cost transfers from
project;

Component
Engineering
Cycle (COEC)

Development for
reuse;

Library overhead; Sale of asset;

Table 8: Costs and Benefits cascade pattern in the model

We want to optimize (maximize) the corporate ROI under the condition that all four ROI's are
positive. That means in order to maximize corporate ROI, at the same time ROI’s of component
cycle, domain cycle, and application cycle are positive. There is a pair of RBP and RWP values
which can meet these criterions. By designing an algorithm and applying it to the data, we can
discover this pair of values to make the maximized value of corporate ROI.

7.1 Algorithm design

The idea of this algorithm is that by looping through RBP and RWP intervals and checking if all
of the ROI’s of the four cycles are positive.

 84

1. If the pair of values makes a component engineering cycle a negative ROI, then the loop
walks out to next pair of RBP and RWP values;

2. Otherwise, the pair of values continues to check ROI of domain engineering cycle. If the
pair of values makes a domain engineering cycle a negative ROI, then the loop walks out
to next pair of RBP and RWP values.

3. Otherwise, the pair of values continues to check ROI of application engineering cycle. If
the pair of values makes an application engineering cycle a negative ROI, then the loop
walks out to next pair of RBP and RWP values.

4. Otherwise, the pair of values continues to check ROI of corporate engineering cycle. If
the pair of values makes a corporate engineering cycle a negative ROI, then the loop
walks out to next pair of RBP and RWP values.

5. And there is a data structure to hold the pairs of values of RBP and RWP, which makes
all of the four cycles positive ROI’s, and the values of ROI’s.

6. In the end of the algorithm, loop through the data structure and find the maximized
corporate ROI.

Following is the pseud code of the algorithm.

/data structure which holds values of RBP, RWP and ROI
Structure corROI

RBP as double
RWP as Double
ROI as Double

End structure

/function which returns value of ROI of component engineering cycle
Function Com_ROI (String Component_Name, Double RBP, Double RWP)
return Double Component_ROI;

/function which returns value of ROI of domain engineering cycle
Function Dom_ROI (String Domain_Name)
return Double Domain_ROI;

/function which returns value of ROI of application engineering cycle
Function App_ROI (String Application_Name, Double RBP, Double RWP)
return Double Application_ROI;

/function which returns value of ROI of corporate engineering cycle
Function Cor_ROI (String Corporation_Name)
return Double Corporation_ROI;

/array of corROI structure which holds ROI values
corROIArray(200) As corROI

flag = “Positive”

 85

While i <= 0.8
 While j<=0.33

While m < comNameArray.Length
 If Com_ROI(comNameArray(m), i, j) < 0 Then
 flag = "Negative"
 End If
 m = m + 1
 End while

 If flag = "Positive" Then
 m = 0
 While m < domainNameArray.Length

 If Dom_ROI(domainNameArray(m)) < 0 Then
 flag = "Negative"
 End If
 m = m + 1
 End While

End If

If flag = "Positive" Then

 m = 0
 While m < appNameArray.Length
 If App_ROI(appNameArray(m), i, j) < 0 Then
 flag = "Negative"
 End If
 m = m + 1
 End While

End If

If flag = "Positive" Then

 If Cor_ROI(corporation name) < 0 Then
 flag = "Negative"
 End If

End If

If flag = "Positive" Then

 corROIArray(k).RBP = i
 corROIArray(k).RWP = j
 corROIArray(k).ROI = Cor_ROI(corporation name)

End If

j = j + 0.05
k = k + 1

 End While

 86

 i = i + 0.1
End While

 While i < corROIArray.Length

 If corROIArray(i).ROI <= corROIArray(i + 1).ROI Then
 max = corROIArray(i + 1).ROI
 j = j + 1
 End If
 i = i + 1
End While

Max ROI = corROIArray(j).ROI
RBP = corROIArray(j).RBP
RWP = corROIArray(j).RWP

 87

7.2 Algorithm results

Following is the results by running this algorithm in the supporting tool.

Figure 10: Optimal Corporate ROI

Values of RBP, RWP and ROI Engineering cycles

Optimal values of RBP, RWP and ROI

 88

7.3 Optimal corporate ROI analysis

ROI’s of Component 2 and Component 3 are negative as depicted in previous sections with
default RBP 0.40 and RWP 0.15. By increasing the value of RBP (Relative Black box Price)
from 0.4 to 0.8 and RWP (Relative White box Price) from 0.13 to 0.3 in favor of Component
Cycle and Domain Cycle, the benefits of these two cycles increase. Therefore, the NPV and ROI
of these two cycles also increase

Since the domain engineer must fix the price of the asset so as to maximize his benefit per sale
and maximize its ROI on domain engineering cycle, while making sure the acquisition of the
asset is still attractive to the application engineer (otherwise the application engineering will
develop his own). The changing gives engineers in domain and component engineers confidence
to work on this reuse project. By increasing values of RBP and RWP, the result shows that all of
the four ROI’s are positive.

The cascading of costs and benefits in thsi model is the base of the rationale. By maximizing the
ROI at the component, domain, and application engineering cycle levels, the maximum benefit
can be achieved at the corporate level. To maximize the ROI at the corporate level, one
correspondingly must maximize the ROI of Domain, Component, and Application Engineering
Cycle. If the result of ROI at the component level is negative, the ROI’s at the Domain and
Application level need to be non-negative for the investment to be worthwhile at the corporate
level.

 89

Chapter 8 Reuse Expert: the Supporting Tool

8.1 Introduction

The customers to this supporting tool are corporate management and development engineers.
The proposed tool is composed of a series of interfaces in which customers may input parameters
related to COTS components and PLE, corporation reuse structure, and other related information.
Based on the information collected from the customers, estimations and calculations are carried
out. In the end, the corporate management will get final reports produced by this supporting tool
for each engineering cycle. Reuse Expert is the name of the tool.

8.2 Development Environment

8.2.1 Hardware

• CPU: Intel Pentium Mobile CPU 1.7GHZ
• Memory: 1024MB of Hynix DDR SDRAM
• Hard drive: 60G Hitachi 9.5 MM notebook hard drive

8.2.2 Software

• Operating System: Windows 2003 Server Standard Edition
• Development tool: Visual Studio .Net 2003 Professional
• Development database: Microsoft Access 2003

8.3 Basic processing structure of Reuse Expert

The basic structure of the tool is as followed:

 90

Figure 12: processing structure of Reuse Expert

The supporting tool has user-friendly interface and allows managers and development engineers
to input values of related parameters. In the end, a detailed report is produced, by which the
management can make final decision if it’s worthy to purchase COTS components instead of
developing from scratch and related results of PLE. The report is composed of details about costs
and benefits, benefits from shortened TTM, final project NPV (Net Present Value) and ROI
(Return On Investment).

 91

8.4 Reuse Expert screens

8.4.1 Starting Page

The first screen is composed of three parts: input, output and viewer.

Input part includes:

• Corporate Cycle: input parameters of corporate cycle
• Domain Cycle: input parameters of domain cycle
• Component Cycle: input parameters of component cycle
• Application Cycle: input parameters of application cycle
• Default Arguments: input parameters of default arguments

Output part includes:

• Corporate Cycle: report of corporate cycle
• Domain Cycle: report of domain cycle
• Application Cycle: report of application cycle
• Component Cycle: report of component cycle

Viewer part includes:

• Viewer: show overall reuse information

 92

Figure 13: Starting Page

 93

8.4.2 Corporation Cycle Input

This form includes the following input parameters.

• Corporation: corporation name
• Activity Date: initial year of corporate cycle
• Investment Duration: number of years of corporate cycle

Costs input parameters include:

• Infrastructure (in dollar)
• Training (in dollar)
• Operational Impact (in dollar)
• Management Restructuring (in dollar)
• Others (in dollar)

 94

Figure 14: CEC Input

 95

8.4.3 Domain Cycle Input

This form includes the following input parameters.

• Corporation: corporation name
• Domain: domain name
• Activity Date: initial year of domain cycle
• Investment Duration: number of years of domain cycle

Costs input parameters include:

• Domain Analysis Cost (in PM)

Figure 15: DEC Input

Identifier is corporation

 96

8.4.4 Component Cycle Input

This form includes the following input parameters.

• Corporation: corporation name
• Domain: domain name
• Component: component name
• Activity Date: initial year of component cycle
• Investment Duration: number of years of component cycle
• Component Type: develop from scratch, mine inside corporation, buy (COTS)
• Component Size: in k lines of source code
• Component Description: brief description of component

Three ways of core assets imported: develop from scratch, mine inside corporation, buy (COTS)
and each has different set of input parameters.

Mine inside corporation

• Assessment and Identification cost (in PM)
• Library Insertion cost (in PM)

Develop from scratch

• Development Cost (in PM)
• Library Insertion cost (in PM)

Buy from market (COTS)

• Assessment and Identification cost (in PM)
• Purchase cost (in dollar)
• Annual License cost (in dollar)
• Library Insertion cost (in PM)

 97

Figure 16: COEC Input

Identifiers are both corporation and domain

 98

8.4.5 Application Cycle Input I

This form includes the following input parameters.

• Corporation: corporation name
• Project: application name
• Project Characteristics: semi-detached, organic, and embedded.
• Activity Date: initial year of application cycle
• Investment Duration: number of years of application cycle

This form can either add a new project or click Add Component button to add components into a
selected project.

 99

Figure 17: AEC Input I

Identifier is corporation

Click to select component and go to
Application cycle input II Click to add project inside a

corporation

 100

8.4.6 Application Cycle Input II

This form includes the following input parameters.

• Corporation: corporation name
• Application: application name
• Domain: domain name
• Component: component name
• Reuse Type: black box and white box
• Glue Code Size: glue code to integrate the component

Each project can select components from different domains, black box use, white box use, etc.
The identifier of project is corporation. The identifiers of component are both corporation and
domain.

Reuse of different kind of components carries different input parameters.

Mine inside corporation or develop from scratch

• Percent of Design Modification (DM). The percentage of the adapted software’s design
that received modification to fulfill the objectives and environment of the new product.

• Percent of Code Modification (CM). The percentage of the adapted software’s code that
receives modification to fulfill the objectives and environment of the new product.

• Percent of Integration Required for Modified Software (IM). The percentage of effort
needed for integrating and testing of the adapted software in order to combine it into the
new product.

Buy from market

• ACIEP: COTS Integrator Experience with Product
• ACIPC: COTS Integrator Personnel Capability
• AXCIP: Integrator Experience with COTS Integration Processes
• APCON: Integrator Personnel Continuity
• ACPMT: COTS Product Maturity
• ACSEW: COTS Supplier Product Extension Willingness
• APCPX: COTS Product Interface Complexity
• ACPPS: COTS Supplier Product Support
• ACPTD: COTS Supplier Provided Training and Documentation
• APVOL: COTS Product Volatility
• ACREL: Constraints on System/Subsystem Reliability
• AACPX: Application Interface Complexity
• ACPER: Constraints on System/subsystem Technical Performance
• ASPRT: System Portability

 101

• AAREN: Application Architectural Engineering
• Brak: Percentage of COTS glue code thrown away due to requirements volatility

Figure 18: AEC Input II

 102

8.4.7 Default Arguments Input

Each corporation has a set of default arguments. This form includes the following input
parameters.

• Corporation: corporation name
• RCWR: Relative Cost of Writing for Reuse
• ACT: Annual Change Traffic
• ACT’: Annual Change Traffic for reusable assets
• RBP: Relative Black box Price
• RWP: Relative White box Price
• Discount Rate: annual discount rate
• Benefit Coefficient: benefit coefficient for a product
• FTSP: annual cost of a Full-time Software Person (in dollar)
• Number of Librarians
• Number of Shares: number of shares of a corporation

 103

Figure 19: Default Arguments Input

Identifier is corporation

 104

8.4.8 Overall Reuse Info Viewer

As the figure shows, the model is based on a Top-down structure.
Each corporation has domains.
Each corporation has projects.
Each corporation has default arguments.
Each domain has core assets.
Each project utilizes core assets.

 105

Figure 20: Overall Viewer

 106

8.4.9 Component Cycle Report I

This form produces results of a component cycle, including costs and benefits, NPV, and ROI.

Figure 21: COEC Report

The component used by different projects with
different reuse type showed here Click to calculate

 107

8.4.10 Component Cycle Report II

This form produces results of a component cycle, including costs and benefits, NPV, and ROI.

Figure 22: COEC Report

 108

8.4.11 Domain Cycle Report

This form produces results of a domain cycle, including costs and benefits, NPV, and ROI.

Figure 23: DEC Report

 109

8.4.12 Application Cycle Report

This form produces results of an application cycle, including costs and benefits, NPV, and ROI.

Figure 24: AEC Report

 110

8.4.13 Corporate Cycle Report

This form produces results of a corporation cycle, including costs and benefits, NPV, and ROI.

Figure 25: CEC Report

 111

8.4.14 Optimal Corporate ROI Report

This form produces optimal corporate ROI and ROI’s of other cycles. The pair of RBP and RWP
values is also calculated.

Figure 26: Optimal ROI

 112

Chapter 9 Conclusion

9.1 Motivation

Chmiel’model doesn’t cover Commercial-Off-The-Shelf (COTS), Product Line Engineering
(PLE) and benefits due to shortened Time-To-Market (TTM) and can only deal with internal
traffic since the model assumes all of the reusable components are built from scratch in house.
For example, Extra efforts caused by the use of COTS, assessment, tailoring, glue code and
COTS volatility, are not covered in this model. And this model doesn’t treat the benefits of TTM,
for example, business performance.

By extending Chmiel’s model, the new model is applied to CBSE (Component-Based Software
Engineering), COTS reuse systems and PLE. In addition, attempts of quantifying benefits of
shortened TTM are made within this study and a TTM submodel is developed to cover this issue.

9.2 Summary

The original work and contribution of the study is that by extending Chmiel’s model, the new
model is applied to CBSE (Component-Based Software Engineering), COTS reuse systems and
PLE. In addition, attempts of quantifying benefits of shortened TTM are made within this study
and a TTM submodel is developed to cover this issue.

Another main contribution of the study is that it also addresses the issue to analyze and optimize
corporate Return On Investment (ROI). The rational is that optimizing (maximizing) the
corporate ROI under the condition that all other ROI's are positive. By designing an algorithm
and applying it to the data, this study discovers the method how to make the maximized value of
corporate ROI.
The extended model can cover:

• CBSE
• COTS
• PLE
• TTM

This study also addresses the issue to analyze and optimize corporate Return On Investment
(ROI). The rational is that optimizing (maximizing) the corporate ROI under the condition that
all other ROI's are positive. By designing an algorithm and applying it to the data, this study
discovers the method how to make the maximized value of corporate ROI.

9.3 Future Work

 113

Future work could:

• Analyze further quantification on reuse library.
• Estimate the TTM results on corporation’s initiative on reuse.
• Enhance the supporting tool to make it more adjustable.

 114

References

[Abts 1997] Christopher M. Abts, Barry W. Boehm, COTS/NDI Software Integration Cost
Estimation & USC-CSE COTS Integration Calculator V2.0 User Guide, University of Southern
California, September 1997.

[Abts 1999] Chris Abts, Barry W. Boehm, Elizabeth Bailey Clark, COCOTS: A COTS Software
Integration Lifecycle Cost Model-Model Overview and Preliminary Data Collection Findings,
University of Southern California, 1999.

[Agrizzi 2003] Dila Agrizzi, Advanced Management Accounting, Capital Investment Decisions
I, 2003.

[Barnes 1991] Barnes, B. and T. Bollinger. Making Reuse Cost Effective. IEEE Software, Jan.
1991, 8(l): 13-24.

[Boehm 1981] Barry W. Boehm, Software Engineering Economics, Prentice Hall, NJ, 1981.

[Boehm 1998] Barry W. Boehm, COCOTS, Software Integration Cost Model: An Overview,
University of South California, July 1998: 8-12.

[Brigham 1999] Eugene F. Brigham, Louis Gapenski, Philip Daves, Intermediate Financial
Management, the Dryden Press, 1999.

[Carney 1997] Carney, D. Assembling Large Systems from COTS Components: Opportunities,
Cautions, and Complexities. SEI Monographs on Use of Commercial Software in Government
Systems, 1997.

[Careertools 2000] Determing Return On Investment in Training/Education, Careertools.org,
2000.

[Chmiel 2000] Senta Fowler Chmiel, An Integrated Cost Model for Software Reuse, West
Virginia University, 2000.

[Clark 2003] Besty Clark, Managing COTS Integration for High Integrity Systems:
Observations from the COCOTS Database, Software Metrics Inc., March 2003: 8-10.

[COCOMO 1994] USC COCOMO reference Manual, University of Southern California, 1994.

[Damordoran 2002] Damordoran, A Lecture of Economic Value Added (EVA), New York
University, 2002.

[DOD 1997] Department of Defense. Software Reuse Executive Primer, Falls Church, VA, 1997.

 115

[Erdogmus 2000] Hakan Erdogmus and Chris Abts, Breakout Session on Economic and
Financial Issues, ICSE '2000 COTS Workshop, 2000.

[Griss 1993] Martin L. Griss, Software Reuse: From Library to Factory, Hewlett Packard,
Software Technology Laboratory, HPL-93-67, July 1993.

[Harris 1992] K. Harris, Using an Economic Model to Tune Reuse Strategies, proceedings of
the fifth annual software reuse workshop, 1992.

[Higaki 1995] Wesley H. Higaki, Applying an improved Economic Model to Software Build-
versus-Buy Decisions, Hewlett-Packard Journal, August 1995.

[Honeywell 1996] Life Cycle Effort Breakdown, Honeywell Labs, 1997.

[Hudson 2001] Michael J. Hudson, What effect will code reusability have on strategic business
applications, Blueprint Technologies Inc, Oct. 2001.

[Madachy 2004] Ray, Madachy, COTS Integration and COCOTS, Center for Software
Engineering, USC, Feb. 2004.

[Makelainen 1998] Esa Makelainen, Introduction to Economic Value Added, EVA, Stern
Stewart & Co., Oct. 1998.

[Malan 1993] Malan, R. Software Reuse: A Business Perspective. Technical Report, Hewlett
Packard Laboratories, February 1993.

[Market Forecasters] Current and Emerging Embedded Markets-Electronic Market Forecasters,
Redcellx.com, 1999.

[McKinsey] Technical report, McKinsey & Co.

[Meyers 2001] Meyers & Oberndorf, Managing Software Acquisition – Open Systems and
COTS Products, Addison-Wesley, 2001.

[Nakano 2000] Real World ROI’s, Russell Nakano, Principal Consultant, Interwoven Inc, 2000.

[Neilsen 2000] Mitchell L. Neilsen, Design with Reuse, 2000.

[Patterson 1993] M. Patterson, Accelerating Innovation, Van Nostrand Reinhold, 1993.

[Poulin 2002] Jeffrey S. Poulin, An Agenda for Software, Reuse Economics, International
Conference on Software Reuse, 15 April 2002.

[Ray 2004] Ray, Madachy, COTS Integration and COCOTS, Center for Software Engineering,
USC, 2004.

 116

[Ross 1996] Ross, S.A. et al., Fundamentals of Corporate Finance, Irwin, 1997.

[SEI 2003] Software Product Line Acquisition: A Companion to A Framework for Software
Product Line Practice, Software Engineering Institute, 2003.

[SEI 2004] Software reuse, http://www.sei.cmu.edu/cmm/cmm-v2/reuse-kpa.html, 2004.

[Smith and Reinertsen 1991] P.G. Smith, and D.G. Reinertsen, Developing Products in half the
Time, Van Norstrand Reinhold, 1991.

[Vetzal 2003] Ken Vetzal, Introduction to Stock Valuation, University of Waterloo, 2003.

[Vigder 1998] Mark Vigder, An Architecture for COTS Based Software Systems, National
Research Council Canada, Nov. 1998.

[Wallnau 1998] Kurt Wallnau, Commercial-Off-The-Shelf (COTS) Software: Five Key
Implications for the System Architect, Software Engineering Institute,1998.

[Whitemarsh 1997] Buy or Generate Whitemarsh Information Systems Corporation, Section of
Make, 1997.

 117

Appendix A LinkySky Data

Appendix A.1 Data Collection Questionnaire

I am a Ph.D candidate student at Lane Department of Computer Science and Electrical
Engineering Department. My research topic is extension of software reuse economics model. In
this research, a fundamental requirement for such research is real-world software development
project data. This data will be used to test hypotheses and simulate the model. The contribution
of your data will ensure the final model is developed and simulated based on reasonable data.

The data that is contributed is important to the research. I will safeguard your contribution so as
not to compromise company proprietary information. And the information is just for this
academic project and won’t be used as commercial purpose.

This questionnaire attempts to address four different levels of data granularity:

• Corporate level
• Domain level
• Application level
• Component level

Contact Information

Lin Yang (Research Assistant)
Room 403
Concurrent Engineering Research Center
West Virginia University
886 Chestnut Ridge Road
Morgantown, WV 26506-6506
USA
Voice: 001-(304)293-7226, Ext 4410
Fax: 001-(304)293-7541
Email: yang@csee.wvu.edu

mailto:yang@csee.wvu.edu

 118

Appendix A.2 LinkySky Data

LinkySky Science and Technology, INC. is a high-tech company set up by returned overseas
students. The company is located in Beijing, China. The company engages in network systems
integration, systems design and implementation, as well as E-business.

In 2000, a domain is developed for reusable assets. From 2001 to 2003, the company developed
two projects, which are based reusable components and share the same architecture. The projects
characteristics are semi-detached. The average salary of software engineer of the company is
equivalent to 9K/year in US dollar. There is one software engineer responsible for reuse library.
The discount rate is 10%. Since the company is not a public one, the data of number of shares of
the company is not available.

Appendix A.2.1 Component Engineering Cycle

There are four reusable components in reuse library and they are incorporated in year 2000. One
of them is mine legacy software, component 1. Two are develop from scratch, component 2 and
3. The left one is buy from market, component 4.

Component Type Size(in K) As.&ID. (in PM) Li. Ins. (in PM) Development (in PM) Pur. (in $) Ann. License (in $)
Component 1 Mine 6.5 5.0 2.0 N/A N/A N/A
Component 2 Develop 12.5 N/A 4.0 50.78 N/A N/A
Component 3 Develop 8.0 N/A 3.0 30.80 N/A N/A
Component 4 Buy 22.0 8.0 5.0 N/A 2230.0 0.0

As. ID.: Assessment and Identification
Li. Ins.: Library Insertion
Pur.: Purchase
Ann. License: Annual License

Appendix A.2.2 Domain Engineering Cycle

Domain 1 is staring in year 2000. The domain analysis cost is 30PM.

Appendix A.2.3 Application Engineering Cycle

There are two applications.

Application 1

 119

Application 1 is starting in year 2001. The table below shows the components used in
Application 1.

Black White Black White Black White Black White
Com 1 Com 2
Com 2
Com 3
Com 4

2001 2002 20032000
Application 1

The table below shows the glue code for each component.

Type Size(in K) Glue Code
Component 1 Mine 6.5 4
Component 2 Develop 12.5 5
Component 3 Develop 8 3
Component 4 Buy 22 8

Application 1

For the white box use of component 2,

DM CM IM
0 15 5

Component 4 is COTS and glue code is 8K. The costs in 2001 include acquire reusable asset,
tailoring and glue code. The following steps show the statistics to calculate. The values of effort
multipliers are

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ACIEP ACIPC AXICP APCON ACPMT ACSEW APCPX ACPPS ACPTD APVOL ACREL AACPX ACPER ASPRT
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Application 2

Application 2 is starting in year 2001The table below shows the components used in Application
2.

 120

Black White Black White Black White Black White
Com 1 Com 3
Com 2
Com 3
Com 4

2001 2002 20032000
Application 2

The table below shows the glue code for each component.

Type Size(in K) Glue Code
Component 1 Mine 6.5 3
Component 2 Develop 12.5 4
Component 3 Develop 8 3
Component 4 Buy 22 8

Application 2

For the white box use of component 3

DM CM IM
0 20 10

Component 4 is COTS and glue code is 8K. The costs in 2001 include acquire reusable asset,
tailoring and glue code. The following steps show the statistics to calculate. The values of effort
multipliers are

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ACIEP ACIPC AXICP APCON ACPMT ACSEW APCPX ACPPS ACPTD APVOL ACREL AACPX ACPER ASPRT
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Appendix A.2.4 Corporate Engineering Cycle

• Infrastructure cost: $20,000
• Training cost: $10,000
• Operational impact: $5,000
• Management restructuring: $3,000
• Others: $2,000

 121

Appendix B Reuse Expert Database Design and Schema

Appendix B.1. Database Relationships

Figure 27: Database Relationships

 122

Appendix B.2. Tables (alphabetical order)

Table Name Field Name Data Type
appEcoResult Average Return On Value Double

Net Present Value Double
Payback Value Double
Profitability Index Double
Project Name Text
Return on Investment Double

Table Name Field Name Data Type
applicationInput Activity Date Integer

Corporation Name Text
Investment Duration Integer
Project Char Text
Project Name Text

Table Name Field Name Data Type

appResult Benefits Double
Calendar Year Integer
Corporation Name Text
Costs Double
prmKey Auto Number
Project Name Text

Table Name Field Name Data Type
comApp AACPX Double

AAREN Double
ACIEP Double
ACIPC Double
ACPER Double
ACPMT Double
ACPPS Double
ACPTD Double
ACREL Double
ACSEW Double
Activity Date Integer
APCON Double
APCPX Double
APVOL Double
ASPRT Double

 123

AXICP Double
BRAK Double
CM Double
Component Name Text
Component Size Double
Component Type Text
Corporation Name Text
DM Double
Domain Name Text
Glue Code Size Double
Investment Duration Integer
IR Double
prmKey Auto Number
Project Name Text
Reuse Type Text

Table Name Field Name Data Type

comEcoResult Average Return On Value Double
Component Name Text
Net Present Value Double
Payback Value Double
Profitability Index Double
Return on Investment Double

Table Name Field Name Data Type

componentInput Activity Date Integer
Annual License Double
Assessment and Identification Double
Component Description Text
Component Name Text
Component Size Double
Component Type Text
Corporation Name Text
Development Cost Double
Domain Name Text
Investment Duration Integer
Library Insertion Double
Purchase Double

 124

Table Name Field Name Data Type
componentResult Benefits Double

Calendar Year Integer
Component Name Text
Costs Double
Domain Name Text
prmKey Auto Number

Table Name Field Name Data Type

corEcoResult Average Return On Value Double

Corporation Name Text
Net Present Value Double
Payback Value Double
Profitability Index Double
Return on Investment Double

Table Name Field Name Data Type

corporationInput Activity Date Integer

Corporation Name Text
Infrastructure Double
Investment Duration Integer
Management Restructuring Double
Operational Impact Double
Others Double
Training Double

Table Name Field Name Data Type

corResult Benefits Double

Calendar Year Integer
Corporation Name Text
Costs Double
prmKey Auto Number

 125

Table Name Field Name Data Type

defaultArguments ACT Double

ACT' Double
Benefit Coefficient Double
Corporation Name Text
Discount Rate Double
FTSP Double
Librarian Number Integer
prmKey Auto Number
RBP Double
RCWR Double
RWP Double
Share Number Integer

Table Name Field Name Data Type

domainEcoResult Average Return On Value Double

Domain Name Text
Net Present Value Double
Payback Value Double
Profitability Index Double
Return on Investment Double

Table Name Field Name Data Type

domainInput Activity Date Integer

Corporation Name Text
Domain Analysis Cost Double
Domain Name Text
Investment Duration Integer

Table Name Field Name Data Type

domainResult Benefits Double

Calendar Year Integer
Corporation Name Text
Costs Double
Domain Name Text
prmKey Auto Number

 126

Table Name Field Name Data Type

ROI Cycle_Name Text

prmKey Auto Number
RBP Double
ROI Double
RWP Double
Upper_Cycle Text

 127

Appendix C List of Acronyms

AAF Adaptation Adjustment Factor
AB Annual Benefit
AC Annual Cost
AC Assessment Cost
ACT Annual Change Traffic
ACT' Annual Change Traffic for reusable assets
ADSI Adapted Delivered Source Instructions
AEC Application Engineering Cycle
ARBV Average Retuen on Book Value
ASR Annual Sales Revenues
BC Benefit Coefficient
CBS COTS-Based System
CBSE Component-Based Software Engineering
CEC Corporate Engineering Cycle
CF Cash Flow
CM Code Modification
COCOMO Constructive COst MOdel
COCOTS COnstructive COTS
COEC COmponent Engineering Cycle
COTS Commercial Off The Shelf
DC Development Cost
DEC Domain Engineering Cycle
DM Design Modification
DOD Department Of Defense
EDSI Equivalent Delivered Source Instructions
ER Effort for Reuse
EVA Economic Valued Added
FTSP Full Time Software Person
GE Glue code Cost
IB Initial Benefit
IC Initial Cost
IM Integration requireed for Modified software
IRR Interbal Rate of Return
KDSI Kilo-Delivered Source Instructions
KSLOC Thousands of Source Lines Of Code
LI Library Insertion

 128

MM Man Month
MN Maintenance
NC Number of Copies
NPV Net Presnet Value
OC Operating Cost
PB Payback Value
PI Profitibility Index
PLE Product Line Engineering
PM Person Month
RBP Relative Black-box Price
RCWR Relative Cost for Reuse
RI Revenue Improvement
ROI Return On Investment
RWP Relative White-box Price
SEI Software Engineering Institute
SI Stock Improvement
SY Starting Year
TDEV Time of DEVelopment
TS Total number of Shares
TTM Time To Market
VC Volatility Cost
WACC Weighted Average Cost of Capital

Table 8: List of Acronyms

 129

Vita

 130

Lin Yang
Apt 6 3036 Van Sansul Ave, San Jose, CA 95128▪304-685-6235 (C)▪Email: lyang_us@yahoo.com

Outstanding Software Research and Development Scientist

Eager to contribute highly applicable skills and abilities in commercial software development.
Also strong interest in network security, web service and application, and software reuse. I can
start working immediately.

Summary of Qualification

• IT professional with 1+ years of Information Technology experience who provides top-
notch service, sets high standards, and exceeds expectations.

• Highly motivated, dependable troubleshooter and problem-solver, excellent
communicator and good listener.

• Detail oriented with excellent analytical, problem-solving, organization, and research
skills.

• Thinks creatively within practical constraints.
• Customer-focused performer who is committed to quality in every task – from personal

interaction with coworkers and users to high level of service provided to
company/customer.

• Valued contributor who performs confidently and effectively under pressure and thrives
on challenge.

• Enthusiastic learner who quickly grasps concepts and technical skills.

Professional Experience
Software Engineer, Software Reuse Project, Venus Information Technology, Beijing, China,
May 2002 to July 2002
Enhance software analysis ability and Visual C skills through these activities.

• Played a key role in analyzing software reuse project feasibility for a customized firewall
and IDS control system and took initiative of the project and wrote requirements and
specifications.

• Independently designed and identified reusable components and built reuse library
structure through which reusable assets are inserted and retrieved.

• Directed implementation team in all implementation aspects, including project
management, process analysis, workflow design, configuration data set-up, systems
interface

• Applied troubleshooting techniques to verify solutions and integrated reusable
components into UI control system.

• Deployed methodology to test reliability and safety after integration.
Software Engineer and Web Designer, Metal Search Project, Metalsite, L.P., Pittsburgh, PA,
June 1999 to Dec 1999
Enhance dynamic web page design, Cold Fusion, Java Script, MS Access, and Oracle skills
through these activities.

• Independently designed and implemented a search project through which customer can
search metal products online from database.

• Contributed ideas to improve customer service and suggested ways for web design to
interact with customers.

 131

• Designed database for this project and wrote SQL functions to access in MS Access.
• Collaborated on solution to database design and e-business system architecture.
• Evaluated test results of the database after DBA implemented it in Oracle.

Academic Projects Experience
Software Developer, Software Reuse Economic Model Supporting Tool Project, Mar 2004
to present
Enhance Visual Basic and database skills/knowledge through these activities.

• Performed cost-benefit analysis of software reuse estimation process my dissertation
which contains a software reuse economics model.

• Streamlined estimation process, enabling idea of implementing a supporting tool
approach to complex software reuse estimation.

• Independently design system architecture of a supporting tool.
• Design and create UI for this tool which allows user to input software reuse economics

data.
• Design data structure and schema for this data-driven tool based on the mathematic

model.
• Implement the tool using Visual Basic and MS Access.
• Develop a questionnaire to collect real-world industrial data.
• Evaluate testing results of the tool by collecting and input data into the program.
• Plan to deliver and distribute the tool to software development companies and collect

feedback.
Software Developer, USB EFS Lock Project, Jan 2005 to present
Enhance computer forensics and Visual Basic skills/knowledge through these activities.

• Review Encrypted File System (EFS) and certificate structure.
• Design a computer protected software to protect data from being stolen.
• Implement the software using Visual Basic.

Network Security Analyzer, Network Security and Attack Simulation Project, Jan 2004 to
Sep 2004
Enhance network security skills/knowledge and be familiar kinds of hacker tools through these
activities.

• Designed network topology.
• Tested and analyzed Cisco network security products, router, firewall, IDS, and VPN.
• Simulated network attack to these appliances by using hacker tools, DDOS, DOS, and
• Analyzed the network vulnerabilities and how to minimize the attack effects.

Web Designer and Developer, Course Web Homepage Project, Jan 2002 to June 2002
Enhance multimedia web design, HTML and Frontpage skills/knowledge through these activities.

• Designed a multimedia web page which contains video, audio, pictures, and PowerPoint
slides.

• Built a forum through which people can post articles and discuss.

Areas and Expertise of Programming and Software Applications

• Language: Visual C/C++, Visual Basic, VC .NET, VB .NET, Ada, C/C++, HTML, Java,
JavaScript, J2EE, and PL/SQL

• Web Application: Dynamic web page design, Cold Fusion, HTML, FrontPage, XML

 132

• Database: MS Access, Oracle, MySQL
• Network and Security: Design topology of Cisco Firewall, LAN/WAN, wireless

topology, IDS and router
• Others: Latex, Matlab, and Statistical analysis

Education

• Ph.D. in Computer Science, West Virginia University, WV (Expected graduation date:
Aug 2005).

• Master in Computer Science, West Virginia University, WV.
• Bachelor in Computer Science, West Virginia University, WV.

Publications

• Robert David Cowan, Ali Mili, Hany Ammar, Alan McKendall Jr., Lin Yang, Dapeng
Chen, and Terry Spencer, “Software Engineering Technology Watch”, IEEE
SOFTWARE July / August 2002.

• Lin Yang, “Generalization of an Integrated Cost Model and Extensions to COTS, PLE
and TTM”, Journal of Zhengzhou University (Engineering Edition), China, June 2005.

• Lin Yang, “Generalization of an Integrated Cost Model and Extensions to COTS, PLE
and TTM”, Journal of Henan Science and Technology, China, June 2005.

	Generalization of an integrated cost model and extensions to COTS, PLE and TTM
	Recommended Citation

	Title Page
	Abstract
	 Acknowledgements
	Table of Contents Abstrac
	 Table of Figures
	Table of Tables
	Chapter 1 Introduction
	1.1 Software reuse
	1.1.1 Advantages of software reuse
	1.1.2 Disadvantages of software reuse

	1.2 Problem statement and objectives
	Chapter 2 COTS, PLE and TTM
	2.1 COTS (Commercial-Off-The-Shelf)
	2.1.1 COTS definition
	
	2.1.2 COTS-Based System (CBS)

	2.2 PLE (Product Line Engineering)
	2.3 TTM (Time-To-Market)
	2.3.1 Sales revenues
	2.3.1.1 Quantify sales revenues
	2.3.1.2 Earlier TTM resulting in a positive NPV

	2.3.2 Stock value
	2.3.2.1 Why stock value determining
	2.3.2.2 Factors influencing share price
	2.3.2.3 Economic Value Added (EVA) theory
	2.3.2.4 Earlier TTM resulting in share value increase

	 Chapter 3 Software Economics Cost models
	3.1 COCOMO (COnstructive COst MOdel)
	3.1.1 COCOMO Equations
	3.1.2 Equivalent delivered source instructions (EDSI)
	3.1.3 Summary

	3.2 Chmiel’s Integrated Cost model
	3.2.1 Model introduction
	3.2.2 Summary

	3.3 COCOTS (COnstructive Commercial-Off-The-Shelf)
	3.3.1 Introduction
	3.3.2 Efforts estimation and calculation in COCOTS
	3.3.2.1 Initial filtering effort
	3.3.2.2 Final selection effort
	3.3.2.3 Tailoring effort calculation
	3.3.2.4 Glue code development and test effort calculation
	3.3.2.5 Application Effort Due to COTS Volatility

	3.3.3 Summary

	 Chapter 4 Economic Techniques
	4. 1 Net Present Value (NPV)
	4.2 Return On Investment (ROI)
	4.3 Relative Cost of Writing for Reuse (RCWR)

	Chapter 5 Extensions of Chmiel’s Model to COTS, PLE, and TTM
	5.1 Model architecture
	5.2 Component Engineering Cycle
	5.2.1 Initial costs (y = starting year (SY))
	5.2.1.1 Mine legacy software (Mine inside corporation)
	5.2.1.2 Develop from scratch
	5.2.1.3 COTS

	5.2.2 Annual costs (SY<y≤SY+Y-1)
	5.2.2.1 Mine legacy software and Develop from scratch
	5.2.2.2 COTS

	5.2.3 Initial Benefits (y=SY)
	5.2.3.1 Develop from scratch
	5.2.3.2 Mine legacy software and COTS

	5.2.4 Annual Benefits (SY<y≤SY+Y)
	5.2.4.1 Develop from scratch and mine legacy software
	5.2.4.2 COTS

	5.3 Domain Engineering Cycle
	5.3.1 Costs (SY≤y≤SY+Y)
	5.3.2 Benefits (SY≤y≤SY+Y)

	5.4 Application Engineering Cycle
	5.4.1 Initial costs (y=SY)
	5.4.1.1 Develop from scratch and mine legacy software
	5.4.1.2 COTS

	5.4.2 Annual costs (SY<y≤SY+Y)
	5.4.3 Initial benefits (y=SY)
	5.4.4 Annual benefits (SY<y≤SY+Y)
	5.4.5 Sum of costs and benefits in AEC (SY≤y≤SY+Y)
	5.4.6 TTM submodel
	5.4.6.1 Benefits of shortened TTM
	5.4.6.2 Quantify benefits of TTM
	5.4.6.3 TTM Conclusion

	5.5 Corporate Engineering Cycle
	5.5.1 Initial Costs (y=SY)
	5.5.2 Annual Costs (SY<y≤SY+Y)
	5.5.3 Benefits (SY≤y≤SY+Y)

	5.6 NPV and ROI

	
	 Chapter 6 An Example of Application of Model
	6.1 Component Engineering Cycle
	6.1.1 Mine inside (component 1)
	6.1.2 Develop from scratch (component 2 and component 3)
	6.1.2.1 Component 2
	6.1.2.2 Component 3

	6.1.3 Buy from market (component 4)

	6.2 Domain Engineering Cycle
	6.3 Application Engineering Cycle
	6.3.1 Application 1
	6.3.2 Application 2

	6.4 Corporate engineering cycle

	 7 Optimal Corporate ROI
	7.1 Algorithm design
	 7.2 Algorithm results
	

	7.3 Optimal corporate ROI analysis

	 Chapter 8 Reuse Expert: the Supporting Tool
	8.1 Introduction
	8.2 Development Environment
	8.2.1 Hardware
	8.2.2 Software

	8.3 Basic processing structure of Reuse Expert
	8.4 Reuse Expert screens
	8.4.1 Starting Page
	8.4.2 Corporation Cycle Input
	8.4.3 Domain Cycle Input
	 8.4.4 Component Cycle Input
	8.4.5 Application Cycle Input I
	8.4.6 Application Cycle Input II
	8.4.7 Default Arguments Input
	
	8.4.8 Overall Reuse Info Viewer
	8.4.9 Component Cycle Report I
	
	8.4.10 Component Cycle Report II
	8.4.11 Domain Cycle Report
	8.4.12 Application Cycle Report
	8.4.13 Corporate Cycle Report
	
	8.4.14 Optimal Corporate ROI Report

	
	Chapter 9 Conclusion
	9.1 Motivation
	9.2 Summary
	9.3 Future Work

	References
	 Appendix A LinkySky Data
	Appendix A.1 Data Collection Questionnaire
	 Appendix A.2 LinkySky Data
	Appendix A.2.1 Component Engineering Cycle
	Appendix A.2.2 Domain Engineering Cycle
	Appendix A.2.3 Application Engineering Cycle
	Appendix A.2.4 Corporate Engineering Cycle

	 Appendix B Reuse Expert Database Design and Schema
	Appendix B.1. Database Relationships
	Appendix B.2. Tables (alphabetical order)

	
	 Appendix C List of Acronyms
	
	
	
	Vita

		2005-07-21T09:36:56-0400
	John H. Hagen
	I am approving this document

