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Abstract

Multiple Data Set Integration and GIS Techniques Used
to Investigate Linear Structural Controls in the

Southern Powder River Basin, Wyoming

Heath P. Rasco

Lineaments in the Powder River Basin were mapped and categorized from
Landsat TM imagery, a Digital Elevation Model (30 m), and Digital Line Graph (DLG)
hydrology files.  A GIS program was written using DLG information to eliminate those
lineaments that were within 20° of roads and railroads.  The DLG and DEM information
was further used to stratify the topographic lineaments into slope-breaks, ridge-tops, or
valleys.  Rose diagrams created for each class of lineaments give important clues on the
timing of their formation.  The major northwest and northeast trends that these lineaments
follow appear to correspond with those identified by previous works.  Comparisons with
subsurface data suggests that the concentration of lineaments is strongly coincident with
gravity and magnetic highs and lows, possibly representing the surface expression of
basement-rooted structure.  Lastly, the location many reservoirs in the basin also coincide
with higher concentration of lineaments over gravity and magnetic highs.

This project was partially funded by the Schumaker Fund, donated by Dr. and Mrs.
Robert Schumaker.  Also, supplemental funding was given by the American Society for
Photogrammetry and Remote Sensing.  I would like to thank all of those involved in
supporting both of these funds.  Their donations has made it possible for continuing
research of GIS and geology.



iii

Acknowledgements

This investigation did not occur under academic grant funding.  Therefore, all of
the data sources needed for this project to occur were either donated, or obtained through
donated funds.  Among the most crucial of these funds was the Schumaker Fund for
academic research in geology.  I personally thank Dr. Robert Schumaker and his wife
Beverly for their contribution to this study.  It was through their fund of $600 that I was
able to purchase the Landsat TM image along with the DEM.  I also would like to thank
Parker Gay at Applied Geophysical, Inc. for his donation of NEWMAG high-
resolution residual magnetic data.  This information was tremendously valuable in
correlating the lineaments to subsurface basement structure.  Several maps were also
donated to this study by two main sources.  Jack Uresk at the Rocky Mountain Map
Company was able to donate a 2 sheet map (5’ x 6’) which depicts the structure of the
Dakota Formation in the Powder River Basin.  This map, created by Barlow and Haun,
Incorporated Geologists in 1987, also includes the location of all of the oil fields in the
Powder River Basin, as well as well locations.  Rod DeBruin, at the Wyoming Geological
Survey, is also appreciated for his donation of a Precambrian basement structure map
(Blackstone, 1990) and a state geological map of Wyoming.  Bob Kucks at the USGS
made it possible to obtain the USGS gravity and magnetic data.

This study also entailed a great deal of work on many different software
programs.  There are many powerful GIS programs that are capable of conducting such
an investigation.  One of these programs, Arc/Info, was virtually learned in a weekend
thanks to the help of Jacquie Snyder, the project manager at the GIS lab at West Virginia
University.  Kurt Donaldson, GIS lab manager, was also very helpful in this capacity.
Many long programs were written to perform many types of GIS functions on these
lineaments.  One very powerful program, written to give lineaments attributes based on
their azimuth in 11.25° increments, was donated by Ping Qin.

Lastly, but certainly not least, the committee members were extremely valuable
during the course of this project.  Dr. Tim Warner, chairman, remained very patient
during my times of cerebral stagnation.  Perhaps more compelling was his ability to read
and edit the drafts via e-mail from France.  Also, thanks goes to Dr. Tom Wilson for
obtaining the donation of data from Parker Gay.  Any further use of this data must be
affirmed through Dr. Wilson.  Dr. David Oldham, who was the original designer of this
project, was very valuable as a reference in the analysis of the lineament influence on the
hydrocarbon reservoirs.  Perhaps one of the most profound stages during this project was
the stratification of the topographic lineaments based on their topographic properties (i.e.
slope-breaks, ridge-tops, and valleys).  This was the idea of Dr. David Campagna.



iv

Table of Contents

Abstract ..........................................................................................................................ii

Acknowledgements ........................................................................................................iii

Table of Contents .......................................................................................................... iv

Table of Figures ............................................................................................................ vi

List of Tables............................................................................................................... viii

Chapter 1:  Introduction ................................................................................................ 1

Data Integration and Lineament Analysis in Geology ........................................................ 1

Study Site Overview and Potential for Lineament Analysis ............................................... 2

Tectonic History of the Powder River Basin ....................................................................... 4
Precambrian.................................................................................................................................... 5
Paleozoic Era .................................................................................................................................. 6
Mesozoic Era .................................................................................................................................. 7
Cenozoic Era................................................................................................................................... 8
Summary of Tectonic History.......................................................................................................... 9

Purpose of Study .................................................................................................................10

Chapter 2:  Literature Review ...................................................................................... 11

Lineament Identification in Remote Sensing......................................................................11

Lineament Studies in the Powder River Basin ...................................................................12

Geophysical Studies in the Powder River Basin.................................................................13

Geophysics and Remote Sensing Integration......................................................................13

Automated Feature Extraction from DEM ........................................................................14

GIS Functionality in Analysis of Geological Structure ......................................................16

Chapter 3:  Methodology.............................................................................................. 18

Definition of a Lineament....................................................................................................18

Identifying Lineaments on Landsat TM Image..................................................................18
Image Enhancement ...................................................................................................................... 19
Description of Landsat Image Lineament Classes........................................................................... 19

Identifying Lineaments from DEM ....................................................................................21
Image Enhancement of the DEM................................................................................................... 21
Description of DEM Lineaments ................................................................................................... 21

Identification of Drainage Anomalies from DLGs .............................................................22
Description of a Drainage Anomaly ............................................................................................... 22

Lineament Processing..........................................................................................................22

Rose Diagram Generation...................................................................................................25
The ARC/Info UNGENERATE Command.................................................................................... 25
StereoNett Software ...................................................................................................................... 25

Automated Lineament Categorization................................................................................26



v

Slope-break Lineament Categorization .......................................................................................... 26
Ridge-top Lineament Categorization.............................................................................................. 27
Valley Lineament Categorization................................................................................................... 28

Chapter 4:  Lineament Classification Results .............................................................. 30

Results of Lineament Identification from all Data Sets .....................................................30
Topographic Lineaments Derived from the Landsat Image............................................................. 30
Lineaments Identified from the DEM............................................................................................. 35
Drainage Anomalies...................................................................................................................... 37
Comparison of Manually Classified Lineaments to Combined Lineament Dataset .......................... 38
Relationship of Lineament Trends to Previous Works .................................................................... 40

Results of Automated Lineament Categorization from DEM and DLG ...........................42
Slope-Break Lineament Classification from DEM.......................................................................... 42
Ridge-Top Lineament Classification from DEM ............................................................................ 44
Valley Lineament Classification from DLG ................................................................................... 45
Summary of Automated Categorization ......................................................................................... 47

Chapter 5:  Structural Significance from Lineament Results ...................................... 48

Implied Origins and Timing of Lineaments .......................................................................48
Topographic Lineaments ............................................................................................................... 48
Tonal Anomalies and Linear Vegetation Patterns........................................................................... 53
DEM Lineaments .......................................................................................................................... 55
Drainage Anomalies...................................................................................................................... 57
Summary of Structural Significance and Timing of Lineaments ..................................................... 58

Chapter 6:  Relationship of Lineaments to Hydrocarbon Reservoir Location ............. 62

Background of Hydrocarbon Reservoirs............................................................................62

The Pennsylvanian-Permian Interval .................................................................................64

The Lower Cretaceous Interval ..........................................................................................66

The Upper Cretaceous Interval ..........................................................................................70

Summary of Lineament Influence on Hydrocarbon Reservoirs ........................................72

Chapter 7:  Conclusions............................................................................................... 74

Recommendations for Future Investigations......................................................................77

Appendix A:  Legends for Geophysical Maps............................................................... 79



vi

Table of Figures

Figure 1:  Study Site Map………………………………………………………………..3

Figure 2:  Generalized Tectonic Map of the Area……………………………………….4

Figure 3:  Orientation of Stress During the Laramide Orogeny (Gries, 1983)…………8

Figure 4:  Examples of Topographic Lineaments……………………………………...20

Figure 5:  Examples of Linear Vegetation Patterns and Tonal Anomalies…………...20

Figure 6:  Stepwise Process for the Removal of Cultural Lineaments…………….…..23

Figure 7:  Conceptual Lineament Removal Diagram…………………………….……24

Figure 8:  Example of a Typical Slope-Break…………………………………….……26

Figure 9:  Stepwise Process of Ridge-Top Categorization……………………….…….28

Figure 10:  Map of the Topographic Lineaments from Landsat………………………31

Figure 11:  Rose Diagram of Topographic Lineaments from Landsat………………..32

Figure 12:  Map of the Linear Tonal Anomalies and Linear Vegetation……………..33

Figure 13:  Rose Diagram for Linear Tonal Anomalies and Linear Vegetation……...34

Figure 14:  Map of Lineaments Derived from DEM……………………………...……35

Figure 15:  Rose Diagram of DEM Lineaments…………….…………………………36

Figure 16:  Map of Drainage Anomalies Derived from DLG…………………………37

Figure 17:  Rose Diagram of Drainage Anomalies……………………………………38

Figure 18:  Rose Diagram of All Lineaments………………………………………….39

Figure 19:  Lineaments from Previous Works…………………………………………41

Figure 19:  Map of the Slope-Break Lineaments………………………………………43

Figure 20:  Map of the Ridge-Top Lineaments………………………………………...44

Figure 21:  Map of the Valley Lineaments……………………………………………..46

Figure 22:  Topographic Lineaments Overlaid on USGS Gravity Data………………49

Figure 23:  Topographic Lineaments Overlaid on USGS Magnetic Data……………51

Figure 24:  Topographic Lineaments Overlaid on NEWMAG Data……………….52

Figure 25:  Linear Tonal Anomalies and Vegetation on USGS Gravity Data………..53

Figure 26:  Linear Tonal Anomalies and Vegetation on USGS Magnetic Data……..54

Figure 27:  DEM Lineaments Overlaid on NEWMAG Data……………………….55

Figure 28:  DEM Lineaments on USGS Magnetic Data………………………………56

Figure 29:  Drainage Anomalies on USGS Gravity Data……………………………...58



vii

Figure 30:  Drainage Anomalies on USGS Magnetic Data……………………………59

Figure 31:  Rose Diagrams for the Uplifted Areas…………..…….…………………...61

Figure 32:  Stratigraphic Column of the Powder River Basin………………………...63

Figure 33:  Pennsylvanian-Permian Fields and Lineaments near a Magnetic High...64

Figure 34:  Pennsylvanian-Permian Fields and Lineaments on NEWMAG Data…65

Figure 35:  Lower Cretaceous Fields and Lineaments on USGS Magnetic Data…….67

Figure 36:  Fiddler Creek Field and Lineaments on NEWMAG Data……………...69

Figure 37:  Flat-Top Field and Lineaments on USGS Magnetic Data………………..71

Figure 38:  Upper Cretaceous Fields on NEWMAG Data………………………..…72



viii

List of Tables

Table 1:  Landsat TM Image Location..……..………………………………………....18
Table 2:  Data Sources for Lineament Identification……….………………………...…30



1

Chapter 1:  Introduction

Data Integration and Lineament Analysis in Geology

Lineament investigations for geological structural analysis have oftentimes been

viewed as untrustworthy.  This view perhaps may be caused by the subjectivity of the

lineament identification process.  Geologists conducting lineament analysis have

generally considered all lineaments as equal regardless of their appearances in the data

set(s) being used, or else used subjective processes in an attempt to identify major trends.

Also, the utilization of multiple data sets in the identification and analysis of lineaments

has rarely been employed.  This is rather unfortunate, as it appears that surficial data sets,

such as satellite imagery, Digital Elevation Models (DEMs), Digital Line Graphs (DLGs)

and geological maps integrated with subsurface information such as gravity and magnetic

geophysics, seismic reflection geophysics and formation structure maps, provide very

powerful capabilities in lineament analysis.

One of the major capabilities in lineament identification made possible using data

set integration is the ability to identify lineaments based on their characteristics.  This is

important issue as combining data may help lend credibility to certain types of

lineaments.  Identification and classification of various types of lineaments can be carried

out manually, automatically, or a combination of both.  Once the identification and

categorization processes are complete, Geographic Information Systems (GIS)

functionality, such as vector and raster spatial analysis and overlay, can be employed for

structural analysis and evaluation of significance, using powerful software programs such

as ArcView, Arc/Info, and Erdas Imagine.

The southern Powder River Basin in Wyoming provides an excellent study area

for such an analysis.  Many geological features in basin are linearly arranged, including

major uplifts, faults, fractures, and folds.  The origin and influence of these linear features

have been studied in a number of important investigations (Slack, 1981, Marrs and

Raines, 1984).  These studies have suggested a considerable importance for these linearly

arranged structures, as they may affect nearly all of the major hydrocarbon reservoirs.  A

lineament study utilizing diverse data sets and the power of GIS functionality may
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provide a broader and more consistent analysis of the origins, history and influence of

these linear features.

The rest of this chapter comprises a description of the study site and an overview

of the project objectives.

Study Site Overview and Potential for Lineament Analysis

One of the important interior sedimentary basins in the United States is the

Powder River Basin (Figure 1).  This area is widely known as a provider of much of the

nation’s coal from its vast deposits that, at some places, reach thicknesses of over 200

feet.  Coincidentally, the Powder River Basin is also a dominant producer of oil and gas

from its numerous reservoirs.  The Powder River Basin is asymmetric in shape, runs

north-south with its axis on the western side, and is surrounded on all sides by structural

and physiographic uplifts, which all influenced the formation and evolution of the basin

at some time.  These major uplifts (Figure 2) include the Bighorn Mountains, Hardin

Platform and Porcupine Dome to the northwest; the Miles City Arch to the north and

northeast, the Black Hills uplift and monocline to the east, the Hartville Uplift to the

southeast, the Laramie Range to the south, and the Casper Arch to the southwest.  The

surficial area of the basin covers approximately 30,000 km2 and is a portion of the

Laramide intermontane basin province in the Rocky Mountains (Robbins, 1983).  The

basin received much of its present shape during late Laramide Orogeny, which was

during the Late Cretaceous-Early Tertiary (Sharp, 1948).  The major oil and gas

reservoirs in the Powder River Basin include the aeolian sandstones of the

Pennsylvanian-Permian Minnelusa, the Cretaceous alluvial point-bar sandstones of the

Dakota (Berg, 1968), the Lower and Upper Muddy channel and marine bar sands,

respectively, of Cretaceous age, the Turner channel sandstones of Cretaceous age, and the

Shannon, Sussex and Parkman offshore marine bar sands, also of Cretaceous in age

(Figure 2).  Among the most interesting features of the basin is the pronounced linear

arrangement of the vast majority of the oil and gas fields indicating strong structural

control.  The largest that exhibit this linear arrangement include the Clareton, Fiddler

Creek, House Creek, Dead Horse Creek-Barber, Hartzog Draw and the South Coyote

fields (Slack, 1981).  A few studies have been done in the past to investigate the reason
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for this pronounced linear arrangement.  None of these studies, however, have involved

multiple data set integration to investigate structural controls and influences on these

fields.

Remote sensing techniques have been shown to be useful tools in analyzing linear

framework of structurally complex, as well as remote, areas.  When remote sensing

techniques are combined with subsurface data sets such as gravity and magnetic data,

well data and subsurface structure maps, the result is a very powerful, thorough and

inexpensive method for analyzing linear framework and investigating the source and

effects of lineaments.  A lineament may be defined as a linear or curvilinear zone of

structural discordance.  Often these represent faults, fractures, sharp anticlinal fold axes,

geological rock formation contacts or vertical beds such as flat irons or hogbacks.

Figure 1:  Location of the Powder River Basin and the outline of the study area.
aarea.
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Geomorphic indicators of linear structural discordance as viewed from air or space

include linearly arranged topographic features such as valleys or ridges and scarps.  Other

features that are good lineament indicators are linear vegetation growth patterns, abrupt

tonal changes in the image, or linear breaks in slope.  Digital Elevation Models (DEM)

may be very useful tools in automated extraction of these geomorphic indicators.

Tectonic History of the Powder River Basin

The evolution of the Powder River Basin to its present configuration is the result

of a structurally complex history.  In general, the rocks of the surrounding uplifts and

Figure 2:  Generalized tectonic map of the Powder River Basin showing the location
of major uplifts and hydrocarbon reservoirs.  Pennsylvanian-Permian reservoirs are
shown in blue, Lower Cretaceous in green, and Upper Cretaceous in yellow.
Coordinates are UTM.
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basement are largely of Precambrian age unconformably overlain by shallow-water

marine sedimentary packages with an average thickness of approximately 1 km.  The

Paleozoic rocks are overlain by Jurassic shallow-water marine sediments, which are

interfingered with floodplain deposits that reach a thickness of up to 0.5 km.  An epeiric

continental seaway covered much of North America, including the basin, during the

Cretaceous and deposited more shallow-water marine sediments as well as some coastal

plain sediments.  These marine sedimentary packages are correlative to those found in the

surrounding basins (Mallory, 1972).  The Laramide Orogeny, with its counterclockwise

change in rotation of stress, significantly impacted the evolution of the basin during the

Tertiary (Gries, 1983).  Due to Tertiary tectonism in the vicinity of the Powder River

Basin, many fluvial and lacustrine sedimentary rocks are indigenous only to the basin.  In

order to illustrate the influence of structural control on the evolution of the basin, the

tectonic history will be presented in sequential fashion.

Precambrian

 The Wyoming Precambrian province is the oldest major crustal formation in this

area, shown by radiometric dating from detrital zircons from the Beartooth Mountains to

be 3.3 Ga (Mueller et al., 1992).  From petrographic analysis of the sediments derived

from the igneous rocks, this crust was largely composed of orthogneissic (granite)

terranes (Condie, 1976).  Sedimentation along with volcanism occurred following the

crustal formation until 2.9 Ga (Robbins, 1993).  The region’s first recorded tectonic

events, including metamorphism and plutonism in what is now the Bighorn Mountains,

Northern Laramie Range and Hartville Uplift, occurred between 3.0-2.9 Ga.

Metamorphism continued in the Hartville Uplift until 2.65 Ga, while felsic and mafic

plutonism remained active in the Bighorns until 2.75 Ga (Condie, 1976; Hedge et al.,

1986; and Snyder et al., 1989).  This deformation continued until the end of the Archean

(Condie, 1976).  A paper by Hedge et al. (1986) suggests that the first granitic plutons

began to form in the Black Hills region at this time.  The above succession may have

been derived from the collision with an island arc system (Knight, 1990 and Robbins,

1993).
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The earliest Proterozoic tectonic activity was a system of diabase dikes with a

dominant northeast trend, as well as subsidiary northwest, east-west, north-northwest,

north-northeast and east-northeast trends (Condie, 1976; Love and Christiansen, 1985;

Hedge et al., 1986; Snyder et al., 1989; and Robbins, 1993).  Following these structures,

granitic intrusions began to form in the Hartville Uplift area around 2.1-1.9 Ga.  During

the period from 1.7-1.6 Ga, intrusions in the Black Hills and the Hartville Uplift regions

(Hedge et al., 1986) may have formed from a partial subduction of the crust under a

volcanic arc in the southeast portion of the basin (Robbins, 1993).  Stewart (1976) and

Winston (1988) investigated the last documented tectonic event in the Precambrian Era.

Their findings suggest that rifting was initiated at approximately 0.85 Ga and formed a

passive margin by 0.65 Ga.  This extensional event may be the reason for a system of

northeast-trending near-vertical normal faults in the southern portion of the basin parallel

to the Hartville Uplift (Mitchell and Rogers, 1993).

The domination of structural linear features in the northeast direction has been a

focus of many types of studies in the past (Slack, 1981, and Maughan, 1983).  These

studies have suggested that northeast-trending lineaments may be derived from

reactivation of the Precambrian basement shear zone faults.  Slack (1981) suggests that

the dominance of northeast trending lineaments is analogous to the shear zone formed

from the development of an Atlantic-type margin at around 1.7 Ga (Robbins, 1993).  This

view, however, is not supported by the presence of the aforementioned intrusions in the

Black Hills region.  These basement structures are also not indicated on the Wyoming

State basement structure map, which was generated from well data (Blackstone, 1990).

Paleozoic Era

The Powder River Basin was cycled above and below sea level throughout the

Paleozoic.  This was largely due to the apparent lack of relief in the area at this time

(Robbins, 1993).  The major tectonic events of the Paleozoic in this region were related

to the ancestral Rocky Mountain orogeny.  Maughan (1990) chronicled the events

surrounding this orogeny.  Upwarping of the craton occurred around 365 and 330 Ma.

These upwarping events are believed to be precursors to the ancestral Rocky Mountain

orogeny.  There were three subsequent events that were part of the orogeny; one from the
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Mississipian to Early Pennsylvanian, one during Middle Pennsylvanian time and one

from Late Pennsylvanian to Early Permian (Maughan, 1990).  Slack (1981) states that

reactivation along these Precambrian faults may have occurred during the tectonic events

in the Pennsylvanian.  The ancestral Rocky Mountain orogeny was completed by the Late

Permian (Robbins, 1993).

Mesozoic Era

Sea level again fluctuated as evident from Triassic and Jurassic rocks in the basin.

There were four main marine transgressions from the west into the nonmarine

depositional environment that characterized the basin at that time (Johnson, 1992 and

1993).  The only apparent tectonic activity during this period was the broad flexing of the

craton (Robbins, 1993).  This relative quiescence continued until the Early Cretaceous.

Slack (1981) states that strata present in the Powder River Basin were affected by

increased structural activity and subsequent formation of the Belle Fourche Arch, which

trends roughly east-west across the center portion of the basin, caused by reactivation of

basement faults.  It is believed that the formation of this arch was likely related to the

Sevier Orogeny continuing further to the west (Robbins, 1993).

Deformation related to the Laramide Orogeny started in the Rocky Mountain

region in the Late Cretaceous around Campanian (80-60 Ma) time.  Uplifts along thrust

faults, as well as arches, belong to three main trends in the Rocky Mountain region

according to age: north-south, northwest-southeast and east-west.  Structures following

these trends belonging to the Laramide Orogeny are assumed to be the result of

counterclockwise changes in the direction of compressive stress as the Farallon plate was

being subducted at a low angle under the North American plate (Gries, 1983).  During the

Late Cretaceous, the Hartville Uplift began to rise toward the southeastern part of the

basin (Robbins, 1993).  Also developing at this time is the Black Hills Uplift along the

east flank of the basin, which is actually a large monocline that dips as high as 45° to the

west with structural relief up to 6,000 ft. (Slack, 1981).  The Laramie Range began to

develop in the very latest Cretaceous as east-west compression led to thrusting of

Precambrian crystalline rocks over the west flank of the Denver Basin (Gries, 1983).
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Cenozoic Era

Most of the tectonic activity that formed the present shape of the Powder River

Basin occurred during the Tertiary.  A shifting in direction of compressive stress toward

the southwest during the Paleocene initiated the formation of the most important

structural regimes in the Powder River Basin (Figure 3).  The major tectonic activity was

in the northern foreland area where folds and thrusts were oriented northwest due to

shortening on the northeast axes (Brown, 1981).  Among the northwest trending

structures adjacent to the Powder River Basin are the Bighorn Mountains, which

developed in the Middle Paleocene, and the Casper Arch, which developed during the

very latest Paleocene (Gries, 1983).

At the beginning of the Eocene, Laramide compressive stress became almost

directly north-south (Figure 3).  This caused the formation of many east-west trending

structures including the Uinta Mountains.  The effect that this stress regime had on the

Figure 3:  Timing of compressional stress during the Laramide Orogeny (Gries, 1983):
a. Westerly direction of stress caused the formation of north-south-trending uplifts and

thrusts with broad arches plunging off to the north.  These structures appear to be stacked
along the Colorado Plateau.

b. Late Laramide compression shifted to north-south which yielded the formation of east-
west-trending uplifts and associated structures.
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Powder River Basin is quite important.  The Owl Creek Range was developed just to the

west of the basin during the Early Eocene and connects to the northwest-trending Casper

Arch.  Due to the continuation of this north-south compressive stress, at perhaps the most

strongest tectonic pulse, the northern Laramie Range was thrust over the southern portion

of the Casper Arch and the south flank of the Powder River Basin (Gries, 1983).  Also,

the northern portion of the Black Hills was undergoing plutonism, including the intrusion

of laccoliths, dikes and sills.  Terrestrial sedimentation occurred during the Oligocene in

the Powder River Basin.  The basin has developed much of its present relief from erosion

(Robbins, 1993).

Summary of Tectonic History

In summary, the Powder River Basin has undergone intense metamorphism and

plutonism in the Archean through the Proterozoic.  Toward the end of the Proterozoic,

findings suggest a rifting event that lead to the formation of an Atlantic-type passive

margin by 0.65 Ga.  The first signs of dominant northeast and northwest structures were

established.  Sea level fluctuated above and below the basin throughout the Paleozoic; the

only tectonic activity in the area at this time was from the Ancestral Rocky Mountain

Orogeny, which may have caused reactivation of Precambrian faults.  Sea level again

fluctuated throughout almost all of the Mesozoic, due to the presence of a major

continental seaway.  The destruction of this major seaway is recorded in the very thick

succession of Late Cretaceous terrigenous rocks.  Counterclockwise rotation of stress

related to the Laramide Orogeny is represented in the form of many reactivated basement

faults and new structures that trend north-south, northwest-southeast, to east-west in that

order of age.  The basin has retained much of its present shape since the Laramide

Orogeny.

The Powder River Basin is therefore a very significant basin with a very rich and

complex structural and tectonic history.  This complex history has resulted in an equally

complex expression in the surface geology.  A remote sensing analysis, and especially

one that integrates GIS spatial analysis (i.e. overlay), has the potential to provide a

valuable overview of the surface features, and help unravel their significance.
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Purpose of Study

The purpose of this investigation is to investigate various lineament analysis

techniques using GIS spatial analysis functionality with the Powder River Basin as a test

area.  Many lineament studies in the past have been shown to be very subjective,

especially when based on only a few data sets.  Also, lineaments have, in the past, been

viewed as equal regardless of their appearance (Slack, 1981 and Marrs and Raines, 1984).

This investigation has a number of subsidiary aims, as listed below:

• Manually identify and classify lineaments from different surface data sets based on

their topographic or visual appearance.

• Employ GIS functionality with a Digital Elevation Model (DEM) to automatically

categorize the identified lineaments into classes based on topographic characteristics.

• Compare lineaments with subsurface data sets.

• Illustrate the importance of multiple data set integration in lineament analysis.

• Investigate the possible relationship of lineaments to hydrocarbon reservoirs in the

Powder River Basin.

Stratification of lineaments based on their topographic appearance has potential

significance, as lineaments that are positive topographic features may have different

structural implications than negative topographic features.  This stratification may shed

some light on which type of lineaments portray the most influence on structural patterns,

and furthermore, control of hydrocarbon reservoirs.  Thus, one result from this

investigation will be the illustration of the DEM as a useful, and perhaps necessary, tool

in automated lineament categorization of the topographic lineaments.

This type of investigation may develop to be a most productive, thorough and

inexpensive method to analyzing lineaments and may eliminate some of the considerable

speculation that arises from correlating lineaments to tectonic events.  It is a general rule

of thumb that the more data sets used to study a particular problem, the better the result.

This type of study can also be applied to similar regions in the world in order to gain

understanding of the structural geology and maybe hydrocarbon potential.
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Chapter 2:  Literature Review

Lineament Identification in Remote Sensing

Linear features observed on satellite images and aerial photography have been

studied for a considerable length of time.  These features are commonly termed

lineaments, and although different authors have defined them in various ways there is

general agreement (Hoppin, 1974, O’Leary et al., 1976, and Rowan and Bowers, 1995)

that they include:

• Topographic features, such as alignment of drainages, ridges or escarpments.

• Tonal features, such as anomalous linear features or changes in image tone.

• Geological features, such as abrupt discontinuities in geological formations.

• Combinations of the above.

Lineaments are commonly interpreted as surface expressions of rock fractures.

They have therefore been used in hydrological (Parizek, et al., 1990, Yin and Brook,

1992, and Hardcastle, 1995), mineral (Rowan and Wetlaufer, 1975, and Rowan and

Bowers, 1995) and hydrocarbon exploration (Dix and Jackson, 1981, Mah et al., 1995).

Lineaments may have particular significance in hydrocarbon exploration as an indicator

of zones of high permeability and/or less pressure that may serve as pathways for

hydrocarbon migration, and thus targets for increased production.  In addition, they may

represent faults that control basin development and distribution of reservoir.

In recent studies (Warner, 1997, and Warner, 1998), in was found that lineaments

had importance in both structural and stratigraphic traps in two test sites in the

Appalachian Basin.  It was found that lineaments that paralleled the structure of the

Burning Springs anticline were related to hydrocarbon production, whereas those that

were cross-strike were related to soil gas accumulations.  Thus it appears that lineament

interpretation should be treated with caution, as different lineaments may not all have the

same significance, even in the same area.  Lineament studies of hydrocarbon reservoirs

using Landsat imagery have also proven to be successful in the Denver Basin (Merin and

Moore, 1986) where fracture reservoirs were found to develop preferentially at lineament

intersections.



12

Lineament Studies in the Powder River Basin

Major structural lineaments have been studied in various parts of the Powder

River Basin.  Potential trends have been interpreted from structural offsets in the Black

Hills monocline and topographic expression on contour maps (Slack, 1981) and from

Landsat imagery (Marrs and Raines, 1984).  Slack (1981) studied major structural offsets

in the Black Hills monocline and postulated that the linear framework that developed in

the basement of this region should also be present in the basement underneath the basin.

He was able to correlate the structural offsets to the Belle Fourche Arch, a broad arch that

trends northeast through the center of the basin.  The offsets were interpreted to have

developed from reactivation of the basement faults along the arch, which have total

displacement each of less than 40 ft.  He concluded that the major northeast-trending

lineaments formed from this basement block rejuvenation control the location of the

major hydrocarbon reservoirs in the basin.

Marrs and Raines (1984) mapped lineaments from Landsat imagery in order to

determine the linear framework of the Powder River Basin.  Lineaments were grouped

into trends while other sets were eliminated altogether if they were neither dominate nor

significant.  The major linear trends were grouped into larger linear zones.  The linear

zones mapped trend northeast with a seemingly conjugate northwest set.  These linear

zones were postulated to have controlled the location of many hydrocarbon reservoirs in

the basin.  When compared to the major linear zones mapped by Slack (1981), many of

the zones do not match.  Aside from this, the selective statistical method used by Marrs

and Raines (1984) has been the source of controversy and the subject of many subsuquent

discussions including Michael and Merin (1986).

Despite the proposal that the major linear zones control the location of the

hydrocarbon reservoirs, as suggested by these two major lineament studies in the basin,

an analysis of multiple subsurface data sets to prove this has not carried out.  In

particular, detailed information about the basement and its involvement in the

development of structural linear features and reservoir control has not been used.  The

development and use of higher resolution magnetic geophysical data may offer other

useful insights into this problem of the effects of lineaments at depth.
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Geophysical Studies in the Powder River Basin

Geophysical surveys have been extensively carried out in the Powder River Basin

in the form of 2-D and 3-D seismic reflection.  There are thousands of seismic lines that

run through the basin due to the interest of oil and gas companies.  Past studies of the

basin involving seismic data have been conducted to determine structural geology and

tectonic history, but with a major focus on the effect of hydrocarbon migration and

entrapment.  The area near the Casper Arch has been studied by Gries (1983) and Ray

and Berg (1985).  Their findings show the dramatic effects and influences of the northern

Laramie Range thrust over the Casper Arch and the southern portion of the Powder River

Basin.  Furthermore, McMillen (1990) has studied the extent of Cambrian sedimentary

rocks in the basin related to extensional tectonics.  Lastly, Robbins and Grow (1990) used

seismic data to study basement lithologies in the basin.

Gravity and magnetic studies are not as common in the Powder River Basin, but

research performed by Gay (1995) with high-resolution magnetics may change that.

Kleinkopf and Redden (1975) as well as Duval, Pitkin and Macke (1977) have

undertaken gravity and magnetic studies in the past.  Robbins (1993) completed a gravity

and magnetic geophysical investigation of the Powder River Basin using a series of total

intensity magnetic maps and residual gravity maps.

The use of subsurface geophysical information for structural analysis is a very

powerful tool.  However, the correlation between features seen on the surface to those

seen underground can be even more powerful and reliable.  The importance of this

method of data integration has already proven its worth in many areas of the world.

Geophysics and Remote Sensing Integration

Remote sensing can be very useful in mapping and analyzing structural geology,

especially in remote regions.  However, subsurface geophysical methods are among the

best supplement to surface interpretations made from satellite or aerial image.   Examples

of investigations integrating remote sensing and geophysics include the studies conducted

by Campagna and Levandowski (1993) and Levandowski, Cetin and Reichard (1993).

Campagna and Levandowski (1993) used Landsat images supported with gravity

geophysics to investigate the relationship between the Lake Mead fault zone and the Las
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Vegas shear zone in the region of the Overton Arm of Lake Mead, Nevada.  This area is

not only a structural low, but also a topographic low covered by Lake Mead.  A Complete

Bouger Anomaly (CBA) map of the same area shows gravity low, bounded by the two

left-lateral fault segments.  These combinations of observations suggests the presence of

a pull apart basin that formed due to a step in the strike slip fault system, and illustrates

the power of combining diverse data sets.

Through the support of hydrocarbon exploration in eastern Nevada, Levandowski

et al., (1993) investigated the effectiveness of remote sensing, enhanced by gravity data,

as a tool for analyzing extensional faulting associated with unconsolidated valley fill

sediments in the Basin and Range Province.  Faults were mapped based on geomorphic

characteristics from aerial photographs.  These faults were then overlain on a CBA map

to determine if these faults corresponded with 1) a horizontal density contrast and 2)

sufficient structural relief present in that density contrast.  The authors were able to

identify major boundary faults from steep gradient changes on the CBA map.  The

significance of this study was that combining remote sensing and gravity geophysical

data might be more reliable as an exploration tool in the Basin and Range Province than

either data set on its own.

Geophysical data is of particular value in remote sensing studies.  Remote sensing

is a science that is generally limited to the surface of the earth.  Subsurface geophysics

provides a means of lending credibility to geomorphic features seen in surficial remote

sensing.  An additional ancillary data set, that can be very useful in understanding the

geomorphology of an area, is a digital elevation data (DEM).  Many geomorphic features

such as valleys, ridges and escarpments are very important structural indicators that can

be extracted from a DEM.  Methods of topographic extraction will be discussed in the

following section.

Automated Feature Extraction from DEM

Many recent studies have shown the DEM to be very useful in geological

analysis, particularly structural analysis.  DEMs are also very useful in aiding the

classification of landforms for many purposes such as recognition of geomorphological

patterns, watershed characteristics and valley heads.  A very important study by
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Chorowicz et al (1989) described a technique by which geological and geomorpological

features could be recognized from DEMs.  Elementary objects such as crests, thalwegs

and various other slope types were classified by checking for slope changes characteristic

of the above classes in many directions.  Douglas (1986) illustrated various techniques to

locate such topographic features as ridges, channels, watersheds and drainage patterns

from DEMs.  The main problem with this approach was that depressions and other flat

areas that hinder water flow were not fully identified.  A method of extracting these

depressions was developed by Jenson and Domingue (1988).  Building on this premise,

separation of wet flat areas (swamps) from dry flat areas (plateaus) using DEMs has been

carried out by Warner et al. (1991).  Hydrologic flow modeling and drainage networking

has been carried out by combining valley finding algorithms with algorithms that analyze

the profiles of those valleys (Chorowicz et al, 1992).

More recent advances have been made in using the DEM as a means for

extracting information and characteristics on geological structure.  McMahon and North

(1993) developed a method in which measurements can be made on faults observed in

images of 3-D combinations of DEMs and subsurface data.  The regional stress domain

of a particular area can also be investigated with DEMs, as shown by Beaver et al.,

(1992).  Their work uses the DEM to analyze structural symmetries of features such as

folds, faults and fractures based on given characteristics and appearance on the DEM.

The end product is claimed to be a reliable description of the stress regime in a given

area.  This approach, however, has its weaknesses in areas of complex tectonic histories.

DEMs have also been used to map geomorphologic features based on detection and

manipulation of certain node points (Neves and Thiessen, 1993).  The node points are

stretched out and converted to vectors.  These vectors are then examined for coplanar

alignments and plotted as planes on the original DEM for correlation to known geological

structures.  The significance of this work is the development of a method for extracting

the major planar structural features that might ordinarily be lost in a regular 2-D analysis.

Most recently, difference in topographic characteristics of strike-slip faults and dip-slip

faults have been used to distinguish dip-slip faults from strike-slip faults (Florinsky,

1996).  Faults that showed changes solely in the horizontal curvature were interpreted as

strike-slip, while faults that showed changes on the vertical curvature were interpreted as
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dip-slip.  Oblique and gaping faults had changes on both horizontal and vertical

curvatures.

Extraction of topographic feature information from DEMs has become

increasingly popular in structural analysis.  In fact, some investigations solely rely on the

geomorphic information seen on the DEM.  These studies often include some variation of

involvement with GIS functionality (Berquist, 1996, and Linn, 1996).  GIS functionality,

such as spatial analysis, has also become more popular in structural geology in general.

The use of GIS functionality for structural analysis is discussed below.  

GIS Functionality in Analysis of Geological Structure

       Geographical Information Systems (GIS) have become increasingly powerful due to

improvements in both hardware and software.  With this increase in the power of GIS,

many fields in both geography and geology have found new uses for GIS.  One of the

geological fields that have recently benefited from GIS input is structural geology.  Many

of the recent technological advances in structural geology involving GIS rely on the

construction of large databases containing structural information about features such as

faults, folds and fractures.  This information can then be used in the construction of

geological structure maps as has been illustrated by Berquist (1996), Ross (1997) and

Jaworski (1997).  Once data about these structural features is entered into a GIS package,

data manipulation for detailed analysis can take place.  Linn (1996) used ArcView to

illustrate the ease of using layer overlay in performing rapid and accurate geological

analysis and mapmaking.  In support of hydrocarbon exploration, Oldow (1996)

developed a digital database of structural features, derived from many map sheets, as well

as aeromagnetic and gravity geophysical data for Venezuela.  Through spatial analysis of

these data sets using GIS software packages, geologists were able to make rapid

assessments of hydrocarbon potential in areas of Venezuela when it would otherwise take

months.

Both raster and vector based GIS software were integrated in the development of

a basement structural model for the Oriente (Amazon) of Ecuador (Fishman and Bhatt,

1996).  In this study, an existing geological map for Ecuador was digitized into vector

coverage and overlain with contoured gravity data in Erdas Imagine.  Topography was



17

also digitized and used for topographic terrain corrections of the gravity data as well as

further topographic analysis.  When all of these products were used together, pre-

Cretaceous high angle reverse faulting in Ecuador became more evident.
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Chapter 3:  Methodology

Definition of a Lineament

In order to conduct a lineament investigation, a working definition of the term

lineament must be chosen.  For the purposes of this study, lineaments are defined as

linear, or curvilinear, zones of structural discordance.  Lineaments on the surface are

assumed to represent such geological features as faults, fractures, sharp anticlinal fold

axes, rock unit contacts, vertical beds, or a linear arrangement of the above.  The method

of detecting lineaments varies, depending on the types of data used to identify them.  The

data sets employed in this study were a Landsat TM image, a Digital Elevation Model

(DEM) with postings on a 30-meter interval, and hydrographic data from Digital Line

Graph (DLG) files.  As is discussed below, each data set was enhanced in different ways

in order to identify lineaments.

Two main methods of classifying and categorizing lineaments were also

investigated.  The first approach was a manual one in which a trained interpreter

classified lineaments based on their appearance in the various data sets.  The second

method is an automated approach in which the manual interpretation is limited to the

identification of lineaments; the categorization of the lineaments is carried out

automatically based on topographic or other associations.

Identifying Lineaments on Landsat TM Image

The Landsat TM imagery was purchased from the U.S. Geological Survey EROS

Data Center.  The image (path 34-row 30) was acquired on 12 October 1987.  This time

of year is a “leaf-off” vegetation condition for this portion of the Northwest, and was

assumed to be the most suitable for geological analysis.  The coordinates are as follows:

Corner Latitude Longitude

Northwest 44°03’47”N 105°39’38”W

Northeast 43°43’59”N 103°24’00”W

Table 1:  Landsat TM Image Location
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Southeast 42°15’47”N 103°55’59”W

Southwest 42°35’06”N 106°08’31W

The pixel size of the image is 28.5 meters, the nominal spatial resolution of

Landsat imagery.  The image was of very good quality with no clouds present to obscure

observation, however, there was a slight dusting of snow on the higher elevations.

Image Enhancement

The Landsat TM image was digitally enhanced in order to facilitate the process of

identifying lineaments.   After experimenting with different filter kernels, the best

enhancement was found to be a 5 X 5 modified Laplacian edge enhancement filter with

the following matrix:

-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 -1 49 -1 -1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1

The band combination found to be most useful was a standard false color

composite with Band 2 (green) displayed on the blue gun, Band 3 (red) displayed on the

green gun, and Band 4 (near-IR) displayed on the red gun.  This band combination made

it easier to identify linear patterns of vegetation, which could represent deeper soils

associated with geological zones of weakness and erosion susceptibility.  Only one other

band combination, a true color display, was found to be somewhat useful in aiding the

identification process.

Description of Landsat Image Lineament Classes

Once the image was enhanced, an Arc/Info vector file was created as a transparent

overlay.  This editable vector file served as the lineament layer for on-screen digitizing.

Lineaments were visually separated into two main classes.  The first class was that of

topographic lineaments.  The characteristics of topographic lineaments include features

such as ridges, valleys, and prominent scarps oriented in a linear or curvilinear fashion

(Figure 4a).  Alignment of these linear or curvilinear features was regarded as
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confirmatory evidence, but was not required to be present.  Also included in this class

were front range thrust faults implied at the edge of mountain ranges (Figure 4b).  The

second class of lineaments identified from the image was tonal anomalies and linear

vegetation patterns (Figure 5).  Zones with a distinct linear distribution of vegetation

defined this class.  Linear distribution of vegetation could possibly represent a zone of

geological weakness, such as associated with faults and fractures.  Erosion is more active

in geologically weak zones where water can penetrate.  In the semi-arid steppe

environment of the field area, plant growth tends to be enhanced by the presence of more

reliable water.

Figure 4:  (a) Small subset image of the Landsat TM image that shows some examples of
topographic lineaments in the form of aligned valleys and ridges.  Arrows indicate end points
of the lineaments.  (b) Another small subset of the Landsat TM image that depicts the flat
irons representing the front range fault.  Within the box is the actual zone of interest.  The
lineament in this case would be mapped along the base of the flat irons.

Figure 5:  (a) Small image subset that shows a linear pattern of vegetation growth
(bounded by arrows).  The vegetation is shown in red due to the high reflectance in
infrared light, which is displayed as red on the image.  (b) This subset shows the
characteristics of abrupt linear tonal changes, again bounded by the arrows.
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Identifying Lineaments from DEM

The DEM image of 30-meter intervals was also purchased from the U.S.

Geological Survey.  The DEM covered an area slightly larger than that of the Landsat

TM image.  This is due to the near-polar orbit of the Landsat spacecraft, which produces

an image slightly rotated with respect to north.  The DEM, on the other hand, and was

formatted to include the entire imaged area as well as the blank buffer region produced in

geocoding the satellite image.  Lineaments identified from the DEM were strictly

topographic in character.  Of course, these lineaments can either be geological or cultural.

For example, a road-cut, a cultural feature, would appear as a linear topographic change

in slope.

Image Enhancement of the DEM

In order to identify linear topographic features from the DEM, two shaded relief

images were generated, with sun angles 90° apart.  The first shaded relief image created

had a solar azimuth (sun angle) of 225°, which is from the southwest, and a solar

elevation of 45°.  An ambient light setting of 0.20 was used, which produces a good

contrast.  The ambient light setting is simply a scaling factor in the Imagine (Erdas, 1998)

topographic program.  A vector layer was created to overlay this image.  Lineaments

were visually identified, and then digitized on-screen.

The second shaded relief image from the DEM was created with all of the same

properties as the first, except that the solar azimuth was set at 315°, or from the southeast.

The vector layer used to record the 225° lineaments was overlain onto the 315° image,

and the additional lineaments identified were added to the same file by on-screen editing.

The final vector layer was a single file of topographic lineaments from the two DEM

lineament interpretations.

Description of DEM Lineaments

The lineaments identified from the shaded relief images created from the DEM

were strictly topographic.  Features that produce linear topographic alignments include

fault scarps, fractures, front range thrust faults, geologic rock unit contacts, linear ridges
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and valleys, as well as cultural features such as road cuts, roads and railroads.  Both

shaded relief images enhanced a distinct pattern of north-south-trending linear features,

which are artifacts from the profile lines digitized during the creation process of the

DEM.  These artifacts were excluded during the lineament identification process and thus

should not have added noise to the vector file.

Identification of Drainage Anomalies from DLGs

DLG files, distributed on CDs by the U.S. Geological Survey, are a particularly

valuable source of vector cartographic information.  Each DLG disk holds files for roads,

railroads, miscellaneous transportation and hydrology.  The files are separated into

coverages based on the regions covered by the equivalent 1:100,000 scale maps.   The

appropriate 1:100,000 scale maps for the study area, based on the map coordinates of the

Landsat TM image, were downloaded from a CD obtained from the USGS Depository at

the WVU Wise Library.  This involved the selection of sixteen individual maps within

the field area, which were joined using Arc/Info commands.  The DLG data was then

displayed in Erdas Imagine 8.3.  A new vector layer was created to overlay the

hydrographic data so that on-screen digitization of drainage anomalies could take place.

Description of a Drainage Anomaly

For the purposes of the investigation, a drainage anomaly was defined as an

abrupt linear or curvilinear change in the established flow pattern of a stream or river

system.  The alignment of several streams, stream segments, or of linear or curvilinear

changes in stream flow, was regarded as particularly strong evidence for a drainage

anomaly.

Lineament Processing

Once all lineament identification was complete, an Erdas Imagine 8.3 Spatial

Modeler program was written to eliminate those lineaments that were potentially of

cultural origin.  The Spatial Modeler Program is a powerful icon-based macro-language

scripting tool.  The Spatial Modeler is developed mostly around raster functionality.

Consequently, prior to developing models, the vector lineament files rasterized to
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produce 1-bit raster coverage, on the same grid as the Landsat image.  This step

generated a file with lineaments coded as 1, and the background at 0.  The same steps

were also applied to convert the railroad and road DLG files to raster coverages.

The model constructed to eliminate cultural lineaments is shown in Figure 6.  In

this model, the 1-bit DLG file (roads or railroads) and lineament file serve as input

images.  The first process gives each road or railroad a four-pixel buffer, giving a total

width of eight pixels for each transportation feature.  This buffer zone allows for slight

errors in projection between the two files as well as any fuzziness in the location of

lineaments, or operator error.  For example, if the person digitizing the lineaments is

within an average of plus or minus four pixels of the actual lineament, then the buffer

covers that error.  Once this step has been completed, the buffered road or railroad file is

compared with the lineament file.  Lineaments or lineament segments that cross this

buffer zone are deleted.  Since the aim is to delete lineaments that parallel the road or

Figure 6:  Flow diagram to show the development of the Erdas Spatial Model constructed to
eliminate cultural lineaments.  The arrows indicate the direction of which step is performed
next.  Step 1 is the buffering process, Step 2 is the removal of lineaments crossing the road
buffers, Step 3 is the lineament regrowth based on the angle supplied, and Step 4 takes the
changes from the original lineament file.
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railroad, and not those that simply cross such features, another step is added.  This step is

a linear regrowth of lineament segments.  The amount of pixel regrowth is based on the

width of the buffer zone, and the maximum angle assumed to be associated with a

subparallel relationship between the lineament and the road or railroad.  The length of the

regrowth is then calculated by simple geometric relationships: Buffer length (in

pixels)/Sine of the maximum angle.  Based on a number of empirical experiments with

different angles, 20° was found to be an optimum maximum angle. Lineaments that are

completely deleted are not regrown; roads that cross at high angles are reconnected and

entirely restored (Figure 7).

Once lineaments at angles greater than 20° are regrown, the model compares the

original lineament file and the cut and regrown lineament file to generate a final

lineament file.  This final step is required to eliminate spurious regrowth into areas where

no lineament was digitized.  This occurs because no attempt is made during the regrowth

to check if this lineament was cut in the buffer overlay step, instead all lineaments are

regrown.

Figure 7:  Conceptual diagram that depicts the processes involved in removing cultural lineaments
(for example, Lineament 1 in red) and regrowing geological lineaments (for example, Lineament 2
in red).  Regrowth is based on angular difference between the road and the lineament.  
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Many geological structures form ideal avenues for the construction of roads and

railroads.  In this regard, many cultural lineaments may actually overlay geological

lineaments.  The key to deciding whether a lineament should be removed because it

represents only a cultural feature is provided by the DEM.

Rose Diagram Generation

Lineament patterns were summarized using rose diagrams (Figures 11, 13, 15, 17,

18) .  When lineament processing was complete, the final “geological” lineament file was

converted back to a vector format.  This can be done in two different ways.  The first way

is to simply vectorize the final raster image using ARC functionality available through

Imagine.  This procedure was found to add pseudo nodes and consequently requires

repeated “cleaning” and “building” in Arc/Info.  The pseudo node problem was found to

be greatest with large files, and thus the vectorization approach works best with smaller

lineament files.  The second method is to overlay the original lineament vector layer on

the final lineament raster layer and manually delete those lineaments that were removed

on the raster image.  This method was used with the larger lineament files (Landsat and

DEM derived) to avoid the pseudo node problem.

The ARC/Info UNGENERATE Command

Once the final lineament file was in vector format, the next step was to apply the

Arc command, UNGENERATE, to the layer.  This command gives coordinate values for

each node associated with a particular lineament.  The output coordinates are within the

cartographic coordinate system of the original file and are in text format.  This text file

was then imported into Microsoft Excel where the data were reformatted and overall

length and azimuth (0 to 180°) for each lineament calculated.

StereoNett Software

The StereoNett (Duyster, 1999) structural geology software has a spreadsheet

database in which strike and dip of planar features or azimuth and plunge of lineaments

can be entered and recognized.  This software is free for academic uses, but a donation

must be made for private sector use.  For this study, 90° were added to each azimuth
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angle to compensate for the difference between the 0° mark in Excel and the 0° mark in

StereoNett.  Next, a plunge value of 0° was added to each lineament along with an L to

signify to the software that the structural feature was a lineament.  Rose diagrams of the

strike of these lineaments as well as frequency were generated.  Each rose diagram

displays frequency information in 7.5° intervals, and their results are fully analyzed later.

 Automated Lineament Categorization

A central aim of this investigation was to study automated approaches in the

categorization of lineaments.  The DEM and the hydrology DLG data were used to

stratify the lineaments into the classes of slope-break, valley, and ridge lineaments.  The

slope-break and the ridge-top information was obtained from the DEM.  The valley

information was obtained from the DLG.  It is assumed that all river segments represent

incised topographic lows and are thus valleys.

Slope-break Lineament Categorization

Slope breaks, or abrupt changes in topography, can in some cases represent faults

or other structural features.  An example of a surface profile associated with a fault is

shown in Figure 8.  Cultural lineaments often follow geological “avenues”, such as

valleys, as they are ideal passageways in rough terrain.  Therefore, road-cuts associated

with these cultural lineaments will be displayed as a slope-break in the DEM.

The DEM Information was used in the automated categorization of slope-break

Figure 8:  Schematic diagram of slope changes associated with a fault.
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lineaments.  Slope was calculated from the DEM data using the Erdas Imagine SLOPE

program (Erdas, 1997).  This program uses a 3 by 3 window to calculate average slope

from pairs of pixels in the window.  Srinivasan and Engel (1991) have pointed out this

approach does not consider the center pixel, and may lead to inaccuracies in a landscape

with numerous small pits or ridges.  However, in this data set, the topography appears to

be relatively smooth, and thus this was not considered a problem.  The image produced

by the Imagine SLOPE program has values ranging from 0-90°, representing flat terrain

to sheer cliffs.  Lineaments in the topographic and tonal anomalies and linear vegetation

lineament files were categorized by direction using Imagine Spatial Models.  Sixteen

directions, which on average represent intervals of 11.25°, were identified.  This

directional lineament file, as well as the slope file, was used in another model that

checked the difference in slope on each side of the lineament.  The model selected a

matrix that was elongate in a perpendicular direction to the lineament to quantify the

difference in slope on either side of the lineament.  If the value in slope difference across

a lineament in the resulting image was over 10° across a 90-meter swath, then the

lineament was assumed to represent a structural slope break, and was stored in a separate

file.  The value of 10° was chosen after finding less success of classification with higher

angles.

Ridge-top Lineament Categorization

Another very important category of lineaments that can be identified through

automated feature extraction is that of ridge-top lineaments, or any positive topographic

feature.  The DEM is the source of information for the categorization of these lineaments,

as was the case with slope-break categorization.  Thus the first step in the two programs

is very similar.  Using the Spatial Modeler in Erdas Imagine, a program was designed to

identify the average direction of lineament intervals.  Each lineament pixel was assigned

a value ranging from 1 to 16, based on 11.25° angular increments from 0-180°, by

evaluating the lineament direction in a 9 x 9 window.  In the next process, a 9 x 9 matrix,

with zero in all matrix cells except in a direction perpendicular to the lineament, was

selected and the mean value of that matrix is calculated.  In this way the mean value of a

linear profile perpendicular to the lineament is determined from the DEM and assigned to
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the pixel location on that lineament (Figure 9).  This mean value was then compared to

the elevation of the original lineament pixel, which is located at the center of the matrix.

If the center pixel of the DEM was greater than that of the mean value for the 9 x 9

matrix, then it was labeled as a ridge-top, or other positive topographic feature, and

assigned a value of 1.  If the center pixel was less than the mean value of the 9 x 9 matrix,

then it was coded as non-ridgetop, or 0.

Valley Lineament Categorization

Lineaments associated with linearly arranged topographic valleys do not

necessarily have to be categorized from the DEM, because the hydrology files from the

DLG represent a very reliable source of rivers, and by inference, river valleys.  The

categorization method for valley lineaments was modified from the cultural lineament

extraction method.  The first step in this process was to give a four-pixel buffer around

each river or stream.  The assumption is that rivers and streams form the center of

valleys.  This is generally more valid for narrow, deep valleys characterized by

downcutting than broad valleys with meandering streams.  In the study area meandering

rivers are not common.  The Imagine buffering routine outputs a series of coded rings

around the buffered object, in this case a stream.  For example, with a four-pixel buffer

zone, the stream itself is coded as 0, the first buffer zone is coded 1, the second buffer is

Figure 9:  Diagram showing step-wise process of ridge categorization.  Step A identifies the
direction of the lineament pixel (vertical in this case).  In step B, a matrix is selected that has
non-zero values perpendicular to the lineament direction.  Step C shows example results after
passing the matrix over the coincident DEM values for the particular lineament.  In this
example, the center pixel of 1025 meters is greater than the mean of the perpendicular row
(1015 meters).  Therefore that pixel is coded as 1 in Step D, signifying a ridge-top.
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coded 2, the third buffer is coded as 3, the fourth is coded as 4, and everything else is

given a value of 5.  This buffered image was modified in the valley lineament analysis so

that the stream itself was also coded as 1, and everything coded as 5 (i.e. more than 4

pixels from a river) was recoded 0.  The buffered hydrology files were then multiplied

with the lineament files.  The lineament files are coded such that a pixel belonging to a

lineament is 1 and the background 0.  All values greater than 0 in the product image

would therefore be lineaments, or lineament segments that were mapped as linear

topographic valleys.

Those lineaments that cross valleys in a perpendicular, or near perpendicular,

direction would also, in this case, be considered as valley lineaments.  The importance to

this is that most lineaments identified in this study appeared as more than one class.  For

example, a lineament may be identified initially as a slope-break, but one segment of the

same lineament may appear to be the controlling factor of a valley.
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Chapter 4:  Lineament Classification Results

Results of Lineament Identification from all Data Sets

Many lineament studies tend to involve identification from one main data source

(Slack, 1981, and Marrs and Raines, 1984).  Also consistent with these studies is the

consideration of all identified lineaments as equal, regardless of the various ways in

which they might appear on the data set being used.  However, in this work, lineaments

were identified from multiple data sets, including Landsat TM imagery, DEMs and DLG

data.  Lineaments were divided into different classes, such as topographic or vegetation

lineaments.  Different lineament classes potentially reflect different types of structural

features, and therefore may show different patterns. The next sections of this chapter

discuss the lineaments in the following groups: the topographic lineaments and linear

tonal anomalies and vegetation patterns from the Landsat TM image; the lineaments

identified from the DEM; and the linear drainage anomalies from the DLG.  The

following table illustrates the data source used in the identification of each lineament

class.

Landsat TM Image DEM (30 m intervals) DLG Hydrology Files

Topographic Lineaments DEM Lineaments Drainage Anomalies
Tonal Anomalies and

Linear Vegetation

Topographic Lineaments Derived from the Landsat Image

Many types of surficial geological features contributed to the identification of the

topographic lineaments.  These structures include ridges, valleys, faults, fractures, rock

unit contacts, vertical beds, or alignment of two or more of the above.  The overlay of the

DLG cultural features over the topographic lineaments indicated that some lineaments

were cultural in origin.  The most common cultural features mapped as lineaments were

found to be small road or railroad cuts in mountainous areas.  These were successfully

Table 2:  Data Sources for Lineament Identification.
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removed from the final lineament data through the cultural lineament elimination process.

A map of the final topographic lineament class is shown in Figure 10.

The rose diagram created from these lineaments (Figure 11) shows the highest

occurrence of lineaments in a east-west orientation.  The largest of the 7.5° petals

represents 74 lineaments, or 7% of the 970 total.  This primary east-west trend is

bracketed by a broad trend of lineaments oriented between 60° and 120°.  Of particular

interest is the suggestion of a conjugate set of northwest-southeast and northeast-

southwest lineaments.  There are very few lineaments that trend north-south.

Figure 10:  Map showing the locations of the Topographic Lineaments.
Coordinate system is UTM Zone 13.
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Linear Tonal Anomalies and Vegetation Lineaments Derived from the Landsat

Image

The most common lineaments identified in the linear tonal anomalies and

vegetation class were those of linear vegetation patterns.  In this semi-arid region,

vegetation growing in a linear fashion was easily seen in the standard false color

composite image, in which near-IR is displayed as red.  The faults and fractures in the

mountainous regions within the field area, the Black Hills and the northern Laramie

Range, were the most common places where linear vegetation growth patterns were

observed.  Cultural lineament removal was not found to be necessary with the linear

Figure 11:  Rose diagram for the Topographic Lineaments.
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vegetation class; however, it was an important step with the linear tonal anomalies.  The

overlay with cultural features indicated that many rural or unpaved roads were

accidentally classified as tonal anomalies.  This region of the Powder River Basin has

many unpaved roads, as not only is it a major farming area of the U.S., but also a major

hydrocarbon producer.  The dirt roads that run between oil well pads in the larger oil

fields follow a grid pattern that is very easily confused with linear tonal anomalies.

Fortunately, the DLG road files included minor roads between the well pads, and thus

were effective for removing lineaments that paralleled these roads.  The resulting map of

the linear tonal anomalies and vegetation lineaments can be seen in Figure 12.

Figure 12:  Map showing the locations of the Linear Tonal Anomalies and
Vegetation Lineaments.
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From analysis of the rose diagram for this class of lineaments (Figure 13), the

largest petal trends east-west and represents 8%, or 26 lineaments, out of a total of 310

lineaments.  This petal appears isolated from the rest of the major petals, which mostly

trend northeast-southwest at approximately 45°.  Another noteworthy, but isolated petal

is one that trends northwest-southeast at approximately -40°.  This isolated petal could

possibly represent a conjugate set of fractures to the northwest-southeast lineaments.  The

last major lineament trend seen in this diagram is that of near north-south orientation.

This could possibly represent another set of lineaments complementary to the east-west

lineaments.

Figure 13:  Rose diagram for the Linear Tonal Anomalies and Vegetation Lineaments.
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Lineaments Identified from the DEM

The lineaments obtained from the DEM were identified from two shaded relief

images with a solar azimuth of 225° and 315° respectively.  The two lineament

interpretations were subsequently combined to form a single lineament map (Figure 14).

These lineaments are strictly topographic and most commonly represent breaks in slope,

as these are perhaps the easiest topographic features to observe on the DEM.  These

Figure 14:  Map showing the locations of DEM Lineaments.
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breaks in slope are commonly sharp ridges or steep valleys that create a linear profile in

the shaded relief image.  Elimination of cultural lineaments from this lineament file posed

an interesting dilemma.  Road cuts tend to be displayed in the shaded relief image as

linear features, as they are, in essence, slope-breaks.  If these roads were either

deliberately or accidentally sited along geological “avenues,” such as faults or fractures,

then the associated lineaments should not be removed.  Adding to the complexity of the

interpretation, there were several cases in which portions of lineaments were removed

because they were associated with cultural features.  The remaining sections of these

lineaments did not overlay roads or railroads.  In this event, that particular road may have

followed a geological lineament.

The rose diagram for these lineaments (Figure 15) shows the major petal oriented

northeast-southwest at 45°.  This major petal represents 8%, or 28 lineaments out of 338.

This same northwest-southeast orientation is strongly followed by the majority of the

lineaments, as is indicated by the number of petals in the northeast and southwest

Figure 15:  Rose diagram for the DEM Lineaments.
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quadrants.  Another major trend direction indicated by the petal orientation is

approximately east-west.  By comparison, very few lineaments trend northwest-southeast.

Drainage Anomalies

Linear drainage anomalies were mapped from the hydrology information files in

the DLG (Figure 16).  Any abnormal linear change in an established drainage pattern was

digitized as a drainage anomaly.  The anomalies were often aligned with anomalies in

other streams.  Under the assumption that roads or railroads would not interfere with

Figure 16:  Map showing the locations of the Drainage Anomalies.
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drainage flow appreciably, these lineaments were not treated to the cultural lineament

removal process.

The rose diagram for these lineaments (Figure 17) shows a major petal trending

east-northeast at approximately 70°.  This petal represents 11%, or 24 lineaments out of a

total of 203.  A second important orientation in this diagram is east-west.  All other trends

are relatively minor.

Comparison of Manually Classified Lineaments to Combined Lineament Dataset

A central focus of this investigation is to evaluate the importance of the

classification of lineaments compared to an approach that considers all lineaments of

equal value.  A rose diagram was therefore created from a dataset produced by combining

Figure 17:  Rose diagram for the Drainage Anomalies.
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all the lineaments from the Landsat, DEM and DLG sources (Figure 18).  The rose

diagram shows a major east-west trending petal with 7%, or 136, of the 1821 lineaments.

This petal, however, is mostly isolated.  The majority of the petals lie between 45° and

135° with a slight majority trending northeast-southwest.  Another isolated petal trends

north-south.  Use of this diagram alone for determining the dominant trend direction

would not show the details of the trends of the individual coverages – especially in the

important northwest and northeast trend directions.  Furthermore, lineament orientations

identified from rose diagrams from separate classes of lineaments may shed some light

on the history and origins of those lineaments that otherwise could not be extracted from

a rose diagram of all lineaments.  This is significant as one class of lineaments may be the

major controlling factor in the location of hydrocarbon reservoirs.

Figure 18:  Rose diagram for all combined lineaments.
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Relationship of Lineament Trends to Previous Works

The major trends of all the combined lineaments within this study are in four main

directions (Figure 18).  There is a major east-west trend followed by these lineaments

along with subsidiary northeast-southwest and northwest-southeast trends, possibly

representing conjugate fracture sets, and a small amount following a north-south trend.

Of particular interest is how these trends relate to the major trend directions identified

from previous works in the Powder River Basin, specifically Slack (1981) and Marrs and

Raines (1984).

Slack (1981) identified major linear trend directions from offsets seen

topographically and in the Black Hills Monocline (Figure 19a).  He related these linear

trends to the Belle Fourche Arch, which is a very subtle and broad northeast trending

structure just north of the area of interest for this study.  The only linear trends that

continue into the study area are the Fiddler Creek and Clareton Trend (marked FC and

CT in Figure 19a).  Evidence for these two linear trends continuing further into the field

area can possibly be indicated by two relatively large northeast magnetic trends seen in

the magnetic data in Figure 36.  If these trends are, in fact, viable in the field area, then it

may be that the secondary northeasterly trend seen in this study coincide with the Fiddler

Creek and Clareton Trend.

The major northeast and northwest lineament trends mapped out by Marrs and

Raines (1984) from Landsat imagery using concentration and direction statistics can be

seen in Figure 19b.  The Natrona/Ross trend may actually be a continuation of Slack’s

Fiddler Creek trend and does coincide with northeast-trending magnetic highs in Figure

36.  Other trends that extend into the field area are the Arminto/Upton, Casper/Bill,

Orpha/Redbird, and the northwest-trending Buffalo/Douglas.  The northeast trends seen

obtained from their investigation may very well correspond to the reoccurrence of

northeast trends seen in the rose diagrams for all classes of lineaments in this study

Figures 11, 13, 15, 17, and 18).  Therefore, it seems that there is good correlation

between the studies of lineament trends in the northeast direction.  Furthermore, the

Buffalo/Douglas trend may coincide with northwest trends seen in the Landsat-derived

lineaments and the drainage anomalies (Figures 11, 13, and 17).



41

:  Lineaments trends from previous works.  A)  Major lineament trends from Slack (1981) overlain on Bouger gravity data.  B)
Marrs and Raines (1984).
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Results of Automated Lineament Categorization from DEM and DLG

Manual lineament classification can oftentimes be very time consuming and adds

subjectivity to the process.   There were several cases in this investigation in which

manual classification was difficult, especially in situations where a lineament could be

assigned to more than one class.  Automated lineament categorization of already digitized

lineaments by topographic characteristics may alleviate this problem.  Automated

categorization can be based on topographic classes generated from DLG and DEM data,

such as slope-breaks, ridge-tops and river valleys.  This procedure was applied to the

combined lineament data set discussed in the previous section.

Slope-Break Lineament Classification from DEM

Lineaments belonging to the topographic and tonal anomalies and linear

vegetation patterns classes, and also associated with topographic breaks in slope over

10°, were identified from the DEM data.  Slope-breaks are very important topographic

features because faults are commonly characterized by changes of surface slope.   The

lineaments with a difference in slope greater than 10° on either side of the lineament are

shown in Figure 20.  This 10° mark appeared to be the most effective for slope-break

analysis from comparison with those of lesser angles.  There appeared to be no change in

the resulting slope-break lineament images where less than 10° was used.  The resulting

image of slope-break lineaments was overlain onto the DEM for an evaluation of the

accuracy.  All lineaments checked against the DEM slope information were found to be

indeed associated with slope changes greater than 10°.  The automatic slope

categorization is done on a pixel by pixel basis, and not on an individual lineament basis.

Consequently in most cases it was only parts of lineaments that were identified as being

associated with slope breaks.  This suggests that most lineaments were associated with

more than one topographic expression, or the 10° minimum slope change was too high.

From analysis of the original lineament maps, it appears that most of the slope-

break lineaments belonged to those originally assigned to the topographic class of

lineaments.  This is expected, as there were many more topographic lineaments.  Slope-

break lineaments represent only a small portion of the total topographic lineaments,
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however.  Common occurrences of topographic slope-break lineaments appear to be

prevalent in mountainous areas, such as the northern Laramie Range and the Black Hills,

where extreme changes in slope are expected.  In fact, a portion of the major east-west

trending front range fault of the northern Laramie Range was successfully classified as a

slope-break lineament.

Slightly less than half of the linear tonal anomalies and vegetation lineaments

were classified as slope-breaks.  The significance of this may be that geomorphic features

that show linear tonal change, such as escarpments, are common slope-break

Figure 20:  Map showing the locations of the slope-break lineaments.
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representations of lineaments.  Therefore, the value of evaluating linear tonal anomalies

as slope-breaks seems to be high.

Ridge-Top Lineament Classification from DEM

DEM information was used to automatically identify ridge-top lineaments in the

Landsat and DEM-derived lineaments (Figure 21).  Lineament pixels were classified as

ridge-tops if their elevation value was higher than the mean elevation values of a

Figure 21:  Map showing the locations of the Ridge-Top Lineaments.
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perpendicular matrix. The vast majority of the topographic lineaments were categorized

as ridge-top lineaments.  This is expected, as the most common manually identified

topographic lineaments were linearly aligned ridges.

The categorized lineaments were overlain onto the DEM for accuracy analysis.  A

close inspection of the ridge top lineaments overlain on the DEM suggests that the

categorization is very accurate.  As with the slope-break lineaments, the ridge-top

lineaments appear somewhat segmented because lineaments did not consistently follow

ridge lines.

The linear tonal anomalies identified on the Landsat image included crests of

barren ridges that are linear in shape.  Not many barren ridge-tops were present in the

Landsat image.  Therefore, a number of the manually identified linear tonal anomalies

and vegetation lineaments were automatically categorized as ridge-top lineaments.  Thus

automatic categorization of the linear tonal anomalies and vegetation lineaments can be

an important step if barren ridges are not dominant in the field area.

Valley Lineament Classification from DLG

The hydrology data within the DLG files were used to identify the lineaments, or

segments of lineaments, that were associated with valleys in topographic lineaments and

the linear tonal anomalies and vegetation lineaments (Figure 22).  The procedure is based

on the assumption that the stream location gives a good representation of the shape of the

valley.  This assumption should be reasonably appropriate in mountainous areas where

downcutting streams and steep valleys are more prevalent.

 Many of the lineaments automatically classified as valley lineaments appear to be

highly segmented (Figure 22).  This is a result of the fact that lineaments that cross the

valleys at 90° to the valleys were not excluded.  These segments were kept in the valley

lineament data set in order to investigate whether they controlled small linear changes in

the valley.  In this regard, a lineament may be categorized as a slope-break in one portion,

but as a valley in another.

Slightly less than half of all the topographic lineaments were categorized as valley

lineaments.  In the original manual mapping of topographic lineaments, there were many
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linear valleys, or aligned valleys, which were identified.  Therefore the high number of

lineaments categorized as valleys is not surprising.

Most of the lineaments belonging to the linear tonal anomalies and vegetation

class were categorized as valleys.  The valley lineaments were overlain onto the Landsat

image to try to understand this association.  A strong correspondence between the valley

lineaments and the linear patterns of vegetation was found.  Relatively abundant green

vegetation is one of the main characteristics of river valleys in semi-arid regions.

However, a linear growth of vegetation may also represent faults and fractures, as water

Figure 22:  Map showing the locations of the Valley Lineaments.
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is more abundant in those areas.  Therefore, categorizing this class of lineaments appears

to be valuable in regions having a semi-arid steppe climate.

Summary of Automated Categorization

The automated approach to categorizing, and thus stratifying, lineaments based on

their topographic characteristics is very important.  In areas where the structural geology

and geomorphology is relatively understood, further categorization of lineaments could

prove to be very useful.  For example, valley lineaments may be more important in areas

where subsurface salt tectonics, and subsequent drainage anomalies, are common.

Lineament categorization can also be very important in flat drainage areas like the

Mississippi valley region.  In such an area, slope-break lineaments may be the considered

the most important as there are very few solid rock outcrops where faults and fractures

are exposed.

In this investigation, automated categorization was found to be very accurate.

When all categorized lineaments were added together and compared with the original

manually derived lineaments, very few segments were left unclassified.  Those

unclassified lineaments could represent random linear patterns of vegetation or perhaps

rural roads not included in the DLG information.  The majority of the topographic

lineaments were categorized as ridge-top and valley, and only a relatively minor

proportion was associated with the slope-break class.  Slope-break topographic

lineaments were only common in the mountainous areas.  Most lineaments belonging to

the linear tonal anomalies and vegetation were classified as either valleys, from the

common occurrence of linear vegetation patterns in intermontane valleys, or slope-

breaks, associated with the presence of escarpments near the edges of mountainous areas.

Lineament categorization was also valuable in the categorization of the linear

tonal anomalies and vegetation lineaments.  This categorization led to the identification

of such geomorphologic features as escarpments.
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Chapter 5:  Structural Significance from Lineament Results

Implied Origins and Timing of Lineaments

The Powder River Basin developed much of its present geometry during the

Laramide Orogeny, which took place in Late Cretaceous to Early Tertiary time (Robbins,

1993).  The Laramide Orogeny consisted of a counterclockwise rotation of compressional

stress (Gries, 1983).  It may be assumed that many of the surficial lineaments identified

from the Landsat TM image, DEM and DLG should follow trends associated with

Tertiary tectonism.  By relating known and unknown subsurface structural features, as

seen from gravity and magnetic geophysical maps as well as subsurface structure maps,

with the locations of the identified lineaments, credibility can be given to certain types of

lineaments.  Therefore, certain types of lineaments may be identified as better indicators

of subsurface structure.  Also, the orientations of these lineaments are important as they

may infer an approximate timing of their formation.

Topographic Lineaments

The topographic lineaments identified from Landsat imagery were overlain on

USGS total intensity gravity data (2 km spacing), USGS total intensity magnetic data (2

km spacing), and NEWMAG high-resolution residual magnetic data (0.8-1.6 km

spacing) (Appendix A).  Also, comparisons were made with a detailed subsurface

structure map of the Dakota Formation.  Gravity highs are generally assumed to represent

positive basement structure, where there is an increase in denser rocks closer to the

surface.  Errors could result in interpretation of gravity data where very dense

sedimentary packages of rocks are present.  Magnetic highs are slightly different, and

perhaps more reliable, as they reflect the abundance of magnetic minerals in rocks below

the earth’s surface.  The higher the basement structure, the higher the magnetic reading, if

there is homogeneity in the magnetic concentration.  Possible errors in interpretations can

be encountered when there are intrusions of mafic or ultramafic rocks.  These rocks

contain much more magnetic minerals and thus give the appearance that they are closer to
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the surface.  Furthermore, gravity data can be used to complement magnetic data to

determine basement structure.

Many correlations of subsurface structure with lineaments can be inferred from

the USGS gravity data (Figure 23).  The most notable is that of the Black Hills area.

Several major north-south trending lineaments were mapped near the Black Hills in the

northeast portion of the study area.  These lineaments appear to correlate very well with a

strong gravity high associated with the Black Hills uplift.  These lineaments are aligned

with the sharp gradient between the gravity high and the eastern portion of the basin.

Therefore, these lineaments could represent the surface expression of a major fault.

Another strong correlation can be seen in the southwestern portion of the study area near

the northern Laramie Range.  A major east-west-trending low-angle thrust fault is known

to exist here (Gries, 1983).  Two major east-west-trending lineaments were mapped at

Figure 23:  Map showing the location of Landsat-derived topographic lineaments within
the study area overlaid on the USGS total intensity gravity data.  The inset is of the
gravity high near the Black Hills.  Legend in Appendix A.
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this location and appear to coincide with the steepest part of the gravity gradient between

the Laramie Range and the basin.  Furthermore, many lineaments can be seen in an

arcuate pattern near the central portion of the study area.  This pattern of lineaments

follows a gravity gradient that defines the region where the basin becomes deeper.

 The magnetic data provides further insight in to the relationship between the

lineaments and subsurface structure.  Many of these features were not seen in the overlay

with the USGS total intensity gravity data.  The USGS total intensity magnetic data

shows a bend in a linear magnetic trend from the east-central portion of the study area to

the southwest.  A strong correlation is seen between this magnetic bend and the identified

lineaments (Figure 24a).  This arcuate magnetic gradient is very well represented

topographically on the surface, as shown by the lineament pattern.  The NEWMAG

residual magnetic data shows this trend as a series of localized highs and lows centered

around the topographic lineaments (Figure 25a). A small, but intense, magnetic high can

be seen just southeast of the arcuate trend (Figure 24b).  This magnetic high appears to be

part of a significant linear trend.  Many lineaments mark this feature as well; however,

one major lineament appears to separate the two halves of this magnetic high.  Apparent

movement along this feature may well indicate a right-lateral strike-slip fault as a result

of counterclockwise rotation.  Another striking magnetic feature is found in the northwest

of the study area.  This feature is a small, but well defined, circular magnetic high (Figure

24c).  A large number of lineaments appear to parallel the northeastern half of this feature

oriented.  The NEWMAG residual data shows this feature as a very intense high with

very sharp north-south trending gradients on either side (Figure 25b).  The feature may

represent a localized basement high, as there are older sandstones that appear at the

surface in this area (Love and Weitz, 1951).  Therefore, the lineaments associated with

this feature may represent jointing in the brittle sedimentary rocks.  Lastly, although not

apparent in the USGS data, the NEWMAG residual data depicts localized magnetic

highs along the western flank of the Black Hills in the northeast region of the study area

(Figure 25c).  The topographic lineaments in this area bracket part of the feature with

parallel to sub parallel alignment.
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:  Topographic lineaments overlaid on USGS total intensity magnetic data.  a) Zone of large bend in a magnetic trend.  b) Zone of linear
Legend in Appendix A.
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The dominant trend direction for the topographic lineaments obtained from the

rose diagram is east-west.  There are also slightly smaller trends in the northwest-

southeast and northeast-southwest directions.  These orientations suggest that the linear

topographic features, if they formed perpendicular and oblique to the major stress

direction, developed during the later part of the Laramide Orogeny, or Early-Mid

Tertiary, when compressive stress was approximately north-south (Gries, 1893).

Of all of the correlations between lineaments and the geophysical data, only the

circular magnetic high (Figure 24c and Figure 25b) could not be associated with features

in Dakota Formation structure map.  The arcuate magnetic trend corresponds to two well-

Figure 25: Topographic lineaments overlaid on NEWMAG high-resolution residual
magnetic data.  a) Zone of large bend in a magnetic trend that shows the trend is a
series of magnetic highs.  b) Small circular magnetic high with very sharp north-
south-trending gradients on either side.  c) Curvilinear magnetic high associated with
the Black Hills.  Index figure of NEWMAG data and legend in Appendix A.
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mapped thrust faults associated with the northern Laramie Range and the Hartville Uplift.

Therefore, it appears that the topographic lineaments, mapped from linear ridges and

valleys, are excellent indicators of subsurface structure.

Tonal Anomalies and Linear Vegetation Patterns

The linear tonal anomalies and vegetation lineaments are much fewer in number

than the topographic lineaments, and appeared to have few obvious correlations with

trends in the geophysical data.  From analysis of the overlay of lineaments on the USGS

total intensity gravity data and magnetic data, the only notable correlation with structure

patterns is in the northern Laramie Range, in the southwestern portion of the study area,

and the Black Hills, toward the northeastern portion of the study area (Figure 26 and 27,

respectively).  These are areas of exposed crystalline rocks at the surface and are

Figure 26:  Linear tonal and vegetation anomalies overlaid on USGS total
intensity gravity data.  Legend in Appendix A.
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expected to contain joint and fracture sets.  The linear tonal and vegetation anomalies

appear to follow the fracturing present in the exposed basement rocks, but not in the basin

itself, as evident from the geophysical data.  From comparison with the Dakota structure

map, there are only a few minor faults that correlate with linear tonal anomalies and

vegetation lineaments.  Therefore, it seems that these lineaments should probably be

included with the topographic lineaments or discarded.

The major trend direction of these lineaments, indicated by the rose diagram, is

strongly oriented to the northeast.  According to Gries (1983), this orientation of the

lineaments places them as developing during the very early Laramide Orogeny, or Late

Laramide, depending on whether or not these lineaments represent structures formed at

oblique angles to the orientation of north-south stress.  In summary, it is suggested that

these lineaments are more reliable in mapping surface structure in exposed rock, rather

than subsurface structure.

Figure 27:  Linear tonal and vegetation anomalies on USGS total intensity
magnetic data.  Legend in Appendix A.
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Figure 28:  a) DEM lineaments overlaid on to NEWMAG data of the northern Laramie
Range.  b) Black Hills uplift.  c)  Small linear magnetic high at southern tip of the Black Hills
uplift.  d)  Two small magnetic highs separated by a low marked well by lineaments.  e)
Small magnetic gradient that is indicated at the surface by the lineaments.  Index figure of
NEWMAG data and legend in Appendix A.

DEM Lineaments

Lineaments identified from the DEM were overlain on to the gravity and

magnetic data to shed light on the origins and timing of these lineaments (Figure 28).

Since these lineaments are by definition topographic in origin, they may be redundant,

considering that topographic lineaments were also identified from the Landsat TM image.

DEM lineaments of the Laramie Range (Figure 28a), the Black Hills (Figure 28b), and

the faulted magnetic high in the southeast portion of the study area (Figure 29b) give

similar, but by no means identical, patterns to those identified from the Landsat imagery.

Furthermore, there are some correlations of the DEM lineaments with subsurface

structure that are not seen with the Landsat topographic lineaments.  One example is the

presence of lineaments along the continuation of the magnetic linear trend related to the

Black Hills uplift, as seen on the USGS total intensity magnetic data (Figure 29a) and the

NEWMAG high-resolution residual magnetic data (Figure 28c).
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:  Map showing DEM lineaments overlaid on USGS total intensity magnetic data.  a)  Area
magmnetic linear trend associated with the Black Hills uplift with lineaments identified from

b)  Two magnetic highs to the southeast of the study area as part of the same linear trend.
Legend in Appendix A.
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Another case where DEM lineaments correspond to a magnetic high is seen in the north

central portion of the study area.  USGS magnetic data does not show the high at all,

however, NEWMAG data does (Figure 28d).  This feature is actually two small

magnetic highs, both of which are associated with the lineaments on the surface, and a

sharp magnetic low separating the two highs.  The last example of a significant magnetic

high that corresponds to a series of lineaments is in the central portion of the study area.

Although not identifiable on the USGS magnetic data, it is detectable on the

NEWMAG data (Figure 28e).  The lineaments identified from the DEM seem to mark

the gradient between this subtle high and low.

The DEM lineaments appear to be a useful class, and therefore worthwhile

mapping.  Perhaps the main utilization of these lineaments is as a supplement to the

topographic lineaments because these lineaments follow trends that were not documented

by the topographic class of lineaments identified from the Landsat TM image.  The rose

diagram for these lineaments shows a strong northeast-southwest trend.  This is strikingly

different from the related topographic lineaments, which have a substantial east-west

trend.  Perhaps the majority of these DEM lineaments represent an older set of

topographic lineaments formed during the Late Cretaceous (Gries, 1993).

Drainage Anomalies

The linear drainage anomalies identified from the hydrology files of the DLG

were displayed on the USGS gravity (Figure 30) and magnetic data (Figure 31).  Figure

30 appears to suggest that unlike the Landsat-derived lineaments, the drainage anomalies

only correspond to areas of uplift, such as the Black Hills in the northeast of the study

area, but there are some dispersed in the basin area as well.  The total intensity magnetic

data shows interesting structural features associated with the drainage anomalies (Figure

31).  For example, a small circular pattern of drainage anomalies can be seen in the very

northern portion of the study area (outlined by box in Figure 31).  This circular pattern of

drainage anomalies corresponds to a circular-shaped magnetic gradient.  Another arcuate

pattern of drainage anomalies can be seen in the west-central portion of the study area

(outlined by box in Figure 31).  This series of drainage anomalies appears to mark the

gradient between the magnetic high to the west and the corresponding low to the east.
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Also, many drainage anomalies seem to relate to the highs seen in the northwest portion

of the study area.

The drainage anomalies have a trend direction of east-northeast.  Following Gries

(1983), the formation of these anomalies could have been approximately Middle to Late

Tertiary in age.

Summary of Structural Significance and Timing of Lineaments

Comparing the lineaments identified from the various data sets with subsurface

information has yielded interesting and striking results.  These results have provided

valuable insight as to which group of lineaments appear to be the most useful and

correlative to subsurface structure.  The topographic lineaments, identified from the

Landsat image, appear to be the most coincident with subsurface structure, implied by

Figure 29:  Map showing the locations of drainage anomalies overlaid on the USGS
gravity data.  Legend in Appendix A.
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gravity and magnetic highs.  The lineaments identified from the DEM also correspond to

subsurface structure.  These lineaments are topographic in nature and appear to

supplement the topographic lineaments identified from the Landsat image.  The drainage

anomalies also appear to coincide with subsurface structure.  Therefore, these lineaments

could possibly represent surface expressions of these geophysical highs.  The linear tonal

anomalies and vegetation lineaments did not, however, show associations with subsurface

structure.  Nevertheless, their usefulness in identifying surface structure, such as joint and

fracture sets, appears to be evident by their concentration in exposed brittle rock.

The general age of the lineaments, combining results from the rose diagrams and

work completed by Gries (1983), appears to indicate that the topographic lineaments,

Figure 31:  Map showing the location of the linear drainage anomalies overlaid on
the USGS total intensity magnetic data.  Legend in Appendix A.
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with a strong east-west and seemingly conjugate trend directions of northeast and

northwest, are the result of the development or reactivation of structures during the Late

Laramide, when the tectonic stress was strongest (Robbins, 1993).  Those topographic

lineaments identified from the DEM indicate development during the Late Cretaceous.

Therefore, these topographic lineaments may well be slightly older and closely related to

the topographic lineaments identified from the Landsat image as indicated by the

secondary orientation of east-west in the rose diagram.  The age of the drainage

anomalies may be the most perplexing.  These lineaments may have mostly developed in

Late Cretaceous during very the Early Laramide Orogeny, if they represent structures

formed at acute angles to stress or in the Middle-Late Paleocene at the very last while

Laramide deformation was near southward in the Powder River Basin.  Lastly, the

northeast-trending linear tonal anomalies and vegetation lineaments, which mark surficial

structures, may have been the earliest structures to develop during the Late Cretaceous.

The concentration of lineaments is higher in areas of exposed brittle rock,

typically coinciding with uplifts.  Figure 32 shows rose diagrams for all lineaments in the

Black Hills, Hartville Uplift, and Northern Laramie Range.  Assuming these lineaments

represent fractures and faults developed either at acute angles or perpendicular to the

compressive stress during the Laramide Orogeny, they should yield clues on the timing

and deformation of these uplifts.  The north-south trending Black Hills are understood to

have developed during the Early Laramide Orogeny (Gries, 1983).  A strong, but isolated

east-west primary trend and a secondary northeast-southwest trend, suggest that the Black

Hills were strongly deformed during the later stages of the Laramide Orogeny.  The

Hartville Uplift is another Early Laramide structure (Gries, 1983) with a northeast-

southwest trend.  The rose diagram for this region shows that the concentration of

lineament trends between 45° and 135° support this, if they represent conjugate fracture

sets at acute angles to the westward stress direction.  A strong east-west trend may by the

result of later Laramide deformation when the tectonic pulse was the greatest and

oriented southward.  Lastly, the lineaments in the Northern Laramie Range show a strong

northwest-southeast trend, which is the same as the uplift, with significant trends east-

west and between 30° and 60°.  These trends would also be consistent with Middle-Late

Laramide deformation as the rotation of compressive stress, according to Gries (1983),
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was oriented to the southwest and south.  These trends would therefore represent

structures formed at perpendicular and acute angles to the stress.

Figure 32:  Rose diagrams showing major
trends of lineaments occurring in the
uplifted regions within the study area.  The
rose diagrams are in the relationship that
the uplifts occur to each other.  A)  Rose
diagram for the Black Hills lineaments.  B)
Rose diagram for the Hartville Uplift
lineaments.  C)  Rose diagram for the
Northern Laramie Range Lineaments.

A.

B.C.
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Chapter 6:  Relationship of Lineaments to Hydrocarbon
Reservoir Location

Background of Hydrocarbon Reservoirs

The employment of the powerful GIS functionality of overlay has been shown in

the previous chapter to be a very informative tool for the analysis of lineaments and

subsurface structure.  Subsurface structure, of course, is crucial in the entrapment of

hydrocarbons.  Whether or not these entrapments are stratigraphic, structural, or a

combination of both, overlaying lineaments and oil field locations with subsurface

geophysics gives useful insights in understanding the distribution of the reservoirs.

The Powder River Basin is a very large producer of oil and gas and contains many

linearly arranged oil fields.  These oil fields largely belong to three main time intervals:

Pennsylvanian-Permian, Lower Cretaceous, and Upper Cretaceous.  The major producing

intervals and their producing formations are shown in Figure 33.  The major

Pennsylvanian-Permian producing zone is the Minnelusa Formation, an aeolian

sandstone, and the Minnekahta Limestone.  The productive formations belonging to the

Lower Cretaceous are the Mowry Shale, Newcastle Sandstone, Muddy Sandstone, Skull

Creek Shale, Dakota Sandstone, Fall River Sandstone and the Lakota Sandstone.  Lastly,

those productive formations of the Upper Cretaceous rocks are the Lance Formation,

Lewis Shale, Teapot Sandstone, Parkman Sandstone, Steele Shale, Sussex Sandstone,

Niobrara Formation, Turner Sandstone, Greenhorn Formation and Frontier Formation

(DeBruin and Boyd, 1990).

The identified lineaments may not directly, or even indirectly, affect the

hydrocarbon reservoirs of these three main age groups.  However, as was shown in the

previous chapter, many lineaments occur over major basement features interpreted from

the gravity and magnetic geophysical data.  The lineaments appear to represent the

surficial expression of these features.  Therefore, the combination of geophysical data

with the lineaments becomes a useful and inexpensive method of understanding the

structures involved in hydrocarbon entrapment.
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Figure 33:  Stratigraphic column for the Powder River Basin.  Brackets on the right side mark
the productive intervals (Dolton and Fox, 1995).
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 The Pennsylvanian-Permian Interval

The producing formations of this interval include the Pennsylvanian Minnelusa

Sandstone and the Permian Minnekahta Limestone.  This play consists of 160 fields that

have approximately 500 MMBO (Million Barrels of Oil).  The hydrocarbon traps related

to this major play are largely the result of paleotopography, reservoir truncation, and

sandstone pinchouts at the top of the Minnelusa.  The reservoirs themselves are aeolian

sand dunes sealed at the top by the impermeable Opeche Shale.  Source rocks for the

hydrocarbons seem to be the dark marine shales of Desmoinesian age, lying underneath

the Minnelusa, or the Phosphoria Formation to the west (Dolton and Fox, 1995).

  Within the study area, there are only a few localized oil fields producing from

the Minnelusa Sandstone.  Several of these localized fields form an arcuate pattern

around the magnetic high seen in the northwest portion of the study area (Figure 34).

Figure 34:  Map showing the Pennsylvanian-Permian oil fields between Raven Creek and
Eagle Rock (polygons from northeat to southwest) surrounding a magnetic high.
Topographic Lineaments (brown), Tonal Anomalies and Vegetation Lineaments (black),
DEM Lineaments (red), and Drainage Anomalies (blue) are also shown.    Geophysical
legend in Appendix A.
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The Landsat and DEM derived topographic lineaments may serve as good surface

expressions of this structure and, possibly, suggest a cause for the observed position of

the reservoir.  This is a good example of how lineaments and magnetic data can be used

to analyze reservoir location.

The NEWMAG high-resolution residual magnetic data shows two magnetic

trends, both trending roughly northeast-southwest, that the three easternmost Minnelusa

fields follow (Figure 35).  These trends, correspond to the Black Hills monocline, which

can be seen in the subsurface structure map of the Dakota Formation (Barlow and Haun,

Inc. Geologists, 1987).  The three oil fields, formed from oil trapped in anticlines at the

Dakota level, overlay this small linear magnetic high.  The Red Bird field, shown in

Figure 35b, is completely flanked on the east side by intersecting DEM Lineaments

marking the structural high on which it sits.

Figure 35:  NEWMAGTM data with lineaments and Minnelusa oil field locations.  a)  Inset showing
possible linear control in the Beaverhole field.  b)  DEM Lineaments related to the subsurface
basement high flanking the east side of an oil field.  Index figure of NEWMAG data and legend in
Appendix A.



66

In summary, the major structural features that affect the Pennsylvanian-Permian

hydrocarbon reservoirs in the field area, are possibly represented on the surface as

indicated by the presence of topographic lineaments from Landsat and DEM, and

drainage anomalies coincident with highs seen in the magnetic data.  Examples are the

strong high in the northwest portion of the study area and the linear trends related to the

Black Hills Monocline and the Hartville Uplift in the southeast portion of the study area.

The lineaments that appear to be the most coincident with these structures are the

topographic lineaments, the DEM lineaments and the drainage anomalies.

The Lower Cretaceous Interval

 The major producing formations in the Powder River Basin that are Lower

Cretaceous in age are the Lakota Sandstone, Fall River Sandstone (Dakota), Muddy

Sandstone, Skull Creek Shale, and the Mowry Shale.  Traps in the Lakota Sandstone are

completely stratigraphic as they occur within channel sandstones sealed by fine-grained

alluvium.  The majority of the traps associated with the Fall River Sandstone are

stratigraphic pinchouts with increasing shale content to the west; however, large

hydrocarbon reservoirs have been discovered in structural traps formed by plunging

anticlinal noses.  Many different types of stratigraphic traps characterize reservoirs

producing from the Muddy Sandstone.  Lastly, the Skull Creek Shale produces from

fractures and fracture intersections - a more unconventional play.  The source bed for all

of these reservoirs is presumed to be the very organic-rich Mowry Shale, which

immediately overlies these formations.  The fields of the Lower Cretaceous interval

account for more than 720 MMBO and 1050 BCFG (Billion Cubic Feet of Gas) in the

Powder River Basin.  The vast majority of this amount is from the Muddy Sandstone

play, while the Lakota Sandstone play is underexplored and does not contribute

significantly to these numbers (Dolton and Fox, 1995).

Images created from the integration of total intensity and high-resolution residual

magnetic data with the lineaments show many coincidences with reservoir location

(Figure 36).  An increase in number of all lineaments as well as a dominant northeast

orientation in the western portion of the study area indicates the influence of subsurface,

possible basement, structure on surface features.  In fact, the overlay depicts a northeast-
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trending magnetic high corresponding to the zone with an increase in lineament density

(Figure 36).  Several fields can be seen on this high that possibly owe their existence to

the feature.  The most notable of these fields, the Big Muddy East field, lies just to the

east of this magnetic high in the southwestern portion of the study area.  A number of

lineaments belonging to the DEM Lineament and Topographic Lineament classes relate

to this magnetic gradient and an east-plunging anticline at the Dakota level (Barlow and

Haun, Inc. Geologists, 1987).  Continuing to the north, the Cole Creek South field also

overlays the edge of this magnetic high, to which it may be related.  Topographic

Figure 36:  Location of Landsat topographic lineaments (brown), tonal anomalies and
linear vegetation lineaments (black), DEM lineaments (red), drainage anomalies (blue),
and Lower Cretaceous reservoirs (stippled) overlaid on USGS total intensity magnetic
data.  Geophysical legend in Appendix A.
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lineaments identified from the Landsat image and the DEM, as well as drainage

anomalies, appear just to the northeast of this reservoir and therefore may stem from the

subsurface structure.  The Sand Dunes field, just north of the Cole Creek South field,

overlays the arcuate edge of the same magnetic high.  The circular-shaped edge is

associated with lineaments that trend in many directions, which differs from the overall

northeast-trending orientation of the lineaments on this high.  Therefore, it appears that

this reservoir location is strongly related to the basement structure.  However, it is

suggested that this high may be a tongue of coarse clastic sedimentary rocks formed from

eroded igneous rocks (Robbins, 1993).  Nevertheless, the last major reservoir that appears

to be related to the same magnetic high is the Steinle Ranch field.  This field also

overlays the gradient between the magnetic high and low at the very eastern portion of

the high.  Two of major lineaments tending northeast, and conjugally northwest, mark

this gradient and possibly the eastern termination of this magnetic high.

Toward the northwestern portion of the study area, just north of the

aforementioned magnetic high, another magnetic high can be seen.  This high is much

smaller, but still trends in the same general east-northeast direction.  In fact, the trend of

this high becomes more northeasterly from east to west.  Curiously, many of the major

lineaments of all classes overlying this magnetic high trend northwest.  Perhaps these

lineaments represent structures forming conjugally to the lineaments trending northeast

along this feature.  In support of this statement, those lineaments trending northwest are

commonly found to intersect those trending east-northeast.  A major Fall River (Dakota)

Sandstone reservoir, the Buck Draw North field, overlays this high toward the western

portion of the study area.  The southern portion of the reservoir changes shape to a more

easterly orientation.  This abrupt change corresponds to a major drainage anomaly

trending in the same direction.

The Hilight field, a major Muddy Sandstone reservoir, lies near a small, but

striking, circular magnetic high in the northwest portion of the study area.  The

concentration of lineaments, dominantly drainage anomalies, in the region immediately

northeast of this noteworthy high appear to correspond.  The most apparent

correspondence of the location of this large field with the magnetic high is the abrupt

change in trend direction from northeast to north-northwest of the field.  Therefore, this
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magnetic high and the linear structures related to it may be the cause of the major abrupt

change of the Hilight field.

Many of the major correlations between reservoir location and linear structures

supported by magnetic data are seen in the western portion of the study area.  However,

through the support of high-resolution residual magnetic data (NEWMAG), another

major oil field appears to be affected by lineaments related to basement structure.

Toward the southwestern portion of the Fiddler Creek, another Muddy Sandstone field,

orientation to the southwest stops bluntly into a northwest-trending segment (Figure 37).

A few DEM lineaments and drainage anomalies lie parallel and perpendicular to this

southeasterly trend and also surround the small magnetic high at the end of the northeast-

trending segment.  The NEWMAG data, along with southeast lineament orientation,

may therefore yield clues to the sudden change in orientation of this field, as it seems to

follow the residual magnetic high.  The same change in trend is not seen in the Clareton

Field just to the southeast.

The major oil fields of the Lower Cretaceous producing interval appear to be

strongly affected by magnetic highs seen both in USGS total intensity magnetics and

Figure 37:  Fiddler Creek oil field location and lineaments of all classes overlayed on
NEWMAG high-resolution residual magnetic data.  Index figure of NEWMAG data and
legend in Appendix A.
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NEWMAG high-resolution residual magnetics.  Lineaments, mainly belonging to the

Landsat and DEM derived topographic lineaments, DEM lineaments and the drainage

anomalies, are found parallel and perpendicular to these magnetic highs.  Insight has been

obtained from analysis of the lineaments relating to magnetic highs.  It appears that the

drainage anomalies are dominantly perpendicular to the trend of the basement structure.

This is evident in both Figures 36 and 37.

The Upper Cretaceous Interval

The major plays that comprise the Upper Cretaceous interval are the Turner

Sandstone, Sussex-Shannon Sandstone, and Mesaverde-Lewis (Parkman).  There are also

unconventional fractured shale plays, including the Niobrara and Mowry Shales.  The

Turner Sandstone is a low-porosity sandstone that produces from traps associated with

generally thin bar complexes of irregular shape.  The Sussex-Shannon Sandstone play

consists of marine shelf sandstone reservoirs.  Traps in this play are typically classic

updip pinchouts of porous sandstone that terminate into impermeable shale.  Lastly, the

Mesaverde-Lewis (Parkman) play involves hydrocarbon traps in marine sandstones.  Like

the Sussex-Shannon, the traps associated with this play are typically updip stratigraphic

pinchouts along sinuous marine bar sands.  Total production from the Upper Cretaceous

interval exceeds 310 MMBO and 270 BCFG.  The fractured shale plays do not contribute

significantly to these numbers (Dolton and Fox, 1995).

Many lineaments are associated with the Flat Top field located in the southern

portion of the study area (Figure 38).  An overlay of the lineaments and the oil field

locations with the magnetic data does not indicate evidence of basement structure relating

to these lineaments.  However, the detailed structure map of the Dakota Formation

(Barlow and Haun, Inc. Geologists, 1987) depicts a large and arcuate nonplunging

anticline as the primary trapping mechanism for this field.  The axis of this anticline is

shown in Figure 37.  Therefore, lineaments, especially topographic ones, may not always

stem from basement structure.

Interesting results were found from the overlay with the lineament and oil field

locations with the NEWMAG data.  Todd field, a small linear east-west-trending field

in the northern portion of the study area, directly overlays the apex of a north-south-
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trending magnetic high (Figure 39a).  A large DEM lineament directly crosses this

magnetic high, perhaps representing the surface expression of this feature.  In the

southwestern portion of the study area, the Brooks Ranch field lies just to the west of a

residual magnetic high (Figure 39b).  This is the same residual high that possibly affects

the Big Muddy East field of the Lower Cretaceous interval.  Lineaments belonging to the

Topographic and DEM classes may represent this structure on the surface as seen in

Figure 39b.  Coincidentally, a structural high is also found to lie above this magnetic

anomaly at the Dakota level.  In the central part of the study area, another oil field,

Poison Draw, can be seen in relation to a residual magnetic high (Figure 39c).  This

northwest-trending field lies just to the southeast of a subtle magnetic high, also trending

northwest.  The high concentration of many lineaments of all types, but especially those

belonging to the Landsat and DEM derived topographic lineaments class, may owe their

origin to this linear high.

Figure 38:  Map showing the Flat Top oil field.  The location of lineaments as well as the axis
of a large anticline at the Dakota level is also shown.  Geophysical legend in Appendix A.
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Summary of Lineament Influence on Hydrocarbon Reservoirs

The employment of the GIS functionality of overlay appears to be very useful in

understanding the relationships between lineament location and magnetic anomalies.

This overlay method allows for analysis of the origin of the lineaments by means of

basement structure analysis.  This method bridges the thousands of feet between surface

features and the structure of the basement.  Lineaments may not always represent the

surficial expression of structures originating from basement anomalies, but may reflect

structure in the underlying sedimentary package.  Therefore, it is very useful to have

formation structure maps of the overlying strata to provide further information.

The lineaments that seem to be more consistently related to subsurface structure

are those belonging to the topographic lineaments, the DEM lineaments and the drainage

anomalies classes.  The orientations of the lineaments are usually parallel or

perpendicular to the structure, as seen in Figures 35b, 36, 37, and 38.  This pattern could

represent conjugate sets of fractures as may be indicated near the Buck Draw North field

Figure 39:  Overlays of lineament and oil field location on NEWMAG magnetic
data.  a)  Todd field.  b)  Brooks Ranch field.  c)  Poison Draw.  Index figure of
NEWMAG data and legend in Appendix A.
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in Figure 36.  The drainage anomalies seem to be typically perpendicular to the trend of

the coincident structure.  Nevertheless, these patterns of lineaments, along with a higher

concentration in one area, are strong indicators of subsurface structure.  This information

is critical in areas such as the Powder River Basin where hydrocarbon reservoirs are

prevalent.  Overlay methods with magnetic data may not be the most precise method of

reservoir location analysis, but could reduce the area of study significantly.  This may be

a useful and cost effective approach to planning seismic surveys for future exploration.
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Chapter 7:  Conclusions

Lineament studies are oftentimes viewed as untrustworthy due to the

subjectiveness of the lineament identification process.  This skeptical view of lineament

studies may arise from the assumption that all lineaments have equal value, regardless of

their appearance on the data sets employed for identification.  Furthermore, the use of

subsurface geophysical techniques greatly enhances the value of lineament investigations,

because the geophysical data facilitates the interpretation of geological structure.  This

investigation has shown that the classification of lineaments from a Landsat TM image,

DEM, and DLG files, yields a far richer lineament interpretation, as well as providing

information about each lineament type.

Rose diagrams generated for each lineament class, combined with work done by

Gries (1983), suggests that many of the topographic lineaments derived from Landsat,

representing valleys, ridges and escarpments, can be related to structural directions

associated with the later portion of the Laramide Orogeny.  Furthermore, the topographic

lineaments derived from the DEM support this analysis.  The drainage anomalies, derived

from the DLG data, and the tonal anomalies and linear vegetation patterns, derived from

Landsat, appear to reflect structures formed from the Early Laramide Orogeny.  This is an

important result as the northern portion of the Laramie Range, where most of the tonal

anomalies and linear vegetation growth were mapped, is believed to have been strongly

deformed during the latter stages of the orogeny (Gries, 1983).  Lineament trends also

seen in the major uplifts in the study area reflect that the Hartville Uplift primarily during

the early stages of the Laramide Orogeny with perhaps futher deformation during the

later stages.  The Northern Laramie Range lineaments show trend directions consistent

with the counterclockwise rotation of compressive stress as detailed by Gries (1983).

Lastly, the Black Hills, formed during the early Laramide, perhaps show the effects of

Late Laramide deformation.  The major northeast and northwest trend directions

indicated by all types of lineaments may be very significant, particularly to how the relate

to trends identified by Slack (1981) and Marrs and Raines (1984).  The northeast trending

lineaments appear to correlate to the Fiddler Creek and Clareton trends of Slack (1981)

and the Arminto/Upton, Natrona/Ross, Casper/Bill, and Orpha/Redbird of Marrs and
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Raines (1984).  The lineaments that also show northwesterly trends, the Landsat-derived

lineaments and the drainage anomalies, may correlate to the Buffalo/Douglas northwest

trend of linear structures identified by Marrs and Raines (1984).

Landsat TM topographic lineaments, consisting of linear ridges and valley, were

found to be concentrated in areas where there is either exposed brittle rock or a strong

magnetic or gravity high.  This can also be said of the topographic lineaments identified

from the DEM.  The DEM lineaments were in most cases complementary, rather than

duplicative of the Landsat-derived topographic lineaments.  In many places, patterns of

the topographic lineaments indicated the presence of conjugate fracture sets.  Therefore,

it can be inferred that the topographic lineaments strongly reflect geological structures

both surface and subsurface. Drainage anomalies, identified from the DLG files, were

also shown to provide valuable information regarding the subsurface structure.

Lineaments belonging to this class were often found to lie perpendicular to magnetic

trends seen in both USGS total intensity and NEWMAG high-resolution residual

magnetic data.  A circular pattern of drainage anomalies was found to exist in two main

regions of the study area.  An overlay of these lineaments with both types of magnetic

data indicated that these patterns coincide with arcuate gradients between magnetic highs

and lows.  The lineaments belonging to the tonal anomalies and linear vegetation growth

class, derived from the Landsat TM image, were not readily related to subsurface

structure.  However, these lineaments did occur in greater density in areas of exposed

brittle igneous and sedimentary rocks.  The vegetation lineaments portray obvious joint

and fracture sets in the brittle rocks and could, therefore, be a useful class of lineaments

for surficial structure analysis.

GIS functionality is becoming increasingly popular in structural geology analysis.

The most common GIS functionality employed in the analysis portion of this study was

the use of overlay.  However, GIS functionality was also found to be particularly useful

in the preprocessing of the data.  Specifically, the systematic comparison of all

lineaments to with nearby cultural features, and the elimination of those lineaments found

to closely transportation routes mapped in the DLG files, was very important in reducing

the number of spurious lineaments, and thus increasing the likelihood that the lineaments

in the final data set were indeed of geological origin.  However, some cultural lineaments
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may themselves follow geological “avenues” such as major faults and fractures.  Thus a

lineament that parallels a cultural feature is not necessarily a spurious lineament.  The

DEM can be used to resolve the ambiguity, based on the assumption that transportation

features rarely modify the landscape significantly at the scale used in this study.    The

original topographic lineament data, including lineaments derived from the Landsat

image and the DEM, were stratified based on different topographic classes.  These

classes are slope-breaks, ridge-tops, and valleys.  Information from the DEM was utilized

to identify slope-breaks and ridge tops, whereas the valleys were identified from the DLG

hydrological files.  It was found that each topographic lineament class was useful,

possibly reflecting the range of topography found in this area.  Studies covering smaller

localities might find that only certain types of lineaments are useful.  For example, a

geologist mapping structure in broad flat terrain may find that slope-break lineaments are

the most valuable.  Conversely, a geologist mapping structure in areas of high relief may

place more emphasis on valley and ridge-top lineaments.

The Powder River Basin is widely known as one of the nation’s most prolific

hydrocarbon producing interior basins.  There are three main producing intervals in the

Powder River Basin – the Pennsylvanian-Permian, Lower Cretaceous and Upper

Cretaceous.  Many of the reservoirs belonging to these producing intervals appear to be

linearly arranged, most oriented to the northwest, suggesting strong structural control.

Overlaying the lineaments and the locations of the reservoirs on the total intensity and

high-resolution magnetic yielded interesting results.  Subtle and strong magnetic highs

seen in the total intensity and high-resolution magnetic data often coincide with a higher

concentration of lineaments.  These lineaments parallel and cross these highs at the

surface, often intersecting.  Many major and minor oil fields are located in these areas,

possibly owing their existence to basement structural features and related lineaments.

Among the most prominent of these fields are Hilight, Buck Draw North, Cole Creek

South, Big Muddy East, Sand Dunes, Steinle Ranch, Todd, Poison Draw and Fiddler

Creek.

In summary, this study has led to the development of valuable insights regarding

the properties of lineaments and their structural significance.  Also, the employment of

GIS functionality with information contained within the DEM and DLG files has shown
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to be very powerful in the classification and categorization of these lineaments.

Ultimately, the final analysis of the influence of these lineaments came from the

integration of the surface information with the subsurface geophysics.  This stage of the

investigation allowed for generalizations to be made about which lineaments seem to be

surface expressions of subsurface structure interpreted from geophysical data.  The

lineament data combined with the subsurface magnetic geophysics also provided possible

reasons for the locations of some hydrocarbon reservoirs.

Recommendations for Future Investigations

This lineament analysis involved many steps.  Perhaps one of the most difficult to

implement was the elimination of cultural lineaments from the interpreted lineament files.

This step was performed with raster images of the lineaments rather than using the

original digitized vector layers.  Perhaps an easier way to conduct this operation would be

to use vector GIS functionalities of buffer and erase.  After the cultural lineaments were

removed, lineaments were converted back into vectors for rose diagram generation.  A

second aspect of this procedure is that for those lineaments with more than two nodes, the

azimuth was determined by the straight line from starting to end node.  To eliminate this

problem, future studies should include only lineaments with two node points.  In areas

where lineaments are curvilinear, several lineaments of two nodes each should be drawn,

rather than one large lineament.

Structural analysis of the lineaments in this study was generalized based on the

coincidence of a large concentration of lineaments with interpreted structure in the

magnetic and gravity geophysics.  This method is useful in evaluating which lineaments

are more credible as surface expressions of subsurface structure.  However, incorporation

of 2-D seismic geophysics that cross certain lineaments could be considered as the next

step in the subsurface analysis of these lineaments.  Seismic lines could be obtained in

areas of high lineament concentration to study their effects at depth.

Lastly, overlays of the location of hydrocarbon reservoirs and the lineaments on

to the magnetic data showed significant results.  In many cases where there were

magnetic highs, or gradients between highs and lows, there was a higher concentration of

lineaments that were parallel or perpendicular to these apparent structures.  Many oil
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fields were found to lie either directly over these highs, or on the fringes near the

gradient.  To provide evidence that these reservoirs are affected by the structures

identified in the magnetic data, one or two additional steps should be carried out.  The

first step would be to include overlays of lineament and reservoir location with published

productive formation structure maps.  Also, seismic lines could be acquired across the

area of question.  These steps would also continue the study of which lineaments appear

to show the strongest correlation with subsurface structures.
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Appendix A:  Legends for Geophysical Maps

Gamma Legend for all figures containing
USGS total intensity magnetic data

mGal Legend for all figures containing
USGS gravity data
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