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Abstract

Applications of the scaled Laplace transform in

some financial and risk models

Adetokunbo I. Fadahunsi

In this work, we propose several approximations for the evaluation
of some risk measures and option prices based on the inversion of
the scaled version of the Laplace transform which was suggested
by Mnatsakanov and Sarkisian (2013). The classical risk model
is considered for the evaluation of probability of ultimate ruin.
Approximations of the inverse function of the ruin probability is
proposed and its natural extension to the computation of Value at
Risk, a benchmark risk measure for insurance and finance sectors,
is proposed. The recovery of the distributions of bivariate models
and bivariate aggregate claims amount on insurance policies is sug-
gested. The proposed method is also applied to the Black-Scholes
model for the estimation of option prices. Simulation studies and
results are presented to demonstrate the performance of the pro-
posed method.
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Chapter 1

Introduction

Individuals and companies often experience risky situations that require decision

making in the presence of uncertainties. Among many concerns of financial

market participants, one of the most important is the determination of the

exact values of financial securities, commodities, and other items of interest.

To decide upon a new product, insurance analysts usually consider what is the

probability of profitability of the product. Are there adjustments that can be

made to the price structure in order to increase the profitability of the product

while maintaining a reasonable degree of security and competitiveness? How

much capital is necessary to ensure profitability? How much premium should

be charged for a policy? When exact solutions to these concerns are not readily

available, numerical techniques become essential.

In many cases, the choice of numerical methods tends toward methods of high

accuracy while paying little to no attention to how the financial provisions of
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the contract, instrument, or product may affect the reliability of the numerical

solution, see Tagliani et al. [49]. As a consequence of discontinuities that char-

acterize several financial options and risk measures, numerical techniques which

are capable of circumventing such issues need to be employed. Methods of In-

tegral Transforms are viable ways of managing issues with discontinuities. The

Laplace transform, the Mellin transform, and the Fourier transform, to name a

few, are examples of widely applied integral transforms in the literature. In this

work, we consider a scaled version of the Laplace transform which was suggested

in Mnatsakanov and Sarkisian [40].

The pertinent issue is the inversion of the Laplace transform. The recovery

of a function from its Laplace transform is widely known to be a severely ill-

posed inverse problem, see Tikhonov [51]. Hence, the need for regularization,

which is very helpful in situations involving the inversion of the Laplace trans-

form. Methods of inverting Laplace transforms can be broadly grouped into

two classes namely: those that use complex values of the Laplace transform

(e.g. the Bromwich Inversion formula, the Talbot method, etc.) and those that

use only real values of the Laplace transform (e.g. the Post-Widder method, the

Maximum Entropy method, etc.), see Cohen [8]. We considered the Moment

recovered (MR) inversion method suggested by Mnatsaknov [39]; this method

only uses real values of the Laplace transform. The scaled version of the MR

Laplace transform inversion enables the application of the method in cases when

the support of the target function F is the positive half of the real line, i.e.,

supp{F} = R+ = [0,∞). The approximation of the probability of ruin and

the option pricing problem are examples of such cases. For properties of the

2



moment recovered inversion method and the rate of approximation, see [40] and

the references therein.

1.1 Scaled Laplace Transform Inversion

Assume that F is an aboslutely continuous distribution with R+ = [0,∞) as

its support. Let f be the probability density function of F with respect to the

Lebesgue measure on R+.

Definition 1. Suppose that F is the distribution function of a random variable

X. Assume also that we have a given sequence of exponential moments, µ(F ) =

{µt(F ), t ∈ Nα}. The scaled Laplace transform of F is defined by

µt(F ) := LF,b(t) =

∫
R+

e−ctxdF (x), for t ∈ Nα = {0, 1 . . . , α}, α = 1, 2, . . .

(1.1)

where c = ln b, for some b > 1.

To approximate the cumulative distribution function F and probability den-

sity function f , consider the scaled moment-recovered (MR) Laplace transform

inversion introduced by Mnatsakanov [40]:

Fα,b(x) := (L−1α,bµ(F ))(x) = 1−
[αb−x]∑
k=0

α∑
j=k

(
α
j

)(
j
k

)
(−1)j−kµj(F )

and

3



fα,b(x) =
[αb−x]ln(b)Γ(α + 2)

αΓ([αb−x] + 1)

α−[αb−x]∑
j=0

(−1)jµj+[αb−x](F )

j!(α− [αb−x]− j)!
, x ∈ R+ (1.2)

respectively. Here, α ∈ N is an integer-valued parameter. The equations above

suggest that to evaluate the approximations Fα,b and fα,b, only the knowledge

of the scaled Laplace transforms evaluated at the finite arithmetic progression

Nα,b = {jlnb, j = 0, 1, . . . , α} is required. From [39, 40], we have that Fα,b and

fα,b converge uniformly to F and f respectively as α→∞.

1.2 Collective Risk Model

Consider the classical risk model with risk reserve process {Rt}t≥0. A risk

reserve process, as defined in broad terms, is a model for the time evolution of

the reserves of an insurance company. Let R0 = u > 0 be the initial reserve at

time t = 0. The company receives income from premiums at a constant rate,

say p, per unit time. Claims are paid according to a compound process S(t) =∑N(t)
k=1 Xk, where {N(t), t ≥ 0}, the total number of claims, is a Poisson process

with intensity λ > 0 and the individual claims, X1, X2, . . ., are independent and

identically distributed nonnegative random variables, independent of N(t). At

time t, the reserve of the company is Rt = u+ pt− S(t) and the time to ruin is

τ(u) = inf{t ≥ 0 : Rt < 0}.

The classical risk model has the property that there exists a constant ρ such

4



that

1

t

N(t)∑
k=1

Xk →a.s ρ, t→∞

where ρ is defined as the average claim amount per unit time.

Another basic quantity is the safety loading (or the security loading) η defined

as the relative amount by which the premium rate p must exceed ρ,

η =
p− ρ
ρ

.

To avoid certain ruin, an insurance company must ensure that η > 0 always.

The probability of ultimate ruin ψ(u) is the probability that the reserve ever

drops below zero,

ψ(u) = P
(

inf
t≥0

Rt < 0|R0 = u

)
= P(τ(u) <∞). (1.3)

The probability that ruin occurs before time T is

ψ(u, T ) = P
(

inf
0≤t≤T

Rt < 0|R0 = u

)
= P(τ(u) < T ). (1.4)

The functions ψ(u) and ψ(u, T ) are referred to as ruin probabilities with inifinite

horizon and finite horizon, respectively.

The study of ruin probabilities, often referred to as collective risk theory or

simply risk theory, orginated largely from Sweden during the first half of the 20th

century. Main general ideas were established by Lundberg, see [35]. The first

5



substantial mathematical results were presented by Lundberg [34] and Crámer

[9]. Another early important work was also due to Täcklind [48]. The Cramér-

Lundberg model is considered as the classical risk model.

Among several textbooks and journal articles on ruin probabilities, some main

ones include Bühlmann [7], De Vylder [53], Gerber [20], Grandell [23, 24, 25],

Dickson [13]. For more references, see Asmussen and Albrecher [4]. More re-

cently, Gyzl et al. [26] applied the method of maximum entropy for the Laplace

transform inversion to estimate the ultimate ruin probability. Albrecher et al. [1]

applied the Trefethen-Weideman-Schmelzer (TWS) Laplace transform inversion

method. The authors assumed that the claims size distribution represents a

completely monotone function.

Mnatsakanov et al. [41] applied the MR scaled Laplace transform inversion

method to obtain an approximation of ψ(u). The authors applied the Laplace

transform of ψ(u) provided by Pollaczeck-Khinchine formula. In this work, we

considered a modified and smoothed version of the approximation presented in

[41]. We show that the proposed construction performs considerably better than

the former.

1.3 Value-at-Risk

In 1995 the chairman of J.P. Morgan & Co. demanded a 4:15pm report each

day on the potential earnings at risk overnight due to global price movements.

The result was the concept of Value at Risk (VaR). It quantifies how much

6



an economic agent can expect to lose in one day, week, year, . . . , with a given

probability. It is an estimate of the worst possible monetary loss from a financial

investment over a future time-period, e.g., one-day, one-week, one-month, etc.

For a given time horizon, say t, and confidence level p ∈ (0, 1), the VaR of a

portfolio is the loss in market value over the time horizon t that is exceeded

with probability 1 − p. Let X be the loss on an investment, and let FX(x)

be the cumulative distribution function of X. Then the VaR of X is the level

p-quantile; that is

VaRp(X) = inf{x ∈ R : P(X > x) ≤ 1− p} = inf{x ∈ R+ : FX(x) ≥ p}.

VaR is the main statistical technique used by banks for modeling financial risk,

see Sollis [47]. It is considered as the benchmark risk measure in the financial

world. In Dempster et al. [12], several contributors discussed the applications of

VaR in the evaluation of different types of financial risk - market (due to price

changes), credit (due to counterparty default), liquidity (the risk of unexpectedly

large and negative cash flow over a short period due to market imbalance),

operational (risk of fraud, trading errors, legal and regulatory risk, and so on),

etc.

In [15], Duffie and Pan analyzed market risk using the VaR. Luciano and

Kast [33] explored possible applications of VaR to insurance. Consequent upon

the recession of 2008, Sollis [47] presented a critical overview of the use of the

VaR as a benchmark of risk measurement by banks.

The VaR for a given time horizon does not, in many cases, reflect the possible

7



adverse financial loss in between or beyond the specified time interval. Hence,

the need for risk measures that give a more robust reflection of the risk inherent

in doing business in a random environment. The ruin probability (or its inverse

function) can be interpreted as the continuous alternative to the VaR, see Trufin

et al [52].

Consider the continuous-time risk model {Rt}t≥0. Instead of fixing the initial

capital u, we fix the safety loading η and ask for the amount of the initial capital

needed to bound the ruin probability by an acceptable level, ε. We then define

a ruin-consistent VaR risk measure as

ρε[X] = inf{v ≥ 0|ψ(v) ≤ ε} = ψ−1(ε).

Hence, ρε[X], which is the equivalent to the inverse function of the ruin prob-

ablity, is the smallest amount of capital needed such that the ultimate ruin

probability ψ for a risk process with individual claim size distributed as X is at

most equal to some specified probability level ε.

In this work, we apply the MR inversion method to derive ψ−1α,b as an approximant

of ψ−1. We also approximate VaR using the aforementioned approximant of the

inverse function of the ruin probability.

1.4 Bivariate Claims Amount Distribution

Most insurance claims involve simultaneous, correlated, multiple lines of busi-

ness. Parts of a single claim are handled by different claim managers. This
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makes the study of the joint distribution of claims (not just the marginal dis-

tributions) necessary. A bivariate collective model is defined by

(
S1

S2

)
=

N∑
j=1

(
U1j

U2j

)
(1.5)

where (S1, S2) represents the aggregate claims amount of two non-life insurance

porfolios over a specified time period. Here, N is the total number of claims

and {(U1j, U2j)}, j = 1, . . . , N , is a sequence of independent and identically

distributed couples of non-negative random variables that model claims incurred

on the two porfolios. Assume that {(U1j, U2j)} is independent from N . We

are interested in the bivariate distributions of (S1, S2) that allow dependence

between U1j and U2j.

Cummins and Wiltbank [11] noted that most general insurance claims cases

involve a multivariate accident process where each accident can lead to a mul-

tivariate claims frequency and severity process. The complexity of the model

they presented motivated actuaries to seek simpler models to price property

and casualty insurance products. The pioneering work of Hesselager [27] involes

models with multivariate counts and univariate claim sizes to model correlated

aggregrate claims.

Ambagaspitiya [3] considered two classes of multivariate aggregate claims. The

first class arises in cases where multiple claims result from one accident. The

second class is the one with multivariate claim counts and unvariate claim sizes.

In [2], the aforementioned author considered a book of business, defined as the

union of disjoint classes of business, each of which has an aggregate distribu-
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tion. The classes of business are assumed to be correlated. The author presented

formulas to compute the aggragate distribution for the whole book when the

claims distribution takes a certain form, e.g., when the claim counts distribu-

tion is multivariate, it was shown that the aggregrate distribution of the whole

book is compound Poisson. Yuen et al. [55] derived explicit expressions for

the ultimate survival probabilities for a risk model with two dependent classes

of insurance business when the claim sizes are exponentially distributed. The

authors also examined the asymptotic property of the ruin pobability for the

special risk process with claim size distributions.

Goffard et al. [22], applied a Laplace transform inversion method involving an

orthogonal projection of the probability density function with respect to a prob-

ability measure that belongs to the Natural Exponential Family of Quadratic

Variance Function (NEF-QVF) to compute bivariate probability distributions

from their Laplace transfroms. In this work, from the knowledge of the bivariate

scaled Laplace transform of claim amounts, we constructed approximations of

their Bivariate Probability Density Functions (BPDFs). We also recover the

density and survival functions of bivariate aggregate claims amount.

1.5 Option Pricing

An option in finance is a contract between a buyer and a seller which gives the

buyer the right but not the obligation to buy or sell an underlying asset at an

agreed predetermined price called the strike price (or strike), say K, on a later

date called the exercise time (or maturity date), say T . A call option gives the
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buyer the right to buy the underlying asset while a put option gives the buyer

the right to sell the underlying asset. Financial derivatives such as American

and European call and put options are referred to as plain vanilla products.

Derivative securities which have certain features that make them more com-

plex than the commonly traded plain vanilla products are called exotic options

or simply, exotics. These products are traded in the over-the-counter (OTC)

derivative market. Exotic options are important aspects of the portfolio of an

investment bank because they are usually more profitable than plain vanilla

products. Examples of exotic options are the compound option, chooser option,

barrier option, binary/digital option, lookback option, constant proportion port-

folio insurance (CPPI), cliquet or ratchet option, variance swap, rainbow option,

and Bermudan option, see James [29], Hull [28].

Let V (S, t) be the pay-off function. When t = T , for a European call option,

the pay-off is defined by

V (S, T ) = (S −K)+ =

{
0, S ≤ K (option is worthless)
S −K, S > K (option is exercised)

or

V (S, T ) = max(S −K, 0) = (S −K)+.

Similarly for a put option,

V (S, T ) = (K − S)+.

From Wilmott [54], it has been shown that V (S, t) is a unique solution to the
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partial differential equation



1
2
σ2S2 ∂

2V (s,t)
∂S2 + rS ∂V (S,t)

∂S
+ ∂V (S,t)

∂t
− rV (S, t) = 0,

V (S, T ) = h(S), S > 0,

limS→0 V (S, t) = r1(t),

limS→∞ V (S, t) = r2(t), t ∈ [0, T ],

where r1(t), r2(t) are chosen appropraiately to match h(S).

The widely-used formula by Black, Scholes and Merton [5, 37], provides an exact

pricing formula for the simplest model in the case of constant coefficients. How-

ever, such a technique is not applicable in the general case with time and space

dependent coefficients. Hence, numerical methods are required for the evalua-

tion of non-standard options. To evaluate special options such as the American

put and call options, Asian options, discretely monitored barrier options, and op-

tions with non-standard pay-offs that are characterized by discontinuities which

arise at each monitoring date, carefully chosen numerical methods are required

to avoid spurious oscillations when low volatility is assumed.

Several numerical methods have been used to solve the Black-Scholes equation.

In Seydel [46], Glasserman [21], Tavella and Randall [50], Wilmott et al [54] and

the references therein, one can find well-known numerical methods for option

pricing. Since financial markets are prone to stochastic flunctuations, stochastic

approaches like the Monte Carlo methods, which are based on formulating and

simulating stochastic differental equations, provide natural tools for simulating

asset prices. Time marching methods like the Crank-Nicholson and Explicit and

12



Implicit finite-difference methods are used with sutiable spatial discretization

schemes. A major drawback of these time-marching schemes is that they usually

require as many time steps as spatial meshes to balance errors arising from

discretization. Lee and Sheen [32] claimed that in particular, for the estimation

of basket options of reasonable size, the usual time marching schemes seem to

be too slow in practice since the cost of solving an elliptic system to advance to

a next time step is usually computationally expensive.

Some related works in which the Laplace transform method was applied include

Fu et al. [17], Geman and Yor [18], Lee and Sheen [32], Mallier and Alobaidi

[36], Pelsser [44], Tagliani and Milev [49]. Most of the earlier works in which

the Laplace transform method was applied to solve the Black-Scholes equation

were used to obtain the analytic solutions of the various options they studied

rather than develop an efficient numerical scheme. In Geman and Yor [18], and

Pelsser [44], the Laplace transform is applied for the pricing of a double barrier

option and in Mallier and Alobaidi [36], the pricing of the American call option

is considered. The Mellin transform method which is similar to the Laplace

transform was used to obtain the analytic solution of an option price by Cruz

et al. [10], Jódar et al. [30] and Panini and Srivastava [43].

Tagliani and Milev [49] suggested a method they called the mixed method for a

discretely monitored barrier option. The method involves solving the resulting

ordinary differential equation (ODE) from computing the Laplace transform of

the Black-Scholes equation by a finite-difference scheme and then transforming

the solution of the ODE with the well-known Post-Widder inversion formula, see

Cohen [8]. The authors showed that the mixed method is positivity-preserving,

13



satisfies the discrete maximum principle, is spurious oscillations free, and is

convergent to the exact solution.

In this work, we apply the scaled Laplace transform method to solve the Black-

Scholes equation. Our approach does not require either change of variables or

solving of diffusion equations. The resulting ODE is an Euler equation which

has a closed form solution. To get the value of the option, we applied the MR

inversion method to invert the solution of the ODE.

1.6 Dissertation Schema

The remiander of the dissertation is organized as follows. In Chapter 2, we

present the modified MR approximations of the ruin probability. We com-

pute smoothed approximations using Poisson weights. We consider models with

claims following exponential and gamma distributions to make comparison with

approaches in Albrecher at al. [1], Gyzl et al. [26], and Mnatsakanov et al. [41].

The performance of the proposed approximations is illustrated graphically and

with tables. In Chapter 3, we propose an approximation of the inverse function

of the ruin probability which is based on the MR-approximations of the ruin

probability. An approximation of the Value at Risk is also computed. In Chapter

4, we apply the bivariate MR inversion method to approximate the distribution

of claims in bivariate risk models. We compare the approximations with those

in Goffard et al. [22] which were based on the scale b = exp(1). In Chapter 5,

we estimate the values of call and put options via the MR-inversion of the solu-

tion of the ordinary differential equation obtained by taking the scaled Laplace
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transform of the Black-Scholes equation. Finally in Chapter 6, we outline some

concluding remarks and future research directions.
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Chapter 2

Ruin Probability

The probability of ultimate ruin under the classical model is defined by

ψ(u) = P

u+ pt−
N(t)∑
k=1

Xk < 0, for some t ≥ 0

 , u ≥ 0. (2.1)

From actuarial literature, when the distribution F of the claims sizes Xk, k =

1, 2, . . . , N(t), does not follow the exponential model, the evaluation of the ruin

probability is a difficult problem. Recall, the constant premium p > 0, the

claims sizes Xk, k = 1, 2, . . . , N(t), are independent of the total number of

claims {N(t), t ≥ 0} which is a Poisson process with intensity λ > 0, and

u ∈ R+ is the initial reserve.
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2.1 Moment Recovered Approximation

In this section, we recall the moment recoverd approximation of the ruin proba-

bility computed by Mnatsakanov et al. [41]. The Laplace transform of the ruin

probability according to the Pollaczek-Khinchine formula, has the form

Lψ(s ln b) =
1

s ln b
− 1− ρ
s ln b− λp{1− Lf (s ln b)}

, (2.2)

where Lg(s ln b) =

∫
R+

e−(s ln b)xg(x)dx is the scaled Laplace transform of some

function g defined on R+ = [0,∞), ρ = λpE(X) < 1, and λp = λ/p.

Applying (2.2), the MR-approximation of ψ(u) is derived as

ψα,b(u) = (L−1α,ψLψ)(u)

=
[αb−u] ln(b)Γ(α + 2)

αΓ([αb−u] + 1)

α−[αb−u]∑
m=0

(−1)mLψ((m+ [αb−u]) ln b)

m!(α− [αb−u]−m)!
. (2.3)

Let us denote the the sup-norm of a function f : R+ → R by ||f ||. For some

b > 1, assume that

Mk = sup
x∈R+

|ψ′(x)bkx|, k = 1, 2 (2.4)

and

M3 = sup
x∈R+

|ψ′′(x)b2x| <∞. (2.5)

Theorem 1. Assume that ψ is continuous on R+ and that φ(x) = b−x for some

b > 1. Then ψα,b converges uniformly to ψ. Additionally,
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(i) ψα,b(x)− ψ(x) =
1

α + 1

[
−b

xψ′(x)

ln b
([αφ(x)]− αφ(x)− φ(x)) +

1

2

(
b2xψ′(x)

ln b
+
b2xψ′′(x)

ln2 b

)
φ(x)(1− φ(x))

]
+ o

(
1

α

)
and

(ii) ||ψα,b − ψ|| ≤
1

α + 1

{
2M1

ln b
+

M2

2 ln b
+

M3

2 ln2 b

}
+ o

(
1

α

)
as α→∞.

Proof. From (2.3), let

ψα,b(x) =
α

α + 1
(L−1α,ψLψ)(x) =

ln b Γ(α + 1)

Γ([αφ(x)])
×

α−[αφ(x)]∑
m=0

(−1)m

m!(α− [αφ(x)]−m)!

∫ ∞
0

e−((m+[αφ(x)]) ln b)ψ(y)dy

=
ln b Γ(α + 1)

Γ([αφ(x)])Γ(α− [αφ(x)] + 1)

∫ ∞
0

(b−y)[αφ(x)](1− b−y)α−[αφ(x)]ψ(y)dy. (2.6)

Let ξ = b−y in (2.6). Then,

ψα,b(x) =

∫ 1

0

β(ξ; [αφ(x)], α− [αφ(x)] + 1)ψ(−logbξ)dξ, (2.7)

where β(·, [αφ(x)], α−[αφ(x)]+1) = βα,x(·) is the beta density function. Setting

g(ξ) = ψ(−logbξ), (2.7) becomes

ψα,b(x) =

∫ 1

0

g(ξ)βα,x(ξ)dξ. (2.8)

From a Lemma due to Feller [16], since g(ξ) is continuous and bounded, the

integration in (2.8) converges uniformly to g(ξ)|ξ=φ(x) in every finite interval in
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which the variance of the beta distribution described in (2.7) converges to zero

uniformly. Consequently,

∫ 1

0

g(ξ)βα,x(ξ)dξ ≈ g(φ(x)) = ψ

(
logb

1

φ(x)

)
= ψ(x).

Next we show the rate of approximation of ψα,b. First note that

ψα,b(x)− ψ(x) =

∫ 1

0

βα,x(ξ)g(ξ)dξ −
∫ 1

0

ψ(− logb b
−x)dξ. (2.9)

Setting g(b−x) = ψ(− logb b
−x), (2.9) becomes

ψα,b(x)− ψ(x) =

∫ 1

0

βα,x(ξ)
[
g(ξ)− g(b−x)

]
dξ. (2.10)

From Taylor’s series expansion of g(ξ) around b−x, (2.10) becomes

ψα,b(x) − ψ(x) =

∫ 1

0

βα,x(ξ)

[
g′(b−x)(ξ − b−x) +

1

2
g′′(η)(ξ − b−x)2

]
dξ (2.11)

for some η between ξ and b−x.

Note that

g′(ξ) = −ψ
′(− logb ξ)

ξ ln b
and g′′(ξ) =

ψ′(− logb(ξ))

ξ2 ln b
+
ψ′′(− logb ξ)

ξ2 ln2 b
.

Applying (2.4) and (2.5), we get that

sup
ξ∈[0,1]

|g′(ξ)| ≤ M1

ln b
(2.12)
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and

sup
ξ∈[0,1]

|g′′(ξ)| = M2

ln b
+

M3

ln2 b
. (2.13)

Also, the mean and variance of the beta distribution βα,x(ξ) are such that

θα =
[αφ(x)]

α + 1
, (2.14)

σ2
α =

[αφ(x)](α− [αφ(x)] + 1)

(α + 1)2(α + 2)
<

1

α + 1
, (2.15)

and

|θα − b−x| ≤
2

α + 1
. (2.16)

Using (2.12)-(2.16), (2.11) becomes

ψα,b(x)− ψ(x) = g′(b−x)(θα − b−x) +
1

2
g′′(b−x)(σ2

α − (θα − b−x)2)

=
1

α + 1

[
−b

xψ′(x)

ln b
([αφ(x)]− αφ(x)− φ(x)) +

1

2

(
b2xψ′(x)

ln b
+
b2xψ′′(x)

ln2 b

)
φ(x)(1− φ(x))

]
+ o

(
1

α

)
. (2.17)

Thus

||ψα,b − ψ|| ≤
1

α + 1

(
2M1

ln b
+

M2

2 ln b
+

M3

2 ln 2b

)
+ o

(
1

α

)
, (2.18)

as α→∞. �

It is worth noting that in practice, the distribution of the claim sizes X1, . . . , Xn

might be unknown. Hence, the Laplace transform can be estimated by using

the sample mean X, ρ̂ = λpX, and the empirical scaled Laplace transform
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L̂f (s ln b) =
1

n

n∑
i=1

e−(s ln b)Xi .

Applying L̂ instead of L on the right hand side of (2.3), ψ is estimated by

ψ̂α,b(u) = (L−1α,ψL̂ψ)(u)

=
[αb−u] ln bΓ(α + 2)

αΓ([αb−u] + 1)

α−[αb−u]∑
m=0

(−1)mL̂ψ((m+ [αb−u]) ln b)

m!(α− [αb−u]−m)!
, (2.19)

where

L̂ψ(s ln b) =
1

s ln b
− 1− ρ̂
s ln b− λp(1− L̂f (s ln b))

. (2.20)

2.2 Smooth Approximations

Let ψα,b be as defined in (2.3). With Poisson probabilities Pα(k, x) =
(αx)k

k!
e−αx,

k = 0, 1, . . ., smooth approximations of ψ(u) can be constructed from ψα,b by

using the definition

ψα,P (x) := (ψα,b • Pα)(x) =
∞∑
k=0

ψα,b

(
k

α

)
Pα (k, x) . (2.21)

From simulation studies in Section 2.4, we see that ψα,P converges to ψ for each

b > 1.
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2.3 Modified MR-approximations

With the goal of constructing an approximant that converges faster and has

smaller absolute approximation errors, we consider a modified version of the

MR-approximation. This version is in some way a linear combination of the

MR-approximation with different integer moments. Let α̃ = 2α. The modified

MR-approximation of ψ(u) is defined as

ψ̃α,b(x) := 2ψα̃,b(x)− ψα,b(x). (2.22)

Corollary 1. Assume that ψ is continuous. Then for each b > 1, ψ̃α,b converges

uniformly to ψ and

ψ̃α,b(x)−ψ(x) =
1

(2α + 1)(α + 1)

[
− ψ

′(x)bx

ln b
(2α+ 3)([αφ(x)]−αφ(x)−φ(x))

+

(
ψ′(x)b2x

ln b
+
ψ′′(x)b2x

ln2 b

)
φ(x)(1− φ(x))

]
+O

(
1

α2

)
,

as α→∞.

Proof. Note that using (2.22) we have that

ψ̃α,b − ψ = 2(ψα̃,b − ψ)− (ψα,b − ψ). (2.23)

Convergence of ψ̃α,b follows from Theorem 1. Combining (2.23) and Theo-
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rem 1(i), we have that

ψ̃α,b(x)− ψ(x) =
2

2α + 1

[
−b

xψ(x)

ln b
([2αφ(x)]− 2αφ(x)− φ(x)) +

1

2

(
b2xψ′(x)

ln b
+
b2xψ′′(x)

ln2 b

)
φ(x)(1− φ(x))

]
+ 2 O

(
1

(2α + 1)2

)
− 1

α + 1

[
−b

xψ(x)

ln b
([αφ(x)]− αφ(x)− φ(x)) +

1

2

(
b2xψ′(x)

ln b
+
b2xψ′′(x)

ln2 b

)
φ(x)(1− φ(x))

]
−O

(
1

(α + 1)2

)
=

1

(2α + 1)(α + 1)

[
−ψ

′(x)bx

ln b
(2α + 3)([αφ(x)]− αφ(x)− φ(x))

+

(
ψ′(x)b2x

lnb
+
ψ′′(x)b2x

ln2 b

)
φ(x)(1− φ(x))

]
+O

(
1

α2

)
, (2.24)

as α→∞. �

2.3.1 Estimation and Smooth approximations

Applying the Poisson probabilities defined above, smooth approximations of the

modifield MR-approximations can be constructed as follows:

ψ̃α,P (x) := (ψ̃α,b • Pα)(x) =
∞∑
k=0

ψ̃α,b

(
k

α

)
Pα(k, x). (2.25)

From simulation studies in Section 2.4, we see that ψ̃α,P converges to ψ.

When the distribution of the claims sizes is unknown, ψ(u) is estimated by

̂̃
ψα,b(u) = 2ψ̂α̃,b(u)− ψ̂α,b(u), (2.26)
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where ψ̂α,b(u) is defined by (2.19).

2.4 Numerical Implementation

Obtaining an explicit expression for the probability of ultimate ruin for a surplus

process with initial reserve u is generally a difficult problem. Hence, the need

for a numerical approximation. To illustrate the performance of the proposed

smoothed and modified MR-approximations of ψ, we conducted simulation stud-

ies with five examples. Among the examples considered, four have explicit ex-

pressions for the probability of ruin. For the other example, we compare our

approximations with an existing method that has been used to approximate the

probability of ruin. In examples 1 and 2, we consider models with claims sizes

distribution specified as Exponential with different rates β = 1, 2, arrival inten-

sity λ = 1, and constant premium p = 5. For the models in examples 3 and 4, we

assume that the claims sizes follow the Gamma distribution with two different

pairs of (shape = a, scale = β) ∈ {(2, 1), (2.5, 0.4)}. In example 5, we consider

a model with claims amounts exponentially distributed with rate, β = 1/5, Pois-

son arrival intensity λ = 50, and constant premium rate p = 300. All evaluations

of ψα,b(u) and ψ̃α,b(u) were conducted at u ∈ {ln(α/(α−j+1))/ ln b, 1 ≤ j ≤ α}.

Example 1. Assume that X ∼ Exp(rate = β) with density function, f(x) =

βe−βx, x > 0. The scaled Laplace transform of f is

Lf (s ln b) =
β

s ln b+ β
. (2.27)
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From (2.2) and (2.27), the scaled Laplace transform of the probability of ulti-

mate ruin for a model with claim sizes dristributed as X is

Lψ(s ln b) =
1

s ln b
− (1− ρ)(β + s ln b)

λps ln b
. (2.28)

We substitute (2.28) into (2.3) to approximate the ruin probability by

ψα,b(u) =
[αb−u] ln(b)Γ(α + 2)

αΓ([αb−u] + 1)

α−[αb−u]∑
m=0

(−1)m

m!(α− [αb−u]−m)!
×(

1

(m+ [αb−u]) ln b
− (1− ρ)(β + (m+ [αb−u]) ln b)

λp(m+ [αb−u]) ln b

)
.

The probability of ultimate ruin for a surplus Poission process with claims sizes

distribution specified by the exponential distribution has the form

ψ(u) =
1

1 + η
e−

βη
1+η

u, (2.29)

where η is the safety (security) loading, see Boland [6].

Consider the case with β = 2, λ = 1, p = 5, λp = 0.2, and η = (p − ρ)/ρ = 9.

In Figure 2.1, we display ψ̃α,b and ψα,b along with the theoretical ruin prob-

abality ψ(u). It is clearly seen that the approximations are close to the true

values. We see also that the ψ̃α,b outperforms ψα,b even with α = 15. To il-

lustrate the smooth versions of the approximations, we truncated the infinite

series in (2.21) and (2.25) at M = 60 and M = 30 respectively. Figure 2.2 dis-

plays the smoothed MR-approximations and the smoothed version of modified

approximations.
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Figure 2.1: Approximations of ψ(u) when X ∼ Exp(rate = 2) by (a) ψα,b (dots),

α = 30 (b) ψ̃α,b (dots), α = 15. In both plots, b = 1.45.
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Figure 2.2: Smooth approximations of ψ(u) whenX ∼ Exp(rate = 2) by (a) ψα,P (u)

(yellow), α = 30 (b) ψ̃α,P (u)(yellow), α = 15. In both plots, b = 1.45.
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Figure 2.3: Estimations of ψ(u) when X ∼ Exp(rate = 2) by (a) ψ̂α,b (dots) α = 30

(b)
̂̃
ψα,b (dots) α = 15. In both plots, n = 1000.

When the claims sizes distribution is not known, we employ empirical esti-

mations of the scaled Laplace transform and its inversion defined in (2.19) and

(2.20) to estimate ψ(u). In Figure 2.3, we compare estimates ψ̂α,b(u) and
̂̃
ψα,b(u)

with the true ruin probability ψ(u). Again, the estimates are close to the true

values and the modified MR-estimates perform better.

To demonstrate the accuracy of ψ̃α,b as α increases, Table 2.1 gives several

values of 104 × ||ψ̃α,b − ψ|| when α ∈ {60, 90, 120, 150, 200, 400}, α̃ = 2α and

1.35 ≤ b ≤ 1.50. We observed that for this case, the pair (α = 400, b = 1.50)

is the best among the considered parameters with normalized sup-norm error

0.00469297. Table 2.2, presents several values of the normalized sup-norm error

104 × ||ψα,b − ψ||. Comparing values in Tables 2.1 and 2.2, we see that ψ̃α,b

performs better than ψα,b in the normalized sup-norm error. Figure 2.4 and

the values of the normalized errors in Table 2.3 further demonstrate that ψ̃α,b

performs better than ψα,b.

Example 2. Now assume that the claims sizes Xk’s have Exp(1) distribution.
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Figure 2.4: X ∼ Exp(rate = 2). Error approximations in sup-norm for α = 10k, 3 ≤
k ≤ 40 and 1.35 ≤ b ≤ 1.50.

Table 2.1: Records of 104 × ||ψ̃α,b − ψ|| with X ∼ Exp(rate = 2) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50
60 3.60491 2.84059 2.71788 2.65958 2.63114 2.60318 2.54861 2.49578 2.30052 1.90408
90 1.67888 1.31663 1.25872 1.23123 1.21783 1.20465 1.17895 1.15409 1.06231 0.876574
120 0.967149 0.7566 0.723016 0.707079 0.699313 0.691678 0.676789 0.662389 0.609267 0.501956
150 0.627987 0.490532 0.468636 0.458249 0.453188 0.448213 0.438513 0.429132 0.394542 0.32474
200 0.358428 0.279545 0.266996 0.261045 0.258146 0.255297 0.249741 0.24437 0.224572 0.184662
400 0.0916074 0.0712789 0.0680519 0.0665222 0.0657772 0.0650449 0.0636177 0.0622382 0.0571567 0.0469297

In Figure 2.5, we present plots showing the ψ̃α,b(u) and ψα,b(u) along with ψ(u).

It is not clearly evident from the plots that ψ̃α,b performs better than ψα,b.

To better examine the performance of both approximations, we computed the

normalized sup-norm errors. Comparing values of the normalized sup-norm

errors in Tables 2.4, 2.5, and 2.6, we see that ψ̃α,b(u) outperforms ψα,b(u) in

terms of the sup-norm of errors. Furthermore, in Figure 2.6, we see that ψ̃α,b

converges faster to ψ(u) than ψα,b. In Figure 2.7, we present smooth versions

of both approximations. We truncated the infinite series in (2.21) and (2.22)

at M = 700 and M = 150 respectively. The choices of M were dictated by

the behavior of the approximations at the tails. How to determine the optimal

truncation value is open for future research.

If the distribution of the claims sizes X1, X2, . . . , Xn is unknown, we apply
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Figure 2.5: Approximations of ψ(u) when X ∼ Exp(1) by (a) ψα,b (dots) α = 30.

(b) ψ̃α,b (dots), α = 15. In both plots, b = 1.45.
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Figure 2.6: X ∼ Exp(1). Approximation errors in sup-norm for α = 10k, 3 ≤ k ≤ 40
and 1.35 ≤ b ≤ 1.50.
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Figure 2.7: Smooth approximations of ψ(u) when X ∼ Exp(1) by (a) ψα,P (u)

(yellow), α = 30 (b) ψ̃α,P (u) (yellow), α = 15. In both plots, b = 1.45.
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Table 2.2: Records of 104 × ||ψα,b − ψ|| with X ∼ Exp(rate = 2) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50
60 75.7283 66.5593 64.9737 64.2074 63.8306 63.458 62.7249 62.0076 59.2864 53.3734
90 52.0627 45.6176 44.5071 43.9709 43.7073 43.4467 42.9342 42.4329 40.5337 36.4186
120 39.6666 34.6999 33.8458 33.4335 33.2309 33.0306 32.6368 32.2517 30.7935 27.6387
150 32.0383 27.9989 27.3051 26.9702 26.8057 26.6431 26.3233 26.0107 24.8275 22.2699
200 24.2619 21.1816 20.653 20.3981 20.2728 20.149 19.9056 19.6677 18.7674 16.8233
400 12.3102 10.7305 10.46 10.3296 10.2655 10.2021 10.0777 9.95601 9.49598 8.50399

Table 2.3: Records of 104 × ||ψ̃α,b − ψ|| with X ∼ Exp(rate = 2) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50
30 12.6177 10.0727 9.65937 9.46245 9.36632 9.27168 9.08679 8.90755 8.24256 6.88001
45 6.12314 4.84685 4.64112 4.54327 4.49554 4.44858 4.3569 4.26811 3.93948 3.27016
50 5.05032 3.9905 3.81993 3.73884 3.69929 3.66038 3.58443 3.51089 3.23884 2.68545
75 2.37244 1.86415 1.78275 1.7441 1.72525 1.70672 1.67056 1.63558 1.50635 1.24452
100 1.37287 1.07559 1.02811 1.00557 0.994591 0.983791 0.962728 0.942353 0.867157 0.715099

(2.19) and (2.20) to estimate ψ(u). Figure 2.8 presents estimates of the ruin

probability.

Example 3. Consider a surplus model with distribution of claims sizes on an

insurance policy specified by Gamma(shape = a, scale = β). The scaled Laplace

transform of the claims sizes distribution is
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Figure 2.8: Estimations of ψ(u) when X ∼ Exp(rate = 1/2) by (a) ψ̂α,b (dots),

α = 32 (b)
̂̃
ψα,b (dots), α = 16. In both plots, b = 1.45 and n = 1000.
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Table 2.4: Records of 104 × ||ψ̃α,b − ψ|| with X ∼ exp(rate = 1) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50
60 1.15532 0.858157 0.811302 0.789129 0.778339 0.76774 0.7471 0.727174 0.653993 0.507963
90 0.52466 0.388829 0.367456 0.357347 0.352428 0.347597 0.338192 0.329114 0.295797 0.22942
120 0.298347 0.220853 0.208672 0.202911 0.200109 0.197357 0.191999 0.186829 0.167859 0.130097
150 0.192198 0.142176 0.134318 0.130603 0.128796 0.127021 0.123566 0.120232 0.108002 0.0836688
200 0.108825 0.0804454 0.0759902 0.0738839 0.0728594 0.0718534 0.0698951 0.0680056 0.0610757 0.0472942
400 0.0274773 0.0202901 0.0191629 0.0186302 0.018371 0.0181166 0.0176214 0.0171436 0.0153919 0.0119108

Table 2.5: Records of 104 × ||ψα,b − ψ|| with X ∼ Exp(rate = 1) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50

60 53.1626 44.17 42.6245 41.8786 41.5121 41.1497 40.4374 39.7409 37.104 31.4021
90 35.9515 29.8256 28.7747 28.2676 28.0185 27.7723 27.2883 26.8152 25.025 21.1593
120 27.159 22.5141 21.7179 21.3339 21.1452 20.9587 20.5922 20.234 18.879 15.955
150 21.822 18.0815 17.4407 17.1317 16.9798 16.8298 16.5349 16.2467 15.1566 12.8055
200 16.4383 13.6143 13.1307 12.8975 12.783 12.6698 12.4473 12.2299 11.4078 9.63537
400 8.27355 6.84735 6.60335 6.48571 6.42793 6.37083 6.25861 6.14897 5.73445 4.84133

Lf (s ln b) =

(
1

βs ln b+ 1

)a
. (2.30)

From (2.27) and (2.30), the scaled Laplace transform of the ruin probability is

Lψ(s ln b) =
1

s ln b
− (1− ρ)(βs ln b+ 1)a

λp ((βs ln b+ 1)a − 1)
. (2.31)

By substituting (2.31) into (2.2), we derive the approximation of the ruin prob-

ability as

ψα,b(u) =
[αb−u] ln(b)Γ(α + 2)

αΓ([αb−u] + 1)

α−[αb−u]∑
m=0

(−1)m

m!(α− [αb−u]−m)!
×(

1

(m+ [αb−u]) ln b
− (1− ρ)(β(m+ [αb−u]) ln b+ 1)a

λp((β(m+ [αb−u]) ln b+ 1)a − 1)

)
.

Consider the case with claims sizes X ∼ Gamma(2, 1) and the total number

of claims N , a Poisson process with arrival intensity λ = 1. This example is
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Table 2.6: Records of 104 × ||ψ̃α,b − ψ|| with X ∼ Exp(rate = 1) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50

30 4.33842 3.24357 3.06991 2.98762 2.94756 2.90818 2.83146 2.75734 2.48459 1.93781
45 2.01061 1.49678 1.41559 1.37716 1.35845 1.34007 1.30427 1.26971 1.14267 0.88877
50 1.64248 1.22165 1.15521 1.12377 1.10846 1.09343 1.06414 1.03587 0.931985 0.724494
75 0.749002 0.555598 0.525141 0.510731 0.50372 0.496834 0.483425 0.470482 0.422967 0.328241
100 0.426823 0.316177 0.298774 0.290543 0.286538 0.282605 0.274949 0.267559 0.240441 0.186432

adapted from Gyzl et al. [26]. The authors derived the exact form of the ruin

probability as

ψ(u) = 0.461862e−0.441742u − 0.061862e−1.358257u for u > 0. (2.32)

Figure 2.9 illustrates approximations of ψ(u) by ψ̃α,b and ψα,b. Figure 2.10

shows the smoothed approximations ψα,P and ψ̃α,P . Tables 2.7 and 2.8 present

normalized errors in sup-norm for various values of α and b. From Figure 2.11,

we again see that ψ̃α,b has smaller sup-norm errors than ψα,b as α increases.

In Table 2.9, several values of ψ̃α,b and ψα,b are presented for α = 5000, b =

1.415. Additionally, values corresponding to ψFT obtained by applying the

Fixed Talbot Laplace transform inversion algorithm and thoeretical values of

the ruin probability are also presented. We see that the values of the modified

MR-approximations are comparable with the values of FT algorithm.

When the claims size distribution is unknown, we again apply the the empri-

cal Laplace transform to estimate the probability of ruin. Figure 2.12 shows

estimated values using ψ̂α,b(u) and
̂̃
ψα,b(u).

Example 4. Assume now that the claims sizes distribution is specified by

Gamma(2.5, 0.4). This example is adapted from Mnatsakanov et al. [41]. We
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Figure 2.9: Approximations of ψ(u) when X ∼ Gamma(2, 1) by (a) ψα,b (dots),
α = 40 (b) ψ̃α,b (dots), α = 20. In both plots, b = 1.35.
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Figure 2.10: Smooth approximations of ψ(u) whenX ∼ Gamma(2, 1) by (a) ψα,P (u)
(yellow), α = 40, M = 400 (b) ψ̃α,P (u) (yellow), α = 20, M = 200.
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Figure 2.11: X ∼ Gamma(2, 1). Approximation errors in sup-norm for α = 10k, 3 ≤
k ≤ 40, 1.35 ≤ b ≤ 1.50.
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Figure 2.12: Estimations of ψ(u) when X ∼ Gamma(2, 1) by (a) ψ̂α,b, α = 40 (b)̂̃
ψα,b (dots) of ψ(u), α = 20. In both plots, b = 1.35 and n = 1000.

Table 2.7: Records of 104 × ||ψ̃α,b − ψ|| with X ∼ Gamma(2, 1) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50
30 2.77275 2.49112 2.44116 2.4169 2.40494 2.3931 2.36977 2.34688 2.25958 2.06786
45 1.35393 1.19594 1.16873 1.15559 1.14914 1.14276 1.13021 1.11796 1.07158 0.971673
60 0.798906 0.699685 0.682807 0.674683 0.670697 0.666759 0.659028 0.651483 0.623045 0.562313
75 0.526332 0.458597 0.447158 0.441659 0.438963 0.436302 0.431079 0.425987 0.406834 0.366135
100 0.30483 0.264232 0.257423 0.254154 0.252553 0.250972 0.247874 0.244855 0.233523 0.20956
200 0.0796509 0.0685068 0.0666558 0.0657692 0.0653352 0.0654537 0.0663055 0.0669547 0.0673546 0.0537883

compare the values of ψ̃α,b with ψα,b and ψFT . In Table 2.10, α = 4000 and

b = 1.14795, while in Table 2.11, α = 1000 and b = 1.1485. In both tables, the

arrival intensity λ = 1 and the premium p = 1.1. We see from the tables that

using large values of α, approximations of ψ by ψ̃α,b are closer to ψFT than ψα,b.

Example 5. Consider the case when claim sizes X ∼ Exp(rate = 1/5),

λ = 50, p = 300, and safety loading η = 0.2. Figure 2.13 presents the visual-

izations of the MR-approximations along with the true ruin probability. The

high probability of ruin reflected in the plots is due to low security loading. We

clearly see that ψ̃α,b(u) outperforms ψα,b(u). In Figure 2.14 we present smooth

approximations of ψ(u). To implement the infinite series in (2.21) and (2.25),
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Table 2.8: Records of 104 × ||ψα,b − ψ|| with X ∼ Gamma(2, 1) and λp = 0.2.

α \b 1.35 1.40 1.41 1.415 1.4175 1.42 1.425 1.43 1.45 1.50
60 15.398 9.64228 8.72093 8.291 8.07721 8.24543 8.82845 9.39798 11.5503 16.1823
90 10.3284 6.47838 5.86249 5.57266 5.59349 5.78961 6.17496 6.5514 7.97399 11.0357
120 7.77521 4.87904 4.41573 4.19713 4.3097 4.45609 4.74374 5.02473 6.08666 8.3723
150 6.2329 3.91266 3.54197 3.38572 3.50388 3.62064 3.85007 4.07419 4.92122 6.7444
200 4.68474 2.94233 2.66394 2.5823 2.67064 2.75794 2.92948 3.09705 3.73036 5.09364
400 2.35087 1.47804 1.33861 1.32403 1.36799 1.41142 1.49677 1.58015 1.89528 2.57371

Table 2.9: Values of ψ, ψ̃α,b, ψα,b, and ψFT computed at several values of uj =
ln(α/(α− j + 1))/ ln b. X ∼ Gamma(2, 1), α = 5000, b = 1.425, λ = 1, and p = 5.

j 500 600 700 800 900 1000

ψ(uj) 0.362835 0.354857 0.346728 0.338460 0.330063 0.321547

ψ̃α,b(uj) 0.362835 0.354857 0.346728 0.338460 0.330062 0.321546
ψα,b(uj) 0.362832 0.354853 0.346723 0.338453 0.330055 0.321538
ψFT (uj) 0.362834 0.354856 0.346728 0.338460 0.330062 0.321546

j 2000 2500 3000 3500 4000 4500

ψ(uj) 0.232093 0.186355 0.141464 0.098557 0.058914 0.024346

ψ̃α,b(uj) 0.232093 0.186355 0.141464 0.098557 0.058914 0.024346
ψα,b(uj) 0.232084 0.186349 0.141461 0.098559 0.058919 0.024352
ψFT (uj) 0.232092 0.186355 0.141463 0.098556 0.058913 0.024345

we truncated the series at M = 300 and M = 137, respectively. We see from

the plots that there are big drop-offs at large values of u. This is an edge effect

due to fragment issues between the truncation point and the number of integer

moments α. In Figure 2.15 we display estimated values for situations when the

distribution of the claims sizes is unknown.
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Figure 2.13: Approximations of ψ(u) when X ∼ Exp(1/5) by (a) ψα,b, α = 30 (b)
ψ̃α,b (dots), α = 15. In both plots, b = 1.45.

� � � � ��
�

����

����

����

����

ψ(�)

� � � � � � �
�

����

����

����

ψ(�)

(a) (b)

Figure 2.14: Smooth approximations of ψ(u) when X ∼ Exp(1/5) by (a) ψα,P (u)
(orange), α = 30 (b) ψ̃α,P (u) (orange), α = 15. In both plots, b = 1.45.
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Figure 2.15: Estimations of ψ(u) when X ∼ Exp(1/5) by (a) ψα,b (dots), α = 32
(b) ψ̃α,b (dots), α = 16. In both plots, b = 1.45 and n = 1000.
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Table 2.10: Values of ultimate ruin probabilities ψ̃α,b, ψα,b and ψFT computed at
several values of uj = ln(α/(α − j + 1))/ ln b. X ∼ Gamma(2.5, 0.4), α = 4000,
b = 1.14795, λ = 1 and p = 1.1.

j 500 600 700 800 900 1000

ψα,b(uj) 0.811541 0.789651 0.767593 0.745439 0.723223 0.700961

ψ̃α,b(uj) 0.811535 0.789644 0.767587 0.745432 0.723216 0.700954
ψFT (uj) 0.811533 0.789643 0.767586 0.745431 0.723215 0.700954

j 1500 2000 2500 3000 3500 4000

ψα,b(uj) 0.589078 0.476154 0.361914 0.245881 0.127030 0.000331

ψ̃α,b(uj) 0.589073 0.476151 0.361914 0.245882 0.127033 0.000337
ψFT (uj) 0.589071 0.476150 0.361913 0.245882 0.127031 0.000337

Table 2.11: Values of ultimate ruin probabilities ψ̃α,b, ψα,b and ψFT computed at
several values of uj = ln(α/(α − j + 1))/ ln b. X ∼ Gamma(2.5, 0.4), α = 1000,
b = 1.1485, λ = 1 and p = 1.1.

j 25 50 100 200 300 400

ψα,b(uj) 0.893671 0.875107 0.834075 0.746673 0.657782 0.568228

ψ̃α,b(uj) 0.893506 0.875027 0.834045 0.746644 0.657756 0.568208
ψFT (uj) 0.893504 0.875025 0.834044 0.746643 0.657754 0.568208

j 500 600 700 800 900 1000

ψα,b(uj) 0.477934 0.386743 0.294416 0.200537 0.104223 0.001269

ψ̃α,b(uj) 0.477921 0.386738 0.294417 0.200546 0.104240 0.001293
ψFT (uj) 0.47792 0.386737 0.294416 0.200546 0.104238 0.001293
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Chapter 3

Inverse Function of Ruin

Probability and Value at Risk

The need to guard against loss motivates the active research area of risk man-

agement. Regulators often require that insurance and financial institutions have

available capital that is at least equal to some appropriate VaR of the one-year

risk. This capital helps protect against solvency issues. For instance, in insur-

ance, such capital is used to mitigate against the risk that the premiums and

initial reserve, in addition to income from investment, becomes insufficient to

cover future claims. Questions about the appropriateness of measuring risk over

a fixed time horizon motivated the suggestion of a ruin consistent mesaure by

Trufin et al. [52]. In this chapter, we present moment recovered approximations

of the inverse function of the ruin probability. We also show their application

in the compuation of the average VaR.

38



Recall

ρε[X] = inf{u ≥ 0|ψ(u) ≤ ε} = ψ−1(ε),

where u is the initial reserve of an insurance company and ε is a specified

confidence level.

3.1 Moment Recovered Approximation

In the preceding chapter, we defined the MR approximation of the ultimate ruin

probability ψ(u) in (2.3). To approximate the inverse function ψ−1(x) of the

ruin probability from (2.3), we define the MR-approximation as

ψ−1α,b(x) =

∫ ∞
0

B̄α(ψα,b(u), x)du, (3.1)

where B̄α(t, x) = 1−Bα(t, x) and

Bα(t, x) =

[αx]∑
k=0

(
α
k

)
tk(1− t)α−k →

{
1, t < x
0, t > x

as α→∞. (3.2)

Note that (3.1) can be expressed as

ψ−1α,b(x) =
α∑
l=1

∫ ul

ul−1

B̄α(ψα,b(u), x) dx =
α∑
l=1

B̄α(ψα,b(ul−1), x)∆ul, (3.3)

where ul = [lnα− ln(α− j + 1)]/ ln b for 1 ≤ l ≤ α, ∆ul = ul−1 − ul, and

ψα,b(ul) =
(α− l + 1) ln(b)Γ(α + 2)

αΓ(α− l + 2)

l−1∑
j=0

(−1)jLψ((j + α− l + 1) ln(b))

j!(l − 1− j)!
. (3.4)
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Theorem 2. Assume that ψ−1 is continuous on (0, 1). Then for each fixed

b > 1, ψ−1α,b converges uniformly to ψ−1 as α→∞.

Proof. Let 1 − ψ(u) = G(u) be the survival function. We check that ψ−1(t) =

G−1(1 − t). Let G−1(x) be the inverse function of G(u) such that G−1(x) :=

inf{t ≥ 0 : G(t) ≥ x}. First, we approximate G by Gα,b(u). Then, we approxi-

mate G−1 by

G−1α,b(x) =

∫ ∞
0

Bα(Gα,b(u), x)du. (3.5)

Now

G−1α,b(x)−G−1(x) =

∫ ∞
0

Bα(Gα,b(u), x)du−
∫ ∞
0

Bα(G(u), x)dx︸ ︷︷ ︸
(a)

+

∫ ∞
0

Bα(G(u), x)du−G−1(x)︸ ︷︷ ︸
(b)

. (3.6)

Let

∫ α

0

Bα(G(u), x)dx = G−1α (x). Then expression (3.6)(a) becomes

G−1α,b(x)−G−1α (x) =

∫ ∞
0

[Bα(Gα,b(u), x)−Bα(G(u), x)] dx. (3.7)

Taking the Taylor’s series expansion of Bα(Gα,b(u), x) around G(u), we get

G−1α,b(x)−G−1α (x) = −
∫ ∞
0

β(G(u), c, d− 1)(Gα,b(u)−G(u))du

+
1

2

∫ ∞
0

∆β(G̃(u), x)(Gα,b(u)−G(u))2du, (3.8)

where β(·, c, d) is the density function of the Beta distribution with c = [αx],
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d = α− [αx] + 1, ∆β(·, x) = β(·, c, d− 2)− β(·, c− 1, d− 1), and G̃(u) between

Gα,b(u) and G(u), see Mnatsakanov [38].

Let τ = G(u) in (3.8). We get that G(0) = 1 − ρ, where ρ = λ
p
E(X). From

Mnatsakanov et al. [42], we have that ||Gα,b(u)−G(u)|| < C/(α+1), for postive

constant C that can be identified by the constants in (2.4). Likewise

∫ 1

1−ρ
β(τ, c, d− 1)Q′(τ)dτ ≤ ||Q′||, (3.9)

and ∫ 1

1−ρ
|∆β(G̃(u), x)| ≤ 2||Q̃′||, (3.10)

where Q′ is the derivative of G−1. Finally,

||G−1α,b −G
−1
α || ≤

C

α + 1
(||Q′||+ ||Q̃′||) + o

(
1

α

)
. (3.11)

Assume supp{G} = [0, T ], 0 < T <∞. We have that Bα(G(u), x)→ I(G(u) <

x) and |Bα(G(u), x)| ≤ 1. By Lebesgue’s dominated convergence theorem, see

Royden [45], we have that

G−1α (x) =

∫ T

0

Bα(G(u), x)dx→
∫ T

0

I(u < G−1(x))du. (3.12)

Hence, for each x ∈ supp{G} with (G−1(x) < T ), we have that

G−1α (x)→ G−1(x), (3.13)

uniformly as α→∞. Combining (3.11) and (3.13), completes the proof. �
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In cases when the distribution of the claims sizes X1, X2, · · · , Xn is not known,

we can consider the estimator of ψ−1 as

ψ̂α,b(x) =

∫ ∞
0

B̄α(ψ̂α,b(u), x)dx =
α∑
l=1

B̄α(ψ̂α,b(ul−1), x)∆ul. (3.14)

3.2 Smooth Approximation

From the Weierstrass approximation theorem, we know that every function de-

fined on a compact interval can be uniformly approximated by a polynomial

function. The inverse function of the ruin probability is defined on the interval

[0, 1], hence it can be approximated by polynomials. To achieve smooth approx-

imations of ψ−1(x), we apply the Bernstein polynomials in conjunction with the

MR-approximations.

Definition 2. The Bernstein polynomial of order n for a function f defined on

[0, 1] is defined by

Bn(f, x) =
n∑
k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k. (3.15)

From (3.3) and (3.15), we construct polynomial approximations of ψ−1(x) as

follows; let

bα(k, x) =

(
α
k

)
xk(1− x)α−k for k = 0, 1, · · · , α.
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Then,

ψ−1α,B(x) := (ψ−1α,b • bα)(x) =
α∑
k=0

ψ−1α,b

(
k

α

)
bα(k, x) (3.16)

is the smoothed MR-approximation of ψ−1(u).

Corollary 2. Assume that ψ−1 is continuous. For each fixed b > 1, ψ−1α,B

converges uniformly to ψ−1 as α→∞.

Proof. We see that

ψ−1α,B(x)− ψ−1(x) =
α∑
k=0

ψ−1α,b

(
k

α

)
bα(k, x)−

α∑
k=0

ψ−1
(
k

α

)
bα(k, x)

+
α∑
k=0

ψ−1
(
k

α

)
bα(k, x)− ψ−1(x)

=
α∑
k=0

[
ψ−1α,b

(
k

α

)
− ψ−1

(
k

α

)]
bα(k, x) +

α∑
k=0

ψ−1
(
k

α

)
bα(k, x)− ψ−1(x)

=
α∑
k=0

[
ψ−1α,b

(
k

α

)
− ψ−1

(
k

α

)]
bα(k, x) +Bα(ψ−1, x)− ψ−1(x). (3.17)

Combining Theorem 2 and Definition 2, we see that

||ψ−1α,B − ψ
−1|| ≤ sup

x∈(0,1)
|ψ−1α,b(x)− ψ−1(x)|

α∑
k=0

bα(k, x)+

sup
x∈(0,1)

|Bα(ψ−1, x)− ψ−1(x)| → 0

as α→∞. �
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3.3 Average Value at Risk

As mentioned above, the probability of ruin can be interpreted as the continuous

alternative to the risk measure VaR. Hence a natural extension of the inverse

function ψ−1 : [0, 1]→ R+ is the estimation of the Tail-VaR (or average VaR).

Trufin et al. [52] defined the Tail-VaR as

TVaR(ε) :=
1

ε

∫ ε

0

ψ−1(x)dx, for ε ∈ [0, 1].

From the approximant ψ−1α,b of ψ−1, we construct the MR-approximation of

TVaR(ε) as

TVaRα,b(ε) :=
1

ε

∫ ε

0

ψ−1α,b(x)dx =
1

αε

[αε]∑
l=1

ψ−1α,b

(
l − 1

α

)
. (3.18)

3.4 Numerical Implementation

We present three examples to demonstrate the performance of ψ−1α,b. In examples

1 and 2, we considered again the models with claims sizes ditribution specified by

the exponential distribution with rates δ = 2 and δ = 0.5. In both examples the

arrival intensity λ = 1. For the third example, we consider a model with claims

sizes distribution specified as Exp(1/5). For all the models, we approximate the

Tail-VaR.

Example 6. Assume that the claims sizes distributions is specified by Ex-
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ponential(rate = δ). For a surplus Poisson process, the inverse function of the

probability of ultimate ruin has the form

ψ−1(x) = −1 + η

δη
ln(x(1 + η)), (3.19)

where η is the safety (or security) loading.

We insert the scaled Laplace transforms from (2.27) and (2.28) into (3.4) to

approximate inverse function of the ulmitate ruin probability ψ−1(x) by

ψ−1α,b(x) =
α∑
l=1

1−B(ψα,b(l − 1), x)
ln
(
α−l+2
α−l+1

)
ln b

, (3.20)

where

ψα,b(l − 1) =
(α− l + 1) ln(b)Γ(α + 2)

αΓ(α− l + 2)

l−1∑
j=0

(−1)j

j!(l − 1− j)!
×(

1

(j + α− l + 1) ln b
− (1− ρ)(β + (j + α− l + 1) ln b)

λp(j + α− l + 1) ln b

)
. (3.21)

Now, consider the case when X ∼ Exp(2), η = 9, and constant premium p = 5.

In Figure 3.1, we present the MR-approximation of the inverse ruin function

alongside the exact values. The approximations required large values of integer

moments, α. To demonstrate the performance of the approximation as α in-

creases, we present, in Tables 3.1 and 3.2, several values of ψ−1α,b(x) and ψ−1(x)

at α = 2000 and α = 5000 with b = 1.05. We observe that indeed as α increases,

the approximations gets closer to the exact value.

In Table 3.3, we present approximations of the Tail-VaR of the claims sizes along
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Figure 3.1: Approximation of ψ−1, X ∼ Exp(2), ψ−1α,b (orange), α = 200, b = 1.05.

Table 3.1: Values of ψ−1α,b and ψ−1 xj = j/10α. X ∼ Exp(rate = 2), α = 2000,
b = 1.05

j 25 50 100 500 700
ψ−1(xj) 2.43446 2.04938 1.66430 0.770164 0.583235
ψ−1α,b(xj) 2.44992 2.01025 1.64795 0.767088 0.579976

j 900 1000 1500 1800 2000
ψ−1(xj) 0.443615 0.385082 0.159823 0.0585336 0
ψ−1α,b(xj) 0.439927 0.381154 0.154730 0.0543829 0.0121134

with the exact values. We see that approximations by TVARα,b are comparable

to the true values.

Example 7. Now assume the the claim sizes distribution follow Exp(0.5).

Consider the case when safety loading η = 1.5, premium p = 5, and arrival

intensity λ = 1. Figure 3.2 demonstrates the performance of ψ−1α,b. Evaluations

were conducted at xj ∈ {j/2.5α, 1 ≤ j ≤ α}. It is clear from plots that as α

increases, for fixed b, the approximations get closer to the true values.
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Table 3.2: Values of ψ−1α,b and ψ−1 xj = j/10α. X ∼ Exp(rate = 2), α = 5000,
b = 1.05

j 400 500 600 700 800 900 1000
ψ−1(xj) 1.403183 1.279214 1.177924 1.092285 1.01810 0.952666 0.894132
ψ−1α,b(xj) 1.399710 1.276637 1.175875 1.090563 1.01659 0.951284 0.892834

j 2000 2500 3000 3500 4000 4500 5000
ψ−1(xj) 0.509050 0.385082 0.283792 0.198153 0.123969 0.058534 0
ψ−1α,b(xj) 0.507674 0.383517 0.282034 0.196208 0.121848 0.056340 0.008259

Table 3.3: Values of Tail-VaR. X ∼ Exp(2), α = 200, b = 1.05

ε TVaRα,b(ε) TVaR(ε)

0.05 0.951237 0.940637
0.10 0.556362 0.555556
0.20 0.279887 0.170474

Example 8. Consider the case when the claims amounts distribution is speci-

fied by X ∼ Exp(1/5), where Poisson arrival intensity λ = 50, constant premiun

rate p = 300, and safety loading η = 0.2. In Figure 3.3, we present approxima-

tions of the inverse function of the ruin probability by ψ−1α,b. Evaluations were

conducted at points xj ∈ {j/1.2α, j = 1, . . . , α} for α = 400 and b = 1.05.

Next, we compute some values of the Tail-VaR (average VaR) of the claims

sizes. Recall the VaR is the level p-quantile. In Table 3.4, we present values of

TVaRα,b along with the exact values TVAR(ε).

Table 3.4: Values of Tail-VaR. X ∼ Exp(1/5), α = 200, b = 1.05

ε TVaRα,b(ε) TVaR(ε)
0.80 30.7981 31.2247
0.90 27.4187 27.6912
0.95 25.9756 26.0692
0.99 24.9261 25.9756
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(a) (b)

Figure 3.2: Approximation of ψ−1 when claims sizes X ∼ Exp(0.5), (a) ψ−1α,b (red

line) α = 100. (b) ψ−1α,b (red line), α = 200. In both plots, b = 1.05.
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Figure 3.3: Approximation of ψ−1, X ∼ Exp(1/5), ψ−1α,b (orange), α = 400, b = 1.05.
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Chapter 4

Bivariate Distribution

Recall a bivariate collective risk model is defined in (1.4). In this chapter, we

present moment recovered approximations of Bivariate Probability Distribution

Functions (BPDFs) of random vectors from the knowledge of their bivariate

scaled Laplace transforms. The recovery of the BPDF of aggragrate claims

amount is also discussed.

4.1 Bivariate Scaled Laplace Transform

Assume that F is an absolutely continuous distribution with R2
+ as its support.

Let f be the probability density function of F with respect to the Lebesgue

measure on R2
+.

Definition 3. Let (X, Y ) be a random vector distributed according to F . As-

sume that we have a given sequence of moments µ(F ) = {µj,m(F ); (j,m) ∈
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N× N}. Then, the bivariate scaled Laplace transform is defined as

µj,m(F ) := L(2)
f (s ln b, t ln b) =

∫ ∞
0

∫ ∞
0

e−(sx+ty) ln bf(x, y)dxdy. (4.1)

From Mnatsakanov [39], we recover the bivariate density function and bivariate

survival function from the scaled Laplace transform inversion by the following

approximations:

fa,b(x, y) := (B−1a L
(2)
f,b)(x, y) =

[αb−x][α′b−y] ln2 bΓ(α + 2)Γ(α′ + 2)

αα′Γ([αb−x] + 1)Γ([α′b−y] + 1)

×
α−[αb−x]∑
m=0

α′−[α′b−y ]∑
l=0

(−1)m+lL2
f ((m+ [αb−x]) ln b, (l + [α′b−y]) ln b)

m!l!(α− [αb−x]−m)!(α′ − [α′b−y]− l)!
,

(4.2)

and

F̄a,b =

[αb−x]∑
k=0

[α′b−y ]∑
l=0

α∑
j=k

α′∑
m=l

(
α
j

)(
j
k

)(
α′

m

)(
m
l

)
(−1)j+m−k−lL2

f (j ln b,m ln b),

(4.3)

where a = (α, α′).
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4.2 Smooth Approximations

Using Poisson probabilities, we construct smooth approximations of the bivari-

ate density f(x, y) of (X, Y ):

Pa(k, x, j, y) =
(αx)k

k!
e−αx

(α′y)j

j!
e−α

′y. (4.4)

We define

fa,P (x, y) = (fa,b • Pa)(x, y)

=
∞∑
k=0

∞∑
k=0

fa,b

(
k

α
,
j

α′

)
Pa(k, x, j, y), (4.5)

and we construct a modified version of fa,P as

f̃a,P (x, y) = (f̃a,b • Pa)(x, y)

=
∞∑

k,j=0

f̃a,b

(
k

α
,
j

α′

)
Pa(k, x, j, y), (4.6)

where f̃a,b = 2fã,b − fa,b.

4.3 Numerical Implementation

In this section, we demonstrate the performance of the moment recovered ap-

proximations in the recovery of the joint BPDF of (S1, S2). In many cases, there

are no closed forms of the joint density functions of claims sizes distributions.
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Hence, to assess the accuracy of our approximations, we apply the MR method

to well known bivariate distributions.

Example 9. Let (X, Y ) be a couple of independent random variables exponen-

tially distributed with rates β1 and β2. The bivariate scaled Laplace transform

of (X, Y ) is given as

L(2)
f (s ln b, t ln b) =

β1
β1 + s ln b

× β2
β2 + t ln b

. (4.7)

We input the bivariate scaled Laplace transform from (4.7) into (4.2) to approx-

imate the joint density function by

fa,b(x, y) =
[αb−x][α′b−y] ln2 bΓ(α + 2)Γ(α′ + 2)

αα′Γ([αb−x] + 1)Γ([α′b−y] + 1)

×
α−[αb−x]∑
m=0

α′−[α′b−y ]∑
l=0

(−1)m+l

m!l!(α− [αb−x]−m)!(α′ − [α′b−y]− l)!
×

β1
β1 + (m+ [αb−x]) ln b

× β2
β2 + (l + [α′b−y]) ln b

. (4.8)

Consider the case when β1 = 2 and β2 = 2. Figure 4.1 shows the MR-

approximations of the joint density function. We set α = α′ = 32, b = 1.45.

Evaluations were conducted on the grid

(xj, yj) =

[
ln

(
α

α− i+ 1

)
, ln

(
α′

α′ − j + 1

)]
; i = 1 . . . and α, j = 1, . . . , α′.

Example 10. Let (X1, X2) be a random vector with independent Gamma

distributions such that X1 ∼ Gamma(a1, β1) and X2 ∼ Gamma(a2, β2), respec-
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(a) (b)

Figure 4.1: Approximation of f(x, y) when (a) (X,Y ) ∼ β1β2e
−(β1x+β2y) and (b)

fα,b(x, y), α = α′ = 32.

tively. The bivariate scaled Laplace of (X1, X2) is given by

L(2)
f (s ln b, t ln b)) =

(
1

β1s ln b+ 1

)a1 ( 1

β2t ln b+ 1

)a2
. (4.9)

We input (4.9) into (4.2) to approximate the joint density function of (X1, X2)

by

fa,b(x, y) =
[αb−x][α′b−y] ln2 bΓ(α + 2)Γ(α′ + 2)

αα′Γ([αb−x] + 1)Γ([α′b−y] + 1)

×
α−[αb−x]∑
m=0

α′−[α′b−y ]∑
l=0

(−1)m+l

m!l!(α− [αb−x]−m)!(α′ − [α′b−y]− l)!
×(

1

β1(m+ [αb−x]) ln b+ 1

)a1 ( 1

β2(l + [αb−y]) ln b+ 1

)a2
, (4.10)

where a = (α, α′).

Consider the case where {a1 = 2, β1 = 1, a2 = 2.5, β = 0.4}. We set α =

50, α′ = 60 and b = 1.35. We see from Figure 4.2 that the moment recovered
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(a) (b)

Figure 4.2: Approximation of f(x1, x2) when (a) (X1, X2) ∼ Gamma(2, 1) ×
Gamma(2.5, 0.4) and (b) fα,b(x, y), α = 50, α′ = 60, b = 1.35.

approximations are quite close to the theoretical distribution.

Example 11. Assume that a bivariate random variable (X1, X2) follows the

Downton Bivariate Exponential distribution - DBV E(µ1, µ2, ρ) introduced by

Downton [14]. This distribution has been used to describe the reliability of the

behavior of two simple systems consisting of two components in parallel and of

two systems in series. The joint density function of (X, Y ) is given by

f(x, y) =
µ1µ2

1− ρ
exp

(
−µ1x+ µ2y

1− ρ

)
I0

(
2
√
ρµ1µ2xy

1− ρ

)
, x, y ∈ R2

+, (4.11)

where I0(·) is the Bessel function of the first kind, µ1, µ2 ≥ 0, and 0 ≤ ρ ≤ 1.

The bivariate scaled Laplace transform of (X, Y ) is given by

L(2)
f (s ln b, t ln b) =

µ1µ2

(µ1 + s ln b)(µ2 + t ln b)− ρ s t ln2 b
. (4.12)

To approximate the joint density function of (X, Y ) we substitute the bivariate
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(a) (b)

Figure 4.3: Approximation of f(x, y) when (a) (X,Y ) ∼ DBV E(1/2, 2, 1/4) and
(b) fα,b(x, y), α = α′ = 50, b = 1.45.

scaled Laplace transform into (4.2) to get

fa,b(x, y) =
[αb−x][α′b−y] ln2 bΓ(α + 2)Γ(α′ + 2)

αα′Γ([αb−x] + 1)Γ([α′b−y] + 1)

×
α−[αb−x]∑
m=0

α′−[α′b−y ]∑
l=0

(−1)m+l

m!l!(α− [αb−x]−m)!(α′ − [α′b−y]− l)!
×

µ1µ2

(µ1 + (m+ [αb−x]) ln b)(µ2 + (l + [α′b−y]) ln b)− ρ(m+ [αb−x])(l + [α′b−y]) ln2 b
,

where a = (α, α′).

For illustration, we consider the cases when {µ1 = 1/2, µ2 = 2, ρ = 1/4} and

{µ1 = 2, µ2 = 1/2, ρ = −1/4}, where the first case is adapted from Goffard et

al. [22]. Figures 4.3 and 4.4 shows plots of both cases; the plots on the right

are those of the MR-approximations. In this first plot, we set α = α′ = 50 and

b = 1.45. In the second plot, α = α′ = 32. Comparing with the theoretical

joint density functions, we see that the approximations are relatively close to

the true distributions.
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(a) (b)

Figure 4.4: Approximation of f(x, y) when (a) (X,Y ) ∼ DBV E(2, 1/2,−1/4) and
(b) fα,b(x, y), α = α′ = 32, b = 1.45.

4.4 Aggregate Claims Amount Distribution

Assume that the claims amount (U1j, U2j) in the collective model defined in (1.4)

are i.i.d. and DBV E(µ1, µ2, ρ)-distributed. Let the total number of claims N

be specified by a negative binomial distribution NB(r, p). Our goal is to ap-

proximate the joint density function and joint survival function of the bivariate

aggregate claims amount (S1, S2). The bivariate scaled Laplace transform is

given by

L(2)
g (s ln b, t ln b) =

[
1− p

1− pL(2)
f (s ln b, t ln b)

]r
− (1− p)r, (4.13)

where L(2)
f (s ln b, t ln b) is the scaled Laplace transform of the joint density func-

tion of (U1j, U2j). We note that L(2)
g (s ln b, t ln b) exists only if L(2)

f (s ln b, t ln b) <

1/p.

We insert the scaled Laplace transform in (4.13) into (4.2) to approximate the
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joint density and survival functions of (S1, S2) by

ga,b(x, y) =
[αb−x][α′b−y] ln2 bΓ(α + 2)Γ(α′ + 2)

αα′Γ([αb−x] + 1)Γ([α′b−y] + 1)

×
α−[αb−x]∑
m=0

α′−[α′b−y ]∑
l=0

(−1)m+l

m!l!(α− [αb−x]−m)!(α′ − [α′b−y]− l)!
×([

1− p
1− pL(2)

f ((m+ [αb−x]) ln b, (l + [α′b−y]) ln b)

]r
− (1− p)r

)
,

(4.14)

and

Ḡa,b =

[αb−x]∑
k=0

[α′b−y ]∑
l=0

α∑
j=k

α′∑
m=l

(
α
j

)(
j
k

)(
α′

m

)(
m
l

)
(−1)j+m−k−l×([

1− p
1− pL(2)

f (j ln b,m ln b)

]r
− (1− p)r

)
, (4.15)

where L(2)
f (·, ·) is as defined in (4.12).

Example 12. Consider the case when the parameters of the Downton dis-

tribution are {µ1 = 1, µ2 = 1, ρ = 1/4} and those of the negative binomial

distribution are {r = 1, p = 3/4}. These parameters were chosen to ensure that

L(2)
f (s ln b, t ln b) < 1/p. The exact form of the survial function is not known.

Figure 4.5 provides a visualization of the moment recovered approximations of

the joint probability density and the survival function of the aggregate claims

amount distribution, where α = α′ = 32 and b = 1.45. The moment recovered

approximations are comparable to those obtained by Goffard et. al. [22].
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(a) (b)

Figure 4.5: Approximations of the distribution of bivariate aggragate claims amount
(a) Joint density function of (S1, S2) (b) Joint survival function of (S1, S2).

From the simulation studies presented, the moment recovered method seems

well-suited for the approximations of the distributions of bivariate distributions.
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Chapter 5

Option Pricing

Financial markets have become increasingly more sophisticated in recent years

and so, have the offered products. More complex financial options and deriva-

tives have replaced the simple buy/sell trade deals of earlier years, see Lee and

Sheen [32]. The determination of the actual value of financial options is a major

concern for market participants. While the writer of an option contract might

be largely concerned by how much to charge for the contract and what his profit

margin would be, the holder of the contract wants to be certain that he is paying

a fair price and that he stands to make gains from the exercise of the contract.

These and many other concerns have motivated a large volume of research, too

numerous to mention, in the area of option pricing. In this chapter, we present

applications of the moment recovered approximation method in the estimation

of the prices of some well known financial options and derivatives.
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5.1 European Call and Put Options

We apply the scaled Laplace transform method to solve the Black-Scholes equa-

tion which depends on one stock asset. Applying the MR inversion method, we

obtain approximations of the European style put and call options.

5.1.1 Put Option

Let P (S, τ) be the value of a European put option, where S is the current value

of the underlying asset and τ = T − t is the time left till maturity. Assume that

the volatility σ and the risk-free interest rate r depend only on S (i.e. σ = σ(S)

and r = r(S)). The price P (S, τ) satisfies the Black-Scholes equation

1

2
σ2S2∂

2P (s, τ)

∂S2
+ rS

∂P (S, τ)

∂S
− ∂P (S, τ)

∂τ
− rP (S, τ) = 0, (5.1)

P (S, 0) = max{K − S, 0}, (5.2)

P (S, τ)→ Ke−rτ as S → 0, P (S, τ)→ 0 as S →∞, (5.3)

where (5.2) is the final value condition.

To solve (5.1), we take the scaled Laplace transform of P (S, τ) and its partial

derivatives as follows:

µλ(P (S, .)) = LP (S,.),b(λ) =

∫ ∞
0

e−λ ln(b)τP (S, τ)dτ, (5.4)
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and

µλ

(
∂P (S, .)

∂τ

)
= L ∂P (S,.)

∂τ
,b
(λ) =

∫ ∞
0

e−λ ln(b)τ
∂P (S, .)

∂τ
dτ. (5.5)

Applying integration by parts, we get

µλ

(
∂P (S, .)

∂τ

)
= −P (S, 0) + λ ln(b)µλ(P (S, .)), (5.6)

µλ

(
∂P (S, .)

∂S

)
= L ∂P (S,.)

∂S
,b
(λ) =

∫ ∞
0

e−λ ln(b)τ
∂P (S, τ)

∂S
dτ

=
∂

∂S

∫ ∞
0

e−λ ln(b)τP (S, τ)dτ =
∂

∂S
µλ(P (S, .)), (5.7)

and

µλ

(
∂2P (S, .)

∂S2

)
= L ∂2P (S,.)

∂S2
,b
(λ) =

∫ ∞
0

e−λ ln(b)τ
∂2P (S, τ)

∂S2
dτ =

∂2

∂S2
µλ(P (S, .)).

(5.8)

Transforming the boundary conditions, we get

lim
S→0

µλ(P (S, .)) = lim
S→0

∫ ∞
0

e−λ ln(b)τP (S, τ)dτ =

∫ ∞
0

e−λ ln(b)τ lim
S→0

P (S, τ)dτ

=

∫ ∞
0

e−λ ln(b)τKe−rτdτ =
K

r + λ ln(b)
. (5.9)

Applying (5.4) - (5.9), (5.1) becomes,

1

2
σ2S2∂

2µλ(P (S, .))

∂S2
+rS

∂µλ(P (S, .))

∂S
−(r+cλ)µλ(P (S, .)) = −P (S, 0), (5.10)
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with boundary conditions

µλ(P (S, .))→ K

r + cλ
as S → 0 and µλ(P (S, .))→ 0 as S →∞. (5.11)

Solving the homogeneous part of (5.10), we get

1

2
σ2S2µ′′λ + rSµ′λ − (r + λ ln(b))µλ = 0, (5.12)

S2µ′′λ +
2r

σ2
Sµ′λ −

2(r + λ ln(b))

σ2
µλ = 0, (5.13)

and observe that (5.12) is an Euler equation. By setting µλ = CSγ, µ′′λ =

CγSγ−1 and µ′′λ = Cγ(γ − 1)Sγ−2, for some γ, C ∈ R. Substituting this into

(5.13), we get

S2(CSγ)′′ +
2r

σ2
S(CSγ)′ − 2(r + λ ln(b))

σ2
CSγ = 0,

⇒ CSγ
[
γ(γ − 1) +

2r

σ2
γ − 2(r + λ ln(b))

σ2

]
= 0. (5.14)

Solving

γ2 +

(
2r

σ2
− 1

)
γ − 2(r + λ ln(b))

σ2
= 0, (5.15)

we get

γ1 =
−
(
r − 1

2
σ2
)

+
√(

r − 1
2
σ2
)2

+ 2σ2(r + λ ln(b))

σ2
, (5.16)

and

γ2 =
−
(
r − 1

2
σ2
)
−
√(

r − 1
2
σ2
)2

+ 2σ2(r + λ ln(b))

σ2
. (5.17)
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Hence, the solution to (5.12) is

µ
(c)
λ (P (S, ·)) = C1S

γ1 + C2S
γ2 , (5.18)

where the superscript (c) indicates that the solution is the complementary so-

lution of (5.10), which is also the solution in cases when S ≥ K.

When K ≥ S at maturity T , i.e., τ = 0, P (S, 0) = K − S. So, the non-

homogeneous part of (5.10) corresponds to cases when the strike K is greater

than the underlying stock price. Hence, the put option will be exercised.

Let µ
(p)
λ (P (S, ·)) = AS+B be a particular solution of (5.10), for some A,B ∈ R.

Then, µ
(p)′

λ = A and µ
(p)′′

λ = 0. Substituting these into (5.10) we get

rSA− (r + λ ln(b))(AS +B) = −(K − S),

⇒ −(r + λ ln(b))B − λ ln(b)AS = −K + S. (5.19)

Matching coefficients of the lhs and rhs of (5.19), we get

A = − 1

λ ln(b)
and B =

K

r + λ ln(b)
.

Hence,

µ
(p)
λ (P (S, ·)) = − 1

λ ln(b)
S +

K

r + λ ln(b)
. (5.20)
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Combining (5.18) and (5.20), we get the general solution of (5.10)

µλ(P (S, ·)) = LP (S,·),b(λ) = C1S
α1 + C2S

α2 − 1

λ ln(b)
S +

K

r + λ ln(b)
. (5.21)

Thus,

µλ(P (S, ·)) =


C1S

γ1 + C2S
γ2 − 1

λ ln(b)
S + K

r+λ ln(b)
, S < K

C1S
γ1 + C2S

γ2 , S ≥ K
. (5.22)

We have that γ1 ≥ 0 ≥ γ2. So in the case when S < K, C2 = 0 ensures the

boundedness of the derivative µ′λ(P (S, ·)). In the case when S ≥ K, C1 = 0

ensures the value of the option goes to zero when the stock price goes to infinity.

Thus the general solution to (5.10) reduces to

µλ(P (S, ·)) =


C1S

γ1 − 1
λ ln(b)

S + K
r+λ ln(b)

, S < K

C2S
γ2 , S ≥ K

, (5.23)

where (5.23) satisfies the boundary conditions in (5.11). Next we solve for C1

and C2:
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µλ(P (S, ·))|S=K = C1K
γ1 − 1

λ ln(b)
K +

K

r + λ ln(b)
, S < K, (5.24)

µλ(P (S, ·))|S=K = C2K
γ2 , S ≥ K, (5.25)

µ′λ(P (S, ·))|S=K = α1C1K
γ1−1 − 1

λ ln(b)
, S < K, (5.26)

µ′λ(P (S, ·))|S=K = γ2C2K
γ2−1 S ≥ K. (5.27)

Setting (5.24) = (5.25) and (5.26) = (5.27), we get

C1K
γ1 − K

λ ln(b)
+

K

r + λ ln(b)
= C2K

γ2 , (5.28)

γ1C2K
γ1−1 − 1

λ ln(b)
= γ2C1K

γ2−1. (5.29)

Multiply (5.28) by γ2
K

and subtract (5.29) to get

γ2C1K
γ1−1 − γ1C1K

γ1−1 +
γ2

r + λ ln(b)
− γ2
λ ln(b)

+
1

λ ln(b)
= 0. (5.30)

Solving for C1, we get

C1 =

[
γ2

r + λ ln(b)
− γ2 − 1

λ ln(b)

]
K1−γ1

γ1 − γ2
. (5.31)

Substituting in (5.29), we get

C2 =

[
γ1

r + λ ln(b)
− γ1 − 1

λ ln(b)

]
K1−γ2

γ1 − γ2
. (5.32)
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Finally, to estimate the value of the put option, we apply the moment recovered

(MR) inversion method to (5.23). Thus, the value of the European put option

is approximated by

Pα,b(S, τ) =
[αb−τ ]ln(b)Γ(α + 2)

αΓ([αb−τ ] + 1)

α−[αb−τ ]∑
m=0

(−1)mµm+[αb−τ ](P (S, ·))
m!(α− [αb−τ ]−m)!

,

where

µm+[αb−τ ](P (S, ·)) =

 C1S
γ1 − 1

ln(b)(m+[ab−τ ])
S + K

r+ln(b)(m+[ab−τ ])
, S < K

C2S
γ2 , S ≥ K

.

In C1 and C2, λ ≡ m+ [αb−τ ].

Example 13. We demonstrate the performance of the scaled Laplace method

and its inversion on a simulated data set of stock prices. Let τ ∈ (0, 1), where

τ = 0 implies maturity, and recall τ = T − t. Assume interest rate r = 0.05 and

volatility σ = 0.1. Figure 5.1 presents visualizations of the MR-approximations

of the price of a put option with S as the price of the underlying asset. In the

first plot we consider stock prices in the interval [0, 200], with srike, K = 121.

In the second, prices are in the interval [500, 1000] with strike K = 620. We set

α = 32 and b = 1.45 in both plots. We see clearly that the MR-approximations

are comparable with the Black-Scholes prices.
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Figure 5.1: Value of European Put option. MR-approximation (dots), Black-Scholes
prices (blue lines). (a) Strike, K = 121, S ∈ (0, 200) (b) Strike K = 620, Stock price
S ∈ (500, 1000).

5.1.2 Call Option

Recall, the Black-Scholes equation for a European style call option is

1

2
σ2S2∂

2C(s, τ)

∂S2
+ rS

∂C(S, τ)

∂S
− ∂C(S, τ)

∂τ
− rC(S, τ) = 0, (5.33)

C(S, 0) = max{S −K, 0}, (5.34)

C(S, τ)→ 0 as S → 0, C(S, τ)→ S as S →∞. (5.35)

We take the scaled Laplace transform of (5.33) and solve the resulting ordinary

differential equation with boundary conditions µλC(S, ·) → S
cλ

as S → ∞ and

µλC(S, ·)→ 0 as S → 0. We get the general solution

µλ(C(S, ·)) =


C1S

γ1 + C2S
γ2 + 1

λ ln(b)
S − K

r+λ ln(b)
, S > K

C1S
γ1 + C2S

γ2 , S ≤ K
, (5.36)

where γ1, γ2, C1, and C2 are as defined in (5.16), (5.17), (5.31), and (5.32),

respectively.
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We observe that in the case when S > K, C1 = 0 ensures the boundedness of

the derivative µ
′

λ(C(S, ·)) and in the case when S ≤ K, C2 = 0 ensures that the

option value goes to zero as the stock price goes to zero, see Kumar et al. [31].

Thus, the general solution reduces to

µλ(C(S, ·)) =


C2S

γ2 + S
λ ln(b)

− K
r+λ ln(b)

, S > K

C1S
γ1 , S ≤ K

(5.37)

where (5.37) satisfies the boundary conditions.

Applying the MR inversion method, the call option can be approximated by

Cα,b(S, τ) =
[αb−τ ]ln(b)Γ(α + 2)

αΓ([αb−τ ] + 1)

α−[αb−τ ]∑
m=0

(−1)mµm+[αb−τ ](C(S, ·))
m!(α− [αb−τ ]−m)!

, (5.38)

where λ ≡ m+ [αb−τ ] in γ1, γ2, C1, and C2.

Example 14. Assume interest rate r = 0.05 and volatility σ = 0.1. Figure 5.2

presents plots of the Black-Scholes prices and MR-approximations of the price

of a call option with S as the price of the underlying asset. In the first plot we

consider stock prices in the interval [0, 200], with strike K = 121. In the second

plot we conducted evaluations at stock prices S ∈ {(lnα−ln(α−j−1))/ ln b, 1 ≤

j ≤ α} and strike K = 5. We set α = 32 and b = 1.45 in both plots. We see

clearly that the MR-approximations are comparably close to the prices derived

by the Black-Scholes formula.

68



�� ��� ��� ���
����� �����

��

��

��

��

���

���

���

�(��τ)

� � � � ��
����� �����

�

�

�

�

�

�

�

�(��τ)

(a) (b)

Figure 5.2: Value of European Call option. MR-approximation (dots), Black-Scholes
prices (blue line). (a) Strike, K = 65, S ∈ (0, 200) (b) Strike K = 4.

5.2 Exotic Options

Exotic options are generally more profitable than plain vanilla options, hence

the enormous research interest in the their pricing techniques. In this section

we examine the double-barrier knock-out call option and the Asian call option.

5.2.1 Double-barrier options

A double-barrier option is a type of financial option where the option to exercise

depends on the price of the underlying asset crossing or reaching two barriers

namely: L (lower barrier) and U (upper barrier). The payoff depends on whether

the underlying asset price reaches L or U during the transaction period. The

option knocks out (becomes worthless) if either barrier is reached during its

lifetime. If neither barrier is reached by maturity T, the option pays the standard

Black-Scholes pay-off max{0, S(T )−K}, where K, the strike price of the option,

satisfies L < K < U .
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A double-barrier knock-out call option satisfies the following equation:

1

2
σ2S2∂

2B(s, τ)

∂S2
+ rS

∂B(S, τ)

∂S
− ∂B(S, τ)

∂τ
− rB(S, τ) = 0, (5.39)

B(S, 0) = max{S −K, 0}1[L,U ](S), (5.40)

B(S, τ)→ 0 as S → 0 or S →∞, (5.41)

where B(S, τ) is the price of a Barrier call option and

B(S, 0) = max{S −K, 0} =

 S −K, S ∈ [L,U ] & S > K

0, S ≤ K & S 6∈ [L,U ]
. (5.42)

Taking the scaled Laplace transform of (5.39) and solving the resulting ordinary

differential equation, we get the general solution

µλ(B(S, ·)) =


C2S

γ2 + S
λ ln(b)

− K
r+λ ln(b)

, S > K & S ∈ [L,U ]

C1S
γ1 , S ≤ K & S 6∈ [L,U ]

. (5.43)

Applying the MR inversion method, a barrier call option can be approximated

by

Bα,b(S, τ) =
[αb−τ ]ln(b)Γ(α + 2)

αΓ([αb−τ ] + 1)

α−[αb−τ ]∑
m=0

(−1)mµm+[αb−τ ](B(S, ·))
m!(α− [αb−τ ]−m)!

, (5.44)

where λ ≡ m+ [αb−τ ] in γ1, γ2, C1, and C2.

Example 15. Consider the case when volatility σ = 0.001, interest rate

r = 0.05, stock prices S ∈ (0, 200). Figure 5.3 presents plots of the MR-
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Figure 5.3: Approximations of the value of Double-barrier Knock-out Call options
(a) Parameters: K = 65, L = 0, U = 60 (b) Parameters: K = 100, L = 90, U = 110.

approximations of the value of double-barrier knock-out barrier options with S

as the price of the underlying asset. In the first plot we set α = 32. In the second

plot, to demonstrate the performance of the approximations as α increases, we

set α = 10000. (cf. Tagliani and Milev [49]).

5.2.2 Asian Option

Asian options gives the holder of the contract the right to buy or sell an asset

for its average price over a pre-set transaction period. Consider a time interval

[0, T ], and let {A(x), x ≥ 0} be the average underlying price. Then

A(x) =
1

x

∫ x

0

S(u)du.

Hence pay-off at maturity T is

(A(T )−K)+ = max{A(T )−K), 0}.
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The price V of an Asian option is a function of the underlying asset price S,

the average price A, and time to maturity τ .

Geman and Yor [19] established that the Asian option can be valued by the

Laplace transform method. They showed that the price V (t) is given as

V (t) =
4S(t)

σ2T
e−r(T−t)C(ν)(h, q), (5.45)

where r is the constant interest rate,

ν =
2r

σ2
− 1; h =

σ2

4
(T − t); q =

σ2

4S(t)

{
KT −

∫ t

0

S(u)du

}
,

and the Laplace transform of C(ν)(h, q) with respect to h is given as

∫ ∞
0

e−shC(ν)(h, q) =

∫ 1/2q

0
e−xx

µ−ν
2 (1− 2qx)

µ+ν
2

+1dx

λ(λ− 2− 2ν)Γ(µ−ν
2
− 2)

. (5.46)

Applying the MR-inversion method, we approximate V (t) by

Vα,b(t) =
4S(t)

σ2T
e−rτ

[αb−h]ln(b)Γ(α + 2)

αΓ([αb−h] + 1)

α−[αb−h]∑
m=0

(−1)mµm+[αb−h](C
(ν)(·, q))

m!(α− [αb−h]−m)!
.
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Chapter 6

Conclusion and Future Work

At the outset of this work, we sought to present extensions of the research

already done by Mnatsakanov and several collaborators in showing the appli-

cations of the moment recovered Laplace transform inversion method in the

approximations of distribution functions, regression analysis, ruin probability,

and many other areas. We set out to show that the method can be conveniently

applied to compute several risk measures that are used to mitigate against loss

in the finance and insurance sectors. We have shown through several examples

that the method is well-suited for solving different types of physical problems

that arise in practice.

In the bid to extend the application of the scaled Laplace transform and its inver-

sion in computing the likelihood of the ultimate ruin of an insurance company,

we constructed a modified version of the approximations derived by the afore-

mentioned researcher. The modified version has been shown to perform better
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in computation, convergence, and rate of approximation. While on paper, differ-

ences do not seem to be acutely obvious between our method of approximation

and already existing methods in the literature, in practice, where the threshold

between insolvency and solvency is very small, the accuracy in computation,

even to the smallest digit, is an advantage. Comparisons with already estab-

lished methods of computing the ruin probability showed the moment recovered

approximation method and the modified version surely deserve consideration.

Our main contribution is presented in Chapter 3. We presented a method of

computing the Value at Risk on aggregated insurance claims by computing the

inverse function of the ultimate ruin proability. This method proved to be

well-suited to the problem. In comparing with exact solutions, where available,

we showed that our approximations were quite close to the true values. A

major drawback of the method is the computational time. This is due to the

large number of integer moments and double summations required to achieve

accurate approximations.

In Chapter 4, we presented extensions of the scaled Laplace transform and

its moment recovered inversions to bivariate compound models. From several

examples presented, we have shown that the approximations were quite close

to the true functions, thereby giving us the confidence to apply the method

in cases where exact representations of the distributions of claims specified by

such models is not readily available. The scaled Laplace transform has also

been shown to perform better in this scenario than the classical transform with

b = exp(1), in cases when the support of the distributions being examined is

unbounded. Comparison with existing methods further shows that the method
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is highly efficient.

We also presented applications of the moment recovered density function for the

estimation of vanilla and exotic options. Comparisons with the Black-Scholes

formula, showed that the MR method performs very well. The ease of appli-

cation of the method should encourage use among technical and non-technical

participants of financial markets.

Some questions we hope to address in the future include but are not limited to,

the approximation of the probability of ruin in finite time, the distribution of

time until ruin, valuations of more mathematically interesting stock options such

as the American option and other exotic options. From this work, questions left

unanswered include how to choose the truncation value to implement the infinite

series for the smoothing of the approximations with Poisson probabilities. At

the point, the choice is haphazard; we shall seek to formalize this in the future.

Additionally, the relationship between the number of integer moments α and

the truncation value is a direction currently being explored. In the examples

presented, we showed that for a fixed scaling parameter b, the approximation

error reduces as α increases. The choice of the global optimal pair of parameters

(α, b) is an interesting question that will be addressed in the future.
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