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ABSTRACT 
 

Influence of Sex and Blood Collection Method on Innate 
Immune Response following Lipopolysaccharide 

Administration in Sheep 
 

Hoda Nikpour 
 

Wethers and ewes were used to study the effect of catheter or repeated venipuncture on circulating  
cortisol and leukocyte concentrations and physical behaviors following administration of 
lipopolysaccharide (LPS), a gram-negative bacteria cell wall component. Animals were injected 
with LPS or saline, as a control, to induce an innate immune system response. In addition, blood 
leukocytes and cortisol levels were studied to determine the effect of sex on immunological and 
stress responses. Thirty-eight mature Dorset and Suffolk wethers and ewes were assigned into one 
of four treatment groups: 1.) no-catheter + LPS treated ewes (n=5) and wethers (n=4) that were 
restrainted to draw blood from the jugular vein; 2.) no-catheter + saline treated ewes (n=6) and 
wethers (n=4) restrained to draw blood from the jugular vein; 3.) catheter + LPS consisting of 
LPS-treated ewes (n=6) and wethers (n=4) in which a jugular catheter was placed to draw blood; 
and 4.) catheter + saline treated ewes (n=6) and wethers (n=4) with a jugular catheter. Blood was 
collected from the jugular vein catheter, which was placed into the jugular vein the day before the 
experiment and anchored with a stitch to secure it or venipuncture before the challenge followed 
by post challenge samples every 30 min for 3 h and every hour until 12 h, and once at 24 h. Physical 
behaviors and rectal temperatures were monitored before LPS administration and every hour for 
12 h post challenge. Total white blood cell counts and leukocyte differentials including 
lymphocytes, monocytes, and granulocytes were measured immediately after collection using a 
veterinary hematology blood analyzer (Abaxis VetScan HM5, Abaxis Inc.), and remaining 
samples were centrifuged, and plasma was collected and stored at -20°C until concentration of 
cortisol was determined by ELISA. Treatment with LPS resulted in increased cortisol 
concentrations, rectal temperatures, lethargy, and nasal discharge, as well as decreased WBC count 
and appetite in ewes and wethers. Catheter insertion alone resulted in increased WBC count, but 
did not affect cortisol.  However, a significant increased in cortisol occurred in LPS treated sheep 
fitted with catheters compared to those without. Rectal temperatures during LPS challenge were 
greater in wethers than ewes, and a greater decrease in total WBC count and leukocyte differentials 
was seen in ewes when compared to wethers.  Moreover, there was no significant effect of sex on 
cortisol concentrations.  In summary, there were no differences in cortisol concentrations between 
sexes and no significant effect of the catheter alone.  However, during the LPS challenge catheter 
exacerbated the innate immune response and cortisol levels, and rectal temperature and WBC 
count were affected by sex.  Therefore, catheter placement created an additional stressor that 
augmented the LPS-induced immune response. 
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 Introduction and Related 
Works 

1.1 Stress and Cortisol 
Animals are continually challenged by physical and emotional stressors threatening their 

homeostasis (Johnson, 1992). Stress responses involve the hypothalamic-pituitary-adrenal 

axis (HPA) and the autonomic nervous system (ANS), both of which are required for 

proper response adaptation. Figure 1-1 outlines highly conserved biological systems and 

their main components: epinephrine, norepinephrine (NE), corticotrophin releasing 

hormone (CRH), and glucocorticoids (GCs). The bridge between received sensory data, 

such as physical or psychological challenges, and assessment procedure, is formed by 

limbic brain structures including the hippocampus (HIPP), amygdala (AMY) and 

prefrontal cortex (PFC). The HPA axis is controlled by signal transduction to the 

hypothalamic paraventricular nucleus (PVN) to maintain activity of corticotrophin 

releasing hormone (CRH) neurons (Smith, 2006). Adrenocorticotrophic hormone (ACTH) 

secretion from the pituitary results from release of vasopressin (VP) and CRH by the 

hypothalamic paraventricular nucleus. Therefore, ACTH stimulates episodic secretion of 

adrenal steroid glucocorticoid (GCs). Secretion of GCs is vital based on their effect on 

glycolysis, gluconeogenesis, and lipolysis in providing energy, and also peaks temporarily 

after a stressor (Lightman, 2008). Glucocortocoids affect horomone synthesis, food intake, 

digestion, and productivity by decreasing nonessential activities. Several mechanisms, 

such as inhibitory feedback by GCs, which inhibits expression of CRH and ACTH (Uchoa, 

Ernane, and Torres, 2014), regulate HPA axis activity. Numerous studies have investigated 

the role of VP in activation of the HPA axis by using various stressors, which differ in 

nature and intensity. Although there is no evidence to show a clear role for VP either in 

circadian and basal rhythmicity of plasma ACTH or after chronic stressor, VP is thought 

to have a stimulatory effect on ACTH secretion after an acute stressor such as LPS 

administration (Zelena, 2009). Studies have shown a relationship among 

catecholaminergic activity, HPA axis, and stress. Injection of CRH into different sites in 

the brain can increase GC and catecholamines production (epinephrine and norepinephrine, 
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also known as adrenaline and noradrenaline, respectively) from the sympathetic nervous 

system and their metabolites.  This has been shown to affect stress-related behaviors, and 

increase cardiovascular output and blood flow to the brain and skeletal muscles while GCs 

act synergistically with them. Furthermore, both GCs and catecholamines provide energy 

from adipose tissue and hepatic cells to precede the fight-or-flight response. Meanwhile, 

GCs cause decreases in nonessential behaviors such as reproduction and digestion 

(Sorrells, 2007).  

 
Early phases of stress have stimulatory effects on the immune system with regard to the 

activities of catecholamines. Although GCs can suppress immune responses, small 

amounts of GCs are desirable to permit catecholamines to rapidly stimulate the immunity. 

High amounts of GCs prevent autoimmune damage due to their suppressive effects. This 

explains the significance of a controlled immune reaction during fight-or-flight responses 

to both act beforehand as well as being suppressed in the long-term (Sorrells, 2007). 

Animals might show alteration in catecholamine concentration based on whether they were 

exposed to chronic or acute and/or to novel or similar stressors. Furthermore, circulating 

 

Figure 1-1 Systems activated by stress.  

Note. ACTH: adrenocorticotropin hormone; AMY: amygdala nuclei; ANS: autonomic nervous system; 
CORT: corticosterone; CRH: corticotropin releasing hormone; HIPP: hippocampus; HPA axis: 

hypothalamo–pituitary–adrenal axis; HYP: hypothalamus; LC: locus coeruleus; NA: noradrenaline; 
PFC: prefrontal cortex. (Adapted from www.sciencedirect.com) 

Stressor 
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GCs may function in a regulatory fashion by inducing negative feedback of norepinephrine 

secretion (Pacak and Karel, 1995). 

Glucocorticoids are central mediators with a broad diversity of anti-inflammatory and anti-

proliferative effects. The primary role of GCs in stress is to suppress immunity. 

Glucocorticoids decrease macrophage accumulation in a wide range of diseases, such as 

arterial injury and are powerful anti-inflammatory mediators,. Poon et al. (1991) reported 

that GCs inhibition monocyte chemoattractant protein-1 (MCP-1) secretion in arterial 

smooth muscle cells (SMC) by altering MCP1 mRNA. Dhawan et al. (2007) described GC 

effect on gene expression, which is mediated by GC receptor ligation followed by 

triggering transcription of genes conatining a glucocorticoid-response section. They 

reported that GCs could reduce stability of mRNAs including transcripts encoding 

cyclooxygenase (COX)-2, cyclin D3, exotoxin, granulocyte-macrophage-colony-

stimulating factor, interferon-β, interleukin-1, interleukin-6, inducible nitric oxide 

synthase, leukocyte inhibitory factor, and vascular endothelial growth factor. In contrast, 

GCs can strengthen mRNA stability of other transcripts including COX-1 and fibronectin. 

Even though stressors can affect the HPA axis, its activation depends on duration, strength, 

and stressor etiology. Gutierrez et al. (2015) studied effects of different stressors (acute and 

chronic) on triggering HPA axis activity. The authors utilized two different stress models: 

electrical (physical) and LPS administration. Activatation of HPA axis was accomplished 

by chronic physical stressors and by acute or chronic LPS administration. Increased 

secretion of corticosterone occurred after LPS administration but not after acute physical 

stress. In a series of experiments by Hueston et al. (2014), an acute stressor (foot shock) 

caused a robust increase in IL-1 expression at 60 min after stress. In addition, there was a 

robust increase in IL-1R2, which can block IL-1 signaling, before IL-1 expression, which 

remained elevated for 240 minuets. There can be effects of stressors on other genes by 

activating them, rather than the cytokines, to limit or shut-off signals for 

neuroinflammation. They also studied the short-term effects of CRH and ACTH (HPA axis 

hormones) on the expression of cytokines and observed that there was no time relationship 

between HPA axis activation and robust increases in cytokine expression in the brain. 

However, ACTH directly links to particular inflammatory-related genes in the adrenal 

gland. Moreover, increased GC levels following acute stress had negative feedback on 
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adrenal c-fos, COX-2 and IL-1 expression. Excessive Toll-like receptor (TLR) binding can 

cause hyper-activation, which can be suppressed by GCs targeting T-cells (Brewer et al., 

2003). In contrast, macrophages are targeted by GCs to prevent septic shock induced by 

LPS (Bhattacharyya et al., 2007). 

Mainly, acute stressors can stimulate brain cytokine production because a necessary 

amount of brain norepinephrine needs to be produced. Studies of stress in restrained rats 

have shown increased IL-1β in the hypothalamus but no changes in circulating IL-1β, TNF-

α, IL-6, or central Cox-2. Restraint stress caused higher plasma corticosterone, which has 

a continuous and pulsatile pattern, and high plasma epinephrine (Porterfield, 2011). 

Corticosterone secretion can follow different dynamic patterns based on the strain of rat, 

which have different responses to acute stress. Windle (1998) performed the first series of 

experiments studying HPA axis in catheterized rats to minimize handling and disturbance 

of plasma corticosterone levels. Moreover, they have shown there is a sexual dimorphism 

in HPA activity, which will be discussed later. 

Frank (2013) proposed a novel idea about the effects of GC production on priming both 

central and peripheral innate immune system in reaction to the stressors in mice due to their 

effect on inflammatory response following infection or injury. This sensitization would 

make test subjecys aware of an injury or infection after GC concentration declined. After 

the fight-or-flight emergency is over, the immune system response to any potential 

inflammatory threats will be increased because it has been prepared by the neuroendocrine 

warning signal. 

1.2 Innate and Adaptive Immune Response 
Initial and rapid response to any pathogen, which is called innate immunity, is an antigen-

nonspecific response in all living individuals. The host is born with this mechanism, and it 

is the first mechanism activated soon after being pathogen exposure (Wira et al., 2005). 

The four main roles of innate immunity include identifying foreign pathogens, removing 

them, regulating the immune response, and presenting antigen to effector immune cells.   

Immune activation by innate immunity is responsible for initiating both humoral and 

cellular components (Murphy, 2012). 
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The first step in innate immunity is recognition by leukocytes of invading pathogens 

through pattern recognition receptors or PRRs (Takeuchi et al., 2001), which include two 

types: secreted molecules and cell-surface receptors. Secreted molecules are found in blood 

and lymph and are components of the complement system, while cell-surface molecules 

are found on macrophages and other phagocytic cells. The TLRs and C-type lectin 

receptors (CLRs) are cell-surface receptors on macrophages and dendritic cells that induce 

release of cytokines (Ozinsky, 2000; Pioli et al., 2004). There are at least 11 identified 

TLRs, which can either act together or separately (Aderem, 2004). The initial response to 

a pathogen is through macrophages, which are mature monocytes present in different 

tissues. Macrophages phagocytize pathogens through binding to TLRs on the plasma 

membrane (cell-extrinsic pathway) in contrast to the receptors in the cytoplasm (cytosolic 

PPRs/ cell-intrinsic pathway), which are known as nucleotide-binding oligomerization 

domain proteins (NOD) (Beutler, 2009; Takeuchi and Akira, 2010).  

Despite the fact that innate immunity is antigen-nonspecific, some conserved structures 

named pathogen-associated molecular patterns (PAMP) can be recognized by TLRs on 

some immune cells. Macrophages, monocytes, dendritic cells, and neutrophils are 

leukocytes that can start the series of immune responses and recruit other leukocytes by 

recognizing PAMPs including mannose, peptidoglycan, lipopolysaccharide (LPS), 

bacterial DNA, glucans, viral nucleic acids, and lipoteichoic acid (LTA) (Janeway and 

Medzhitov, 2002). Innate immune responses and inflammation are induced by recognition 

of PAMPs by PRRs. Antigen presenting cells, in particular, dendritic cells, express PRRs 

leading to detecting microbes and triggering adaptive immune responses. Extracellular 

pathogens are sensed by cell-extrinsic recognition pattern through TLR-1, TLR-2, TLR-4, 

TLR-5 and TLR-6, and CLRs expressed on cell membranes of macrophages and DCs.  

Takeda (2004) has shown the reciprocal action of both TLR-2 and TLR-6 throughout the 

immune response to peptidoglycan and LTA PAMPs in a way that TLR-2 serves as the 

initial signal to induce an immune response and the second response is associated with 

binding of TLR-6. Because of TLR binding to the pathogen, the signal is transmitted to the 

nucleus of macrophages through nuclear factor (NF)κB. Production of cytokines is the 

ultimate result of TLR signal transmission by stimulation of gene expressions for those 

cytokines (Takeda, 2005). Alternatively, cell-intrinsic recognition pathway is used to 
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detect viral nucleic acids and intracellular bacteria through cytoplasmic sensors. In some 

cases, both cytosolic and membrane-bound PRRs can detect some PAMPs, such as viral 

nucleic acids and LPS (Iwasaki, 2015). 

The diverse white blood cells (leukocytes) in blood and lymph are responsible for the 

immune response. They originate from hematopoietic stem cells (HSC) in bone marrow 

and are differentiated into either myeloid progenitor or lymphoid progenitor cells. 

Lymphocytes (B and T) and natural killer cells arise from lymphoid progenitor cells; 

whereas, myeloid progenitor cells give rise to mononuclear or polymorphonuclear 

phagocytes, mast cells, and red blood cells. Innate immunity is mostly reliant on 

specialized myeloid cells. Granulocytes or polymorphonuclear leukocytes include 

neutrophils, eosinophils, and basophils due to their cytoplasmic granules, which contain 

bactericidal enzymes (Murphy, 2012). Neutrophils have phagocytic properties in addition 

to having antibacterial enzymes and are generally the first cells to reach the infection site. 

Soon after infection, monocytes follow neutrophils to the site, thus accumulation of 

neutrophils and macrophages is a hallmark of inflammation. Mature neutrophils exit bone 

marrow fully maturated, however,  immature neutrophils can be found in blood during the 

acute phase of an infection. Concentration of mature neutrophils increase in circulation 

during severe infection, even 5-10 fold in severe cases (Waller, 2002). Circulating 

neutrophils in sheep average 2,400 neutrophils/μl of blood, while basophils and eosinophils 

usually average fewer than 5% of the total leukocytes: 50 basophils/μl and 400 

eosinophils/μl in blood. Mast cells, basophils, and eosinophils have roles in allergic 

reactions. Eosinophils also play a part in responding to parasitic infestation. 

The main components of mononuclear phagocytes are circulating monocytes and cells 

derived from them including macrophages (tissue monocytes) and dendritic cells. Average 

concentration of circulating monocytes in sheep is 200 monocytes/μl. Dendritic cells (DC) 

are professional antigen-presenting cells (APC) and take up pathogens through 

micropinocytosis. Then,  activated DCs travel to the closest lymph node and activate T-

cells, which are pathogen-specific lymphocytes and cellular elements of  adaptive 

immunity. Moreover, activated and mature DCs can produce cytokines to affect mutually 

innate and adaptive immunity. Kupffer cells, microglial cells, and osteoclasts are examples 

of macrophages of liver, brain, and bone, respectively. Macrophages can destroy pathogens 
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by phagocytosis as well as recruiting polymorphonuclear phagocytes to the infection site. 

Macrophages present antigen through MHC class II to T-cells (CD4+) and stimulate an 

adaptive immune response (Beutler, 2004). In addition, macrophages can start 

inflammation that causes redness, swelling, heat, and pain in the affected area. Those 

characteristics are based upon the increase in blood flow, increased permeability of blood 

vessels, and vasodilation in the affected area. Furthermore, migration of leukocytes to the 

site of infection is due to the effect of chemokines responsible for pain (Murphy, 2012). 

Inflammation is the result of TLR ligation and cytokine signaling causing secretion of 

additional cytokines, chemokines, and prostaglandins resulting in cell recruitment.   

Regulation of immunity is accomplished by intercellular messengers named cytokines, 

which are released by innate immune cells including monocytes, macrophages, DCs, 

neutrophils, eosinophils, basophils, natural killer cells, and mast cells. For instance, tumor 

necrosis factor (TNF) is produced primarily by mast cells and macrophages, and RBCs are 

the only cells that do not have TNF receptors (Tizard, 2004). Cytokines and chemokines, 

which are responsible for coordinating the immune response, include interleukins (IL-1, 

IL-4, IL-6, IL-10, IL-12, IL-18), TNF-α, IFN-γ, TGF-β, and CCL4/RANTES. Various 

stimulators cause their release; one is TLR4 binding by LPS or other pathogens through 

TLRs. Others are signals come from complement and immunoglobulin.  

There are two types of inflammatory cytokines: pro-inflammatory cytokines and anti-

inflammatory cytokines. Proinflammatory cytokines, which help systemic inflammation 

and cause fever and tissue distruction, include TNF-α, IL-1, IL-2, IL-8, and IFN- γ. On the 

other hand, anti-inflammatory cytokines mostly downregulate inflammatory responses 

through IL-4, IL-5, IL-6, and IL-10 (Raghupathy, 1997). Cytokine signaling ultimately 

causes inflammatory or allergic reactions, while proinflammatory cytokines stimulate 

adaptive immunity by recruiting T-cells, and anti-inflammatory cytokines to resolve the 

inflammatory response (McGettrick, 2007; Iwasaki, 2010). Proinflammatory cytokines, 

like IL-8, are released immediately after activation of innate immunity; they are responsible 

for the release, and production of other chemokines and cytokines. IL-8 is essential because 

of its chemotactic function to attract neutrophils to the inflammation site (Papanicolau, 

1998).  
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One model used for immune response is the LPS model, which shows that the HPA axis is 

activated at different points during the acute phase response. The LPS pathway contains 

TLR-4, which is expressed on the surface of specific WBCs such as neutrophils, 

monocytes, and dendritic cells and includes CD-14 and MD-2 as co-factors. An LPS 

injection can affect secretion of systemic IL-1, which is the result of activation of tissue 

macrophages including hepatic macrophages named Kuppfer cells (Navarra et al., 2001). 

LPS is one of the chemical motifs that can increase secretion of pro-inflammatory 

cytokines including IL-1β, as well as, causing septic shock and death due to stimulating 

the systemic release of IL-6, IL-1, and TNFα. Symptoms include fever, hypotension, organ 

failure and acidosis (Bernheim, 1976; Lacy, 2011). Moreover, IL-1β has positive feedback 

on IL-6 secretion, which is the essential element to activate HPA axis and cause fever in 

acute phase response (Turnbull et al., 2003, Cartmell et al., 2000).  IL-1 is also involved in 

growth of different cells, such as vascular smooth muscle, glial cells, and fibroblasts. 

Initiation of (NF)ƙB is in response to TLR and NOD, which stimulate macrophages to 

secrete TNFα as the first cytokine secreted. TNF-α and IL-1 can work together to enhance 

inflammation, or TNFα can work separately adjacent to the site of inflammation to increase  

production of vasodilators. Vasodilators also loosen  endothelial cell tight junctions which 

causes gaps to allow leakage of plasma proteins and neutrophils into the tissue. Both TNF-

α and IL-1 can cause inflammation symptoms including lethargy, fever, and low appetite 

(Kuwano et al., 2004, Gupta, 1995). While these two cytokines attract neutrophils to the 

site of inflammation and trauma, IL-6 is produced by macrophages in response to secretion 

of IL-1 and TNF-α. Furthermore, IL-6 has a negative feedback on the secretion of those 

cytokines and attracts macrophages to the site of inflammation; therefore, it is a major 

component of  acute phase responses (APR), which is the first part of the systemic reaction 

in a case of infection. There is an increase in acute phase proteins (APP), which are 

reactants produced by hepatocytes, macrophages, smooth muscle and endothelial cells and 

released into circulation during APR. Changes in the amount of APPs occurs within two 

hours of inflammation and remain for about two days.  Meanwhile, increases in ACTH, 

cortisol, and catecholamine are observed in addition to neuroendocrine changes like fever, 

dropped in appetite, and dizziness (Ceciliani, 2002).  
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Initiation of APR depends on secretion of pro-inflammatory cytokines at the beginning of 

an immune response to inhibit current tissue damage due to the inflammation and 

reestablish homeostasis and tissue healing (Gabay, 1999). Production of pro-inflammatory 

cytokines affects the specific part of the brain responsible for regulation of body 

temperature resulting in secretion of prostaglandin related to high temperature and fever 

induction. Prostaglandin causes vasoconstriction and stimulation of sympathetic nervous 

system leading to fever occurrence, which is the defensive mechanism against pathogens 

via decelerating their growth while increasing host immune response and metabolism (van 

Deventer, 1990).  

Sometimes cells are not needed for an immune response. In that case, other molecules, 

which are part of a humoral component of the innate immunity, would be adequate to 

destroy pathogens, while others just recognize them. Molecules that can kill microbes are 

complement, lysozyme, lactoferrin, and antimicrobial peptides. Complement includes 

about 30 proteins, which are proteolytic enzymes made by the liver. Thry ultimately lyse 

Gram-negative bacteria and disable viruses by forming a ‘‘membrane attack complex.” 

They also make pathogens recognizable to phagocytes. Most of them are inactive pro-

enzymes before they are initiated by a pathogen. Some of them are soluble receptors and 

can be directly triggered by a pathogen, while others intensify the effects of the 

“complement” antibodies. They are activated in three pathways: the classical pathway, the 

lectin pathway, and the alternative pathway. The key component of all three pathways is 

complement component 3 (C3), since, it is activated early in each one. Each of these 

pathways is triggered in a different way. The classical pathway needs antibody (IgG or 

IgM) binding to the surface of a pathogen, while the lectin pathway requires mannan-

binding lectin, and the presence of pathogen surface is essential for the alternative pathway. 

Besides, activation of any of those pathways has a positive feedback on activation of the 

alternative pathway.  

All pro-enzymes are activated by proteolytic cleavage, and C3 is activated the same way 

and cleaved to C3a and C3b. Each cleavage triggered production of serine protease to 

continue the series of cleavage of the next pro-enzymes. This proteolytic cascade is 

intensified by activation of the first elements of each chain, which depends on a cleavage 

with the activated enzyme. Because those enzymes can cleave and activate many 
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molecules, the proteolytic cascade is being intensified. The results of this cleavage are two 

fragments: the larger one, which is a membrane-binding molecule, and small fragment, 

which is biologically active. The small fragment, for instance, the small fragment of C3, 

which is called C3a, sends signals to recruit lymphocytes and phagocytes to enhance the 

inflammatory reaction. On the other hand, the large fragment, in the case of C3 is C3b, 

remains attached to the cell surface of the pathogen to amplify the phagocytic reaction. 

Moreover, they have a fundamental catalytic role as a protease to initiate the next step. 

After the activation of each of the complement pathways, C3b remains attached to both the 

host and pathogen cells. The mechanism to defend host cells from complement attack is 

based on the production of proteins to inhibit effects of complements on self-cells. Since 

pathogens do not have those proteins, complements recognize and destroy them. 

Membrane attack complexes are formed by the last component of complement, which is 

elicited by C3b produced in any of those ways. These complexes create a pore in a 

membrane of pathogens, which distorts the bilayer structure of cell membrane and makes 

it leaky and even lyse (Alberts, 2002). Outer surface of microorganisms such as LPS acts 

as an immunostimulant, which can be recognized by C1 and results in initiation of 

alternative complement cascade. Furthermore, LPS as an immune mediator can activate 

phagocytosis of antigens, which were opsonized with C3b (Merle et al., 2015). LPS is a 

potential stimulation of both the complement cascade and polymorphonuclear neutrophils 

via direct or indirect different inflammatory mediators. Purified Lipid A can bind to the C1 

and trigger the complement classic pathway independent of antibodies, while initiation of 

the alternative complement pathway can happen through LPS polysaccharide independent 

of Lipid A and antibodies. Furthermore, Smooth-form and Rough-form, which will be 

explained later, stimulate the alternative complement pathway. One of the mechanisms 

through which LPS antibodies can affect the alternative pathway is via a bond between IgG 

and C3b. Thus, this interaction boosts the accumulation of C3b on the surface of the 

bacteria induces the synthesis of new C3 and C5 convertases, which further enhance C3 

stimulation and the release of new MAC. Both IgG and IgM act as opsonins independent 

of the complements or in conjunction with them. In a case of live bacteria it results in 

opsophagocytosis by the phagocytes or facilitating the LPS uptake and its clearance in 

other cases. The Fc receptors on Polymorphonuclear leukocytes, macrophages, and 
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monocytes recognize and bind to the constant region of IgG antibodies. On the other hand, 

IgM antibodies do not have the equivalent receptors on the surface of the phagocytic cells  

but they still can trigger the complement cascade. IgG and IgM, as LPS antibodies, can 

accumulate the complement on the surface of Gram-negative bacteria by the classic or 

alternative pathways, which results in results in adherence of opsonized targets to the 

phagocytes cell membrane and inducing ingestion and intracellular killing of the antigen 

(Morrison, 1992).   

In contrast to innate immunity, which acts immediately, the adaptive immune system is 

acquired over time and is mainly dependent on the innate immune system.  Any defect in 

the  innate immune system, such as antigen presenting cells, which are vital for adaptive 

immune function, and cytokine production (type I interferons, IL-12, TNF-α, CD40L, IL-

1), may cause inefficiency in adaptive immunity. Unlike innate immunity which acts 

quickly, adaptive immunity needs time to perform because it takes 4 to 5 days for 

lymphocytes to mature and differentiate into effector cells. Similar to innate immunity, it 

contains humoral and cellular components, which are lymphocytes. There are two main 

types of lymphocytes: B- lymphocyte and T-lymphocyte. The B-lymphocytes have been 

developed in bone marrow, and they have receptors in their membrane, which can bind to 

antigens. Naïve B-cells differentiate into active plasma cells when they are exposed to the 

antigen. Plasma cells then produce antibodies or secreted-B-cell receptor (BCR), which are 

the humoral components of the adaptive immune system. Antibodies or immunoglobulins 

(Igs) opsonize pathogens for elimination by myeloid cells. The T-lymphocyte has three 

types: helper T-cell, regulatory T-cell, and cytotoxic T-cell. DCs have the main role in 

priming T-cells, especially Th1, by presenting bacterial and fungal antigens to them via 

their receptors, which is unique to them and is called T-cell receptor or TCR. The major 

differences between BCR and TCR are first, BCR can be secreted, but TCR is just 

membrane bound; second, TCR only has one antigen recognition site, but BCR has two. 

Furthermore, TCR can only recognize and bind to the specific type of proteins known as 

major histocompatibility complex or MHC (Janeway and Medzhitow, 2002). MHC1 is 

present on all host cells and can be recognized by T-cells to discriminate non-self from 

self-cells. All other cells that lack MHC1 will be recognized as foreign cells and 

phagocytized by natural killer cells (NKC). MHC1 presents antigen to the cytotoxic T-cells 
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(CD8+).  The other type of MHC molecule called MHCll is found in specific immune cells 

including DCs, macrophages, and B-cells. It binds to pathogenic proteins and interacts with 

T-helper cells (CD4+) to initiate proper immune response including recruitment of 

phagocytes or humoral immune response by activation of B-cells (Hinz, 2014). Th-1 and 

CD8+ T-cells are responsible for creating immunity against both protozoa and intracellular 

bacteria through the involvement of PAMPs and TLRs and making IL-12. Cytotoxic 

lymphocytes also respond to those infections via induction of IL-12 production by CD103+ 

DCs (Mashayekhi, 2011; Edelson, 2011). Eventually, immunological memory can be 

established during the late phase of infection. It means after elimination of pathogen, some 

lymphocytes remain, which are called memory cells. Memory cells are the fundamental 

part of the immunological memory, which guarantees that the next exposure to the same 

antigen will be more effective and more rapid. It is the major significance of the adaptive 

immunity, which forms the basis of vaccination and ensures the long-term protective 

immunity (Janeway, 2001). Summary of the immune system response is shown inFigure 

1-2. 
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Figure 1-2 Innate and adaptive immune response summary. Adapted from Barker (1999). 
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1.3 Gram-negative and Gram-positive bacteria 
Bacteria are single-celled and divide by binary fission and most of them at rapid rates. 

Despite their simplicity, they are highly adaptable and sophisticated. The significance of 

bacteria is related to their ability to adapt to the situation by inducing instant mutation.  

Pathologically, they are the main causes of infectious disease.  

Bacteria are prokaryotic cells and have less complexity than eukaryotes. The major 

difference between eukaryotic and prokaryotic cells is the compartmentalized structure, 

which means the presence of membrane-bound organelles, such as mitochondria, Golgi 

complex, and endoplasmic reticulum, in eukaryotes but not in prokaryotes. The cytoplasm 

of bacteria is enclosed by a lipid cytoplasmic membrane, which is a site for oxidative 

phosphorylation. Bacteria are divided into gram-negative, gram-positive, mycoplasmas, 

and cyanobacteria. All, except mycoplasmas, have a carbohydrate cell wall (cell envelope 

in gram-negative bacteria) outside their cell membrane, which is thick and protective 

against osmotic lysis. The wall is composed of different amounts of peptidoglycan 

(mucopeptide or murein) such that gram-positive bacteria contain 60 to 90 percent 

peptidoglycan with a 20-80 nm wide wall. Gram-positive bacteria such as staphylococci, 

streptococci, lactobacilli, and Bacillus spp. have teichoic acid in their cell walls. In gram-

positive bacteria, cell wall components such as teichoic acids, which are polysaccharides 

with strong antigenicity, peptidoglycolipids, and polysaccharides are covalently bound to 

the peptidoglycan. Peptidoglycan can induce an immune response, inflammation, fever, 

and lethargy.  

Gram staining technique has been used to distinguish bacteria. The basis of this technique 

is the trapping of crystal violet-iodine by gram-positive bacteria due to their cell wall 

components, which gives them a purple color under the microscope. In contrast, gram-

negative bacteria have a low amount of peptidoglycan (5-10 nm wide) in their cell 

envelope, which is just a monolayer thick. Throughout Gram-staining, less crystal violet-

iodine is trapped in their cell envelope, which stains them pink-red, since their cell 

envelope is thin. Furthermore, gram-negative bacteria have an outer cell membrane of 

lipopolysaccharide (LPS), which is also named endotoxin (Royet, 2007; Kopecny, 2013). 
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The LPS consists of two parts: toxic Lipid A (hydrophobic) that is connected to the 

polysaccharide chain (hydrophilic carbohydrate), which itself has a core (inner and outer 

core) and an O-Specific chain. The difference in LPS among different strains of bacteria is 

associated with the inconsistency of the O-Specific chain, which is made up of the various 

numbers of oligosaccharide repeating units giving each strain of bacteria a heterogeneous 

mixture of LPS with short, intermediate, and long O-specific chains (Baumgartner, 1993). 

Smooth variants of Gram-negative bacteria with short O-specific chain are resistant to 

complement, while rough variants with long O-specific chain are more susceptible. Lipid 

A and its unique conformational property presumably play a specific role in eliciting the 

inflammatory cascade by interacting with the host’s cellular and humoral immune factors.  

Some general features of endotoxins include being heat-stable, biologically active, 

adjuvant, and membrane-bound. Moreover, circulating endotoxins can prompt a 

devastating inflammatory response, known as “systemic inflammatory response” or “sepsis 

cascade” by activation of the complement system and macrophages and by triggering 

interferon production. Septic shock is the result of progressive sepsis, which induces 

secretion of IL-6, IL-1, and TNF-α and causes devastating symptoms including multiple 

organ failures, fever, metabolic acidosis, inadequate tissue perfusion and hypotension 

(Silverman, 1999). 

Four central proteins have been associated with cell activation by LPS in mammalian cells 

including lipopolysaccharide binding protein (LBP), TLR-4, MD-2, and CD14. The LBP 

is a glycoprotein synthetized by hepatocytes. The LBP along with CD14 are initially 

recognized as receptors for LPS, which are crucial for its sensing in a way that LBP 

simplifies LPS binding to the CD14 molecule. The LBP-LPS complex, which is formed by 

binding LPS to LBP, is the main mediator of sepsis in the case of detectable infection and 

systemic inflammatory response syndrome (SIRS) in the case of undetectable infection. In 

vitro studies have shown decreasing sensitivity of mononuclear cells to LPS-LBP complex.  

The CD14 molecule can be found on monocyte/macrophage lineage, and its interaction 

with LPS-LBP prompts monocytes and macrophages to secrete cytokines (IL-1, IL-6, IL-

8, IL-10) and TNFα, respectfully. Among LPS natural ligands, bactericidal/permeability-

increasing protein (BPI), which is produced and stored in primary granules in neutrophils, 

is associated with LBP by having similar structures and 45% identical amino acids 
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(Elsbach, 1998). It has a high affinity for LPS and has an essential role in clearance and 

neutralizing LPS (Weiss, 2003). Besides, by studying C3H/HeJ mice for years, it has been 

illustrated that the crucial element of LPS receptor is TLR-4 with an extremely precise role 

(Beutler, 2003). Studies have shown that activation of TLR-4 is dependent on MD-2 and it 

is closely related to TLR-2. Activation of TLR-2 is associated with infection with Gram-

positive and Gram-negative bacteria, which results in the induction of NF-κB and Il-8.  

Furthermore, LPS has a major part in activation of various protein kinases (Dziarski, 2000). 

Another difference is associated with their functionality in a way that BPI is lethal, but 

LBP does not have a cytotoxic effect at the same dose. Finally, Gram-negative bacteria 

coated with LBP are taken up by monocytes or macrophages through mCD14, while those 

coated by BPI are primarily taken up by polymorphonuclear cells independently of CD14 

(Dziarski, 2000; Iizasa, 2016). The LBP has an essential role in forming an LPS-CD14 

complex by catalyzing LPS and transferring a single molecule to CD14. The LPS-CD14 

complex is the main mediator of activation of the TLR4-dependent cell by transferring LPS 

to MD-2/TLR-4 complex. On the other hand, BPI prevents inflammation by blocking LBP 

and inhibiting transfer of LPS to CD14. Moreover, LBP can elicit secretion of pro-

inflammatory cytokine by activating monocyte and macrophage by transporting LPS, 

which is absorbed via intestinal barrier, to lipoproteins and chylomicrons (Krasity, 2011).  

Local and limited secretion of TNF-α, IL-1, IL-6 and IL-8 are positive factors for host body 

by stimulating the immune system to kill a pathogen, while their systemic release is the 

core cause of sepsis and SIRS in cases of endotoxemia. Most signs of sepsis and SIRS, 

such as organ damage, endothelial dysfunction, refractory hypotension, shock, and death, 

are results of overstimulation of those cytokines. Host cells with the receptor for TNF-α, 

IL-1, and IL-6 over respond to LPS and induce leukocytes like monocytes and 

macrophages to release key mediators of tissue damage, which cause a systemic 

inflammatory response. These biologically activated elements including leukotrienes, pro-

inflammatory proteases, platelet activating factor, oxygen radicals, and prostaglandins. 

Vasodilation resulting from the production of nitric oxide by macrophages and endothelial 

cells leads to vascular leakage and hypotension. Moreover, disseminated intravascular 

coagulation (DIC), which ultimately turns into shock, is another consequence of 

endotoxemia triggered by pathological activation of the coagulation system. DIC is the 
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result of activation of both extrinsic and intrinsic coagulation pathways through stimulation 

of Factor XII of the coagulation system, which was activated by LPS. It can stimulate 

activation of Factor XI and trigger production of tissue factor by macrophages and 

endothelial cells. Factor XII is another cause of hypotension by activating bradykinin, a 

hypotensive mediator (Raetz, 2002).  

1.4 Gender Response in Stress Effects 
There are two types of stressors, which can influence an animal’s reaction: psychological 

and physical stressors. Psychological stresses include restraint, handling, and novelty while 

physical ones are hunger, thirst, fatigue, injury and thermal extremes. In most cases, fear 

is a result of psychological stressors such as contact with people, restraint, and 

transportation. Studies revealed that electrical stimulation of the amygdala elicits fear, 

behavioral changes, fear-like autonomic responses, and increases in plasma corticosterone, 

which suggests that the amygdala is a center for fear. Various factors can cause animals’ 

different responses to the certain stressors such as previous experiences, genetics, animal’s 

social rank, and gender. Sometimes, the interaction between animal’s genetic and previous 

experiences can affect an animal’s reaction to the stressor as well. For example, animals 

with an excitable temperament are more sensitive to rough handling compared to animals 

having a mild temperament. Even though novelty is one of the strongest stressors, animals 

can get accustomed to it, some adapt to non-painful stimuli such as weighing, milking, 

entering a restraint device, and drawing blood through indwelling catheters. Both low and 

high short-term stressors like handling or slaughter procedures can cause an elevation in 

cortisol levels; however, heifers, cows, and steers showed higher cortisol levels than mature 

bulls (Grandin, 1997).  

Male and female reactions to the stressor involved a cascade of physiological and 

behavioral responses, which start with the secretion of hormones such as vasopressin, 

oxytocin, CRH, and other PVN hormones. In turn, CRH stimulates the release of ACTH, 

which triggers secretion of GCs (cortisol or corticosterone) from the adrenal cortex. 

Activation of the sympathetic nervous system, in response to the stressor, and its 

innervation with the adrenal medulla triggers the release of catecholamines. Sympathetic 

arousal results in the fight-or-flight response, which is an evolved response to overcome 
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the predator or flee from the threatening situation. Taylor et al. (2000) posited a theory of 

“tend-and-befriend” in females as an alternative behavioral response for fight-or-flight in 

males because the female response is affected by sex hormones, oxytocin, and endogenous 

opioid in humans and other specie. In the male, fight-or-flight aggressive response is 

mainly linked to the androgens (testosterone). In contrast, oxytocin in females, which is 

the basis for the biobehavioral attachment and caregiving system, downregulates the HPA 

and sympathetic response, based on the broad studies in rats, prairie voles, monkeys, and 

sheep. The tend-and-befriend pattern in females guarantees the survival of offspring in 

conjunction with social groupings to ensure accessing the resources and the survival of the 

species. However, some studies found no differences in responses between sexes nor 

higher cortisol level in females encountering social rejection task compares to the 

achievement tasks. Sex-specific stress response is a complex and tentative context, which 

can be affected by the nature and intensity of stress, test-subject state, and experimental 

techniques (Stroud et al., 2002, Dickerson and Kemeny, 2004) 

Neuroimaging data in human beings showed that mild stress causes different neural 

activation that activates the right prefrontal cortex (RPFC) and deactivates the left 

orbitofrontal cortex (LOrF) in males, while causing limbic hyperactivity in females. 

Consistent with the tend-and-befriend stress model, the limbic system, especially the 

ventral striatum, which contains numerous receptors for oxytocin, vasopressin, dopamine, 

and endorphin, is activated in females in response to the stressor. On the other hand, 

suppression of the LOrF, a center for hedonic goals and positive emotion, and activation 

of RPFC, which is the part of the vigilance system and negative emotion, are linked to the 

fight-or-flight response in males (Wang, 2007). McEwen et al. (2007) also demonstrated 

that chronic stress could differently affect male and female’s hippocampus and amygdala. 

It was shown that chronic restraint stress (CRS) induces proliferation in female rats’ dentate 

gyrus (part of the hippocampus) while reducing proliferation in male rats’. Additionally, 

CRS decreased neural sensitization in the CA3 region of the hippocampus (part of the 

limbic system) in males and ovariectomized females but not in intact females. Moreover, 

CRS enhanced neural sensitization of amygdala in both males and estradiol-treated 

females. 
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Dissimilar concentrations of gonadal steroids in males and females have different effects 

on the HPA axis, which cause sexually dimorphic activity of the HPA axis in human beings 

and animals. Acute alcohol treatment stimulated activation of the HPA axis in both sexes 

of rats (Jenkins, 1968; Ogilvie, 1996). However, alcohol administration in both sexes 

generates higher elevation of ACTH and corticosterone concentrations in females than 

males due to the inhibitory effect of androgens in comparison to the stimulatory effect of 

estrogens (E2). Furthermore, higher levels of ACTH and corticosterone in castrated males 

implanted with E2 in response to the injection of alcohol indicated the activational effect of 

E2 on ACTH response. Besides, both females and castrated males have a higher 

concentration of corticosterone binding globulin (CBG), which explains the discordance 

between ACTH and corticosterone concentrations. Furthermore, E2 not only increases 

adrenal sensitivity to ACTH but also enhances the clearance of corticosterone (Ogilvie, 

1997). Males show higher CRH and AVP mRNA levels in the PVN than females and 

castrated males with E2 implantation, which suggests a regulatory effect of steroid on CRH 

and AVP mRNA concentrations in the PVN. Castrated males experiencing a novel stressor 

had higher CRH and expression of c-fos in the PVN in comparison with intact males. 

Nevertheless, sex steroids do not influence basal levels of CRH and AVP mRNA in the 

PVN (Ogilvie, 1997). 

Various types of stressor activate the sympathoadrenal medullary system as well as the 

HPA axis, while the sexes and gonadal steroids affect both. Gonadectomized sheep 

subjeced to isolation and restraint stress showed elevation in plasma epinephrine. Even 

though epinephrine concentrations did not differ between gonadectomized ewes and 

gonadectomized rams, plasma epinephrine elevation remained for a longer time in 

gonadectomized rams than in gonadectomized ewes. Besides, norepinephrine did not seem 

to be influenced by stress in either sex (Stackpole, 2003). Sex differences are apparent in 

human beings, although they are inconsistent because of the stages of the menstrual cycles 

among the test subjects and lack of standardized sex steroids. For instance, men and women 

have comparable responsiveness to a physical stressor, whereas, a psychological stressor 

increases heart rates and diastolic pressures more in women than men (Tersman, 1991). 

The cortisol response in ewes and rams depends on the stressors in such a way that ewes 

tend to have higher cortisol level in response to the psychological stressors like isolation 
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and restraint. However, rams subject to the metabolic stressors such as insulin-induced 

hypoglycemia showed higher cortisol levels (Turner, 2012). Furthermore, some stressors, 

like endotoxin and exercise, do not seem to have a different effect on cortisol levels of 

gonadectomized rams and gonadectomized ewes (Turner, 2010). The mechanism for the 

different cortisol responses in various sexes to some stressors, such as tail docking and 

ACTH, emerges early in life, for example, time of further maturation of HPA axis in lambs 

is between age 1 and 8 weeks (Turner, 2006). Distinct stress responses between sexes 

derives from gonadal factors as well as factors at each level of the HPA axis including 

neuropeptide distribution in the PVN, adrenal size, and adrenal responsiveness to ACTH. 

The bidirectional interaction between the HPA axis and reproductive axis means that sex 

steroids can elicit activation of the stress system, and the stress system can influence 

reproductive function. Additionally, an in vitro experiment demonstrated that estradiol-17β 

triggered catecholamine production from adrenal medullary cells, which showed effects of 

steroids on the sympathoadrenal medullary system. Furthermore, steroids can affect 

catecholaminergic neurons in different brain loci; for example, estradiol benzoate treatment 

in rats causes high levels of norepinephrine in the pre-optic region of the hypothalamus 

(Yanagihara, 2006). Moreover, in ewes it was shown that estradiol-17β has a direct effect 

on the adrenal glands by enhancing its response to ACTH and regulating cortisol secretion. 

Female human beings and rodents generally have higher basal GCs than males. 

Furthermore, in rodents, female have higher ACTH and GCs in response to stressors. One 

explanation for the stimulatory effect of E2 on HPA axis is its direct effect on the estrogen-

responsive elements of the CRH gene and an influence on the PVN neurons via E2-receptor 

α (ERalpha). On the other hand, direct action of testosterone on the PVN neurons through 

E2-receptor β (ERbeta) thus modifying oxytocinergic neurons is responsible for the 

inhibitory effect of androgens (Handa, 2011). In sheep, presence or absence of gonads in 

either sex did not influence adrenocortical response to ACTH. However, gonadectomized 

sheep showed higher CRH and VP levels in the median eminence despite rising VP levels 

in males than females, which provides a neuroanatomical description for sex differences in 

HPA axis regulation (Canny, 1999). Different stages of reproductive cycle affect HPA axis 

in a different way. For example, women in the follicular phase have lower GCs in response 

to the psychological stress than women in the luteal phase, which suggests the suppressive 
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role of the estrogenic environment on the HPA axis in women, contradictory with its effect 

on rodents. Additionally, the attenuating effect of progesterone on the GCs responses was 

shown in both men and rodents, which suggests its down-regulating role in the stress 

response, the same as the influence of testosterone on the stress system. Lactation is another 

factor that has an attenuating effect on the GCs production and stress responsiveness based 

on the inhibitory effects of prolactin and oxytocin (Turner, 2012).  

Jones et al. (2016) reported no differences between men and women skeletal muscle 

sympathetic nervous activity (MSNA) and cardiovascular activity to different standardized 

laboratory stressors (cold pressor and mental arithmetic). They suggested that acute stress 

affects the sympathetic nervous system and cardiovascular reactivity in both sexes in the 

same way; therefore, there is no sex-related difference in their MSNA respond to the acute 

stress.  However, Some findings show higher sympathetic activity in males while others 

show no differences. Those discrepant outcomes could be, first, the result of a lack in 

standardized and equivalent stressors in men and women. Second, it could be related to a 

higher sympathoexcitatory stimulus rather than a constitutional variation. Third, 

sometimes cardiovascular and humoral responses may not properly reflect the sympathetic 

reactivity. For instance, plasma level of catecholamine (norepinephrine) is varied by 

different rate of clearance, release, and neural reuptake, so, it might not be consistent with 

the sympathetic neural release. 

From an immunological point of view, men and women display striking differences in the 

pro-inflammatory response to an antigenic challenge:  men are more susceptible to septic 

shock. Following administration of LPS, women show a more profound pro-inflammatory 

response by having higher IL-6, TNF-α, and LBP. However, both sexes show nearly the 

same concentrations of IL-10, which is the anti-inflammatory cytokine. The relationship 

between sex hormone and innate immunity can be explained by its effect on the increased 

production of pro-inflammatory cytokines and LBP mRNA in women treated with E2. Due 

to the insignificant role of the circulating leukocytes on the systemic cytokine production, 

no sex differences in leukocyte differential were observed other than significantly lower 

monocyte counts in women. Higher levels of LBP were associated with secretion of the 

pro-inflammatory cytokine in women, which facilitated TL-4 signaling (van Eijk, 2007). 

Thus, E2 acts in a pro-inflammatory manner while testosterone is more anti-inflammatory, 
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i.e., testosterone reduces eosinophil degranulation, Fc-receptor expression, antibody 

production, and inducible nitric oxide synthase mRNA expression. Conversely, E2 

increases these immune reactions. 

The complexity of the sex-specific variation in response to infection is obvious. Lastly, 

sex-susceptibility to different infections depends on the type of the microbe. In most cases, 

E2 acts to stimulate the immune system, and testosterone acts to suppress the immune 

system. The interaction between sex and immune responses to specific microbes may cause 

clearance of the infection due to enhanced immune response or amplify infection because 

of the decreased immune response. Bacterial cell wall components, such as LPS and LTA, 

can cause strong immune responses with sex differences. For example, administration of 

LPS from Salmonella abortus equi and LTA from Staphylococcus aureus induced higher 

levels of pro-inflammatory cytokines (TNF- α, IL-1 β, IL-6, and IL-8) and IFN- γ in male 

mice while females receiving LPS showed delayed apoptosis of granulocytes and higher 

overall survival; survival rate in female mice was 84% and 41% in male mice 24 hours 

after intraperitoneal LPS administration. Furthermore, males showed a rapid drop in the 

numbers of peritoneal macrophages with a concomitant surge in neutrophils by 18 hours 

after LPS administration, while females had the same drop in macrophages without the 

concurrent granulocyte inflow. Vulnificus LPS (Vibrio) was more lethal in intact female 

than male rats, but ovariectomized female rats had a mortality rate similar to males, and 

estrogen administration to gonadectomized rats of either sex resulted in higher rates of 

mortality (McClelland, 2011).  
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 Objectives 
Drawing blood from the jugular vein while the animal’s head is restrained can cause a 

fight-or-flight response, which can elicit an immune response and elevation in white blood 

cell count. The aim of the current study was first to determine whether the type of blood 

draw from the jugular vein elicits stress, which can affect the immune response. The second 

aim was to determine the effect of sex on the stress and immune response. Therefore, the 

primary null hypothesis for this experiment was that different blood draw types do not elicit 

a difference in total white blood cell count, cortisol level, rectal temperature, and physical 

appearance. The secondary null hypothesis was that sex does not affect total white blood 

cell count and cortisol level, which means administration of LPS does not elicit a difference 

in total white blood cell count, cortisol level, mucosal response, rectal temperature, and 

lethargy in ewes compared to wethers. Hence, the main objectives of this study were to test 

the effects of different blood draw types and sexes on the immune system and the HPA 

axis response to LPS administration. 
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 Materials and Methods 
Thirty-eight mature Dorset and Suffolk wethers and ewes, ~ 46 kg BW, (WVU IACUC 

#13-0404.1) were fed free choice native grass hay and had ad libitum access to fresh water. 

They were assigned randomly to a 2 x 2 x 2 experimental design and assorted into four 

groups by blood draw type (restraint versus catheter), sex, and treatment (LPS versus 

saline). The first group consisted of ewes (n=5) and wethers (n=4) that received LPS and 

were restrained to draw blood by repeated puncture of a jugular vein, and the second group 

consisted of ewes (n=6) and wethers (n=4) that did not receive LPS and were restrained to 

draw blood from the jugular vein. The third group consisted of ewes (n=6) and wethers 

(n=4) that received LPS while having a jugular catheter to draw blood, and the fourth group 

consisted of ewes (n=6) and wethers (n=4) that did not receive LPS and had a jugular 

catheter to draw blood. Each sheep’s neck was shorn from the dorsolateral and front to 

expose the jugular vein. The catheter was placed into the jugular vein the day prior to the 

experiment, anchored with a stitch, and covered by veterinary wrap to prevent other 

animals tugging on it. Jugular samples were collected from all animals 12 h before the 

challenge. 

On the day of the experiment, each animal was bled before receiving either 2.5 mL of 0.1% 

BSA/PBS (controls) or 2.5 mL of 2.5 μg/kg of LPS (Sigma Altrich, St. Louis, MO) via the 

jugular vein through the catheter or direct draw. Jugular samples (6-8 mL) were collected 

in EDTA-treated tubes every 30 min post challenge for 180 min, every hour through 12 h, 

and 24 h after the initial challenge. Catheters were removed after the hour 12 samples were 

taken. In addition, changes in body temperature and behavior and/or physical appearance 

were documented during the first 12 h of blood sampling, and cortisol levels were measured 

for hours 0-6 post-treatment. Complete blood counts (CBCs) and white blood cell 

differentials were determined by veterinary hematology blood analyzer machine (Abaxis 

VetScan HM5, Abaxis Inc.) immediately after sampling. Remaining samples were 

centrifuged, and plasma was collected and stored at -20°C until the concentrations of 

cortisol were measured in a single assay with a commercially available human cortisol 

ELISA (Diagnostic Products Corporation, Los Angeles, CA). 
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3.1 Statistical analysis 
Null Hypotheses: 

1. The concentration of cortisol in jugular plasma and total white blood cell concentration, 

including lymphocyte, monocyte, and granulocyte concentrations, rectal temperature, and 

physical observation do not differ between the catheter and non-catheter groups after 

injection of LPS or BSA/PBS (control). 

2. The concentration of cortisol in jugular plasma; total white blood cell concentrations, 

including lymphocyte, monocyte, and granulocyte concentrations; rectal temperature; and 

physical observation do not differ between sexes after injection of LPS or BSA/PBS 

(control). 

Alternative Hypotheses: 

1. The concentration of cortisol in jugular plasma and rectal temperature are higher in non-

catheter groups and they show more symptoms after injection of LPS or BSA/PBS 

(control). Total white blood cell concentration, including lymphocyte, monocyte, and 

granulocyte concentrations are lower in non-catheter groups after injection of LPS or 

BSA/PBS (control). 

2. The concentration of cortisol in jugular plasma and rectal temperature are higher in wethers 

compared to ewes and they show more symptoms after injection of LPS or BSA/PBS 

(control). Total white blood cell concentration, including lymphocyte, monocyte, and 

granulocyte concentrations are lower in wethers after injection of LPS or BSA/PBS 

(control). 

All continuous variables were tested for normal distribution by goodness of fit -  

ShapiroWilk W-test and in case of a right skewness, data were transformed using natural 

logarithm (ln). A 4-point logistic regression was used to develop cortisol standard curve. 

Data for white blood cells count (total, lymphocytes, granulocytes, and monocytes) and 

cortisol concentration were measured over time and were analyzed by repeated measures 

ANOVA in a 2x2x2 factorial arrangement of treatments (sex, method of blood draw and 

LPS). Main effects of LPS, time, sex, method of blood draw, and interaction of catheter by 

LPS and LPS by sex were evaluated. Physical observations, including vaginal discharge 

for ewes, lethargy, loss of appetite, coughing, nasal discharge, and watery eyes, were 
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analyzed as categorical data in a contingency table using Chi-square or Fisher’s exact test. 

All data were analyzed using JMP and SAS software (JMP®, Version Pro 11, SAS Institute 

Inc., Cary, NC, Copyright ©2013; SAS®, Version 9.3, SAS Institute Inc., Cary, NC, 

Copyright ©2002-2010). Significance criterion alpha level for all tests was 0.05. 
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 Results 
4.1 Plasma cortisol concentration 

Sheep treated with LPS exhibited greater cortisol concentration (161.79 vs. 54.22 µg/dL, 

p<0.0001), even though effects of catheter, sex and their interaction were not statistically 

significant (Figure 4-1). Interaction of LPS x catheter, but not LPS x sex, was significant 

(p<0.0001). Mean cortisol concentration in catheterized sheep treated with LPS was 184.94 

µg/dL and in non-catherized animals treated with LPS was 126.29 µg/dL. In addition, 

control group (No-LPS+No-Catheter, n=9) showed higher mean level of cortisol (74.00 

µg/dL) than No-LPS+Catheter (41.79 µg/dL, n=9). Ewes and wethers treated with LPS 

displayed high cortisol level (162.75µg/dL and 159.72 µg/dL, respectively), while there 

was no significant difference between sexes. Hour (p<0.0001), and LPS x hour (p<0.0001) 

differed but responses due to sex, catheter, and LPS x sex did not differ over time (Figure 

4-2). Mean concentration of cortisol in hour one in wethers with LPS and catheter (n=4) 

was the highest (416.80 µg/dL) of all treatment groups, and the concentration in wethers 

of the control group (n=4) at hour five was the lowest (40.51 µg/dL). 
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Figure 4-1 Mean plasma cortisol concentration in jugular blood in catheterized and non-catherized 
sheep after treatment with saline or LPS.  

Effect of LPS (p<0.0001), LPS x Catheter (p<0.0001). 
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4.2 Blood leukocyte analysis 

 Total white blood cell count in jugular blood 
There was no significant difference between ewes (7.66 million) and wethers (8.34 million) 

in their total WBCs and no significant effect of the catheter over all time points. Total white 

blood cell (WBC) count differed due to LPS (p<0.0001), catheter (p=0.0512), LPS x 

catheter (p<0.00 Figure 4-3A), and LPS x sex (p=0.0019, Figure 4-3 B). Mean total WBCs 

for no-LPS+no-catheter group (n=10) was 9.27 million, no-catheter + LPS (n=9) was 5.75 

million, catheter + LPS (n=9) was 3.57 million, and catheter + no-LPS (n=11) was 12.65 

million. Sheep treated with catheter and no LPS had the greatest increase in total WBCs, 

while catheter group with LPS exhibited the least increase in total WBCs. Additionally, 

there was a significant interaction between LPS x catheter (p<0.0001) and LPS x sex 

(p=0.0019). However, sheep treated with LPS maintained lower total WBCs over all the 

 
Figure 4-2 Mean cortisol concentrations in jugular blood in wethers and ewes with or without a catheter 

for 6h after treatment with either saline or LPS .  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x Catheter (p=0.0007), LPS x hour (p<0.0001). 
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sampling period (Figure 4-4). The interaction between sex and LPS was not significant 

while the interaction between catheter and LPS was significant (p=0.0002). Figure 4-5 

shows total WBC count repeated measures overall equally spaced time points in all four 

groups. 

 

 

 
Figure 4-3 Total white blood cell (WBC) concentration in jugular blood in catheterized and non-

catheterized sheep (A), and in ewes and wethers (B) after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), catheter (p=0.0512), LPS x catheter (p<0.0001), LPS x sex (p=0.0019). 

A 

B 
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 Concentration of Lymphocytes in jugular blood 
Lymphocyte concentrations (Figure 4-6) differed due to LPS (p<0.0001) and LPS x 

catheter (p<0.0001) while there was no difference between sexes and catheterization or the 

 
Figure 4-4 Total white blood cell (WBC) concentration in jugular blood in sheep after treatment with 
either saline or LPS.  Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001), catheter x 

LPS (p=0.0002). 

 
Figure 4-5 Total white blood cell (WBC) concentration in jugular blood in catheterized and non-

catheterized ewes and wethers after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001), catheter x LPS (p=0.0002). 
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interaction. Lymphocyte counts for no-LPS+no-catheter group were 7.57 million, no-

catheter + LPS was 4.73 million, catheter + LPS was 3.10 million, and catheter + no-LPS 

was 10.50 million. Lymphocyte counts did not differ significantly between ewes (6.33 

million) and wethers (6.95 million). The effects of LPS (p<0.0001), hour (p<0.0001), LPS 

x hour (p<0.0001, Figure 4-7), and LPS x catheter (p<0.0001) were significant (Figure 

4-8). Decline in numbers of lymphocytes started 1 hour post treatment in LPS groups 

averaging 2.54 million cells/ml in ewes (n=5) and 3.00 million cells/ml in wethers (n=4) 

in no-catheter group and 2.53 million cells/ml in ewes (n=6) and 1.06 million cells/ml in 

wethers (n=4) in catheter group. 

 

 
Figure 4-6 Concentrations of lymphocytes in jugular blood in catheterized and non-catheterized sheep 

after treatment with either saline or LPS.  

Effect of LPS (p<0.0001) and LPS x catheter (p<0.0001). 
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Figure 4-7 Concentrations of lymphocytes in jugular blood in sheep after treatment with either saline or 

LPS.  Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001). 

 

 
Figure 4-8 Concentrations of lymphocytes in jugular blood in catheterized and non-catheterized ewes 

and wethers after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001), catheter x LPS (p<0.0001). 

B 



 

34 

 Concentration of Monocytes in jugular blood 
Monocytes concentrations (Figure 4-9) differed due to LPS (p<0.0001), catheter 

(p=0.0428) and LPS x catheter (p<0.0001), while there was no difference between sexes 

(ewes 0.0383 million and wethers 0.0419 million) and LPS x sex. Monocyte counts for no 

LPS and no-catheter group were 0.0464 million, no catheter and LPS was 0.0290 million, 

catheter and LPS was 0.0182 million, and catheter and no LPS was 0.0630 million. 

Monocyte counts did not significantly differ between. Effects of hour (p<0.0001), LPS x 

hour (p<0.0001, Figure 4-10), and LPS x catheter (p<0.0001) were significant (Figure 

4-11) even though there was no significant effect of catheter or sex over time. The decline 

in monocytes started 1 hour after treatment with LPS averaging 0.0160 million cells/ml in 

ewes and 0.0133 million cells/ml in wethers without catheters and 0.0060 million cells/ml 

in ewes and 0.0027 million cells/ml in wethers with catheters. 

 

 

 
Figure 4-9 Concentrations of monocytes in jugular blood in catheterized and non-catheterized sheep 

after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), catheter (p=0.0428), LPS x catheter (p<0.0001). 
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Figure 4-10 Concentrations of monocytes in jugular blood after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001). 

 

 
Figure 4-11 Concentrations of monocytes in jugular blood in catheterized and non-catheterized ewes 

and wethers after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001), catheter x LPS (p<0.0001). 
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 Concentration of Granulocytes in jugular blood 
Granulocyte concentrations differed by LPS (p<0.0001), catheter (p<0.0001), and LPS x 

catheter (p<0.0001, Figure 4-12) but did not differ by sex (ewes 1.26 million and wethers 

1.35 million) or LPS x sex. Granulocyte counts for the no LPS and no-catheter animals 

were 1.66 million, no catheter and LPS was 0.99 million, catheter and LPS was 2.02 

million, and catheter and no-LPS was 0.45 million. There was a difference in hour 

(p<0.0001), LPS x hour (p<0.0001, Figure 4-13), catheter (p=0.0037), catheter x hour 

(p=0.0491), and catheter x LPS (p= 0.0005, Figure 4-14). Decline in granulocytes started 

1-hour post treatment in LPS groups averaging 0.76 million cells/ml in ewes and 0.01 

million cells/ml in wethers in no-catheter group, and 1.12 million cells/ml in ewes and 0.36 

million cells/ml in wethers in catheter group. 

 

 
Figure 4-12 Concentrations of granulocytes in jugular blood in catheterized and non-catheterized sheep 

after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), catheter (p<0.0001), LPS x catheter (p<0.0001). 
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Figure 4-13 Concentrations of granulocytes in jugular blood after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001). 

 

 
Figure 4-14 Concentrations of granulocytes in jugular blood in catheterized and non-catheterized ewes 

and wethers after treatment with either Saline or LPS.  

Effect of LPS (p<0.0001), hour (p<0.0001), LPS x hour (p<0.0001), catheter (p=0.0037), catheter x 
hour (p=0.0491), catheter x LPS (p= 0.0005). 
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4.3 Rectal temperature 
Main effects of LPS (p<0.0001), catheter (p=0.0059, Figure 4-15), sex (p=0.0457), and 

LPS x sex (p=0.006, Figure 4-16) were found for rectal temperatures. Means of rectal 

temperatures for non-catheterized animals treated with saline was 38.43°C or with LPS 

was 38.98°C, and for catheterized animals  treated with saline was 38.26°C or  with LPS 

was 38.68°C, and was significantly different between ewes (38.56°C) and wethers 

(38.64°C). There was a difference in hour (p<0.0001), LPS x hour (p<0.0001, Figure 4-17), 

sex x hour (p=0.0114), and catheter x hour (p<0.0001, Figure 4-18). Rectal temperatures 

increased in non-catheterized animals treated with saline or LPS at 1-hour post-treatment 

(means 38.57°C and 38.96°C respectively).  It peaked at 4 hours in non-catheterized ewes 

and wethers (means 39.49°C and 40.72°C respectively) treated with LPS. Rectal 

temperatures for catheterized animals treated with LPS group first increased at hour 1 and 

then decreased for hours 2 and 3 but then peaked at hour 6 and remained high for 24 hours 

in wethers (40.00°C) and peaked at hour 9 in ewes (38.95°C) but declined after hour-12. 
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Figure 4-15 Rectal temperatures after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), catheter (p=0.0059). 

 

 
Figure 4-16 Rectal temperatures in ewes and wethers after treatment with either saline or LPS.  

Effect of LPS (p<0.0001), sex (p=0.0457), LPS x sex (p=0.006). 
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Figure 4-17 Rectal temperatures after treatment with either saline or LPS.  

Effect of LPS (p=0.0014), hour (p<0.0001), LPS x hour(p<0.0001). 
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Figure 4-18 Rectal temperatures for 24 h in ewes and wethers with or without catheters and after 

treatment with either saline or LPS.  

Effect of LPS (p=0.0014), hour (p<0.0001), LPS x hour(p<0.0001), sex x hour (p=0.0114), catheter x 
hour (p<0.0001).   

Table 4-1 Statistical significance (p-values) of treatment effects and interactions for all continuous 
variables. 
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4.4 Physical observation 
 Ewes treated with LPS exhibited a vaginal discharge (p=0.0046) while controlling for 

effects of hour and catheter. In addition, 1.28 % of the ewes in No-Catheter and No-LPS 

group and 12.82% in No-Catheter and LPS group showed vaginal discharge (Figure 4-19, 

Figure 4-24). Both wethers and ewes receiving LPS showed loss of appetite (p<0.0001), 

lethargy (p<0.0001), and mucosal responses including nasal discharges (p<0.0001) and 

coughing (p=0.0296). Lethargy occurred in 43.7% of ewes and 23.1% of wethers in 

LPS+Catheter group and 32.1% of ewes and 30.8% of wethers in LPS+No-Catheter, while 

just 2.56% of ewes and 1.92% of wethers in control group did so (Figure 4-21). Ewes and 

wethers in LPS+Catheter group exhibited loss of appetite, 25.3% and 17.9%, respectively 

(Figure 4-21). 2.30 of ewes and 2.56% of wethers in LPS+Catheter group showed 

coughing. Furthermore, 12.82% of ewes and 7.7% of wethers in LPS+No-Catheter and 

7.7% of wethers in control group exhibited coughing (Figure 4-22). 5.8% of wethers in 

control group had nasal discharge, while that number was zero for ewes of the same group. 

11.5% of ewes and 20.5% of wethers in LPS+Catheter group showed nasal discharge and 

15.4% of ewes and 20.5% of wethers in LPS+No-Catheter, while 5.8% of wethers in 

control group did so Figure 4-23. 
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Figure 4-19 Vaginal discharge in Catheter and No-Catheter ewes after treatment with either saline or 
LPS (No-Catheter+No-LPS n=6, No-Catheter+LPS n=5, Catheter+No-LPS n=6, Catheter+LPS n=6).   
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Figure 4-20 Lethargy in Catheter and No-Catheter ewes and wethers after treatment with either Saline 

or LPS. 

 
 

 
Figure 4-21 Loss of appettite in Catheter and No-Catheter ewes and wethers after treatment with either 

Saline or LPS.   
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Figure 4-22 Coughing in Catheter and No-Catheter ewes and wethers after treatment with either Saline 

or LPS.   

 
 

 
Figure 4-23 Nasal discharge in Catheter and No-Catheter ewes and wethers after treatment with either 

Saline or LPS. 
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Figure 4-24 Physical appearance in LPS and No-LPS groups. 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Vag dis Lethargy Loss of ap Cough Nasal dis Watery eye Total

Fr
eq

ue
nc

y

Physical Appearance

Effect of LPS on Physical Appearance 

No-LPS Yes-LPS



 

47 

 
 

 

 
Figure 4-25 Physical appearance in Catheter and No-Catheter groups after treatment with LPS. 

 

 

 
Figure 4-26 Physical appearance in ewes and wethers after treatment with LPS. 
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 Discussion 
Various methods are used for blood sampling. The procedures used most frequently in 

laboratory animals include venipuncture in rodents of the tail vein, jugular vein, or retro-

orbital sinus, and the saphenous vein in non-human primates. Other common methods in 

rodents are tail tip excision, cardiac puncture, and decapitation. Teilmann (2014) conducted 

a study in mice that showed that taking blood from the caudal and facial veins was stressful, 

inducing significant elevations in plasma corticosterone compared to automated blood 

sampling group through a catheter. Existing approaches for drawing blood manually by 

jugular venipuncture in sheep requires restraining the animal’s neck, human presence, and 

repeated animal handling. This procedure, which can be stressful and even painful, mimics 

an attack by a predator, which can trigger a fight-or-flight response and result in HPA and 

ANS activation and secretion of GCs and catecholamines. Two alternative and less 

invasive methods used world-wide for taking samples for measuring cortisol in ruminants 

are salivary sampling and jugular catheterization. While being a good indicator for plasma 

cortisol, measuring salivary cortisol is invasive and has a time lag to reach its peak 

(Hernandez, 2014). In another study, pigs with indwelling catheters had lower cortisol and 

NE compared to jugular venipuncture (Marchant-Forde, 2012). In the present study, 

catheterized animals showed no clear elevation in cortisol concentrations, while animals 

that were manually sampled exhibited a sustained elevation (41.79 µg/d vs 74.00 µg/dL). 

No elevation in the GCs levels in the catheterized sheep emphasizes stress reduction in 

blood sampling via catheterization. The effectiveness of sampling via a catheter in reducing 

stress hormone responses may be affected by the animal’s previous experience, genetic, 

and temperament. 

Various stressors can influence different hematology measures among which the immune 

system, especially circulating leukocytes, are the most sensitive. Since there is an elaborate 

relationship between immune response and stressors, the immune system can be affected 

in different ways. For example, handling can impact some cells of the immune system 

while it might not have any effect on other ones in such a way that it can have both 

stimulatory and depressing effects. In general, increased leukocyte counts occur seconds 

to minutes subsequent to a short-term stressor based on the effect of NE. Then, after long-
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term effects due to the GCs , the stress leukogram (mature neutrophilia, lymphopenia, 

eosinopenia, and variable monocytosis) can be evoked. Not all of these changes might be 

seen with moderate stressors. Thus, duration and intensity of the stressor play a vital role 

in leukocyte response. In this study, total WBC, lymphocyte, monocyte, and granulocyte 

counts in blood samples were measured. There were significant effects of catheter and 

catheter*LPS interaction on total WBC count: decreased total WBC count in both No-

Catheter and Catheter groups and it remained lower than the initial count for whole twelve 

hours.   

Mature neutrophilia and eosinophilia are other components of the stress leukogram. 

Increases in circulating neutrophils might result from moving from margination to the 

circulation. Eosinophilia is the consequence of low utilization from the bone marrow, short 

survival, and retreatment in lymphoid tissue and marginal pool. Granulocyte (neutrophils, 

eosinophils and basophils) counts decreased in both Catheter and No-Catheter group 

compared to the initial level. In this study, lymphocyte count in Catheter group was lower 

than the initial count throughout the experiment while in No-Catheter group it decreased 

one hour after the experiment and back to normal after hour eleven. However, lymphopenia 

or low normal lymphocytes is one of the key elements of the stress leukogram, which was 

observed in both Catheter and No-Catheter groups. More evaluations such as physiological 

changes, clinical pathology, and histology are needed to discern the primary reason for 

these alterations. Furthermore, there was a catheter*LPS interaction on lymphocyte count 

showed that No-Catheter+No-LPS group had lower numbers of lymphocytes than the 

Catheter+No-LPS group while Catheter+LPS group had the lowest numbers of 

lymphocytes. 

There is an inconsistent relationship between GCs production and monocytes level in 

different species. In rats, circulating monocytes follows the GCs circadian pattern but in 

human beings, after GCs injection it decreases transitionally for few hours before 

increasing above the basal level. Even though GCs have varying influence on monocyte 

counts, monocyte pattern matches pattern of lymphocytes after GCs infusion in human 

beings. In stress leukogram of dogs, monocytosis is one of the characteristics of the stress 

response, even though it is rarely seen in cattle and horses.  The results for Catheter and 

No-Catheter groups showed declined in monocyte counts, which nearly paralleled the 
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pattern for lymphocytes and remained lower than the basal level during the experiment, 

while no significant effect of the catheter was seen. In general, it is possible not to see all 

four elements of the stress response. However, two sensitive findings of stress leukogram 

are mature neutrophilia and lymphopenia. Therefore, it is fundamental to measure other 

signs of stress (clinical finding and chemical pathology), as well. Besides, the similarity of 

stress and inflammation leukograms makes it impossible to distinguish these changes based 

on the single hemogram. Interpreting data from sequential hemogram along with clinical 

findings and other laboratory exams can be helpful to discriminate each of these responses 

or concurrent presence. 

There are controversial reports based on the animals’ immune responses to various 

stressors. Male mice handled daily, and restrained for an injection established lower IgM 

and IgG to the antigen Keyhole Limpet Hemocyanin (KLH) compared to the unhandled 

controls, and female mice slightly handled without restraint for intraperitoneally injected 

KLH developed lower IgG. On the other hand, no difference has been shown between 

levels of IgM, CD4+ markers, and CD8+ markers of splenocytes of unhandled (control) 

mice and two-week-handled ones. Handled C3H/HeJ and BALB/c mice exhibited lower 

IgM and IgG levels compared to unhandled control group. In contrast, isolated male rhesus 

macaques showed about 50% more CD8+ T-cells when bled after encountering a stressor 

(Balcombe, 2004). May (2010) has found interchangeable CBC result (total WBC count, 

segmented neutrophils, lymphocytes, eosinophils, basophils, and RBCs) in blood samples 

obtained directly from venipuncture versus jugular catheter in horses. Himberger (2001) 

established a study in human beings analyzing hematologic values including WBC and 

RBC drawn from peripheral IV catheters and direct venipuncture. Their results showed no 

significant difference between those two groups. Depending on blood sampling method, 

stress response can be the result of pain, repeated handling, and restraint. It is believed that 

repeated excision of the tail tip or “milking” the tail in rodents is a painful procedure, which 

results in inflammatory leukocytosis. However, Abatan (2008) did not show a classic stress 

leukogram between tail-clip method and saphenous vein catheterization. In this study, the 

effect of the catheter was significant on total WBC, lymphocyte, granulocyte, and 

monocyte.   
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Administration of LPS triggers stimulatory effect of VP on ACTH secretion (Zelena, 

2009), which increases GC secretion, which is one of the major inhibitory mechanisms that 

controls inflammatory and immunological responses. Following LPS administration, 

concentrations of the pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6 increase, as well 

as, secretion of the stress-related hormones such as GC, epinephrine, and norepinephrine. 

Production of acute-phase proteins also was enhanced following LPS injection. This study 

demonstrates that the sheep responded to LPS with an increase in the secretion of cortisol 

and becoming anorexic, lethargic and showing mucosal responses, which can be explained 

by the negative effect of GCs on the unnecessary behaviors such as digestion. Therefore, 

poor appetite was observed in the groups with high cortisol levels. These behavioral 

changes and altered neuroendocrine secretions are components of the acute-phase response 

(Ceciliani, 2002). In the present study, we also sought to measure ewes and wethers 

respond to the LPS injection. Manually sampled wethers, which did not receive LPS 

showed a peak at hour four post-treatment, while there was no noticeable elevation seen in 

ewes of the same group. Ewes treated with LPS and sampled via venipuncture showed 

slightly higher cortisol levels compared to the wethers at all time points, while both males 

and females sustained similar pattern. LPS administration has been known as a way to 

study HPA axis response to immune stimuli and a stimulator for TNF-α and cytokine 

secretion. High dose of LPS stimulates hypothalamic AVP synthesis and secretion as a 

fundamental correspondent in HPA axis activation by LPS (Zelena et al. 2009). 

The current study challenges the hypothesis that there is no difference in cortisol response 

between ewes and wethers exposed to LPS administration and their stress response to be 

restrained for venipuncture. The results support the hypothesis and show statistically no 

difference in stress respond based on the sex. In the same way Turner et. al (2010) found 

same results in cortisol level of male and female sheep due to endotoxin stress and physical 

activity, while they saw a higher elevation in the females cortisol in response to other 

stressors such as restraint and wetting. It was suggesting that sexual dimorphism in stress 

response depends on the nature of the stressor means that some stressors might influence 

HPA axis separate from sex steroids. Therefore, it might not be accurate to generalize 

specific stress response. Restraint is known as an acute stressor, which has a stimulatory 

effect on the HPA axis and rapid elevation of ACTH and GCs. In response to the acute 
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restraint CRH and AVP act synergically to increase ACTH release (Lightman, 2008). 

Sexual dimorphism can be diminished by gonadectomy, which causes gonadectomized 

animals to exhibit similar adrenal cortex activity because its secretory function is partially 

influenced by sex hormones. Studies on a gonadectomized female and male sheep showed 

the same cortisol level with no effect of sex differences. Furthermore, intact ewes showed 

higher cortisol level in comparison with gonadectomized ones in response to the ACTH 

injection. In contrast, there was no effect of gonadectomy found in rams and wethers, which 

suggested the regulatory effect of estrogen on cortisol level at the adrenal cortex but no 

effect of testosterone on it. The stimulatory effect of Estradiol benzoate (EB) was shown 

in gonadectomized ewes while administration of testosterone cypionate (TC) to wethers 

exhibited no effect on cortisol secretion in response to the ACTH. Possible mechanisms to 

explain the function of sex steroids at the adrenal cortex level include steroid precursor 

receptiveness, adrenocortical responsiveness, and enzyme initiation (Van Lier, 2003). In 

this study, there was no significantly different response between ewes and wethers to 

catheter and venipuncture, which means no significant effect of sex on cortisol levels due 

to restraint stressor. In another study done by Van Lier (2014) a direct regulatory aspect of 

sex steroids on adrenal cortex was shown by comparing cortisol level, androgen receptor 

(AR), melanocortin 2 receptor (MC2R), and estrogen receptor alpha (ERS1) in 

ovariectomised ewes and wethers treated with or without EB or TC. There was no 

difference in cortisol level in wethers receiving or not receiving TC while wethers with TC 

showed higher AR and MC2R than wethers without TC. Furthermore, AR, ERS1, and 

MC2R expression were higher in wethers with TC in comparison with ovariectomized 

ewes received EB. Moreover, cortisol secretion was higher in EB-treated ewes than non-

treated ewes even though non-treated ewes exhibited higher AR expression. Van Lier 

(2014) results confirmed the modulatory effect of sex hormones on cortisol secretion in 

adrenocortical level. Mabley (2005) reported the anti-inflammatory effect of estrogen in 

female mice by showing an attenuated inflammatory response in the female by producing 

less TNF-α and macrophage inflammatory protein-1α (MIP-1α) in the case of endotoxemia 

and showed less LPS-induced mortality. Male rats are often test subjects for stress studies. 

However, they have lower GCs levels with fewer secretory pulses than the female rats. 

Furthermore, females have quicker elevation in GCs levels following the stressors (Everds, 
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2013). Generally, various factors such as sex, age, frequency and nature of the stressors 

can affect neural function in response to the stressors. 

The present in vivo study reports that ewes and wethers subjected to the LPS injection 

exhibited the same response during systemic inflammation subsequent to the 

administration of E. coli endotoxin. Interestingly, total WBCs, monocytes, lymphocytes, 

and granulocytes of LPS-treated ewes and wethers and no-treated ones did not differ; 

however, there was a significant effect of sex on rectal temperature. Furthermore, there 

was an LPS*Sex interaction in total WBC count. Van Eijk (2007) demonstrated that higher 

inflammatory response in females compared with males after E. coli endotoxemia is due 

to the greater LPS-binding in the female, which is associated with ameliorated TLR-4 

signaling. Moreover, females showed a rise in C-reactive proteins along with higher 

cytokines and TNF-α, which suggested the pronounced pro-inflammatory response in 

females. They also reported no significant sexual dimorphism in leukocyte differential, 

although females showed more leukopenia. LPS-treated groups showed leukocyte 

sequestration and a higher level of cytokines, which showed no significant relation between 

circulating leukocytes and systemic cytokine release. TLR-4 is the main detector for LPS, 

which is found on the surface of MQ, DCs, and monocytes. There are some variations 

among of receptors expression and cytokines production between males and females. For 

example, females MQs express more MyD88 and p38 MAP kinase phosphorylation, 

therefore, their MQs activated more in response to the LPS administration. On the other 

hand, males MQs express a greater amount of TLR-4. There are also differences in level 

of inflammatory cytokines secretion, for instance, peripheral monocytes, and peritoneal 

MQs from male produce greater amounts of TNF-α, IL-1b, and IL-6 while producing lower 

levels of anti-inflammatory prostanoids after receiving LPS. Besides, males display less 

cytotoxic T-lymphocyte activity than females who have upregulated expression of pro-

inflammatory genes. The activities of effector cells of the immune system such as T-cells, 

B-cells, DCs, MQs, and NK cells are modulated by sex hormones via their receptors on 

those cells. Unlike progesterone and testosterone which, have inhibitory effects on B-cells 

and antibody production, estradiol has a stimulatory effect on B-cells proliferation and 

differentiation into plasma cells facilitated by Th-2 (Klein, 2015). There is a sexual 

dimorphism in the thymic structure and its catecholamine composition such that males 
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have higher levels of catecholamine in their thymus whereas females have a heavier 

thymus. Despite the greater number of T-cells in females, both sexes have similar total 

lymphocyte count (Pitychoutis, 2010). The present results not only mirror those for total 

lymphocytes but also for monocytes and granulocytes.  

In the present study, as expected, LPS (p<0.001) injection caused a surge in rectal 

temperature, whereas saline had no effect on rectal temperature. Furthermore, sexual 

dimorphism was observed in rectal temperature after LPS exposure. Similar dimorphic 

responses have been found by Queen (2015) in male and female mice. They also studied 

changes in six different cytokines/gene expression in the result of three separate strains of 

E. coli LPS exposure in male and female mice. The dimorphic responses in two 

cytokines/gene expression and body temperature were observed in their study. In the 

current study, subsequent to the LPS injection, all groups displayed the same predicted 

changes in physical behavior in both sexes. Likewise, Carroll (2015) found increased 

sickness behavior in bulls and heifers following LPS administration, females recovered 

quicker than males. However, heifers displayed prolonged and higher body temperature.  

They also observed leukopenia post LPS injection in both sexes, while heifers had less total 

leukocytes and lymphocytes pre-challenge, there were no significant differences in total 

leukocytes and lymphocytes between sexes after LPS administration. Similarly, no 

significant effect of sexes was oberved on circulating leukocytes obtained from ewes and 

wethers. However, there was a significant effect of sex*LPS interaction on total WBC and 

lymphocyte in such a way that ewes had higher baseline total WBC (11.37 in ewes, 10.50 

in wethers) and displayed greater leukopenia following LPS challenge (4.23 in ewes, 5.45 

in wethers). Lymphocyte concentration was comparable with total WBC pattern in ewes 

and wethers. In addition, the mean of rectal temperature was higher in heifers in 

comparison with bulls. Therefore, it was suggested that heifers displayed vigorous acute 

response following LPS administration even though bulls exhibited severe symptoms of 

sickness. Conversely, our results showed higher mean temperature in LPS-treated wethers 

(39.09°C) compared to ewes (38.7°C) of the same group while average for rectal 

temperature in no-LPS treated ewes (38.39°C) was higher than no-LPS treated wethers 

(38.28°C). Furthermore, LPS+No-Catheter group peaked in rectal temperature between 

hour 3-4 post-challenge while Catheter group delayed in increased temperature (6-7 hours 



 

55 

post-challenge), which is a negative response for catheter. Moreover, females showed lag 

in their temperature responses while having sustained low grade fever. Generally, a febrile 

response post-LPS administration showed its assistance in determining endotoxic shock. 

There are various examples of sex susceptibility to different infections, which is complex 

and multifaceted. The principal basis for these variations is believed to be as a result of sex 

hormones and their influences on the immune system and gene expression in the same way. 

Likewise, it could be the consequence of diverse innate physiology among different sexes. 

Above all, type of microbe affects sex response to the particular infection, as well. 

Generally, testosterone is supposed to be anti-inflammatory while estrogen is pro-

inflammatory. However, in some infections, there is different susceptibility between sexes 

microbe type (McClelland, 2011).    
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 Conclusion and Future 
Works 

The current study tested the hypothesis that catheterization minimizes handling and 

disturbance of plasma GCs levels compared to direct blood draw through venipuncture. 

However, catheter and LPS interaction seems to put an additional inflammatory response 

on top of the post-LPS inflammation, which affects total WBC as well as other leukocyte 

differentials. Data from this study and previous studies suggested that sex stress response 

and their vulnerability to the detrimental effect of stress on GCs level, leukocyte counts 

and differentials may be stressor specific. Along with those findings, examining a broad 

range of cytokines and stress gene expression and their correlation with temperature and 

sickness behavior may be beneficial for understanding the stress response and sexual 

dimorphism in response to various stressors and LPS administration. However, no 

differences between GCs level in both sexes and no significant effect of the catheter, it is 

not accurate to generalize these results to all types of stressors because it seems to be other 

factors involved, which need to be determined. In other words, genetic predilection, 

environmental conditions, and the situation in fetal life are feasibly significant for 

interpreting stress responses in adulthood. Therefore, one of the impportant factors to be 

considered is whether the anial is in his or her pre-pubertal, pubertal, or post-pubertal stage. 

In conclusion, blood collection via intravenous catheter is a practical possibility to lessen 

stress to the animal and has a positive effect on animal and staff interaction while making 

blood sampling simple with no need to restrainted the animal. Furthermore, waiting at least 

three days after catheterization to give the animal enough time to recover from the stress 

and inflammation, which were caused by the catheter might be the effective way to 

minimize the detrimental effect of catheter while using along with LPS. Last but not least, 

sex differences in response to the physical stressors and LPS model for immune response 

were multifactorial and are dependent on the LPS strain, animal’s life stage, time, genetic, 

environmental condition, and individual characteristic and vulnerability. In summary, this 

study demonstrates the sheep responded to LPS with an increase in the secretion of cortisol 

and becoming anorexic, lethargic and showing mucosal responses. The effectiveness of 
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sampling via a catheter in reducing stress hormone responses may be affected by animal’s 

previous experience, temparment, and genetic. Sexual dimorphism in stress response 

depends on the nature of the stressor means that some stressors might influence HPA axis 

separate from sex steroids. Therefore, it might not be accurate to generalize specific 

response to the particular stressor to various stressors. 
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