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Abstract 

 

Impact of Pore Size on Gas Condensate Critical Properties Confined in 

Marcellus Shale  

 

Erfan Mustafa Allawe 

 

Gas condensate reservoirs have become an important topic of research for reservoir engineers due 
to the drop in gas prices in the past few years. Because of this drop, the majority of gas producers 
have become more interested in condensate and wet gas resources. However, gas condensate 
reservoirs have a unique phase behavior system and they are considered the most complicated 
reservoirs to develop due to the continuous composition changes. Therefore, the effects of nanopores 
on the critical properties of the confined gas condensate in the Marcellus Shale will be investigated 
in this research in order to achieve the optimum gas and condensate production and to improve 
reservoir management plans for this kind of reservoir. 

In this study, the given fluid data were used to construct a fluid model, which was then history 

matched with the given experimental measurements. The shift in the critical properties of gas 

condensate due to the pore confinement within the reservoir was calculated based on different pore 

sizes of 2 nm, 4 nm, and 5 nm. Then, a phase behavior and reservoir fluid program was used to build 

four fluid models, three models for the confinement case and a fourth model which represents the 

unconfined case, by the use of Peng-Robinson equation of the state (EOS). Next, four reservoir models 

were constructed by using a compositional and an unconventional reservoir simulator based on the 

obtained fluid models, from the phase behavior & reservoir fluid program, and the geological data of 

the Marcellus Shale. Finally, after constructing the reservoir models, many simulation runs were 

carried out in order to study the impact of the pore confinement on the gas phase behavior and gas 

condensate reservoir’s performance. 

This research provides an insight and an explanation regarding how to optimize the gas and 

condensate production and maximize the economic revenue of the unconventional resources. It was 

concluded that producing more condensate and sustaining high gas production rate for a longer time 

can be achieved through producing the hydrocarbon from the confined formation with a nanopore 

size around 2 nm. The pore size of 2 nm can retard the pressure drop throughout the reservoir and 

result in sustaining the reservoir pressure higher than the dew point pressure. However, the 

confinement cases of pore size of 4 nm and 5 nm were found to have a negative effect on the gas and 

condensate production. 
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Objective 
 

The objective of this research is to investigate the impact of pore size within Marcellus Shale on the 

critical properties and the phase behavior of the gas condensate with emphasis on the dew point 

pressure. After calculating the shift in the critical properties of the gas condensate the calculated 

values will be used in a commercial simulator in order to establish the fluid and the reservoir models. 

Then the built models will be simulated many times for different scenarios in order to investigate the 

impact of the shale confinement on gas condensate reservoirs performance. 
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Chapter 1 - Introduction 

1.1. Introduction 

Gas condensate reservoirs have been considered an interesting topic of research for reservoir 

engineers due to their unique phase behavior (Marir & Tiab, 2006). The discovery of the large volume 

of dry gas resources resulted in gas price decrease. Consequently, most of the producers have focused 

on developing gas condensate and wet gas due to economic advantages. Effective reservoir 

management plans are essential for developing gas condensate reservoirs. Moreover, good 

understanding of flow characteristics is quite important for precise prediction of well deliverability 

and liquid production in gas condensate reservoirs. Gas condensate reservoir flow is an imbibition 

process, whereas, oil reservoir flow is a decreasing saturation process, therefore the knowledge of 

conventional reservoirs is not applicable in the gas condensate reservoirs (Nagarajan, Honarpour, 

Sampath, & McMichael, 2004). Gas condensate reservoirs are more complex because of the 

composition and phase changes. One of the important features of the gas condensate reservoir is 

retrograde condensation which occurs when there is a severe drop in the reservoir pressure 

(Dehane, Tiab, & Osisanya, 2000). The main issue with the production of gas condensate reservoirs 

begins as the reservoir pressure or the near wellbore pressure falls below the dew point pressure.  

When the pressure around the wellbore falls below the dew point pressure, the subsequent 

condensation in this area will cause many production problems. The critical properties of the gas 

condensate have a direct impact on the condensation process and the accumulation of liquids near 

the wellbore. Also, it was found that gas condensate flow behavior changes from Darcian to non-

Darcian flow in shale formations due to the change in the fluid properties; density, phase behavior, 

viscosity, and surface tension, as a result of the confinement of gas in the nanopores especially at high 

reservoir pressure and temperature (Civan & Michel, 2013). The objective of this thesis is to study 

the impact of nanopores on the critical properties of gas condensate in the Marcellus shale. 
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1.2. Problem Statement 

Liquid (condensate) accumulation in gas condensate reservoirs, particularly near the wellbore, is 

considered to be the main production problem. The accumulated condensate around the wellbore 

region or through the reservoir causes numerous problems which impact economics of gas 

production. As the formation pressure falls below the dew point pressure, condensate starts to 

accumulate in the reservoirs. The formation of the condensate through the reservoir significantly 

diminishes the gas deliverability and in severe cases can completely prevent gas production. The 

reduction in gas deliverability is mainly attributed to the multi-phase flow effects (relative 

permeability) and blockage of gas flow pathways (Ahmed, Evans, Kwan, & Vivian, 1998). 

Furthermore, condensate accumulation through the reservoir causes a reduction in condensate 

production on the surface which has major economic implications as opposed to the wet gas 

production. When condensation occurs in the reservoir, the produced gas will be leaner as most of 

the heavy hydrocarbons will be concentrated in liquid trapped by the reservoir rock (Fan, et al., 

2005/2006).   

In order to avoid the above outlined problems, it is necessary to maintain the reservoir pressure 

above the dew point pressure in order to extend the single phase production period as long as 

possible. This can be achieved by efficient reservoir management and to understand the factors that 

have direct impact on dew point pressure.  Pore size, particularly the nanopores in shale formations, 

is one of the factors that influence the critical properties of gas condensate which in turn impact the 

dew point pressure (Civan & Michel, 2013). The effects of Marcellus shale pore sizes on gas 

condensate critical properties will be investigated in this research. 
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1.3. Unconventional Hydrocarbon Resources  

Marcellus shale is one of the biggest unconventional hydrocarbon recourses in the United States.  

According to the literature, there is no specific definition of unconventional resources in petroleum 

industry. The definition of conventional and unconventional resources changes over the time based 

on the economic advantages (Natgas, 2013). However, the term unconventional resources refer to 

the hydrocarbon resources (oil or gas) that cannot be extracted from the underground formation by 

the use of the conventional methods of production such as vertical wells. In other word, 

unconventional resources represent the hydrocarbon reserves which are trapped within low 

permeability formations such as shale rock, sandstone, and coal seams. As a result, these 

hydrocarbon resources within these kinds of formation require special production techniques to be 

extracted (Burwen & Flegal, 2013). The importance of studying the unconventional resources comes 

from that only a third of the total oil and gas reserves are conventional whereas the balance of the 

other reserves are unconventional recourses. The unconventional resources are classified into many 

different types of resources which includes; tight gas, coalbed methane (CBM), shale gas, shale oil, 

have oil (tar sand) and methane hydrates (Unconventional Resources, n.d.). Fig. 1 depicts the 

worldwide hydrocarbon resources and the percentage of each resource.    

 

Fig. 1 worldwide hydrocarbon resources (Unconventional Resources, n.d.) 
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Currently, the most common techniques that are used to produce the unconventional hydrocarbon 

resources are horizontal drilling and well stimulation which includes both hydraulic fracturing and 

acidizing. Horizontal drilling starts by drilling a vertical hole similar to conventional vertical wells, 

when the vertical hole reaches the target formation, an arc has to be built in order to penetrate the 

target formation horizontally. The purpose of using horizontal wells is to increase the production of 

the well by increasing the contact with the producing zone. Even though the cost of drilling a 

horizontal well is two or three times more than the vertical well, the initial production of this kind of 

wells is usually three or four times more than the vertical wells (Burwen & Flegal, 2013).The second 

technique that is mostly used to produce the unconventional hydrocarbon resources is hydraulic 

fracturing. This technique is accomplished by injecting huge volume of water, proppant, and 

chemicals into the producing formation (mostly shale or sandstone). The injected water at high 

pressure results in fracturing the formation and the purpose of using proppant is to maintain the 

fractures to be opened after releasing fracturing pressure. Consequently, the created fractures will 

enable the hydrocarbon (oil or gas) within the tight formations to flow toward the wellbore to be 

produced. Fig. 2 shows the unconventional hydrocarbon production methods.    

 
Fig. 2 unconventional Gas Production Methods (Burwen & Flegal, 2013) 
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1.4. Marcellus Shale 

The shale term usually refers to the rock that originally formed from mud or clay consolidation due 

to geological conditions such as high pressure and temperature.  Marcellus shale is considered one 

of the valuable unconventional resources in the United States, which is named after the town of 

Marcellus in New York. This formation is believed to be formed approximately 350- 415 million years 

ago during the Devonian era. The area of the Marcellus shale was estimated to be around 54, 000 

square miles with a distance approximated by 600 miles starting from New York and ending by Ohio 

and West Virginia (Sumi, 2008)(Fig. 3 depicts Marcellus shale extent). The Marcellus shale is 

considered the deepest formation among Hamilton group formations. Consequently, it is the oldest 

formation of this group and it is considered slightly radioactive due to the little uranium content 

(Hart, 2008). The main reason of the high interest in this formation is because it contains a vast 

volume of the recoverable hydrocarbon (especially methane gas) which has a significant economic 

advantages. In addition, the location of the Marcellus shale, in the eastern United States, gives this 

source of the gas more importance because it is near to the high population areas such as New Jersey, 

New York, and New England. Moreover, the availability of transportation pipelines provide another 

advantage in the market (King, n.d.). According to the U.S. Energy Information Agency (EIA), the 

recoverable gas reserves of Marcellus shale were approximately estimated to be around 400 trillion 

cubic feet (TCF) in 2011 (Newell, 2011).  

The natural gas in the Marcellus shale is believed to exist in three forms. The first form is the natural 

gas inside the pore spaces of the shale formation. The second form of the natural gas is within the 

natural fractures (joints) which exist in the shale formation. The last form of the natural gas in the 

Marcellus shale is the adsorbed gas on mineral grains and organ material. The first form of the natural 

gas, within pore spaces, is considered the most recoverable gas during production process even 

though it is difficult for this gas to flow through the tight formations (King, n.d.). 
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Fig. 3 Marcellus shale extent (Hoffman, 2012) 

 

1.5. Marcellus Shale Geology  

Marcellus Shale has been found to have appropriate mineralogy which is important to be considered 

as an economic source of hydrocarbon.  Moreover, Marcellus shale is classified as a low density rock 

with appropriate porosity; therefore, it is believed to contain more hydrocarbon such as condensate 

or free gas (Sumi, 2008). Marcellus shale is a sedimentary rock which is commonly called as clastic 

rock since it was formed by fragments consolidation. The majority of the fragments contain silicon 

dioxide, which is also found in quartz, glass, and sand. In addition, it contains limestone (calcium 

carbonate) and pyrite (iron hydroxide) within rock fragments. The Marcellus shale is recognized as 

a black shale rock which indicates that it contains more than one carbon percent. It was found that 

Marcellus shale was formed in water environment with a lack of oxygen; therefore, the carbon 

compounds, iron and sulfur were chemically reduced in this formation (Curtis, 2011).  

The Marcellus shale is considered a heterogeneous formation because its properties change with the 

location of the formation. The western part of the Marcellus shale is identified by its high organic 
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content comparing with the other parts, even though this part is shallower and thinner. Conversely, 

the eastern part of the Marcellus shale is deeper and thicker, but it has less organic content. The 

northern part of the Marcellus shale is geopressured, whereas the southern part is underpressure. In 

addition, Marcellus shale depth is not constant throughout the entire formation. It is shallow in some 

areas such as New York, where it appears on the surface (outcrop) and it is deep in the most other 

parts, between 5000 to 9000 feet below the surface (Sumi, 2008). In deep parts of Marcellus shale, it 

was found that it extents between two of Hamilton group formations, Mahantango, and Onondoga. 

The Mahantango formation is the Tully limestone formation that works as a cap rock to prevent 

natural gas leakage through shale fractures, while the Onondoga is a limestone formation below the 

Marcellus shale (Hart, 2008). Fig. 4 depicts the sequence of the Mahantango, Marcellus shale, 

Onondoga, and other formations.   

 

Fig. 4 the sequence of the formations above and below the Marcellus shale (Curtis, 2011) 
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1.6. Deposition Environment of the Marcellus Shale  

In general, shale rocks have formed due to weathering conditions. As rocks are subjected to the 

chemical weathering, little particles are formed as a result of rocks breaking down. Then, rainstorms 

carry the resulted clay minerals and other particles from the weathering process to create muddy 

streams which keep flowing until entering places which minimize streams speed as lakes, swamps 

and oceans. Consequently, mud starts to settle and later the accumulated mud forms the sedimentary 

rocks if there is no disturbance, and these sedimentary rocks is usually called by (mudstone) (King, 

n.d.). 

As mentioned in the above outlined, the Marcellus shale is a sedimentary rock that was formed due 

to mud particles deposition and compression in the middle of Devonian era.  According to (Curtis, 

2011), the most parts of the Appalachian Mountains were a very shallow area that was surrounded 

by higher areas in the middle of the Devonian era. That shallow area represented the Appalachian 

Basin, which was a shallow sea at that time. To the east of the Appalachian Basin is the Arcadian 

Mountains and between them is the Catskill Delta. Fig. 5 shows the geography of the Marcellus shale 

in the Devonian era. During the Devonian era, sediments broke down from the Arcadian Mountains 

because of the weathering conditions and settled down in the Catskill Delta. Coarse sediments 

accumulated around the shore area, whereas fine fragments moved farther and settled in the bottom 

of the Appalachian Basin. 

Over the time, the fine fragments were accumulating along with the algae and the other marine 

organisms deep in the Appalachian Basin.  Due to the accumulation of more sediments, the organisms 

decomposed tardily since there was no enough oxygen for the decomposition process. This process 

of deposition happened many times and as a result, different Marcellus shale layers with different 

properties were created (Hart, 2008). Beside sediment accumulation over the time, an increase of 

the temperature and pressure resulted in oil and gas generation from the accumulated organic 
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substance by different chemical reactions. In that time, these chemical reactions needed more pore 

spaces but they did not have the ability to expand during Marcellus shale deposition. Consequently, 

the resulted organic matters or kerogen (oil and gas) caused the pore pressure to increase and caused 

the shale rock to be cracked. More chemical reactions resulted in pressure increase and as a result 

the shale cracks grow until they reached each other and generated joins which are commonly known 

as natural fractures (Engelder & Lash, 2008 ). Fig. 6 depicts the natural fractures within the Marcellus 

shale.  

 

Fig. 5 Marcellus shale geography during the Devonian era (Curtis, 2011) 

 

 

Fig. 6 the resulted natural fracture due to the chemical reaction in the Marcellus shale (Engelder & Lash, 2008) 
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1.7. Marcellus Shale Characteristics  

1.7.1. Thickness 

As mentioned before in this research, the Marcellus shale does not have a consistent thickness. 

According to (Hart, 2008), the Marcellus shale has a thickness of 900 feet in New Jersey while has a 

thickness of 40 feet near Canada. Generally, the Marcellus shale is thicker in the eastern part and has 

a thickness value of 250 feet (Sumi, 2008). For instance, the Marcellus shale thickness is 200 feet in 

West Virginia, where most of the wells are being drilled there. Fig. 7 shows the Marcellus shale 

thickness map.  

 

Fig. 7 Marcellus shale thickness map (King, n.d.) 

1.7.2. Depth 

Most of the economic shale gas reserves in the United States were discovered at a depth between 500 

and 11,000 feet. The Marcellus shale is known to not have a consistent depth. Despite the fact, the 

Marcellus shale is shallow in Ohio and deep in Pennsylvania, it outcrops in New York. Fig. 8 shows 

the contour map of the Marcellus shale. Overall, the depth of the major parts of Marcellus shale ranges 

between more 5000 to 9000 feet (Sumi, 2008).  
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Fig. 8 Marcellus shale base depth in feet (Sumi, 2008) 

 

1.7.3. Porosity 

In general, shale reservoirs have a low porosity value which is commonly less than 10%. Marcellus 

shale is known to have a porosity value that varies between 0.5 to 5.0%; however, the porosity value 

was found to be equal to 9% in West Virginia. Since matrix pore spaces in Marcellus shale are not 

well connected, most of the commercial gas production is based on natural fractures porosity (Lee, 

Herman, Elsworth, Kim, & Lee, 2011).  

 

1.7.4. Permeability  

The Marcellus shale has a very low permeability value which is not enough to provide commercial 

production. Consequently, hydraulic fracturing techniques have to be used in order to produce 

economic gas volume out of the Marcellus shale. According to (Lee, Herman, Elsworth, Kim, & Lee, 

2011), the permeability value of the Marcellus shale ranges between 10−21 and 10−17 m2, nonetheless, 

it has a value of 10−14 in West Virginia core samples. 
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1.7.5. Water Saturation  

The produced gas from the Marcellus shale has a percent of water that could cause many issues 

during the transportation process. The water content in the Marcellus shale produced gas was found 

to be around 1,100 mg H2O/m3 gas. Water treatment is important to meet transportation companies’ 

specifications (Lee, Herman, Elsworth, Kim, & Lee, 2011).  

1.8. Marcellus Shale Organic Content  

The Total Organic Carbon (TOC) represents rock richness in term of the organic substances; in the 

other word, it is the amount of organic carbon (kerogen and bitumen) within a rock sample (Quantity 

of Organic Matter, n.d.). Marcellus shale is one of most important hydrocarbon sources in the United 

State based on its rich total organic content (TOC). According to many researchers’ estimations, the 

Marcellus black shale has a total carbon content ranges between 1.4 to 12 %.  The total organic 

content by weight of the Marcellus shale was estimated to be 1.40–4.30% by Milici and Swezey 

(2006), 4.27% by Lash (2008), 4–6% Gottschling, 2007), 2–10% (Wrightstone, 2008), 3.87–11.05% 

by Hill and others (2004), and 10–12% (Engelder, 2008a) (Bruner & Smosna, 2011).  The majority of 

the oil and gas producers have more concerned in producing oil and gas from the thickest section of 

the Marcellus shale due to the high presence of Total Organic Carbon (TOC) which results in 

producing more of the trapped gas in the Marcellus shale (Hart, 2008).  However, the 50 feet of the 

bottom of the Marcellus shale are believed to be the richest part in term of Total Organic Carbon 

(TOC). The bottom of the Marcellus shale has a TOC of 5.19 % to 8.81%, whereas the top of the 

Marcellus shale has a TOC of 1.64% in one of the wells in West Virginia (Bruner & Smosna, 2011). 
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Chapter 2 - Literature Review 

2.1. Previous work 

As mentioned previously in the introduction of this research, gas condensate reservoirs are 

considered an interesting topic of research due to the continuous change in composition and because 

of the economic importance of the produced condensate. For this reason, many researchers have 

studied the behavior of gas condensate reservoirs and they have investigated various techniques to 

improve gas condensate production and to overcome production issues.  

The impact of using different well configurations, for instance, vertical, horizontal and hydraulically 

fractured wells in gas condensate reservoirs, on well productivity were studied by Hashemi and his 

fellow researchers (Hashemi & Gringarten, 2005).  They have found that if the lateral length of the 

horizontal well is bigger than the permeability ratio (hkh/kv), the horizontal well is considered to be 

effective, whereas if the lateral length is equal to the relative permeability ratio, the horizontal well 

behaves as a vertical well. Furthermore, they found that the affectivity of the hydraulic fracture is a 

function of fracture length and fracture conductivity which is equal to the product of the fracture 

permeability and its width.  

Ahmed and other researchers investigated condensate blockage issues in gas condensate reservoir 

and discussed the mechanism of the gas injection process and the effectiveness of lean gas, N2, and 

Co2 (Huff ‘n’ Puff) technique as a solution to overcome condensate blockage problems (Ahmed, Evans, 

Kwan, & Vivian, 1998). Al-Lamki tried to study the near wellbore effects in order to invent new 

methods for calculating well productivity in gas condensate reservoirs using well test data (Al-Lamki, 

Daungkaew, Mott, Whittle, & Gringarten, 2000). 

Even though various researches have investigated the behavior of gas condensate reservoirs, few 

researchers have studied the effect of the pore size on the critical properties of gas condensate in 

tight formations.  
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Bustos investigated the impact of contact angle hysteresis and fluid-solid system wettability on gas 

condensate distribution and relative permeability through three dimensional pore network model 

(Bustos & Toledo, 2003). In addition, they found that the gas relative permeability shows two 

different regimes. In the first regime, when the condensate saturation is less than 20%, the relative 

permeability of the gas phase decreases slowly, whereas it decreases faster in the second regime 

(condensate saturation above 20%). 

Singh and other researchers studied the effects of confinement on thermophysical properties of n-

alkanes (critical temperature, pressure, and density) in the graphite and mica slit pores (Singh, Sinha, 

Deo, & Singh, 2009). They found that the critical temperature of alkanes decreases due to the 

confinement in the carbon nanotube, while the critical density increases because of the confinement. 

In addition, Singh proposed equations that calculate the shift in the critical pressure and temperature 

due to confinement in the tight formations. Singh’s equations calculate the shift in the critical 

pressure and temperature based on the shifted bulk pressure and temperature values. Singh’s 

equations are shown below:  

∆Pc =  
Pcb−Pcp

Pcp
                                                                              (1) 

∆Tc =  
Tcb−Tcp

Tcp
                                                                              (2) 

Finally, Devagowda et. al investigated the changes in the phase diagram, density, viscosity and 

surface tension of the hydrocarbon components within different pore sizes and the other changes 

due to the absorbed components layers compared with the bulk systems. Moreover, Devagowda et. 

al. extended the work of Singh 2009 of the nanopores and proposed equations to calculate the shift 

in the critical temperature and pressure of the heavier compounds to model gas condensate mixtures 

based on the corresponding molecular weight in order to study changes in the critical properties 

within the nanopores of 2 nm, 4 nm, and 5 nm size (Devagowda, Sapmanee, Civan, & Sigal, 2012). 
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Devagowda’s et. al proposed equations are as follows: 

∆Pc 2 nm = O. 085 Ln ( MW ) −  0.0693                                                      (3) 

 ∆Pc 4 nm = − O. 085 Ln ( MW ) +  0.1193                                                  (4) 

∆Pc 5 nm = − O. 077 Ln ( MW ) −  0.041                                                     (5) 

∆Tc 2 nm = 0.0636 Ln ( MW )0.2129                                                               (6) 

∆Tc 4 nm = 0.0229 Ln ( MW )0.2329                                                               (7) 

∆Tc 5 nm = 0.0153 Ln ( MW )0.241                                                                 (8) 

2.2. Gas Condensate Behavior 

In reservoir initial conditions, a gas condensate reservoir commonly contains a single phase fluid, 

which is gas as long as reservoir pressure is above the dew point pressure. In the beginning of the 

production process, production stream consists of two phase fluid, gas and condensate. Even though 

there is only gas in the reservoir at the initial conditions, the condensate generates as the gas enters 

the wellbore or reaches the surface due to pressure drop.  

As the formation pressure or the near wellbore pressure drops below the dew point pressure, 

condensate starts to accumulate throughout the reservoir.  After a while of the production with a 

bottomhole pressure lower than the dew point pressure, three different regions in the reservoir with 

different condensate saturation will appear. The first region, around the wellbore, contains two 

phase fluid, gas and condensate, and both of them are mobile, that is being said two phase flow exists 

in this region. After the first region is the second region, which also has gas and condensate but 

condensate saturation in this region is lower comparing with the first region. As a result, the gas is 

flowing, whereas the condensate is not flowing since its saturation is lower than the critical 

saturation. The third region only contains the original gas of the reservoir and it is farther from the 

wellbore. The reason of the formation of these different three regions is the pressure drop is not 

equal throughout the entire reservoir. It was found that the first region is the main reason of gas 
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deliverability reduction even though the fluid composition is constant in this region. The first region 

usually exists if the flowing bottomhole pressure is lower than the dew point pressure (Fevang & 

Whitson, 1996). 

The highest pressure drop occurs around the wellbore region; therefore the condensate first 

accumulates in this region forming (condensate bank or ring). Moreover, the vast gas volume flowing 

through the near wellbore region enhances the formation of the condensate ring in this region 

(Bamum, Brinkman, Richardson, & Spillette, 1995). The condensate ring around the wellbore causes 

many gas flow issues. Once the saturation of the condensate increases, gas saturation decreases and 

gas relative permeability decreases too. As a result, gas deliverability reduction occurs (Ahmed, 

Evans, Kwan, & Vivian, 1998). The biggest drop of gas relative permeability happens near the 

wellbore region since condensate saturation is high in this region. Fig. 9 shows the condensate 

distribution in the three regions throughout the reservoir. 

 

Fig. 9 gas condensate distribution in the reservoir, (Fevang & Whitson, 1996) 
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2.3. Gas Condensate Reservoirs Modeling 

Reservoir simulation models are usually utilized in order to study the performance of oil and gas 

reservoirs and provide optimum development plans to obtain the maximum economic advantages. 

Fluid properties and reservoir data have to be available for the reservoir models to perform 

simulation processes (Fan, et al., 2005/2006). Gas condensate reservoir calculations and modeling 

have been considered one of the most difficult processes in petroleum industry because of the 

continuous composition change and due to the unique thermodynamic behavior (Fevang & Whitson, 

1996). Composition change and permeability reduction are usually caused by condensate 

accumulation during the production with formation pressure below the dew point pressure. In 

addition, condensate accumulation results in gas deliverability reduction due to blocking gas flow 

channels and the decrease in the permeability values. A significant change in composition and 

permeability mostly happens around the wellbore since condensate saturation is the highest in this 

region; therefore, near wellbore region modeling is usually difficult and requires more calculations. 

Fig. 10 depicts the relationship between condensate saturation and gas and condensate relative 

permeability around the wellbore region. 

 

Fig. 10 relative permeability and condensate saturation relationship (Fan, et al., 2005/2006)      
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Using a typical grid block size of a full-field model (FFM) is not appropriate to model the condensate 

bank zone and that may result in overestimate results. Consequently, the best method to study the 

flow behavior of a zone with an accumulated condensate is by use of a full-field model with local grid 

refinement (LGR) method or by use of a single well model that has fine grids around it (Fan, et al., 

2005/2006). Local grid refinement method is provided by most of reservoir simulation models such 

as CMG (Computer Modeling Group) software and ECLIPSE. The local grid refinement method is 

described by generating a small grid cell perpendicularly to the direction of the fracture and the 

wellbore (Computer Modeling Group Ltd). The purpose of this process is to minimize the size of grid-

blocks and bring it near to the size of the actual fracture width. Even though, this method is one of 

the most accurate methods of modeling the near well behavior of gas-condensate reservoirs, the cost 

of the simulation and the competition time are further comparing to the case of not using local grid 

refinement.  

Gas condensate reservoirs can also be modeled by using single well model. Commonly, radial 

symmetric well is used in this case and that helps to treat the well model as a two dimensional model 

which has height and radial dimension only. In this case of modeling, the grid-blocks around the 

wellbore have to be smaller in the size comparing to the grid blocks that are farther from the 

wellbore. Using small size grid blocks helps to increase the precision of the simulation and that 

enhances the ability of studying the gas condensate behavior at high flow rates and complex 

saturation conditions in the near wellbore region (Fan, et al., 2005/2006).  

Another method to model the gas condensate reservoir is by using black oil model. This kind of 

simulator considers that there is only two hydrocarbon components which is oil and gas. This method 

of simulation is not applicable when the change in the composition is huge such as gas injection. 

Finally, a full-field model can be utilized to model the gas condensate reservoirs, but it has to be 

incorporated with pseudopressure method. In the pseudopressure method, the gas flow equation has 
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to be in pseudopressure term which is represented by an integral over pressure value and this 

method has been incorporated with spreadsheet format (Fan, et al., 2005/2006). In this research, the 

first method of simulation with local grid refinement will be used to perform the simulation in order 

to study the effect of pore sizes on gas condensate behavior and how that will impact the reservoir 

performance.  

2.4. Equation of State  

The hydrocarbon reservoir fluids have quite complicated thermodynamic behavior. Equations of 

state depict that these reservoir fluids have unique performance in phase behavior calculations. An 

equation of state (EOS) is a mathematical relationship that relates the pressure to volume and 

temperature in hydrocarbon systems and can provide a description of the phase behavior of the fluid. 

The equations of state are usually classified into two different kinds; cubic equation and noncubic 

equation. The noncubic equations are commonly used to investigate the volumetric behavior of pure 

substances, whereas they are not appropriate for complex hydrocarbon mixtures. The first proposed 

equation of state was in 1873, which was proposed by Van der Waals. Later, many different equations 

of state were proposed by different researchers to be used in reservoir engineering to perform 

reservoir fluid calculations. The most popular equations of state in oil and gas industry are 

Esmaeilzadeh-Roshanfekr (ER), Peng-Robinson (PR), Patel-Teja (PT), Schmit-Wenzel (SW), and 

Soave-Redlich-Kwong (SRK).  In this research, the Peng-Robinson equation of state will be used to 

perform the phase behavior calculations since it is the most common equation of state (Ashour, AL-

Rawahi, Fatemi, & Nezhaad, 2011).  

Peng-Robinson Equation of State  

The Peng-Robinson equation of state is the most well-known equation of state for natural gas systems 

in oil and gas industry (Adewumi, 2014). The Peng-Robinson equation of state is a cubic equation 

and it is considered one of the Van der Waals equation of state forms. This equation was improved 
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by Peng and Robinson in 1976 in order to enhance density prediction of reservoir fluid systems 

(Ashour, AL-Rawahi, Fatemi, & Nezhaad, 2011). Peng-Robinson EOS provides the ability to identify 

the phase of a substance by calculating vapor pressure based on the temperature and molar 

parameters. Peng-Robinson EOS exploits interaction coefficients of mixtures to find out the effect of 

the miscibility between components on the Pressure-Volume-Temperature (PVT) behavior of the 

mixed composition (Peng & Robinson, 1976). According to the literature, the Peng-Robinson EOS is 

simpler in calculations and provides more reliable results comparing with the other proposed 

equations of state.  Nonetheless, Peng-Robinson EOS is not able to represent the volumetric behavior 

around the critical point. The final developed Peng-Robinson EOS in term of molar volume (Vm) is 

shown as the following: 

𝑃 =  
𝑅𝑇

𝑉𝑚−𝑏
−

𝑎 (𝑇)

𝑉𝑚 (𝑉𝑚+𝑏)+𝑏(𝑉𝑚−𝑏)
                                                                 (9) 

Where  

𝑎(𝑇𝑐) = 0.45724 
(𝑅 𝑇𝐶)2

𝑃𝐶
 

𝑏 = 0.07780 
(𝑅 𝑇𝐶)

𝑃𝐶
 

The Peng-Robinson EOS is generally used to estimate gas and condensate reserves by performing 

compositional simulation. Moreover, the Peng-Robinson EOS is quite important for gas condensate 

reservoirs development including production plans and how to achieve the maximum economic 

advantages out of these kinds of reservoirs. The required data to perform the compositional 

simulation include the dew point pressure, liquid volume, gas compressibility factor, and produced 

gas (Constant Volume Depletion, CVD data) which are usually obtained by the use of the equation of 

state (Hosein, Dawe, & Amani, 2011).  In this research, the Peng-Robinson EOS is used to obtain the 

required results using the CMG (Computer Modeling Group) software since this equation is one of 

the provided equations by this software.   
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2.5. Components Lumping  

The critical properties data of the gas condensate fluid (critical pressure, and critical temperature, 

etc.) have to be provided in order to investigate condensate behavior by use of the Peng-Robinson 

EOS via CMG software (Marir & Tiab, 2006). EOS-based compositional modeling is usually utilized to 

model changing composition systems such as reservoirs, production flow lines, compressors, and 

surface processes. Mostly, the modeling process of these systems necessitates large CPU time, 

especially reservoirs modeling which may take hours or even days.  

In order to minimize the CPU time in compositional reservoir modeling, the number of the 

components of the hydrocarbon mixtures in the equation of state (EOS) that provide the fluid phase 

behavior should be reduced to a reasonable number (Alavian, Whitson, & Martinsen, 2014). 

Diminishing the number of the components is usually accomplished by use of lumping method. 

Lumping method is applied to increase the precision of the simulation process and minimize the time 

of the computation by combined some of mixture components in less number of components.  

A typical EOS model mostly has 20 to 40 components in which the first 10 components representing 

pure components such as H2S, CO2, N2, C1, C2, C3, i-C4, n-C4, i-C5, and n-C5. The other components in the 

EOS model are a split of the heavy components such as single-carbon number (SCN) fractions, C6, C7, 

C8 and C9, or combinations of SCN fractions such as C10-C12, C13-C19, C20-C29 and C30+ (Alavian, Whitson, 

& Martinsen, 2014). According to the literature, there is no specific method to choose the optimum 

lumping scheme that provides precise results similar to the single carbon number results. 

Nonetheless, to obtain precise results, trial and error method could be used or algorithms designed 

might be carried out to select the best number of lumping schemes (Hosein, Dawe, & Amani, 2011). 

In this research, the lumping method is  used with data that have many components in order to 

reduce simulation time.  
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2.6. CMG (Computer Modeling Group) Software 

CMG is one of the commercial reservoir simulators that is mostly utilized in petroleum industry for 

reservoir development planning. Reservoir simulation models are used to predict oil and gas 

reservoirs production and to find the optimum scenario for developing a reservoir in order to 

increase economic advantages. CMG has provided three reservoir simulators IMEX, a black oil 

simulator, GEM, a compositional simulator, and STARS, which is a thermal compositional simulator. 

Moreover, CMG has developed reservoir simulation tools and software such as CMOST, iSEGWELL, 

and WinProp, etc. GEM software will be used in this research since the objective is to study the impact 

of pore size on gas condensate critical properties, and it is obvious that the process of producing gas 

condensate reservoir accompanies with many changes in compositions and phases. Besides GEM, 

WinProp program is utilized in this research to model the phase behavior and the properties of gas 

condensate (Computer Modeling Group Ltd).      

2.6.1. GEM Software 

GEM is one of the most popular simulators that is used for compositional and unconventional 

reservoirs modeling. GEM is a sophisticated combination of equations of state (EOS) compositional 

reservoir simulator, which is commonly utilized to model recovery processes where the change in 

fluid composition has a significant impact on the recovery process (University of Waterloo). 

Furthermore, GEM provides the ability to model the laboratory scale process and field scale projects. 

GEM has the ability to effectively perform many processes and calculations such as; modeling 

complex oil and gas reservoirs, studying fluid properties and behavior, simulating naturally and 

hydraulically fractured reservoirs, improving field and surface operating conditions in order to 

increase the effectiveness of production, and optimizing the estimation of net present value (NPV) by 

precisely modeling of reservoirs phase behavior (Computer Modeling Group Ltd). 
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2.6.2. WinProp Program 

WinProp is one of CMG programs which is considered to be CMG’s equation of state (EOS) that is 

mostly used for multiphase equilibrium and properties estimation (Computer Modeling Group Ltd). 

WinProp is an important program for reservoir engineers that provides the ability to model and 

investigate the phase behavior and properties of reservoir fluid in the laboratory and in the field 

conditions. Moreover, WinProp is a fluid property characterization program that helps to establish 

fluid property models for CMG simulators (IMEX, GEM and STARS). WinProp program can be used in 

different applications in reservoir simulation area to accomplish many processes such as, tuning the 

Equation of state in order to forecast fluid behavior, studying phase’s distribution in a reservoir 

system during different conditions of depletion, and optimizing reservoir development planning 

(Computer Modeling Group Ltd).      
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Chapter 3 - Methodology 

The purpose of this study is to investigate the impact of the pore sizes on the critical properties of 

confined gas condensate in Marcellus shale and then study reservoir performance under this effect. 

To approach the objectives of this study, reservoir and fluid data are required to be available in order 

to carry out phase behavior calculations and to construct fluid and reservoir models. Once the 

reservoir model is built, numerous simulation runs will be performed in order to achieve the 

objectives of this research.  

3.1. Data Acquisition 

To accomplish the objectives of this research, accurate fluid and reservoir data must be available. The 

provided fluid data include, reservoir fluid composition and properties, separator gas composition, 

constant composition expansion data at reservoir temperature, and constant volume depletion study 

using an equation of state. The following tables and figures depict some of the given data for this 

research: 

Table 1 Constant Composition Expansion at 130 F (Coleman, 2014) 

 

Pressure 

(psia)

Relative 

Volume

Gas 

Density 

Liquid 

Volume %

Deviation 

Factor (Z)

Correlated 

Gas 

Viscosity 

4500 0.665 0.292 0.893 0.0353

4000 0.702 0.277 0.839 0.0326

3800 Reservior 0.72 0.27 0.817 0.0315

3500 0.753 0.258 0.788 0.0296

3000 0.831 0.234 0.744 0.262

2400 0.991 0.196 0.71 0.0219

2375 Saturation 1 0.194 0 0.709 0.0217

2300 1.028 0.08 0.706

2200 1.075 0.16 0.706

2000 1.192 0.25 0.712

1800 1.348 0.36 0.725

1600 1.554 0.81 0.743

1400 1.83 1.82 0.765

1200 2.205 2.41 0.79

1014 2.692 2.35 0.815
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Table 2 EOS input parameters (Coleman, 2014) 

 

 

Fig. 11 pressure and volume relations (Coleman, 2014) 

Component Mole %
Molecular 

Weight

Liquid 

Density 

Gms/cc

Critical 

Temp. (F)

Critical 

Pres. 

(psia)

Accentric 

Factor 

Normal 

Tb (F)

N2 0.442 28.01 -232.51 492.32 0.04 -320.35

CO2 0.15 44.01 87.89 1069.87 0.225 -109.3

C1 74.177 16.04 -116.59 667.2 0.008 -258.79

C2 14.82 30.07 90.05 708.35 0.098 -127.39

C3 5.39 44.1 205.97 615.76 0.152 -43.69

Ic4 0.707 58.12 274.91 529.06 0.176 10.85

nc4 1.545 58.12 305.69 551.1 0.193 31.19

ic5 0.426 72.15 369.05 490.85 0.227 82.13

nc5 0.517 72.15 385.61 489.38 0.251 96.89

c6 0.549 86.18 0.664 453.65 430.59 0.296 155.75

c7 0.425 97.37 0.698 505.28 410.49 0.342 197.51

c8 0.357 109.6 0.722 518.86 328.43 0.383 242.15

c9 0.172 121.79 0.755 456.28 284.34 0.423 288.05

c10 0.114 134.63 0.779 448.56 267.03 0.465 330.53

c11 0.07 147 0.79 511.16 251.66 0.505 369.05

c12 0.047 161 0.801 581.16 237.32 0.549 407.03

c13 0.032 175 0.812 641.83 225.65 0.592 441.05

c14 0.021 190 0.823 703.35 215.31 0.638 475.61

c15 0.013 206 0.833 772.12 206.04 0.686 510.53

c16 0.009 222 0.84 853.5 198.02 0.733 541.13

c17 0.006 237 0.848 914.43 191.84 0.776 571.73

c18-45 0.011 271.27 0.86 1096.53 180.22 0.874 635.06
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Fig. 12 retrograte liquid volume  (Coleman, 2014) 

The above given data have been used to construct the fluid models which then imported into the 

reservoir models in order to investigate the impact of the confinement on reservoir performance. 

Prior to studying the impact of the confinement on the critical properties of the reservoir fluid, the 

fluid model that was built with WinProp software has to be history matched with the provided 

laboratory results in order to enable the fluid model to reflect the real behavior of the reservoir fluid. 

Regression calculations were performed in order to obtain the optimum matched with laboratory 

analysis results. 

3.2. Fluid Models History Matching   

The provided fluid data for this research have been used to construct reservoir models for both 

confined and unconfined cases.  To obtain a reliable fluid model that reflects the real reservoir fluid 

behavior, the built fluid models have to be history matched. Constant composition expansion (CCE) 

calculations were performed in order to investigate the PVT behavior of the fluid reservoir. Constant 

composition expansion calculations provide the data regarding, the relative volume, produced liquid, 

dew point pressure, compressibility factor, and gas viscosity, etc. The first obtained results of 

constant composition expansion calculations from the built fluid model did not match the provided 
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fluid data, therefore, regression calculations were used to match the fluid model results with 

laboratory results.  As mentioned before in this research, regression calculation is a tool in WinProp 

software that is used to tune the equation of state to match the real laboratory measurement. In this 

research, specific regression algorithm has been used to tune the Equation of State to enable the fluid 

model to provide optimum results that match the provided experimental measurements. The 

following table depicts fluid composition input for the fluid model and the other figures show the 

results of the constant composition expansion for both the non-tuned fluid model and the tuned fluid 

model which is used in this research.  

  

Table 3 reservoir fluid composition and properties 

 

 

 

Component Mole % M.WT Pc(atm) Tc(k)

N2 0.442 28.013 33.5 126.2

CO2 0.15 44.01 72.8 304.2

CH4 74.177 16.043 45.4 190.6

C2H6 14.82 30.07 48.2 305.4

C3H8 5.39 44.097 41.9 369.8

IC4 0.707 58.124 36 408.1

NC4 1.545 58.124 37.5 425.2

IC5 0.426 72.151 33.4 460.4

NC5 0.517 72.151 33.3 469.6

FC6 0.549 86 32.46 507.5

FC7 0.425 96 30.97 543.2

FC8 0.357 107 29.12 570.5

FC9 0.172 121 26.94 598.5

FC10 0.114 134 18.1703 504.6

FC11 0.071 147 17.1244 539.4

FC12 0.047 161 16.1486 578.2

C13+ 0.091 204.737 16.9722 728.2
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Table 4 constant composition expansion results of the tuned fluid model 

 

 

Fig. 13 pressure and volume relation based on constant composition expansion 
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Fig. 14 retrograde liquid calculation based on constant composition expansion 

3.3. Critical Properties Calculations  

After performing the history matching calculations for the given fluid data, the relative shift in the 

critical properties (critical pressure and temperature) due to pore size is calculated. The relative shift 

in the bulk pressure and temperature of each component in the gas condensate fluid is calculated 

using Devagowda’s et. al equations’ which are mentioned in the literature review of this research. 

Once the relative shift in the bulk pressure and temperature is calculated based on the molecular 

weight of each component, Singh’s equations, which are also mentioned previously in this research 

are used to calculate the modified critical pressure and temperature values due to pore size effects 

in the formation. Finally, these obtained values are used to construct the fluid models using WinProp 

program. The shift in the critical pressure and temperature values is shown in Table 5. 
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Table 5 the shift in the Critical pressure and temperature values of the given fluid data at different pore sizes 

 

3.4. Fluid Models Construction  

Once calculating the modified critical values of the pressure and the temperature of the gas 

condensate fluid components, fluid models are constructed based on these values to investigate the 

impact of the pore size on the critical properties of the gas condensate fluid. To construct the fluid 

models, CMG WinProp program is used to build four fluid models, three models for the confinement 

cases with pore size of (2, 4, and 5 nm) and the last model represents the unconfined case. Reservoir 

pressure, reservoir temperature, and gas condensate composition data are imported to the CMG 

WinProp program. After importing all the required data to the program, the Peng-Robinson (EOS) 

will be used in order to perform two phase envelop calculations to construct the phase envelope 

curves for each case. Once, the phase envelop curves are constructed, then the fluid models have to 

be validated in order to be employed in building reservoir models in CMG GEM software. 

∆ Pc ∆ Tc ∆ Pc ∆ Tc ∆ Pc ∆ Tc

N2 0.21398 0.04513 -0.16398 0.01770 -0.29762 0.01229

CO2 0.25238 0.05124 -0.20238 0.02010 -0.33240 0.01395

CH4 0.16660 0.03758 -0.11660 0.01474 -0.25470 0.01023

C2H6 0.22000 0.04609 -0.17000 0.01807 -0.30307 0.01255

C3H8 0.25254 0.05127 -0.20254 0.02011 -0.33255 0.01396

IC4 0.27602 0.05501 -0.22602 0.02157 -0.35382 0.01498

NC4 0.27602 0.05501 -0.22602 0.02157 -0.35382 0.01498

IC5 0.29439 0.05794 -0.24439 0.02272 -0.37046 0.01578

NC5 0.29439 0.05794 -0.24439 0.02272 -0.37046 0.01578

FC6 0.30932 0.06031 -0.25932 0.02365 -0.38398 0.01642

FC7 0.31867 0.06180 -0.26867 0.02424 -0.39245 0.01683

FC8 0.32789 0.06327 -0.27789 0.02482 -0.40081 0.01723

FC9 0.33834 0.06494 -0.28834 0.02547 -0.41028 0.01768

FC10 0.34702 0.06632 -0.29702 0.02601 -0.41813 0.01806

FC11 0.35489 0.06757 -0.30489 0.02650 -0.42526 0.01840

FC12 0.36262 0.06880 -0.31262 0.02698 -0.43227 0.01874

C13+ 0.38305 0.07206 -0.33305 0.02826 -0.45077 0.01962

Component
Pore Size 2 nm Pore Size 4 nm Pore Size 5 nm
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Lumping method calculations are performed to ease the process of simulation by combining the 

hydrocarbon substance in the mixtures into fewer components and then facilitate the process of 

matching the constructed fluid model with the experimental measurements. 

The fluid models are built based on the given reservoir temperature of 130 °F and reservoir pressure 

of 3800 Pisa. The modified critical pressure and temperature values which were calculated based on 

the different pore sizes and then imported into the fluid models are shown in Table 6.  

Table 6 the modified critical pressure and temperature values due to confinement effects 

 

The last step is to run the fluid models in the WinProp program in order to obtain the results. The 

results of the simulation runs are the PVT curves of each pore size and from the PVT curves it is 

obvious to notice the change in the dew pressure and the shape of curves with the pore size. Fig. 17 

shows the PVT curves of the four fluid models. 

Pc(atm) Tc(k) Pc(atm) Tc(k) Pc(atm) Tc(k)

N2 27.595 120.751 40.071 124.005 47.695 124.668

CO2 58.130 289.372 91.271 298.207 109.047 300.014

CH4 38.917 183.697 51.392 187.832 60.915 188.669

C2H6 39.508 291.946 58.072 299.978 69.161 301.615

C3H8 33.452 351.765 52.542 362.511 62.776 364.708

IC4 28.213 386.821 46.513 399.481 55.712 402.077

NC4 29.388 403.030 48.451 416.220 58.033 418.925

IC5 25.804 435.187 44.203 450.171 53.055 453.249

NC5 25.726 443.883 44.071 459.167 52.896 462.306

FC6 24.792 478.632 43.825 495.773 52.693 499.299

FC7 23.486 511.583 42.347 530.345 50.976 534.209

FC8 21.930 536.551 40.326 556.686 48.599 560.837

FC9 20.129 562.005 37.855 583.636 45.682 588.100

FC10 13.489 473.191 25.847 491.781 31.228 495.621

FC11 12.639 505.212 24.635 525.425 29.795 529.605

FC12 11.851 541.015 23.493 563.045 28.444 567.604

C13+ 12.272 679.287 25.447 708.220 30.902 714.220

Component
Pore Size 2 nm Pore Size 4 nm Pore Size 5 nm



  

32 
 

 

Fig. 15 PVT curves of the four fluid models based on different pore sizes 

In addition, the results of fluid models simulation runs show the effect of each confinement case on 

the PVT behavior. This effect includes the change in the produced volume of the gas and liquid for 

each confinement case. This part of the calculations are obtained by performing the constant volume 

depletion test (CVD) and the results of these simulation run will be presented in the next chapter.     

3.5. Base Models Building 

Once the fluid models were constructed and all the reservoir data were obtained, four base models 

will be built by the use of the CMG GEM software. The purpose of this research is to investigate the 

impact of pore confinement on gas and condensate production from Marcellus shale; therefore four 

reservoir models were constructed in order to study three confinement cases with pore size of 2nm, 
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4nm, and 5 nm , as well as the fourth model which represents the unconfined case. The four built 

reservoir models use the Peng-Robinson (EOS). Fig. 18 shows the reservoir base model.  

 

Fig. 16 reservoir base model 

 

3.6. Reservoir Models Construction  

The four constructed reservoir models are identical in everything except the part of fluid properties 

due to the use of four different fluid models. To construct the reservoir models, GEM software was 

used and the constructed fluid models were incorporated into these models.  
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The first step is to build the base models 50 grid blocks in I direction and 27 grid blocks in J direction 

(9 = 86ft., 9 = 50 ft. and 9 =86 ft.). The reservoir models have dimensions of 2000 ft width, 4000 ft 

length, and net pay of   75 ft within 5 layers, each layer is 15 ft in thickness. A horizontal fractured 

well with a lateral length of 3000 ft is placed in the third layer of the reservoir model. Smaller grid 

blocks were used around the horizontal well in order to improve the ability of the reservoir model to 

study the significant changes in composition and fluid phases around the wellbore area due to the 

high velocity and the high pressure drop.  

 

Fig. 17 relative permeability curves (Hooks, 2013) 

The reservoir models are considered to be a single porosity model and the permeability was assumed 

to be homogeneous in both I and J directions. The vertical permeability was considered to be equal 

to 1/ 10 of the horizontal permeability. Fig. 19 show the used relative permeability curves in the 

reservoir models.  
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Fourteen hydraulic fracture stages were used in the reservoir model around the wellbore. The 

fractures spacing was 214 ft. and hydraulic each fracture has a width of 0.1 in. Moreover, the 

permeability of the hydraulic fractures was assumed to be equal to 2000 md. The natural fracture 

permeability is equal to 0.002 md in I and J directions, while it is equal to 0.0002 md in the k direction.   

Other reservoir data such as, reservoir temperature, reservoir pressure, porosity, water saturation, 

permeability, and reservoir depth were imported to the reservoir models which reflect the 

properties of the Marcellus shale (Table 7 depicts some of the reservoir models characteristics). 

Table 7 reservoir models characteristics 

Reservoir Models Characteristics 

Reservoir Temperature 130 F 

Reservoir Pressure 3800 Psia 

Saturation Pressure  2375 Psia 

Rock Density 150 

Reservoir Porosity 5 % 

Reservoir Bottom Depth 7075 ft 

Reservoir Permeability I and J 0.0004 md 

Reservoir Permeability K 0.00004 md 

Natural fractures Permeability I and J 0.002 md 

Natural fractures Permeability K 0.0002 md 

 

Local grid refinement (LGR) method is utilized with the built reservoir models with the all three 

layers around the hydraulic fractures. In reservoir models, 3 grid blocks in I direction, 3 grid blocks 

in J direction, and only one block in K direction were refined. Fig. 20 shows fracture stages with the 

local grid refinement. As mentioned previously in the literature review of this research, the LGR helps 

to increase the precision of the simulation to obtain reliable results even though the simulation run 

will take longer time. Finally, each reservoir model has to be run in order to study the effect of the 
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pore size and the change in the phase behavior on condensate and gas production and reservoir 

performance in general.  

 

Fig. 18 the 14 fracture stages in the reservoir model. 

 

 

 

 

 

 

  



  

37 
 

Chapter 4 - Results and Discussion 

Several simulation runs were carried out for the fluid and reservoir models to investigate the impact 

of the pore confinement on reservoir performance. In this chapter, confinement effects on phase 

behavior, reservoir performance, and gas recovery factor are presented as follow:  

4.1. Confinement effects on the gas phase behavior 

The phase behavior of the gas condensate was studied by the use of the Constant Volume Depletion 

(CVD) Calculations. CVD calculations provide an insight regarding the generated liquid under 

different pressure values to reflect the behavior of the fluid in the reservoir during the process of the 

reservoir depletion. Three confined cases with pore size of 2 nm, 4 nm, and 5 nm, were investigated 

by CVD calculations, as well as the unconfined case, the results of the CVD calculations for each case 

are presented as follows: 

4.1.1. Unconfined case 

Table 8 CVD calculations of the unconfined case 
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Fig. 19 the volume of the produced liquid and gas for the unconfined case based on CVD 

 

The above results of the CVD calculations for the unconfined case depict that the liquid starts to 

generate at pressure value of 2293 Psia. This case is compared with the other confined cases in order 

to show the effect of the confinement on the phase behavior and liquid generation. 

4.1.2. Confined case with pore size of 2 nm 

The CVD calculations in this case of the confinement (2 nm) show that the liquid does not start to 

generate until reaching a pressure value of 1635 Psia. In addition, the volume of the generated liquid 

is less than the generated liquid volume in the unconfined case. Consequently, the produced 

condensate on the surface will increase due to increase the time of the production with a pressure 

value higher than the dew point pressure. In addition, the produced gas in this case has more heavy 
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components and this enhances condensate production. Fig 20 and Table 9 show the results of the 

CVD calculations of the 2 nm pore size.  

Table 9 CVD calculations of the 2 nm pore size 

 

 

Fig. 20 the volume of the produced liquid and gas for the 2 nm pore size based on CVD 
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4.1.3. Confined case with pore size of 4 nm 

The CVD calculations for this pore size case show that the confinement has an opposite impact 

compared with the 2 nm pore size. This case of the confinement shows that the liquid starts to 

generate at a pressure value of 2772 Psia, which is higher than the unconfined case. Fig 21 and Table 

10 depict the CVD calculations results for the 4 nm pore size.     

Table 10 CVD calculations of the 4 nm pore size 

 



  

41 
 

 

Fig. 21 the volume of the produced liquid and gas for the 4 nm pore size based on CVD  

 

4.1.4. Confined case with pore size of 5 nm 

The CVD calculations results show that the confined case with 5 nm pore size has the same impact 

on the phase behavior with the 4 nm pore size. In this case, the liquid starts to generate at a pressure 

value higher than the pressure value of the unconfined case and the 4 nm pore size case. From Fig 22 

and Table 11, it can be seen that the liquid starts to generate at a pressure value of 3368 Pisa.  

The impact of the change in the phase behavior due to the pore confinement will be used in the second 

part of the results to investigate the impact on the gas and condensate production for the unconfined 

and confined cases.    
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Table 11 CVD calculations of the 5 nm pore size 

 

Fig. 22 the volume of the produced liquid and gas for the 5 nm pore size based on CVD 



  

43 
 

4.2. Confinement Effects on Gas and Condensate Production  

After constructing the four reservoir models which represent the unconfined case and the three 

confined cases with different pore size, several simulation run were carried out in order to 

investigate the reservoir performance under confinement effects. The main focus in the simulation 

runs results was on the gas and condensate production. The cumulative gas and condensate 

production are presented in this chapter, as well as, the daily production of the gas and condensate 

for 30 years.   

4.2.1. Unconfined case 

The unconfined reservoir model was simulated for 30 years to investigate gas and condensate 

production. Two kinds of constrains were used to run all of the four reservoir models for both 

unconfined and confined cases. The first constrain was the bottom hole pressure, and it was set to be 

equal to 1500 Psia. The second constrain was the gas production rate and it was set to be equal to 4 

MMCF for the first 4 months , 3 MMCF for the second 4 months , and 2 MMCF for the remaining time 

of the production.  

Under these sets of constrains, the confined reservoir model provided cumulative gas production of 

4194 MMCF and 8069 bbl. of cumulative condensate production. It was found that the unconfined 

case could sustain the gas production of 4 MMCF for the first four months. However, for the second 

four months, the gas production rate of 3 MMCF could not be sustained and it dropped after three 

months. The production rate of 2 MMCF was also not sustained more than 6 months and gas 

production started to gradually incline later.  

Table 12 oil and gas production of the unconfined case. 

Time ( Years) Cumulative Oil Production (bbl.) Cumulative Gas Production (SCF) 

2 4787 1.595 e+9 

5 6095 2.44 e+9 

10 7045 3.112 e+9 

30 8069 4.194 e+9 
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Moreover, it was found that the daily condensate production rate in the first four months inclined 

even though the gas production rate was constant. This is attributed to the reservoir pressure drop 

because as the reservoir pressure passes the dew point pressure, the condensate will start to 

accumulate in the reservoir and the produced gas will be leaner and will contain less heavy 

components (Find the pressure and saturations figures in the Appendix for more details).   

The above obtained results will be compared with the obtained results from the confined reservoir 

models with the three different pore sizes and will be shown in this chapter.  Figures 23, 24, and 25 

depicts the simulation runs results for the unconfined reservoir model.   

 

Fig. 23 cumulative gas and oil prouction for the unconfine case for 30 years 
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Fig. 24 gas and oil daily production of the unconfined case for 30 years 

 

 

Fig. 25 gas and oil daily production of the unconfined case for the first two years 
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4.2.2. Confined case with pore size of 2 nm 

The first investigated case of the confinement was the case of 2 nm pore size. The results of the 

reservoir model of this case showed that the cumulative condensate production has increased 

compared with the unconfined case. Furthermore, it was found that the condensate production rate 

was constant relative to the gas production rate. The reason of this trend is because the 2 nm pore 

size changes the phase behavior of the gas condensate and retards the condensate generation in the 

reservoir due to lowering the value of the dew point pressure; therefore, more condensate was 

produced and the gas production rate was sustained for longer time compared with the unconfined 

case. The change in the gas condensate phase behavior due to 2 nm pore size was discussed earlier 

in this chapter.  

The 2 nm pore size case provided higher gas production rate in the beginning of the production, 

especially in the first two years. Moreover, the gas production rates of the 4 MMCF and 3 MMCF were 

found to be sustained for the first and second four months without a drop in the gas rate (Fig 27 and 

28). Also the production rate of the 2 MMCF was found to be sustained for more than seven months, 

which is longer than the unconfined case. This increase in the gas production rate in the beginning of 

the production is due to the delay in the reservoir pressure drop below the dew point pressure which 

results in retarding condensate accumulation around the wellbore and the hydraulic fractures. On 

the other hand, it was found that the cumulative gas production after 30 years is lower than the 

unconfined case because the smaller size of the pore results in a slight drop of the permeability and 

the initial gas in place is less compared with the unconfined case (Figures 26, 27, 28 and Table 13).  

Table 13 oil and gas production under confinement effects with 2 nm pore size. 

Time ( Years) Cumulative Oil Production (bbl.) Cumulative Gas Production (SCF) 

2 5494 1.605 e+9 

5 7811 2.395 e+9 

10 9444 2.926 e+9 

30 11,770 3.77 e+9 
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Fig. 26 cumulative gas and oil production for the confine case with 2 nm pore size for 30 years 

 

Fig. 27 gas and oil daily production of the confined case with pore size of 2 nm for 30 years 
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Fig. 28 gas and oil daily production of the confined case with pore size of 2 nm for the first two years 

 

4.2.3. Confined case with pore size of 4 nm 

The second case of the confinement which studied in this research is the case of the 4 nm pore size. 

The simulation results of this case show that it has an opposite impact on the gas and condensate 

production compared with the 2 nm pore size. This case of the confinement was found to have a 

significant negative effect on the condensate production.  The cumulative condensate production 

after 30 years was found to be equal to 1520 bbl. which is less than the unconfined case and confined 

case of the 2 nm pore size. This behavior can be attributed to the effect of the 4 nm pore size on the 

phase behavior which hastens condensate generation in the reservoir in the early time of the 

production and this resulted in producing leaner gas which has less heavy components. Moreover, 

the liquid accumulation in the reservoir resulted in gas deliverability reduction in the beginning of 
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the production because of the condensate blockage which reduced the value of the gas relative 

permeability and blocked gas flow channels in the reservoir; therefor, the 4 MMCF and 3 MMCF 

production rate could not be sustained for the same time with the confined case and 2 nm pore size 

case. However, the cumulative produced gas after 30 years was found to be higher than the 

unconfined case and the 2 nm pore size case due to the more initial gas in place compared with both 

cases. Figures 29, 30, 31 and Table 14 depict the produced gas and the condensate for the 2 nm pore 

size case.      

Table 14 oil and gas production under confinement effects with 4 nm pore size. 

Time ( Years) Cumulative Oil Production (bbl) Cumulative Gas Production (SCF) 

2 836 1.507 e+9 

5 1130 2.4 e+9 

10 1308 3.166 e+9 

30 1520 4.475 e+9 

 

Fig. 29 cumulative gas and oil production for the confine case with 4 nm pore size for 30 years 
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Fig. 30 gas and oil daily production of the confined case with pore size of 4 nm for 30 years. 

 

 

Fig. 31 gas and oil daily production of the confined case with pore size of 4 nm for the first two years 
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4.2.4. Confined case with pore size of 5 nm 

The simulation results of the last confinement case with 5 nm pore size show that it has a similar 

effect with the 4 nm pore size on the gas and condensate production. Like the case of the 4 nm pore 

size, condensate production was less than the other cases because the 5 nm pore size changed the 

gas condensate phase behavior and hastened the reaching to the dew point pressure and condensate 

accumulation in the reservoir. Consequently, gas deliverability reduction happened and it was higher 

compared with all of the other cases. On the other hand, the cumulative gas production after 30 years 

of the production was higher than the other cases for the same reason that was mentioned in the case 

of 4 nm pore size (Find Figures 32, 33, 34 and Table 15 show the gas and condensate production).     

Table 15 oil and gas production under confinement effects with 5 nm pore size. 

Time ( Years) Cumulative Oil Production (bbl.) Cumulative Gas Production (SCF) 

2 276 1.304 e+9 

5 332 2.28 e+9 

10 358 3.132 e+9 

30 389 4.583 e+9 

 
Fig. 32 cumulative gas and oil production for the confine case with 5 nm pore size for 30 years. 
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Fig. 33 gas and oil daily production of the confined case with pore size of 5 nm for 30 years. 

 

Fig. 34 gas and oil daily production of the confined case with pore size of 5 nm for the first two years. 
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4.3. Gas Recovery Factor of the Unconfined and Confined Cases 

After simulating the four reservoir models for the unconfined and confined cases to estimate gas and 

condensate production after 30 years, the four reservoir models were run to estimate the value of 

the initial gas in place for each case in order to calculate the gas recovery factor value (Table 16 shows 

the gas in place value for each case).  It was found that the confinement case of the 2 nm pore size 

reduced the initial gas in place value, whereas the 4 nm and the 5 nm cases increase the value of the 

initial gas in place. This deviation in the initial gas in place is attributed to the change in the gas 

properties with an emphasis on the gas compressibility. It was found that the pore confinement has 

a significant impact on the gas compressibility and consequently the volume of the gas within shale 

formation changes for each case of the confinement with different pore sizes.  

Table 16 initial gas in place for the unconfined and confined cases. 

Initial Gas in Place (IGP) SCF  

Unconfined case  2nm Pore Size Case 4nm Pore Size Case 5nm Pore Size Case 

8.44E+09 7.63E+09 8.83E+09 9.24E+09 

 

Once the values of the initial gas in place were estimated, the gas recovery factor for each case was 

calculated for different time of the production as shown in Table 17.  

Table 17 gas recover factor values for the unconfined and the confined cases. 

Time 
(Years) 

Gas Recovery Factor  

Unconfined case  2nm Pore Size Case 4nm Pore Size Case 5nm Pore Size Case 

2 19% 21% 17% 14% 

5 29% 31% 27% 25% 

10 37% 38% 36% 34% 

30 50% 49% 51% 50% 

From Table 17, it can be seen that the 2nm pore size case provides the highest gas recovery factor 

values in the early years of the production compared with the other cases. The high gas recovery 
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factor in the early time of the production is important for the gas producers because that benefits to 

achieve the optimum economic advantages after short time of the production.     

4.4. Permeability Adjustment Due to Confinement Effects 

The values of the permeability for the four reservoir models were not adjusted according to the 

change in the pore sizes for each case of the confinement. The reason of not adjusting the 

permeability values was because the production of the shale reservoir is mainly controlled by the 

permeability of the hydraulic fractures, whereas the matrix permeability does not affect the 

production significantly.  To demonstrate the above outlined, the permeability value of the 2 nm pore 

size reservoir model was adjusted to be equal to (K =0.000064md) and the reservoir model was 

simulated to investigate the impact of considering permeability adjustment on the obtained results 

in this research.  

The simulation results of the 2nm pore size show that the permeability adjustment does not have a 

significant effect on the gas and condensate production. Table 18 depicts the gas and condensate 

cumulative production after adjusting the permeability value for the reservoir model with 2 nm pore 

size. Table 18 shows there is a slight change in the gas and condensate cumulative production 

compared with Table 13, which represents the results of the 2 nm pore size reservoir model without 

permeability adjustment. Moreover, Table 18 depicts that 2 nm pore size still provides the best 

condensate production compared with the other cases of the confinement.        

Table 18 oil and gas production under confinement effects with 2 nm pore size with the permeability adjustment. 

Time ( Years) Cumulative Oil Production (bbl.) Cumulative Gas Production (SC) 

2 4846 1.42 e+9 

5 7227 2.179 e+9 

10 8965 2.777 e+9 

30 11420 3.664 e+9 
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Table 19 shows the values of the gas recovery factor for the 2 nm pore size with the permeability 

adjustment. By comparing the values of the Table 19 with the Table 17 values, it can be seen that the 

obtained values of the gas recovery factor from the 2 nm pore size with the permeability adjustment 

still higher than the other confined cases. 

From the above outlined and from Fig 35, it can be concluded that considering permeability changes 

with different pore sizes of the confinement will not impact the obtained results from this study 

significantly and the 2 nm pore size still enhances the gas and condensate production in shale 

formation.         

Table 19 gas recovery factor of the 2 nm pore size reservoir model with the permeability adjustment. 

Time (Years) 
Gas Recovery Factor  

2nm Pore Size Case 

2 18.6% 

5 28.6% 

10 36.4% 

30 48.0% 

 
Fig. 35 gas and oil cumulative production of the 2 nm pore with permeability adjustment. 
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Chapter 5 - Conclusions    

The purpose of this research was to investigate the impact of pore size on the confined gas 

condensate in the Marcellus shale. Three case studies represent the confinement cases with different 

pore size of 2 nm, 4 nm, 5 nm, and a fourth unconfined case were investigated in this research. After 

studying and analyzing the results of the previous chapter, the finding of this research can be 

proposed as follows: 

1. The pore confinement has a significant impact on the critical properties and the phase 

behavior of the gas condensate with an emphasis of the dew point pressure. It was found that 

the pore size of 2 nm significantly reduces the dew point pressure, whereas the 4 nm, and 5 

nm increase the dew point pressure.  

2. After investigating the phase behavior of the gas condensate, it was found that the case of 2 

nm pore size retards liquid production whereas the 4 nm and 5 nm cases hasten liquid 

generation from the gas within reservoir conditions.  

3. The confinement case with pore size of 2 nm enhances condensate production due to 

lowering the value of dew point pressure and the change in the phase behavior while the 4nm 

and 5 nm cases have a negative impact on condensate production.  

4. The 2nm pore size case enhances gas production in the early time of the production due to 

the delay in time of the reaching to the dew point pressure and reducing liquid accumulation 

throughout the reservoir.  

5. The 4 nm and 5 nm pore size case were found to increase the cumulative gas production after 

long time of the production due to the more initial gas in place and the higher permeability 

relative to the other cases.   

6. The cumulative gas production after long time from the 2 nm pore size case is less than the 

other case due to the reduction in the permeability and initial gas in place.  
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7. The 2 nm pore size case provides the best gas recovery factor in the beginning of the 

production compared with the other cases.  

8. Considering permeability adjustment with different pore size does not affect the obtained 

results of this study significantly. 
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Appendix A 
Reservoir pressure distribution throughout the reservoir (Third layer) 

1. Unconfined case 
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2.  Confined case with 2 nm pore size 
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3. Confined case with 4 nm pore size 
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4. Confined case with 5 nm pore size 
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Appendix B 
Oil saturation throughout the reservoir (Third layer) 

1. Unconfined case 
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2. Confined case with 2 nm Pore size 
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3. Confined case with 4 nm Pore size 
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4. Confined case with 5 nm Pore size 
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