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Abstract 

Solving for y: digital soil mapping using statistical models and improved estimates 

of land surface geometry 

STEPHEN M. ROECKER 

Digital soil mapping (DSM) is a rapidly growing area of soil research that has great potential for enhancing soil 

survey activities and advancing knowledge of soil-landscape relationships. To date many successful studies have 

shown that geographic datasets can be used to model soil spatial variation. This thesis addresses two issues rele-

vant to DSM, scale effects on digital elevation models, and predicting soil properties. The first issue examined was 

the effect of spatial extent on the calculation of geometric land surface parameters (LSP) (e.g. slope gradient). This 

is a significant issue as they represent some of the most common predictors used in DSM. To examine this issue 

two case studies were designed. The first evaluated the systematic effects of varying both grid and neighborhood 

size on LSP, while the second examined how the correlation between soil and LSP vary with grid and neighborhood 

size. Results of the first case study demonstrate that finer grid sizes were more sensitive to the scale of LSP calcula-

tion than larger grid sizes. While the magnitude of effect was diminished when comparing a high relief landscape 

to a low relief landscape, the shape and location of the effect was similar. Results of the second case study showed 

that the correlation between soil properties and slope curvatures were similarly optimized when varying the spa-

tial extent, but that the effect was more sensitive to grid size than neighborhood size. Slope gradient also showed 

significant correlations with some of the soil properties, but was not sensitive to changes in grid or neighborhood 

size. 

The second study attempted to predict numerous physical and chemical soil properties for several depth in-

tervals (0-15, 15-60, 60-100, and 100-150-centimeters), using generalized linear models (GLM) and geographic da-

tasets. The area examined was the Upper Gauley Watershed on the Monongahela National Forest, which covers 

approximately 82,500 acres (33,400 hectares). This watershed represents a complex landscape with contrasting 

geologic strata, deciduous and coniferous forests, and steep slopes. Given this landscape diversity it was still possi-

ble to fit GLM which explained on average 38 percent of the adjusted deviance for rock fragment content, and ex-

changeable calcium and magnesium, and phosphorus. Some of the most commonly selected environmental pre-

dictors were slope curvatures, lithology types, and relative slope position indices. This seems to validate the prom-

inence of these variables in theoretical soil-landscape models. Had the correlation between the soil properties and 

slope curvatures not been optimized by varying the spatial extent, it is likely that another less suitable LSP would 

have been selected.  
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Chapter 1  

 Soil survey and digital soil mapping 

Introduction 

Soil is a basic component of ecosystems that performs many ecosystem services including moderating the hy-

drologic cycle, regulating the major elemental cycles, supporting plant roots, and decomposing wastes (Daily et al., 

1997). In order to predict the impact of land use activities, crop responses, waste disposal, storm runoff, and other 

environmental issues influenced by soil properties, it is necessary to know the variable nature of soil across land-

scapes. The careful and judicious management of any valuable resource requires that management decisions be 

based on sound information; lest actions be taken that may otherwise diminish the value of that resource or cause 

other unintended consequences. 

To provide quality soil information for general land use planning, the United States of America (US) has had an 

active National Cooperative Soil Survey program (NCSS) for over a hundred years. Since the NCSS began, the way in 

which soil is viewed and the methods available to analyze it have changed considerably, leading to a more com-

plete knowledge of the soil as a collection of natural bodies. Part of the continued success of the NCSS has been 

attributed to their effort to correlate similar soils across the range of their extent (Arnold, 2006), and their focus on 

making interpretive soil maps. Soil information generated by the NCSS is utilized by the government and public as 

an unbiased tool for appraising the productive capacity and quality of a given piece of land. State and county levels 

of government in particular use soil information as a planning tool, and even as a component in tax assessment 

and regulatory restrictions. The US Department of Agriculture (USDA) is one of the biggest users of soil information 

for its farm and conservation programs. This broad application of soil information validates the utility of soil sur-

veys as a primary resource assessment tool. 

To make a soil survey, soil scientists delineate similar areas of land (i.e. map units) which contain unique com-

binations of soils, characterize their soil properties, and infer their uses. In order to segment the soil-landscape 

continuum into meaningful or natural units, soil scientists use geomorphic features such as “topographic divides, 

contacts between different rocks or sediment, inflections in slope gradient or shape, and contacts between differ-

ent landforms of different age, origin, and internal structure” (Wysocki et al., 2011). In addition, vegetation com-

munities are also commonly used to identify soil boundaries. Due to practical considerations there are typically 

insufficient soil observations to statistically estimate the composition of map units. Therefore, the compositions of 

map units are inferred from soil scientists’ expert intuition, which they acquire by observing the soil at a number of 

opportune and purposive locations (Hudson, 1992; McKenzie and Austin, 1993). 
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Limitations of conventional soil mapping 

While conventional soil mapping (CSM) methods have been sufficient in the past, it is currently felt that its 

methods need to change in order to increase their efficiency and accuracy, and address new soil issues. The philo-

sophical impetus for this change can be broken down into four categories: what, where, how, and how well. The 

‘what’ refers to what do we mean when we say soil. Does soil refer to an individual soil taxonomic unit or a par-

ticular soil property (e.g. available water holding capacity or base saturation)? Traditionally, the soil-landscape con-

tinuum has been conceptualized using hierarchical classification systems. This conceptual soil segmentation is dis-

tinct from that used in delineating map units, in that it based on the vertical distribution of soil properties at a sin-

gle point, and does not take into account their geographic context (e.g. x,y coordinates, slope gradient, landform, 

etc…). While classification systems offer a useful scientific language, they also have notable issues, such as “Soil 

Taxonomy creates classes that are only partially related to landform” (Young and Hammer, 2000), “more direct 

interpretation can be made from property maps” (McKenzie et al., 2000), “assumption of high covariance of soil 

attributes” (Gessler et al., 1995), and “weak correlations between mapped classes and some soil properties” (Heu-

velink and Webster, 2001). For example, one of the most obvious questions that should be asked, are do the clas-

ses correspond with the primary soil property of interest? Presently soil carbon is of great interest due to its role in 

climate change. However, historically soil carbon has not received significant attention in CSM. No classification 

system can be designed to adequately address all eventualities. Inevitable all classification systems compress in-

formation for the sake of hopefully increasing comprehension. However, now that computers offer an alternative 

to the storing and sorting of information, it is no longer necessary for soil taxonomic units to serve as the primary 

geographic unit. Instead it is now possible to map individual soil properties. 

Intimately related to the question ‘what’, is the question ‘where’. Due to the discrete geographic model used 

in CSM, the soil-landscape continuum is abstracted into map units. This approach proceeds under the notion that 

the variability within map units is less than the variability between map units (Heuvelink and Webster, 2001).The 

consequence of this discretization is that the internal variability of the soil-landscape continuum is reduced to 

measures of central tendency (e.g. mean) and dispersion (e.g. variance) for each soil within a map unit. If a map 

unit is composed of a single soil, this might be sufficient. However, in many cases map units are composed of mul-

tiple soils. Thus, estimates of their soil properties are generally displayed as a weighted average of the soil compo-

nents listed in a given map unit. This makes it difficult to manipulate and combine them with other forms of con-

tinuous geographic information for environmental modeling (Zhu, 2006), such as in precision agriculture where the 

exact location of individual soils is of interest. In some cases such spatial variability can be delineated, but it is con-

sidered impractical to do so in CSM. 

Even if the issues of ‘what’ and ‘where’ could be satisfied, there is also the issue of ‘how’ we know what we 

know, and ‘how well’ we know what we know. As mentioned earlier, map unit delineations and compositions are 
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estimated by soil scientists’ according to their expert intuition. Their intuition is honed by experience and educa-

tion, and is superior to other scientists in this area of study, but it is still biased and unrepeatable. To be sure, there 

are standards and guidelines for conducting soil surveys, but there is no explicit rule set or parameters given for 

‘how’ a given map unit was derived. For these reasons Hudson (1992) concluded that CSM is “overly dependent on 

tacit knowledge”, while McKenzie and Ryan (1999) said that “users surveys find it difficult to separate evidence 

from interpretation” (McKenzie and Ryan, 1999). As there is a significant portion of random variability to land-

scapes, which cannot be accounted for, it is equally important to know how accurate a soil map is, or how widely 

the soil properties fluctuate. This requires a formal assessment of soil information’s accuracy or uncertainty (i.e. 

‘how well’). 

Digital soil mapping 

To address the limitations of CSM, soil researchers from around the globe have experimented with a variety 

new computationally intensive methods capable of predicting or interpolating soil information from field and la-

boratory soil data. As all these new methods share a common theoretical framework, they have been generically 

referred to as digital soil mapping (DSM) (McBratney et al., 2003). DSM has also been referred to as environmental 

soil-landscape modeling (Grunwald, 2006), predictive soil mapping (Hewitt et al., 1993; Scull et al., 2005), and envi-

ronmental correlation (McKenzie and Gallant, 2007). More than simply a digitizing of existing CSM methods, DSM 

involves the prediction of soil information by computer models. The degree of computation may vary, but at a min-

imum DSM generally formalizes soil scientists’ expert knowledge into a rule-based framework for spatial predic-

tion, and provides an estimate of the uncertainty of its predictions (McBratney et al., 2002; MacMillan, 2010). 

Spatial prediction is typically achieved by one of two means, referred to as the spatial or clorpt approaches re-

spectively, which in some circumstances maybe combined. The first approach interpolates predictions to new loca-

tions as a function of their distance from neighboring observations, by modeling the spatial dependence between 

observations with a variogram (e.g. geostatistics). This is an effective technique were the soil exhibits spatial corre-

lation, is sampled at distances closer than the average range of spatial dependence, and can provide interpretable 

spatial statistics. However in most cases the soil varies so greatly over short distances, that this approach is gener-

ally considered impractical for mapping at small scales (i.e. large areas). The second approach derives predictions 

of soil properties and/or types as a function of their relationship with environmental predictors, with rule-based 

(heuristic) or statistical models. This is an efficient technique when the environmental predictors are more easily 

attainable than the soil observations, and have a strong physical connection to the soil characteristics of interest 

(Gessler et al., 1995). The popularity the second approach stems from its strong theoretical framework, which is 

based the state factor model  

s = f(cl,o,r,p,t,...), 
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(Jenny 1941, 1980). Recently, McBratney et al. (2003) has expanded the original formulation of clorpt to include 

existing soil information (s) and spatial location or distance (n), resulting in the acroynm, scorpan (note time (t) has 

been swapped with age (a)). The incorporation these additional factors, recognize their value for prediction. By 

utilizing both the spatial and clorpt or scorpan approaches to DSM, researchers have modeled a variety of soil 

properties and types, over a range of scales, with varying degrees of accuracy and precision. At this point DSM has 

reached a point where it is considered by many to be ready for operational mapping (Burrough, 1993; MacMillan 

2007; Hengl 2009). 

In most cases the clorpt or scorpan approach has been the preferred method; in part due to the vast range en-

vironmental predictors now available, such as digital elevation models (DEM) and satellite imagery. Because of the 

strong influence of water movement on the development of catenary sequences at the mesoscale, DEM deriva-

tives have been shown to be a good predictor of local soil spatial variation. However, the strength of this relation-

ship though has been found to decrease with depth (Florinsky et al., 2002; Park and Vlek, 2002). As depth increases 

it is believed that soil variation becomes more strongly influenced by vertical pedogenic processes (Park and Vlek, 

2002), though such processes are still influenced by topography. 

While DSM has made great progress in predicting soil variation, a number of limitations exist, such as nonline-

ar processes and spatial dependence. Generally, nonlinearity in DSM has not been thoroughly examined in the 

literature, but is expected to become an issue when predictions are extrapolated over large areas; which should 

correspond to an increase in the heterogeneity of the environmental factors. At the level of the catena, Gessler et 

al. (2000) has suggested that linear models are appropriate as they portray soils smooth transition along a 

hillslope. However, Park and Vlek (2002) built DSM for 32 soil properties and found only soil moisture, pH, and clay 

content linearly related to DEM derivatives. Spatial dependence, on the other hand is not accounted for in most 

DSM, which makes them essentially non-spatial. Instead these models are spatially projected based on their func-

tional relationship to other spatial varying predictors. Regardless of these constraints though, the applicability of 

DSM techniques have reached a stage where they are being used to create useful digital soil products over sub-

stantial areas, as demonstrated by Bui and Moran (2003) and MacMillan et al. (2005). 

Mathematical and statistical modeling 

In order to predict the spatial distribution of soil properties or classes, various mathematical and statistical 

models can be used. A comprehensive review of their application in DSM is provided by McBratney et al. (2003). 

Similar reviews have also taken place in ecological modelling (Guisan and Zimmermann, 2000) and geomorphome-

try (Hengl and MacMillan, 2009). Hengl and MacMillan (2009) in particular highlight the applicability of different 

models depending on the available data and question at hand. Regardless of the number of comparisons that have 

occurred in ecological modelling, Austin et al. (2006) stressed that the most important consideration is not the 

statistical model employed, but the ecological knowledge and statistical skill of the analyst. Minasny and McBrat-
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ney (2007) have likewise concluded that improved spatial prediction of soil properties will result from accumulat-

ing better soil data, rather than more sophisticated statistical models. Some specifics of both the most common 

models are described below, including kriging, fuzzy logic, generalized linear models, and tree-based models. 

Geostatistics 

Geostatistics is family of spatial interpolation methods based on regionalized variable theory, which predicts 

values at new locations by modeling the spatial dependence between neighboring observation values as a function 

of their distance. In essence it predicts values at new location by taking a spatially weighted average from neigh-

boring soil property values. However unlike other forms of spatial interpolation, the spatial weights are estimated 

objectively with a statistical model, the variogram, rather than by an arbitrary mathematical function. The basic 

form of the variogram is a plot of the lag or distance between point observations (x) against the variance (y). As the 

lag increases so does the variance up until some point at which the best estimate of a given soil property is the 

global mean. In addition to interpolating predictions, kriging is able to estimate the variance at each point, which 

can be used to judge the spatial accuracy of the interpolation. The basic premise of spatial interpolation is that the 

closer together two points are the more likely they are related. The most basic geostatistical interpolation method 

is referred to as ordinary kriging. 

Two key assumptions of geostatistics are that the properties of interest are the result of a random process and 

are stationary. Because soil is the result of deterministic processes though, Webster (2000) remarks that clearly 

the soil is not random but instead chaotic. But because we cannot determine the difference between those pro-

cesses that are either random or deterministic, it makes no difference whether or not we model the soil as if it 

were random. The assumption of stationary implies that the mean and variance are constant throughout the re-

gion of interest, and that the variance does not increase with increasing area. This assumption truly has no answer 

though because there is only one realization of the generating process in a particular region (Webster, 2000). So in 

geostatistics, it is not the soil that is random and stationary, but the model, which may be one or both. Instead 

Webster (2000) asserts that the real question is whether or not a stationary model is realistic (given the circum-

stances), and leads to accurate predictions. 

Kriging is a suitable method in presence of spatial dependence. However in many cases, soil properties are the 

result of deterministic processes. In such cases it is beneficial to model the deterministic component of soil spatial 

variation as a function of ancillary data (e.g. slope gradient and surface reflectance), and any residual stochastic 

component by kriging. Variants of kriging which incorporates both deterministic and stochastic components in-

clude cokriging and regression kriging. In comparison of other statistical and geostatistical models, Bishop and 

McBratney (2001) have demonstrated regression kriging to be superior. However, at the landscape scale, when the 

soil is not sampled at distances closer than the average range of spatial dependence, Scull et al. (2005) found mul-

tiple linear regression to be superior to regression kriging. 
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Fuzzy logic 

Fuzzy logic is an alternative to Boolean logic that determines the membership to a given class by either a 0 

(no) or 1 (yes). Fuzzy logic deals with the ambiguity of defining the soil-landscape continuum by allowing a soil to 

have partial membership to more than one class, on a scale between 0 and 1. Unlike geostatistics, fuzzy logic is not 

truly a statistical model, because “it does not assess the accuracy of its predictions” (Heuvelink and Webster, 

2001). The distinction between fuzzy logic and Boolean logic is that fuzzy logic is based on possibility theory, while 

Boolean logic is based on probability theory. In this way fuzzy logic is a measure of a soils similarity to a class, ra-

ther than its chance of belong to it (Zhu, 2006). Zhu (2006) asserts that “soil classification is based on possibility, 

not probability”, and as such fuzzy logic is a more appropriate approach for defining soil classes. 

The advantage of fuzzy logic is that it allows for representing the continuous nature of both soils geographic 

distribution and attribute distinctness. The most prominent application of fuzzy logic in DSM has been the SoLIM 

(Soil-Landscape Inference Model) model, developed by Zhu and Band (1994), Zhu (1997a,b), and Zhu et al. (1996, 

1997). This approach uses the expert knowledge of an experienced soil scientist to formalize the relationship be-

tween soil series and ancillary data. The incorporation of soil scientists’ expert knowledge though can be seen as 

both an advantage and disadvantage (Scull et al., 2003). The advantage being that it can explicitly summarize a soil 

scientist’s expert knowledge, which has been accumulated at great expense. The disadvantage is that a soil scien-

tist’s expert knowledge is subjective and lacks statistical grounds for inference. 

Generalized linear models 

One of the most commonly used group of regression and classification models are generalized linear models 

(GLM), which are a modified form of the classical linear model designed to handle situations in which the linear 

models main assumptions are not met. Those assumptions being that the response is normally distributed with a 

constant variance and that the predictors combine additively on the response. Lane (2002) has advocated the use 

GLM in the soil sciences as opposed to transforming the linear model when these assumptions are not met, such 

as for binomial (presence/absence) and Poisson (counts) distributions. Transformations are typically used to modi-

fy the linear model to handle alternative distributions, but can affect the interpretation of additivity on the trans-

formed scale, where statistics like standard errors and variance ratio values should be used with caution (Webster, 

2001). Like linear models, GLM have similar fitting procedures and diagnostics so they can be likewise interpreted. 

To modify the classical linear model, GLM allow the response to belong to a wide range of exponential family 

distributions (e.g. Gaussian, binominal, Poisson, Gamma), and relate the response’s mean to the model on a scale 

where the effects combine additively through the link function. The effect of the link function transforms the mod-

el to linearity, and maintains the response’s range of values. More simply put, this transforms the model, rather 

than transforming the data to fit the model’s assumptions. A consequence of modifying the linear model requires 
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that the parameters be estimated iteratively by maximum-likelihood, as opposed to being derived analytically as 

with least squares. Another consequence eliminates the ability to employ the analysis of variance. Instead the 

analysis of deviance is used, which is a measure of the difference between the observations and the fitted model, 

which for Gaussian distributions equates to the residual sum of squares. 

Aside from being able to handle multiple distributions, GLM have additional benefits, such as being able to use 

both categorical and continuous predictor variables. Also as with linear models, they allow interactions between 

the predictors and polynomial terms, so as to model more complex data structures. To identify such interactions 

exploratory techniques such as tree-based models (Guisan et al., 2002) and coplots (McKenzie and Jacquier, 1997) 

may be used. The use of interactions though can increase colinearity within the model at the expense of identify-

ing meaningful relationships between variables (Park and Vlek, 2002). 

Tree-based models 

Tree-based models or decision trees differ from GLM in that they do not make assumptions about the form of 

the data. Instead they are often referred to as data driven, whereby the resulting models structure is based off of 

the data itself, rather than some assumed distribution such Gaussian or other. This can be seen as both an ad-

vantage and disadvantage. For example, given a sizable data set trees can easily identify complex data structure. In 

the absence of a sizable data set other parametric models (Maindonald and Braun, 2007) such as GLM are likely to 

provide better estimates, given that they make assumptions about the structure of the data. 

To understand tree-based models, it is best to discuss how they are grown. The standard method of tree con-

struction develops a set of decision rules using binary partitioning, which repeatedly subdivides the response into 

two sets of increasingly more homogeneous groups until no further purity within the groups can be gained by split-

ting them. When plotted these decision rules resemble a tree. During each step of the tree's growth the partition 

of the response is based upon whatever split amongst the predictors creates the best fit. For continuous responses 

(regression trees) the splitting criteria used is the residual sum of squares, while for categorical responses (classifi-

cation trees) there are a choice of three splitting criteria, all of which seek to optimize the proportion of correctly 

classified observations. After the tree is grown, the final groups or leafs are labeled with the mean (regression 

trees) or majority (classification trees) response within the leaves. While growing a tree following this procedure 

can be simply automated, the decision of when to stop its growth requires the subjective intervention of the ana-

lyst. Ultimately the process could continue until each observation is correctly classified. While this would accurate-

ly describe the given data set, it would over fit the existing data set, and therefore poorly predict new data. The 

idea is that as the tree grows, less and less reduction in deviance is gained with each split. So the tree's overall ac-

curacy would suffer little if it were pruned to a smaller number of leafs. To determine an optimum stopping point, 

cross validation is used. This pruning method produces a plot of the number of leafs against the amount of devi-
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ance explained. The optimal stopping point is the location on the plot where the slope flattens out, or falls below 

one standard deviation of the minimum cross validated error. 

Because of the automated nature by which trees are grown, they are often useful for exploratory data analysis 

(Guisan et al., 2002), so as to indicate the relative importance and potential interaction between predictors. Also 

the results of a tree-based models are easily interpretable if the number of binary splits is small, and allow a mix-

ture of both continuous and categorical predictors. Despite the relative ease with which trees are constructed, 

Hastie et al. (2009) lists three notable limitations. The first being that trees are inherently unstable due to their 

data-driven nature of construction. As such any change in the data may produce a different tree. For this reason 

research in DSM (Park and Vlek, 2002; Scull et al., 2005b) has shown tree-based models to perform less well than 

parametric models when validated by in independent data set. A second limitation of trees is that for continuous 

responses they produced do not result in continuous predictions, but rather unrealistic stepped predictions. Still 

for noisy data sets, McKenzie and Ryan (1999) have suggested that this is not a problem. Lastly, Hastie et al. (2009) 

cite trees inability to capture additive structure. Hastie et al. (2009) state that it possible for trees to capture such 

structure with sufficient data, but that tree-based models construction process does not readily exploit such struc-

ture within data. 

In an effort to overcome tree-based model’s limitations, a number of alterations to the construction of trees 

has been proposed, such as boosting, bagging (Breiman, 1996), and random forests (Breiman, 2001). Each distinct 

alteration creates a model comprised of multiple trees, generally termed an ensemble, or continuing with the use 

of tree metaphors a forest. By growing a forest rather than a single tree is it possible to take a majority or 

weighted vote amongst the trees, thereby increasing the accuracy and decreasing the sensitivity of the model. In 

boosting, a forest is grown by repeatedly reweighing the misclassified and correctly classified observations in the 

data set. In bagging, a forest is grown by taking repeated bootstrap samples of the observations in the data set. In 

random forest, a forest is grown by taking repeated bootstrap samples of the observations and predictors in the 

dataset. While each of these ensemble methods typically generates better estimates than a single tree, they also 

come at the expense of their interpretability. 

Model assessment 

The final step in any modeling process should include an assessment of the uncertainty or error associated 

with the model. This step evaluates the quality of the model's predictions, and is generally referred to as model 

assessment in statistics or accuracy assessment in remote sensing. In order to construct a model which is useful for 

predicting future observations a balance between prediction error and model complexity must be achieved (Hastie 

et al., 2009). What is desired is a model which not only closely approximates the pattern of the observed data, but 

also that of the greater population from which it comes. Ryan et al. (2000) lists three reasons why statistical mod-

els may have low accuracy: poor correlation between the soil and environmental variables, extreme variation pre-
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sent within a local neighborhood (i.e. dominated by nugget variance), observed data represents a small range of 

population. 

Sampling 

When developing digital soil maps using statistical models, it is necessary that the soil samples be collected in 

an explicit and probabilistic fashion. This approach is based on classical sampling theory, where the source of ran-

domness comes from the design rather than the model as in geostatistics (Brus and Gruijter, 1997). Randomness in 

some fashion is necessary to generate unbiased estimates of the population parameters so as to ensure that the 

results are repeatable, and not the byproduct of chance. Other important considerations include clearly defining 

which soil individuals are being sampled, specifying their dimensions, and accurately determining their spatial loca-

tion. The later consideration is important so as to be able to co-register the site locations with the environmental 

covariates, which are used for prediction. This is now easily facilitated with the use of global positioning systems 

(GPS). How to best allocate sample sites across the landscape in an unbiased fashion is a more contentious issue 

and guidance on this issue for soil survey applications are provided by Webster and Oliver (1990), Domburg et al. 

(1997), and Brus and de Gruijter (1997). Prior to outlining the approach used here, a brief review of that theory is 

provided. The most common probabilistic sampling strategies that have been utilized in environmental correlation 

are the simple-random, systematic, and stratified-random designs. 

Simple-random 

In simple-random sampling, each site has an equally probable chance of being selected. The effect of which 

typically results in an uneven geographic distribution of sites, which may under represent certain areas (Webster 

and Oliver, 1990). This makes simple-random sampling an inefficient strategy because the only alternative to 

achieve a more complete coverage is to sample more sites. Nevertheless, this sampling strategy has been success-

ful in identifying soil-landscape relationships over large areas. Sample sites are easily allocated within a GIS by de-

fining the area of interest, and using a random number generator for selecting the geographic coordinates. 

The literature presents two recent examples of this sampling strategy (Bell et al., 1992, 1994; Howell et al., 

2004). Bell et al. (1992, 1994) used simple-random sampling successfully to predict soil drainage class using discri-

minant analysis, with 305 samples collected over the extent of a USGS quadrangle (14,448 ha) in Pennsylvania. The 

results of this study found that the soil drainage class was correctly predicted at 81, 74, and 69 percent of the sites, 

based on the calibration dataset, validation dataset, and soil survey, respectively. Howell et al. (2004) on the other 

hand compared the efficiency of simple-random sampling with purposive sampling, to predict the pres-

ence/absence of soil morphological features, using 97 and 656 samples respectively, collected from an ongoing soil 

survey over an area of 30,424 ha in the Mojave Desert. Purposive sampling is typically performed in conventional 

soil survey, whereby soil scientists identify sample sites across the landscape using their professional intuition. This 
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strategy is designed to establish the soil-landscape relationships, on which the soil scientists base their conceptual 

models (McKenzie and Austin, 1993). In the Howell et al. (2004) comparison, the models produced by the simple-

random samples produced a “much more sensitive, more accurate, and greater range of estimated values” than 

the models from the subjective samples. The models created from the simple-random samples outperformed the 

subjective samples by 1 to 18%, averaging 10% improved performance. While no interpretation of these results 

were provided by Howell et al. (2004), it may be that the soil scientists’ purposive samples did a poorer job of cov-

ering the range of the environmental covariates. This may lend credence to McKenzie and Ryan (1999) speculation 

that purposive sampling may introduce bias into a soil scientist’s conceptual model. Buol et al. (1997) has also rec-

ognized a subconscious bias of soil scientists to sample soils for characterization that have better developed mor-

phological features that are not truly representative. The implications of the Howell et al. (2004) results suggest 

that in the presence of an adequate range of environmental covariates, some form of probabilistic sampling strat-

egy may be more efficient at developing quantitative estimates of the soil-landscape relationships. 

Systematic 

Systematic sampling as the name suggests, samples sites at predefined equal intervals. A transect would be a 

one dimensional example of this strategy, while a grid would be a two dimensional example (Webster and Oliver, 

2001). This sampling strategy provides a more even coverage of sample sites across an area, making it more effi-

cient than simple-random sampling, but with some notable limitations. The first of which is that because the sites 

are equally spaced, there is a chance that some individuals within the population, that do not correspond with the 

sampling interval maybe overlooked. This bias becomes unacceptably large as the sampling density decreases; 

therefore it is only a suitable approach over areas smaller than a single field (Webster and Oliver, 1990). A second 

limitation of this sampling strategy is that because sampling sites are allocated nonrandomly, it cannot truly esti-

mate the sampling error. Still Webster and Oliver (1990) advocate that systematic sampling is much more precise 

than simple-random sampling. 

The application of this sampling strategy is seen quite often in investigations involving only single hillslopes 

(Odeh et al., 1991; Moore et al., 1993; Thompson et al. 1997; Young and Hammer, 2000; Park et al., 2001; Park and 

Burt, 2002; Florinsky et al., 2002; Chaplot et al., 2000). Typically multiple transects or a single grid are laid across all 

the major landforms within the landscape to capture the range of variation present. The sampling intensity of 

these studies range from 64 samples for 2 ha, to 247 samples for 66 ha, with an average of 194 samples for 31 ha. 

One benefit of this sampling strategy is that the sampling density along the hillslopes should allow for characteriz-

ing soil variation across a range of scales, and be able to identify points of inflection on the landscape. The sam-

pling intensity of these studies over such a small area though makes them impractical for anything other than sci-

entific research or high-intensive land management. Ideally it would be profitable to be able to extend these pre-

dictions to the broader landscape, but this must be done with careful consideration of the similarity and distance 
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from the environmental settings with which the relationships are derived. Thompson et al. (2006) has examined 

this possibility, by comparing models developed within different portions of the same physiographic region, using a 

stratified-random design rather than a systematic, but unfortunately found the models different. 

Stratified-random 

In stratified-random sampling bias is introduced to optimize the coverage or information extracted from the 

sample sites, by partitioning the randomization within a study area. This strategy is preferable to simple-random 

sampling if prior knowledge exists that suggests individual segments of the population are different. Thanks to the 

wide range of environmental covariates present in GIS, such stratifications can now be performed easily and ex-

plicitly. Many different forms of this approach of varying complexities have been developed for environmental 

correlation (Gessler et al., 1995; McKenzie and Ryan, 1999; Hengl et al., 2003; Park et al., 2001; Minasny and 

McBratney, 2006). All seek to minimize the overall prediction error by spreading the sampling sites in feature 

space, geographic space or both so as to cover the multivariate distribution of the ancillary data, and minimize 

spatial dependence within the models residuals. 

The first and most simplistic stratified-random sampling strategy for environmental correlation was developed 

by Gessler et al. (1995). In the Gessler et al. (1995) design, the landscape was stratified into equal areas based on 

the topographic wetness index (TWI). The TWI was used as the stratifying variable because it represented a quanti-

fication of catenary position. To avoid the effects of spatial dependence, which should only provide redundant in-

formation, Gessler et al. (1995) computed a variogram of TWI to estimate the range of spatial dependence within 

the landscape. Sites were then randomly placed within the stratified areas at distances further apart than the 

range of spatial dependence. To extend the Gessler et al. (1995) design to account for a larger area and wider 

range of environmental factors, McKenzie et al. (2000) incorporated three pedologically significant stratifying vari-

ables, one of which was again TWI. In the event that a sampling density of 1 site per 250 ha can be achieved, 

McKenzie and Gallant (2007) favored this approach. 

Hypothesis, motivation and objectives 

The hypothesis of this study was that geographic datasets could serve as scorpan factors capable of predicting 

soil properties with statistical models. While this has been demonstrated in other landscapes, there was motiva-

tion to examine digital soil mappings applicability within a large and complex landscape such as West Virginia. Such 

studies are necessary to verify a given method’s soundness, as different landscapes represent different challenges. 

Also numerous studies show a fondness for modeling soil properties rather than soil taxonomic units, which is con-

trary to conventional soil mapping. This presents an interesting alternative format for soil information. A related 

issue is the importance of developing appropriate scorpan factors. With high-resolution digital elevation models 

(DEM) now becoming more readily available, there is need to develop new methods capable of dealing with the 
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large amount short-range variation present within them, as opposed to simply coarsening their resolution. An ex-

isting option is to vary the neighborhood size (i.e. spatial extent) used to calculate geometric land surface parame-

ters, such as slope gradient. Given these issues the specific objectives of the following chapters are as follows. 

1. The objective of Chapter 2 was to examine how the correlation between soil properties and land sur-

face parameters change with grid and neighborhood size. 

2. The objective of Chapter 3 was to develop digital soil maps for several soil properties and depth in-

tervals for a large watershed. 
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Chapter 2  

Scale effects on land surface geometry and environmental 

correlation 

Abstract 

The digital representation of the Earth’s surface by land surface parameters (LSP) is largely dependent on the 

scale at which they are computed. Typically the effects of scale on LSP have only been investigated as a function of 

digital elevation model (DEM) grid size, rather than the neighborhood size over which they are computed. With 

high-resolution DEM now becoming more readily available, a multi-scale terrain analysis approach may be a more 

viable option to filter out the large amount of short-range variation present within them, as opposed to coarsening 

the resolution of a DEM, and thereby more accurately represent soil-landscape processes. To evaluate this hy-

pothesis, two examples were provided. The first study was designed to evaluate the systematic effects of varying 

both grid and neighborhood size on LSP computed from LiDAR. In a second study, the objective was to examine 

how the correlations between soil and LSP vary with grid and neighborhood size, so as to provide an empirical 

measure of what grid and neighborhood size may be most appropriate. Results of the first case study demonstrate 

that finer grid sizes were more sensitive to the scale of LSP calculation than larger grid sizes. While the magnitude 

of effect was diminished when comparing a high relief landscape to a low relief landscape, the shape and location 

of the effect was similar. Results of the second case study showed that the correlation between soil properties and 

slope curvatures were similarly optimized when varying the spatial extent, but that the effect was more sensitive 

to grid size than neighborhood size. Slope gradient also showed significant correlations with some of the soil prop-

erties, but was not sensitive to changes in grid or neighborhood size. 

Introduction 

The utilization of digital elevation models (DEM) has proven to be invaluable to recent efforts in digital soil 

mapping (DSM). According to a survey of the literature by McBratney et al. (2003), DEM were by far the most 

heavily used form of ancillary data. The popularity of this data source stems from its simple data structure, wide-

spread availability, and most importantly due to the strong influence of topography on landscape scale processes 

that influence soil variability. From a DEM, multiple land surface parameters (LSP)(also known as terrain attributes) 

and objects can be extracted, such as slope gradient, slope curvature, solar radiation, catchment area, and com-

pound topographic parameters. The significance of the most common LSP and objects to pedogenesis are provided 

by Schaetzl and Anderson (2005). These digital representations of the Earth’s surface have proven useful in ex-

plaining a substantial portion of soil variation with (geo)statistical models. In hopes of explaining more soil varia-

tion with LSP, research has sought to improve their digital representations by evaluating the numerous methods 
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for generating DEM (Chaplot et al., 2006), the algorithms used to derive LSP from them (Florinsky, 1998; Schmidt 

et al., 2003), and the scale effects due to different grid and neighborhood sizes (Thompson et al. 2001; Smith et al., 

2006). Alternative approaches have examined the use of Monte Carlo simulation (Holmes et al., 2000) and wave-

lets (Gallant and Hutchinson 1997). An entirely different approach has sought to scale up the area (i.e., support) 

over which soil observations are made, so as to quantify a more representative area of the land surface from which 

their environmental correlation with LSP are made (O’Connell et al., 2000). 

DEM resolution 

The scale or spatial extent of LSP is related to two factors, the grid size or horizontal resolution of the DEM 

used, and the window or neighborhood size over which they are calculated. The importance of grid size can easily 

be observed by viewing LSP derived over varying grid sizes. It can be seen that as the grid size of the DEM used 

changes, so does the spatial pattern and detail with which the landscape is represented. This in turn affects the 

model structure and goodness of fit of soil-landscape models. Because the relationships quantified by soil-

landscape models are dependent on the scale at which they are derived, they are not applicable at other scales. 

This is a minor concern as it takes little effort to develop another model if new elevation data become available. 

What may be a serious issue for soil-landscape modeling is that while an environmental correlation may be appar-

ent between soil attributes and LSP at one grid size, it maybe unrecognizable at another if present, which is due to 

the contrasting spatial and temporal scales over which soil-landscape processes operate. 

To determine the appropriate grid size for predictive modeling, two approaches exist. The first was developed 

by Florinsky and Kuryakova (2000), who suggested using a grid size over which a range of soil attributes and LSP 

exhibit the strongest environmental correlation and occupy a smooth portion within a plot of correlation coeffi-

cients versus grid size. By choosing a single grid size within a smooth portion of a correlation plot, Florinsky and 

Kuryakova (2000) assert that one can avoid heterogeneous spatial variability. While this approach is effective at 

identifying an optimal grid size, Hengl (2006) points out that it is time consuming process to test all possible grid 

size combinations, and that no one grid size may be optimal for all LSP. Therefore Hengl (2006) has summarized a 

list of metrics that can be used to determine an appropriate grid size for representing a given map theme within 

the logical constraints of the spatial data. Hengl (2006) bases his selection of the appropriate grid size on carto-

graphical and statistical concepts such as: scale, computer processing power, GPS positional accuracy, size of de-

lineations, inspection density, spatial autocorrelation structure and terrain complexity. 

In similar studies, many other researchers (Gessler, 1996; Chaplot et al., 2000; Gessler et al., 2000; Wilson et 

al., 2000; Thompson et al., 2001; Bishop and Minasny, 2006) have examined the effect of DEM resolution on the 

predictive potential of LSP for soil-landscape modeling. Many have also examined how the LSP themselves change 

with grid size, so as to better understand how their fundamental representation changes. The general conclusions 

of these studies have been similar. Increasing the grid size of a DEM produces a smoother landscape with lower 
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slope gradients on steeper slopes, higher slope gradients on gentler slopes, a narrower range of curvatures, short-

er flow-path lengths, smaller values of flow accumulation in lower landscape positions, and greater values of flow 

accumulation in higher landscape positions. The effect of reduced vertical precision in a DEM results in a less 

smoothly defined landscape, with more abrupt transitions between slope gradient and curvatures (Thompson et 

al., 2001). The predictive potential of LSP in these studies have tended to favor finer grid sizes. To summarize, it 

has been shown that increasing the grid size of a DEM smooths the landscape to the point where key surface fea-

tures are either lost or distorted beyond a point where they no longer represent the environmental gradients af-

fecting soil spatial variation. 

Perhaps the most important assertion that has been made by similar studies is that no perfect DEM resolution 

exists (Claessens et al, 2005; Hengl, 2006). This is contrary to the common belief that more detailed DEM produce 

more accurate soil-landscape models. Studies have shown that there are a range of scales over which the soil-

landscape relationships exist (Gessler, 1996; Chaplot et al., 2000; Gessler et al., 2000; Florinsky and Kuryakova, 

2000; Thompson et al., 2001; Smith et al., 2006). For this reason Thompson et al. (2001) suggested that higher spa-

tial resolution DEM may not be necessary to create useful soil-landscape models. In conjunction with this, Smith et 

al. (2006) also noted that the large expense of high resolution DEM make them uneconomical for widespread use, 

considering that high resolution DEM do not always produce the best models. While DEM resolutions of 10-30 me-

ters may prove adequate for most soil-landscape modeling purposes, other studies have found them inadequate in 

areas of complex terrain and low relief (Wilson et al., 2000; Bishop and Minasny, 2006). 

Window or neighborhood size 

The second factor to consider in the calculation of LSP from a DEM is the window or neighborhood size. Tradi-

tionally the window size used in digital terrain analysis programs such as ESRI’s popular ArcGIS Spatial Analyst, is 

the 3x3 moving window. This method derives the value of LSP at any given point by calculating the first or second-

order derivatives based on the elevation values from the surrounding eight cells, a 3x3 window. The neighborhood 

size by contrast is typically used to refer to the physical distance (i.e. meters) over which measurement is made. By 

defining the window or neighborhood size in this fashion, the area over which the LSP are calculated is inherently 

based on the size of the grid cells; because as the grid size changes, so does the distance over which the LSP are 

calculated. For instance, with a 10-meter grid cell, the distance to the center of its adjacent grid cells is ten meters 

(except for the diagonal distances, which will be slightly bigger for square windows); whereas for a 30-meter grid 

cell that distance will be 30-meters. So instead of basing the neighborhood size on the scale of the soil-landscape 

processes being modeled, the LSP are calculated over an artificial distance (Classen et al., 2005). 

The significance of using a fixed window size becomes more readily apparent when deriving LSP from a high-

resolution DEM (Shi et al., 2007). This is because when the grid size of a DEM falls below a certain threshold, its 

fixed neighborhood size is measured over smaller distances than might otherwise be considered representative in 
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the field. Typically in the field a great deal of short-range variation in topography can be observed, which is pur-

posely ignored by surveyors when measuring slope gradient, in favor of capturing the more general character of 

the land surface (e.g. signal versus noise). This short-range variation is also inherent in high-resolution DEM de-

rived from remotely sensed devices, which can either be small land surface objects or random noise. To reduce this 

component of variation within a DEM derived from LiDAR (light detection and ranging), MacMillan et al. (2003) 

have found it beneficial to resample their 3-meter DEM to 10 meters, and use a series of mean filters (5x5, 5x5, 

and 7x7) to smooth it before proceeding with the automated analysis and classification of landforms. 

Because the processes that affect soil variation are multi-scaled (Lin et al., 2005; Yemefack et al., 2005), it 

seems reasonable to assume that the effect of LSP, which represent said processes are also multi-scaled and will 

have an optimal range of spatial extents. An alternative to coarsening the resolution of a DEM to match that of the 

soil-landscape processes being mimicked by LSP is to expand the neighborhood size over which the LSP are calcu-

lated from a DEM. This alternative approach was first suggested by Wood (1996). By increasing the distance over 

which the LSP are estimated this approach captures more general trends and has the effect of filtering out short-

range variation, creating a smoother representation of the landscape. An additional consequence is that the topo-

graphic meaning of a particular landscape position can change (i.e., concave becomes convex), if the neighborhood 

size is larger than a given landscape feature. However, because the grid size is not altered it has a similar effect as 

coarsening the resolution of a DEM, while preserving more spatial detail. The application of this approach has been 

demonstrated in a few instances where some have shown the environmental correlation of soil attributes and LSP 

to vary with neighborhood size (Park et al., 2001; Schmidt and Hewitt, 2004; Smith et al., 2006). In a recent study 

by Smith et al. (2006), the effect of DEM resolution, neighborhood size, and knowledge implementation on predict-

ing soil series was examined for different landscape positions using the Soil Land Inference Model (SoLIM). Three 

different experimental designs were carried out in an attempt to isolate the influence of each of the previously 

mentioned factors. The results of the experiments were similar. First, it was shown that there is a range of scales 

over which soil series are best predicted. Second, the optimal scale differed between landscape positions. Third, 

finer DEM resolutions are more sensitive to the choice of neighborhood size. Lastly, the digital scale of knowledge 

implementation affected the accuracy of the resulting models. 

Research hypothesis 

With high-resolution DEM now becoming more readily available, I hypothesize that varying the neighborhood 

size used to calculate LSP maybe a more suitable option to filter out the large amount short-range variation pre-

sent within them, as opposed to coarsening their resolution. To evaluate this hypothesis, two experiments were 

performed. The first experiment was designed to evaluate the systematic effects of varying both grid and neigh-

borhood size on land surface parameters computed from LiDAR. In a second experiment was designed to examine 

how the correlations between soil and LSP vary with grid and neighborhood size. 
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Methods 

Case study 1: systematic effects of varying grid and neighborhood size on land 

surface geometry 

Study area 

In this experiment, two separate landscapes were chosen within the West Virginia counties of Gilmer and Jef-

ferson (Figure 2.1 and 2.2). The DEM for each landscape had a grid size of 1-meter, were derived from LiDAR (light 

detection and ranging) using triangular irregular network (TIN) interpolation, and encompassed approximately 600 

hectares. The area used in Gilmer County was the ¼ NW ¼ SE portion of the Aurburn USGS quadrangle; while in 

Jefferson County the ¼ SE ¼ SW portion of the Shepherdstown USGS quadrangle was chosen. 

The location of Gilmer County falls within the Central Allegheny Plateau Major Land Resource Area (MLRA, 

126) (USDA, 2006). This region covers the northwestern portion of West Virginia. It is characterized by the plat-

eau’s dissected topography, which is dominated by its steep hillslopes, and narrow valleys and ridgetops (Figure 

2.1). The geology at this specific site is composed of Permian and Pennsylvanian aged sandstone from the Dunkard 

group overlying the Monongahela group. 

The location of Jefferson County falls within the Northern Appalachian Ridges and Valleys Major Land Re-

source Area (MLRA, 147) (USDA, 2006). This region covers the northeastern portion of West Virginia. It is charac-

terized by the parallel northeasterly running ridges and valleys, which were formed by the collision of the conti-

nental crusts. The topography is characterized by strongly sloping ridges and gently sloping valleys (Figure 2.1). The 

geology at this specific site is composed of Cambrian aged limestone from the Conococheaque formation. 
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Figure 2.1: Hillshades of landscapes from Case Study 1 (left: Gilmer County; right: Jefferson County). 

DEM resampling and LSP calculation 

A nested DEM resampling sequence was used in order to compare the different grid and neighborhood sizes 

at corresponding points and overlapping spatial extents (Table 2.1). In this study the neighborhood size refers to 

the spatial extent of the window size, rather than the distance between the centers of grid cells. The original 1-

meter DEM for each study area was resampled to coarser grid sizes using the average aggregation method. From 

each DEM, the following LSP were calculated: slope gradient, northerness, profile curvature, and tangential curva-

ture. As slope aspect is a circular measure, its values are not suitable for direct comparison. Therefore, slope as-

pect was transformed to northerness by, |180 – Aspect|. The GRASS module r.param.scale was used to calculate 

the LSP, which uses the Evans-Young algorithm (Evans 1972; Young, 1978; Pennock et al., 1987) as implemented by 

Wood (1996). Wood’s (1996) implementation generalizes the Evans-Young algorithm so that the coefficients used 

to calculate the geometric LSP are estimated from all grid cells within a window, rather the nine grid cells as speci-

fied in the original algorithm. 
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Table 2.1: Experimental contrasts for Case Study 1. 

 

Comparison of grid and neighborhood size combinations 

To evaluate the systematic effects of varying both grid and neighborhood size on the LSP, exploratory graph-

ical analyses were made. The first approach focused on visually comparing changes in the LSP spatial distribution, 

as well their non-spatial distribution with box plots. The second approach calculated the goodness of fit between 

the benchmark window size (i.e 3x3) and expanded window sizes (i.e. 5x5, 7x7, 9x9, 15x15, 21x21, 27x27, and 

45x45-cells) for each grid size (i.e. 1,3, 9, and 27-meters). The goodness of fit measures used were the mean differ-

ence (MD), root mean square difference (RMSD), and Pearson’s correlation coefficient (r). Due to the high-

resolution of the datasets involved, the number of corresponding points for the finest grid size totaled approxi-

mately 5,400,000. Therefore, for the sake of computational efficiency, only the cell centers from the 27-meters 

DEM were used to evaluate the finer grid sizes, which totaled ~7,400 points. 

Grid size 1 3 9 27
Neighborhood 

size

3 3*

5 5

7 7

9 9 3*

15 15 5

21 21 7

27 27 9 3*

45 45 15 5

63 21 7

81 27 9 3*

135 45 15 5

189 21 7

243 27 9

Window size

The window sizes that are labeled with an asterisk (∗) serve as 

the bench mark, from which the comparisons were made.
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Figure 2.2: Location of the different study areas (Case Study1: Gilmer and Jefferson; Case Study 2: Upper Gauley). 

Case Study 2—Soil and LSP correlations response to neighborhood size 

Study area 

The study area for the second case study was the Upper Gauley watershed (UGW) within the Monongahela 

National Forest, which is located on the Appalachian Plateau of southeastern West Virginia (Figure 2.2). Within this 

area we collected a soil dataset to examine the effect of grid and neighborhood size on the correlations between 

soil properties and LSP. The DEM came from the Statewide Addressing and Mapping Board (SAMB) and USGS Ele-

vation Conversion Project. This 3-meter elevation dataset was derived using TIN interpolation from mass points 

and break lines sampled from stereo pair aerial photography. 
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Figure 2.3: Google Earth overlay of the Upper Gauley watershed and sampling sites. 

Soil sampling and analysis 

Soil data were sampled from 97 sites within the UGW, using a stratified-random design (Figure 2.3). The strati-

fying variables used were geology (62% sandstone, 11% shale/sandstone, and 26 % shale), elevation (three quan-

tile classes), and stream power index (five quantile classes). The intersection of these variables created 45 unique 

strata, within which two random sites were sampled. In order to avoid sampling extraneous features, exclusion 

rules were used to avoid roads (buffered to 20 meters), streams (buffered to 10 meters), developed areas, and 

patches of strata smaller than 4,000 square meters (approximately one acre). 

At each site a soil pit was excavated to a minimum depth of 140 cm, and described according to standard pro-

cedures (Schoeneberger et al., 2002). From each soil horizon, a 300 g soil sample was taken. Each sample was ana-

lyzed for particle size (Gee and Bauder, 1983), 1:2 CaCl2 pH, extractable calcium, magnesium, and phosphorus (i.e. 

Mehlich 1) (Mehlich, 1953), and carbon. Because preliminary analysis showed Ca and Mg to be highly correlated 

(i.e. 0.89), only their sum was analyzed (i.e. Ca+Mg).The laboratory results from each horizon were aggregated into 

four depth intervals (0-15, 15-60, 60-100, and 100-150 cm) by taking a weighted average. For the purposes of this 

study, the thickness of the O horizons was not included. For further details see chapter 3. 

Soil and land surface correlation 

The procedure outlined by Florinsky and Kuryankova (2000) was used to examine the soil and land surface cor-

relation. This procedure involves plotting the goodness of fit (correlation coefficient, r) between the soil and LSP 
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over a range of spatial extents, and identifying smooth intervals over which the fit was maximized. Smooth por-

tions within the correlation plot are interpreted as representing scales where the correlation is stable, and thus 

optimal for prediction. In order to utilize soil profiles that were shallower than a given depth internal (e.g. 60-90-

cm, rather than 60-100-cm), the correlation matrix was weighted by their thickness. 

DEM resampling and LSP calculation 

Similar to the first study, the DEM was resampled using the average aggregation method, and the same suite 

of LSP were calculated using the GRASS module r.param.scale. Rather than evaluate every combination of grid and 

neighborhood sizes, only one range of grid sizes (3, 6, 9, 15, 27, 45, and 81-meters) and one range of window sizes 

(3x3, 5x5, 7x7, 9x9, 15x15, 21x21, and 27x27 from the 9-meter DEM) were evaluated (Table 2.2). 

Table 2.2: Experimental contrasts from Case Study 2. 

 

Results and Discussion 

Case Study 1: Systematic effects of varying grid and neighborhood size on LSP 

As the neighborhood size increases, the landscape features that are represented by the derived LSP is altered, 

and short-range variation is filtered out in favor of broader hillslope trends (Figure 2.3). At small neighborhood 

sizes (e.g., ≤9 m), it is the microtopographic features that are represented by the LSP. As such, there is noticeable 

short-range variability in LSP values and wide ranges in the distribution of the LSP values (Fig. 2.4). With increasing 

neighborhood size, the landscape features that are represented by the LSP correspond more closely to recogniza-

ble landform elements, such as drainageways, footslopes, backslopes, and shoulders. At intermediate neighbor-

hood sizes (e.g., 9-81 m), the LSP represent a smoother but more connected landscape. This smoothing of the 

landscape representation is also seen in the boxplots (Fig. 2.4 and 2.5), where the median value remains relatively 

stable, but the interquartile range decreases and the outliers become less extreme. When larger neighborhood 

sizes are used (e.g., >81 m), the landscape features depicted by the LSP become oversimplified (Fig. 2.3, 81m). 

Grid size 3 6 9 15 27 45 81
Neighborhood 

size

9 3

24 3

27 3

45 5 3

63 7

81 9 3

135 15 3

189 21

243 27 3

Window size
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When the neighborhood size becomes significantly large, the smoothing of the landscape increases and the LSP 

may misrepresent landform elements because the neighborhood includes DEM data from outside the local land-

scape (e.g., from across a watershed divide). This distortion or oversimplification of the landscape represented by 

the LSP appears in the boxplots of slope gradient by a loss in the stability in the median value and continued de-

crease in the maximum value above a neighborhood size of 81 m (Fig. 2.4). 

 

Figure 2.4: Case Study 1. Google Earth overlay of profile curvature and soil lines. Profile curvatures derived from a 3-meters 

DEM calculated using neighborhood sizes of 9, 21, 45, and 81-meters. Soil lines from SoilWeb (Beaudette and O’Green, 

2009a), labeled with the major soil components. The image represents a small catchment from the Auburn QQ quadrangle of 

Gilmer County, WV. 
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Figure 2.5: Case Study 1. Google Earth overlay of profile curvature and soil lines. Profile curvatures derived from a 3-meters 

DEM calculated using neighborhood sizes of 9, 21, 45, and 81-meters. Soil lines from SoilWeb (Beaudette and O’Green, 

2009a), labeled with the major soil components. The image represents a small catchment from the Shepherdstown QQ quad-

rangle of Jefferson County, WV. 

The effects of changing neighborhood size on the LSP is not the same for the two landscapes examined in this 

case study. The study area in Gilmer Co., WV, located on the Central Allegheny Plateau, exhibits much steeper 

slope gradients and more extreme slope curvature values compared to the lower-relief study area from the North-

ern Appalachian Ridge and Valley of Jefferson Co., WV. Accordingly, the effect of increasing neighborhood size is 

much less pronounced in the lower relief landscape of Jefferson Co. compared to the higher relief landscape of 

Gilmer Co. (Fig. 2.4, 2.5, and 2.6). However, in both landscapes the median and maximum slope gradient values 

begin to drift for neighborhood sizes larger than of 81 m. 

While LSP are affected by neighborhood size, the effect of grid size appears to be negligible on their distribu-

tion. The same magnitude of decreases in their maximum values, interquartile range, and median value (above a 

neighborhood size of 81-meters) are seen if slope gradient is calculated using a 1, 3, 9, or 27-meters DEM (Figure 

2.6 and 2.7). These and other observations suggest that slope gradient is not sensitive to the effect of spatial ex-

tent up until 81-meters. For these landscapes, it appears that a spatial extent of 81m corresponds with a threshold, 

beyond which all the LSP become increasingly less representative of their land surface shape. Therefore a maxi-
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mum grid size of 27-meters, which produces a 3x3 moving window with an extent of 81-meter, appears to be the 

maximum grid size capable of adequately representing these land surfaces. 

 

Figure 2.6: Boxplots of slope gradient for Gilmer Co. calculated using different grid (1, 3, 9, and 27-meters) and neighborhood 

sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 
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Figure 2.7: Boxplots of slope gradient for Jefferson Co. calculated using different grid (1, 3, 9, and 27-meters) and neighbor-

hood sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 

 

Figure 2.8: Boxplots of profile curvature for Gilmer Co. calculated using different grid (1, 3, 9, and 27-meters) and neighbor-

hood sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 
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Figure 2.9: Boxplots of profile curvature for Jefferson Co. calculated using different grid (1, 3, 9, and 27-meters) and neigh-

borhood sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 
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Figure 2.10: Plot of slope gradient mean difference (MD) and root mean square difference (RMSD) goodness of fit measures 

for Gilmer and Jefferson Co. Slope gradient calculated using different grid (1, 3, 9, and 27-meters) and neighborhood sizes (3, 

5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 

 

Figure 2.11: Plot of northerness mean difference (MD) and root mean square difference (RMSD) goodness of fit measures for 

Gilmer and Jefferson Co. Slope gradient calculated using different grid (1, 3, 9, and 27-meters) and neighborhood sizes (3, 5, 

7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 
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Figure 2.12: Plot of profile curvature mean difference (MD) and root mean square difference (RMSD) goodness of fit 

measures for Gilmer and Jefferson Co. Slope gradient calculated using different grid (1, 3, 9, and 27-meters) and neighbor-

hood sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 

 

Figure 2.13: Plot of tangential curvature mean difference (MD) and root mean square difference (RMSD) goodness of fit 

measures for Gilmer and Jefferson Co. Slope gradient calculated using different grid (1, 3, 9, and 27-meters) and neighbor-

hood sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 
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Figure 2.14: Plot of slope gradient, northerness, profile curvature, and tangential curvature correlation coefficient (r
2
) good-

ness of fit measure for Gilmer and Jefferson Co. Slope gradient calculated using different grid (1, 3, 9, and 27-meters) and 

neighborhood sizes (3, 5, 7, 9, 15, 21, 27, 45, 63, 81, 135, 189, and 243-meters). 

Case Study 2: Soil and LSP correlations response to grid and neighborhood size 

The results show that the correlation between the soil properties and surface curvatures are the most sensi-

tive to the effects of neighborhood size (Fig. 2.8-2.11). Their correlation with the soil attributes ranged from ap-

proximately 0 to 0.4, with an optimal neighborhood size range of 25-75 meters in most cases. That the correlations 



 

31 

between the soil properties and surface curvatures were optimized is important because slope curvatures have the 

strongest correlation coefficients in most cases. 

 

Figure 2.15: Case Study 2. Correlation coefficient vs. neighborhood size: rock fragments (fragvol), clay and sand. (kp = profile 

curvature, kt = tangential curvature, n = northerness, sg = slope gradient) 

While significant correlations were also present between slope gradient and the soil properties, the effect of 

neighborhood size was negligible in most cases (Fig. 2.8-2.11). As for northerness, its correlation was minimal in 

almost all cases. The negligible effect of neighborhood size on the correlation between the soil properties and 

slope gradient may be explained by the results of the first case study. Increasing the neighborhood size used to 

derive LSP had less of an effect on slope gradient than on slope curvature (Figs. 2.4 and 2.5). Consequently, the 

correlation coefficients between soil properties and slope gradient do not appear to be sensitive to the effect of 

grid or neighborhood size. 
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In general, the effect of grid size showed similar trends and magnitudes as neighborhood size. However, 

whereas the effect of neighborhood size increased initially and then leveled off, the plots of grid size (Fig. 2.8 and 

2.10) showed noticeable peaks and valleys. Thus the effect of neighborhood size seems to be more stable. 

 

Figure 2.16: Case Study 2. Correlation coefficient vs. grid size: rock fragments (fragvol), clay and sand. (kp = profile curvature, 

kt = tangential curvature, n = northerness, sg = slope gradient). 
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Figure 2.17: Case Study 2. Correlation coefficient vs. neighborhood size: carbon, calcium and magnesium (Ca+Mg), and phos-

phorus (P). (kp = profile curvature, kt = tangential curvature, n = northerness, sg = slope gradient) 
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Figure 2.18: Case Study 2. Correlation coefficient vs. grid size: carbon, calcium and magnesium (Ca+Mg), and phosphorus (P). 

(kp = profile curvature, kt = tangential curvature, n = northerness, sg = slope gradient) 

 

Conclusions 

The spatial extent over which LSP are derived has a considerable effect on their representation of the land sur-

face and correlation with soil attributes. In the first study described here, it was shown that using a larger neigh-

borhood size has a similar effect as using a larger grid size, without the unnecessary loss of detail caused by using a 

larger grid size. Still the amount of detail provided by the smallest grid sizes was excessive and computationally 

demanding. To help determine what neighborhood size might be most appropriate for DSM, the simple explorato-

ry procedures used here proved to be informative. Ultimately, the relative size of the landforms within the study 

area should serve as a guide. Within the second study described here, the correlation between the soil attributes 

and surface curvatures was optimized by varying the grid and neighborhood size. While no one spatial extent 

showed the strongest correlation in all cases, a common range of optimal neighborhood sizes occurred over a 
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range of 63-81-meters. Slope gradient also showed significant correlations with some of the soil properties, but 

was not sensitive to changes in neighborhood size. These results suggest that surface curvatures are the most sen-

sitive to altering the  neighborhood size used to calculate LSP and that curvature values poorly represent the land 

surface unless calculated over a neighborhood size commensurate with the size the landforms which they charac-

terize. 
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Chapter 3  

Statistical modeling of soil properties 

Abstract 

Digital soil mapping is a rapidly growing area of soil research that has great potential for enhancing soil survey 

activities and advancing knowledge of soil-landscape relationships. To date many successful studies have shown 

that geographic datasets can be used to model soil spatial variation. This study attempted to replicate that success 

in a West Virginia landscape, by predicting numerous physical and chemical soil properties for specific depth inter-

nals (0-15, 15-60, 60-100, and 100-150-centimeters), using generalized linear models (GLM) and geographic da-

tasets. The area examined was the Upper Gauley Watershed on the Monongahela National Forest, which covers 

approximately 82,500 acres (33,400 hectares). Given this landscape diversity it was still possible to fit GLM which 

explained on average 38 percent of the adjusted deviance for rock fragment content, and exchangeable calcium 

and magnesium, and phosphorus. Some of the most commonly selected environmental predictors were slope cur-

vatures, lithology types, and relative slope position indices. This seems to validate the prominence of these varia-

bles in theoretical soil-landscape models. Had the correlation between the soil properties and slope curvatures not 

been optimized by varying the spatial extent, it is likely that another less suitable LSP would have been selected. 

Introduction 

Soil is an integral component of terrestrial ecosystems, which makes ecosystem processes difficult to study in 

isolation of soil (Chapin et al., 2002). Therefore knowledge of the soil resource is informative to the explanation 

and management of many other natural resources. For this reason many industrialized nations have soil survey 

programs, which investigate and disseminate soil attribute and geographic information for a host of public uses. 

However, soil information is one of the most difficult environmental objects to observe and quantify, as it exists 

below the surface, varies in four dimensions (i.e. space and time), and is composed of three phases of matter (i.e 

solids, liquids, and gases). In addition to its sheer complexity, is the societal challenge presented to the soil scienc-

es by the ever increasing pace of human environmental exploitation. This requires that the delivery of soil infor-

mation be timely, relevant, coherent, and cost effective, so that it may be used to reduce the risks associated with 

environmental decisions (McKenzie et al., 2008). In order to keep pace with these societal challenges, the soil sci-

ences have been spurred to integrate with other scientific disciplines and incorporate new concepts and techno-

logical developments. 

Digital soil mapping (DSM) is a branch of pedometrics concerned with the prediction of spatial-temporal soil 

information by numerical and quantitative models (McBratney et al., 2003). Spatial prediction is typically achieved 

by one of two means, referred to as the spatial or clorpt approaches respectively, which in some circumstances 
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maybe mixed for optimal effect. The first approach interpolates predictions to new locations as a function of their 

distance from neighboring observations, by modeling the spatial dependence between observations with a vario-

gram (i.e. geostatistics). This is an effective technique were the soil exhibits spatial correlation, is sampled at dis-

tances closer than the average range of spatial dependence, and can provide interpretable spatial statistics. How-

ever in most cases the soil varies so greatly over short distances, that this approach is generally considered imprac-

tical for mapping at small scales (i.e. large areas), which would otherwise require dense sampling. The second ap-

proach derives predictions of soil properties and/or types as a function of their relationship with environmental 

predictors, with knowledge-based (heuristic) or statistical models. This is an efficient technique when the envi-

ronmental predictors are more easily attainable than the soil observations, and have a strong physical connection 

to the soil characteristics of interest (Gessler et al., 1995). The popularity the second approach stems from its 

strong theoretical framework, which is based the state factor model,  

s = f(cl,o,r,p,t,...), 

(Jenny 1941, 1980). Recently, McBratney et al. (2003) has expanded the original formulation of clorpt to in-

clude existing soil information (s) and spatial location (n), resulting in the acroynm, scorpan (note time, t, has been 

swapped with age, a). The incorporation of these additional factors recognizes their value for prediction. By utiliz-

ing both the spatial and clorpt approaches to DSM, researchers have modeled a variety of soil properties and 

types, over a range of scales, with varying degrees of accuracy and precision. At this point DSM has reached a point 

where it is considered ready for operational mapping (Burrough, 1993; MacMillan 2007; Hengl 2009), evidenced by 

many operational examples from around the world (Bui et al., 2003; MacMillan et al., 2005). 

Operational DSM is now possible due to technological advancements, such as the introduction of digital geo-

graphic data-sets, numerical methods of analysis and increased computing capacity. However, DSM is advocated 

for both scientific and practical reasons. The scientific rationale for DSM is that its methods provide unbiased esti-

mates of the central tendency of soil characteristics and their uncertainty, using primarily data driven methods. 

Also, such methods aid in the analysis and interpretation of complex datasets. In addition, DSM makes it possible 

produce continuous estimates of soil characteristics and their geographic distribution. Burrough (1993) provides a 

concise discussion of these issues. The practical rational for DSM concerns its potential to reduce the cost and time 

associated with soil mapping. To achieve these savings, DSM applies semi-automated methods to streamline the 

time intensive tasks of database manipulation, analysis, map production, as well as make efficient use of costly 

field data collection. Ideally the efficiencies gained by automation and improved efficiency could allow soil scien-

tists additional time to improve the quality and quantity of the input data. 
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Hypothesis, motivation and objective 

The hypothesis of this study was to that geographic datasets could serve as scorpan factors capable of predict-

ing soil properties with statistical models. While this has been demonstrated in other landscapes, there was moti-

vation to examine DSM applicability within a large and complex West Virginia landscape. Such studies are neces-

sary to verify a given method’s soundness, as different landscape represent different challenges. Also numerous 

studies show a fondness for modeling soil properties rather than soil taxonomic units, which is contrary to conven-

tional soil mapping practice. Therefore the objective of this study was to develop statistical models of soil proper-

ties, using ancillary geographic datasets as predictors. 

Methods 

Study area 

The area examined for this study was the Upper Gauley Watershed, which totals approximately 82,700 acres, 

and occurs within the Monongahela National Forest of West Virginia (Fig 3.1). This location occurs within the East-

ern Allegheny Plateau and Mountains, which is dominated by very steep side slopes, with narrow ridge tops and 

valleys (USDA-NRCS, 2006). Elevation within the watershed ranges from 658 to 1,435 meters. Precipitation is even-

ly distributed throughout the year, occuring as both rain and snow, with seasonal averages ranging from 130 to 

165 centimeters (51 to 65 inches) (PRISM Climate Group, 2010). This has resulted in soils with udic and perudic soil 

moisture regimes (Delp, 1998; Flegel, 1998). Temperatures are cold during the winter and warm during the sum-

mer, with seasonal averages ranging from 6.5 to 10 degrees Celsius (44 to 50 degrees Fahrenheit) (PRISM Climate 

Group, 2010). This has resulted in mesic and frigid soil temperature regimes (Delp, 1998; Flegel, 1998). Frigid soils 

are typically found at elevations generally greater than 852 meters, while perudic soils are found within hollows. 

Vegetation is dominated by three forest types, including deciduous hardwoods at lower elevations, coniferous at 

higher elevations, and small patches of mixed types where deciduous and coniferous forest meet. The geology of 

the watershed is composed of sedimentary rocks that include Pennsylvanian aged sandstones (Pottsville Group) 

and Mississippian aged shale mixed with fine grained sandstone (Mauch Chunk Group). The Pottsville Group over-

lies the Mauch Chunk Group, which has been exposed in the floodplains and valleys of the eastern portion of the 

watershed. 

The general distribution of the soils within the watershed as summarized by STATSGO2 (U.S. General Soil Map) 

soil map units which include: the Gilpin-Laidig (s8817), Trussel-Simoda-Mandy-Gauley (s8852), and Shouns-

Cateache-Belmont (s8823) associations (Figure 3.1). Both the Gilpin-Laidig and Trussel-Simoda-Mandy-Gauley as-

sociations are formed on the Pottsville sandstone within the western and central portions of the study area re-

spectively, while the Shouns-Cateache-Belmont association is formed on the Mauch Chunk shale on the eastern 

side of the watershed. The Gilpin-Laidig and Trussel-Simoda-Mandy-Gauley association differ based on elevation 
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and slope gradient, with Trussel-Simoda-Mandy-Gauley association present at elevations generally greater than 

852 meters and on steeper slopes. 

 

Figure 3.1: U.S. General Soils Map (STASTGO2) of the Upper Gauley Watershed. (Gilpin-Laidig (s8817), Trussel-Simoda-

Mandy-Gauley (s8852), and Shouns-Cateache-Belmont (s8823) soil associations). 

Table 3.1: Summary of named soil series from the U.S. General Soils Map (STASTGO2) of the Upper Gauley Watershed. (Gil-

pin-Laidig (s8817), Trussel-Simoda-Mandy-Gauley (s8852), and Shouns-Cateache-Belmont (s8823) soil associations). 

 

STASTGO2 

Symbol
Soil Series Soil Classification Depth class Drainage class

s8817 Gilpin Fine-loamy, mixed, active, mesic Typic Hapludults moderately deep well

Laidig Fine-loamy, siliceous, active, mesic Typic Fragiudults very deep well

s8852 Trussel Fine-loamy, mixed, semiactive, frigid Aeric Fragiaquepts very deep poorly

Simoda Fine-loamy, mixed, semiactive, frigid Typic Fragiudepts deep & very deep moderately well

Mandy Loamy-skeletal, mixed, active, frigid Typic Dystrudepts moderately deep well

Gauley Loamy-skeletal, siliceous, superactive, frigid Typic Haplorthods moderately deep well

s8823 Shouns Fine-loamy, mixed, semiactive, mesic Typic Hapludults very deep well

Cateache Fine-loamy, mixed, active, mesic Ultic Hapludalfs moderately deep well

Belmont Fine-loamy, mixed, active, mesic Typic Hapludalfs deep well
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Soil Sampling and Analysis 

Site allocations 

Ninety seven points were sampled. To allocate the sampling locations a design-based stratified-random sam-

pling strategy was used, similar to that of McKenzie and Ryan (1999). The stratifying variables used were geology, 

elevation, and stream power index (SPI). Geology was stratified into the watershed’s three lithology types (sand-

stone, shale/sandstone, and shale). Elevation was separated into three quantile classes, and SPI (Tarboton, 2004) 

was separated into 5 quantile classes. The intersection of these variables created 45 unique strata within which to 

sample. In order to avoid sampling extraneous features, exclusion rules were used to avoid roads (buffered to 20 

meters), streams (buffered to 10 meters), developed areas, and patches of strata smaller than 4,000 square meters 

(approximately one acre). In addition private land and the Cranberry Wilderness Area were excluded from sam-

pling. 

To randomly allocate the sampling sites, five patches from each stratum were randomly selected using 

Hawth’s Analysis tools for ArcGIS (Beyer, 2004). Within each patch, a random site (x,y) was generated. This pro-

duced 225 potential sites. In order to decide which sites to visit, they were randomly ranked between 0 and 1. The 

first two sites with the lowest rank were selected for each stratum, and successive sites where selected if field ob-

servation found that they violated the exclusion rules. 

Soil profile and site descriptions 

Upon field sampling, each site was located using a Trimble GeoXM GPS unit. At each site, two 32-foot (9.75-

meters) transects centered on the random coordinates where established. One transect was oriented directly 

downslope, and the other across slope and to the left. The transect length was chosen to represent the resolution 

of a 10-meter grid. These transects served to estimate the percentage of surface rock fragments coverage 

(sfragcov). The location of the soil pit was placed within the area intersected by the transects, at a location that 

seemed representative, but as close to the intersection of the transects as possible. 

At each site, a soil pit was hand dug to a depth of at least 140-cm or bedrock, and described according to 

standard procedures (Schoeneberger et al., 2002). The percent volume of rock fragments (fragvol) was visual esti-

mated by comparison with standardized percent surface area charts. From each soil horizon, two 300-gram grab 

samples were taken, one for laboratory analysis, and another for characterization and archiving by the National 

Forest Soil Scientist. The percent of surface rock fragments at each site was determined by thrusting a spade 

through the O horizon along 1 foot intervals of both transects, and recording the number of instances a rock frag-

ment was struck. This procedure is similar to that used by Jenkins (2002), although he multiplied the total percent-

age of surface rock fragments by an arbitrary factor of 0.6, to account for the amount of void space he assumed to 

occur between the rock fragments. 
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Laboratory analysis 

The grab samples which were collected from each horizon, were analyzed for percent carbon, pH, extractable 

metals (Aluminum (Al), Phosphorus (P), Calcium (Ca), Magnesium (Mg), and Manganese (Mn)), and particle size. To 

prepare the samples for analysis they were first air-dried, ground, and passed through a 2-mm sieve. Soil carbon 

(C) was analyzed twice on approximately 0.095-g of soil using a Leco Truspec CHN elemental analyzer. Soil pH was 

measured on approximately 10-mL of soil in a 20-mL 0.01 M CaCl2 solution (Lierop, 1990). The extractable Al, P, Ca, 

Mg, and Mn were measured on approximately 5 cm
3
 of soil using a Mehlich 1 extracting solution (0.025 N H2SO4 + 

0.05 N HCl)(Mehlich, 1953), and analyzed on a PerkinElmer ICP (inductively coupled plasma) optical emission spec-

trometer (Optima 2100 DV). The extractable metals and C were converted to a mass per unit area (kg/ha), by mul-

tiplying their concentrations by their horizon thickness, bulk density, and a correction factor for the amount of rock 

fragments. Because preliminary analysis showed Ca and Mg to be highly correlated (i.e. 0.89), only their sum was 

analyzed (i.e. Ca + Mg). Clay was measured on approximately 40-g of soil using the hydrometer method, while sand 

was estimated by wet sieving (Gee and Bauder, 1986). Because bulk density was not measured for any of the hori-

zons within this study, it was estimated from 15 soil profiles sampled by Sponaugle (2005) in the adjacent Cranber-

ry watershed. From these soil profiles a regression equation was developed that explained over 73 % of variance 

using the % carbon and middle depth of each soil horizon as predictive variables. 

Bulk density = 1.303 + -0.077(carbon) + 0.007(depth) 

To summarize the soil attributes for analysis, the soil horizons from each soil profile were aggregated into four 

depth intervals (0-15, 15-60, 60-100, and 100-150 cm) by taking a weighted average using the aqp R package 

(Beaudette et al., 2012). This is a common approach for modeling soil properties vertical anisotropy (McKenzie and 

Austin, 1993; McKenzie and Ryan, 1999; Park and Vlek, 2002; Malone et. al, 2009, Odgers et. al, 2012). The specific 

depth intervals used in this study were chosen because they seemed to correspond with inflections observed in 

depth plots of the soil properties (Figure 3.2). For the purposes of this study, the thickness of the O horizons was 

not included, because no laboratory analysis was performed. 
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Table 3.2: Summary of the soil properties. 

 

Soil property & 

depth interval
Definition (units) Measurement

sfragcov Surface cover of rock fragments (%) 64-ft transect

fragvol 0-15-cm

fragvol 15-60-cm

fragvol 60-100-cm

fragvol 100-150-cm

clay 0-15-cm

clay 15-60-cm

clay 60-100-cm

clay 100-150-cm

sand 0-15-cm Sieve (Gee and Bauer, 1986)

sand 15-60-cm

sand 60-100-cm

sand 100-150-cm

C 0-15-cm

C 15-60-cm

C 60-100-cm

C 100-150-cm

pH 0-15-cm

pH 15-60-cm

pH 60-100-cm

pH 100-150-cm

Ca+Mg 0-15-cm

Ca+Mg 15-60-cm

Ca+Mg 100-cm

Ca+Mg 100-150-cm

P 0-15-cm

P 15-60-cm

P 60-100-cm

P 100-150-cm

Al 0-15-cm

Al 15-60-cm

Al 60-100-cm

Al 100-150-cm

Volume of rock fragments (%)

Hydrometer (Gee and Bauer, 

1986)

Visual estimation 

(Schoeneberger et al., 2002)

Leco Truspec CHN elemental 

analyzer

sum of exchangeable Calcium and 

Magnesium (kg/ha)

activity of H ions

Mehlich 1 extracting solution 

(Mehlich, 1953)

0.01 M  CaCl2 solution 

(Lierop, 1990)

exchangeable Aluminum (kg/ha)

Mehlich 1 extracting solution 

(Mehlich, 1953)

soil organic carbon (kg/ha)

weight of sand for < 2-mm particle 

size fraction (%) 

weight of clay for < 2-mm particle 

size fraction (%) 

exchangeable Phosphorus (kg/ha)

Mehlich 1 extracting solution 

(Mehlich, 1953)
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Table 3.3: Summary of environmental predictors. 

 

State factors (abreviation) Definition/Significance (units) Algorithm/Reference

Climate

Mean annual air temperature (tmean) temperature (degrres Fahrenheit) PRISM Climate Group, 2010

Total annual precipitation (ppt) precipitation (inches) PRISM Climate Group, 2010

Parent material (geo)

Lithology type: sandstone (ss), shale 

(sh), or sandstone & shale (sssh) parent material (scale 1:250,000)

West Virginia Geological 

and Economic Survey, 1968

Land surface parameters - Geometric

Elevation (z) height above mean sea level (feet)

Slope gradient (sg) with a 7x7 window 

size

down slope rate of change 

(percent) Wood, 1996; GRASS, 2012

Profile curvature (kp) with a 7x7 

window size down slope curvature (radians) Wood, 1996; GRASS, 2012

Tangential curvature (radians) (kt) 

with a 7x7 window size across slope curvature (radians) Wood, 1996; GRASS, 2012

Multiresolution valley bottom flatness 

index (mrvbf) > 0.1 equals reclassified 

as valleys index of flatness and lowness Gallant and Dowling, 2003

Land surface parameters - Regional

Specific catchment area (sca) meters2/grid size (meters) Seibert and McGlynn, 2007 

Topographic wetness index (twi) soil saturation index, ln(sca/sg) Moore et al., 1991

Stream power index (spi) soil erosion index, ln(sca*sg) Moore et al., 1991

Catchment height (ch) average upslope height (meters) Moore et al., 1991

Mid-slope position (zms)

relative topographic position 

(percent) Bohner and Antonic, 2009

Normalized height (zhn) height above valleys (percent) Bohner and Antonic, 2009

Annual solar radiation or insolation 

(sr_a)

amount of incoming solar energy 

(kWh/mA2) Wilson and Gallant, 2000

Remotely sensed imagery

Tassel cap component 1 (spring 

(tc1_s), leafon (tc1_lo), leafoff (tc1_lf)) soil brightness USGS, 2006

Tassel cap component 2 (spring 

(tc2_s), leafon (tc2_lo), leafoff (tc2_lf)) greeness USGS, 2006

Tassel cap component 3 (spring 

(tc3_s), leafon (tc_lo), leafoff (tc3_lf)) wetness (moisture) USGS, 2006

* For the purpose of spatial analysis all other layers were resampled to 15-meters.
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Environmental predictors 

A database of environmental predictors (Table 3.1) was developed using the GIS, SAGA (SAGA, 2012). All of the 

geospatial data were freely available online, but required some preprocessing. The DEM came from the Statewide 

Addressing and Mapping Board (SAMB) and USGS Elevation Conversion Project. This DEM was produced using tri-

angular irregular network (TIN) interpolation of mass points and break lines sampled from stereo pairs of aerial 

photography. The original resolution of the DEM was 3-meters, but it was resampled to 15-meters using mean 

aggregation, in order to minimize the abundance of triangular artifacts inherited from the interpolation. The re-

sults of Chapter 2 showed this to be one of the most highly correlated grid sizes (Figure 2.16 and Figure 2.18). The 

remotely sensed imagery used was selected from the MRLC Landsat 7 TM+ Scene Library, which contains images 

from three seasons (i.e. spring, leafon, and leafoff) that have been terrain corrected and converted to at-sensor 

reflectance (USGS, 2006). From this library, the tasseled cap components were selected as predictors due to their 

well-established physical interpretation and data reduction properties. 

Statistical analysis 

Exploratory data analysis 

Prior to predictive modeling, exploratory analysis of the soil properties was performed to assess their distribu-

tions and interrelationships. The distribution of the soil properties was assessed by examining normal quantile-

quantile (Q-Q) and plots of their mean and quartiles (i.e. 0.25 and 0.75 percentiles) with depth. Skewness was vis-

ually assessed by how much the distribution of a given soil property at a specific depth interval diverged from a 

theoretical normal distribution. To correct for skewness, transformations of the soil properties were made where 

necessary using natural logarithm (i.e. log) and square root (i.e. sqrt) functions. 

To assess the interrelationships between the soil properties and observations, biplots and scatterplots were 

visually examined for each depth interval. Only the 1
st

 and 2
nd

 principal component (PC) were interpreted, as they 

usually explain the majority of variance. To assess the importance of each of the components a table of their 

standard deviations and variance proportions was examined. 

Biplots are useful graphical technique as they display the multivariate (e.g. overall) structure amongst the var-

iables and observations in one plot. The variables themselves are displayed as arrows. The direction of an arrow 

quantifies the variables loading (i.e. one minus the correlation) to the PC, and length quantifies the proportion of 

variance explained for a PC. While the correlation between variables is not specifically addressed within the bip-

lots, if the correlation between variables is strong, the angle between variable’s arrows can imply correlation (i.e. 

small angles approximate strong correlations). The distance between the observations quantifies their similarity 
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(i.e. approximate Mahalanobis distances) to each other, while their location relative to the arrows relates to the 

abundance of each variable. 

Predictive modeling 

The statistical models evaluated for prediction were generalized linear models (GLM), regression trees (RT), 

and random forest (RF) using the glm (R Core Team, 2013), rpart (Thereneau et al., 2013), and randomForest (Liaw 

and Wiener, 2002) R packages. The GLM were fit using forward variable selection. Due to strong co-linearity be-

tween the numerous predictors, automated step-wise selection was avoided. Instead variables were sequentially 

selected by evaluating their p-values, Akaike’s Information Criteria (AIC), adjusted D
2
, cross-validated (CV) root 

mean square error (RMSE), and whether the relationships made sense. The GLM were also assessed for constant 

variance, normality, linearity, co-linearity, outliers and influential points. In order to utilize soil profiles that were 

shallower than a given depth internal (e.g. 60-90-cm, rather than 60-100-cm), the thickness of each observation 

was used as prior weights. The stopping criteria for the RT, was the minimum number of splits that fell within one 

standard deviation of the CV residual sum of squares (RSS). The RF was fit using the default regression parameters 

of 500 trees and a terminal node size of 5. Also individual trees within the RF were grown using a bootstrap sample 

of two thirds of the observations and one third of the predictors. To validate the statistical models 10-fold CV was 

used. 

Results and Discussion 

Exploratory data analysis 

Examination of the Q-Q plots showed Ca+Mg, P, Al, and percent rock fragment volume (fragvol) to be skewed 

for all depth intervals, while C was only skewed below 60-cm. To normalize the skewed variables, a natural loga-

rithm transformation (log) was sufficient, except for Al which required a square root transformation (sqrt). While 

the Q-Q plots are not display below, the skewed nature of these soil properties is also evident by examining the 

median and quartiles displayed in Table 2.1 and Figure 3.2. 

The depth plots in comparison showed the distribution of each soil properties median, and 25
th

 and 75
th

 quar-

tiles for 1-cm depth increments. Overall depth trends showed near constant clay, sand and C content with depth, 

and an increase for fragvol, pH, Ca+Mg, P, and Al with depth. Particularly striking is the low values and narrow 

range of pH, which are considered extremely acid. This is to be expected considering the area’s acid rain, and the 

acidic properties of the Pottsville sandstone. Curiously there is a small decrease in clay content with depth. This 

trend is the reverse of what would be expected, considering that numerous soil series within the study area are 

characterized as having an argillic horizon, which should display a clay increase or bulge below the topsoil. The fact 
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that the extractable metals increase drastically with depth, is probably do to leaching, which is enhanced by acid 

rain, and nutrient extraction by plants. 

Table 3.4: Statistical summary of the soil properties for each depth interval. 

 

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

sfragcov 0 17 41 41 59 100

fragvol 0-15-cm 0 5 10 20 28 90

fragvol 15-60-cm 0 8 15 22 28 90

fragvol 60-100-cm 0 10 23 28 40 92

fragvol 100-150-cm 0 20 37 37 51 95

clay 0-15-cm 4 17 23 24 31 43

clay 15-60-cm 4 16 21 20 25 34

clay 60-100-cm 2 15 18 18 21 37

clay 100-150-cm 5 14 17 19 23 43

sand 0-15-cm 7 25 35 37 47 91

sand 15-60-cm 9 31 36 40 48 92

sand 60-100-cm 8 35 42 42 51 76

sand 100-150-cm 3 34 42 42 52 75

C 0-15-cm 0 3 4 4 6 11

C 15-60-cm 1 2 3 3 4 8

C 60-100-cm 1 2 2 3 3 9

C 100-150-cm 1 2 3 3 4 12

Ca+Mg 0-15-cm 3 63 112 373 228 4081

Ca+Mg 15-60-cm 28 85 131 448 293 6028

Ca+Mg 100-cm 21 118 230 705 543 7988

Ca+Mg 100-150-cm 25 158 369 1378 1054 11080

P 0-15-cm 0 1 2 3 4 13

P 15-60-cm 0 1 2 4 4 54

P 60-100-cm 0 1 2 5 5 45

P 100-150-cm 0 1 3 9 8 76

Al 0-15-cm 31 747 1257 1323 1749 4790

Al 15-60-cm 31 1374 2050 2337 3162 5613

Al 60-100-cm 359 1655 2355 2720 3412 7127

Al 100-150-cm 264 1393 2417 3106 4229 10940

Soil property & 

depth interval

Summary
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Figure 3.2: Depth plot of the mean and lower (0.25th) and upper quartiles (0.75th) for rock fragments (fragvol)(% volume), 

clay (% weight), sand (% weight), carbon(C)(kg/ha), pH (unitless), Calcium and Magnesium (Ca+Mg) (kg/ha), Phosphorus 

(P)(kg/ha), and Aluminum (Al)(kg/ha). 

A summary of the PC analysis that provides the PC scores and loadings for the biplots is presented in Table 3.2, 

which contains the standard deviation and proportion of variance explained by each PC. It shows that each depth 

interval has a similar proportion of variance explained by each PC, each of whose cumulative proportion increases 

gradually which suggests little data redundancy in the dataset. For each depth interval the 4
th

 PC is the first to fall 

below one standard deviation. Also, for each depth interval the first two components contain 50-60 percent of the 

cumulative variance. Ninety percent of the cumulative variance isn’t achieved until the 5
th

 PC. 

The biplots are shown in Figure 3.3, and the scatterplots are shown in Figures 3.4 and 3.5. They display the in-

terrelationships between the soil properties and observations for each depth interval. While by their nature biplots 

are complex figures which attempt to condense large amounts of information, the relations between the different 

depth intervals creates an additional layer of complexity. In general the biplots show that the first PC is dominated 

by the textural properties (i.e. fragvol, clay and sand) of the soil for each interval. Interestingly none of the textural 

properties are appreciably associated with Ca+Mg; rather Ca+Mg is mostly correlated with C and P for all depth 
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intervals, while it’s relation to Al appears to be nonlinear according to the smoothing splines (Figure 3.4 and 3.5). 

This is somewhat surprising considering the importance of clay, whose extensive surface area is generally attribut-

ed to soil’s nutrient capacity. Again in this instance the extreme acidity of the soil is likely responsible. Instead the 

clay is likely saturated with Hydrogen (H), Al and P, which may explain clay’s moderate to low correlation with Al 

,pH and P. Predictably clay and sand are negatively correlated for most properties, while sand and fragvol are cor-

related. The C surfaces by contrast are also likely saturated Al, given their moderately positive correlations. 

The overall distribution of soil observations within the biplots reveals their similarity to each other and the soil 

properties. Notable is a lack of clustering amongst the observations. Rather the observations from a diffuse cloud, 

with a central concentration of observations. Thus the PC of each depth interval is defined by a relatively few ob-

servations that deviate from the central concentration of observations. No trend is apparent in the distribution of 

diffuse soil observations between depth intervals. While not specifically addressed in this study, it suggests that for 

the soil properties examined here, the dissimilarity between the soil taxonomic units within this area is not great. 

Table 3.5: Importance of the principal components for each depth interval. 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 1.67 1.36 1.03 0.90 0.80 0.66 0.49 0.39

Proportion of Variance 0.35 0.23 0.13 0.10 0.08 0.05 0.03 0.02

Cumulative Proportion 0.35 0.58 0.71 0.82 0.90 0.95 0.98 1.00

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 1.61 1.25 1.20 0.96 0.80 0.68 0.48 0.39

Proportion of Variance 0.33 0.19 0.18 0.12 0.08 0.06 0.03 0.02

Cumulative Proportion 0.33 0.52 0.70 0.82 0.89 0.95 0.98 1.00

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 1.57 1.30 1.23 0.95 0.73 0.68 0.48 0.44

Proportion of Variance 0.31 0.21 0.19 0.11 0.07 0.06 0.03 0.02

Cumulative Proportion 0.31 0.52 0.71 0.82 0.89 0.95 0.98 1.00

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 1.64 1.38 1.21 0.86 0.77 0.53 0.47 0.33

Proportion of Variance 0.34 0.24 0.18 0.09 0.07 0.04 0.03 0.01

Cumulative Proportion 0.34 0.58 0.76 0.85 0.92 0.96 0.99 1.00

100-150 cm

60-100 cm

15-60 cm

0-15 cm
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Figure 3.3: Biplots of the soil properties for each depth interval. The bottom and left axes represents the standardized com-

ponent scores (i.e. soil observations), while the top and right axes represent one minus the standardized component load-

ings (i.e. soil properties). 
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Figure 3.4: Scatterplots, histograms, correlation matrix of depth intervals 0-15 cm and 15-60 cm. Smoothing line fitted to the 

scatterplot. Significance levels: 0.1 (.), 0.05 (*), 0.01 (**), 0.001 (***). Units: fragvol log(% volume), clay (% weight), sand (% 

weight), C (kg/ha), pH (unitless), Ca+Mg log(kg/ha), P log(kg/ha), and Al log(kg/ha). 
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Figure 3.5: Scatterplots, histograms, correlation matrix of depth intervals 60-100 cm and 100-150 cm. Smoothing line fitted 

to the scatterplot. Significance levels: 0.1 (.), 0.05 (*), 0.01 (**), 0.001 (***). Units: fragvol log(% volume), clay (% weight), 

sand (% weight), C log(kg/ha), pH (unitless), Ca+Mg log(kg/ha), P log(kg/ha), and Al log(kg/ha). 
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Predictive modeling 

A separate generalized linear model (GLM) was constructed for each soil property and depth interval. The re-

sults of which are summarized in Table 3.6 and Table 3.7. Overall the GLM outperformed the regression trees (RT) 

and random forests (RF), therefore only GLM were constructed. Discussions of the various aspects of the GLM are 

presented under separate headings. Due to the number of models created, no attempt was made to interpret each 

individual model individually. Instead the interpretation of the results focused mainly on the relation between 

models and environmental predictors included. 

Examination of the RT showed that in some cases the cross-validated (CV) error increased after only one split. 

The RF were similarly unable to identify splits in some cases when validated with the bootstrap samples withheld 

when growing the trees, termed the ‘out of bag’ (OOB) data. Regression trees and RF are common data mining 

techniques that have become popular within DSM, in part because their automated fitting procedures, particularly 

when multiple predictors are present. It maybe that the RT and RF underperformed because they generally require 

sizeable datasets and make inefficient use of continuous predictors. In such circumstances Maindonald and Braun 

(2007) suggest that parametric models, such as GLM, may be a better alternative as they make assumptions of the 

form of the data. Thus these results are significant as they suggest it may be necessary in some cases for multiple 

models to be evaluated, particularly less automated methods which require more statistical assumptions, and sta-

tistical knowledge from the analyst. 

Accuracy 

The accuracy of the GLM varied between the soil properties and depth intervals examined (Table 3.4). In com-

parison the models of fragvol, Ca+Mg, and P were the most accurate, with their adjusted deviance squared (adj D
2
) 

ranging from 0.12 to 0.61, and averaging 0.38. Also the cross-validated RMSE was similar to the resubstituted 

RMSE, which demonstrates the stability of GLM fit. Amongst these models, the accuracy was generally highest for 

the 15-60 and 60-100-cm depth intervals. The models of the other soil properties performed less well, but identi-

fied as similar selection of interpretable predictors. The generally low accuracy of the GLM maybe the result of a 

number of factors, such as unspecified interactions or insufficient predictors. Alternatively it maybe that only a 

narrow range in a particular soil property was observed; such as C and clay. For example, the RMSE of clay was 5-8 

percent, which only slightly worse than laboratory methods such as the hydrometer (Gee and Bauder, 1986). How-

ever, Ryan et al. (2000) suggests that spatial models most likely are only capable of explaining 70 percent of the 

variation in soil properties, with models explaining less than 50 percent being most common. Therefore it is more 

likely that the soil properties of this landscape maybe dominated by random fluctuations. In which case some 

measure of central tendency and dispersion maybe sufficient to characterize their variability. By comparison, this is 

the approach practiced in soil survey. For example, the soil map units in the watershed are generally composed of 
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consociations, which are dominated by a single soil series, and characterized by a high, low, and representative 

value for each soil horizon. 

GLM variance functions 

In addition to their predictive utility, the GLM also provide addition information on the error distribution of 

the soil properties. For example, while the preliminary exploratory analysis suggested that many of the soil proper-

ties response required transformations in order to achieve a normal distribution, the GLM diagnostic plots showed 

that the error terms (or variance functions) of many also required additional transformations in order to satisfy the 

linear models assumption that the errors are normally distributed. While the variance functions of the physical soil 

properties were mostly normal (i.e. constant), the chemical soil properties variance increased with the mean (mu). 

This required the application of either a Gamma or quasipoisson GLM. The consequence of this is that the variabil-

ity of those soil properties increases in conjunction with their estimated mean. Interestingly, the error distribution 

of fragvol and C changed with depth. 

Within DSM the application of GLM with non-normal error terms is unusual, except for binomial GLM (i.e. lo-

gistic regression) which are used for classification instead of regression (McKenzie and Ryan, 1993; Gessler et al., 

1995; Beaudette and O’Geen, 2009b). Generally most researchers make use of Gaussian GLM with transformations 

of the response (Thompson et al., 1997; McKenzie and Ryan, 1999; Park and Vlek, 2002). Park and Vlek (2002) for 

example compared several statistical models including GLM, and various soil properties for five depth intervals. 

They only reported using transformations of the response variables and interaction terms. Regardless Lane (2002) 

has demonstrated the application of GLM with alternative variance functions in soil science in order to satisfy the 

assumption of linear models. This may be due as Lane (2002) suggests to most soil scientists unfamiliarity or mis-

understanding of GLM. 



 

54 

Table 3.6: Summary of the GLM constructed for each soil property and depth interval. 

 

Outliers 

While fitting the GLM, various observations stuck out as outliers. These observations were highlighted in re-

sidual plots, and removed from the GLM prior to their final fitting. For most models this required removing only a 

single observation, in some cases it was necessary to remove several. No apparent cause for the outliers was de-

termined. 

Environmental predictors 

A comparison of the environmental predictors used in each GLM is presented in Table 3.5. While each GLM 

contained a unique combination of environmental predictors, similar variable combinations occurred amongst the 

soil properties and depth intervals examined (Table 3.5). Also, of particular interest is that the sign and magnitude 

Soil property & 

depth interval
Formula Family

Link 

function

Variance 

function
Outliers df

Adjusted 

D2 RMSE cv RMSE

sfragcov spi + tc2_lf + sr_a gaussian identity constant 93 0.36 21.51 22.04

fragvol 15-cm spi + tc2_lo + geo + zms quasipoisson log mu 91 0.28 18.16 20.31

fragvol 60-cm spi + tc2_lo + geo quasipoisson log mu 142 89 0.33 16.37 18.05

fragvol 100-cm spi + tc2_lo + geo gaussian log constant 137,400 72 0.43 15.2 16.99

fragvol 150-cm spi + tc2_lo + sg gaussian log constant 56 0.24 21.38 23.88

clay 15-cm zms + tc2_lf + kt gaussian identity constant 155,199 89 0.27 8.11 8.43

clay 60-cm kt + zms gaussian identity constant 114,436 89 0.11 6.16 6.33

clay 100-cm kt + zms gaussian identity constant 75 0.16 5.34 5.57

clay 150-cm zhn + tmean + tc2_lo gaussian identity constant 123 55 0.29 6.14 6.57

sand 15-cm kt + zms gaussian identity constant 11,114 90 0.16 16.05 16.96

sand 60-cm kt + zms gaussian identity constant 114 74 0.25 12.01 12.72

sand 100-cm kt gaussian identity constant 114 75 0.24 12.22 12.62

sand 150-cm zhn + tc3_s gaussian identity constant 123,33 54 0.32 11.06 11.6

C 15-cm tc2_s gaussian identity constant 93 0.04 2.33 2.36

C 60-cm tc3_lo gaussian identity constant

12,96,105

,107,155 87
0.16 1.22 1.25

C 100-cm zhs+sh quasipoisson log mu 73 0.2 1.64 1.76

C 150-cm 1 quasipoisson log mu 58 0.15 2.18 2.24

Ca+Mg 15-cm geo + kp + tc2_s + zms Gamma log mu^2 181 88 0.43 598.47 649.8

Ca+Mg 60-cm geo + kp + tc2_s Gamma log mu^2 181 88 0.47 482.07 499.38

Ca+Mg 100-cm geo + kp + zms Gamma log mu^2 73 0.44 773.37 941.64

Ca+Mg 150-cm geo + kp Gamma log mu^2 55 0.27 1991.33 2234.01

P 15-cm zms + tmean + kt quasipoisson log mu 85 0.12 2.38 2.47

P 60-cm mrvbf + zms + kt quasipoisson log mu 3 83 0.61 2.31 2.63

P 100-cm mrvbf + geo + zms + kt + kp quasipoisson log mu 68 63 0.58 3.3 3.62

P 150-cm
sg + geo

quasipoisson log mu

126,140,1

61 48
0.42 5.78 6.76

Al 15-cm geo + kt quasipoisson sqrt mu 33 90 0.08 687.84 722.13

Al 60-cm kp + tmean quasipoisson sqrt mu 91 0.12 1172.1 1220.27

Al 100-cm kp + tmean + kt quasipoisson sqrt mu 74 0.18 1455.34 1507.87

Al 150-cm kp + tmean + geo quasipoisson sqrt mu 54 0.13 2017.85 2263.27
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of the GLM coefficients for the same soil property at different depth intervals were similar. This suggests that in 

many cases the landscape processes that shape the spatial distribution of specific soil properties operate similarly 

over a range of depths. However differences were noted. Generally the effect of LSP appears to diminish below 

100-cm or be absent. This result agrees with those of Park and Burt (2002), who also found the effect of LSP to 

decrease with depth. For example, with sfragcov and fragvol where SPI was included for all depths intervals, the 

slope of SPI decreased with depth but was similar between 0 and 100-cm. By comparison, the effect of geology 

increased with depth for Ca+Mg. 

Amongst the GLM, the most common environmental predictors selected were the slope curvatures, lithology 

types (geo), and relative slope positions. This seems to validate the prominence of these variables in theoretical 

soil-landscape models. Surprisingly, the hydrologic LSP (e.g. stream power index and topographic wetness index) 

(Table 3.2) did not appear commonly in the GLM, considering their popularity in DSM. Commonly hydrologic LSP 

are selected because they condense multiple LSP (e.g. landscape processes) into one index, negating the need to 

incorporate two predictors. However, while the hydrologic LSP commonly ranked high during the variable selection 

process, their effect was negated when the slope curvatures and mid-slope position were introduced, due to the 

high correlation between the slope curvatures and the hydrologic LSP. Had the correlation between the soil prop-

erties and slope curvatures not been improved in Chapter 2 it is likely that the variable selection process would 

have preferentially selected hydrologic LSP instead. Thus again this demonstrates the importance of neighborhood 

size when calculating slope curvatures. 

New to this study was the incorporation of the LSP mid-slope position position (zms), normalized landscape 

position (zhn), and multi-resolution valley bottom index (mrvbf). These LSP are all recent additions to the DSM 

toolbox. Typically within DSM landscape position is estimated with hydrologic LSP, as they distinguish uplands from 

lowlands (e.g. hydrologic connectivity or topological relations). This is important because while land surfaces may 

have similar shapes, their landscape position will determine their level of exposure to additions of sediment and 

water from upslope areas. Thus, given the inclusion of these new landscape position predictors into the GLM, it 

appears they contain some new useful information other than that already provided by existing hydrologic LSP; 

perhaps particularly in a steep landscape such this study area. Within the GLM, zms was the most commonly in-

cluded. Low values of zms distinguished mid-slope positions (e.g. backslopes) from their surrounding summits and 

valleys. For example, the zms coefficients (Table 3.5) from the clay and sand GLM demonstrate that mid-slope po-

sitions have more clay and less sand relative to summits and valleys. This is likely the result of enhanced clay for-

mation on slopes from throughflow. By comparison, zhn provides an estimate of landscape position above valleys, 

with 0 percent characterizing valleys and 100 percent characterizing summits. This position measure is particularly 

similar to twi and spi, but provides a more general spatial distribution as it involves an iterative slope-based modi-

fication of catchment area. For example, the zhn coefficients from the clay and sand GLM demonstrate that be-

tween 100-150-cm clay increases with increasing height above valleys and correspondingly decrease in sand, albeit 
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at different rates. This could be interpreted to show that in stable landscape positions such as summits, clay is 

translocated to lower depths, while on mid-slopes positions greater clay contents are found higher in the soil pro-

file. Lastly, the mrvbf is designed to distinguish valleys from uplands by using a nonlinear threshold transformation 

of slope gradient and elevation percentile over a range of scales. While only a minority of the study area is charac-

terized by valley floors, the mrvbf proved to be a useful predictor were soil properties within the floodplain deviat-

ed from the overall trend. It may be in floodplains that separate GLM slope coefficients exist for the other predic-

tors, but there were only sufficient observations within the floodplain to capture the effect of mrvbf. 

Besides geology and the LSP, the multi-temporal tasseled cap components also were included in numerous 

GLM. The most commonly selected tassel caps components were the 2
nd

 (tc2). The tassel cap components are 

similar to principal components, but represent a fixed linear transformation has been found useful for agricultural 

monitoring. The 2
nd

 tasseled cap is associated with the greenness of vegetation (Table 2.1), and is strongly corre-

lated with the normalized vegetation index (NDVI) which indicates vegetation abundance. Interestingly, no one 

season (i.e. spring, leafon, or leafoff) of tc2 appeared to be the best predictor of all the soil properties. These dif-

ferent seasonal images are poorly correlated therefore it is difficult to speculate on a causal relationship with the 

soil properties. In general the spring (tc2_s) and leafon (tc2_lo) tc2 images appear to correspond with a greater 

density of coniferous trees, which typically occur at higher elevations, while the leafoff (tc2_lf) tc2 images appear 

to correspond with south aspects and areas without trees. At a minimum these results suggest the importance of 

examining images from multiple seasons for relationships with soil properties. The use of satellite imagery is not 

uncommon in DSM, but in reviewing the literature this author was only able to find a few recent examples of this 

approach (Sylvain et al., 2012). Sylvian et al. (2012) provides a noteworthy example were a normalized band ratio 

of wet versus dry seasons was used in an agricultural setting from Quebec, Canada. 

Given that some environmental predictors were included in several GLM, they would make good potential 

stratifying variables for future work in this landscape setting, such as the slope curvatures, geology, mid-slope posi-

tion, and tc2 components. Although in the future it might be more efficient to distribute the sites using a multivar-

iate Latin hypercube design (Minasny and McBratney, 2006) using R (Roudier, 2011). In this study the stratifying 

variables were treated as blocking effects in an ANOVA design, however for predictive purposes this distinction 

was ignored. There was an attempt to force these variables into the GLM with the combination of other predictors 

(Table 3.5) in order to see if they contributed to the deviance, but only geo was significant. By themselves some of 

the stratifying variables levels were significant for some models, but did not contribute substantially to the devi-

ance to be useful for predictive purposes. 
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Table 3.7: Summary of the GLM coefficents for each soil property and depth interval. 

 

PRISM

sh sssh kp kt sg mrvbf spi zms zhn sr_a tf2_lf tc2_lo tc2_s tc3_s tc3_lo tmean

sfragcov -138.15 8.85 -0.02 1.41

fragvol 15-cm 4.53 -0.57 -0.11 0.33 0.71 -0.02

fragvol 60-cm 4.98 -0.44 -0.10 0.34 -0.02

fragvol 100-cm 5.49 -0.44 -0.08 0.34 -0.03

fragvol 150-cm 4.40 0.01 0.19 -0.02

clay 15-cm 84.73 3.49 -14.43 -0.53

clay 60-cm 23.03 3.57 -5.26

clay 100-cm 19.55 3.88 -4.40

clay 150-cm 125.56 13.20 -0.17 -1.80

sand 15-cm 30.87 -11.33 18.31 11.67

sand 60-cm 39.46 -12.77 8.34

sand 100-cm 43.60 -13.25

sand 150-cm 74.06 -28.34 -0.23

C 15-cm 12.37 -0.09

C 60-cm 16.50 -0.12

C 100-cm -0.65 -0.25 0.23 -0.43 0.02

C 150-cm 1.24 -0.31 0.35

Ca+Mg 15-cm 11.02 1.16 0.73 -1.63 -0.98 -0.06

Ca+Mg 60-cm 9.01 0.94 0.74 -2.20 -0.04

Ca+Mg 100-cm 5.89 1.35 0.47 -2.05 -0.97

Ca+Mg 150-cm 5.62 2.04 1.22 -1.54

P 15-cm -6.57 -0.21 0.88 0.15

P 60-cm 0.46 -0.65 1.88 1.07

P 100-cm 0.44 0.82 0.29 -0.68 -0.48 2.47 0.74

P 150-cm 2.54 0.88 0.94 -0.02

Al 15-cm 32.42 6.19 2.62 3.63

Al 60-cm 146.35 13.47 -2.12

Al 100-cm 210.34 15.32 5.72 -3.43

Al 150-cm 269.44 -9.04 -0.40 22.40 -4.54

Geology Tasseled cap componentsLand surface parametersSoil property & 

depth interval
Intercept
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Spatial predictions 

An example of the spatial prediction and standard error (SE) for each depth interval of Ca+Mg are presented in 

Figures 3.6 and 3.7. Within these figures the increase in Ca+Mg with depth is apparent, as previously indicated in 

the depth plot of Ca+Mg (Figure 3.7). Also apparent is an increase in the standard error (SE) with depth. By examin-

ing the Figures, the influence of the predictors can be seen as expressed by the GLM coefficients (Table 3.4). For 

example the overlying strata of Pottsville sandstone has visibly less Ca+Mg, as would be expected considering its 

acidic composition. Also readably visible for all depth intervals is the effect of profile curvature, which indicates 

that convex positions are lower in Ca+Mg, relative to concave positions. 

 

Figure 3.6: Spatial prediction of Ca+Mg (mg/ha) and standard error (SE) for the 0-15 and 15-60-cm depth intervals. 
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Figure 3.7: Spatial prediction of Ca+Mg (mg/ha) and standard error (SE) for the 60-100 and 100-150-cm depth intervals. 

Conclusions 

Numerous spatial models of soil properties for several depth intervals were constructed using generalized lin-

ear models (GLM) and environmental predictors within a West Virginia landscape. The GLM demonstrated a range 

of accuracies (i.e. 0 to 61 % adjusted deviance explained) for various soil properties and depth intervals. The most 

successfully modeled soil properties were rock fragment content, and exchangeable calcium and magnesium, and 

phosphorus (averaging 38 % adjusted deviance explained). Considering the narrow quartile range of values ob-

served for clay, sand, and carbon their models might be adequate. Otherwise they might best be modeled by a 

simple depth function for the entire watershed. Exploratory data analysis and the GLM diagnostics indicated that 

several of the soil properties had non-normal response distributions, while in addition all of the chemical soil prop-
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erties also had non-normal error term distributions. While transformations of the response variable is common in 

digital soil mapping, there appears to be little precedence for using non-normal error terms (i.e. Gamma and qua-

sipoisson family GLM), besides the binomial family (i.e. logistic regression). Amongst the GLM, the most common 

scorpan factors selected were the slope curvatures, lithology types, and relative slope positions. This seems to val-

idate the prominence of these variables in theoretical soil-landscape models. Had the correlation between the soil 

properties and slope curvatures not been improved in Chapter 2 it is likely that another less suitable hydrologic 

land surface parameter (e.g. stream power index), would have been selected instead. Within digital soil mapping 

there is a preference to produce models of soil properties, rather than taxonomic units or other predetermined 

classes. This study demonstrates that this is possible, but the question remains whether it is practical for soil sur-

vey agencies, considering the difficulty in fitting numerous separate models for each soil property and depth inter-

val. If this is the case, then the alternative question remains as to how to incorporate the results of digital soil 

property maps into soil survey maps. Particularly those soil properties that are not typically captured in soil survey 

databases. It may simplify matters to use statistical models that have automated fitting procedures, such as re-

gression trees and random forest, but this study generally found GLM to be more accurate and interpretable. 

There is great value to soil taxonomic units as they categorize soil information for the sake of comprehension. 

However the process of un-categorizing soil classes back into soil properties is likely to introduce error. Therefore 

future work could examine the tradeoff between the efficiency of taxonomic units, versus directly estimating soil 

properties. 
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Appendix 1: Soil dataset 

 

pedon 

id

horizon suffix top 

(cm)

bottom 

(cm)

fragvol (% 

volume)

clay (% 

weight)

sand (% 

weight)

pH bulk 

density 

(g/cm
3
)

C 

(kg/ha)

P 

(kg/ha)

Al  

(kg/ha)

Ca 

(kg/ha)

Mg 

(kg/ha)

3 A NA 0 15 45 7 72 3.19 1.121 3.68 5.55 548.84 35.64 9.86

3 Bw NA 15 31 40 13 62 4.03 1.4 2.39 105.37 2040.88 42.82 6.94

3 C NA 31 48 45 17 64 4.04 1.589 1.25 6.45 1388.42 46.71 6.48

8 A NA 0 20 25 22 46 3.86 1.056 7.28 8.79 181.41 98.31 20.03

8 Bw 1 20 44 10 4 60 4.19 1.488 3.22 27.07 4442.37 98.73 13.07

8 Bw 2 44 65 8 5 69 4.17 1.682 1.82 41.31 3949.01 115.34 14.15

8 C NA 65 92 45 1 66 4.26 1.868 0.99 19.57 2211.84 87.79 9.9

10 A NA 0 11 16 28 45 4.03 1.093 3.92 1.46 1259.15 26.28 7.48

10 AB NA 11 29 4 26 42 4.18 1.36 4.11 0.12 3310.19 83.28 12.49

10 Bt 1 29 44 7 23 50 3.98 1.554 1.63 -0.52 1558.32 22.89 4.88

10 Bt 2 44 71 8 8 67 3.99 1.719 2.29 2.8 2295.05 40.35 7.05

10 Bt 3 71 99 35 16 53 4.14 1.914 1.86 1.29 1809.99 38.41 6.62

10 Bt 4 99 119 2 25 29 3.81 2.084 2.23 -2.43 2435.93 139.44 20.72

10 Bt 5 119 150 7 22 52 4.04 2.265 3.5 3.56 4483.31 106.91 15.38

11 A NA 0 14 25 24 91 3.02 1.255 2.28 4.85 31.53 105.15 14.53

11 C NA 14 30 20 4 92 3.12 1.455 0.95 1.61 31.45 70.14 8.19

12 A NA 0 17 5 16 48 2.84 0.798 9.11 1.84 939.74 73.23 19.68

12 BE NA 17 48 4 15 49 3.73 1.234 8.3 0.88 4105.17 125.39 25.74

12 Bt 1 48 74 30 16 52 4.01 1.401 2.84 4.53 4046.39 82.37 10.78

12 Bt 2 74 95 22 16 49 3.96 1.511 1.33 1.23 2699.46 85.02 11.91

12 Bt 3 95 109 5 37 33 3.92 1.549 1.4 0.63 1528.01 88.94 11.24

12 Btg NA 109 150 2 40 17 3.76 1.638 3.45 2.04 4867.29 223.82 32.05

13 A NA 0 7 5 28 35 3.09 1.072 2.34 1.14 485.25 40.22 9.21

13 Bt 1 7 39 5 29 33 3.9 1.225 7.44 3.61 2094.26 136.75 21.85

13 Bt 2 39 57 14 24 37 3.88 1.386 1.74 1.51 1191.48 77.55 12.09

13 Bt 3 57 150 52 15 55 3.91 1.54 5.67 3.16 6741.76 71.58 30.93

18 A NA 0 7 65 15 75 3.03 1.081 0.88 1.01 67.31 24.09 5.52

18 E NA 7 28 45 6 74 4.06 1.332 0.9 1 230.77 66.96 13.19

18 Bt 1 28 77 20 20 42 3.54 1.404 5.07 7.07 2503.73 297.7 115.86

18 Bt 2 77 101 40 9 56 3.7 1.529 1.35 0.67 1427.05 136.21 44.62

18 Bt 3 101 150 55 16 54 3.99 1.62 2.7 3.36 2352.47 172.3 54.61

21 A NA 0 12 11 34 24 3.95 1.075 4.2 0.76 1027.11 26.91 15.87

21 Bw 1 12 35 30 28 30 3.96 1.162 5.92 1.93 3195.63 24.32 9.58

21 Bw 2 35 44 7 22 23 4.45 1.364 1.27 0.33 1176.83 14.87 3.6

21 Bw 3 44 59 10 21 30 4.2 1.313 3.91 1.99 3467.5 29.43 4.7

21 BC NA 59 150 45 5 67 3.99 1.55 8.12 12.69 6937.47 96.57 17.65

24 Bt 1 0 30 44 16 35 3.72 1.314 1.59 0.85 1935.35 35.53 7.85

24 Bt 2 30 53 30 24 26 3.87 1.388 1.61 0.11 2188.44 45.04 7.98

24 Bt 3 53 67 5 17 47 3.91 1.383 2.7 1.72 2017.34 37.19 8.8

25 A NA 0 10 18 35 8 3.68 0.885 4.21 0.44 982.17 124.99 22.44

25 Bt NA 10 28 25 26 24 3.97 1.208 3.43 1.59 1923.98 146.72 25.56

25 BC NA 28 40 45 19 29 3.94 1.301 1.24 0.46 1063.45 70.41 10.14

25 C NA 40 58 10 26 32 3.87 1.295 4.33 0.05 2403.4 478.48 65.74

26 A NA 0 10 0 7 7 3.04 0.802 5.61 2.39 465.33 151.51 26.97

26 Bt 1 10 20 3 34 8 3.51 1.242 1.95 0.44 1273.89 60.8 11.99

26 Bt 2 20 33 5 36 9 3.74 1.288 2.3 0.95 1976.77 65.6 13.36

26 Bt 3 33 47 0 30 9 3.79 1.375 1.54 0.66 2262.43 77.85 15.11

26 Bt 4 47 64 8 28 8 3.78 1.437 1.26 0.34 2074.59 113.84 23.25

28 A NA 0 17 0 30 14 3.44 1.232 2.8 2.68 3454.28 80.97 21.12

28 Bt 1 17 31 10 28 18 3.82 1.308 1.5 1.36 1816.52 99.73 24.03

28 Bt 2 31 47 10 19 30 3.82 1.373 1.22 -1.04 2146.78 98.62 23.37

28 Bt 3 47 76 5 21 22 3.84 1.444 2.03 1.75 2523.69 503.35 78.67

28 Bt 4 76 102 0 24 11 3.97 1.522 1.96 2.27 2858.14 1612.63 572.02

28 Bt 5 102 150 4 29 3 3.92 1.63 3.26 8.41 4625.58 4929.69 2227.94

30 A NA 0 5 20 4 17 3.14 0.653 2.25 0.47 202.55 54.45 8.84

30 BA NA 5 21 0 44 11 3.72 0.944 7.88 2.13 2456.22 50.94 17.93

30 Bt 1 21 42 10 39 39 4.12 1.269 3.98 -0.7 5083.38 30.72 7.27

30 Bt 2 42 69 8 25 26 3.93 1.418 2.07 -1.13 3651.24 44.09 11.68

30 Bt 3 69 86 8 15 44 3.91 1.492 0.98 3.55 1624.52 36.7 9.23

31 A NA 0 16 8 42 27 3.56 0.895 7.66 0.85 1507.81 49.88 10.96

31 EB NA 16 38 10 24 33 4.17 1.251 4.64 1.59 4511.51 80.98 10.98

31 BE NA 38 53 7 24 28 4.18 1.286 3.75 1.45 3249.93 27.77 4.31

31 Bt NA 53 90 10 16 71 4.24 1.44 4.96 4.31 7639.19 153.81 20.09

31 BC NA 90 102 2 9 47 3.88 1.547 0.96 0.97 1182.68 30.13 6.42

32 A NA 0 12 20 12 53 3.16 0.969 4.52 0.87 990.52 20.39 7.21

32 Bw NA 12 39 40 11 54 3.94 1.3 2.64 0.71 2055.22 64.31 11.43

33 A NA 0 32 17 17 63 4.07 1.278 3.7 6.24 4789.95 70.48 11.91

33 Bw 1 32 63 10 15 62 4.16 1.351 4.83 6.77 4613.06 59.6 10.23
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33 Bw 2 63 107 40 16 68 4.28 1.511 2.23 6.72 4045.14 53.9 9.49

33 Bw 3 107 150 30 8 76 3.96 1.637 2.46 7.24 2653.55 175.82 22.91

34 A 1 0 17 30 21 56 3.73 1.087 4.22 3.16 1692.69 125.53 17.52

34 A 2 17 35 17 15 55 4.08 1.231 3.72 4.41 2643.01 77.6 10.08

34 BA NA 35 69 8 15 52 4.3 1.37 4.98 5.83 7091.34 73.91 7.48

34 Bt 1 69 100 8 16 46 3.99 1.513 2.08 3.9 2213.39 420.03 55.72

34 Bt 2 100 150 0 20 20 3.69 1.633 3.15 4.16 5381.69 566.34 146.34

40 A NA 0 9 2 4 20 3.08 0.819 4.75 0.78 409.35 41.76 10.33

40 BA NA 9 28 2 24 26 3.68 1.256 3.26 -0.57 1777.15 30.2 9.48

40 Bt NA 28 46 5 16 53 3.96 1.33 2.49 1.62 1709.49 31.38 6.8

43 A NA 0 8 0 39 14 3.48 0.921 3.85 0.9 619.79 36.9 13.67

43 BA NA 8 24 2 39 13 3.78 1.249 2.72 0.02 1559.35 34.22 9.44

43 Bt 1 24 55 6 32 18 4 1.324 4.89 -0.85 4381.4 126.16 21.01

43 Bt 2 55 91 8 24 30 4.07 1.451 4 -1.2 4801.28 193.2 26.91

43 Bt 3 91 150 5 32 22 4.02 1.586 7.17 0.18 10935.9 272.93 45.1

44 A NA 0 10 0 19 44 3.62 1.152 2.72 0.62 1060.75 44.92 11.37

44 Bt NA 10 25 20 20 50 3.69 1.25 2.3 0.29 1182.38 17.02 5.95

44 BC NA 25 50 12 15 50 3.71 1.285 5.11 0.99 2485.64 34.53 9.74

46 A NA 0 8 2 8 17 3.22 1.017 3.23 0.8 436.88 64.77 11.21

46 Bt 1 8 27 2 29 16 3.71 1.211 4.55 -0.99 2102.03 97.99 22.08

46 Bt 2 27 49 5 31 17 3.92 1.328 3.44 0.61 2377.74 56.32 10.74

46 Bt 3 49 89 20 21 40 4.12 1.419 5.36 2.61 5570.51 102.08 17

46 Bt 4 89 135 75 28 37 3.98 1.533 2.21 -0.75 1547.3 78.05 13.43

48 A NA 0 10 0 31 6 3.43 1.067 3.7 1.18 985.48 29.13 11.99

48 BA NA 10 38 0 38 14 3.44 1.26 5.82 -1.94 3648.96 138.5 35.4

48 Btg 1 38 58 3 25 22 3.7 1.372 2.83 -1.24 2262.36 92.73 19.9

48 Btg 2 58 74 10 16 36 3.87 1.437 1.8 0.65 1618.35 28.03 7.96

48 Btg 3 74 95 10 21 31 3.76 1.494 2.25 0.4 2013.5 100.27 18.19

50 C NA 0 8 85 4 77 3.12 1.297 0.14 1.53 31.04 2.58 0.49

52 A NA 0 7 0 17 17 2.9 0.918 3.4 0.74 242.15 30.21 8.71

52 BA NA 7 19 0 40 13 3.32 1.213 2.6 -0.25 1169.06 60.13 13.77

52 Bt NA 19 34 30 33 45 3.57 1.286 1.8 -0.64 904.5 47.97 10.06

52 BC NA 34 56 17 21 37 3.83 1.353 2.79 2.11 1679.76 62.72 9.09

54 Oa 1 0 61 90 NA NA NA NA NA NA NA NA NA

54 Oa 2 61 150 90 NA NA NA NA NA NA NA NA NA

59 AE NA 0 8 3 9 69 3.11 1.141 2.31 1.67 435.15 18.81 6.62

59 BE NA 8 18 5 11 60 3.07 1.273 1.48 -0.07 554.75 41.47 6.39

59 Bss NA 18 40 7 14 68 4.03 1.361 1.83 21.21 2931.03 96.13 13.31

60 A 1 0 14 10 35 34 3.81 1.143 3.78 2.16 939.9 441.72 55.04

60 A 2 14 35 10 33 33 3.86 1.238 4.74 4.69 2075.53 394.28 52.88

60 BA NA 35 46 4 23 33 3.84 1.324 2.08 -0.81 1164.35 207.22 44.94

60 Bt 1 46 59 8 26 35 4.01 1.404 1.48 2.38 1089.89 278.02 41.87

60 Bt 2 59 81 8 22 39 3.82 1.464 2.17 1.35 1634.59 437.92 69.67

60 Bt 3 81 150 30 23 42 3.82 1.607 4.11 1.71 4191.09 1351.24 268.81

61 A NA 0 25 50 28 27 3.73 0.991 5.82 4.11 1329.46 209.21 55.85

63 C 2 0 55 90 7 75 2.86 1.332 1.01 3.96 151.93 25.54 3.67

63 C 3 55 99 85 12 67 2.91 1.492 1.08 8.87 359.36 18.65 2.83

68 A NA 0 10 3 32 15 3.1 0.78 5.37 1.12 795.79 39.22 17.06

68 Bt 1 10 32 3 28 20 3.71 1.179 6.26 0.03 3385.83 34.2 16.02

68 Bt 2 32 54 3 22 39 4.03 1.375 2.16 1.22 3707.83 92.93 20.39

68 Bt 3 54 108 50 14 39 3.85 1.502 1.89 44.8 3135.83 129.95 29.68

68 Bt 4 108 150 65 22 39 3.74 1.642 0.91 21.97 1962.66 111.7 25.54

69 A NA 0 12 5 13 38 3.22 0.859 5.98 0.86 853.83 108.31 18.95

69 BA NA 12 37 8 26 37 4.08 1.18 7.04 3.14 4831.95 55.87 9.58

69 Bw NA 37 57 17 21 43 4.3 1.345 2.84 2.78 2948.77 28.32 6.29

69 Bt 1 57 87 25 24 40 3.91 1.476 1.55 1.28 2007.89 40.17 10.53

69 Bt 2 87 150 20 30 34 3.89 1.612 3.15 3.25 6614.2 197.33 45.91

72 A NA 0 21 5 27 31 4.14 1.17 5.1 3.55 3085.26 40.93 11.18

72 BA NA 21 42 5 27 33 4.04 1.343 1.84 0.8 2587.75 34.48 7.42

72 Bt 1 42 61 5 22 71 3.88 1.416 1.2 -1.05 1584.65 28.14 7.23

72 Bt 2 61 95 13 24 35 3.83 1.491 1.99 2.29 3121.19 60.33 22.79

72 Bt 3 95 150 30 30 31 3.85 1.618 2.63 0.5 3927.49 249.42 119.1

74 A NA 0 21 25 23 31 3.75 0.925 7.94 -0.04 1599.77 102.23 26.32

74 Bt 1 21 57 12 30 37 4.04 1.352 3.93 1.8 5970.18 182.94 30.14

74 Bt 2 57 74 5 22 40 3.96 1.443 1.63 0.85 2050.82 95.74 19.3

74 Bt 3 74 92 9 13 56 4.04 1.507 1.24 3.07 1635.52 88.48 12.27

74 Btx NA 92 150 12 15 53 4.01 1.61 4.49 9.82 6618.43 335.59 50.61

79 A NA 0 23 5 28 25 3.57 1.113 7.02 1.52 2155.25 118.36 29.14
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79 BA NA 23 52 7 18 34 3.96 1.336 3.33 -0.99 2571.73 114.82 19.28

79 Bt 1 52 84 18 13 48 3.9 1.444 2.4 -1.04 2703.54 120.7 20.27

79 Bt 2 84 125 40 22 47 3.83 1.551 2.18 -0.8 2231.66 112.19 19.26

79 Bt 3 125 150 12 16 60 3.93 1.659 1.29 -0.55 1399.37 114.34 17.16

80 A NA 0 16 45 24 40 3.34 1.19 2.03 0.82 583.19 55.49 9.59

80 BA NA 16 28 23 31 32 3.57 1.267 1.69 0.46 977.18 47.38 8.94

80 Bt NA 28 56 40 29 32 3.91 1.319 3.33 -0.14 2310.51 87.36 13.66

80 Btx NA 56 101 55 14 48 3.91 1.488 1.86 0.92 1882.3 112.65 16.05

81 A NA 0 31 17 30 26 4.13 1.249 4.42 7.39 3559.8 124.53 16.11

81 Bw NA 31 85 17 22 23 3.94 1.415 4.77 4.88 6708.38 496.71 67.34

81 Bt NA 85 150 75 19 46 4 1.581 1.94 1.19 2352.55 211.61 30.82

84 A NA 0 13 6 42 13 3.69 1.194 2.83 2.03 1409.81 89.03 20.21

84 Bt 1 13 34 10 28 29 3.69 1.329 2 0.95 1915.95 239.09 34.03

84 Bt 2 34 49 30 18 42 3.89 1.39 0.96 0.64 1010.14 190.06 21.69

85 A NA 0 18 20 23 35 4.16 1.172 4.17 5.09 1409.49 826.8 61.22

85 Bt 1 18 41 30 20 35 3.94 1.361 1.63 1.45 1169.36 292.72 34.54

85 Bt 2 41 54 12 26 32 3.84 1.423 0.97 0.64 788.39 227.58 26.92

85 Bt 3 54 76 27 19 41 3.98 1.477 1.26 0.88 1168.76 455.53 82.58

85 Bt 4 76 107 40 15 45 3.96 1.549 1.61 1.48 1213.02 456.63 103.7

86 A NA 0 15 25 40 37 3.57 1.078 4.01 3.48 798.55 202.4 23.08

86 Bt 1 15 40 25 19 37 3.94 1.293 2.98 3.65 1855.34 146.97 16.48

86 Bt 2 40 71 40 23 47 3.94 1.392 2.48 8 1579.86 203.7 22.09

86 C 1 71 114 55 19 52 3.99 1.501 2.57 2.51 2096.18 296.34 38.15

86 C 2 114 150 20 24 32 3.79 1.608 4.33 10.03 2542.39 326.25 39.46

87 A NA 0 10 60 15 50 3.22 1.087 1.38 0.78 242.35 26.37 9.07

87 Bt 1 10 28 35 17 32 4.2 1.25 2.28 3.96 1629.2 21.37 7.17

87 Bt 2 28 46 25 17 37 4.08 1.364 1.33 1.67 1223.1 74.05 17.51

87 Bt 3 46 66 20 21 13 3.91 1.431 1.24 -1 1096.12 37.4 47.5

89 A NA 0 15 45 6 66 3.33 0.803 4.61 1.67 430.47 61.33 10.94

89 BA NA 15 28 20 9 62 4.21 1.215 2.66 2.24 1842.3 46.35 6.9

89 Bt 1 28 64 30 15 57 4.14 1.37 3.36 2.37 2125.43 125.63 17.9

89 Bt 2 64 94 40 16 50 3.84 1.503 1.2 -1.52 1647.87 96.07 16.03

89 Bt 3 94 150 80 18 54 4.02 1.615 1.01 0.57 1237.8 70.14 11.3

90 C NA 0 8 22 19 40 3.68 1.267 0.77 -0.01 416.17 9.66 3.19

90 Bt 1 8 38 30 18 37 3.97 1.349 1.68 -1.22 1352.8 94.56 22.06

90 Bt 2 38 71 25 25 33 3.91 1.429 2.49 1.7 2335.61 51.87 13.45

90 Bt 3 71 150 40 15 37 3.68 1.564 7.26 6.45 5660.19 116.98 28.43

92 A NA 0 14 30 31 29 3.35 1.01 4.21 0.61 830.1 54.07 16.98

92 BA NA 14 30 17 37 19 3.86 1.222 3.31 1.36 1771.41 59.27 14.73

92 Bw 1 30 49 30 16 39 3.83 1.355 1.69 0.69 1264.36 23.43 10.61

92 Bw 2 49 62 8 24 24 3.84 1.403 1.49 0.86 1010.36 110.44 59.71

92 Bw 3 62 83 5 19 27 3.79 1.467 1.98 1.1 1205.09 224.22 194.65

92 Bg NA 83 110 5 23 15 3.82 1.539 2.44 2.03 1337.02 344.96 321.67

92 BC NA 110 150 25 20 23 3.87 1.627 3.34 2.37 1545.01 308.03 416.4

93 A NA 0 20 30 20 39 3.24 1.13 4.6 3.29 714.67 98.75 23.72

93 Bt 1 20 46 60 19 36 3.94 1.236 3.03 3.62 1381.39 90.89 13.05

93 Bt 2 46 62 62 23 38 4.14 1.334 1.5 1.74 1065.02 34.53 5.72

93 Bt 3 62 137 40 15 44 3.7 1.547 5.1 -3.1 3514.65 366.43 149.6

94 A NA 0 16 42 25 37 3.51 0.812 5.23 1.06 965.1 25.66 8.68

94 BA NA 16 29 11 17 37 4.14 1.059 5.21 3.29 3058.59 21.28 5.15

94 Bw 1 29 50 16 15 51 4.22 1.232 5.67 7.71 5381.25 50.44 7.27

94 Bw 2 50 73 18 14 58 4.18 1.399 3.25 8.31 4421.79 40.6 6.12

94 Bw 3 73 93 25 16 63 4.17 1.497 1.67 4.5 2594.53 24.54 3.91

94 BC NA 93 150 70 10 58 4.11 1.578 2.93 3.32 1968.65 59.99 8.37

96 A NA 0 12 5 42 12 3.51 0.899 5.68 0.94 1075.01 56.9 20

96 E NA 12 34 20 23 18 3.81 1.169 5.46 1.66 1969.53 104.8 21.98

96 Bt 1 34 77 40 24 27 3.94 1.265 8.44 -0.96 3290.63 45.16 16.12

96 Bt 2 77 103 40 20 37 3.93 1.436 3.62 1.21 1908.15 91.84 15.51

96 Bt 3 103 150 40 14 47 3.84 1.555 6.11 3.44 2849.6 185.49 32.88

97 A NA 0 12 40 26 27 4.27 1.088 2.45 2.26 535.42 621.98 45.47

97 Bt NA 12 40 60 22 29 4.16 1.316 1.3 1.44 1087.89 472.31 52.27

101 A NA 0 15 17 32 15 3.73 1.157 3.28 1.55 1391.35 379.36 58.68

101 Bt 1 15 38 33 22 31 3.82 1.335 1.35 1.76 1179.61 913.45 422.27

101 Bt 2 38 59 13 34 13 3.97 1.398 1.63 1.21 1966.17 681.39 116.53

101 Bt 3 59 108 23 20 44 3.94 1.499 3.33 3.82 4165.53 1008.72 170.58

101 Btg NA 108 150 37 20 30 3.94 1.626 2.55 3.94 1726.84 3820.22 1031.2

103 A NA 0 11 55 9 76 4.07 1.3 0.92 2.45 247.11 160.69 27.76

103 Bx 1 11 70 50 7 65 4.51 1.465 2.44 10.05 440.47 1750.44 483.46
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103 Bx 2 70 150 50 7 66 4.61 1.668 2.99 8.71 375.22 2958.08 840.5

104 A NA 0 11 0 15 48 3.31 1.059 4.31 2.23 825.68 48.8 14.38

104 E NA 11 29 7 21 46 3.52 1.27 3.14 -0.62 2080.57 25.61 15.19

104 Bt 1 29 57 5 26 43 3.86 1.351 4.55 0.57 2653.36 125.37 19.69

104 Bt 2 57 93 50 20 47 3.88 1.476 2.14 0.78 1747.61 108.42 18.49

105 A NA 0 23 10 29 26 3.71 1.036 8.58 4.54 1433.67 774.31 100.1

105 Bt 1 23 60 12 18 34 3.74 1.276 8.17 5.82 3656.18 536.79 71.5

105 Bt 2 60 94 12 16 38 3.89 1.424 5.67 4.13 2786.42 396.66 67.79

107 A NA 0 24 0 8 69 3.4 1.288 4.53 5.1 1348.4 113.91 20.48

107 Bg 1 24 65 0 28 22 3.74 1.383 7.99 31.98 3966.45 102.61 24.81

107 Bg 2 65 132 0 13 57 3.64 1.571 9.68 42.06 3323.8 436.51 258.21

110 A NA 0 18 5 33 27 3.87 1.109 5.74 4.77 934.22 416.65 100.06

110 Bt 1 18 48 10 24 19 3.88 1.346 2.96 -0.78 1713.29 511.11 246.65

110 Bt 2 48 76 20 22 31 3.96 1.429 2.53 2.08 1146.13 545.53 288.77

110 C NA 76 97 40 17 31 3.92 1.5 1.44 0.96 555.13 377.9 222.39

111 A NA 0 10 22 33 24 4.63 1.196 1.74 3.58 795.38 44.07 7.49

111 Bw NA 10 17 14 10 59 4.21 1.238 1.21 1.67 596.19 30.83 4.65

111 C NA 17 40 65 10 61 3.96 1.356 0.69 0.22 393.24 37.94 5.67

113 A NA 0 10 25 10 53 3.07 0.869 4.04 1.19 502.44 31.14 13.63

113 Bw 1 10 23 20 15 47 4.01 1.282 1.65 3.3 1093.08 47.58 10.04

113 Bw 2 23 56 75 17 48 3.97 1.388 0.79 0.61 660.66 36.49 6.83

114 A NA 0 18 20 7 70 3.28 0.984 6.61 2.87 924.89 121.03 18.81

114 Bw 1 18 33 20 8 66 4.24 1.303 1.73 2.13 1234.16 54.8 7.2

114 Bw 2 33 76 40 11 68 4.03 1.422 2.24 2.27 1924.34 114.71 16.71

121 A NA 0 19 10 23 29 3.78 1.019 7.41 5.99 848.48 624.14 69.91

121 BA NA 19 49 30 25 37 3.86 1.283 4.61 3.25 1533.28 428.19 58.68

121 Bt 1 49 84 18 25 32 4.04 1.433 3.89 2.45 1714.07 1274.97 214.82

121 Bt 2 84 107 25 17 40 4.18 1.524 2.13 0.11 1226.93 638.05 151.56

121 Bt 3 107 150 65 11 47 4.23 1.62 1.87 0.49 1078.9 774.71 171.59

123 E NA 0 10 35 10 61 3.51 1.324 0.64 -0.07 254.96 108.87 9.2

123 Bt 1 10 22 15 18 41 3.96 1.322 1.57 1 1243.88 185.74 16.47

123 Bt 2 22 40 30 13 49 4.04 1.389 1.46 0 1314.75 187.5 17.94

123 Bt 3 40 59 14 15 50 4.08 1.463 1.32 -0.67 1247.64 294.58 31.45

123 Bt 4 59 89 7 21 46 3.93 1.534 2.19 0.6 2455.06 813.14 92.29

123 Bt 5 89 110 5 41 23 3.83 1.606 1.62 0.32 1946.51 1025.8 146.97

123 Bt 6 110 150 7 43 7 3.86 1.704 2.12 -3.42 3448.96 2693.55 516.39

126 A NA 0 16 35 30 29 3.85 0.972 4.76 2.62 732.14 441.1 45.66

126 BA NA 16 32 13 26 24 4.36 1.312 1.57 2.04 1106.98 619.98 93.89

126 Bt 1 32 54 35 19 37 4.03 1.376 1.42 0.4 868.67 641.37 100.81

126 Bt 2 54 100 45 17 43 4.09 1.484 2.07 2.61 1676.26 1518.6 263.7

126 C NA 100 167 0 20 47 4.5 1.635 6.94 48.04 4682.08 9553.71 1525.63

127 A NA 0 11 0 45 12 3.48 0.932 5.27 1.67 1421.96 45.68 16.04

127 Bt 1 11 25 0 39 13 3.68 1.245 2.65 -0.85 1930.08 97.33 19.75

127 Bt 2 25 36 0 36 26 3.73 1.336 1.16 0.1 1603.14 36 8.35

127 Bt 3 36 89 0 19 43 3.86 1.443 4.27 3.52 7126.78 198.32 39.65

128 A NA 0 9 3 36 34 3.65 1.129 2.53 1.2 775.04 72.87 12.5

128 BA NA 9 24 5 33 27 3.74 1.214 3.29 0.5 1574.8 108.27 17.74

128 Bt 1 24 45 3 25 38 4.04 1.317 3.25 2.71 3595.25 68.55 10.56

128 Bt 2 45 74 11 18 35 3.91 1.423 2.73 3.36 3259.73 267.94 36.45

130 A NA 0 10 0 27 23 3.05 1.115 3.41 -0.1 1032.72 81.19 11.16

130 Bt 1 10 28 0 25 27 3.83 1.258 3.87 0.05 3055.11 42.79 7.39

130 Bt 2 28 38 0 21 33 4.18 1.367 1.09 1.22 2058.53 46.42 5.42

130 BC NA 38 51 0 17 35 3.96 1.414 1.11 1.06 1863.32 30.25 5.15

130 C 1 51 87 0 19 42 3.68 1.493 2.5 11.48 3467.27 244.13 67.63

130 C 2 87 150 25 24 33 3.81 1.631 3.64 21.5 4373.14 530.56 152.5

136 A NA 0 18 6 28 34 3.31 0.854 9.28 1.68 2066.72 52.61 18.41

136 C NA 18 47 77 21 37 3.87 1.03 3.43 1.05 1289.95 35.65 6.81

137 AB NA 0 29 10 13 58 2.91 1.315 4.39 1.6 1938.68 53.24 8.99

137 Bss NA 29 52 7 11 41 3.73 1.299 6.75 0.03 3666.79 35.64 9.81

137 Bw NA 52 74 50 15 49 4.28 1.481 1.44 1.56 3817.7 17.63 1.8

137 BC NA 74 123 75 9 36 4.05 1.606 1.07 7.56 1851.26 62.56 7.08

138 A NA 0 16 0 38 25 4.23 0.988 7.17 3.51 659.4 2667.32 251.4

138 Bt 1 16 38 16 24 31 4.06 1.321 2.17 1.72 1228 2065.39 333.49

138 Bt 2 38 57 19 34 33 4.16 1.395 1.43 1.56 1159.62 1346.44 271.11

138 Bt 3 57 96 20 27 33 4.18 1.481 2.82 0.05 2210.12 3365.53 751.87

138 Bt 4 96 150 50 28 42 4.16 1.612 2.57 4.66 1688.06 2535.24 578.21

140 Bt 1 0 23 0 31 24 3.59 1.263 3.56 1.45 3147.54 217 40.5

140 Bt 2 23 47 16 24 26 3.73 1.311 3.84 -0.53 2913.04 71.39 20.33
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140 Bt 3 47 73 19 16 49 3.83 1.469 0.95 9.85 2080.53 152.71 38.84

140 Bt 4 73 104 20 21 25 3.81 1.532 1.98 4.05 2525.11 213.37 38.08

140 C NA 104 150 50 17 44 3.78 1.656 1.19 82.2 2498.26 1161.16 356.84

142 A NA 0 11 8 16 56 3.35 1.03 4.17 1.73 888.3 40.25 15.28

142 AB NA 11 39 10 22 49 4.01 1.211 7.19 7.17 6128.74 114.85 23.38

142 C NA 39 60 80 17 44 4.2 1.37 0.68 2.05 1073.36 19.67 3.09

143 A NA 0 22 4 37 25 4.56 1.028 8.79 8.55 761.33 3788.71 292.43

143 BA NA 22 40 6 33 29 4.04 1.232 4.42 0.23 1327.8 327.68 45.53

143 Bt 1 40 69 12 27 33 3.75 1.402 2.72 4.56 2225.47 864.97 126.53

143 Bt 2 69 150 20 25 40 3.99 1.558 7.35 13.53 6643.73 6017.73 686.08

144 A NA 0 15 40 11 62 3.22 1.159 2.69 0.27 403.96 197.99 16.21

144 BA NA 15 36 10 13 54 4.11 1.227 5.45 3.87 4613.11 96.32 10.75

144 Bt 1 36 63 33 8 61 4.22 1.408 2.19 5.13 3722.32 93.26 11.66

144 Bt 2 63 83 20 12 31 3.99 1.5 1.25 1.43 1736.56 152.65 17.16

146 A NA 0 21 2 28 34 3.45 0.853 11.21 5.7 2192.89 208.5 34.42

146 BA NA 21 44 2 26 27 4.06 1.286 4.49 7.24 3753.96 117.88 17.44

146 Bt 1 44 65 2 6 38 4.01 1.416 1.91 4.59 2631.03 115.75 18.22

146 Bt 2 65 80 2 19 34 3.89 1.491 0.71 3.99 1759.44 93.1 15.45

146 Bt 3 80 102 3 15 35 3.82 1.532 1.52 11.35 2310.35 154.4 32.34

146 BC NA 102 150 2 21 37 3.79 1.642 2.4 32.44 5808.04 511.29 169.84

147 A NA 0 15 40 26 35 3.87 1.223 2.2 4.23 975.81 165.72 22.64

147 Bt 1 15 35 40 21 34 4.11 1.257 3.31 5.17 2485.81 155.89 18.77

147 Bt 2 35 61 40 28 31 3.98 1.417 2.11 2.67 1703.83 326.18 62.56

147 Bw 1 61 77 50 10 58 3.95 1.522 0.42 6.14 453.02 316.79 78.34

147 Bw 2 77 105 27 9 63 3.91 1.574 1.49 22.78 1232.25 803.64 201.59

150 Bt 1 0 16 5 19 42 3.55 1.143 4.37 1.5 1515.17 115.03 19.89

150 Bt 2 16 41 9 20 41 3.42 1.266 4.79 1.38 2132.13 141.76 23.74

150 Bt 3 41 64 18 13 46 3.38 1.305 4.99 1.39 1685.53 103.49 20.34

150 Bt 4 64 79 14 18 40 3.52 1.437 1.85 0.55 1270.79 64.45 10.57

150 Bt 5 79 150 33 19 36 3.91 1.503 12.17 3.07 7553.54 229.89 36.68

151 A NA 0 18 15 40 10 3.76 1.236 2.61 2.43 1968.11 155.41 31.48

151 Bt 1 18 49 11 14 42 3.81 1.331 3.8 3.52 3712.09 230.03 44.72

151 Bt 2 49 76 5 31 14 3.81 1.437 2.6 -1.25 3278.82 207.9 41.27

151 Bt 3 76 100 7 23 20 3.79 1.519 1.93 -0.92 2672.96 215.6 46.7

153 Oa NA 0 1 90 NA NA NA NA NA NA NA NA NA

155 A NA 0 35 50 40 32 4 0.925 10.17 6.56 1747.84 231.1 39.16

155 Bw 1 35 75 53 6 51 4.37 1.33 5.92 7.3 2671.08 213.59 27.62

155 Bw 2 75 150 65 21 37 4.22 1.55 6.52 5.9 3844.05 313.63 47

158 A NA 0 21 9 17 47 3.99 1.337 0.4 8.44 1285.01 500.21 87.28

158 Bt 1 21 42 6 12 51 3.99 1.362 1.6 2.12 1755.37 325.94 48.29

158 Bt 2 42 54 12 11 45 3.91 1.406 0.91 0.84 931.89 140.04 22.22

158 Bt 3 54 66 8 20 27 3.94 1.382 2.09 1.72 1302.8 158.65 20.61

159 A 1 0 13 5 17 41 3.77 1.223 2.26 2.35 1303.42 119.24 29.09

159 A 2 13 29 17 12 48 3.79 1.346 0.74 1.76 1142.48 188.27 51.08

159 Bw NA 29 74 18 8 55 4.31 1.432 2.18 23.77 1056.2 4888.77 1095.81

159 C NA 74 108 7 18 36 4.78 1.552 1.39 26.15 743.89 7561.61 1465.46

161 A NA 0 18 10 30 20 4.57 0.903 8.2 4.01 586.74 3232.39 232.58

161 BA NA 18 35 6 30 20 4.26 1.313 1.9 1.95 985.45 1288.2 159.87

161 Bt 1 35 71 6 5 32 4.21 1.412 2.78 4.82 1413.17 2951.97 377.83

161 Bt 2 71 102 20 12 39 4.04 1.516 1.65 26.32 1125.43 2188.44 333.91

161 Bt 3 102 150 50 13 35 4.15 1.626 1.73 28.53 739.33 3088.83 428.89

164 Cg 1 0 14 40 10 50 4.51 1.224 1.5 1.27 391.58 298.01 39.89

164 Cg 2 14 52 37 9 57 4.53 1.268 5.58 4.9 1146.78 1112.33 141.7

164 Cg 3 52 83 30 19 49 4.57 1.332 6.51 8.66 539.22 1925.58 282.19

164 Cg 4 83 108 18 10 57 4.51 1.281 10.34 5.78 359.28 2022.29 280.36

164 Cg 5 108 150 25 11 51 4.55 1.598 5.17 2.82 1459.38 1292.5 207.76

166 A NA 0 9 80 16 65 3.79 1.125 0.53 1.05 167.63 9.67 2.43

166 E NA 9 80 88 9 75 4.04 1.326 1.65 3.23 732.16 53.54 9.95

166 Bw NA 80 150 95 9 72 3.96 1.528 0.75 2.18 367.88 20.96 3.75

168 A NA 0 13 17 24 33 3.52 1.035 4.72 1.61 1067.89 44.44 12.37

168 Bt NA 13 36 23 20 48 3.78 1.305 3.18 1.66 1911.94 89.86 15.33

169 A NA 0 12 8 21 38 3.33 1.199 2.31 1.26 664.03 64.83 11.18

169 Bt 1 12 47 5 17 47 3.47 1.305 5.29 1.61 4142.94 176.11 24.68

169 Bt 2 47 112 25 18 50 3.97 1.459 7.4 0.36 4476.7 337.73 52.2

169 Bt 3 112 150 16 16 61 3.97 1.6 5.51 4.01 3288.44 234.05 44.63

172 A NA 0 26 5 29 28 3.77 1.246 4.08 2.83 2772.06 198.29 35.81

172 Bt 1 26 49 8 25 33 3.96 1.35 2.46 1.53 2804.42 127.91 23.5

172 Bt 2 49 93 12 27 34 3.89 1.442 4.9 2.15 4600.51 256.71 51.56
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172 Bt 3 93 150 45 25 32 3.93 1.608 2.76 2.37 3832.12 945.42 156.99

173 A NA 0 17 14 26 47 4.62 1.191 3.27 2.18 434.2 1939.46 285.7

173 BA NA 17 55 35 25 51 4.53 1.314 4.12 1.64 878.58 2648.89 466.48

173 Bt 1 55 80 50 13 64 4.23 1.444 1.3 1.62 343.97 1062.34 210.93

173 Bt 2 80 110 50 17 39 4.26 1.534 1.28 2.01 442.35 1709.12 368.74

173 C NA 110 150 45 16 51 4.55 1.643 1.46 7.45 469.02 3795.52 778.08

174 A NA 0 22 7 20 41 3.42 1.083 7.63 3.86 1667.27 482.24 55.65

174 Bt 1 22 38 13 19 42 3.98 1.292 2.54 3.45 2596.84 140.9 16.81

174 Bt 2 38 70 5 16 37 4.04 1.34 6.78 8.21 6776.69 173.75 21.54

174 Bt 3 70 109 50 12 57 4.08 1.526 1.57 4.26 2720.06 218.59 31.34

174 Bt 4 109 150 45 17 50 4.01 1.637 1.97 5.67 2344.44 355.91 48.46

175 A NA 0 16 2 37 13 3.33 0.805 8.64 2.03 1207.92 62.28 19.43

175 BA NA 16 42 2 32 19 3.92 1.189 7.89 4.55 4827.45 103.99 19.97

175 Bt 1 42 64 2 20 27 3.97 1.353 3.92 2.32 3885.93 100.01 16.66

175 Bt 2 64 90 2 23 28 3.84 1.455 3.3 2.13 4404.21 126.55 25.23

181 A NA 0 8 0 32 14 4.24 1.172 2.01 1.72 247.62 914.77 103.05

181 Bt 1 8 58 0 27 15 3.87 1.362 4.87 4.39 716.22 5561.49 711.45

181 Bt 2 58 92 0 18 23 4.51 1.483 3.4 -0.53 2664.25 2195.68 316.58

181 Bt 3 92 116 37 21 21 4.64 1.546 2.13 8.8 279.5 2300.76 280.91

181 Bt 4 116 150 0 8 33 4.51 1.675 1.6 18.91 257.03 6176 1019.65

199 A NA 0 25 5 41 24 3.78 1.09 9.11 5.09 2015.09 1090.51 143.14

199 BA NA 25 40 2 34 24 4.24 1.262 3.72 2.37 1251.01 1171.26 192.98

199 Bt 1 40 56 10 25 28 4 1.343 2.92 0.09 1290.26 552.57 111.13

199 Bt 2 56 76 15 21 41 4.03 1.436 2.34 1.94 1293.6 477.17 103.48

400 A NA 0 7 7 19 42 3.78 0.909 3.22 4.43 613.64 77.78 10.18

400 BA NA 7 39 5 18 41 4.03 1.305 3.93 9.14 2919.53 207.86 30.23

400 Bt NA 39 55 5 26 32 3.81 1.408 1.1 0.62 1514.54 63.38 14.76

400 C NA 55 104 85 31 26 3.74 1.503 0.52 -0.55 832.29 82.46 12.67

401 A NA 0 12 18 20 41 3.89 1.092 3.33 3.42 813.77 203.17 23.32

401 BA NA 12 30 12 18 41 3.99 1.322 1.38 1.66 867.08 149.49 24.25

401 Bw NA 30 46 8 14 36 3.91 1.375 1.2 -0.76 714.16 168.85 31.68

401 Bt 1 46 78 17 22 15 3.84 1.453 1.72 1.31 1545.73 483.47 112.73

401 Bt 2 78 109 40 12 34 3.89 1.532 1.59 1.35 1129.89 358.49 84.58

420 A NA 0 14 8 32 10 4.53 1.074 4.77 0.33 674.5 2114.57 204.95

420 Bt 1 14 36 7 27 24 4.67 1.32 2.44 1.53 821.14 2555.76 307.28

420 Bt 2 36 61 21 20 42 4.46 1.399 2 -1.08 940.7 2003.55 264.47

431 A NA 0 16 0 21 45 3.2 1.052 6.36 2.1 778.72 144.97 26.74

431 Bw 1 16 49 11 27 39 3.62 1.332 3.99 3.25 2296.29 53.03 10.11

431 Bw 2 49 90 12 20 45 3.89 1.464 3.38 -1.93 2108.36 237.33 39.31

431 Bt NA 90 113 17 17 17 3.87 1.541 2.37 0.75 1315.04 68.69 22.98

431 BC NA 113 150 24 16 40 3.76 1.63 3.37 -0.21 1995.77 172.21 84.05

432 A NA 0 12 5 47 7 3.52 0.976 5.1 0.77 1462.11 31.12 17.68

432 Bt 1 12 33 5 30 10 3.61 1.267 3.51 0.82 3096.05 87.7 24.88

432 Bt 2 33 65 2 30 27 3.78 1.381 3.76 1.3 4600.14 214.65 85.01

432 Bt 3 65 91 0 38 6 3.71 1.475 2.7 0.48 4714.42 243.49 122.85

432 Bt 4 91 143 10 36 9 3.82 1.584 5.2 0.85 7672.42 444.04 191.91

434 A NA 0 19 2 17 53 3.94 1.181 4.48 5.43 1749.73 71.72 15.7

434 Bw 1 19 40 7 21 50 3.89 1.339 1.87 1.57 1263.06 82.9 14.09

434 Bw 2 40 68 7 16 50 3.86 1.424 1.81 -1.85 1873.13 126.04 21.49

434 Bw 3 68 102 25 16 43 3.89 1.496 2.59 0.76 2362.02 156.41 55.01

434 Bw 4 102 129 30 17 31 3.87 1.556 2.98 1.04 2749.55 117.57 50.45

435 A NA 0 28 18 23 33 3.84 1.034 10.55 12.7 2923.26 130.49 20.04

435 BA NA 28 55 11 20 37 3.86 1.357 4.05 4.21 2281.96 141.24 25

435 Bt NA 55 83 12 21 65 3.79 1.473 2.66 -0.4 2494.68 143.66 27.72

435 BC NA 83 150 45 14 46 3.82 1.623 2.99 6.07 2945.8 243.26 47.25

436 A NA 0 9 45 24 27 3.67 1.01 2.03 1.29 448.28 28.51 7.69

436 Bw 1 9 35 20 14 31 4.04 1.278 3.18 0.05 2867.64 20.64 9.54

436 Bw 2 35 70 17 12 44 4.04 1.39 3.43 1.98 2920.75 146.7 25.82

436 Bw 3 70 96 20 15 47 4.03 1.478 2.48 1.55 2187.64 113.26 16.42

436 Bw 4 96 117 50 11 57 3.99 1.553 1.11 0.83 854.64 51.5 9.44

436 BC NA 117 140 85 5 57 4.03 1.617 0.37 0.38 279.42 17.87 3.04

437 A 1 0 30 55 8 76 4.2 1.151 3.91 11.06 1283.05 85.25 14.96

437 A 2 30 77 70 6 75 4.26 1.315 3.3 12.15 1466.2 93.2 17.01

437 BA NA 77 112 70 3 76 3.99 1.411 3 13.22 1249.63 82.37 16.01

437 Btg NA 112 150 45 19 32 4.26 1.625 1.95 4.33 1627.19 760.2 270.09
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