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ABSTRACT

AFIS based likelihood ratios for latent fingerprint comparisons

Shreya Sateesh Kamath

Latent fingerprints are one of the most common pieces of evidence found on a crime scene
and represent accidental or unintentional prints collected as part of a criminal investiga-
tion. They are caused when the friction ridge skin comes in contact with a surface, and
thus requires the use of chemical processing to be visualized with the naked eye. The com-
parison and identification of fingerprints depends on various factors such as the substrate
quality, surface, duration, environmental factors and examiner experience. These factors
can result in reduced clarity or content, and can even cause distortions as compared to a
fingerprint taken under controlled conditions. Since the release of the National Academy
of Sciences (NAS) report in 2009, the field of fingerprint analysis has come under much
scrutiny. Specifically, the need for more research into the determination of the accuracy
and reliability of the identifications made by fingerprint examiners has been raised.

One such method used for the comparison of latent fingerprints to known prints is
through an Automated Fingerprint Identification System (AFIS). The AFIS used in this
research was the AFIX Tracker R© where five variables were assessed: match score, match
minutiae, match status, delta match score and marked minutiae, to determine which vari-
able(s) was a better indicator of a true match. Bayesian networks were then constructed
to compute the likelihood ratios to evaluate the dependency of the variables on one an-
other, where the performance of the likelihood ratios in determining the identity of the
unknown latent was assessed using Tippett and ECE plots. Receiver Operating Char-
acteristic (ROC) curves and Bayesian networks were constructed to perform statistical
analysis of the matches obtained while comparing a latent print to a ten-print card. A
combination of Tippett and Empirical Cross Entropy (ECE) plots were used to assess the
performance of the AFIX Tracker R© in classifying unknown prints. It was observed that a
match minutiae of 15 or higher resulted in a 100% true match result whereas for the non-
matches, no more than 13 match minutiae were found. Moreover, the delta match scores
difference between the matches and non-matches were notable (delta score of 0.1-153 for
matches compared to a score of 0-0.1 for the non-matches). Overall, it was determined
that approximately 87% of the time a randomly selected known match would have a higher
number of match minutiae as compared to a non-match.

The purpose of this study was to perform a statistical analysis on the matches obtained
while comparing a latent print to a ten-print sample using the AFIS. In this research study,
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1. Introduction

1.1 Latent Fingerprints

One of the most common pieces at evidence found on crime scenes are fingerprints. They
are often found in two forms: latent and patent. Latent prints are prints that are not easily
visible and need to be processed whereas patent prints are prints that are visible to the
naked eye. These prints are collected by investigators and then entered into an Automated
Fingerprint Identification System (AFIS) or are manually compared to a ten-print card.
Both the AFIS and manual comparison processes use various characteristics (Figure 1.1)
to determine the similarity between two prints.

Figure 1.1: Various types of minutiae marked on a fingerprint [1]

Latent fingerprints represent accidental or unintentional prints and are created by the
friction ridge skin deposition on a surface. The prints require physical, chemical, digital
or optical processing to enable visualization. The quality and quantity of minutiae are
highly variable depending on various factors such as method of lift, substrate, surface,
environmental factors and duration between deposition and collection. These factors can
result in reduced clarity, content, and distortions compared to a fingerprint collected un-
der controlled conditions. This reduction in detail in the latent print compared to the
actual patterns of ridges and grooves of a finger, may result in high error rates during the
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identification of the print. [5] Conversly, known prints typically have larger, cleaner and
richer information (Figure 1.2, right). [6]

Figure 1.2: Image on the left is a latent print. It contains large areas where the print is
smudged or unclear compared to the known print (on the right) which contains clear ridge
details

Latent print examiners make comparisons between distorted and smudged prints against
prints of better quality. In the past, fingerprint identifications, if made by an experienced
examiner, were claimed to be infallible. [7] The infamous Madrid bombing case shed light
on the likelihood of a misidentification of latent prints by examiners. The issue of fin-
gerprint identification being infallible was addressed in the 2009 National Academy of
Sciences (NAS) report which states:

“... other forensic disciplines – such as fingerprints . . . no studies have been
conducted of large populations to determine how many sources might share
the same or similar feature” and “studies should accumulate data on how
much a person’s fingerprints vary from impression to impression, as well as
the degree to which fingerprints vary across a population. With this kind
of research, examiners could begin to attach confidence limits to conclusions
about whether a print is linked to a particular person.” [8]

The report further stated:

“... one study found that fingerprint examiners did not always agree even with
their own past conclusions when the same evidence was presented in a different
context.” [8]

2



Currently, latent fingerprint examiners utilize the Analysis, Comparison, Evaluation
and Verification (ACE-V) approach to make one of three following decisions [9]:

i) Individualization / Identification - the two friction ridge impressions contain suffi-
cient quality (clarity) and quantity of agreement in friction ridge detail. The latent
print examiner determines that two friction ridge impressions originated from the
same source, to the exclusion of all others.

ii) Exclusion (Non-Identification) - the two friction ridge impressions contain sufficient
quality (clarity) and quantity of friction ridge detail which is not in agreement where
the latent print examiner determines that two friction ridge impressions originated
from different sources.

iii) Inconclusive - a latent print examiner, trained to competency, is unable to individ-
ualize or exclude the source of an impression.

In the ACE-V process, the examiner first analyzes the print to determine if the print
is suitable for comparison. In the comparison step, a side-by-side observation of the
friction ride impression is made to determine if the two impressions are in agreement. The
evaluation step is the formulation of a conclusion (identification, exclusion or inconclusive)
based on the analysis and comparison steps. Finally, the verification step includes an
independent examination of the latent prints by a second qualified examiner. The NAS
report, along with the errors made in the Madrid bombing case has brought much criticism
to the forensic field pertaining to fingerprint examination leading to numerous Daubert
challenges in court regarding the accuracy of the decision made. [10]

1.2 Automated Fingerprint Identification System

The Integrated Automated Fingerprint Identification System (IAFIS) - now superceeded
by the Next Generation Identification System (NGI) - is a national automated system
maintained by the FBI that contains a database of all registered fingerprints (latent and
ten-prints). It houses the fingerprints and criminal histories on more than 70 million
subjects in the criminal master file, along with more than 34 million civil prints. [11]

Generically, an automated fingerprint identification system (AFIS) is used by many
police and other agencies for the identification of individuals. There are numerous vendors
that supply such systems to law enforcement.

The latent prints collected by investigators are manually entered into the AFIS and
minutiae are marked. The prints are then run against the entire database and a candidate
list is generated with a corresponding match score. The higher the score, the better the
probability that the candidate matches the latent. However, it is often observed that the
highest match score does not always belong to the true match. This could be a result
of the size of the database or the quality of the latent. A larger database has a higher
chance of containing the suspect than a smaller database. Furthermore, if the quality of
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the latent is poor, an examiner would be unable to mark a large number of minutiae on
the print, which could result in the a lower match score.

The AFIS follows a two class minutiae classification system: terminations and bifur-
cations which are used to determine the match score of a fingerprint. In the two class
model, for each minutia (P), a score value (s) along with its membership class (t), angle
(θ) and corresponding co-ordinates are determined and stored. [12] For each minutia (on
the latent and known print), the score ranges between 0-100 indicating the reliability of
the minutia. The reliability is assigned based on ridge flow, breaks between ridges and
valleys and noise. A partial Point Set Pattern Matching (PSPM) algorithm is used to de-
termine significance of a minutia. The algorithm assigns a score (weight) to each minutia,
based on the resemblance between the latent and the known print. The significance of the
minutia is directly proportional to its score. For example, if two minutiae P1 and P2 have
a score of s1 and s2 respectively, where if s1 < s2, then the value of P1 is less reliable than
that of P2. [12]

For the purpose of this study, a match is defined as a latent and a known fingerprint
having the same characteristic minutiae without any unexplained differences and non-
match is defined as two fingerprints that do not share the same characteristics which leads
to the conclusion of the prints belonging to different sources. The AFIS only provides a list
of candidate exemplars; comparison decisions must be made by a latent print examiner.
Due to its automated process, the AFIS has a capability to search through millions of prints
at a time. An examiner, performing a manual comparison on millions of prints will not be
as efficient as the AFIS system. [13,14] AFIS is a cognitive technological tool that has the
ability to store a large amount of information. It can perform more comparisons than its
human counterpart, hence acting as an offloading tool. [15] The examiner’s cognitive load
decreases as he/she is able to transfer some of the tasks to the system, increasing efficiency
and decreasing error. While AFIS is a convenient tool for fingerprint comparisons, a
complete lights out approach (where there is no examiner involvement) cannot be adopted.
The presence of highly distorted or noisy prints renders AFIS’s ability to mark minutia
ineffective, requiring an expert to manually mark the minutia. [13] As the database size
increases, the error rates (particularity the false positive rates) increase. [6] The reason
for this is as a database grows, an AFIS searching that database is increasingly likely to
find more close non-matches, (prints that are highly similar to the latent, but are in fact
from a different individual; also termed “look-alikes”). [6] Furthermore, as the database
size increases, the chances of finding a true match also increases, but this can also make
the task of the human examiner more demanding and, potentially, more error-prone as
the known prints are more similar to one another. [6, 13] This research tackled the issue
of determining a true match / non-match and the accuracy of the AFIS system.

1.3 Purpose

The purpose of this study was to perform a statistical analysis on the matches obtained
while comparing a latent print to a ten-print sample using the AFIS. In this research
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study, data generated by the AFIS system, such as the match score, match minutiae,
match status, and delta match score were assessed by varying the number of minutiae
marked (3-50) on the latent to determine which factor(s) was a better indicator of a true
match. Bayesian networks were then constructed to compute the likelihood ratios, where
the performance of the likelihood ratios in determining the identity of the unknown latent
was assessed using Tippett and ECE plots.
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2. Previous Research

2.1 Bayesian network

A Bayesian network (a probabilistic directed acyclic graph), is a powerful probabilistic
representations of data. [16] By defining a finite set of variables as nodes, and the re-
lationship between the nodes as edges, a Bayesian network is constructed and thus the
relationship between the nodes can be assessed.

Figure 2.1: A simple Bayesian network showing interaction between nodes X, Y, and Z

The nodes represent variables and the edges determine the influence between those
variables. An example of the dependency between the nodes is shown in Figure 2.1 where
Z influences whether or not X and Y take place. Both X and Y are independent of each
other due to an absence of an edge linking them. The edges show a conditional dependency
between nodes, X, Y, and Z. [17] Each node can assume a value of a certain number of
states. When a state is selected, the node is instantiated.

The network was designed based on Bayes’ theorem, which states:

p(Hp|E)

p(Hd|E)︸ ︷︷ ︸
posterior odds

=
p(E|Hp)

p(E|Hd)︸ ︷︷ ︸
likelihood ratio

.
p(Hp)

p(Hd)︸ ︷︷ ︸
prior odds

(2.1)
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From Equation 2.1, the evidential value of evidence E, as given in the likelihood ratio,
is quantified by the ratio of the probabilities of observing E given two hypotheses. In
the case of latent fingerprint comparison, the evidence will consist of some version of the
similarity between the latent and known fingerprint, and the hypotheses are, for example,
of the form: [18]

Hp: the prosecutorial hypothesis that states the latent print from the scene
and the known fingerprint originate from the same donor (the suspect).

Hd: the defense hypothesis which states that the latent fingerprint and the
known fingerprint originate from different donors.

The strength of the evidence in relation to one of the propositions is the probability
of the evidence given one hypothesis, divided by the probability of the evidence given the
alternative hypothesis. The prior odds and the posterior odds are assessed by attorneys,
police and the jury, whereas the likelihood ratio (LR) is assessed by a criminalist. From
Equation 2.1, an LR is defined as as the probability of occurrence of the evidence given
the suspect is the donor over the probability of occurrence of the evidence given someone
other than the suspect is the donor. The LR value (as shown in Figure 2.2) ranges from
zero to infinity.

Figure 2.2: Likelihood ratio scale depicting the strength of the evidence [2]
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The LR provides a means of assessing the posterior probabilities from the prior odds,
since it is the posterior odds in which the court is interested in. An LR > 1 supports the
prosecutorial hypothesis whereas an LR < 1 supports the defense hypothesis.

2.2 Fingerprints and the Bayesian network

The AFIS system is widely used to obtain fingerprint comparison results by producing a
candidate list. However, it is not often used for a statistical analysis of latent print and
known print evidence. [19] In a study conducted by Champod et al. (2014), an AFIS
was used to study and evaluate fingerprint evidence and test the variability in scores
obtained from a known donor versus fingerprints from a different source. [20] An LR
based approach was used to assess between-finger and within-finger variability, enabling
the addition of transparency in determining assessments made by fingerprint examiners
while marking characteristics in fingerprints. The LR was calculated based on the scores
obtained from the AFIS system. The numerator, f(s|H), was the probability density of
the observed score (s) if the latent and known print originated from the same source
(H), where the source was considered as the suspect’s finger and the origin of the within-
finger variability. The within-fingerprint variability was determined by comparing the
latent and known prints with one another and the AFIS scores for these comparisons were
obtained. The denominator, f(s|H̄), represented the likelihood of between-finger variability
by observing the evidential score if the latent and known prints did not come from the
same source. Furthermore, determination of a minimal database size was also considered
to be crucial as it ensured stability so that the score estimator does not differ by more
than one order of magnitude in regions where observations were made (regions where the
minutiae from the latent matched the minutiae marked on the ten-print card). Two latent
prints: one marked with six minutiae and the other yielding ten minutiae were subjected
to the database to extract scores based on sample size and the percentiles for each of the
scores were measured. A weighted distribution was established, where fingers having a
certain classification were assigned a value (in percentage) based on how commonly they
occur. The weighted distribution of the identification based on the finger number showed a
tendency to associate the latent with thumbs, index or middle finger rather than the little
or ring fingers. The highest probability was assigned to fingers that most possibly left the
latent and lowest probability to the finger that was thought to be the most improbable.
The results from Champod et al. (2014) show that reliable between-finger variability is
feasible with as few as 10,000 scores.

While reliable between-finger variability can be obtained when analyzing a small set
of samples, differences were observed when analyzing between-finger variability. While
adding a minutiae did lead to an increase in the match score, it does not cause a notable
increase. This was because between-finger variability scores were dependent on the con-
figuration of the minutiae marked: closer the minutiae were to one another, better was
the score. [21] The number of minutiae that can be marked on the latent depends on the
quality of the latent as that plays an important role in how many minutiae an examiner
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can find. The more the number of minutiae marked and the closer they are to one another,
better are the chances of obtaining a high match score as a higher number of matching
minutiae can be found. Before being analyzed, latents have to undergo a screening process
by examiners who often disregard prints of low quality or those that are considered to not
have enough details to make a definite examination. As a low quality latent is disregarded,
the evidentiary value of the print is unknown due to no analysis being performed on it. A
study conducted by Neumann et al. (2011) analyzed the evidentiary value of a low quality
latent. In the study, a latent, belonging to an individual whose identity was known, was
quantified using a statistical model where the corresponding minutiae between the latent
and known prints were labelled using the Universal Latent Workstation (ULW). [22] The
ULW, a single encoding software improves the quality of latents that are classified as a
low quality print by examiners, by translating it into a compatible format recognized by
the IAFIS. [23] The weight of the evidence was computed using a likelihood ratio, based
on two hypothesis [22]:

i) Hp: the latent belonged to the person (suspect) who made the known print.

ii) Hd: the latent belonged to someone other than the suspect.

In the latents identified by the examiners, the LRs reported were consistently high, thus
supporting Hp. It was also found that upon using ULW and the IAFIS, there was a 20%
increase in the number of items of evidence that could be reported with an identification
conclusion that would ordinarily have been discarded during the analysis phase of the
examination.

While improving the quality of the latent can potentially provide better results re-
garding the identity of the print and result in a higher identification rate, Biedermann et
al. (2011) [24] put forward two propositions concerning the evidentiary value of results
obtained through database searches.

i) Evaluation of DNA evidence based on results obtained from database pointing to-
wards the suspect.

ii) Effect of excluding individuals in a database.

Fimmers et al. (2011) [25] stated that a hypothesis must be formulated without using
any information from the data to be analyzed. This was then disputed by Biedermann et
al. (2011) where they raise the question asking if the evidence E confirms hypothesis H.
By proposing the Bayes theorem (Equation 2.2) it is clearly stated that if E is known at
the time H is proposed, E is part of the background information such that p(E)-p(E|H)=1
(Biedermann et al. (2011)). Furthermore, p(H|E) - p(H) shows that E does not affect
the probability of H. This clearly explains that as evidence E is independent of H, the
proposition that the suspect is the source of the crime stain is not a result of the DNA
match as this proposition existed even before the match was found.

p(H|E) =
p(E|H) ∗ p(H)

p(E)
(2.2)
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In the second proposition, Fimmers et al.(2011) stated:

“...recommend in a case in which, after finding exactly one match in a database
of size 630.000 ..., the RMP (Random Match Probability) with 5 analyzed
STR loci is in the magnitude of 1 in 600.000? It is in our view inconceivable
to assume, in such a situation, that the evidential value due to the database
match is higher than without a database search. Rather, it seems that the
contrary is of significance.” [26]

Biedermann et al. (2011) furthermore disputed this statement made by Fimmers et
al. (2011). Since the database size is huge, it is highly likely to find a match within the
database compared to the inverse of the rarity of the compared characteristic. Biedermann
et al. (2011) also argue that as there can only be one match to a particular fingerprint,
once this match is determined, there should be less observed correspondence between
other prints in the database. The statement by Fimmers et al. (2011) also stresses the
probability of obtaining a match by chance. This statement is disregard by Biedermann
et al. (2011) who claim this to be highly unlikely, stating that there are other parameters
that are considered before making a match between the prints. It is irrelevant to know
whether or not the suspect matches. The other donors in the database are automatically
excluded if no notable match characteristics are found. The presence or absence of the
suspect in the database does not affect the non-match criteria of the database itself. This
research study will assess the theory put forward by Biedermann et al. (2011) by assessing
the data extracted from the AFIX Tracker R© to determine which factors influence a match
or a non-match result.

Since the release of the NAS report, the field of fingerprint analysis has faced numerous
challenges when trying to determine the evidentiary value of a latent print. [27] Neumann
et al. (2011) used the LR approach to explore the configurations of three minutiae on
latent and known prints to gather knowledge of within- and between-source variability. [28]
Latent prints often contain partial and distorted characteristics and have a poor S/N
(Signal to Noise) ratio. By utilizing the spatial configuration of three minutiae, the position
with respect to surface and pattern can be determined. The fingerprints were initially
processed using a Gabor filtering process - an edge detecting filter that assists in feature
extraction [14]. The minutiae were then marked on the latent and known prints and
the Delaunay triangulation method was applied where each fingerprint was viewed as
a collection of triangles. The Euclidian distance (d) was used to measure the distance
between the the minutiae. The triangles were then grouped into family sets (triangles
originating from the same finger and same set of minutiae). Depending on the level
of distortion obtained on each finger, the number of triangles drawn between each set
of three minutiae per family set varied between 1 and 54. The LR computation was
based both on the numerator (within-source) and denominator (between-source) under
the propositions of s (the print belonged to the suspect) and s̄ (print belonged to someone
else). The results show that the R2 value for the comparison of triangles under defense
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proposition (s̄) was equal to 0.974 while under prosecutorial proposition (s) was equal to
0.945, showing the robust nature of the approach. The magnitude of the LRs determined
under the prosecutorial and defense hypothesis show that configurations of as little as
three minutiae can offer major evidentiary value. [22]
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3. Experiment

3.1 Methods

The prints used in this study were acquired from the Biometric Collection of People 2008
(BioCoP) fingerprint database developed at West Virginia University. For the purpose
of this study, only ten-print cards were used and no palm prints were analyzed. Nine
hundred and seventy ten-print cards that were collected from participants were entered
into the AFIS (for the purpose of this study, AFIX Tracker R© will be used) as known
prints. The BioCoP database also consisted of latent prints, collected from the same ten-
print card donors, that were developed using ninhydrin (on paper), cyanoacrylate fuming
(on a compact disk) and black powder (on glass).

The BioCoP database was combined with another database “CSI1”, also developed
at West Virginia University, increasing the AFIX Tracker R© database to a total of 1861
ten-print cards. The BioCoP contained a total of 7431 latent fingerprints out of which
200 latent prints were selected. A 70-30 approach was followed where 70% (140 prints)
were entered into the AFIX Tracker R© as known prints (i.e. the identity of the print
was known (also referred to as the training set)). The remaining 30% (60 prints) were
entered as unknown prints (i.e. the identity of these prints were not known). All prints
were obtained through random selection (using R and RStudio R©). The random selection
conducted on the unknown prints was performed by an individual not part of this study
and were re-named to ensure anonymity of the prints prior to analysis. The 970 ten-
print cards from the BioCoP database, along with the 200 latent prints collected through
random selection were entered into AFIX Tracker R© as .bmp files at 500 pixels per inch
resolution. The remaining 891 ten-prints from the CSI1 database were entered at 600
pixels per inch resolution. As the ten-prints were not individually scanned into the AFIX
Tracker R©, their resolution could not be altered.
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Figure 3.1: Example of results shown by the AFIX Tracker R©. The match score, candidate
list, control ID and the match minutiae are displayed

Figure 3.1 depicts the search results shown by the AFIX Tracker R©. The match score
and number of matched minutiae are given by the system. After entry of the latents and
known ten-prints, the minutiae on each were marked. For the ten-print cards, the minutiae
were manually marked and auto extraction was not utilized. Quality assessment of the
prints was not a factor in this research study and due to random selection, there was a
variation observed in the number of minutiae marked (for example some 10 print cards
contained over 70 minutiae on each print, while some had as low as 10 minutiae marked).
Minutiae on each latent were marked ranging from 3 to 50 (3, 5, 7, 10, 15, ... 50). For
every range of minutiae marked, the latent was run against the database and the top 100
candidate list was generated. For example, latent A was marked with three minutiae.
The latent was then run against the AFIX Tracker R© database and its candidate list was
generated. Next, the same latent A was marked with the two more minutiae, bringing its
count to five and run against the database. This process was repeated until a maximum
of 50 minutiae on each latent were marked. For each candidate list generated, control
ID, finger number, match minutiae, percent match, match score, match status and total
number of minutiae marked (marked minutiae) were obtained. The match minutiae is the
total number of minutiae that were matched between the latent and the ten-print card
and was calculated using Equation 3.1 where the match minutiae was rounded up to the
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next highest integer.

Match Minutiae =
percent match ∗minutiae marked

100
(3.1)

3.2 Data Analysis

Bayesian networks, along with ROC curves, Equal Error Rate, Tippett and ECE plots
were constructed based on variables such as match score, match minutiae, match status,
delta match score and marked minutiae. R and RStudio R© was used to construct ROC
curves and the plots.

3.2.1 ROC Curve

The receiver operating characteristic (ROC) curve is a plot of test sensitivity as the y-
coordinate or the true positive rate (TPR) against the specificity as the x-coordinate or
the false positive rate (FPR). The sensitivity measures the probability that the latent and
known prints are characterized as being a match, given it is a true match. Converesly, the
specificity measures the probability that the latent and known prints are characterized as
being a match, given they are a non-match. TPR and FPR are widely used in determining
the efficiency of a test. [29] The ROC curve assists in providing an evaluation of the
diagnostic ability of a test to be able to discriminate between the true states of the test. [5]
One of the most common qauntitative measures is to calculate the area under the curve
(AUC) which is a combination of sensitivity and specificity. The AUC measures the overall
performance of the test and can take any value between 0-1. The closer the AUC is to 1, the
more accurate is the test’s diagnostics and the better the method’s ability to distinguish
between the states. An AUC of 0.5 signifies an inconclusive result while AUC’s less than
0.5 indicates incorrect classification. [29]

By utilizing the ROC curve, an analysis of the AFIS algorithm can be derived to
observe the degree of separation between the true positive and false positive rates.

3.2.2 Tippett Plots

Tippett plots are a valuable tool for assessing the performance of an LR-based method
for evidence evaluation that empirically represents the cumulative propotions of LR in
a dataset depending on which hypotheis is true (Hp or Hd). [30] These plots provide a
graphical representation of the magnitude increments of the LR along with the number of
minutiae marked and match score configuration.
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Figure 3.2: A Tippett plot showing the LR distributions with the rates of misleading
evidence [3]

An accuracte system should be able to differentiate the true matches (where LR > 1)
from the non-matches (LR < 1). Tippett plots also assist in studying the accuracy of a
system by comparing the proportion of misleading evidence/mis-classification (as seen in
Figure 3.2), where the LR values support the wrong hypothesis (LR > 1 when Hd is true
and LR < 1 when Hp is true). [3] For the purpose of this project, the threshold is fixed at
LR = 1.

3.2.3 Empirical Cross-Entropy

An Emperical Cross-Entropy (ECE) plot provides a measure of accuracy and calibration
of a system. It represents the loss of information due to uncertainty in the proposition at
each prior. [31]
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Figure 3.3: A reference ECE plot [4]

ECE plots provide a measure of accuracy and calibration of a system and is weighted
by the prior odds (on the x-axis). Figure 3.3 shows the average uncertainity (measured
in entropy) when applying the LR reported by a system. [32] Using R and Rnetica (refer
to Appendix A), an ECE plot was generated when the LR at a given prior was calculated.
The grey curve represents the LR at 1 which shows the system is unable to provide any
information regarding the identity of the unknown latent print. The red curve represents
the LR of the test sample. The higher this curve, the more information is needed to
correctly classify the print. The dotted blue line is the calibration accuracy for when the
LR are perfectly calibrated. This calibration is done using Pool Adjacent Violators or PAV.
The PAV determines the best convex function for the LR values when all the violators are
removed (where all the misleading evidence is removed). This curve represents the system’s
optimal performance. The lower the dotted blue line, the better the discriminating power.
Ideally, there should be little to no difference between the dotted blue line and the red line.
The lower the red and blue curves and the smaller the difference between the two shows
that the system is calibrated well and can accurately determine how a given unknown is
being classified. Furthermore, the closer the experimental LR is to 0 (lower is the ECE
value), better is the accuracy.
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4. Results

4.1 Preliminary Study on Orientation of the Print

A preliminary analysis on a ten-print card was performed. In order to provide a match,
AFIX Tracker R© changes the orientation of the print to the most suitable position. A
ten-print card was entered into the AFIX Tracker R© containing 891 ten-print cards and
was marked as a known print. A plain impression from the same ten-print card was taken
where only left thumb impression was used. The left thumb impression was entered as
a latent into AFIX Tracker R© thirty six times where print was rotated in increments of
5◦ up to ±180◦. Forty two minutiae at the same positions were marked on each of the
latent. The latents were then run twice: with the orientation locked and without locked
orientation. The orientation lock determines whether or not AFIX Tracker R© rotates the
latent print during the search to provide the best possible match result.

(a) Match Score vs Match Status without
orientation lock

(b) Match Score vs Match Status with ori-
entation lock

Figure 4.1: ROC curve of latents searched against database

Figure 4.1 shows the ROC curve constructed based on the data obtained from AFIX
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Tracker R© where the latents were run against the entire database. The ROC curve of match
score vs match status was constructed for both with and without orientation lock searches.
Match score signifies the score determined by AFIX Tracker R© to assign a value to the
fingerprint match. Match status signifies whether or not the latent print matched the
rolled impressions and match minutiae signifies the number of minutiae matched between
the known and latent prints.

With the orientation lock in place, AFIX Tracker R© rotated the print to a maximum of
±15◦. An AUC of 0.979 was determined, which signifies an excellent separation between
the true matches and non-matches. It was observed that the match score for the true
matches were all higher than the match score for the non-matches, yielding a perfect
separation between the two groups. With the orientation lock removed, AFIX Tracker R©
rotated the print to the best determined fit and an AUC of 1 was determined. While the
no orientation lock did have a higher AUC than the with orientation lock method, there
was no significant differences observed(DeLong [33], p=0.32 at 95% confidence). Using
this preliminary study, it can be determined that using either method does not lead to
a significant difference in the match score results. For the purpose of this study, all 200
latents were marked without utilizing the orientation lock feature in AFIX Tracker R©.

4.2 Preliminary Study on Clustering vs Unclustering of Marked
Minutiae

As mentioned in the methods section, each latent was marked with minutiae ranging from
3-50. A preliminary study was conducted to assess whether marking the minutiae closer to
one another has an effect on the match score and match minutiae as compared to when the
minutiae are marked further apart. A high quality latent was obtained (latent containing
more than 60 minutiae). The latent was first marked with 3-50 minutiae where all the
minutiae were close to one another (clustered). The procedure was repeated a second time
on the same latent, where the minutiae were marked further apart (unclustered). AFIX
Tracker R© searches were then conducted on both sets (clustered and unclustered) and it
was determined that when the minutiae were marked closer to one another, a higher match
score and higher match minutiae was obtained as compared to unclustered prints (Figure
4.2, only true match results are shown).
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Table 4.1: Clustered vs. unclustered data for true matches. Shown are the match score
results for the unclustered prints ranging from 30-50 minutiae marked as no results were
obtained when less than 30 minutiae were marked

Status Min Marked Match Score Match Min

Clustered 50 1222572 34

Clustered 45 1259230 35

Clustered 40 1271872 34

Clustered 35 1194699 33

Clustered 30 857493 27

Clustered 25 576366 21

Clustered 20 211176 18

Clustered 15 157220 14

Clustered 10 92772 9

Clustered 7 4124 4

Unclustered 30 1167 3

Unclustered 35 33108 7

Unclustered 40 48008 7

Unclustered 45 52372 9

Unclustered 50 174488 17

Table 4.1 displays the true match results obtained when the latent was marked using
the clustered vs. the unclustered marking method, where Min Marked referes to the
number of minutiae marked on the latent andMatch Min referes to the number of minutiae
matched between the latent and the known print. No true match results were obtained
for the unclustered prints when less than 30 minutiae are marked. The clustered prints,
however, show true match results when as low as 7 minutiae are marked. Based on this
data, minutiae on all 200 latent prints in this study were marked using the clustering
method. As crime scene prints often only have small areas that are suitable for analysis,
the clustering method was used to mirror the smaller areas obtained from these prints.
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Figure 4.2: Scatter plot clustering vs unclustering
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4.3 Auto Extract and Manual Extract

This research study utilized two different databases: BioCoP and CSI1. All the ten-print
cards obtained from the BioCop database were at 500ppi where the minutiae were manually
marked. Whereas the CSI1 database consisted of prints scanned in at 600ppi where all the
minutiae were auto extracted using the auto extract feature provided by AFIX Tracker R©.
In order to assess if the resolution/extraction method had any significant impact on the
results obtained, a study was conducted where a latent, marked with minutiae ranging
from 3-50, was subjected to two different database comparisons: one that consisted of
only the BioCoP prints and the second that contained both the BioCoP and CSI1 prints
(which was a combination of two different resolutions and extraction methods).

Figure 4.3: ROC curve of a latent marked using manual extraction and a combination of
manual and auto extraction

Upon running the AFIX Tracker R©, ROC curves were constructed using match score
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to determine if significant differences were obtained. As seen in Figure 4.3, no significant
differences were observed between the manual extraction and the combined extraction
method while assessing the match score (DeLong [33], p=0.84 at 95% CI). As the p-value
determined using the DeLong [33] method is higher than 0.05, it can be concluded that the
auto extract and combined extraction method are comparable to one another. Hence, for
this research, both the BioCoP and CSI1 databases were combined. However, a drawback
of this study was that the latents were marked by one examiner only. Multiple examiners
conducting the procedure could obtain different results.

4.3.1 AFIX Tracker R© Search Results for the Known Latents

The search results from AFIX Tracker R© were evaluated where a total of 58724 comparisons
were obtained, with 624 results returned as matching prints or true matches and 58100
non-match results, where for each latent run against the database, the top 100 candidate
list was generated.

Figure 4.4 shows the matches made by the system based on the marked and match
minutiae. By observing the trend for the true match status (matches), it can be seen
that the number of match minutiae increases as the number of marked minutiae increases.
This positive correlation is not evident for the false match status (non-matches). Based
on the matches and non-matches, a frequency of occurrence for a true vs a false match
can be determined at a particular input value. For instance, for the true matches, at 50
marked minutiae, the corresponding marked minutiae goes as high as 32 whereas for the
non-matches, at 50 marked minutiae, the corresponding match minutiae does not reach
beyond 13 minutiae.
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Figure 4.4: Scatter Plot of Marked Minutiae vs Match Minutiae, where the number of
marked minutiae ranges from 3 to 50 (3, 5, 7, 10, 15, ... 50)
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Figure 4.5: Scatter Plot of Match Minutiae vs Match Score

Illustrated in Figure 4.5 are the matches made by the system, based on the match
minutiae vs the log10 of the match score (log match score). The data points for the match
minutiae were shifted by 0.5 on the x-axis for the match status of false (non-matches). This
was done to prevent the data points for the matches and non-matches from being plotted
directly over each other and to enable visualization. The results show an upward trend,
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where an increase in the matched minutiae showed an increase in the log match score. A
log match score of 6 (match score = 1000000) and match minutiae of 32 were obtained
for the matches whereas the highest log match score observed for the non-matches was 5
(match score = 100000) with 13 matching minutiae.

Figure 4.6: Combined ROC Curve of Match Minutiae and Match Score

ROC curves (as seen in Figure 4.6) were employed to assess the results obtained from
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the AFIX Tracker R© with respect to the match score and match minutiae. An AUC of
0.837 was determined for the match status vs match score curve, while AUC of 0.871 was
determined for the match status vs match minutiae curve. Hence, it can be concluded that
the match minutiae performed significantly better than the match score and was better
in discriminating the true matches from the false matches (DeLong [33], p=1.76x10 −6 at
95% confidence).

Figure 4.7: EER of Match Minutiae vs Match Status
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Figure 4.8: EER of Match Score vs Match Status

Equal error rate or EER plots were constructed for both the match minutiae and the
match score. An equal error rate is a location on the curve where the false positive rate
(FPR) and the false negative rate (FNR) are equal. The lower the EER, the more accurate
is the system in determining a true match as there is less chance of an error. As it assess
the potential error rate in the performance of the system, ideally the error rate should
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be zero. As this research study deals with variability encountered in a biometric dataset,
deviation from the ideal is expected. [34] Displayed in Figure 4.7 is the error rate plot
with respect to match minutiae. An EER of 21% was determined at approximately 5
match minutiae indicating that when 5 or less minutiae were matched between a latent
and a ten-print card, the latent print was more likely to be classified as a match despite
being non-match. Concluding that, at 5 match minutiae or above, the false positive rate
decreases and the false negative rate increases.

As compared to match minutiae, the EER for the match score was found to be at
25% where at a log match score value of approximately 4 or above, the false negative rate
increases and the false positive rate decreases (Figure 4.8). This plot shows that a latent
with a log match score of approximately 4 (match score = 10000) or less, was more likely
to be classified as a match instead of a non-match.

Figure 4.9: Match Minutiae vs Delta Match Score
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Figure 4.10: Match Score vs Delta Match Score

Figure 4.9 and Figure 4.10 illustrate the match minutiae vs delta score, and match
score vs the delta match score, respectively. The delta match score signifies the difference
between the match scores obtained from each individual run. The delta match score was
calculated for each individual search performed using Equation 4.1 where A is the highest
match score in that particular search and B is the second highest match score

A−B
B

(4.1)

The similar process was performed for the next set of match scores using Equation 4.2
where B is the second highest match score and C is the third highest match score.

B − C
C

(4.2)

This was repeated for all subsequent match scores in every search result, where the
last match score in every individual run was disregarded. The delta match score was
determined for every individual run conducted by the AFIX Tracker R©.
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Plots were constructed, where the log of match score and match minutiae were plotted
against the delta match score (note: the y-axis for match status of “no” only ranges from
0 to approximately 8 whereas the y axis for the match status of “yes” reaches 150). As
the match score for match status “no” increased, “no” notable increase in the delta match
score is observed, with the highest delta score at approximately 8. Whereas an upward
trend was observed for the match status of “yes”, with the delta match score going as high
as 150 (refer to Appendix D for examples of trends of the individual search results).

A similar trend was observed for the match minutiae. As shown in Figure 4.10, as the
match minutiae increased for the match status of “yes”, the delta match score showed an
increase (exponential increase), whereas for the match status of “no”, a linear trend was
observed. Concluding that even though match minutiae was a better indicator of a true
match than match score, there was a notable difference in the delta match scores for the
true vs the false matches when analyzing match minutiae and match score.
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Figure 4.11: Baysian network with the Match Status = No instantiated
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Figure 4.12: Baysian network with the Match Status = Yes instantiated

Figures 4.12 - Figure 4.14 display the Bayesian networks constructed to demonstrate
the relationship between the match status (Match Status), match score (Match Score),
match minutiae (Match Min), minutiae marked (Min Marked) and delta match score
(Delta). Match status of “yes” indicates a true match result while a match status of
no indicates a non-match result. When “no” from the match status node was instan-
tiated, the distribution of the data was analyzed. As shown in Figure 4.11, when 3-5
minutiae were matched, 81.5% of the prints were non-matches, where the highest match
score observed was 1x105 and had a delta match score below 10. Whereas when “yes” from
the match status node was instantiated (Figure 4.12), it was observed that about 72.44%
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of the data laid above 5-7 matched minutiae, with the match score as high as 1x106 and
55.2% of delta match scores were between 1 and 152.

Figure 4.13: Bayesian network illustrating the node Match Min instantiated at 15-20 and
where Match Status = Yes
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Figure 4.14: Bayesian network illustrating the node Match Min instantiated at 10-15 and
where Match Status = No

Figure 4.13 demonstrates that with match status “yes” instantiated, when 15-20 or
more minutiae were matched between the latent and the ten-print card, a 100% true match
was determined with a match score of 50000 or higher and a delta match score between 0.1
and 153. However, Figure 4.14 shows that when state “no” from node match status was
instantiated, along with state 10-15 from node match minutiae, a very low delta match
score was determined (between 0 and 10). This clearly demonstrates that there is a greater
difference between the delta match scores of a true match and a non-match vs between
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two non-matches.

Figure 4.15: Bayesian network illustrating the node Min Marked instantiated at 50 and
where Match Status = Yes

Figures 4.15 and 4.16 demonstrates the AFIX Tracker R© search results for latents
marked with 50 minutiae. With the match status as “yes” (Figures 4.15), it can be
observed that along with a high match and delta match score, the number of match
minutiae was higher (3-35) whereas this was not observed when match status equals “no”
(Figure 4.16). No more than 15-20 match minutiae were found and the corresponding
match scores and delta match scores were lower compared to match status yes. This

35



suggests a clear distinction between the true matches and the non-matches.

Figure 4.16: Bayesian network illustrating the node Min Marked instantiated at 50 and
where Match Status = No

4.3.2 Performance Assessment of the Bayesian Network

The 70-30 approach, as mentioned in the methods section, was used to test the performance
of the constructed Bayesian network. Seventy percent of the prints were used to establish a
Bayesian network and were used as a training set and the remaining 30% were used to test
how well the network was performing (referred to as test prints). In order to replicate a
realistic crime scene scenario, the test prints that were obtained from the BioCoP database,
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similar to the training set, were developed using three different methods: ninydrin, black
powder and cyanoacrylate fuming. A subjective quality assessment was conducted on the
prints and each latent was classified as good, bad or ugly. A print was classified as good if
more than 25 minutiae were marked, as bad if minutiae between 10-24 were marked and
ugly if less than 10 minutiae were marked. Fifty seven percent of the latent prints from
the test prints were classified as good, 28% were classified as bad and 15% were classified
as ugly. In comparison, 56% of the prints in the training set were classified as good, 26%
were classified as bad and 18% were classified as ugly.

Figure 4.17: Bayesian network constructed using the training set of latent prints

As the Bayesian network was the evidence evaluation method used to analyze the
results obtained from the AFIX Tracker R©, it is essential to measure how accurately the

37



network itself performs. The network was built using the training set of latent prints
(140 latent prints) where these prints were used to establish a validation database as
their identity was known (ground truth is established). The test prints (60 latent prints)
were considered to be a representation of future latent prints that would be entered into
AFIX Tracker R© and were hence used as simulation cases to assess the performance of
the network (that was built based on the training set) prior to being used in casework.
RNetica was used to construct the Bayesian network and using this constructed network,
LR values for the test prints were generated (see Appendix A for the R script).

Figure 4.17 used the same training set prints that were used to construct the networks
in Figure 4.11 - Figure 4.16, with the only difference in the value of nodes. Figure 4.17 uses
discrete node values whereas Figure 4.11 - Figure 4.16 displays the nodes as continuous.

The performance of the network was represented using probability distribution plots
such as Tippett and ECE plots. As mentioned in Section 3.2.2, Tippett plots utilize
calculated LRs to determine how many cases above a certain likelihood ratio support the
prosecutorial or defense hypothesis, where the LRs were calculated using the match score
and match minutiae. The LRs were computed based on the totality of the test prints data,
irrespective of a specific match minutiae or match score.
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Figure 4.18: Tippett plot

As seen in the Tippet plot in Figure 4.18, it can be observed that there was an overlap
between the two competing hypothesis where 41% of the cases that were true matches
had a LLR of 0 or lower, hence incorrectly supporting the defense hypothesis, classifying
the prints as non-matches. Whereas 5.7% of the cases that were non-matches and had a
LLR of 0 or higher were being classified as matches, therefore incorrectly supporting the
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prosecutorial hypothesis. Upon further inspection, it was determined that the percentage
of the cases that gave false positives/false negative result were high quality prints and were
developed on glass and dusted using black powder (refer to Appendix E for results obtained
using different development methods). This may be due to minutiae being marked in
common areas such as the core and delta regions. The LLRs for the non-matches were
interesting: the highest LLR that was obtained had a match score of about 50000 where
50 minutiae were marked and only 7 minutiae was matched. The same data set had a
match score of 74000 with 8 matching minutiae and 30 marked minutiae but still had
a lower LLR. This indicated that apart from match score and matching minutiae, the
number of marked minutiae also has an affect in determining the match score, which in
turn influenced the LLR. This may be due to more minutiae being matched in the latent
having 30 minutiae marked vs. the latent that had 50 minutiae marked where only 7
matched.
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Figure 4.19: LLR histogram displaying frequency of prosecutorial and defence hypothesis

Figure 4.19 shows the frequency distribution of the LLRs for each of the given hy-
pothesis. Fifty nine perfect of the LLRs for Hp lie over 0 while 95% of the LLRs for the
Hd lie below 0, which indicates that the network was not able to distinguish between the
matches and non matches accurately.
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Figure 4.20: Emperical cross entropy plot

Empirical cross entropy (ECE) plots were constructed to further assess the overall
performance of the LR values. ECE plots take into account calibration along with the
discriminatory power of the LR values. Upon examining the ECE plot in Figure 4.20,
the calculated LR values were used in assessing the performance of the system. The
established model does not have a perfect accuracy (where the experimental LR curve is

42



closer to the null method than 0) but does provides a better accuracy assessment of the
data than the null method (LR = 1).

While the plots constructed above displays the performance of the system with respect
to the totality of the test print data, this study further investigated performance of the
network based on the match minutiae. Table 4.2 displays the misleading evidence rates.

Table 4.2: Misleading evidence based on match minutiae

Match Min
Percentage of misleading evidence

given Hp (LLR < 1)
Percentage of misleading evidence

given Hd (LLR > 1)

1-3 100% 1%

4-7 12% 58%

8-14 0% 100%

15-40 0% 0%

It can be seen that when 1-3 minutiae were matched between the latent and the
ten-print card, all latents that were a true match were being classified as a non-match
(false negative) whereas only 1% of the prints that were a non-match were being clas-
sified as a match (false positive). The highest mis-classification for the matches were
observed when minutiae between 1-3 and 4-7 were matched whereas the majority of the
mis-classification for the non-matches was found when minutiae between 4-7 and 8-14 were
matched. When more than 15 minutiae were marked, none of the prints were mis-classified
(refer to Appendix F for the Tippet, ECE and Histogram plots associated with different
match minutiae).

While this network can be utilized in assessing the identity of an unknown latent, the
discrimination power and accuracy of the system was not optimum, hence there is a high
chance that a unknown print is classified incorrectly, based on the number of minutiae
matched.

4.4 Conclusion

Often, fingerprint examiners depend on the AFIS system to provide a potential candidate
list which they then utilize to make a manual comparison. Currently in the United States,
there is no fixed number of minutiae that needs to be marked on a latent to make an
identification, hence this is done at the discretion of each individual examiner. This study
was intended to determine the accuracy of the constructed Bayesian network, using 200
latent prints, in determining a true match vs a non-match when a range of minutiae were
marked on the latent print. This research study also assessed the match minutiae, match
score, marked minutiae, delta match score and match status to determine which variable
or combination of variables was a better indicator of a true match. As expected, it was
found that as the number of marked minutiae on the latent increased, the total number of
matching minutiae between the latent and ten-print card also increased. Based on match
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minutiae vs the match score scatter plot, as the number of match minutiae increased,
there was an increase in the match score. A higher match score was determined for the
true matches as compared to the non-matches.

From looking at the combined ROC curve of the match minutiae and match score,
match minutiae, with an AUC of 0.87 was significantly higher than the match score, with
an AUC of 0.84 (DeLong [33], p=1.6x10 −6 at 95% confidence), concluding that it was a
better indicator of a true match compared to the match score. Furthermore, the EER for
the match minutiae (at 21%) was lower than that for the match score (at 25%).

The Bayesian networks constructed provided an assessment of the interdependence
of the AFIX Tracker R© variables in determining the match outcome. Interestingly, it
was observed that a matching minutiae of 15 or higher resulted in a 100% true match
result whereas for the non-matches, no more than 13 matching minutiae were observed.
Moreover, the delta match scores difference between the matches and non-matches were
very notable (delta score of 0.1-153 for matches compared to a score of 0-0.1 for the non-
matches). Through this research, it can be concluded that a matching minutiae of 15
or higher produces a high match score along with a notable difference in the delta score
between a true match and a non-match compared to two non-matches.

Lastly, while assessing the performance of the Bayesian network, the known prints
were used to establish the baseline for the Bayesian network and the unknown prints
were run against the network to determine how accurately the prints were classified by
the constructed network. Based on the Tippett and histogram plots, some errors were
determined. There was a 41% mis-classification rate where the true matches were being
classified as non-matches and a 5% mis-classification rate where the non-matches were
being classified as matches. Furthermore, as seen in the ECE plots, the discrimination
power of the system was poor and the accuracy of the system was not optimum, hence there
is a higher chance that the unknown print is classified incorrectly. This low accuracy and
poor discrimination might be due to the fact that insufficient latent prints were utilized.
Only 60 unknown prints were used to assess the accuracy of the system, while only 140
known prints provided a baseline for the network. Due to this small sample size, it is highly
likely that a large amount of variability was observed in the data, resulting in decrease in
discrimination power.

4.5 Future Research

Based on the results found in this research, there is future work that can be conducted
using this method to evaluate the likelihood to accurately identify an unknown latent.
Increasing the number of latent prints in the training set would allow for a better and
more extensive representation of the variability observed in the test set.

Another variable that can be assessed is the quality of the latent and ten-print cards.
Providing a quality assessment (such as using NFIQ by NIST) would help explain the
variability in the data. For example, the NFIQ algorithm can be used to assess the low
and high quality areas of the print. The high quality areas can be selected and run against

44



the AFIX Tracker R© to observe any difference in the results. Bayesian networks can be
constructed and the performance of the system can be assessed using these results.

This research project combined two databases that contained ten-print cards at differ-
ent resolutions (500ppi and 600ppi). No significant differences were observed between the
two resolutions, which could be due to a small difference between the two. Future studies
should consider keeping the resolution of the latent and the ten-print cards consistent to
avoid any potential discrepancies. Furthermore, as the known prints were randomly se-
lected, there was no control over the quality of the ten-print cards. Ideally, a ten-print card
should be of good quality but this was not always the case in this study. Some ten-print
cards (approximately 10%) were of very poor quality (less than 10 marked minutiae per
finger) while the latent was of a higher quality (contained more than 40 marked minu-
tiae). This difference could have resulted in lower match scores between the two prints or
a higher rate of non-match.

Apart from the AFIX Tracker R©, AFIS systems such as MorphoTrak and Cogent are
also being utilized by fingerprint examiners. It would be interesting to see how these
databases perform as compared to AFIX Tracker R©.

Overall, this research provided a quantitative method to assesses the minimum number
of minutiae needed to determine a true match. Such studies, combined with a Bayesian
analysis could provide valuable information while assessing the likelihood of a latent print
belonging to a particular donor. While there were some errors in mis-classification ob-
served, this project sets to serve as a preliminary study upon which extensive research can
be done to provide promising results.
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A. R Script to Calculate
Likelihood Ratios and Construct
Tippett and ECE Plots

l ibrary ( RNetica )
l ibrary ( i s o t o n e )
l ibrary ( png )

set . seed (123)

# Load data
↪→ ============================================================================
↪→

#F i n g e r p r i n t s <− read . csv (”C: /Users/Shreya/Desktop/TEST BN (
↪→ d e l t a )/Unknown Latents Data . csv ”)

F i n g e r p r i n t s <− read . csv ( ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a
↪→ )/Unknown with Re fe rences . csv ” )

# D i s c r e t i z e FP, BF, Rank and Rank BF
↪→ ==================================================

FingerprintsnewBF<−c ( )
FingerprintsnewFP<−c ( )
FingerprintsnewRank<−c ( )
FingerprintsnewRank BF<−c ( )
FingerprintsnewRank D<−c ( )

qt1<−subset ( F inge rpr in t s , s e l e c t=c (Match Score , Match Min , Min
↪→ Marked ) )
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options ( s c ipen =999)

FingerprintsnewMatch Score <− sapply ( qt1$Match Score , function ( x
↪→ )

i f (x<50) {”A 0”} else {
i f (x<2000){paste0 ( ”A ” , as . character ( ( cei l ing ( x/1000) )∗1000)

↪→ ) } else {
i f (x<10000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/5000) )∗

↪→ 5000) ) } else {
i f (x<40000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/10000) )

↪→ ∗10000) ) } else {
i f (x<75000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/

↪→ 15000) )∗15000) ) } else {
i f (x<150000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/

↪→ 50000) )∗50000) ) } else {
i f (x<250000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/

↪→ 100000) )∗100000) ) } else {
i f (x<1000000){ paste0 ( ”A ” , as . character ( ( cei l ing

↪→ ( x/250000) )∗250000) ) } else {
”A 1250000”}}}}}}}}

)
options ( s c ipen =0)

FingerprintsnewMatch Min <− sapply ( qt1$Match Min , function ( x )
i f (x<1) {”A 0”} else {

i f (x<7){paste ( ”A” , as . character ( ( f loor ( x/2) )∗2) , sep=” ” ) }
↪→ else {

i f (x<35){paste ( ”A” , as . character ( ( f loor ( x/5) )∗5) , sep=” ” )
↪→ }

}
}

)

FingerprintsnewMin Marked <− sapply ( qt1$Min Marked , function ( x )
i f (x<4) {”A 0”} else {

i f (x<55){paste ( ”A” , as . character ( ( f loor ( x/4) )∗4) , sep=” ” ) }
}

)

Data<−subset ( F inge rpr in t s , s e l e c t=c (Match Status ) ) # add IDs
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Match Min <− FingerprintsnewMatch Min
Match Score <− FingerprintsnewMatch Score
Min Marked <− FingerprintsnewMin Marked

Data<−cbind ( Data , Match Min , Match Score , Min Marked )

write . csv ( Data , ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/Unknown
↪→ Latents Data BNValid . csv ” , row .names = FALSE)

#=================================KNOWN DATA
↪→ =================================================

F i n g e r p r i n t s <− read . csv ( ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a
↪→ )/Known Fixed de l e t ed NM. csv ” )

# D i s c r e t i z e FP, BF, Rank and Rank BF
↪→ ==================================================

FingerprintsnewBF<−c ( )
FingerprintsnewFP<−c ( )
FingerprintsnewRank<−c ( )
FingerprintsnewRank BF<−c ( )
FingerprintsnewRank D<−c ( )

qt1<−subset ( F inge rpr in t s , s e l e c t=c (Match Score , Match Min , Min
↪→ Marked , Delta ) )

options ( s c ipen =999)

FingerprintsnewMatch Score <− sapply ( qt1$Match Score , function ( x
↪→ )

i f (x<50) {”A 0”} else {
i f (x<2000){paste0 ( ”A ” , as . character ( ( cei l ing ( x/1000) )∗1000)

↪→ ) } else {
i f (x<10000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/5000) )∗

↪→ 5000) ) } else {
i f (x<40000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/10000) )

↪→ ∗10000) ) } else {
i f (x<75000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/
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↪→ 15000) )∗15000) ) } else {
i f (x<150000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/

↪→ 50000) )∗50000) ) } else {
i f (x<250000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/

↪→ 100000) )∗100000) ) } else {
i f (x<1000000){ paste0 ( ”A ” , as . character ( ( cei l ing

↪→ ( x/250000) )∗250000) ) } else {
”A 1250000”}}}}}}}}

)
options ( s c ipen =0)

# xx<− 999999
# i f ( xx<1000000){ out <− pas te0 (”A ” , as . c h a r a c t e r ( ( f l o o r ( xx/

↪→ 250000) )∗250000) )}

FingerprintsnewMin Marked <− sapply ( qt1$Min Marked , function ( x )
i f (x<4) {”A 0”} else {

i f (x<55){paste ( ”A” , as . character ( ( cei l ing ( x/4) )∗4) , sep=” ” )
↪→ }

}
)

FingerprintsnewMatch Min <− sapply ( qt1$Match Min , function ( x )
i f (x<1) {”A 0”} else {

i f (x<7){paste ( ”A” , as . character ( ( f loor ( x/2) )∗2) , sep=” ” ) }
↪→ else {

i f (x<35){paste ( ”A” , as . character ( ( f loor ( x/5) )∗5) , sep=” ” )
↪→ }}}

)

Delta <− sapply ( qt1$Delta , function ( x )
i f (x<10) {”A 0”} else {
i f (x<50){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/30) )∗30) ) } else {
i f (x<500){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/100) )∗100) ) } else {
i f (x<2000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/1000) )∗1000) ) }

↪→ else {
i f (x<8000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/4000) )∗4000) ) }

↪→ else {
i f (x<30000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/10000) )∗10000) )

↪→ } else {
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i f (x<90000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/50000) )∗50000) )
↪→ } else {

i f (x<300000){paste0 ( ”A ” , as . character ( ( cei l ing ( x/150000) )∗
↪→ 150000) ) } else {

i f (x<900000){paste0 ( ”A ” , as . character ( ( cei l ing ( x/600000) )∗
↪→ 600000) ) } else {

i f (x<2000000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/1000000) )∗
↪→ 1000000) ) } else {

i f (x<5000000){ paste0 ( ”A ” , as . character ( ( cei l ing ( x/4000000) )∗
↪→ 4000000) ) } else {

i f (x<15000000){paste0 ( ”A ” , as . character ( ( cei l ing ( x/10000000) )∗
↪→ 10000000) ) } else {

i f (x<20000000){paste0 ( ”A ” , as . character ( ( cei l ing ( x/1550000) )∗
↪→ 1550000) ) } else {

”A 25000000 ”}}}}}}}}}}}}}

)

Data<−subset ( F inge rpr in t s , s e l e c t=c (Match Status ) ) # add IDs

Match Min <− FingerprintsnewMatch Min
Match Score <− FingerprintsnewMatch Score
Min Marked <− FingerprintsnewMin Marked
Delta <− Delta

Data<−cbind ( Data , Match Min , Match Score , Min Marked , Delta )

write . csv ( Data , ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/Known
↪→ Latents Data BNValid . csv ” , row .names = FALSE)

Data <− read . csv ( ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/Known
↪→ Latents Data BNValid . csv ” )

## Bui ld the Network=================================
# Define S t a t e s

↪→ ===========================================================================
↪→

s t . Match Status <− toupper (unique ( Data$Match Status ) )
s t . Match Score <− toupper (unique ( Data$Match Score ) )
s t . Min Marked <− toupper (unique ( Data$Min Marked ) )
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s t . Match Min <− toupper (unique ( Data$Match Min) )
s t . Delta <− toupper (unique ( Data$Delta ) )

# Create new Network
↪→ ===================================================================
↪→

BN9MM <− CreateNetwork ( ”BN9MM” )

# h e l p (” RNetica−package ”)
NetworkTit le (BN9MM) <− ”BN f o r the i n t e r p r e t a t i o n o f AFIS Data”
NetworkComment (BN9MM) <− ”SS Kamath & KB Morris ”

# Create nodes
↪→ =========================================================================
↪→

Match Status <− NewDiscreteNode (BN9MM, ”Match Status ” , s t a t e s=s t
↪→ . Match Status )

Match Score <− NewDiscreteNode (BN9MM, ”Match Score ” , s t a t e s=s t .
↪→ Match Score )

Min Marked <− NewDiscreteNode (BN9MM, ”Min Marked” , s t a t e s=s t . Min
↪→ Marked )

Match Min <− NewDiscreteNode (BN9MM, ”Match Min” , s t a t e s=s t . Match
↪→ Min)

Delta <− NewDiscreteNode (BN9MM, ” Delta ” , s t a t e s=s t . Delta )

# Change S t a t e T i t l e s
↪→ ==================================================================
↪→

NodeStateTi t l e s (Match Score ) <− formatC( as . numeric (gsub ( ”A ” , ”” ,
↪→ unique ( Data$Match Score ) ) ) , width=7, f l a g=”0” )

NodeStateTi t l e s (Min Marked ) <− formatC( as . numeric (gsub ( ”A ” , ”” ,
↪→ unique ( Data$Min Marked ) ) ) , width=2, f l a g=”0” )

NodeStateTi t l e s (Match Min) <− formatC( as . numeric (gsub ( ”A ” , ”” ,
↪→ unique ( Data$Match Min) ) ) , width=2, f l a g=”0” )

NodeStateTi t l e s ( Delta ) <− formatC( as . numeric (gsub ( ”A ” , ”” ,unique
↪→ ( Data$Delta ) ) ) , width=2, f l a g=”0” )

NodeStateTi t l e s (Match Status ) <− unique ( Data$Match Status )
#N o d e S t a t e T i t l e s (Min Marked ) <− unique ( F i n g e r p r i n t s $Min Marked )

# Add l i n k s
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↪→ ============================================================================
↪→

AddLink (Match Status , Match Score )
AddLink (Match Status , Match Min)
AddLink (Min Marked , Match Min)
AddLink (Match Min , Match Score )
AddLink (Match Status , Delta )
AddLink ( Delta , Match Score )
AddLink (Match Min , Delta )

# Add CPTs
↪→ =============================================================================
↪→

t r a i n <− Data
o u t f i l e <− tempfile ( ” t r a i n ” , f i l e e x t=” . cas ” )
write . CaseFi l e ( t ra in , o u t f i l e )
LearnCases ( o u t f i l e , l i s t (Match Score , Match Min , Min Marked ,

↪→ Match Status , Delta ) )

# Manipulate network
↪→ ===================================================================
↪→

CompileNetwork (BN9MM)

# Save the Network
↪→ =====================================================================
↪→

SetNetworkAutoUpdate (BN9MM,TRUE)
WriteNetworks (BN9MM, ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/BN

↪→ Train . dne” )

TesterSK <− read . csv ( ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/
↪→ Unknown Latents Data BNValid . csv ” )

#j <− 1

Poste r io rYes <− c ( )
Poster iorNo <− c ( )
PriorYes <− c ( )
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PriorNo <− c ( )

for ( j in 1 : length ( TesterSK$Match Status ) ) {

Pr i o r s <−NodeBe l i e f s (Match Status )
PriorYes [ j ] <− as . numeric ( Pr i o r s [ 1 ] )
PriorNo [ j ] <− as . numeric ( Pr i o r s [ 2 ] )

MinMatch <− as . character ( TesterSK$Match Min [ j ] )
MatchScore <− as . character ( TesterSK$Normalized Match Score [ j ] )

NodeFinding (Match Min) <− MinMatch
NodeFinding ( Normalized Match Score ) <− MatchScore

P o s t e r i o r s<−NodeBe l i e f s (Match Status )
Poste r io rYes [ j ] <− as . numeric ( P o s t e r i o r s [ 1 ] )
Poster iorNo [ j ] <−as . numeric ( P o s t e r i o r s [ 2 ] )

RetractNodeFinding (Match Min)
RetractNodeFinding ( Normalized Match Score )

}

LR <− ( Pos te r io rYes∗PriorNo )/ ( Poster iorNo∗PriorYes )
LLR <− log10 (LR)
# LR
# LLR

TesterSK <− cbind ( TesterSK , Poster iorYes , Poster iorNo , PriorYes ,
↪→ PriorNo , LR, LLR)

write . csv ( TesterSK , ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/
↪→ TesterSK . csv ” , row .names=FALSE)

#========================

RetractNetFindings (BN9MM)

DeleteNetwork (BN9MM)

56



rm(BN9MM)
i s . a c t i v e (BN9MM)
i s . a c t i v e (Match Status )

# P l o t s========================

TesterSK <− read . csv ( ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/
↪→ TesterSK . csv ” )

mainDir <− ”C: /Users/Shreya/Desktop/TEST BN ( d e l t a )/Plot s/”

LR.KM <− subset ( TesterSK , Match Status ==”Yes” , s e l e c t = ”LR” )
LR.KM <− LR.KM[ [ ’LR ’ ] ]
LR.KNM <− subset ( TesterSK , Match Status ==”No” , s e l e c t = ”LR” )
LR.KNM <− LR.KNM[ [ ’LR ’ ] ]

PriorYes <− TesterSK$PriorYes [ 1 ]
PriorNo <− TesterSK$PriorNo [ 1 ]

LR. H1 . exp = LR.KM
LR. H2 . exp = LR.KNM

log .LR. H1 . exp = log10 (LR. H1 . exp)
log .LR. H2 . exp = log10 (LR. H2 . exp)

min = min( log .LR. H1 . exp , log .LR. H2 . exp)
max = max( log .LR. H1 . exp , log .LR. H2 . exp)

x . range . data = data . frame ( c (min−1, log .LR. H1 . exp , log .LR. H2 . exp ,
↪→ max+1) ) #rbind (min−1, l o g .LR. H1 . exp , l o g .LR. H2 . exp , max+1)

x . range = x . range . data [ order ( x . range . data ) , 1 ]

log .LR. H1 . exp <− data . frame ( log .LR. H1 . exp)
log .LR. H2 . exp <− data . frame ( log .LR. H2 . exp)

t i t l e <− ” T i t l e goes here ”

# T i p p e t t P l o t s========================
Tippett . 2 = matrix (0 , nrow = length ( x . range ) , ncol = 1)
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Tippett . 1 = matrix (0 , nrow = length ( x . range ) , ncol = 1)

for (bb in 1 : length ( x . range ) ) {
Tippett . 2 [ bb ] = length (which( log .LR. H2 . exp > x . range [ bb ] ) )/

↪→ nrow( log .LR. H2 . exp)∗100
Tippett . 1 [ bb ] = length (which( log .LR. H1 . exp > x . range [ bb ] ) )/

↪→ nrow( log .LR. H1 . exp)∗100
}

f a l s e . p o s i t i v e s = round( length (which( log .LR. H2 . exp > 0) )/nrow(
↪→ log .LR. H2 . exp)∗100 ,2)

f a l s e . n ega t i v e s = round( length (which( log .LR. H1 . exp < 0) )/nrow(
↪→ log .LR. H1 . exp)∗100 ,2)

par ( mfrow=c ( 1 , 1 ) )
# Save T i p p e t t p l o t
fname <− paste0 ( mainDir , ” Tippett . png” )
png ( fname , width =1200 , he ight =1200 , r e s =144)
plot ( x . range , Tippett . 2 , type=” s ” , xlab=expression ( paste ( log

↪→ [ 1 0 ] , ”LR g r e a t e r than” ) ) , y lab=” Proport ion o f ca s e s [%] ” ,
↪→ xlim=c (−3 ,3) , yl im=c (0 ,100) , l t y =3, main = t i t l e )

par (new=TRUE)
plot ( x . range , Tippett . 1 , type=” s ” , xlab=expression ( paste ( log

↪→ [ 1 0 ] , ”LR g r e a t e r than” ) ) , y lab=” Proport ion o f ca s e s [%] ” ,
↪→ xlim=c (−3 ,3) , yl im=c (0 ,100) )

legend ( ” bot tomle f t ” , c ( expression ( paste ( ” true−” ,H[ d ] , ” LR va lue s
↪→ ” ) ) , expression ( paste ( ” true−” ,H[ p ] , ” LR va lue s ” ) ) ) , l t y=c
↪→ ( 3 , 1 ) , bty=”n” )

abline ( v=0, col=” gray ” , l t y =4)
dev . of f ( )

# Histogram========================
breaks = 50
s t epb in s = (max−min)/breaks
xbars = seq (min , max, by=stepb in s )

log .LR. H1 . exp = log .LR. H1 . exp [ ( log .LR. H1 . exp < ( xbars [ length (
↪→ xbars ) ]− s t epb in s /2) ) & log .LR. H1 . exp > ( xbars [1]− s t epb in s /
↪→ 2) ]

log .LR. H2 . exp = log .LR. H2 . exp [ ( log .LR. H2 . exp < ( xbars [ length (
↪→ xbars ) ]− s t epb in s /2) ) & log .LR. H2 . exp > ( xbars [1]− s t epb in s /
↪→ 2) ]
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# Save Histogram
fname <− paste0 ( mainDir , ”Histogram . png” )
png ( fname , width =1200 , he ight =1200 , r e s =144)
set = par ( mfrow=c ( 2 , 1 ) , mar=c ( 4 , 4 , 1 , 2 ) )
hist ( log .LR. H1 . exp , breaks=xbars−s t epb in s /2 , col=” gray35 ” , main=

↪→ ”” , xlab=”logLR” )#, main = t i t l e )
legend ( ” t o p l e f t ” , expression ( paste (H[ p ] , ” t rue ” ) ) , f i l l =” gray35 ”

↪→ )

hist ( log .LR. H2 . exp , breaks=xbars−s t epb in s /2 , col=” gray75 ” , main=
↪→ ”” , xlab=”logLR” )

legend ( ” top r i gh t ” , expression ( paste (H[ d ] , ” t rue ” ) ) , f i l l =” gray75
↪→ ” )

par ( set )
dev . of f ( )

par ( mfrow=c ( 1 , 1 ) )

# DET Plo t===================================
log .LR. H1 . exp = log10 (LR. H1 . exp)
log .LR. H2 . exp = log10 (LR. H2 . exp)

min = min( log .LR. H1 . exp , log .LR. H2 . exp)
max = max( log .LR. H1 . exp , log .LR. H2 . exp)

th r e sho ld . range = data . frame ( c (min−1, log .LR. H1 . exp , log .LR. H2 . exp
↪→ , max+1) )

th r e sho ld = thre sho ld . range [ order ( th r e sho ld . range ) , 1 ]

f a l s e . p o s i t i v e s = matrix (0 , nrow = length ( th r e sho ld ) , ncol = 1)
f a l s e . n ega t i v e s = matrix (0 , nrow = length ( th r e sho ld ) , ncol = 1)

log .LR. H1 . exp <− data . frame ( log .LR. H1 . exp)
log .LR. H2 . exp <− data . frame ( log .LR. H2 . exp)

for ( cc in 1 : length ( th r e sho ld ) ) {
tmp . th r e sho ld = thre sho ld [ cc ]
f a l s e . p o s i t i v e s [ cc ] = length (which( log .LR. H2 . exp > tmp .

↪→ th r e sho ld ) )/nrow( log .LR. H2 . exp)∗100
f a l s e . n ega t i v e s [ cc ] = length (which( log .LR. H1 . exp <= tmp .

↪→ th r e sho ld ) )/nrow( log .LR. H1 . exp)∗100
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}

x = qnorm( f a l s e . p o s i t i v e s /100)
y = qnorm( f a l s e . n ega t i v e s/100)

x [ which( x == −I n f ) ] = qnorm(0 . 000001)
y [ which( y == −I n f ) ] = qnorm(0 . 000001)
x [ which( x == I n f ) ] = qnorm(0 . 999999)
y [ which( y == I n f ) ] = qnorm(0 . 999999)

fname <− paste0 ( mainDir , ”DETplot . png” )
png ( fname , width =1200 , he ight =1200 , r e s =144)
plot (x , y , type=”S” , xlab=” f a l s e p o s i t i v e s [%] ” , ylab=” f a l s e

↪→ nega t i v e s [%] ” , xaxt=”n” , yaxt=”n” , xlim=c (qnorm( 0 . 000 1 ) ,
↪→ qnorm( 0 . 5 ) ) , yl im=c (qnorm( 0 . 000 1 ) ,qnorm( 0 . 5 ) ) , main =
↪→ t i t l e )

axis . range = c ( 0 . 0001 , 0 . 001 , 0 . 01 , 0 . 02 , 0 . 05 , 0 . 1 , 0 . 2 , 0 . 5 ,
↪→ 1 , 2 , 5 , 10 , 20 , 40 , 50)

axis . gauss = qnorm( axis . range/100)
abline (h=axis . gauss , l t y =3, col=” gray ” )
abline ( v=axis . gauss , l t y =3, col=” gray ” )
abline ( a=0, b=1, l t y=”dashed” , col=” darkgray ” )
axis ( s i d e =1, at=axis . gauss , labels=axis . range )
axis ( s i d e =2, at=axis . gauss , labels=axis . range )
dev . of f ( )

# ECE Function========================================
P. H1 = seq ( from =0.01 , to =0.99 , by=0.01)
P. H2 = 1 − P. H1
a . p r i o r i . odds = P. H1/P. H2

LR. H1 . exp <− data . frame (LR. H1 . exp)
LR. H2 . exp <− data . frame (LR. H2 . exp)

N. H1 = nrow(LR. H1 . exp)
N. H2 = nrow(LR. H2 . exp)

set = c ( ” n u l l ” , ”exp” , ” c a l ” )

fname <− paste0 ( mainDir , ”ECEplot . png” )
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png ( fname , width =1200 , he ight =1200 , r e s =144)

for (dd in 1 : length ( set ) ) {
i f (dd == 1) { ## LR f o r n u l l method

LR. H1 = rep (1 , t imes=N. H1)
LR. H2 = rep (1 , t imes=N. H2)

}

i f (dd == 2) { ## exper imenta l LR
LR. H1 = as . matrix (LR. H1 . exp)
LR. H2 = as . matrix (LR. H2 . exp)
LR. H1 [ which(LR. H1 < 10ˆ−20) ] = 10ˆ−20
LR. H2 [ which(LR. H2 < 10ˆ−20) ] = 10ˆ−20
LR. H1 [ which(LR. H1 > 10ˆ20) ] = 10ˆ20
LR. H2 [ which(LR. H2 > 10ˆ20) ] = 10ˆ20

}

i f (dd == 3) { ## c a l i b r a t e d LR accord ing to PAV
require ( ” i s o t o n e ” )

LR. H1 . H2 . exp = c (LR. H1 ,LR. H2)
i n d i c e s = order (LR. H1 . H2 . exp)
LR. H1 . H2 . exp . s o r t ed = sort (LR. H1 . H2 . exp)

p o s t e r i o r . prob = c ( rep (1 , t imes=N. H1) , rep (0 , t imes=N. H2) )
p o s t e r i o r . prob . so r t ed = p o s t e r i o r . prob [ i n d i c e s ]

p o s t e r i o r . H1 . H2 . c a l = data . frame ( gpava (LR. H1 . H2 . exp . sorted ,
↪→ p o s t e r i o r . prob . so r t ed ) [ 1 ] )

LR. H1 . H2 . c a l = p o s t e r i o r . H1 . H2 . c a l /(1− p o s t e r i o r . H1 . H2 . c a l )/ (
↪→ N. H1/N. H2)

LR. H1 = LR. H1 . H2 . c a l [ which( i n d i c e s %in% c ( 1 :N. H1) ) , ]
LR. H2 = LR. H1 . H2 . c a l [ which( i n d i c e s %in% (N. H1+1) : (N. H1+N. H2)

↪→ ) , ]
LR. H1 [ which(LR. H1 < 10ˆ−20) ] = 10ˆ−20
LR. H2 [ which(LR. H2 < 10ˆ−20) ] = 10ˆ−20
LR. H1 [ which(LR. H1 > 10ˆ20) ] = 10ˆ20
LR. H2 [ which(LR. H2 > 10ˆ20) ] = 10ˆ20

}

pena l ty . H1 = 0
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pena l ty . H2 = 0

for ( f f in 1 :N. H1) {
a = −log2 (LR. H1 [ f f ] ∗a . p r i o r i . odds/(1+LR. H1 [ f f ] ∗a . p r i o r i . odds

↪→ ) )
pena l ty . H1 = penal ty . H1 + a

}

for ( gg in 1 :N. H2) {
b = log2 (1 + LR. H2 [ gg ] ∗a . p r i o r i . odds )
pena l ty . H2 = penal ty . H2 + b

}

ECE= P. H1/N. H1∗pena l ty . H1 + P. H2/N. H2∗pena l ty . H2
col = c ( ” black ” , ” red ” , ” blue ” )
l t y = c ( 3 , 1 , 2 )
i f (dd %in% c ( 2 , 3 ) ) {par (new=TRUE) }

plot ( log10 ( a . p r i o r i . odds ) , ECE, xlim=c (−2 ,2) , yl im=c ( 0 , 1 ) ,
↪→ type=” l ” , col=col [ dd ] , l t y=l t y [ dd ] , x lab = expression (
↪→ paste ( ” p r i o r l og ” [ 1 0 ] , ” (Odds) ” ) ) , main = t i t l e )

abline ( v=0, l t y =2, col=” gray ” )
legend ( ” t o p l e f t ” , c ( ” n u l l method with LR=1” , ” exper imenta l LR”

↪→ , ” c a l i b r a t e d LR a f t e r PAV” ) , col=col , l t y=lty , bty=”n” ,
↪→ cex =0.8)

}
dev . of f ( )
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B. R Script for the Combined
ROC Curve

in s ta l l . packages ( ”pROC” )
l ibrary (pROC)
l ibrary (ROCR)

setwd ( ”C: /Users/Shreya/Desktop/Thes is/Fina l Data/ROC Curves” )
getwd ( )
Data=read . csv ( ”Known Search Fingers Fixed . csv ” )

png ( ”ROC Combined Fixed . png” , width = 4 , he ight = 4 , un i t s = ’ in
↪→ ’ , r e s = 300)

roc1 = plot ( roc ( Data$Match Status , Data$Match Score ) , main=’
↪→ Combined ROC Curves ’ , col = ” blue ” , xlab=’ Fa l se P o s i t i v e
↪→ Rate ’ , y lab=’ True P o s i t i v e Rate ’ )

roc2 = plot ( roc ( Data$Match Status , Data$Match Min) , col = ” red ” ,
↪→ add = TRUE, l t y =2)

legend ( ” bottomright ” , legend = c ( ”Match Score (AUC) = 0.837 ” ,
”Match Minutiae (AUC) = 0.871 ” ,
expression ( paste (p , ” ” , ”=” , ” ”

↪→ , 1 . 758 , x ,10ˆ−6) ) ,
expression ( paste ( alpha , ” = ” ,

↪→ 0 . 0 5 ) ) ) , col=c ( ” blue ” , ” red2 ”
↪→ , ” white ” , ” white ” ) ,box . col=”
↪→ black ” , cex =0.5 , l t y = 1 : 2 )

dev . of f ( )
roc . t e s t ( roc1 , roc2 )
roc . t e s t ( roc1 , roc2 , method=” delong ” )
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C. R script for Error Rate Plots

setwd ( ”C: /Users/Shreya/Desktop/Thes is/Fina l Data/Error Rates ” )
getwd ( )
Finger=read . csv ( ”Known Search Fingers Fixed . csv ” )
names( Finger )

#=====================Match Min Plo t===============
#Rates vs . c u t o f f
pred=p r e d i c t i o n ( Finger$Match Min , Finger$Match Status )
p e r f . f n r=performance ( pred , ” fn r ” , ” fp r ” )
p e r f . f p r=performance ( pred , ” fp r ” , ” fn r ” )
p e r f . acc=performance ( pred , ” acc ” )

# now c o n v e r t i n g S4 c l a s s to v e c t o r
f n r = unlist ( s l o t ( p e r f . fnr , ”y . va lue s ” ) )
f p r = unlist ( s l o t ( p e r f . fpr , ”y . va lue s ” ) )
acc = unlist ( s l o t ( p e r f . acc , ”y . va lue s ” ) )

c u t o f f = unlist ( s l o t ( p e r f . fnr , ” alpha . va lue s ” ) )

png ( ”ROC Match Minutiae Fixed . png” , width = 4 , he ight = 4 , un i t s
↪→ = ’ in ’ , r e s = 300)

plot ( f p r˜ cu to f f , type=” l ” , xlab=”Match Minutiae ” , ylab=”Rate” ,
↪→ xlim=c (0 , 35 ) , main=” Error Rate\nMatch Minutiae ” , col=” red ” )

l ines ( f n r˜ cu to f f , col=” blue ” , l t y =8, type=” l ” )
legend ( 2 4 , 0 . 9 , legend=c ( ” Fa l se P o s i t i v e Rate” , ” Fa l se Negative

↪→ Rate” , ”EER = 21%” ) , col=c ( ” red ” , ” blue ” , ” white ” ) , box . col
↪→ =” black ” , l t y=c ( 1 , 2 ) , cex = 0 . 4 )

#x a x i s : 4.710857
#y a x i s : 0.2132065
locator ( )
dev . of f ( )
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#a f t e r us ing l o c a t o r , c l i c k on e x i t to g e t v a l u e o f EER

#=====================Match Score P lo t==============
pred=p r e d i c t i o n ( Finger$Match Score log , Finger$Match Status )
p e r f . f n r=performance ( pred , ” fn r ” , ” fp r ” )
p e r f . f p r=performance ( pred , ” fp r ” , ” fn r ” )
p e r f . acc=performance ( pred , ” acc ” )

# now c o n v e r t i n g S4 c l a s s to v e c t o r
f n r = unlist ( s l o t ( p e r f . fnr , ”y . va lue s ” ) )
f p r = unlist ( s l o t ( p e r f . fpr , ”y . va lue s ” ) )
acc = unlist ( s l o t ( p e r f . acc , ”y . va lue s ” ) )

c u t o f f = unlist ( s l o t ( p e r f . fnr , ” alpha . va lue s ” ) )

png ( ”ROC Match Score Fixed . png” , width = 4 , he ight = 4 , un i t s = ’
↪→ in ’ , r e s = 300)

plot ( f p r˜ cu to f f , type=” l ” , xlab=”Log o f Match Score ” , ylab=”Rate”
↪→ , xl im=c ( 1 . 7 0 , 6 . 0 ) , main=” Error Rate\nMatch Score ” , col=”
↪→ red ” )

l ines ( f n r˜ cu to f f , col=” blue ” , l t y =8, type=” l ” )
legend ( 4 . 6 , 0 . 5 5 , legend=c ( ” Fa l se P o s i t i v e Rate” , ” Fa l se Negative

↪→ Rate” , ”EER = 25%” ) , col=c ( ” red ” , ” blue ” , ” white ” ) , box .
↪→ col=” black ” , l t y=c ( 1 , 2 ) , cex = 0 . 4 )

#x a x i s : 3.768671
#y a x i s : 0.2477137
locator ( )
dev . of f ( )
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D. Match Minutiae vs Delta
Score for Individual Runs

Figure D.1: Match Minutiae vs Delta Match Score for Search Result 688
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Figure D.2: Match Minutiae vs Delta Match Score for Search Result 838
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Figure D.3: Match Minutiae vs Delta Match Score for Search Result 1005
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Figure D.4: Match Minutiae vs Delta Match Score for Search Result 1101
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E. Test Print Results for
Different Development Methods

Table E.1: Test Prints Development Methods

True Match Highest Match Score Highest Min Marked Highest Match Min

Black 3327600 50 40

Nin 59690 25 10

Cyano 17160 40 8

Non-Match Highest Match Score Highest Min Marked Highest Match Min

Black 73944 50 13

Nin 11074 50 7

Cyano 15708 40 8
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F. Tippett, Histogram and ECE
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Plots Related to Match Minutiae

Figure F.1: Tippett plot with Match Minutiae 1-3
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Figure F.2: Histogram with Match Minutiae 1-3
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Figure F.3: ECE plot with Match Minutiae 1-3
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Figure F.4: with Match Minutiae 4-7
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Figure F.5: Histogram with Match Minutiae 4-7
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Figure F.6: ECE plot with Match Minutiae 4-7
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Figure F.7: Tippett plot with Match Minutiae 8-14
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Figure F.8: Histogram with Match Minutiae 8-14
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Figure F.9: ECE plot with Match Minutiae 8-14
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Figure F.10: Histogram with Match Minutiae 15-40
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