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Abstract 

Study of Parameter Estimation and Model Calibration using Bayesian 

Analysis of Noisy Data for a Virus Model 

 
Alejandro Mejia 

 

Numerous engineering problems are concerned with the challenge of representing real life systems 

through mathematical equations: modeling. Properly generated mathematical models can accurately 

predict the behavior of natural processes. The key objective of model development is to correctly 

build a set of equations or expressions that can reproduce the results observed from experimental 

measurements. By following this methodology, sources of error and uncertainty will arise as most 

natural processes have random factors that make the results stochastic, and therefore can never be 

exactly reproduced. A model can try to best approximate the actual outcome, but many times 

assumptions or simplifications are needed because either the problem becomes mathematically 

unfeasible, or there is not enough knowledge regarding the process. Additionally, even if models are 

correctly defined, they may require proper calibration of its parameters to make predictions.  

In the study of virology, within host viral infections can be modeled by means of 

mathematical balances of target cell populations. A virus model will describe how a virus infects 

healthy cells and spreads by defining a set of depletion/replenishment rate parameters that will depend 

on each system. The focus of this study is to determine the posterior probability distributions of these 

parameters that will best approximate a given patient’s data, similar to data fitting. Using an inverse 

modeling approach to generate patient data using known reference values of the virus model 

parameters and adding random “white” noise, a virus model will be fitted to the generated noisy data 

using Bayesian methods for parameter estimation. 

The main purpose of this study is to validate the use of Bayesian calibration techniques as an 

alternative to conventional gradient-based parameter estimation methods. The results of a calibrated 

virus model with a fixed virus generation rate are then used to make model predictions and extrapolate 

the dynamic behavior to different ranges of the fixed parameter. The results conclude that Bayesian 

methods can be successfully used for parameter estimation, especially for high-dimensional 

problems, however the practical identifiability of the parameters is limited by the model’s nonlinear 

terms, the experimental data variance, and the available data measurements. Although the results are 

encouraging, the excessive computation time needed for obtaining the empirical parameter Posterior 

distributions limit the practical use of these methods.  
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Chapter 1  

Introduction 

Mathematical modeling is a useful tool for describing real life processes and systems. If properly 

defined, it can provide valuable results from precise equations that approximate and predict a system’s 

behavior. Modeling is used in many fields of study and areas of research; thus understanding its 

fundamentals is an important skill, especially for modern engineering. With the continuing 

development of computers and more advanced computational software, there is an increasing use of 

numerical methods to model and analyze progressively more complex systems by taking advantage 

of better computational speed and power. This has opened a doorway to the ongoing expansion of 

new methods and techniques of numerically modeling physical systems.  

 

Although modeling can be a powerful tool, it is not without limitations and caveats that must 

be considered to avoid invalid results and conclusions. Although the study of modeling limitations is 

not the main interest of this study, one of the challenges that is discussed in this thesis is the issue 

related to the implementation of a numerical solver for model calibration. Once a mathematical model 

is properly defined, there is usually a concern regarding model calibration that will allow the properly 

calibrated model to predict, under given conditions, future system behavior. This ability to make 

accurate predictions is one of the key advantages of correctly modeling a system. 

 

For the purpose of this research, model calibration refers to the process of determining the 

unknown parameters of a dynamic mathematical model using experimental data, so-called inverse 

modeling or data fitting. The calibrated model represents a function that describes the behavior of the 

system that best approximates the numerical results to the actual measured data, and can be used to 

make predictions. A wide variety of methods exist for calibrating computer models, however, in 

recent years Bayesian analysis has gained much interest in its implementation for statistical inference, 

allowing the making of accurate predictions and informed decisions by employing probability 

distributions [1]. 
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With this in mind, the focus of this thesis is to develop and analyze the implementation of a 

computer-based Bayesian calibration routine for an existing mathematical model. The model chosen 

for testing the calibration code is a simple dynamic virus model that has been used in many studies 

(Gumel et al. [2], Nowak and May [3]) to replicate the initial phase of a virus infection. Although the 

calibration tool may be adapted to other dynamic systems and engineering problems, this model is 

used because it is a known existing mathematical model used in the biomedical/pharmaceutical 

industry and the experimental data set can be obtained from existing patient records if real life 

implementation is anticipated. This model was also initially provided as a test case from PSE’s 

gPROMS® ModelBuilder platform to determine if this commercial advance process modeling 

software could potentially take advantage of an existing Bayesian calibration routine through the use 

of a Foreign Process Interface communication. 

 

The main purpose of implementing a Foreign Process Interface (FPI) is to have gPROMS® 

be the model solver, which reads a parameter set as an input, and deliver an output containing the 

model’s measured virus which could be calibrated to a single infected patient data-set. The output 

from gPROMS® would be used by the calibration routine to explore the parameter space and get a 

posterior distribution. This methodology was only used to test the FPI and the feasibility of 

implementing a calibration tool because the extensive computation time required for every iteration 

makes the Bayesian tool impractical. Because of this undesired model evaluation time, an 

independent C++ version of the virus model solver is also developed to produce the same output and 

reduce the overall calibration time. 

 

1.1 Background and Previous Research on Virus Modeling 

In clinical research, epidemiology refers to the study of how diseases, and their symptoms, can spread 

within populations of individuals. In this sense, the dynamics of a disease spreading is examined on 

a large population scale. When studying viruses, research is also aimed at learning how an 

individual’s system behaves after becoming infected. This within host cell-to-cell infectious micro 

scale spreading phenomenon is of high interest in determining the characteristics of currently known 

viruses, and help study new ones after they are discovered [3]. 

  

 Viruses have been studied for many years, and with extensive investigation, some have even 

been successfully vaccinated against. There is still ongoing research and development in this field. 

The main goal of understanding virus behavior and its process of replicating is to minimize its ability 
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to spread within susceptible populations and effectively reduce or inhibit its adverse effects inside 

individual hosts. Once a virus vaccine is successfully developed, it can be used to assist the patient’s 

immunological system in defending itself from future infection by identifying the foreign infectious 

agent.  

 

 One of the viruses of high concern in recent years, since its discovery in 1981, is the Human 

Immunodeficiency Virus (HIV). The HIV infection attacks the host’s immunological system and is 

characterized by three distinct phases: the primary or acute infection phase, the asymptotic latency 

phase, and the final progression into acquired immunodeficiency syndrome (AIDS). The primary 

phase is identified by the early initial period after infection, where a rapid exponential increase in 

viral load occurs until reaching a maximum peak. The time of HIV primary infection varies greatly 

from patient to patient, but is usually observed in a period of a few weeks, where symptoms may be 

present. After the primary phase reaches its peak viral load, the total virus count decreases gradually 

and settles on a quasi-steady-state viral load that differs for each patient. This phase can last for 

several years, sometimes without showing symptoms or significant detection, and eventually depletes 

the host’s population of healthy target helper T-cells to a critical level, developing into AIDS.  

 

 

Figure 1-1 HIV primary phase infection progression 
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Mathematical modeling of HIV virus dynamics has been centered on the primary phase 

(Murray et al. [4], Tuckwell and LeCorfec [5], Stafford et al. [6]) and most studies are focused in 

attempting to reproduce the various patient behavior after initial infection occurs (see Figure 1-1). 

The target limited virus model used in these studies of primary HIV infection has six rate parameters 

[𝑎 𝛽 𝑑 𝑘 𝜆 𝑢]  as shown in Figure 1-2, taken from the reference textbook (Nowak and May [3]). 

 

 

Figure 1-2 HIV target limited virus model 

 

The currently existing virus models can be used for HIV progression studies by adjusting the 

different rate parameters to cover a wide range of patient immunological responses. Ciupe et al. [7] 

attempt to estimate the kinetic parameters of a target cell limited model and replicate the oscillating 

behavior observed in patients during the primary phase, that are not reproducible by the basic model 

configuration. The exact moment of infection is rarely known, and similarly, the time until the T-cells 

become activated and respond to the virus infection. In their study, a time delay is added to the model 

as an additional parameter to account for the host immune system response. Leenheer and Smith [8] 

use this additional time delay parameter to represent an immune system response that can properly 

model oscillations that are sometimes observed in patients. 

 

1.2 Virus Model Parameter Identifiability 

One of the common challenges found in previous HIV mathematical model studies is the issue related 

to parameter identifiability. Regardless of the model used, previous authors (Xia and Moog [9], 

Wentworth et al. [10], Wu et al. [11]) noted that using measured virus data alone makes the identifiability 

of all the model parameters mathematically achievable, but difficult in practice due to the patient data 

being characteristically noisy. Moreover, other studies (Burg et al. [12]) concluded that using patient 

data from the asymptotic phase of infection makes parameter identifiability and estimation 

impossible. A generally adopted solution for this virus progression measurement constraint is to 

perturb the host dynamics by introducing HIV viral treatment that inhibits the virus replication and 

thus generates a disturbance in the quasi-steady-state virus balance found in the asymptotic phase. 

This approach relies on taking samples after treatment is introduced and finding the parameters from 

the data obtained. 
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 Sensitivity analyses for parameter identifiability have shown that depending on the 

experimental data available, some of the parameters are difficult to identify individually. Soetaert and 

Petzoldt [13] analyze the identifiability of the different combinations of five parameters for a six-

parameter HIV virus model, noting in their study that the parameter set [𝑎 𝛽 𝑑 𝜆 𝑢] has the lowest 

collinearity, and is therefore easiest to identify. Table 1-1 shows the sensitivity analysis results from 

Stoetaert and Petzoldt for the possible parameter combinations, noting that the identifiability of the 

parameters is possible using both measurements of virus particles and cell populations. 

 

Table 1-1 Model parameter collinearity  

 𝑎 𝛽 𝑑 𝑘 𝜆 𝑢 N collinearity 

1 1 1 1 1 1 0 5 41 

2 1 1 1 1 0 1 5 51 

3 1 1 1 0 1 1 5 12 

4 1 1 0 1 1 1 5 34 

5 1 0 1 1 1 1 5 36 

6 0 1 1 1 1 1 5 15 

7 1 1 1 1 1 1 6 53 

* Data obtained from Stoetaert and Petzoldt [13] 
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Chapter 2  

Virus Model 

Viruses are understood as infectious, microscopic particles that contain genetic material (RNA or 

DNA) and need living cells found in organisms in order to “infect” their nucleus and replicate 

themselves. Because a virus cannot reproduce outside of a host cell it is debated whether it should be 

considered as a living or non-living organism. Virology, the study of viruses and their life cycles, 

attempts to understand virus behavior. The theoretical modeling of viral behavior is mathematically 

analogous to the dynamics and survival of a prey-predator population. 

 

2.1 Mathematical Virus Model 

In studying the dynamics of a virus, a basic mathematical model is established which has three state 

variables for each type of population present: the number of uninfected cells (𝑥), the number of 

infected cells (𝑦), and the measure of free virus particles (𝑣). As previously mentioned, there are six 

rate parameters that are used to help describe the relationship between these state variables and model 

the time lapse for each variable, once an initial infection has occurred. The following figure shows a 

diagram depicting the relationship between each of the time dependent variables 𝑥, 𝑦, and 𝑣, with the 

inbound/outbound arrows representing source and sink terms, respectively. 

 

 

Figure 2-1 Illustration of the dynamics of a basic virus model 
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Intuitively a virus infection can be regarded as a dynamic process (see Figure 2-1) where an 

uninfected cell population system, initially at rest, or likewise at equilibrium, is disturbed by an 

infection from an arbitrary amount of virus particles. Once infected, the system will undergo changes 

in the infected/uninfected cell populations due to the creation (replication) and destruction of virus 

particles, also known as virions, and its original cell population dynamics. In other words, the system 

has an initial uninfected cell population balance, which will be altered once an infection is present. 

This new infected system will now either return to a state of equilibrium with the infection and death 

rates leading to the virus particles dying out, or to the continuous growth and eventual overflow of 

infected cells and virus particles. The outcome of this chain reaction will ultimately depend on the 

characteristics of the virus which infects the system. For a given virus, the dimensionless ratio known 

as the reproductive ratio of infection (𝑅0) will determine how the system will behave in time. A 

reproductive ration less than one means that, on average, every virus particle produces less than one 

new virus particle and therefore, in future time generations, the virus count will gradually decrease 

and be eliminated from the system. If instead 𝑅0 is greater than one, the virus will continuously 

produce more new virus particles. The reproductive ratio of infection is an important characteristic 

of infections, and usually of high interest because it gives an idea of how infectious a disease or virus 

can be.  

 

In an uninfected patient, both 𝑦 and 𝑣 are zero. However, when a patient is infected with any 

amount of virus particles, 𝑣0, the uninfected cells become infected with an infection rate which is 

proportional to the product of the variables 𝑥 (number of uninfected cells) and 𝑣 (number of free 

viruses): 𝜷𝑥𝑣. Next, the recently infected cells produce new free virus particles at a rate 𝒌𝑦. The 

uninfected and infected cells each die with a death rate of 𝒅𝑥 and 𝒂𝑦, respectively. Also, the free 

virus particles die or are removed from the system at a rate 𝒖𝑣. In modeling an uninfected cell’s 

dynamics, it is assumed that new cells are generated at a constant rate 𝝀. Alternatively, some authors 

model this replenishment rate of new cells, 𝜆, as a time-varying parameter. For a constant 𝜆 and if no 

virus infection is present, the differential equation that models the uninfected cell population in a 

system is given as follows:  

 
𝑑𝑥

𝑑𝑡
= 𝑥̇ = 𝝀 − 𝒅𝑥 (1) 

It can be shown from this linear ODE that an uninfected system will equilibrate to the steady 

state value 𝑥 = 𝜆/𝑑 that balances the replication and death of uninfected cells in a system. These 

relationships, which can be viewed as source and sink terms, provide the basis for the mathematical 

setup of the virus target cell-limited model as follows: 
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𝑑𝑥

𝑑𝑡
= 𝑥̇ = 𝝀 − 𝒅𝑥 − 𝜷𝑥𝑣 (2) 

 
𝑑𝑦

𝑑𝑡
= 𝑦̇ = 𝜷𝑥𝑣 − 𝒂𝑦 (3) 

 
𝑑𝑣

𝑑𝑡
= 𝑣̇ = 𝒌𝑦 − 𝒖𝑣 (4) 

 These three equations are used to model the time-dependent interaction of a virus infection 

in a system. Hundreds of viruses are currently known to exist and infect living organisms such as 

humans, animals, plants, and bacteria. The Human Immunodeficiency Virus (HIV) is one example of 

a virus which is modeled using these equations. Table 2-1 provides a summary of the parameters used 

to model the virus behavior, and a set of reference values for HIV from a virus dynamics reference 

textbook [3]. 

 

Table 2-1 Virus model HIV parameter values 

Parameter Description Symbol HIV model* Bounds S.D. 

Death rate of infected cells 𝑎 0.5 [0.0 1.0] 0.1 

Virus infection rate 𝛽 2*10-7 [10-9 10-3] 1*10-5 

Death rate uninfected cells 𝑑 0.1 [0.001 0.8] 0.01 

Free virions generation rate 𝑘 100 [0 1000] 1 

New cells replenishment rate 𝜆 1*105 [100 106] 5*103 

Virus death rate 𝑢 5 [1 100] 2.5 

* Values obtained for a reference HIV model from Nowak et al [3] 

 

From these expressions, it is convenient to mathematically define and calculate the 

reproductive ratio of infection as follows: 

 𝑅0 =
𝜆𝛽𝑘

𝑑𝑎𝑢
 (5) 

 For the reference values used in Table 2-1, the reproductive ratio of infection for HIV is 

computed as 𝑅0 = 8. Equations (2), (3), and (4) will be referred to in the remainder of this text, as 

the Bayesian MCMC calibration tool will be used to estimate the five of the six unknown rate 

parameters. For a given initial viral load 𝑣0, the system of equations can be numerically solved using 

a discretization method which will be discussed in the following section. 
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2.2 Numerical Discretization and Model Solver 

The method selected to discretize and numerically approximate (solve) the virus model differential 

equations is an implicit Crank-Nicolson scheme, which provides a stable second-order convergence 

in time stencil. In their studies, Ciupe et al. [7] use a modified Runge-Kutta (RK) method with a step 

size ∆𝑡 = 0.01. Alternatively, Gumel et al [2] propose a faster Gauss-Seidel-like method for this same 

virus model and compare its stability to an RK2 method, showing that this “implicit” discretization 

scheme can also be used. As will be mentioned later, this first-order accurate solution greatly reduces 

the computation time needed. Similarly, an Euler method was initially tested in this study, but not 

used for calibration because of the inherent stability issues of this scheme. The selected method for 

solving the PDEs is shown, where the superscript n indicates the time iteration as follows: 

 
𝑑𝑢

𝑑𝑡
=
𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
1

2
[𝐹𝑛+1 + 𝐹𝑛] (6) 

A stencil for the Crank-Nicolson discretization scheme is presented in Figure 2-2. 

 

 

Figure 2-2 Crank-Nicolson discretization method stencil 

 

 Applying this stencil to equations (2), (3), and (4) we obtain the following set of discretized 

equations: 

 
𝑥𝑛+1 − 𝑥𝑛

Δ𝑡
= 𝜆 −

𝑑

2
(𝑥𝑛+1 + 𝑥𝑛) −

𝛽

2
(𝑥𝑛+1𝑣𝑛+1 + 𝑥𝑛𝑣𝑛) (7) 

 
𝑦𝑛+1 − 𝑦𝑛

Δ𝑡
=
𝛽

2
(𝑥𝑛+1𝑣𝑛+1 + 𝑥𝑛𝑣𝑛) −

𝑎

2
(𝑦𝑛+1 + 𝑦𝑛)        (8) 

 
𝑣𝑛+1 − 𝑣𝑛

Δ𝑡
=
𝑘

2
(𝑦𝑛+1 + 𝑦𝑛) −

𝑢

2
(𝑣𝑛+1 + 𝑣𝑛)                      (9) 
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To numerically solve these equations, a Newton-Raphson root-finding solver is implemented 

by moving all the terms to one side and equating each expression to zero. The Newton solver will 

provide a method of iteratively converging to the roots of these equations for each time step Δ𝑡. In 

order to implement this solver using a computer-based algorithm, the inputs are specified as vectors. 

Additionally, a Jacobian matrix is required to compute the partial derivatives of the equations with 

respect to each state variable.  

 

The three discretized equations above are rewritten so that the virus model can be expressed 

in matrix form: 

 0 = 𝑥𝑛 − 𝑥𝑛+1 + Δ𝑡 [𝜆 −
𝑑

2
(𝑥𝑛+1 + 𝑥𝑛) −

𝛽

2
(𝑥𝑛+1𝑣𝑛+1 + 𝑥𝑛𝑣𝑛)] (10) 

 0 = 𝑦𝑛 − 𝑦𝑛+1 + Δ𝑡 [
𝛽

2
(𝑥𝑛+1𝑣𝑛+1 + 𝑥𝑛𝑣𝑛) −

𝑎

2
(𝑦𝑛+1 + 𝑦𝑛)]        (11) 

 0 = 𝑣𝑛 − 𝑣𝑛+1 + Δ𝑡 [
𝑘

2
(𝑦𝑛+1 + 𝑦𝑛) −

𝑢

2
(𝑣𝑛+1 + 𝑣𝑛)]                      (12) 

These expressions are now combined as a vector function 𝐹(𝑥̅), where 𝑥̅ is a 3x1 column 

vector and the entries correspond to each state variable at the iteration 𝑛 + 1: 

 𝐹(𝑥̅) = 𝐹 (
 𝑥𝑛+1

 𝑦𝑛+1

 𝑣𝑛+1
) (13) 

 The vector function of inputs 𝑥, 𝑦, and 𝑣 evaluates the virus model balance equations for a 

new time iteration (𝑛 + 1), knowing the previous state (𝑛), the time step, and the corresponding 

parameter values: 

 𝐹(𝑥̅) =

(

 
 
 
𝑥𝑛 − 𝑥𝑛+1 + Δ𝑡 [𝜆 −

𝑑

2
(𝑥𝑛+1 + 𝑥𝑛) −

𝛽

2
(𝑥𝑛+1𝑣𝑛+1 + 𝑥𝑛𝑣𝑛)] 

𝑦𝑛 − 𝑦𝑛+1 + Δ𝑡 [
𝛽

2
(𝑥𝑛+1𝑣𝑛+1 + 𝑥𝑛𝑣𝑛) −

𝑎

2
(𝑦𝑛+1 + 𝑦𝑛)]         

𝑣𝑛 − 𝑣𝑛+1 + Δ𝑡 [
𝑘

2
(𝑦𝑛+1 + 𝑦𝑛) −

𝑢

2
(𝑣𝑛+1 + 𝑣𝑛)]                      )

 
 
 

 (14) 

The Jacobian matrix 𝐹′(𝑥̅) for this function is computed by taking the derivative of each 

equation with respect to the state variables at the next iteration n+1: 
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 𝐹′(𝑥̅) =

(

 
 
 
 

𝜕𝐹1(𝑥̅)

𝜕𝑥𝑛+1
𝜕𝐹1(𝑥̅)

𝜕𝑦𝑛+1
𝜕𝐹1(𝑥̅)

𝜕𝑣𝑛+1

𝜕𝐹2(𝑥̅)

𝜕𝑥𝑛+1
𝜕𝐹2(𝑥̅)

𝜕𝑦𝑛+1
𝜕𝐹2(𝑥̅)

𝜕𝑣𝑛+1

𝜕𝐹3(𝑥̅)

𝜕𝑥𝑛+1
𝜕𝐹3(𝑥̅)

𝜕𝑦𝑛+1
𝜕𝐹3(𝑥̅)

𝜕𝑣𝑛+1 )

 
 
 
 

 (15) 

Where 𝐹𝑖(𝑥̅) is the corresponding row (equation) of the vector function 𝐹(𝑥̅) for 𝑖 = 1, 2, 3. 

 𝐹′(𝑥̅) =

(

 
 
 
−1 − ∆𝑡 (

𝑑

2
+
𝛽

2
𝑣𝑛+1) 0 −∆𝑡

𝛽

2
𝑥𝑛+1 

∆𝑡
𝛽

2
𝑣𝑛+1 −1 − ∆𝑡

𝑎

2
∆𝑡
𝛽

2
𝑥𝑛+1 

0 ∆𝑡
𝑘

2
−1 − Δ𝑡

𝑢

2
 )

 
 
 

 (16) 

 The Newton-Raphson method for finding the roots to the vector function 𝐹(𝑥̅) is defined as 

follows: 

 𝑥𝑘+1
𝑛+1 = 𝑥𝑘

𝑛+1 − [𝐹′(𝑥𝑘
𝑛+1)]

−1
𝐹(𝑥𝑘

𝑛+1) (17) 

Where the 𝑘 subscript specifies the Newton iteration, [𝐹′(𝑥𝑘
𝑛+1)]

−1
 is the inverse of the 

Jacobian matrix, and 𝑥𝑘
𝑛+1 is the current solution for the states, given as a vector. 

  

The inverse of the Jacobian must be approximated using some numerical method that is both 

easy to implement and does not use excessive computation time, as it will need to be computed for 

every time step iteration. A simple Jacobi method that decomposes the Jacobian matrix into two 

matrices (diagonal and residual matrices) is used. This numerical method of finding the inverse of a 

matrix is less computationally expensive than an LU decomposition. 

  

 With the matrices and vectors from equations (14) and (16), equation (17) can be evaluated 

and iteratively solved for a given time step ∆𝑡. This process is implemented into C++ as a model 

evaluator for a given virus parameter set input. The algorithm output can be user-defined to assign a 

vector that contains the measured virus in a time interval that matches the experimental patient data. 

This method is tested with a working virus model in the gPROMS ModelBuilder® environment to 

verify that no coding error exists. The Crank Nicolson (C-N) finite difference numerical solver was 

implemented for correctly running the C++ based MCMC routine. Afterwards, a Gauss Seidel-like 

(GSS) method proposed by Gumel et al. [2] was found to have fast, stable, and accurate computational 

results, and eventually used for the final stage of this study, after initial results from the C-N algorithm 
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were obtained. The time derivative is approximated using a first-order forward-difference numerical 

scheme as follows: 

 
(𝑥𝑛+1 − 𝑥𝑛)

∆𝑡
= λ − 𝑑𝑥𝑛+1 − 𝛽𝑥𝑛+1𝑣𝑛 (18) 

 
(𝑦𝑛+1 − 𝑦𝑛)

∆𝑡
= 𝛽𝑥𝑛+1𝑣𝑛 − 𝑎𝑦𝑛+1        (19) 

 
(𝑣𝑛+1 − 𝑣𝑛)

∆𝑡
= 𝑘𝑦𝑛+1 − 𝑢𝑣𝑛+1              (20) 

 These expressions can be re-arranged to leave the unknown iteration in terms of the known 

current states to give the following explicit linear algebraic system: 

 𝑥𝑛+1 =
𝑥𝑛 + ∆𝑡 ∙ λ

1 + ∆𝑡(𝑑 + 𝛽𝑣𝑛)
    (21) 

 𝑦𝑛+1 =
𝑦𝑛 + ∆𝑡 ∙ 𝛽𝑥𝑛+1𝑣𝑛

1 + ∆𝑡 ∙ 𝑎
 (22) 

 𝑣𝑛+1 =
𝑣𝑛 + ∆𝑡 ∙ 𝑘𝑦𝑛+1

1 + ∆𝑡 ∙ 𝑢
      (23) 

 The virus model is solved using both the C-N and GSS methods discussed in this chapter, but 

the latter provides faster MCMC steps by omitting the need to compute the inverse of the Jacobian 

and will be used to produce the final results for the Bayesian calibration. The next chapter will discuss 

the fundamentals of Bayesian analysis needed to understand how the MCMC calibration tool will be 

used for analyzing a noisy patient data set and estimate the parameters for the HIV virus model. 
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Chapter 3  

Bayesian Model Calibration 

When calibrating a mathematical model, the main goal is to determine the unknown parameters in 

the model equations using measured experimental data, so-called data fitting. The measured data 

provides the necessary information to compare model output against. Many techniques exist for 

model calibration, such as Maximum Likelihood Estimation (MLE) and Least Squares (LS) based 

estimation. An alternative approach to getting model parameter estimations is through the use of 

Bayesian analysis, where the unknown parameters are defined as random variables and given a 

probability distribution, which represents degree of belief for the true parameter values. Bayesian 

model calibration is implemented using Bayes theorem for conditional probabilities. 

 

3.1 Fundamental Statistics and Bayes’ Theorem 

Statistics is the discipline that focuses on collecting, organizing, presenting, and analyzing data that 

is generally gathered from experiments. One main branch of statistics is probability theory, which 

deals with the analysis of random experiments or events. From probability theory, the conditional 

probability of an event 𝐴 occurring given that another event 𝐵 has occurred is stated by: 

 𝑃(𝐴|𝐵) =
𝑃(𝐴⋂𝐵)

𝑃(𝐵)
 (24) 

Figure 3-1 shows this concept graphically with a Venn diagram. Here, the sample space 𝒞 contains 

all possible outcomes of a random experiment, where events 𝐴 and 𝐵 each have a corresponding 

probability not equal to zero. The conditional probability of an event can be viewed as an event that 

occurs within a new sample space given by the conditional event. Therefore, the conditional 

probability of 𝐴 given 𝐵, mathematically expressed as 𝑃(𝐴|𝐵), is the darker shaded region, where 

event 𝐵 has already occurred and thus becomes the new sample space. Also from this diagram, it can 

be seen that the probability of event 𝐴 occurring is equivalently expressed in terms of event 𝐵 as:  

 𝑃(𝐴) = 𝑃(𝐴⋂𝐵) ⋃ 𝑃(𝐴⋂𝐵′) (25) 
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Figure 3-1 Conditional probability of two intersecting sets 

 

We are interested in the events where both 𝐴 and 𝐵 have occurred. In other words the 

intersection of these events. From this notion, we can directly identify the conditional probability. 

Now, redistributing equation (24), we obtain the Multiplication Rule of Probability, which states that 

the probability of two events 𝐴 and 𝐵 occurring (intersection) is equal to the probability of one event 

occurring, 𝑃(𝐴), times the conditional probability of the other event 𝐵 occurring given that the first 

event 𝐴 occurred, 𝑃(𝐵|𝐴), and vice versa:  

 𝑃(𝐴⋂𝐵) = 𝑃(𝐴) 𝑃(𝐵|𝐴) (26) 

 𝑃(𝐵⋂𝐴) = 𝑃(𝐵) 𝑃(𝐴|𝐵) (27) 

Since the intersection of sets has Commutative properties, equations (26) and (27) are equal 

and can be combined to express the following: 

 𝑃(𝐴) 𝑃(𝐵|𝐴) = 𝑃(𝐵) 𝑃(𝐴|𝐵) (28) 

Bayes’ theorem immediately follows from this expression and states the probability of an 

event occurring, given prior information related to the conditional event. Mathematically Bayes’ rule 

is stated as follows: 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 (29) 

Where A and B are two random events with probabilities 𝑃(𝐴) and 𝑃(𝐵) ≠ 0, respectively. 

𝑃(𝐴|𝐵) is the conditional probability of observing event 𝐴 given that 𝐵 has occurred, and similarly 

𝑃(𝐵|𝐴) is the conditional probability of event 𝐵 occurring given that event 𝐴 has occurred. 
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 For the purpose of Bayesian calibration of mathematical models, event 𝐴 is defined as an 

arbitrary parameter set 𝜃 (usually a vector) and 𝐵 is the given experimental data set 𝑍. Therefore, the 

conditional probability 𝑃(𝐴|𝐵), or from here on 𝑃(𝜃|𝑍), is defined as the probability of a particular 

parameter set being the true values of the model, given that the specific data set 𝑍 is observed. In any 

multidimensional parameter space, this conditional probability has an unknown distribution and is 

referred to as the Posterior distribution (𝛱). The Posterior distribution is the desired result of the 

Bayesian calibration. Furthermore, the conditional probability 𝑃(𝑍|𝜃) is the probability that the 

experimental data set 𝑌 is observed given that the parameter set 𝜃 is the true value. This term is also 

known as the Likelihood (ℒ). Correspondingly, 𝑃(𝜃), which is the simply the probability of any 

parameter set being observed from the entire parameter space, is referred to as the Prior probability 

and it represents the observer’s belief of a certain parameter set being true prior to any data 

information being taken into account. Finally, the term 𝑃(𝑍) can be expressed using the Law of Total 

Probability for a continuous random vector and it is computed as the following integral: 

 𝑃(𝑍) = ∫𝑃(𝑍|𝜃) 𝑃(𝜃)

.

𝜃

𝑑𝜃 (30) 

 The integral in equation (30), also known as the marginal likelihood, is often very difficult to 

evaluate, especially if there are many parameters (high-dimensional integration). However, the 

probability is only dependent on the observed data 𝑍 and is the same for every possible parameter set 

𝜃. Thus, Bayes’ theorem (29) can be used to obtain the Posterior distribution, with the integral being 

only a normalizing factor or constant, thereby giving a proportional relation as follows: 

 𝑃(𝜃|𝑍) ∝ 𝑃(𝑍|𝜃) 𝑃(𝜃) (31) 

Expressing the Posterior distribution as 𝛱, the Likelihood function as ℒ, and including the 

observational error variance (𝜓) as an additional unknown parameter for the calibration, we get the 

following useful expression: 

 𝛱(𝜃, 𝜓|𝑍) ∝ ℒ(𝑍|𝜃, 𝜓) 𝑃(𝜃) 𝑃(𝜓) (32) 

Using this notation, the data set 𝑍 is assumed to have an observational error, and the model 

is regarded as being a perfect representation of the actual process. This observational error (𝜖) has a 

normal (Gaussian) distribution with mean zero and variance 𝜓, also known as “white noise”. Thus, 

the errors can be expressed as the difference between the measured data and the “true” model values: 
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 𝜖𝑖 = 𝑧𝑖 − 𝑧̃𝑖 ∼ 𝑁(0, 𝜓) (33) 

Furthermore, the Likelihood can be computed from these independent and identically 

distributed (I.I.D.) observational errors using the joint pdf of 𝑛 samples from a Normally distributed 

random variable: 

 ℒ(𝑍|𝜃,𝜓) =∏
1

√2𝜋 𝜓1 2⁄

𝑛

𝑖=1

𝑒
[−
1
2
(𝑧𝑖−𝑧̃𝑖)

2

𝜓
]
 (34) 

The Likelihood cost function can equivalently be rewritten in terms of the sum of squared 

error (𝑆𝑆𝑞) as: 

 ℒ(𝑍|𝜃, 𝜓) = (2𝜋𝜓)−𝑛/2 ∙ 𝑒
[
−𝑆𝑆𝑞
2𝜓

]
 

(35) 

 𝑆𝑆𝑞 =∑(𝑧𝑖 − 𝑧̃𝑖)
2

𝑛

𝑖=1

=∑𝜖𝑖
2

𝑛

𝑖=1

 (36) 

Observing these equations, it is evident that the Likelihood for any proposed model will 

increase as the sum of squared error term decreases, which is exactly what is anticipated as it should 

provide a measure of closeness between the proposed model and the measurement data.  

 

Defining the remaining term, 𝑃(𝜃), is an initial assumed distribution for the parameter set 𝜃. 

Thus, one of the important aspects of Bayesian calibration is the selection of the prior distribution. 

Whenever certain information is known beforehand, it can be included in the calibration by means of 

the prior. If there is no information or knowledge about the parameter values, an uninformative prior 

is used and recommended, as an incorrect prior can have negative impact on the actual Posterior. This 

uninformative prior is specified by using a uniform distribution across the continuous parameter 

space, where every possible outcome is equally likely (see Figure 3-2): 

  𝑃(𝜃) ~𝑈(𝐴, 𝐵) (37) 
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Figure 3-2 Uninformative prior for a parameter with bounds [A,B] 

 

Lastly, the observational error variance 𝜓 has an Inverse Gamma prior distribution, with 

observational shape (𝜈) and rate (𝜏) parameters:  

  𝑃(𝜓) ~Inv-gamma(𝜈, 𝜏) (38) 

 

Figure 3-3 Inverse Gamma PDF 

 

The Inverse Gamma distribution is often used for Bayesian inference because of the 

convenient property of being a conjugate prior distribution (posterior and prior distributions are from 

the same family) to a Gaussian “white noise” likelihood function. This conjugate property allows for 

direct sampling from the conditional posterior for the observational error variance without rejection. 

 

Now that Bayes’ theorem provides a method of updating the Posterior distribution for an 

arbitrary point or parameter set, it is necessary to have a technique that allows for the exploration of 

the parameter space and after a certain amount of iterations approximate the posterior probability 

distribution. One sampling method for exploring the parameter space is through the use of a Markov 

chain Monte Carlo (MCMC) algorithm.  
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3.2 Markov chain Monte Carlo 

In Bayesian calibration, a Markov chain Monte Carlo is a method of iteratively sampling from a 

probability distribution, and constructing a sample distribution that will represent the target posterior 

distribution. It provides an organized procedure for searching the parameter space for regions of 

higher Likelihood. The idea is that the Markov process will reach an equilibrium distribution that is 

a sample drawn from a simulation of the posterior distribution. The routine will begin at an initial 

parameter space starting point from which it will propose new parameter sets and evaluate their 

likelihood. If a proposed parameter set (𝜃1) has a higher likelihood than the current parameter point 

(𝜃0), then the chain will move to this new region or point in the parameter space. If the proposed point 

has a lower likelihood, then the algorithm will either reject the new set or accept it, with a certain 

probability, compared to a random draw from a Normal(0,1) distribution. This acceptance criteria is 

defined using the following acceptance ratio, which is computed every MCMC iteration: 

 𝑟(𝜃1|𝜃0) =
ℒ(𝑌|𝜃1, 𝜓1) 𝑃(𝜃1) 𝑃(𝜓1)

ℒ(𝑌|𝜃0, 𝜓0) 𝑃(𝜃0) 𝑃(𝜓0)
 (39) 

 𝜃 = {
𝜃1, with probability 𝑝 = min (1, 𝑟)
𝜃0, else

 (40) 

The Likelihood ratio is usually calculated in logarithmic scale, as the terms can quite often 

be very small. Additionally, the MCMC routine has an adaptive proposal option, which uses an 

empirical covariance matrix for the proposal distribution that is calculated from previously accepted 

states. Using only a certain number of prior states to calculate the covariance matrix, a fixed window 

is obtained. This adaptive proposal tool is subsequently used to increase/decrease the proposal step 

size in order to achieve a desired target acceptance rate. The specification of a target acceptance rate 

allows for the MCMC to avoid high acceptance/rejection rates that can lead to local convergence or 

limited parameter space exploration. 

 

The statistical acceptance of points with lower likelihood allows the MCMC algorithm to step 

out of regions of local maxima/minima. Conceptually a Markov Chain with an infinite number of 

Monte Carlo steps will exactly match the desired Posterior distribution. However, this is clearly not 

possible to implement in real life applications and we can only run the algorithm for a certain amount 

of time. Nevertheless, if the MCMC routine runs for a sufficient number of steps, then an empirical 

probability density function (pdf) can be obtained that will represent a sample from the Posterior. 

Because the algorithm can endlessly continue to take MCMC steps, it is important to specify a 

convergence criteria that can indicate when the routine has obtained sufficient samples. Evidently, 
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there is no single argument to specify when the MCMC has taken a “sufficient” number of samples, 

but a proposed batch means convergence, discussed in the next section, can be used to identify when 

the chain has reached a statistically significant convergence of the parameter means. 

 

3.3  Batch Means Convergence Criteria 

As mentioned in the previous section, an MCMC generates a random walk through the parameter 

space and will continuously take more steps until the algorithm is stopped or it reaches a 

predetermined number of steps. There are two important calibration properties that need to be 

considered for deciding when to stop the algorithm: burn-in and convergence. Burn-in refers to the 

initial region (arbitrary n number of steps) of the MCMC where the chains will be initialized at a 

selected starting point, which can potentially be random, and begin exploring the parameter space. 

These first n samples need to be discarded from the final empirical density distribution. After these n 

steps are taken, the chains will have ideally reached a parameter space region that contains the 

Posterior density and begin taking useful samples. Here an additional convergence condition is 

needed. 

 

 A statistical convergence criterion that can be quickly used to identify when the algorithm 

has successfully sampled the posterior distribution is through a batch means test. This convergence 

criterion will take the remaining 𝑁 − 𝑛 samples, after burn-in, and create equal size bins, or batches. 

Next, each bin’s population mean is computed. The batch means test will determine how these 

estimated means vary and through a Student’s t-test give an indication of average batch means 

convergence with a confidence interval ±𝑝%. A confidence interval of ±1% is ideal, but ±5% is 

also acceptable to reduce the overall simulation time. An arbitrary parameter’s (𝜇) batch means 

confidence interval is estimated as follows: 

 𝜇 = 𝑥̅ ± [(
𝑡(0.975,𝑁 − 1) ∗ 𝜎̅

√𝑁
) 𝑥̅⁄ ] ∗ 100% (41) 

 Where 𝑡(∙) is a t-statistic function that tests whether the means of two populations are close 

within a given confidence interval. As the confidence interval becomes smaller, the batch means are 

consequently closer and the chain samples can be regarded as converged. 
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Chapter 4  

Parameter Estimation Methodology 

This chapter outlines the steps involved in performing a parameter estimation through a Bayesian 

analysis approach algorithm using a MCMC to obtain the parameter posterior distributions. For this 

virus model case, a set of generated experimental values are needed for parameter calibration. The 

experimental data set represents measurements taken from an infected patient (usually number of 

virus particles per milliliter of blood) for a useful time interval normally given in a time-lapse of 

either days or months.  

 

4.1 Experimental Data Generation 

Actual patient data is not immediately available for testing the virus model and a technique for 

approximating real life data is desired. Hence, a method of generating the calibration experimental 

data was used. The generated data was obtained by modeling the virus function using a set of standard 

reference HIV parameters (Table 2-1). Additionally, the generated data has added noise to represent 

actual measurement error and variations, typically found in real life measurements, by using the 

following expression: 

 log10 𝑍𝑒𝑥𝑝 = log10 𝑍𝑚𝑜𝑑𝑒𝑙 + 0.5 ∗ 𝑁(0,1) (42) 

This process of adding noise relies on randomly generated values from a Normal distribution. 

Although it is not actual measured data, it has been shown that this type of noisy data can closely 

match actual data obtained from groups of similar patients. Figure 4-1 shows a plot of the model data 

and the “experimental” noisy data. 
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Figure 4-1 Patient data generated using HIV model parameters with added noise 

 

The randomly generated noisy data has been shown to be a realistic representation of the variability 

seen in practice. Some studies have used similar methods of generating noisy virus data, with more 

or less variation. 

 

4.2 Genetic Algorithm for Optimizing MCMC Starting Point 

The MCMC code can be configured to start a run from any point within the parameter space bounds; 

however, random starting points can potentially take too long to properly explore the entire space 

and/or quickly reach a local minimum, especially for multidimensional problems. It is therefore 

desirable to have a means of selecting starting points that can reduce the unwanted effects of using a 

randomly generated starting point. 

 

A basic genetic algorithm implementation, inspired on the natural evolution of species, 

consists of iteratively exposing a group or population of potential solutions (parameter sets), which 

represent individuals, to a user-defined cost or fitness function that represents the environment. The 

main idea is that only the fittest individuals (potential solutions) will “survive” in the specific 

environment and consequently be more likely to reproduce and create new offspring that inherit the 

parent’s good traits through a crossover operator that can randomly combine the parents’ 

chromosomes. In a computer-based GA, a chromosome contains the individual’s “genetic” 

information, or for parameter optimization problems, the actual values for each of the parameters 
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(also referred to as genes). The new populations are also exposed to a mutation operator that ensures 

more randomness in the process by changing one or several genes. After iteratively exposing each 

new generation of individuals to the fitness function, the algorithm will ideally have explored the 

parameter space in search of better fit individuals and eventually reach a population that contains 

many good solutions and no apparent improvement in performance index. 

 

A simple genetic, or evolutionary, algorithm (GA) for minimizing the experimental and 

model data error is implemented to find a starting point that has a dynamic behavior that can closely 

represent the experimental data. The starting point for the MCMC can be an individual selected from 

the final genetic algorithm population based on a performance index provided by the algorithm’s 

fitness function. The performance index selected is a weighted average of four different error 

measurements: maximum error, root mean square deviation (RMSD), sum of squared error, and total 

error. The performance index is assigned in a [0  1] interval, with 1 being a perfect match of the model 

with the data and not actually expected.  

 

The GA routine will generate a user-defined number of random individuals, which represent 

the initial population. As mentioned previously, an individual represents a potential solution, or set 

of model parameters. After an individual is simulated using the virus model numerical solver, a fitness 

function will assign a performance index (PI) to that corresponding set of parameters that will provide 

a measure of the accuracy between the individual’s model output and the experimental data. The 

randomness used in this technique means that a different potential solution will be obtained each time 

the algorithm is ran. Having an initial random seeding spread out across the parameter space and a 

crossover/mutation rate for the population in every generation also gives this method the useful 

algorithm characteristic of potentially avoiding local minima. Ciupe et al. used a similar search 

technique in their estimation of the kinetic parameters [7]. 

 

4.3 MCMC Setup 

The methodology applied in this study uses an adaptive sampler to account for high/low acceptance 

rates of proposed parameters. The adaptive sampler allows the MCMC to explore more locally if the 

acceptance rate is too low and inversely widen the proposal window if the acceptance of new 

parameter sets is too high. Therefore, the user can specify the bounds on the adaptive sampler as well 

as assign a switch to stop the adaptive steps after burn-in. Additionally, the MCMC allows for several 

other user inputs that can improve the overall results and/or calibration time.  
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Some of the MCMC parameters that are user-defined include the model parameter starting 

points, parameter bounds, covariance matrix recalculation rate, adaptive sampling switch, 

observational error shape (𝜈) and rate (𝜏) parameters, and number of desired MCMC steps, which can 

also be replaced with a convergence criteria if available. 

 

This user-defined configuration implies that some knowledge or experience with Bayesian 

calibrating is necessary to correctly tune and obtain good results. An alternative to having expert 

knowledge is to run the MCMC with a predetermined setting to get preliminary results and then retune 

the algorithm configuration parameters appropriately. This is particularly useful for determining 

chain burn-in and identifying when to break the adaptive sampler. Additionally, the MCMC can be 

restarted from the last chain point by inputting the Covariance matrix. This is also useful for resetting 

the Covariance matrix when the chains seem to “flatline” and show slight movement, which is 

visually identified when the chains remain in a narrow range, as shown in Figure 4-2. 

 

 

Figure 4-2 Flatlined parameter chains 

 

The following table provides a layout of the Virus Model MCMC user-defined configuration 

file used for calibrating the model parameters: 
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Table 4-1 MCMC configuration 

MCMC user parameters Default Configuration 

Number of Parameters 6* 

Inv-Gamma Shape Parameters (𝜈) 4 

Inv-Gamma Rate Parameters (𝜏) 5 

Number of MCMC Steps 420,000 

Proposal Type Block 

Covariance Matrix Recalculation Every 4,000 steps 

Dynamic Step Recalculation Rate Every 250 steps 

Adaptive Switch Off After 120,000 steps 

Acceptance Rate Bounds [1  10] 

Log Scale Switch [0 1 0 0 1 0] 

Parameter Bounds/S.D. (see Table 2-1) 

* Five calibration parameters, one fixed 

 

 The parameter proposal type is a convenient user-defined configuration option. The currently 

used “BLOCK” proposal option allows for the MCMC to propose all of the calibration parameters at 

once, as opposed to the “SINGLE” proposal option that only proposes the parameters one at a time. 

Both options have their respective advantages and disadvantages: while the block proposal 

configuration allows the MCMC to take potentially larger steps in the parameter space and reduce the 

total number of model solver iterations, the single proposal will be more likely to produce accepted 

parameter sets at the cost of multiple model evaluations and increased computation time. 

 

From the model described in the previous chapter, the calibration parameter set 𝜃 for the virus 

is given by the following vector: 

 𝜃 = [𝑎, 𝛽, 𝑑, 𝑘, 𝜆, 𝑢]T (43) 

 Additionally, if any parameter is fixed for calibration purposes, then 𝜃 will correspond to the 

remaining unknown parameters. The experimental patient data is also defined as a vector that contains 

the measured virus particles in the patient at certain time intervals: 

   𝑍 = [𝑧1,  𝑧2, … ,  𝑧𝑛]
T (44) 
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 The sampling rate used for running the MCMC is every 0.25 time units. Because the model 

does not have any specific defining time scale, this sampling rate can be scaled to any time interval 

as needed by appropriately adjusting the rate parameter time units. 

 

 Lastly, the initial conditions are input as a vector containing the values for the three state 

variables: 

   𝑥̅(𝑡 = 0) = [𝑥(0)  𝑦(0)  𝑣(0)]T (45) 

 In this thesis, constant initial conditions are assumed for the study of one data set, but 

alternatively these conditions can be included as unknown parameters for the MCMC to estimate. 

The initial conditions used in this case are as follows: 

   𝑥̅(𝑡 = 0) = [106  0  102]T (46) 

With the parameter vector, model data vector, and initial conditions vector now properly 

defined, the MCMC routine can be setup to run a parameter estimation using the virus model 

numerical solver to evaluate the proposed parameter sets. The following block diagram in Figure 4-3 

shows the general layout of the MCMC algorithm: 
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Figure 4-3 MCMC block diagram 
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Chapter 5  

Results and Discussion 

The focus of this study was to test the results of a Bayesian calibration tool against a maximum 

likelihood analysis currently used in PSE’s gPROMS ModelBuilder® platform. The virus model was 

first tested using this parameter optimization option within the gPROMS interface to compare the 

results obtained from a point estimate technique. 

 

5.1 gPROMS ModelBuilder® Parameter Estimation 

PSE’s advanced process modeling tool gPROMS is a commercially available software commonly 

used to model industrial/chemical processes. Within the gPROMS language environment, the user 

has the option of running a gradient-based parameter estimation for a given mathematical model with 

experimental data. This approach uses a maximum likelihood estimation to provide a point estimate 

that minimizes the observation error (see Figure 5-1). However, this method of estimating model 

parameters has the disadvantage of easily converging to a local minimum, even if a relatively good 

starting point or guess is used. The results from a gPROMS virus model file are shown in Table 5-1 

for estimating all six rate parameters. Notice that some parameters are hitting their bounds. These 

results are not representative of the final MCMC calibration model as this was an initial test of a 

gPROMS parameter estimation capability for the virus model. 

 

Table 5-1 gPROMS ModelBuilder® parameter estimation results 

Parameter Initial Guess gPROMS MLE True Values 

  𝑎   0.20   0.19   0.50 

  log10 𝛽   -7   -6.48   -6.7 

  𝑑   0.05   0.046   0.10 

  𝑘   80   1000   100 

  log10 𝜆   4   2   5 

  𝑢   5   100   5 
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Figure 5-1 gPROMS MLE parameter result 

 

5.2 Genetic Algorithm Starting Points 

The procedure followed in this study for starting the Bayesian calibration is to initially run an 

optimizing genetic algorithm such that a relatively good first set of parameters is found for starting 

the MCMC. The algorithm is designed to give a set of model parameters that provide a dynamic virus 

behavior that closely matches the noisy experimental data. The randomness implied in this process 

and the high dimensionality of the problem mean that each GA optimization produces different 

starting points every time it is executed. The results obtained clearly show the complexity of this six-

parameter model and how several combinations of the input parameters can produce similar dynamic 

response.  

 

Figure 5-2 shows the evolution of a GA run with the blue line representing the performance 

index (PI) of the best individual in the current population while the dashed purple line represents the 

average performance index of the population. By using an elitist approach in the algorithm, the best 

solution in each iteration is guaranteed to survive and continue for at least the next future generation, 

until a better solution is found. This is observed in the performance index GA plot, as the best 

individual performance index is always increasing. For this particular run, the algorithm found a 

solution with a performance index close to 0.9 that indicates that the error fitness function is relatively 

close to the maximum optimal value of one. As a result, the closeness of the best individual to the 

noisy data is fairly decent. 
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Figure 5-2 GA performance index for each generation 

 

 The algorithm’s randomly drawn initial population has few individuals that obtain a good 

performance index, Figure 5-3(a), but as the generations evolve, through crossover and mutation 

operations better solutions are found, Figure 5-3(b), until reaching a final population, Figure 5-3(c), 

that should contain at least one individual with a relatively high performance index. 

 

 

Figure 5-3 GA best individual solutions for initial, intermediate, and final populations 

 

The following table gives the parameter set results for five selected GA simulations that are 

consequently used as starting points for the calibration. Each GA parameter optimization run uses a 

randomly seeded preliminary population with equal probability across the parameter bounds. Since 

the true values used to generate the model are know, it is important to note that the GA provides 

parameter optimization solutions that are relatively close to the desired values. However, as will be 

seen after the Bayesian calibration, this point estimate results do not guarantee that the MCMC will 

a b c 
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remain within these parameter regions. Instead, the MCMC will explore neighboring points, and 

occasionally generate posterior densities in regions different from the initial starting points. 

 

Table 5-2 Selected GA parameter starting points 

Parameter True Value GA#1 GA#2 GA#3 GA#4 GA#5 Mean S.D. 

𝑎 0.50 0.20 0.42 0.322 0.19 0.44 0.31 0.11 

log10 𝛽 -6.70 -7 -6.53 -6.55 -6.41 -6.61 -6.62 0.20 

𝑑 0.10 0.05 0.204 0.065 0.27 0.17 0.152 0.08 

𝑘* 100 100 100 100 100 100 100 0 

log10 𝜆 5 4 5.15 4.65 4.99 5 4.76 0.41 

𝑢 5 15 7.05 7.9 8.77 5.35 8.81 3.01 

* The virus generation rate 𝑘 is fixed at its actual value for calibration 

 

The parameter sets obtained from the GA show the variation of the potential solutions. 

Although the algorithm converges to values that are within one order of magnitude of the true values, 

the noise in the data allows for many possible combinations of the parameters that will have similar 

fitness function values, and thus similar calculated overall error. 

 

5.3 MCMC Results 

The virus model calibration was initially designed to have the gPROMS ModelBuilder® as a model 

solver and use a Foreign Process Interface (FPI) to communicate with the C++ based MCMC 

developed tool using input/output text files. Although this configuration was successfully setup, the 

repetitive use of the virus model solver for every Monte Carlo step made this interface very inefficient 

for calibration purposes. The main disadvantage of this setup was the required authentication of a 

software license request to execute the ModelBuilder® solver  file using an in-built gPROMS 

command: gO:RUN. 

 

The initial FPI results are not shown in this study due to the limited sample sizes that were 

successfully obtained. Instead, the C++ Crank-Nicholson numerical solver was subsequently 

implemented as mentioned in Chapter 2. This new solver implementation reduced the MCMC 

computation time in half, from roughly 1 hour for every one thousand steps with gPROMS to 

approximately 30 minutes. Afterwards, the Gauss-Seidel algorithm further reduced the computation 
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time by 1/10 and ultimately provided 1000 MCMC steps every 3 minutes. This faster model 

computation resulted in the MCMC routine being able to obtain an empirical Posterior distribution 

with 300,000 steps (excluding burn-in) in less than one day. 

 

 After running many calibrations with varied starting points, the results obtained indicated 

multiple MCMC outcomes. The following plots show the parameter chain results for some of the 

selected starting points in Table 5-2 that prove the different parameter coverage. 

 

 

Figure 5-4 MCMC parameter chains for GA#5 

 

 Figure 5-4 shows the result for the parameter chains (blue) for the five calibrated parameters; 

the virus reproduction rate (𝑘) is a fixed parameter, at its reference value. This is observed by the 

fixed line which shows no change in the parameter value as the MCMC progresses.  The red line 

corresponds to the actual parameter values. For this particular calibration result, the uninfected cell 

generation rate 𝜆 is the only parameter that is not covered by the chain after burn-in. As was 

mentioned by Stafford et al. [6], this parameter is not possible to estimate when only using measured 

virus data for parameter estimation and is usually expressed in terms of the initial cell population 

count 𝑥0 and the uninfected cell death rate 𝑑. 

 𝑥0 =
𝜆

𝑑
 (47) 
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Figure 5-5 MCMC variate plots with parameter PDF for GA#5 

 

 As previously discussed, the batch means test for chain convergence was used as a criterion 

to statistically indicate when the MCMC had obtained sufficient samples from the Posterior 

distribution. Table 5-3 shows the batch means test results for the MCMC starting points selected from 

the GA optimization routine given in Table 5-2. 

 

Table 5-3 Parameter batch means for converged calibrations 

Mean (𝜇) GA#1 GA#2 GA#3 GA#4 GA#5 Mean S.D. 

 𝜇𝑎 0.801 0.696 0.529 0.107 0.414 0.509 0.24 

 𝜇𝛽 -6.56 -6.42 -6.46 -6.57 -6.33 -6.47 0.09 

 𝜇𝑑 0.417 0.332 0.178 0.109 0.272 0.262 0.11 

 𝜇𝑘* 100 100 100 100 100 100 0 

 𝜇𝜆 5.30 5.56 5.40 3.32 5.41 4.998 0.84 

 𝜇𝑢 4.59 10.56 11.55 6.99 13.72 9.48 3.27 

* The virus generation rate 𝑘 is fixed at its actual value for calibration 

 

 The batch means values (𝜇) are a measure of each parameter’s population mean for the 

selected number of bins or batches from the total number of MCMC step samples. Each of the 

parameters in Table 5-3 had a confidence interval of 95% or higher.  

 

 Lastly, contour plots (see Figure 5-6) are also plotted for the five calibrated parameters using 

a heatmap color bar to reveal the 2D bivariate regions of higher density, that are not easily identified 

from the monochromatic scatter plots. 
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Figure 5-6 Bivariate contour plots for GA#5 

  

5.4 Model Calibration and Predictions 

In the previous section, the marginal probabilities were plotted to show the empirical Posterior 

densities. These PDFs are samples from the Posterior distribution and as such are used to randomly 

draw sets of parameters that show the coverage of the calibrated model compared to the noisy 

experimental data. Figure 5-7 shows the coverage of the GA#5 data set and the actual model used to 

generate the data that represents what the calibration should obtain when no noise is present. 

 

 

Figure 5-7 Calibrated model coverage over the experimental data 

 

 Figure 5-7 shows 50 randomly selected parameter sets from the calibration Posterior. This 

calibrated model is compared to the noisy patient data and additionally shows the actual model used 

to generate the data. In order to test the calibrated model prediction capabilities for different virus 
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generation rates 𝑘, these randomly picked parameter sets are ran through the solver for 2 different 

user-input values of fixed 𝑘, larger and smaller than the true value used for calibration, to analyze the 

extrapolation capabilities.  

 

 

Figure 5-8 Calibrated model predictions for 𝑘 = 50 

 

 

Figure 5-9 Calibrated model predictions for 𝑘 = 400 

 

 Figure 5-8 and Figure 5-9 illustrate the coverage obtained from the calibrated model’s 

predictions for lower and higher values of the virus generation rate parameter, respectively. It is seen 

that by decreasing the virus generation rate, the prediction plots have higher uncertainty, while the 

increased parameter plots show narrower variance with some missed points at the peak. In addition, 

continuously reducing the virus generation rate led to unstable predictions (see Figure 5-10), as the 

virus balance resulted in an unrealistic suppression of the virus that is not expected unless some form 
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of drug therapy is used, and this would require a different model. These results show that the 

calibrated model can only be used to make predictions within a certain range, which can be defined 

by the reproductive ratio of infection as 𝑅0 > 1. For the case of HIV, as mentioned in Chapter 2, 

𝑅0 = 8 for the reference parameter values used. 

 

 

Figure 5-10 Unstable MCMC calibration predictions for 𝑘 = 10  

 

 The parameter bivariate contour plots (Figure 5-11) are generated for two additional starting 

points from Table 5-2 (GA#1 and GA#2) to determine the parameter coverage and 

calibration/predictions of different MCMC runs. These results show how the batch means criteria 

converged calibrations reach different Posterior distributions. 

 

 

 

 

 

 



36 

 

 

Figure 5-11 Bivariate contour plots for GA#1 (top) and GA#2 (bottom) 

 

 The previous plots show that each MCMC run reaches a significantly different empirical 

posterior pdf. Although this is not the desired convergence behavior that was initially anticipated, the 

following calibration (Figure 5-12) and prediction (Figure 5-13 and Figure 5-14) plots demonstrate 

that the distributions obtained are nonetheless useful for this virus model problem.  

 

 

Figure 5-12 MCMC calibrated model coverage for GA#1 (left) and GA#2 (right) 
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Figure 5-13 Calibrated model predictions for GA#1 (left) and GA#2 (right) with 𝑘 = 50 

 

 

Figure 5-14 Calibrated model predictions for GA#1 (left) and GA#2 (right) with 𝑘 = 400 

 

 The results for repeatedly different MCMC runs indicate that obtaining a statistically 

comparable (converged) empirical Posterior for every run was not possible with the configuration 

used. Figure 5-15 has the different Posterior PDFs obtained from the previous results, overlapped to 

show the areas where each MCMC run covered the same parameter space. The noise variance, 

parameter identifiability, and limited experimental data-type used (only measured virus, as opposed 

to including infected/uninfected cell counts) can be potential reasons for not being able to always 

obtain a fully converged Posterior. These results open the doorway to new opportunities to test the 

MCMC, using different configurations that may result in better Posterior convergence. Nonetheless, 

the calibrated model predictions obtained in this study show that Bayesian analysis can be effectively 

used to study multi-parameter dynamic models, such as this primary HIV model, and obtain useful 

predictions.  
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Figure 5-15 Overlapped parameter Posterior PDFs for GA#1, GA#2, and GA#5 
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Chapter 6  

Conclusions 

The MCMC calibration results demonstrate that Bayesian analysis is a promising alternative to 

conventional parameter estimation techniques that can be structured for multidimensional problems. 

Nevertheless, the results also indicate that the MCMC Bayesian calibration tool is difficult to 

completely automate and, in general, requires some level of adequate user input and experience to 

properly tune the simulation parameters.  

 

As was mentioned in earlier studies, the virus model’s parameter identifiability, although 

mathematically possible, is not guaranteed when only measured virus data is used. This statement 

was confirmed in this study, as coverage of all parameters in a single MCMC run was rarely obtained, 

even when using starting points close to the true values. Imposing certain parameter restrictions and 

assumptions such as a time invariant uninfected cell replenishment rate can lead to fixed parameters 

for this problem and a potentially simpler parameter estimation problem. This assumption is not easily 

implemented as only measured virus data is used. An alternative solution is to possibly repeat a virus 

model MCMC calibration run using additional data from the uninfected CD4 cell population.  

 

Although the true parameter values do not fall into regions of high marginal probability 

posterior density, the predictions from the calibrated model show coverage of the actual dynamic 

behavior for ranges outside of the calibration data, as was observed for a fixed virus generation rate 

parameter. Another problem occasionally encountered during the different calibrations was poor 

chain movement/coverage, most probably caused by a narrow parameter proposal distribution from 

a fixed covariance matrix. This issue could be solved by resetting the covariance matrix at the current 

MCMC step, but this has the unwanted consequence of requiring the user to closely monitor the 

chain’s progression to detect chain stagnation or flatline behavior. 

 

From this study, it can be concluded that Bayesian techniques can be successfully and 

usefully applied for modeling problems concerned with analyzing and calibrating noisy data sets. 

Additionally, Bayesian techniques offer an alternative solution to conventional gradient-based 
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estimation methods that cannot accurately fit noisy data, at the cost of more computational calibration 

time. Because computation time is a main concern and usually a key disadvantage of Bayesian 

calibration techniques, some possible solutions include MCMC parallelization and multiple moving 

chain algorithms that can simultaneously make several random walks from different starting points. 

 

From the results obtained in this thesis, some final comments and suggestions for future 

research are: as mentioned in other studies, using not only measured virus data, but also target cell 

population counts allows for better identification of the model parameters. A comparison of 

calibration results using both data sets may allow the MCMC to get better coverage of the true 

parameter values. Additionally, varying the measurement time sampling can account for more 

realistic infected patient HIV data. In actual patient measurements, the measured virus is sampled 

more frequently during primary infection to cover the infection’s characteristic peak behavior. 

Conversely, the initial data is rarely sampled and similarly the asymptotic phase offers almost no 

useful parameter identifiability. An interesting comparison is to rerun the MCMC with patient data 

only for the measured virus peak with a higher sampling frequency and also changing the variance in 

the added noise to have higher/lower experimental measurement variance. 
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