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Abstract 

Intelligent time-Successive Production Modeling 

Yasaman Khazaeni 

A new framework is presented that uses production data history in order to build a 
field-wide performance prediction model. In this work artificial intelligence 
techniques and data driven modeling are utilized to perform a future production 
prediction for both synthetic and real field cases. 

Production history is paired with geological information from the field to build large 
dataset containing the spatio-temporal dependencies amongst different wells. These 
spatio-temporal dependencies are addressed by information from Closest Offset Wells 
(COWs). This information includes geological characteristics (Spatial) and dynamic 
production data (Temporal) of all COWs. 

Upon creation of the dataset, this framework calls for development of a series of single 
layer neural network, trained by back propagation algorithm. These networks are then 
fused together to form the “Intelligent Time-Successive Production 
Modeling“(ITSPM). Using only well log information along with production history of 
existing wells, this technique can provide performance predictions for new wells and 
initial hydrocarbon in place (IHIP) using a “volumetric-geostatical” method.  

A synthetic oil reservoir is built and simulated using a commercial reservoir numerical 
simulation package. Production and well log data are extracted and converted to an all-
inclusive dataset. Following the dataset generation several neural networks are trained 
and verified to predict different stages of production. ITSPM method is utilized to 
estimate the production profile for nine new wells in the reservoir. ITSPM is also 
applied to data from a real field. The field that is giant oil field in the Middle East 
includes more than 200 wells with forty years of production history. ITSPM’s 
production predictions of the four newest wells in this reservoir are compared to real 
production data.  
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1. Introduction 

Two of the most influential pieces of information in decision making and field 

developments are our depth of knowledge over the reservoir’s state of depletion and 

remaining reserve estimation. This becomes more important in brown fields which 

most of wells are in their decline period and they can easily become non profitable if 

not drilled in the best spots.  

There are several techniques enabling the reservoir engineers to have a reservoir 

model that is capable of predicting future behavior of the reservoir under different 

development strategies. These models are normally based on numerical solutions of 

the fluid flow equation and they require fairly accurate information about the 

formation and they are expensive considering the computational and human resources 

required building and using them. 

In contrast, instead of lengthy and expensive numerical solutions, analytical solutions 

are simpler and cheaper. These solutions are normally limited to single well based 

analysis with many homogeneity assumptions. Although these solutions are much 

easier to develop and they do not need vast amount of data nor computer power, their 

deliverability is also limited. 

Relying on availability of large amount of data about the field is not always a practical 

solution. Therefore the numerical solutions are not always practical. Also single well 

analysis techniques are not always good choices for field development strategy and 

decision makings.   

Brown fields with marginal production rates or old fields without state-of-the-

technology studies are not the best candidates for costly numerical simulation models. 

In some cases single well numerical models are built for some fields; these models 

limit the analysis to one well basis and don’t give a full field understanding of the 

reservoir. 
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Beside these techniques, other empirical and data driven modeling techniques have 

always been a point of interest for reservoir engineers. One of the advantages of some 

of these methods is their ability to perform the analysis with a very limited amount of 

data (1) and (2). This advantage enables the reservoir engineer to have full field 

analysis for a field that has only production rate data with possibly some well logs are 

available to him.  

Intelligent Time Successive Production Modeling (ITSPM) is a technique that uses 

production rate data from existing wells in the field along with any available well logs 

in order to build a field-wide well production model. Information from multiple wells 

are fused together and a spatiotemporal database is generated for the entire field. 

Artificial Intelligence and Neural Networks are used to infer a coherent model that is 

able to predict the existing and future well’s production behavior.  

By using geostatistics methods such as Ordinary Kriging the field properties 

information brought from well logs are mapped through the reservoir. This brings out 

the spatial dependencies throughout the reservoir and tries to employ these 

dependencies in predicting the future of the reservoir. The geostatistics application in 

this level of modeling also leads to a high resolution reserve estimation from the field. 



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 3 
 

2. Literature Review 

In this literature review we try to present the basic underlying concepts of production 

data analysis techniques. Indeed this work is not a comprehensive evaluation of all the 

existing and methods and those being developed, but the intention is to gather the most 

dominant and influential works in this area.  

These methods have been developed long ago and been in use for decades. Although 

most of them are single well-based analyses but they are powerful techniques and most 

of the time easy and cheap to implement. 

After discussing the conventional production data analysis techniques a new method 

will be introduced which gathers and fuses single well analyses and tries to build a 

cohesive full field model capable of predicting the field’s future behavior. 

2.1. Production Data Analysis 

From the time when oil and gas production started, the data taken from the wells 

production history appeared to be interesting for petroleum engineers. One of the 

reasons to analyze the production data is trying to predict the future production 

behavior of the oil and gas wells. 

In most cases; a declining mode is present from the beginning of the production or 

after a somewhat constant production rate period in oil and gas wells. Analyzing this 

decline in production in petroleum engineering opened a topic called Declined Curve 

Analysis pioneered by Arps (3).  Briefly Decline Curve Analysis is fitting the 

production data of a well or a field to a mathematical function to predict the 

performance of the well (or the field) up to an abandonment production rate. 

In a complete empirical attempt Arps generated a set of rate-time decline curves that 

were considered as non-scientific. Arps decline equation is  
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In which  has an empirical equation as follows 

 

In above equation  is the cumulative oil production for a period of time during 

which the reservoir pressure hypothetically decreases to 0 (psi). 

Considering different values of , different decline behaviors are categorized with 

 being exponential decline,   hyperbolic decline and  a harmonic 

decline. Different values for b are also an indicator of the drive mechanism of the 

reservoir. (4)  

So in a nutshell, production data decline curve analysis is a technique in which a 

theoretical model is fitted to the production rate data. This model will be able to 

predict the initial hydrocarbon in place and in some cases the formation properties. 

Different analytical solutions were proposed for various conditions of the reservoir and 

drive mechanisms. In (5) the problem of Steady state water influx flow was addressed. 

After that and by using results from (6) Fetkovich suggested that for a water influx 

constant pressure producing well q(t) has the following form 

 

Where  is the productivity index (STB/D/psi),  is the bottom-hole flowing 

pressure (Psi) and  is the initial wide-open surface flow rate at . 

Also we know  
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Where  is the initial surface rate at t=0 and 

 . 

Considering a wide-open decline where we have  we will get to Arps’ 

equation as  

 

According to this one can define . A dimensionless time factor is defined as  

 

Assuming a circular reservoir and a pseudo-steady inflow Fetkovich suggested  

 

Total cumulative production can be defined in terms of reservoir variables 

 

So the dimensionless time will become  

 

And 
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Plotting  vs.  provides us with Fetkovich type curves shown in Figure 1

 

Figure 1 - Fetkovich Type Curves (7) 

 Merging the diffusivity equation solution under constant pressure flow with the Arps 

equation Fetkovich developed these single-type curves. One should keep in mind that 

in Fetkovich’s approach anytime that the flow regime undergoes a new change like a 

shut-in or stimulation the values for  and should be modified accordingly. (7) 

In Fetkovich type curves compressibility of the gas is assumed to be almost constant 

or have small changes. Later on Carter (8) proposed a new method by taking into 

account for the changes in gas compressibility under high drawdown pressure 

producing conditions. In Carter’s method a new parameter is defined as 

 

For ideal gases  and for real gases values of  can be less than 0.5; each 

value of will have a set of decline curves designed for that. A sample of these type 
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curves for  is shown in Figure 2

 

Figure 2 - Carter Type Curves  

Later on, Fraim and Wattenbarger (9) brought the idea of using pseudo-time and 

pseudo-pressure to production decline analysis. Before that Agarwal (10) and Lee and 

Holditch (11) had used pseudo-time and pseudo-pressure in transient analysis of gas 

wells. In (9) it is shown that by using a normalized time as below. Decline curve for a 

closed real gas reservoir can always be expressed as an exponential decline (with b=0). 

 

This normalized time is different from what was used in (11) and (10) because the 

fluid properties (viscosity and compressibility) are evaluated at average pressure rather 

than at the wellbore pressure which is the case in transient analysis’s pseudo-time. 

Notice that the existence of  in the integrand lets the normalized time have time 

dimension rather than be a non-dimensional parameter. 
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In a new theoretical approach, Palacio and Blasingame (12) surpassed some 

limitations in decline curve analysis previously existed techniques. The assumption of 

constant bottom-hole production condition was removed by this method. In (12), by 

using a material-balance time function, the authors suggested a solution which paved 

the way to minimizing the effect of changes in bottom-hole pressure. Material balance 

time in (12) is defined as  

 

Additionally a dimensionless time is also defined 

 

Which together yield the following equation for the liquid decline, 

 

The difference between the Fetkovich’s equation and Palacio and Blasingame’s 

equation is that the latter uses the material balance time and the decline for liquid 

production in Blasingame equation is a harmonic decline. 

For the gas production wells Palacio and Blasingame in (12) used the material balance 

pseudo-time with the real gas pseudo-pressure.  

In gas well’s production data analysis use of the pseudo-pressure is inevitable to 

account for the changes in gas compressibility and viscosity. This is more significant 

when well undergoes a large pressure change during its lifetime. (13) 

Agarwal et. al. in (14) verified the material-balance time development from Palacio 

and Blasingame in (12). Using a single phase finite-difference reservoir simulator, 
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they verified that constant rate and constant bottom-hole pressure solutions for liquid 

and gas systems can be converted to an equivalent constant rate liquid solution.  

An advancement of these new production decline-type curves over the previous works 

is that transient and boundary dominated flow periods are clearly distinguished. Other 

benefit is a better reserve estimation ability. 

Another important contribution of Agarwal et. al. work (14) is the use of pressure 

derivatives in type curve analysis. This helps identifying the transition between the 

transient and pseudo-steady state flow regimes.  

Cox et al (15) took Palacio and Blasingame’s material balance time approach and used 

it with standard dimensionless variables. They showed that production data could be 

analyzed as an equivalent, constant-rate well test. This work is an example of 

combining constant-pressure decline curves with constant-rate pressure transient type 

curves. 

Decline Curve Analysis, Type Curve Matching and all the cases discussed before are 

providing us with a single well studies. These methods do not provide us by a 

comprehensive analysis of the reservoir. If a field-wide complete model of the 

reservoir is needed for field performance prediction purposes, numerical simulation 

models that are history matched with available production data are the most desired 

method out there.  

These models require lots of information about the field and the less data is available 

to build them the more uncertain they become. Therefore the history matching process 

would also become harder and sometimes close to impossible if not enough data is 

available. Considering the amount of man and computer power which should be 

available for the process of building a numerical simulation model for a field and 

history matching that model, this process would not prove to be economical for many 

mature fields. Adding to it the lack of field data for these fields it would not be a 

realistic choice at all.  
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There are some other field-wide modeling techniques that are not using numerical 

simulations. Gaskari and Mohaghegh in (16) proposed an integrated technique that 

uses fuzzy pattern recognition to come up with a full field analysis based on Decline 

Curve Analysis, Type Curve Matching and a single well history matching. 
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3. Methodology 

In this section Intelligent Time Successive Production Modeling Technique is 

introduced and the procedure of implementing this technique is studied. This method, 

like other data-driven modeling methods (16) concentrates on field-production data 

history. The scheme, as will be described later, is using production rate at previous 

time steps (temporal dependency) and closest offset wells flow behavior (spatial 

dependency). 

Spatial dependencies are a function of the degree of heterogeneity of the reservoir. The 

more heterogeneous the reservoir is, the more influential our knowledge of the spatial 

characteristics will be. 

The heterogeneity in the reservoir characteristics are addressed by using a 

geostatistical estimation method throughout the reservoir. This tool honors the well 

logs characteristics information and generates a field-wide map through the entire 

reservoir for each geological characteristic. These maps can be used to accommodate 

the effect of heterogeneity by taking into account non-constant geological parameters 

around the wells, rather than assuming a unique value for each parameter. 

After generating field-wide geological maps, different yard sticks are defined for 

building a dataset based on each well’s production behavior at anytime. Geological 

characteristics and flow behavior along with the Euclidean distance between each well 

and its offsets are included in this data. The distance between wells and offsets can act 

as a measure of spatial dependencies between wells behavior. Also the age difference 

between wells and its offset wells is a measure of the influence each of the offset wells 

can have on the wells production performance. 

Spatio-temporal dependencies of flow characteristics of different wells are modeled in 

a systematically integrated and cohesive manner. The resulting predictive model is 

employed to predict the future performance of the field. In this way a field-wide 
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comprehension of the reservoir is generated based on single well’s performance 

history.   

The method is applied to a synthetic numerical simulation model. This model is 

described in next sections. The only data which is used from simulation model would 

be the monthly production history along with reservoir characteristics information at 

well locations (Well Log Data). 

Modeling is performed using neural networks as universal function Approximators. 

The related training and verification processes are also explained in much more detail 

later in this manuscript. At the end all these models are incorporated in a fully 

automatic prediction system which is called the Time-Successive Production Model. 

This tool will use the trained models to predict the field’s production behavior for an 

extended time periods.   

A brief flowchart of ITSPM method is illustrated in Figure 3. 

 

Figure 3 - Workflow of ITSPM 
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3.1. Reservoir Model Description 

3.1.1. Structure and Properties 

A commercial numerical simulation package was used to build a heterogeneous one 

layer, one phase (Oil) reservoir. The structure map and well locations are obtained 

from data related to a real reservoir. Other properties such as porosity, permeability 

and Initial water saturation maps are generated synthetically. These maps are built by 

using point values at a number of wells and creating the map by applying the Inverse 

Distance (17) method throughout the entire reservoir. 

A structure map with well locations is shown in Figure 4. A 3D view of the reservoir 

structure and thickness shows the heterogeneity in these properties. 

 

Figure 4 - 3D View of the Numerical Reservoir Model Structure  

Property ranges within the reservoir is shown in Table 1. Also a full field map of 

porosity and permeability map that are used in this Model is included in Figure 5 and 

Figure 6. 
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Table 1 - Property Value Range in the Field 

 

A Cartesian grid system with an average grid size of 200 ft by 500 ft and total number 

of 10,000 grid blocks is used in the numerical simulator.  

 

Figure 5 - Permeability Distribution in Numerical Model 

Property Porosity Net Thickness, ft Permeability, mD Initial Water Saturation Formation Top, ft

Minimum 0.05 134.04 0.66 0.08 7537.19
Maximum 0.29 192.14 3.54 0.54 7819.38
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Figure 6 – Porosity Distribution in Numerical Model 

 

Figure 7 - Formation Thickness Distribution in Numerical Model 
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3.1.2. Well Configurations and Production Constraints 

Production starts on January, 1982 and the field is put into production for 15 years. 

During 55 month 165 wells are drilled on a 3 well per month basis. While the initial 

pressure is equal to 4000 psi, All wells are producing on a constant bottom-hole 

pressure equal to 1500 psi and bubble point pressure is equal to 1000 psi therefore all 

the wells are producing oil and no free gas exist in the reservoir. 

3.2. Single Well Modeling and Field-Wide 

Integration 

Most of the production data analysis techniques as discussed in previous sections are 

single-well based. These methods do not have the ability to integrate the individual 

well performance assessments into a cohesive field-wide model. In this work our 

objective is to generate a workflow that can allow us to blend these single-well models 

into a field-wide comprehension of the reservoir. 

First step is to define a boundary for each well.  This is made possible by using the 

theory of image wells and the no-flow boundary creation between two wells. This 

theory implies that if two well starts producing at the same time at a distance of “R” 

with the same production rate. Assuming a homogenous formation the no-flow 

boundary will be created at the same distance to both wells. 

 

By using this definition and applying the Voronoi graph theory we delineate the 

reservoir to a number of Voronoi cells (equal to the number of wells). These Voronoi 

cells are considered as the Estimated Ultimate Drainage Area of each well. 
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3.2.1. Voronoi Delineation 

By definition (18) the Voronoi cell of a point, , defined , is the set of points x 

that are closer to p than to any other point in S. The union of the Voronoi cells of all 

generating points p in S forms the Voronoi diagram of S.  

Using the well locations as the generating points, p and the reservoir boundaries as S. a 

Voronoi diagram is generated for S. This is done by a sweeping technique over the 

entire grid blocks. For each grid block the Euclidean distance of that block to all the 

wells are calculated, each block would belong to the Voronoi cell of the well which is 

closest to it. That well will be called the “Parent well” for that grid block. By 

sweeping all the blocks with this method the entire reservoir is delineated into 

different Voronoi cells that each one of them creates its own parent well’s Estimated 

Ultimate Drainage Area (EUDA).This process is illustrated in Figure 8. 

 

Figure 8 - Voronoi Delineation 
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These Voronoi cells are dynamic through the life time of the reservoir, meaning if a 

new well is drilled the ultimate drainage area for other wells shrink in a way so it 

accommodates the new well. This will continue as long as new wells are being drilled. 

Combining the information from closest offset wells and the dynamic value of EUDA 

at each time for any well, a coherent information platform is built for the entire 

reservoir. 

3.3. Volumetric Analysis and Reserve Estimation 

Initial Hydrocarbon in place estimation is carried out using a volumetric method. Not 

like most volumetric reserve estimation techniques that use single values for porosity 

and net pay, in this method these properties are estimated in the entire reservoir by 

geostatistical method of Ordinary Kriging using the values at well location. 

3.3.1. Property Estimation 

Assuming that properties like porosity, net pay and initial water saturation at well 

locations are known from well logs; these values can be used to generate a cohesive 

map for each property using Ordinary Kriging technique. The maps are generated for 

porosity and formation thickness and are compared to the real maps from the reservoir 

model. Porosity values estimated using the Ordinary Kriging technique is plotted and 

compared to the real porosity map in Figure 9. Same comparison for formation 

thickness values obtained from Ordinary Kriging is presented in Figure 10. 
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Figure 9 - Porosity Estimation Comparison - Geostatistics Result (Left) Real Map (Right) 

 

Figure 10 - - Formation Thickness Estimation Comparison - Geostatistics Result (Left) Real Map (Right) 

For a detailed explanation on the geostatistical methods used in this work please refer 

to Appendix 1. 

3.3.2. Volumetric Analysis 

Two different volumetric analyses with different resolutions were performed to 

estimate the reserve in the field and both results were compared to the real initial 

reserve from the numerical simulation model.  
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Well Based Volumetric Analysis 

In the well based analysis reservoir properties such as porosity, formation thickness 

and initial water saturation at each well is assigned to the whole Voronoi cell belonged 

to that well. In this case for each well’s Voronoi cell total reserve estimation is 

calculated using  

 

These values are then added up to produce the total reserve estimate. 

Grid Based Volumetric Analysis 

In the geostatistical analysis which is performed to generate the grid-based values for 

each reservoir property is utilized to increase the accuracy of the estimate. Instead of 

assigning the well’s property value to the entire drainage area, the reserve is estimated 

at each grid block using the property values for that block. Then the reserve is 

calculated with the same manner but this time the area should be the grid block’s area. 

 

3.4. Production Data Assimilation 

The production data by itself has a vast amount of information about the reservoir that 

has been infused to one value of production rate. Once it is comingled with the 

available static and dynamic information of the reservoir; it can bring out a cohesive 

full field model that represents the reservoir in a predictive system. 

There are two different kinds of dependencies among the production data and reservoir 

characteristics. One is the spatial dependencies which are defined by the dependency 

of production rate to different properties in different locations of the reservoir. The 

second one is the temporal dependencies; involving the dependency of each well’s 

performance to the history of the production of its own and other wells. In this work 
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we have tried to address these two issues with one predictive system. In order to do 

this a comprehensive dataset based on the reservoir characteristics and its production 

history is necessary.   

3.4.1. Closest Offset Wells  

Knowing the nature of the earth, in most cases one can assume that the closest the 

wells are the more similar their production behavior and characteristics will be. Using 

this fact in order to introduce the spatial and temporal dependencies we allocate the 

five Closest Offset Wells (COW) of each well and include their static and dynamic 

information in that well’s data record. 

 

Figure 11- Closest Offset Wells Illustration 

Data Set Structure 

Production rate is recorded monthly, therefore at each month a new data record for 

each well is produced which includes the well’s static information that doesn’t change 

by time and its production information. Additional to this information the Closest 

Offset Wells’ static information and their production data are also included in the data 

record. Also parameters such as distance between the well and offsets and the time 

difference between their production starting times is also included. This information is 

reflecting the significance of dependency between the production behavior of the 

offsets and the well.  
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Once the data set is generated for an enough length of time it is put into use to train a 

neural network which then learn to predict the well’s production rate at next time step 

(month).  

3.5. Neural Network Modeling 

Training process of the neural networks is done in the Intelligent Data Evaluation and 

Analysis Environment (IDEA) (19). Data set is partitioned in three different segments. 

The first segment which is the largest of all three is used to train the network. In order 

to prevent the memorizing and over training effect in neural network training process, 

second segment of the data is taken for calibration. This part of the data is not 

introduced to the network for training but at each step of training the trained network 

is tested for this set and the best network is selected based on the calibration set 

prediction error. 

Third segment of the data set is the verification part. This part is kept out of the 

training and calibration process and it is only used to test the precision of the network. 

Once a network is trained and calibrated, the final model is applied to the verification 

set. If the results are satisfactory the network is acceptable to be part of the entire 

prediction system. 

3.6. Production Modeling and Prediction 

3.6.1. Initial Rate Prediction Model 

First step of production prediction is the initial production rate estimation. Once each 

new well is drilled and put into operation it shows an initial rate of production. This 

initial production rate depends on the characteristics of the reservoir at that location 

and also on the production history of the well surrounding it. The production history 

represents the state of the depletion of the reservoir. Integrating this information into 

the characteristics would lead to a better understanding of the future production 

behavior. 
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In a mature field that the reservoir has been producing for a long time and been 

depleted at most locations, new well’s initial production rate not only depends on the 

location’s characteristics but it is a function of the well’s production starting time; the 

later the well is drilled the less the initial rate may be. 

During the reservoir life span, at each time that a new well is drilled, the entire well’s 

information can be a new instance of these dependencies. In order to utilize this 

information and infuse it into a predictive model, its initial rate and characteristics 

along with the dynamic and static information from its offset wells is recorded right 

after drilling is complete. This data assimilation leads into a data set that is used to 

train our first neural network model. 

The first predictive model which is trained, calibrated and verified to predict the initial 

production rate of new well’s is designed using a dataset built based on the production 

history of the numerical reservoir model, described in previous sections. First 156 

wells out of a total number of 165 wells are considered to be existing wells while the 

dataset is built during a 5 years’ time frame. 156 data records is built each representing 

one well at their initial production time. A complete list of inputs that are included in 

the dataset is reviewed in Table 2. 
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Table 2 - Initial Production Rate Prediction Model Input List 

 

Out of these input parameters not all are used to train the neural network. A Key 

Performance Indicator process is performed to rank the most influential input 

parameters on the Initial Production Rate.   

  

Figure 12 - Key Performance Indicator 

Neural Network’s design and data allocation is described in Table 4 

Porosity Porosity

Formation Thickness Formation Thickness
Initial Water Saturation Initial Water Saturation

Formation Top Formation Top
Location's Lat and Long

Dynamic Information
Estimated Ultimate 

Drainage Area

Initial Production Rate
Current Production Rate

Time Difference in Date of first 
Production

Distance to the Well

Dynamic Information

Estimated Ultimate Drainage 
Area

Relative Information

Well's Closest Offset Wells'
Input Data

Static Information
Static Information

Well's Closest Offset's
Porosity First Offset Initial Rate

Formation Thickness Second Offset Initial Rate
Location Lat and Long

Selected Input Parameters

Table 3 - Selected Inputs for Initial Production Rate 
Model 
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Table 4 - Initial Rate Prediction Network Design and Data Allocation 

 

It should be noted that the verification data set is different from the other 9 new wells 

that are kept completely out of networks dataset. Once the neural network is verified it 

will be applied to the new wells to predict the initial production rate. 

3.6.2. Production Profile Prediction Model 

After estimating the initial production rate for a new well, the production rate is 

modeled in a time successive fashion. In other words at each time step, the production 

rate is predicted based on previous production rates and offset wells’ information. 

In order to have a more accurate prediction at each time, we decided to use the past 

three months’ production rates as input values for the neural network. This can be 

applied for modeling the production at month four through.  

Three Separate neural networks are designed to predict different stages of the 

production profile. The initial decline of the production, however need a different 

strategy to be modeled than the tail of the production. 

3.6.3. Second and Third Month Models: 

In second and third month of production we do not have the privilege of using the last 

three months production rates as input values simply because the well has not been 

producing for three months. In this case two specific neural networks are trained, 

calibrated and verified to predict the second and third month of production. In these 

two networks respectively last one and two month of production is used as input 

values. 

Input parameters for the second month production model are presented in Table 5. The 

only additional input from the First model (Initial Rate Prediction) is the initial 

Networks Training 
Method

Number of Hidden 
Layers

Number of Hidden 
Neurons

Number of 
Data Records

Training Data 
(%)

Calibration 
Data (%)

Verification Data 
(%)

Back Propagation 1 14 156 80% 10% 10%
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production rate of the well which is now available and can be used for prediction of 

the second time step. 

Table 5 - Second Month Production Rate Prediction Model Input List 

 

Same as previous model, not all of these input parameters are used to train the neural 

network. A Key Performance Indicator process is performed and most influential 

inputs are selected. 

 

Figure 13 - Key Performance Indicator 

The design of the neural network and data partitions are shown in Table 7. 

Porosity Porosity
Formation Thickness Formation Thickness

Initial Water Saturation Initial Water Saturation
Formation Top Formation Top

Location's Lat and Long
Estimated Ultimate 

Drainage Area
Initial Production Rate Initial Production Rate

Current Production Rate
Time Difference in Date of first 

Production
Distance to the Well

Static Information
Static Information

Dynamic Information

Estimated Ultimate Drainage 
Area

Relative Information

Dynamic Information

Input Data
Well's Closest Offset Wells'

Well's Closest Offset's
Porosity

Formation Thickness
Location Lat and Long
Initial Production Rate

Selected Input Parameters

First Offset Initial Rate

Table 6 - Selected Input for Second Month Production Rate 
Model 
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Table 7 - Second Month Rate Prediction Network Design and Data Allocation 

 

It should be noted same as in Initial rate prediction model, 9 new wells and 3 wells 

that did not have their second month production available in the training data are kept 

completely out of networks dataset. Once the neural network is verified it will be 

applied to the new wells to predict the second month production rate. 

Input parameters for the Third month production model are presented in Table 8. The 

only difference with inputs from the Second Month Model is that now two previous 

production rates will be introduced as input values to the network. 

Table 8 - Third Month Production Rate Prediction Model Input List 

 

With the same procedure that was explained in previous network designs, most 

influential input parameters were selected for training this network and are shown in 

Table 9. 

Networks Training 
Method

Number of Hidden 
Layers

Number of Hidden 
Neurons

Number of 
Data Records

Training Data 
(%)

Calibration 
Data (%)

Verification Data 
(%)

Back Propagation 1 15 153 80% 10% 10%

Porosity Porosity
Formation Thickness Formation Thickness

Initial Water Saturation Initial Water Saturation
Formation Top Formation Top

Location's Lat and Long
Estimated Ultimate 

Drainage Area
Initial Production Rate Initial Production Rate

Second Month Production 
Rate

Current Production Rate

Time Difference in Date of first 
Production

Distance to the Well
Relative Information

Dynamic Information

Input Data
Well's Closest Offset Wells'

Static Information
Static Information

Dynamic Information

Estimated Ultimate Drainage 
Area
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Figure 14  - Key Performance Indicator 

For the third month production rate prediction model, the network design and data 

partitions are shown in Table 10. 

Table 10 - Third Month Production Rate- Network Design and Data Allocation 

 

Same as in previous networks, 9 new wells and 6 wells that did not have their third 

month production available in the training data are kept completely out of networks 

dataset. Once the neural network is verified it will be applied to the new wells to 

predict the third month production rate. 

3.6.4. Forth Month and after Production Model (Tail Model): 

Once we are done with the initiation time steps prediction, an inclusive neural network 

is trained for modeling every step of the production profile based on last three months 

production and closest offset wells’ real time information. 

A list of available inputs for this model is presented in Table 11. 

Networks Training 
Method

Number of Hidden 
Layers

Number of Hidden 
Neurons

Number of 
Data Records

Training Data 
(%)

Calibration 
Data (%)

Verification Data 
(%)

Back Propagation 1 17 150 80% 10% 10%

Well's Closest Offset's
Porosity First Offset Initial Rate

Formation Thickness
First Offset Current 

Production Rate
Location Lat and Long Second Offset Initial Rate

Initial Production Rate

Second Month 
Production Rate

Selected Input Parameters

Table 9 - Selected Input for Third Month Production Rate 
Model 
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Table 11 - Production Tail Model Input List 

 

One significant difference between this model and previous three models is in the 

definition of the output parameter. All previous models use production rate as the 

output. In the forth model, however, to attain more robust and accurate results, output 

parameter is defined to be the change in production rate from the last month 

production. This output selection has a considerable effect on the final result of 

production profile prediction.  

Had production rate be selected as output, sometimes due to small changes of rate in 

the production tail, an increase in rate would be observed in the models’ result instead 

of a decline. Consequences of this error would be a poor production profile prediction. 

Selecting ∆Q as the output guarantees a decline in rate no matter how small this 

change might be. Therefore it improves the ability of the predictive model in 

predicting the tail of the production. 

Again by using Key Performance Indicator the most influential input parameters are 

selected in training the network. 

Porosity Porosity
Formation Thickness Formation Thickness

Initial Water Saturation Initial Water Saturation
Formation Top Formation Top

Location's Lat and Long
Estimated Ultimate 

Drainage Area
Initial Production Rate Initial Production Rate

Production at 3 months 
ago

Current Production Rate

Production at 2 months 
ago

Time Difference in Date of first 
Production

Production at 1 months 
ago

Distance to the Well
Relative Information

Dynamic Information

Static Information
Static Information

Dynamic Information

Estimated Ultimate Drainage 
Area

Input Data
Well's Closest Offset Wells'



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 30 
 

 

Figure 15 - Key Performance Indicator 

Networks data allocation and the structure of the network is shown in Table 13 

Table 13 - Production Tail Model - Network Design and Data Allocation 

 

3.6.5. Intelligent Time Successive Production Model 

Once all the four models are trained and verified it’s the time to put them together in 

an integrated system that is capable of predicting the entire field’s production. We are 

calling this integrated system a time-successive model because its prediction at each 

time depends on the previous time steps predictions.  

Time Successive model is tested on the same simulation model which was discussed 

before. At the beginning of the year 1987 the last set of production data for 156 wells 

is obtained from the simulator. This set of data is used to initialize the ITSPM. At each 

time step depending on the state of the well one of the four designed models are used 

to predict its next time step production rate. At each time step all the wells are swept 

and their production is predicted and recorded in the next step rates vector. If at any 

Networks Training 
Method

Number of Hidden 
Layers

Number of Hidden 
Neurons

Number of 
Data Records

Training Data 
(%)

Calibration 
Data (%)

Verification Data 
(%)

Back Propagation 1 64 5745 60% 20% 20%

Well's Closest Offset's

Porosity
First Offset's Time Difference 

in Date of first Production

Formation Thickness

Estimated Ultimate 
Drainage Area

Location Lat and Long

Initial Production Rate

Production at 3 months 
ago

Production at 2 months 
ago

Production at 1 months 
ago

Selected Input Parameters

Table 12 - Selected Input for Production Tail Model 
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time a new well is drilled using the initial rate prediction model, its initial rate is 

predicted and the well is added to the list of the producing wells. Because after the first 

step systems’ inputs are generated based on the previous step’s outputs, model is 

completely independent from the simulation models’ result.  

It should be noted that closest offset wells are determined  dynamically, meaning that 

during the reservoir’s lifetime that new wells are added to the reservoir each well’s 

offset wells are changing. In order to address this offset wells for each well are 

recalculated at each time step. 

Implementing this step is done in Visual Basic environment. A controller program is 

designed and tested. Program uses the verified neural networks’ as .dll files. These 

files are called inside the program at each time step for each well depending on which 

one fits the wells’ state of production. 

3.7. Sensitivity Analysis 

In the previous section we pointed out the dependency of each step’s output to its 

previous step’s outcome. Now in order to have a quantified understanding of this 

dependency a sensitivity analysis is performed.  

By exposing a determined error to the initial rate prediction model, results of ITSPM 

are regenerated and the final error is observed. As long as the output of ITSPM would 

not diverge from the desired outcome by an extremely high error we can make sure 

that by performing a Montecarlo analyses on uncertain Initial rate predictions a well 

defined range of production profile might be predicted for the entire wells. 

Same study can be performed to understand the sensitivity of the final results to 

reservoir characteristics information. This procedure was conducted to study the final 

results’ dependency on porosity data precision. 

Other characteristics and input data information also can undergo a sensitivity 

analysis. The uncertain nature of our knowledge about reservoir characteristics and the 
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noisy production data will always bring down the precision of our predictions for 

future. At the end the more robust our prediction method is the less sensitive it will be 

to the errors and uncertainties associated with the data.  

3.8. Time Successive Production Prediction of a 

Real Reservoir 

In order to examine the validity of this technique, it’s applicability to a real case is 

studied. The method was applied on a giant oil field production data history. An over 

40 years of production data and reservoir characteristics at well locations is available.  

This field has 210 oil producing wells. Wells are drilled from 1963 to 2001. The wells 

location and Estimated Ultimate Drainage Area which is assigned to them by Voronoi 

technique is shown in Figure 16. 

 

Figure 16 - Real Field Wells and Estimated Ultimate Drainage Area 

Available static information about this field includes porosity and formation net pay at 

the wells. Also permeability value obtained from well tests and flowing bottom-hole 

pressure are also available. Initial pressure of the reservoir is 4,437 Psia and initial 

temperature is 190 F. 

Ranges for these parameters are shown in Table 14. 
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Table 14 - Real Data Property Value Ranges 

 

As it comes by its nature, production data contains a lot of noise and uncertainty. To 

overcome this noise before we use the data in Time Successive prediction method, for 

each well Decline Curve Analysis is performed and the decline curve data replace real 

production data, a sample of these decline curves is shown in Figure 17 - Decline 

Curve Fitted to the Production Data (Blue Solid) – Production Data (Green dots). 

 

Figure 17 - Decline Curve Fitted to the Production Data (Blue Solid) – Production Data (Green dots) 

Out of 210 wells that are producing in the field 4 youngest wells which are drilled in 

2001 are taken out for verification purpose. The dataset is built based on 206 wells 

information and oil production data. Dataset generation follows the same path as 

described in previous section. Five Closest Offset Wells are located and their 

information is included in the dataset.  

Looking at the initial rate of production of the 206 existing wells a declining trend 

during the life time of the reservoir is apparent. This can be explained as a result of the 

Property Porosity % Net Thickness, ft Permeability, mD Initial Oil Saturation % Flowing Bottom-Hole Pressure, Psia
Minimum 10.00 170.56 3.04 63.00 1500.00
Maximum 21.00 3462.37 4679.00 83.00 4079.00
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depleting the reservoir during over 40 years of production. Due to this decreasing 

trend the initial rate of the new wells would be more correlated to the latest existing 

wells rather than the older ones. To address this issue of depletion, the last 20 years of 

production data was used to model the initial rate of production.  

In the first model a neural network is trained using back propagation technique 

selected inputs are shown in Table 15. The dataset structure is the same as what was 

explained in Initial Rate Prediction Model in previous section.  

Table 15 – Initial Production Rate Prediction Model - Input List 

 

For second and third month of the production two separate models are designed and 

two neural networks are trained and verified. Not like the synthetic model case, the 

output of these neural networks is the cumulative production rather than the rate at 

each time step. The cumulative production seemed to be a better choice for prediction 

because of its less noisy behavior and always increasing nature.  In the second month 

cumulative production prediction model the previous month cumulative is used as an 

input and for the third month two preceding month data are used as inputs. Networks 

Well's Closest Offset's
Formation Thickness First Offset Initial Rate
Initial Oil Saturation Second Offset Initial Rate

Location Lat and Long Forth Offset Initial Rate

Date of First Production
First Offset Time Difference in 

Date of first Production

Second Offset Time 
Difference in Date of first 

Production

Distance to First Offset Well

Distance to Second Offset 
Well

First Offset Well's Current 
Production Rate

Second Offset Well's Current 
Production Rate

Selected Input Parameters
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selected inputs are shown in Table 16 and. These inputs are selected based on a key 

performance indicator analysis. 

Table 16 - Second Month Cumulative Prediction Model - Input List 

 

 

 

 

 

 

 

 

 

 

 

Well's Closest Offset's
Formation Thickness Forth Offset Initial Rate

Initial Oil Saturation
Third Offset Cumulative 

Production

Porosity
First Offset Time Difference in 

Date of first Production

Flowing Bottom-hole 
Pressure

Second Offset Time 
Difference in Date of first 

Production

Initial Production Rate
Third Offset Time Difference 

in Date of first Production

Date of First Production Distance to First Offset Well

Distance to Second Offset 
Well

Distance to Third Offset Well

First Offset Well's Current 
Production Rate

Second Offset Well's Current 
Production Rate

Third Offset Well's Current 
Production Rate

Selected Input Parameters
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Table 17 - Third Month Cumulative Prediction Model - Input List 

 

Once these three networks are trained and verified, next step is to predict the 

cumulative production for the rest of wells life time. This is done by using a three 

month window of past cumulative production value as inputs along with the reservoir 

characteristics and offset wells information. Because of the depletion in the reservoir, 

recently drilled wells experience a lower value of cumulative production compare to 

the older ones within the same length of time. To be able to predict the younger wells 

with lower cumulative production values most recent 91 wells information were used 

so high values of cumulative at beginning of the reservoir life time would not mislead 

the training process. This step’s neural network’s input parameters are shown in Table 

18.  

 

 

 

 

 

 

 

Well's Closest Offset's
Initial Oil Saturation Forth Offset Initial Rate

Initial Production Rate
First Offset Time Difference in 

Date of first Production

Second Month Production 
Rate

Second Offset Time 
Difference in Date of first 

Production

Date of First Production Distance to First Offset Well

Second Offset Well's Current 
Production Rate

Fifth Offset Well Estimated 
Ultimate Drainage Area

Selected Input Parameters
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Table 18 - Cumulative Production Prediction Model - Input List 

 

 Now that all models are trained and verified they can be used in the Time Successive 

Prediction. Last 4 wells were taken out of all the dataset so they can be used to verify 

the results of this prediction technique. The comparison of their actual cumulative 

production (decline curve) and Time successive prediction results are demonstrated in 

results section.

Well's Closest Offset's

Porosity First Offset Well's Porosity

Initial Oil Saturation Second Offset Well's Porosity

Formation Thickness
Forth Offset Initial Decline 

Rate
Permeability ( Well Test 

Result)
Well's Location Lat and 

Long
Initial Oil Saturation

Initial Production Rate

Three preceding Months' 
Cumulative Production 

Date of First Production

Selected Input Parameters
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4. Results 

In this section we present the outcomes of applying this technique to the numerical 

simulation model production history information which was introduced before. 

4.1. Volumetric Analysis Results 

As expressed before the initial oil in place was estimated using a geostatistical 

volumetric method. Two separate analysis was performed one by assuming that all 165 

wells have well log information and second by assuming only less than 30 % of the 

wells (48 wells) have well information available. Results of both analyses were then 

compared to the actual value of Initial Oil In Place from the numerical simulator 

model. 

Distribution of the 48 wells among the 165 well is shown in Figure 18. 

 

Figure 18 - Distribution of 30% Selected Well Logs 

Results of these analyses are presented in Table 19. 
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Table 19 - Volumetric Analyses Results 

 

Actual - Numerical Simulation Geostatistics - 165 well logs Geostatistics - 48 well logs

IOIP, MRbbl 7,605,000.00 8,151,984.00 8,639,531.00

7.19 13.60Error  (%)
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4.2. Synthetic Model Application 

At the beginning the results of each model’s training and verification is presented and 

discussed. Then the production prediction from the Time Successive Model is 

demonstrated and compared to the real data from the simulation results. 

4.2.1. Initial Production Rate Model  

This model which is the most uncertain part of the prediction is predicting the initial 

rate of the new wells. Previously we discussed that this neural network model is 

trained based on existing well instances during the reservoir’s lifetime. 

The training set contains 133 well records. The cross plot for predicted initial rate 

values and the actual value of the flow rate is shown in Figure 19. 

 

Figure 19 - Initial Rate Model, Training Set Cross Plot 
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The same cross plot is generated for calibration and verification datasets.  

 

Figure 20- Initial Rate Mode -Calibration Set Cross Plot (Left) - Verification Set Cross Plot (Right) 

This model’s percentage error is calculated by comparing the predicted results with 

actual values from numerical simulator. An error frequency and cumulative 

distribution is shown in Figure 21. 
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Figure 21 - Initial Rate Model - Error Distribution 

4.2.2. Second Month Production Rate Model  

After predicting the Initial rate, the second month production is modeled by a neural 

network which is trained in the same manner. In this model again we use 153 data 

instances which are available. 10 % of the data is used for calibration and another 10% 

is kept for verification of the model. 

Results of training the network is shown in Figure 22 - Second Month Rate Model, 

Training Set Cross Plot. As it can be observed the uncertainty of the prediction have 

decreased a lot since more information about the wells is available when predicting the 

second month production. 
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Figure 22 - Second Month Rate Model, Training Set Cross Plot 

The calibration and verification data sets also show a promising accuracy in the 

prediction. 

 



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 44 
 

 

Figure 23 - Second Month Rate Mode -Calibration Set Cross Plot (Left) - Verification Set Cross Plot (Right) 

An error distribution is also generated for this model.  
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4.2.3. Third Month Production Rate Model  

The last model which predicts the production rate at a specific well age is the third 

month production prediction model. This model has 150 data inputs and slightly 

different from the previous two models uses a 90%, 5%, 5% segmentation for training, 

calibration and verification. 

Results of training the network is shown in Figure 24 

 

Figure 24 - Third Month Rate Model, Training Set Cross Plot 

And also the calibration and verification sets cross plots is shown in Figure 25. 
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Figure 25 - Third Month Rate Mode -Calibration Set Cross Plot (Left) - Verification Set Cross Plot (Right) 

And as usual to measure the precision of the network’s prediction an error distribution 

is shown in Figure 26. 

 

Figure 26 - Third Month Model Error Distribution 
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4.2.4. Production Tail Model  

In this part results for the production tail model is discussed. This model is supposed 

to be predict the production rate change at each time of well’s life time after the third 

month of production. The model is trained, calibrated and verified with about 5700 

data records. Data is partitioned with a 60% training fraction, 20% calibration and 

20% verification part. 

Training Dataset cross plot is shown in Figure 27. The rate change is predicted with an 

R2

 

=0.903. This implies a rate prediction of very high accuracy in the time successive 

model. 

Clarification and Verification data set is also shown below. These graphs show that the 

trained network works very well for the blind data as well. 

Figure 27 - Production Tail Model Training Set 
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Figure 28 - Production Tail Model Calibration Set

 

Figure 29 - Production Tail Model Verification Set 
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Because of very small values of the output parameter the absolute value of the error is 

shown in Figure 30. In this case absolute value shows a better understanding of 

model’s prediction capabilities rather than the percentage error. 

 

Figure 30 - Tail Model, Delta Q Prediction - Absolute Error Distribution 

4.2.5. Time Successive Model 

Once all the neural networks showed a satisfying predictive capability they were 

integrated in the time successive model. Production data were recorded from the 

simulation model from beginning of 1982 which was the first date of production of the 

first set of wells. Five years of this production data was used for training purposes and 

another year was kept for verification. 

Time successive predictive model was initiated on 1/1/1987. A one year prediction of 

all the wells, Including 9 wells that were drilled after this date is compared to the real 

production data from numerical simulator results. 
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New wells’ production prediction is the main objective of this work. The entire fields 

and all existing wells production is also predicted and can be compared to the 

conventional decline curve analysis results. The precision of these predictions will 

increase the validity of new wells’ production prediction. This let us to actually predict 

the decline behavior of a well which hasn’t been drilled yet. This will lead to better 

decision makings and performance assessments.  

Nine wells were kept out of all the trained models and now their production is 

estimated through the time successive prediction model. These flow predictions are 

compared with real results taken from numerical simulator. Figure 31 through Figure 

39 are showing the nine new wells’ flow rate profile and cumulative production 

comparison. In these Figures the actual production rate is shown in red and the 

production prediction is in blue. The purple curve shows the actual cumulative 

production while the green curve is showing the predicted cumulative production. 

 

Figure 31 - Well 157 Production Rate and Cumulative Comparison 
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Figure 32 - Well 158 Production Rate and Cumulative Comparison

 

Figure 33 - Well 159 Production Rate and Cumulative Comparison 
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Figure 34 - Well 160 Production Rate and Cumulative Comparison

 

Figure 35 - Well 161 Production Rate and Cumulative Comparison 
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Figure 36- Well 162 Production Rate and Cumulative Comparison

 

Figure 37 - Well 163 Production Rate and Cumulative Comparison 
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Figure 38 - Well 164 Production Rate and Cumulative Comparison

 

Figure 39 - Well 165 Production Rate and Cumulative Comparison 
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Figure 40 - Well 1 Production Rate and Cumulative Comparison

 

Figure 41 - Total Field Production Rate and Cumulative Comparison 



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 56 
 

Production rate and cumulative prediction for one of the oldest wells and for the entire 

field is shown in Figure 40 and Figure 41. The total field production prediction shows 

that the ITSPM is performing consistently on all the wells in different location with 

different ages. 

The error distribution for production rate prediction and cumulative production is 

presented in Figure 42 and Figure 43. As it is clear in both distributions more than 

50% of the instances have less than 1% error. Although a maximum error of 11.23% in 

production rate and 12.65% in Cumulative production is observable. 

 

Figure 42 - Production Rate Prediction Error Distribution 
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Figure 43 - Cumulative Production Prediction Error Distribution 
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4.3. Sensitivity Analysis 

As we all know all pieces of information we have about any reservoir characteristics 

are subject to a high degree of uncertainty. Well log information is normally available 

for a few percent of existing wells in the field. Moreover they are not an exact 

representation of geological characteristics and have an amount of uncertainty 

associated to them. 

Also the modeling part will have some uncertainty into it due to the errors associated 

with any predictive model. Therefore the predicted values for production rate will not 

be exact.  

In order to account for all these uncertainties and have a sense of their effect on our 

technique, a triangular distribution is considered for all the input values with a support 

range equal to 40% of the total range for that parameter and the actual value is the 

most likely value of the distribution.  

 

Figure 44 - Triangular Distribution for Model Input Parameters 

A montecarlo simulation is performed for each predictive model using these input 

value distributions. Model’s output would also be represented with a triangular 

distribution which we can extract a most likely decline of production and a maximum 

and minimum range from that. 

Results of this montecarlo simulation are presented for three of new wells. These 

results can be compared to the ones from section 4.2.5. 
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Figure 45 - Well 157 Sensitivity Analyses 
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Figure 46 - Well 158 Sensitivity Analyses 

 

Figure 47 - Well 159 Sensitivity Analyses 

As it can be seen in the figures the most likely prediction stays very close to the real 

production profile despite the uncertainties involved with all the input parameters 

while the minimum and maximum range are showing the extent of possible output 

values from this technique. 

  



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 61 
 

4.4. Real Reservoir Application 

Four different neural networks are trained for Time Successive Prediction. First and 

most uncertain model is the initial rate prediction model. In this model 97 well records 

are used in the dataset. 10% of the data is used for calibration and 10% are kept out for 

verification of the network. This networks prediction performance cross plot is shown 

in Figure 48. 

 

Figure 48- Initial Rate Prediction Model - Cross Plot 

 

Figure 49 - Initial Production Prediction Model - Performance Behavior 
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A distribution of the initial rate prediction error (%) is shown in Figure 50. This figure 

shows more than 80% of the predictions are experiencing less than 30% error. 

 

Figure 50 - Initial Rate Prediction Model - Error (%) Distribution 

Second Month Cumulative Production model also uses 85 most recent well records. 

This data set is used to train, calibrate and verify the network to predict the second 

month cumulative production. 10% of the data is used for calibration and 5% are used 

for verification. A cross plot of this networks performance is shown in Figure 51. 

 



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 63 
 

 

Figure 51 - Second Month Cumulative Prediction Model - Cross plot 

 

Figure 52 - Second Month Cumulative Prediction Model - Performance Behavior 

In order to show the performance of the model, an error distribution is presented as 

well. As it is apparent in this figure, about 80% of the predictions have less than 5% 

error. 
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Figure 53 - Second Month Cumulative Prediction Model - Error (%) Distribution 

 

Next model is designed to predict the cumulative production in third month. Dataset 

has 104 data records that 85% is used for training, 10% is used for calibration and 5% 

for verification of the model. Performance of this model is demonstrated in a cross plot 

in Figure 54. Also the error distribution of this model is shown in Figure 56. 
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Figure 54 - Third Month Cumulative Prediction - Cross Plot 

 

 

Figure 55 - Third Month Cumulative Prediction Model - Performance Behavior 
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Figure 56 - Third Month Cumulative Model -Error Distribution 

Last model that is trained to predict the rest of the cumulative production profile uses 

85 data records with 90% training, 5% calibration and 5% verification set up. This 

model uses three preceding cumulative productions to predict the next step’s value. 

Performance of this model is demonstrated in Figure 57 and Figure 58. Error 

distribution of this model is also provided. 
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Figure 57 - Cumulative Model Prediction - Cross Plot 

 

Figure 58 - Cumulative Prediction Model - Performance Behavior 
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Figure 59 - Cumulative Model -Error Distribution 

4.4.1. Time Successive Production Prediction 

Now that all the models are trained and verified, they can be used to predict the future 

production of 4 new wells. These wells as described before have not been used in any 

of the datasets and none of their characteristics haven’t been available to the networks. 

These four wells location are shown in Figure 60. 
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Figure 60 - Four Verification Well Location 

 

Figure 61 - Well AZ-198 Cumulative Profile Comparison 



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 70 
 

 

Figure 62 - Well AZ-229 Cumulative Profile Comparison 

 

Figure 63 - Well AZ-337 Cumulative Profile Comparison 
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Figure 64 - Well AZ-340 Cumulative Profile Comparison 

As it is visible in three out of four wells a fairly good prediction of cumulative 

production is obtained.  The error distribution is presented in Figure 65. 



Intelligent Time-Successive Production Modeling 
  Yasaman Khazaeni 

 
Page | 72 
 

 

Figure 65 - Time Successive Prediction - Error Distribution 
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5. Conclusions and Discussions 

This work was dedicated to a formal presentation of the concept of spatio-temporal 

data driven modeling technique and it’s applicability to production data analyses. In 

this study we presented a new workflow for production prediction. It was shown that 

incorporating the spatio-temporal dependencies of fluid flow in the porous media and 

its footprints in production data enables us to build a field-wide model from multiple, 

individual single-well models. These spatial and temporal dependencies are addressed 

by incorporating the information content of the closest offset wells in the model. 

Geostatistics methods provide a full field perception of the geological characteristics 

that is used in developing the field-wide model. In this approach the field-wide 

comprehension of the reservoir behavior is accomplished from single-well production 

data analysis. The Voronoi delineation of the reservoir gives a better spatial definition 

to the single wells analysis. By estimating this ultimate drainage area the original 

hydrocarbon in place for each well is also predictable. Even though this may not 

project the exact amount of reserve surrounding each well; it gives us an 

understanding of well’s future performance. 

Intelligent, Time-Successive Production Modeling (ITSPM) was successfully applied 

to a synthetic reservoir and a real field. Results for both cases show promising future 

for this technique. It is important to note that this work is one more step in the overall 

objective of developing data driven empirical reservoir models. 
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6. Appendix (A) - Geostatistical Analysis 

To model the characteristics throughout the entire reservoir Ordinary Kriging was used 

to generate the map. The course of action for this mapping starts with modeling the 

Semivariogram of each parameter in the reservoir based on available data points at 

well location. Once a semivariogram is found for each parameter; the Ordinary 

Kriging algorithm is utilized to find the parameter values at all locations in the field. 

Here a brief description about semivariogram calculation and the algorithm used for 

ordinary Kriging is provided. 

6.1. Semi-Variogram and Model Prediction 

Definition: 

General definition of semivariogram is (20) 

 

“Semivariogram is a statistic that assesses the average decrease in 

similarity between two random variables as the distance between the variables 

increases".  

In geostatistics semivariogram is a powerful tool to predict the spatial dependencies. 

It’s used more than covariance in Kriging. There are a couple of reasons for this 

preference. Some of them are listed in below. 

1. There is no need to know the Random Function's mean to be able to calculate or 

(estimate) the Semivariogram. 

2. Existence of Semivariogram requires less strict assumptions than covariance. 

3. Adding a constant to the random function does not change its Semi-Variogram. 

4. Estimating the Semivariogram is easier than of a Covariance, in presence of a drift. 
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Where E (.) is the expected value function (21) and Z (.) can represent any of the 

reservoir characteristics at different locations in the field. 

Under second order stationary assumption (20) and presuming a constant value for E 

(Z (.)) the definition becomes as following 

 

Now we can assume that variogram is not a function of the location but only a 

function of the distance between two locations namely h that from now we call it lag. 

6.1.1. Experimental Semivariogram 

Semivariogram is not the easiest statistic measurement to calculate. The simplest way 

to calculate it is based on the data we have is called an Experimental Semivariogram: 

 

Where n (h) is the number of pairs of data points at distance h apart. 

There are some problems concerned with the experimental Variogram: 

1. The estimation is not robust with respect to outliers. 

2. There is a dubious assumption with this method: "one realization is sufficient to 

determine properties of the ensemble of all possible realization" by this we totally 

ignore that our data is a partial realization of the main random function and is 

insufficient to deduce that for sure. 

3. We are assuming an intrinsic stationary random function. This results in 

semivariogram being only a function of the lag and is only true if the mean is constant. 

This causes us a problem when data exhibit a drift (a gentle and systematic variation in 
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the mean) in this case at first, one should remove the drift from the data and then 

calculate the semivariogram of the residuals. 

As you may notice the estimation accuracy is directly proportional to the number of 

pairs. It is clear the larger the lag is the fewer the number of the pairs for a given 

distance will be. In Kriging the part of the semivariogram which is close to the origin 

requires the most accurate estimation because of its higher influence on the results. A 

rough rule is to limit the estimation to lags with a minimum of 30 pairs (20). 

6.1.2. Semi-Variogram Models 

Different models are used to be fitted to the experimental semi-variogram information. 

These are predefined deterministic functions that are fitted to the experimental data by 

using a minimum least square error technique. 

Spherical Semi-Variogram 

 

Exponential Semi-Variogram 

) 

Gaussian Semivariogram 

 

Power Semi-Variogram 

 

Pure Nugget Effect Semi-Variogram 
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6.2. Kriging 

Kriging is a spatial interpolation technique. It was first developed by the French 

mathematician Georges Matheron (22), based on the Master's thesis of Daniel 

Grehardus Krige. 

The method is a linear least squares estimation. It is said to be linear since the 

estimator is a linear combination of the known values of the Random Function in the 

sampled points. 

Kriging brings the best linear unbiased estimation, based on a stochastic model of the 

spatial dependence defined either by the Semivariogram or by known mean and 

Covariance. 

In general form Kriging estimator, calculates the Random Function at the desired 

location based on the sample set, by assigning weight factors to each sample. 

 

Where s are the weight factors associated with each data point. 

Like all types of estimations, there is an error associated with this method. The error is 

defined as the variance of the estimated value and the exact value. 

 

The estimator minimizes this variance by choosing the weight factors in the estimator 

equation. 
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A set of constraints are introduced into the weight optimization process so the 

estimator remains unbiased that is honoring the actual point values at data points. 

 

Where  are the Lagrange multipliers for the constrained optimization process. 

 

6.2.1. Ordinary Kriging 

Ordinary Kriging is used in cases that the expected value of the attribute which being 

kriged is unknown. So the estimator will be  

 

And for satisfying the unbiased constraint 

 

We assume the attribute we are performing the Kriging on honor the intrinsic 

hypothesis over the sampling domain (Intrinsic Random Function) (20). This implies 

that  

 

 

Where  is the Semi-Variogram of the attribute. Semi-Variogram function 

correlates with covariance of the attribute as follow: 
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So finding one will result in having the other one available. 

In this form of Kriging by holding the intrinsic random function assumption the 

estimation error will be as following 

 

Algorithm used for Ordinary Kriging 

In order to perform the algorithm some matrices and vectors are calculated or defined 

as following 

Covariance Matrix of the attribute is calculated within the sampled data set. 

This can be done by modeling the Semi-Variogram and calculating the 

covariance for all “lag” values. matrix G is constructed as follows 

 

Weight factors vector is defined 

 

Covariance Vector of the attribute between data points and the estimation 

location is defined 

 

The attribute data points vector is also defined 

 

Now that all the definitions are made the algorithm is designed and implemented in 

Visual Basic environment. 

Calculate V 

Calculate v 

Solve VL=v 
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Find the estimate value 

 

Calculate the ordinary Kriging estimation variance 
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