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Abstract

Distributed Location Estimation of a Moving Target Characterized by a Spatial Poisson
Field

by

Fathi Masoud
Master of Science in Electrical Engineering

West Virginia University

Natalia A. Schmid, DSc., Chair

Wireless Sensor Networks (WSNs) are traditionally employed to collect spatial and temporal
data characterizing various events. These data are then used to solve inference problems such
as object detection, counting, classification, estimation and tracking. Distributed solutions
provided by WSNs are often cost effective and characterized by high performance indices.

In this work, we model and simulate a distributed sensor network composed of radiation
detectors and analyze its ability to make inferences. Radiation detectors are deployed over
a known area. A radiological point source is positioned in the interior of the area. Detectors
take measurements of the field generated by the point source and transmit them (without
any interaction with one another) to a remotely installed super computer (called here Fusion
Center) for a joint processing. To minimize consumption of resources such as power in the
network and transmission bandwidth, the measurements are locally preprocessed prior to
transmission. Our model assumes two Gaussian channels, observation and transmission.
The first channel distorts data at the receiver end of each sensor during data acquisition.
The second channel distorts data during transmission. Sensor measurements are modeled
as an inhomogeneous spatial counting random process (Poisson process). The location of
the radiological point source in the area and the strength of the field generated by the
substance are unknown parameters. The goal of the FC is to estimate these parameters
from the distributed measurements provided by the WSN. To find the distributed estimates,
we adopt the Maximum Likelihood approach. This approach requires knowledge of the joint
probability density function of the distributed measurements observed by the FC. Since the
joint probability density of the data observed at the FC is nonlinear in unknown parameters,
we propose an iterative approach to solve for the maximum likelihood estimates of these
parameters. The solution is a combination of the Bisection and Secant approaches adjusted
to seek solution in a multidimensional parameter space. The performance of the distributed
estimator is measured in terms of the mean square error. It is analyzed with respect to
various parameters of the WSN. We vary the following parameters of the network: (1) the
number of sensors in the WSN, (2) signal to noise ratio in observation and transmission
channels, (3) the strength of the original field, and (4) the number of quantization levels
used by a sensor to convert an analog measurement into a digital signal. We also propose a
distributed tracking algorithm for monitoring position of the object in real time.
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Chapter 1

Introduction

Wireless Sensor Networks WSNs are data acquiring and managing systems. They con-

sist of multiple wireless sensor nodes. A typical node contains a processing unit, sensing

transducer, radio transceiver, and a power supply. A general block diagram is illustrated in

Figure 1 [1]. The processing unit controls the node, performs the communication protocols

Sensor 
Transducer 

Battery 

ADC Mem 

c
Radio  

Transceiver 

Figure 1.1: Sensor components.

and includes the memory, micro controller and analog to digital converter [2]. The sensor

transducer senses the intended environmental phenomena and converts the sensed data into

an electrical signal. A battery feeds the whole node. It is an important component of the

node, as the lifetime of the nodes depends on it. A radio transceiver links the nodes with
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each other and with the network main operation center.

WSN topology depends on the application, as the topology structure plays a major role in

determining the network performance [3]. Sensors can be connected to each other and form

mesh network, and could be organized around a central hub (star topology). The topology

might be more complex such as the clustered hierarchy networks [4, 5, 6, 7].

WSN is utilized to monitor environmental changes such as temperature, humidity, light,

electromagnetic fields, and fumes. It is also used in control applications, machine health

monitoring, military and agricultural applications. The collected data are sent over wireless

channel to a processing center, which is a super computer (Fusion Center) that jointly pro-

cesses the data by using a specific algorithm for required applications [8, 9, 10, 11].

WSN facilitates discovering our environment and acquiring data. This technology is improv-

ing in parallel with the improving of infrastructure technology like semiconductors, capacity

of batteries and memory performance [12]. Limited battery power and limited transmission

bandwidth of communication channels are two main constraints that limit performance of

WSNs. Many investigators have studied the effect of each constraint [13, 14, 15] and both

constraints [16] on the performance of WSNs. Many applications such as distributed esti-

mation, detection, object counting, and tracking have been analyzed [17].

Distributed detection and localization of objects (substance) are the key applications of

WSNs. Object localization is a type of estimation problem, where position of an object is

estimated [18]. In addition to location estimation, other parameters such as signal or field

parameters can be estimated [19].

In this thesis we develop an object localization approach by using distributed measurements

of a WSN of radiation detectors. We assume that a radioactive object (substance) is slowly

moving across the area with deployed wireless sensors. The object generates a field modeled

as an inhomogeneous spatial Poison process. Radioactive detectors take measurements of

this field and transmit them to a Fusion Center (FC) for a joint processing. We assume

that both observation and transmission channels distort sensor measurements and model

distortions as Gaussian random variables.

We take Maximum Likelihood ML Estimation approach to solve for unknown parameters.

This requires forming a joint likelihood function of noisy measurements at FC. The neces-
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sary condition to find a maximizer of the likelihood function result in a set of equations that

are highly nonlinear in estimated position. Therefore, we propose an iterative algorithm to

solve for the location estimates. The proposed algorithm is a combination of two well known

approaches, Secant and Bisection [20, 21, 22].

We analyze performance of the distributed estimator with respect to a number of param-

eters such as the number of sensors in the WSN, Signal-to-Noise Ratio in observation and

transmission channels, number of quantization levels, and other parameters.

Two cases are considered, analog and digital. In the analog case, sensor measurements are

sent immediately to the FC over a communication channel, while in the digital case the mea-

surements are digitized by a common quantizer before they are transmitted by the channel.

The novelty of our work comes from localizing a target characterized by a random Poisson

field. The proposed algorithm is used to solve for the location that maximizes the likelihood

estimation function, where two numerical methods are combined, Bisection and Secant, in

order to benefit from the speed of Secant method and the reliability of Bisection rule.

The rest of the thesis is organized as follows. Chapter 2 includes a review of relevant works.

Chapter 3 presents our problem statement and proposed solution. The joint probability

density function (pdf) is derived for both digital and analog cases, and used to form the

Maximum Likelihood Estimation functions, which is solved by means of the proposed it-

erative algorithm. Chapter 4 presents numerical analysis. The graphs are plotted to find

the optimal parameters, in order to use these parameters for tracking purposes. Tracking

simulations are presented for both digital and analog cases and for different target moving

paths. Also, the Signal to Noise Ratio (SNR) is defined for the observation and for the

communication channels.

Chapter 5 states the summary, conclusion, and future work. The results show that the used

algorithm is efficient, robust and relatively simple. Its simplicity is attributed to a basic way

of combining Bisection and Secant methods into a single algorithm. Literature contains few

algorithms combining the two methods, but they all have high complexity.
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Chapter 2

Literature Review

Since their introduction in 1980s WSNs have become an active research topic. Many

new developments have been documented and performance analysis has been performed.

All publications on the topic available today can be broadly partitioned into publications

providing a general overview of WSNs, publications that describe physical constraints of

WSNs, develop new optimized solutions and analyze their performance, and publications

devoted to limits (sensing and communications) that can be achieved in practice.

In this chapter we will focus only on a small portion of these publications. We will

summarize a number of publications devoted to the problem of distributed target localization

in the presence of uncertainties and constraints.

2.1 Papers related to optimizing WSN parameters un-

der constraints

1. The paper by Ribeiro et al [23] considers a distributed estimation problem. Under

the bandwidth constraint of 1 bit per sensor, they found that an optimal quantization

step could be applied to get the best variance for a given bandwidth constraint. They

concluded that choosing the quantization step equal to the noise variance is sufficient

for many practical cases.

2. Junlin [24] introduced MSE function. It is used to estimate the optimal bit rate
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and transmission energy of each user. The MSE is minimized under a given total

energy budget. An optimal distributed estimation algorithm for homogeneous sensors

and a quasi-optimal distributed algorithm for heterogeneous sensors are proposed and

analyzed.

3. In [25] a decentralized estimation scheme, SES, is built by Xiao et al to find an unknown

parameter, which is modeled as a discrete random variable. Encoding and decoding of

sensor measurements is based on the idea that the length of the digitized sensor mea-

surement is proportional to the logarithm of its local signal to noise ratio (SNR). The

compressed data are then combined by the Fusion Center. The main advantages of the

scheme are the economic power transmission and the low communication requirements.

2.2 Sensor node location estimation

1. Received Signal Strength Indicator (RSSI) is proposed by Al Alawi in [26]. The mea-

surement is used to estimate sensor node location in WSN. Practical data, collected

both indoor and outdoor, are used in the experiments. Calibration model is needed to

demonstrate RF radio channel, which is included in the estimation procedures. Since

the model is built according to RSSI measurements, it is used to estimate the distance

between an unknown node location and known anchor location.

2. In [27] Chen introduced a location estimation algorithm. The purpose of this algorithm

is to find the position of a target sensor node in WSN at certain point in space and

time. The algorithm does not assume any synchronization between the nodes of the

network. Instead, it uses a time difference scheme. Time Difference of Arrival (TDOA)

location algorithm and Kalman filtering are both adopted. Sensors do not send any

RF signal, which apparently reduces the total power consumption of the system.
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2.3 Target localization

2.3.1 Localization in the presence of uncertainties

1. The authors of [28] propose the ML target localization approach in WSN. The paper

assumes an imperfect BSC channel, which links the Fusion Center and the sensors.

Sensor measurements are quantized, and the statistics of the imperfect channel as

well as decoding scheme characteristics at the receiver are included in the localization

algorithm. Simulations are performed to illustrate that the performance under these

practical parameters is close to the theoretically derived performance.

2. The paper [29] analyzes the situation of malfunctioning sensors in WSN. Two cases

are considered here, the case of independent false sensors and the case of connected

false sensors. The sensors send binary data to the Fusion Center. Cramer-Rao Lower

Bound and Fisher Information Matrix are utilized in this paper to evaluate the network

functionality in the presence of false information (Byzantine Attacks).

2.3.2 Target Location Estimation

1. An intensity-based ML target location estimator is introduced in [30]. Ruixin assumes

that a signal generated by the target is isotropic, and its intensity attenuates as a

function of inverse power n distance from the target. Sensor measurements are quan-

tized and sent to a Fusion Center. The paper presents a derivation of the Carmer-Rao

Lower Bound on the variance of parameter estimates. It is also shown through sim-

ulations that the results generated by the ML estimator are more precise than those

of heuristic weighted average methods. Furthermore, optimal quantization thresholds

are calculated to attain a better estimation performance.

2. In [31] an algorithm is presented by Jingjing to estimate location of a target. This

algorithm is based on calculating azimuth angle by utilizing Time Delay of Arrival

TDOA, which is measured by each sensor in a WSN. Then the reading (arrival delays)

of each group of sensors (cluster) is calculated by a cluster head. The angles and the

cluster locations are then used to estimate the source location.
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3. The purpose of Sheng in [32] is to reduce the number of sensor nodes and time cost.

The idea is suggested by a theory of particle filtering called distributed lightweight

particle filter algorithm. Each sensor node performs local particle filtering using local

measurements and the measurements of a neighboring sensor. These measurements

are compared in order to make the ultimate decision. Some of experiments outcomes

are illustrated to evaluate the performance of MLE, Centralized Particle Filter CPF

and the proposed Distributed Lightweight Particle Filter DLPF.

4. The authors of [33] introduced a WSN that has a symmetric-tree structure and used

the network to perform multi-target tracking. They also analyzed the decay rate of

the error detection probability.

5. The paper by Sangeetha [34] uses inverse transformation and Kalman filter to estimate

the location of a target. Kalman filter is used to develop the estimation strategy and

decrease the effect of noise on the accuracy of results. It is also used for the purpose

of estimating signal. Measured Error Covariance and Estimation Error Covariance are

utilized to evaluate the performance of the experimental outcomes.

6. The work [35] introduced an algorithm that uses directional sensors rather than omni-

directional for target tracking. This provides sensors with a certain field of view. The

solution is to control the direction of sensor coverage to save power and have efficient

results. The algorithm can be used in electronic steering and in the mechanical steering.

Each sensor is steered only when it detects a target. The sensor tracks the target until

it reaches the field of view of another sensor.

7. Mansouri adopts in [36] the idea of choosing a group of sensors rather than the entire

sensor network. He assumed that sensor measurements are quantized. One of the goals

of the paper is to find an optimal quantization strategy for the purpose of preserving

the bandwidth in transmission channel. The proposed algorithm suggests to simulta-

neously finding the best group of sensors and performing quantization by means of a

”multi-objective” function.
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Chapter 3

Problem statement and proposed

solution

In this chapter, we state the problem of distributed estimation of a parametric stochastic

field as a maximum likelihood estimation problem and suggest an iterative solution to it.

The solution alternates a bi-section rule and a secant method, which results in an efficient

and robust estimation algorithm.

Assume a WSN is composed of a fixed number of sensors. The sensors are randomly dis-

tributed over an area Ω with known locations (xi, yi) of the ith sensor i = 1 . . . K . Assume

further that an object (such as car, truck, military vehicle, etc) or a subject equipped with

a radioactive substance is moving along a path in the area of interest. The radioactive

substance generates a field measured by the distributed WSN. Each sensor takes a sample

r(xi, yi) of the field and sends it immediately over a communication media to a super com-

puter, called here Fusion Center (FC), for a joint data processing. We consider two cases

of data processing and communication channels: analog and digital. In the case of analog

channel, sensory data are sent as they are by means of linear or nonlinear modulation [37].

A different processing is performed in the digital case, where a sample is sent by sensor

to a local Quantizer, where it is digitized before sending it to the FC. We assume that

communication channels are parallel Additive White Gaussian Noise channels (AWGN)[38].

Therefore the Fusion Center receives independent sensory data. The Fusion Center combines

noisy sensory data and estimates the unknown location (xc, yc) of the object.
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3.1 Sensor Measurements

The field generated by a radioactive substance is often described as an inhomogeneous

spatial Poisson process [39]. For a localized source of radiation, the average rate of radioactive

decay in space is a function of the distance to the object, and is readily described by the

Inverse Square Law[40]. Thus, the intensity of the spatial Poisson process evaluated at

location of the ith sensor is described by the following equation:

λ(xi, yi) =
Λ

1 + (xi − xc)2 + (yi − yc)2
, (3.1)

where Λ is the average intensity of the field at the target’s location, (xi, yi) is the ith sensor

location, and (xc, yc) is the target’s location. We model the measurement by the ith sensor

as

r(xi, yi) = n(xi, yi) + w(xi, yi), (3.2)

where n(xi, yi) is the measurement of the radioactive field at the location of the ith sensor.

It is a Poisson random variable with the probability density function (pdf):

fNi(α) =
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)δ(α− k). (3.3)

and w(xi, yi) is the additive noise (observation noise). We assume that the observation noise

at (xi, yi) is normally distributed with zero mean and variance σ2
0, N(0, σ2

0). Its pdf is given

by:

fWi
(w) =

1√
2πσ0

2
e
− w2

2σ2
0 . (3.4)

The noise measurements are independent and also independent of sensors’ measurements.

3.2 Local Processing for Digital Case

To save the bandwidth and power during transmission[41], we quantize sensor measure-

ments to M levels by using uniform quantization[42]. Denote by Qq(ri) = qi quantized

version of the ith measurement. Then the Fusion Center receives K noisy measurements

zi = qi + vi i = 1 . . . K, where vi is the noise in the ith communication channel. In this work
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we assume that vi are independent Gaussian random variables with zero mean and variance

σ2
c .

3.3 Problem Statement

Given the number of sensors K in the area of observation Ω, the locations (xi, yi) of

the sensors, and a parametric stochastic field generated by object of interest, our goal is to

estimate the location parameter (xc, yc) and continuously track the object in time as the FC

receives new sets of sensor measurements every T seconds.

3.4 Proposed Solution

In this work, we apply a classical Maximum Likelihood Estimation approach [43], [44] to

solve the problem of distributed target location estimation. This solution suggests evaluating

the joint pdf of the measurements at the FC and finding the target location, which maximizes

this density. Our tracking algorithm uses the estimate of the location parameters at time t

as a guessing point to estimate the location of the object at time t+T .

3.5 Maximum Likelihood Solution

3.5.1 Models for the Analog Case

Since the random variables in (3.3) and (3.4) are independent, pdf of Ri can be obtained

as a convolution fRi(r) = fNi(r) ∗ fWi
(r) where * stands for convolution, Therefore fRi(r) =∫∞

−∞ fNi(α)fWi
(r − α)dα.

From equation (3.3) fRi(r) =
∑∞

k=0
λ(xi,yi)

k

k!
e−λ(xi,yi)

∫∞
−∞ δ(α− k)fWi

(r − α)dα.

and the resulting pdf is given by:

fRi(r) =
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)fWi

(r − k). (3.5)

After substituting (3.4) into (3.5) we obtain:

fRi(r) =
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

1√
2πσ2

0

e
− (r−k)2

2σ2
0 . (3.6)
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The pdf of the measurements at the FC is the result of the convolution between the pdf

in (3.6) and the pdf of the channel noise vi, which is described as a Gaussian distributed

random variable N(0, σ2
c ). Therefore, the pdf of Zi is given as:

fZi(z) = fRi(z) ∗ fVi(z),

= (
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

1√
2πσ2

0

e
− (z−k)2

2σ2
0 ) ∗ (

1√
2πσ2

c

e
− z2

2σ2
c ),

=
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

∫ ∞
−∞

1√
2πσ2

0

e
− (z−α−k)2

2σ2
0

1√
2πσ2

c

e
− α2

2σ2
c dα,

=
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

1√
2πσ2

t

e
− (z−k)2

2σ2
t

∫ ∞
−∞

1√
2π(σ0σc

σt
)2
e

[

α−σ0(z−k)2

σ2
t

2(
σ0σc
σt

)2
]

dα.

The expression under the integral is another Gaussian pdf . Therefore, the integral is equal

to 1. Then the pdf of Zi is given as:

fZi(z) =
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

1√
2πσ2

t

e
− (z−k)2

2σ2
t , (3.7)

where σ2
t = σ2

0 + σ2
c [45].

3.5.2 Maximum Likelihood Estimation (analog case)

To estimate unknown parameters, we take the maximum likelihood (ML) estimation

approach. Since observed data are independent, the joint pdf of vector observation Z is

written as a product of marginal pdfs:

fZ1...ZK (z1 . . . zK |(xc, yc)) =
K∏
i=1

fZi(z|(xc, yc)). (3.8)

We can also apply a monotonic function such as log to the joint pdf of Z and find its

maximizer

l(xc, yc) = log[
K∏
i=1

fZi(zi|(xc, yc)]

=
K∑
i=1

log[fZi(zi|(xc, yc)].
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Substituting fZi(z) from (3.7) into the above expression, we obtain:

l(xc, yc) =
K∑
i=1

log

[
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

1√
2πσ2

t

e
− (zi−k)2

2σ2
t

]
. (3.9)

The necessary condition for an interior maximizer of (3.9) is

∂l(xc, yc)

∂xc
|x̂,ŷ = 0,

∂l(xc, yc)

∂yc
|x̂,ŷ = 0.

Since λ(xc, yc) is a function of (xi, yi), the derivative of log-likelihood function in (3.9) with

respect to xc is equal to the derivative of l(xc, yc) with respect to λ(xi, yi) multiplied by the

derivative of λ(xi, yi) with respect to xc (chain rule [46]). The same method is considered

for the derivative of the log-likelihood function in (3.9) with respect to yc. Thus,

∂l(xc, yc)

∂xc
=

∂lZ1.....Zk

∂λ(xi, yi)

∂λ(xi, yi)

∂xc
, (3.10)

and
∂l(xc, yc)

∂yc
=

∂lZ1.....Zk

∂λ(xi, yi)

∂λ(xi, yi)

∂yc
, (3.11)

where
∂λ(xi, yi)

∂xc
= 2(xi − xc)λ2(xi, yi)/Λ (3.12)

and

∂l(xc, yc)

∂λ(xi, yi)
=

K∑
i=1

∑∞
k=0

(
kλ(xi,yi)

k−1

k!
e
− (zi−k)2

2σ2
t − λ(xi,yi)

k

k!
e
− (zi−k)2

2σ2
t

)
∑∞

k=0
λ(xi,yi)k

k!
e
− (zi−k)2

2σ2
t

.

Substituting the above expression and (3.12) in (3.11), we obtain:

∂l(xc, yc)

∂xc
= 2

K∑
i=1

∑∞
k=0

(
kλ(xi,yi)

k+1

k!
− λ(xi,yi)

k+2

k!

)
e
− (zi−k)2

2σ2
t (xi − xc)

Λ
∑∞

k=0
λ(xi,yi)k

k!
e
− (zi−k)2

2σ2
t

. (3.13)

The same procedure is applied to determine the derivative with respect to yc :

∂l (xc, yc)

∂yc
= 2

K∑
i=1

∑∞
k=0

(
kλ(xi,yi)

k+1

k!
− λ(xi,yi)

k+2

k!

)
e
− (zi−k)2

2σ2
t (yi − yc)

Λ
∑∞

k=0
λ(xi,yi)k

k!
e
− (zi−k)2

2σ2
t

. (3.14)
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3.5.3 Models for the Digital Case

The digital case assumes that a sensor measurement ri is sent to a M -level uniform

quantizer[42] where the sensory data are quantized to M quantization levels, with reproduc-

tion points denoted as (γ1, γ2 . . . γM). We assume that quantizer is deterministic. Denote

the output of the quantizer as qi = Qq(ri).

The probability of the jth reproduction point is:

Pij =

∫ τj+1

τj

fRi(r)dr,

where τj, j=1 . . .M − 1 are the boundaries of quantization regions. After substituting (3.6)

in place of fRi(r):

Pij =
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

∫ τj+1

τj

1√
2πσ2

0

e
− (r−k)2

2σ2
0 dr (3.15)

In terms of Q-functions[47], (3.15) becomes:

Pij =
∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

[
Q

(
(k − τj+1)

σ0

)
−Q

(
(k − τj)
σ0

)]
. (3.16)

where Q(x) is defined as

Q(x) =
1√
2π

∫ ∞
x

e−
u2

2 du.

The quantized measurement qi is a discrete random variable, with generalized pdf given as:

fqi(α) =
M∑
j=1

Pijδ(α− γj). (3.17)

Sensors communicate their quantized observations to the Fusion Center for a joint processing.

We assume that there is no noise in channels, only white Gaussian noise is added at the

receiver end. This assumption results in the following model for the observed data at the FC

zi = qi + vi, i = 1 . . .K. Since the observations and additive noise are independent random

variables, the pdf of Zi is:

fZi(z) = fQi(z) ∗ fVi(z), (3.18)
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where ” ∗ ” stands for convolution. Substituting (3.17) into (3.18) and performing the con-

volution we obtain:

fZi(z) =
M∑
j=1

Pij (δ(z − γj) ∗ fVi(z)) .

=
M∑
j=1

Pij

(∫ ∞
−∞

δ(α− γj)fVi(z − α)

)
dα.

=
M∑
j=1

PijfVi(z − γj).

Thus,

fZi(z) =
M∑
j=1

Pij
1√

2πσ2
c

e
(z−γj)2

σ2
c . (3.19)

Substituting (3.16) in the above equation results in:

fZi(z) =
M∑
j=1

∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)

[
Q

(
(k − τj+1)

σ0

)
−Q

(
(k − τj)
σ0

)]
1√

2πσ2
c

e
−

(z−γj)2

2σ2
c .

(3.20)

3.5.4 Maximum Likelihood Estimation (digital case)

Our approach to solve for unknown parameters of the field is similar to that of analog

channel case. The joint log-likelihood function of the data observed by the FC is given by:

l(xc, yc) = log
K∏
i=1

fZi(zi)

=
K∑
i=1

log(fZi(zi)).

Substituting (3.20) into the log-likelihood function, we obtain:

l(xc, yc) =
K∑
i=1

log

[
M∑
j=1

∞∑
k=0

λ(xi, yi)
k

k!
e−λ(xi,yi)∆Qk,j

1√
2πσ2

c

e
−

(zi−γj)2

2σ2
c

]
. (3.21)

Where ∆Qk,j is given as: [
Q

(
(k − τj+1)

σ0

)
−Q

(
(k − τj)
σ0

)]
.
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The ML estimation approach is seeking for the pair of parameters (xc, yc) that maximizes

(3.21). If lZ1...ZK is continuous function in the vicinity of (xc, yc) and the optimal (xc, yc) is

the inner point in Ω, the necessary conditions for a maximizer are:

∂l(xc, yc)

∂xc
|x̂,ŷ =

∂l(xc, yc)

∂λ(xi, yi)

∂λ(xi, yi)

∂xc
|x̂,ŷ = 0, (3.22)

and
∂l(xc, yc)

∂yc
|x̂,ŷ =

∂l(xc, yc)

∂λ(xi, yi)

∂λ(xi, yi)

∂yc
|x̂,ŷ = 0. (3.23)

Here,

∂l(xc, yc)

∂λ(xc, yc)
=

K∑
i=1

∑M
j=1

∑∞
k=0

(
k λ(xi,yi)

k−1

k!
− λ(xi,yi)

k

k!

)
∆Qk,je

−
(z−γj)2

2σ2
c

∑M
j=1

∑∞
k=0

λ(xi,yi)k

k!
∆Qk,je

−
(z−γj)2

2σ2
0

,

and after substituting equation (3.12) and the above formula into equation (3.22):

∂l(xc, yc)

∂xc
= 2

K∑
i=1

∑M
j=1

∑∞
k=0

(
k λ(xi,yi)

k+1

k!
− λ(xi,yi)

k+2

k!

)
∆Qk,je

−
(z−γj)

2

2σ2
c (xi − xc)

Λ
∑M

j=1

∑∞
k=0

λ(xi,yi)k

k!
∆Qk,je

−
(z−γj)

2

2σ2
0

. (3.24)

Similarly,

∂l(xc, yc)

∂yc
= 2

K∑
i=1

∑M
j=1

∑∞
k=0

(
k λ(xi,yi)

k+1

k!
− λ(xi,yi)

k+2

k!

)
∆Qk,je

−
(z−γj)

2

2σ2
c (yi − yc)

Λ
∑M

j=1

∑∞
k=0

λ(xi,yi)k

k!
∆Qk,je

−
(z−γj)

2

2σ2
0

. (3.25)

The equations (3.24) and (3.25) are highly nonlinear in (xc, yc) and cannot be solved in closed

form. In the next section, we propose an iterative solution to the problem and in Chapter 4

we analyze its performance by using Monte Carlo simulation method[48].

3.6 Iterative solution

The proposed solution is an effective combination of two known numerical methods to

solve for the roots (xc, yc) of the above nonlinear equations (3.13),(3.14), (3.24) and (3.25).

The two introduced methods to solve the nonlinear equations are Bisection and Secant [49]
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[50],[51] . Suppose we have a task to find an optimizer of a function f(x), a real-valued

one dimensional function. Bisection method chooses two guessing points a and b at every

iteration such that f(a) and f(b) have the opposite signs. This guarantees that the root lies

within [a, b]. A third point m is calculated as the half way between a and b, that is m=a+b
2

.

The sign of f(m) is compared to both f(a) and f(b). If f(m) and f(a) have the opposite

signs, then the point m replaces the point b, otherwise, f(m) will have the opposite sign

with f(b), and m replaces the point a. Iterations continue until a tolerant value is reached.

A block-diagram of the algorithm is displayed in Figure (3.2).
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NO 

YES NO 

NO 

 f(a) and  f(b) 
have opposite 

signs? 

Set  two guessing points   a, b 

 

compute m= 

 

 

f(a) and  f(m) 
have opposite 

signs? 
m=a 

root=m 

m=b 

YES 

YES 

Figure 3.1: A block diagram of the Bisection method.

The second approach, Secant method, also assumes initialization. Two guessing points

are used to evaluate the following function at every iteration:

S = guessingn−1 − f(guessingn−1)
guessingn−1 − guessingn−2

f(guessingn−1)− f(guessingn−2)
.

Iterations continue until a point of convergence is reached.

Our implementation combines the Secant and Bisection methods leading to an iterative

method that has the reliability and precision of Bisection rule and the speed of Secant
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Figure 3.2: The combination of the two methods, Bisection and Secant.
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method. This combination is due to Dekker[20] [21], [22]. The same guessing points are

applied in both methods to compare between the two outputs at each iteration. The goal

at each iteration is to find out which is the closer point to the root, m or S. Here |f(m)|

is compared with |f(s)|. If |f(s)| is less than |f(m)|, the point s is the better guess than

m, and it is likely closer to the root than the point m. It will be then taken as one of

the two guesses in the next bisection iteration. If not, then the point m will take place.

Figure 3.2 presents the combination between the two methods, and it is illustrated that

the point m is the result of each iteration and to be substituted in the function to check

whether the convergence is reached. Since our functions have two roots, the algorithms are

run separately and simultaneously for each root. At every iteration both resulting m values

of the two iterations are substituted into the function, and the result is compared with the

tolerant value to estimate the roots.
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Chapter 4

Numerical Results

In this chapter we present numerical results that test the accuracy of the algorithm

proposed in Chapter 3 and evaluate the effect of various parameters on the performance of

the developed algorithm in both analog and digital cases.

For our simulation, we constrain the area of sensor network denoted as Ω to a square of size

2×2. A set of K sensors are randomly positioned within the area, and the locations of sensors

are noted. We generate data received by the FC by means of Monte Carlo simulations [48]

[52]. To accumulate statistics, we generate 1000 realizations of a single experiment. Each

Monte Carlo realization of the data at the FC is obtained by:

1. Taking samples of a randomly generated Poisson field located at (xc, yc) with the spatial

intensity given as:

λ(x, y) =
Λ

1 + (x− xc)2 + (y − yc)2
,

at K sensor locations.

2. Adding realizations of Gaussian noise with zero mean and variance σ2
0.

3. Further applying a deterministic quantizer to the samples in item (2) (in case of digital

channel) or keeping samples as they are (in the case of analog channel).

4. Generating and adding realizations of Gaussian noise with zero mean and variance σ2
c

to the samples in item 3. The values of Signal-to-Noise ratios (SNRs) are determined

by variances σ2
0 and σ2

c in observation and transmission channels. In our simulations,
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K, M , SNR0 and SNRc are parameters. The original field in the simulations is

positioned at (xc, yc).

Once the data are generated, we apply the algorithm described in Chapter 3 to find the ML

estimates of the field location.

As a measure of estimation performance we choose Square Error (SE), defined as:

SE = (x̂c − xc)2 + (ŷc − yc)2,

where x̂c and ŷc are ML estimates of the location parameters (xc, yc) of the field based on a

single Monte Carlo realization of observations at the FC.

Many results in this chapter will be presented as a box plot of SE displayed as a function

of one of parameters. A box plot is a scatter plot of a set of points displayed as a box with

the bar inside it indicating the median of the values of the points in the set. The boundaries

of the box are 25-th and 75-th quantiles of values that points in the set take. The outliers

points are marked with ”+” sign.

Section 4.1 defines Signal-to-Noise Ratio SNR in observation and transmission channels.

These SNRs are then used both as performance measures and as parameters of the consid-

ered WSN.

Sections 4.2 and 4.3 describe a set of experiments demonstrating performance of the iterative

estimator introduced in Chapter 3.

4.1 Signal to Noise Ratio

In this subsection we define Signal-to-Noise Ratio in observation channel and transmis-

sion channel.

Observation channel is due to additive noise at the receiver end of each sensor. Each output

antenna adds white Gaussian noise to a sample of the field.

Transmission channel is the same as communication channel. Here we assume that sensor

measurements are communicated over distortion-free environment (no attenuation, no dis-

tortion or interference), but the receiver end of the channel (receiver antenna) adds white
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Gaussian noise. This noise is independent of the noise in observation channels.

To measure the robustness of the ML estimator with respect to the noise power (variance)

in the observation and transmission channels, we introduce SNR0, SNR in observation

channels and SNRc, SNR in transmission channels of the distributed network.

4.1.1 Observation SNR

The observation SNR, SNR0, is defined as the target signal power integrated over area

Ω, divided by the variance of the noise and by the area:

SNR0 =
E(N2

Ω)

Ω σ2
0

, (4.1)

where E(N2
Ω) is the second moment of the random Poisson field at location (x, y)εΩ. It is

given as:

E(N2
Ω) = λΩ + λ2

Ω,

where

λΩ =

∫∫
Ω

Λ

1 + (xc − x)2 + (yc − y)2
dydx. (4.2)

The integration in (4.2) is performed by transforming (x, y) into polar representation (r, θ)

as follows:

λΩ = 8

∫ π/4

0

∫ 1/cos(θ)

1

Λ

1 +R2
R dR dθ.

= 8

∫ π/4

0

Λ

2
ln(1 +R2)|1/cos(θ)1 dθ.

= 4Λ

[∫ π/4

0

ln

(
1 +

1

cos2(θ)

)
dθ − π ln(2)

4

]
.

The integration is performed using alpha Wolfram [53], and the SNR0 is calculated with

Λ=100 and σ2
0=0.8, and found to be about 27 dB.
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)cos(/1 r




1

Target Location 

Figure 4.1: The area Ω, limits of Polar Integration

4.1.2 Transmission SNR

We define transmission SNR as:

SNRc =
PW

Ω σ2
c

,

where PW is the total delivered power at the input to the communication channel. Since

we perform different signal processing on the input to analog and digital channel, we have

two different expressions for PW .

1. Analog Case

Since the signal power at the input to the channel depends on the number of allocated

sensors in the area, SNRc is evaluated as the summation of powers that transferred

by the sensors from the area to the channel divided by the channel noise variance σ2
c .

The signal power at the input to the channel is defined as the second moment of the

random variable r in the analog case. Therefore, according to equation (3.6):

E(r2) =

∫ ∞
−∞

r2fr(r)dr. (4.3)
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The second moment is evaluated as follows:

E(r2) =
∞∑
k=0

λkΩ
k!
e−λΩ

∫ ∞
−∞

r2√
2πσ2

0

e
− (r−k)2

2σ2
0 dr, (4.4)

where
∫∞
−∞

r2√
2πσ2

0

e
− (r−k)2

2σ2
0 dr is the second moment of normal distribution, which is equal

to (k2 + σ2
0) [54].

Therefore,

E(r2) =
∞∑
k=0

λkΩ
k!
e−λΩ(k2 + σ2

0). (4.5)

The power of the input to the channel depends on the number of sensors as well as

the location of each sensor. In our case the sensors are uniformly distributed over the

area Ω, and the total transferred power to the channel is given by the product of the

average measurement power at the expected sensor location and the number of sensors.

The expected sensor location is at the center of the area, where the target field intensity

is at its maximum value. Therefore, the calculated SNRc here is the maximum SNR

that could be achieved in this case. Thus,

SNRc =
K
∑∞

k=0
λkΩ
k!
e−λΩ(k2 + σ2

0)

Ω σ2
c

. (4.6)

SNRc for the analog channel is determined under Λ=100, K=100, and σ2
c=0.8, and

found to be about 46 dB.

2. Digital Case

For the digital case, we evaluate the power of quantized sensor measurements as follows:

E(q2
i ) =

∫ ∞
−∞

α2fQ(α)dα, (4.7)

where qi is the quantized measurement at the location of object, which is considered

here as the center of the area.

fqi(α) =
M∑
J=1

Pijδ(α− γJ).

Thus,

E(q2
i ) =

M∑
J=1

Pij

∫ ∞
−∞

α2δ(α− γJ)dα =
M∑
J=1

Pijγ
2
j .
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After substituting Pij from equation (3.16):

SNRc =
K
∑M

j=1

∑∞
k=0

[
Q
(

(k−τj+1)

σ2
0

)
−Q

(
(k−τj)
σ0

)]
γ2
J
λkΩ
k!
e−λΩ

Ω σ2
c

. (4.8)

In our case, SNRc= 26dB as calculated by means of MATLAB.



Fathi Masoud Chapter 4. Numerical Analysis 26

4.2 Analog Channel

This section presents few simulation results that we conducted under the assumption of

analog transmission channel.

4.2.1 Effect of sensors density on the estimation performance

Our first experiment assumes that the coverage of the network is fixed, that is, the

area Ω remains the same, but the number of sensors in the network grows. Our simulation

results for this case are displayed in Figure 4.2. It presents the dependence of SE on the

number of sensors, K. For each fixed value K, 1000 Monte Carlo realizations of the network

is implemented, and for each realization, the algorithm finds ML estimate of the location

parameter. The outcome is displayed as a box plot of SE versus values of K. As expected,

the median of SE as well as the spread of SE around its median decreases as K grows.

When K = 10, the median value of SE is approximately 0.008. When K is increased to 50,

the median value of SE drops below 0.003.

4.2.2 Initialization of iterative algorithm

The choice of initial value in iterative ML solution is expected to affect the convergence

of the ML algorithm to its stationary value. In this subsection, we illustrate the dependence

of the SE values on the deviation of the initial value from the true location of the object.

We partition a circular area centered at the true location of the object into a set of no

overlapping rings with the difference between radii of adjacent rings equal to 1. All rings are

numbered in the increasing order, that is, ring 1 has the smallest radius, and ring 5 has the

largest radius. To explore convergence of the ML algorithm, for a given radius of the ring

we generate 1000 Monte Carlo realizations of the data acquired in the network and for each

realization of the network, we initialize the ML algorithm by values of x and y randomly

selected within the ring. Figure 4.3 shows the results of our simulations. Rings are numbered

1 through 5, and the cumulative behavior of SE is displayed as a function of the label of

the ring. We can observe that both the median value of SE and its variance grows with

increased value of the label. However, this is a very slow growth. Note that the median



Fathi Masoud Chapter 4. Numerical Analysis 27

value from Ring 1 to Ring 5 grows from about 0.001 to about 0.002, only two times. The

spread of SE for these two cases differs by factor of 10.

Figure 4.2: A box plot of SE as a function of the number of sensors K placed within the
area Ω for the analog case. SNR0=27 dB, and σ2

c=0.8.

Figure 4.3: A box plot of SE as a function of a region, where initial values of estimates are
drawn. SNR0=27dB, and σ2

c=0.8.
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4.2.3 Effect of the strength of the field on the estimation error

Figure 4.4 shows the box plot of SE as a function of the strength of the field, previously

defined as Λ. As it is anticipated, the estimation performance improves (median SE becomes

smaller and has smaller variance) as the strength of the field increases. In this simulations,

the noise variance in observation channel is set to σ2
0=0.8. As we will relate it later, this

plot also shows the dependence of the estimation error on the value of SNR in observation

channel. Later in simulating various tracking cases, we will fix Λ at 100 for the most of the

experiments.

Figure 4.4: SE versus Λ, σ2
0 is set to 0.8, analog case.
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4.3 Digital Channel

This section deals with analysis of digital transmission channel.

4.3.1 Effect of sensor density on the estimation performance: dig-

ital case

The results for this case are presented in Figure 4.5, and the dependence of SE on the

sensor density is demonstrated. For each given number of sensors K, 500 Monte Carlo runs

are carried out. The results are displayed as a box plot of SE versus values of K. The

median of SE as well as the spread of SE around the median decreases as K increases.

When K = 10, the median value of SE is approximately 0.018. When K is increased to 50,

the median value of SE drops below 0.002 and reaches approximately zero at K ≥ 70.

4.3.2 Effect of the number of quantization levels M on the esti-

mation performance

The dependence of SE on the number of quantization levels M is illustrated in Figure

4.6. The experiment is run for three values of M = 8, 16, and 32, and for each M value

500 Monte Carlo runs are performed. The box plot shows an expected decrease in the SE

variance and median as M increases.

Signal to Noise Ratio at the observation channel SNR0 is set to 27 dB. The sensors number

K is fixed to 100 sensors. SE median at M=8 is about 0.0025, while at M =32 it drops to

less than 0.001. Therefore, it could be concluded that a better performance is achieved with

more quantization levels. However, computational cost grows with M . For large M , the

algorithm requires more iterations, which costs more time and requires faster FC processor.
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Figure 4.5: A box plot of SE as a function of the number of sensors K placed within the
area Ω for the digital case. SNR0=27dB, σ2

c=0.8, and M=16 levels.

Figure 4.6: A box plot of SE as a function of the number of quantization levels M . SNR0=27
dB, σ2

c=0.8.
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4.3.3 Initialization of iterative algorithm: digital case

Similarly to the experiment for the analog case, we evaluate the sensitivity of the algo-

rithm to the choice of the initial value. Instead of 5 regions we consider only 3 regions in

this case. 500 Monte Carlo realizations of data are generated for each ring. Two guessing

points are selected randomly from each ring at each realization. It is observed that SE grows

slowly as the deviation of the initial guess (from the true location) increases. Ring 1 has

radius of 1, which is the smallest radius, and the result of the simulation shows the median

SE of value 0.001, while it grows to 0.009 at the ring number 3 as presented in Figure 4.7.

The algorithm, as observed, is very robust with respect to the choice of initial value. This

could be attributed to the part of the algorithm, where the middle between the guessing

points is calculated (bisection rule). This cuts long distance by half. The middle point is

then set as one of the guessing points in the next iteration. The larger deviation actually

causes more iterations, and therefore costs more time. In this experiment σ2
0 is set to 0.8,

M = 16, K = 100, and Λ = 100.

4.3.4 Effect of the strength of the field on the estimation error:

digital case

Figure 4.8 illustrates the box plot of SE versus the strength of the field, Λ. As anticipated,

SE decreases (median SE becomes smaller and has smaller spread) as the strength of the

field increases, and drops from 0.008 at Λ = 10 to almost 0.0005 at Λ = 90. The noise

variance in observation channel is set in this simulation to σ2
0=0.8. This plot also reveals

the dependence of the algorithm performance on the value of SNR0 in observation channel,

because it directly depends on the average value of the field strength, as it will be explained

in Section 4.4.
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Figure 4.7: SE versus Ring Labels, Λ=100, σ2
0=0.8, and M=16: digital case.

Figure 4.8: SE versus Λ, σ2
0 = 0.8, K=100, and M=16: digital case.
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4.4 Effect of Signal-to-Noise Ratio on the estimation

performance

The dependence of SE on the value of SNR is presented in Figures 4.9, 4.10, 4.11 and

4.12. Four experiments are run with 500 Monte Carlo simulations for each SNR value. The

first experiment is performed to demonstrate the effect of varying the value of the Signal-

to-Noise Ratio of the observation channel SNR0 on the SE. Three values are considered

here for SNR0= 0 dB, 10 dB, and 20 dB. The number of sensors is fixed to 10 sensors, the

average field intensity Λ is set to 100 and the noise variance of the transmission channel is

fixed at σ2
c=0.003. The results of the analog case are illustrated in Figure 4.9. It could be

seen that as SNR0 increases, better performance is achieved.

Figure 4.10 shows the results of varying SNR0 against SE in the case of using digital

transmission channel. The number of quantization levels M are assumed to be 8 levels.

The Signal-to-Noise Ratio of the transmission channel SNRc is varied to investigate its effect

on the SE. Three values are assumed for SNRc=10 dB, 20 dB, and 30 dB, and SNR0 is

fixed to 20 dB. Figure 4.11 shows the results of the analog case, and Figure 4.12 is for the

digital case.

Figure 4.9: SE versus SNR0, σ2
c = 0.003, K=10, analog case.
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Figure 4.10: SE versus SNR0, SNRc = 40 dB, M=8, K=10, digital case.

Figure 4.11: SE versus SNRc, SNR0 = 20 dB, K=10, analog case.
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Figure 4.12: SE versus SNRc, SNR0 = 20 dB, M=8, K=10, digital case.

4.5 Probability of Outliers

We will now define another performance measure, the probability of outliers as

φ(µ) = Pr[SE > µ],

where µ is a positive threshold, and Pr stands for probability. Figures 4.13 and 4.14 present

the probability of outliers as a function of the threshold µ. The figures are generated using

1000 Monte Carlo simulations (in the analog case and digital cases). The number of sensors

K is set to 20 for the both cases.
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Figure 4.13: Probability of outliers, Λ=100, K=20, and σ2
0=0.8: analog case.

Figure 4.14: Probability of outlier, Λ=100, K=20, σ2
0=0.8, and M=16: digital case.

4.6 Tracking Simulation

Tracking simulations have been performed for both analog and digital cases. A true path

is plotted together with the estimated path on the same plot. Since the algorithm requires



Fathi Masoud Chapter 4. Numerical Analysis 37

two guessing points during initialization, one of them is selected as the previous location of

the target modified by adding a small arbitrary value, and the other guessing point is the

previous location plus another arbitrary value. The arbitrary value could be chosen as the

radius of the labeled ring that meets a given SE in the previous box plot graphs. This idea

is similar to KALMAN linear prediction filter approach [55]. The first two guessing points

are considered to be (1,3) and (3,1), as they are the boundaries of the area, and any X or Y

point is bracketed in this range. In addition, there is another way to assume that the first

true location is known with some arbitrary error, and the first two guessing points could be

simulated as the first true target location augmented by random error, which could be taken

in account by adding rand MATLAB function to the position in the MATLAB code.

The following graphs present tracking simulations with 100 sensors, Λ=100, and σ2
0=σ2

c

=0.8. By substituting these values in equations (4.1), (4.6), and (4.8), we have SNR0=27

dB, SNRc= 26 dB in the digital channel case, and 46 dB in the case of analog channel.

These are the best SNR values, as they are calculated by assuming the target is located

at the area center, while the worst SNR could be determined by supposing the target is

located at one of corners of the square area.

Figure 4.15 illustrates a true path drawn as an exponentially decaying curve. The true target

location is denoted by (XCR, Y CR), and the position of the estimated target is located at 7

locations. The first point is assumed to be known with random error, the error is Gaussian

distributed between 0 and 1, and the used communication technique is analog.

Figure 4.16 presents a true path curve shaped as V with 11 estimated points. This is the

case of digital communication with 16 quantization levels.
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Figure 4.15: Tracking Simulation, Λ=100, SNR0=27 dB, σ2
c=0.8, analog case.

Figure 4.16: Tracking Simulation, Λ=100, SNR0=27dB, σ2
c=0.8, M=16, digital case.

Figure 4.17 displays the same V -curve path. The estimates are obtained using analog

communication. Figure 4.18 is for digital case with exponential path.
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Figure 4.17: Tracking Simulation, Λ=100, SNR0=27 dB, σ2
c=0.8, analog case.

Figure 4.18: Tracking Simulation, Λ=100, SNR0=27 dB, σ2
c=0.8, M=16, digital case.
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Figure 4.19 shows a zig zag path. Data are transmitted over analog communication

channel.

Figure 4.19: Tracking Simulation, Λ=100, SNR0=27 dB, σ2
c=0.8, analog case.

Figure 4.20: Tracking Simulation, Λ=100, K=400, SNR0=27 dB, σ2
c=0.8, analog case.
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Figure 4.20 presents tracking simulation with more sensors, K=400. By comparing it with

Figure 4.17, we can note the increasing accuracy of the location estimation.

Figure 4.21: Tracking Simulation, Λ=100, K=100, SNR0=27 dB, σ2
c=0.8, M=8, digital

case.

Figure 4.22: Tracking Simulation, Λ=100, K=100, SNR0=27 dB, σ2
c=0.8, M=32, digital

case.
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Figures 4.21 and 4.22 illustrate the difference in location estimation accuracy between 8-

level and 32-level in the digital case. With more quantization steps, the median SE reduces

from 0.0096 (in the case of 8-levels) to 0.0018 (in the case of 32-levels).

All the previous graphs are generated with a single Monte Carlo realization for each location,

and by assuming relatively high Signal-to-Ratio in the observation channel. In order to test

the algorithm robustness under lower SNR value, Figures 4.23 and 4.24 are produced with

100 Monte Carlo simulations for each target position, and by setting SNR0 to 15 dB, and

Λ=30.

Figure 4.23: Tracking Simulation, Λ=30, K=100, SNR0=15 dB, σ2
c=0.8, analog case.
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Figure 4.24: Tracking Simulation, Λ=30, K=100, SNR0=15 dB, σ2
c=0.8, M=32, digital

case.

For the following experiments, we choose to initialize our iterative algorithm with a pair

of extreme points (1,1) and (3,3). The points are substituted in the equations (3.13), (3.14),

(3.24) and (3.25), to check if the results have opposite signs; if not, the points are shifted by

0.001 till the opposite signs are achieved. Therefore, the proposed algorithm in Chapter 3 is

run to estimate the target location. The initialization points here are the most remote points

from the true location, so they are considered as the worst case in terms of SE values. In

addition, the first location is assumed to be unknown, unlike the preceding method. Figures

4.25 and 4.26 present the results of the simulations.
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XCR 

Figure 4.25: Tracking Simulation at a pair of points on the boundary of the area: Λ=100,
K=100, SNR0=27 dB, σ2

c=0.8, analog case.

Figure 4.26: Tracking Simulation with initializations at the boundary of the area: Λ=100,
K=100, SNR0=27 dB, σ2

c=0.8, digital case.
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Chapter 5

Conclusion, discussion, and future

work

5.1 Summary

In this thesis, we proposed ML solution to the problem of distributed estimation of para-

metric stochastic field generated by a radiological point target. The purpose is to estimate

the location of the target (xc, yc). The solution is implemented in the form of a robust

iterative algorithm.

The network model assumes a Gaussian receiver noise added to the target field, which

acts as an inhomogeneous Poisson process. The sensor output is added to the noise of the

receiver at the Fusion Center.

In the analog case, the model considers sensory data sent immediately over the channel

to the FC. The joint pdf of measurements at the FC is evaluated. Generally, the iterative

solution for the analog case converges with smaller estimation error for the same number

of sensors compared to the digital case, because the sensor measurements (samples) do

not experience any quantization error. The digital case model includes extra processing step

before the sensory data are sent over the channel. They are quantized by M levels quantizer.

Bisection and Secant methods are jointly utilized to solve for ML estimates of unknown

parameters (xc, yc). Starting with two initial points (with a guarantee that the location

is included between the initial points) facilitates finding the true location, because it is



Fathi Masoud Chapter 5. Conclusion, discussion, and future work 46

bracketed within known points. By using this algorithm the target can be localized with a

small estimation error as presented in Chapter 4. The algorithm can also follow the target

using a relatively low number of sensors and only few quantization levels (in the digital

case). As shown in Figures 4.3 and 4.7, the digital model works better under low target

intensity field Λ, while the analog channel performs better in the case of low sensors number

as illustrated in Figures 4.1 and 4.4.

Figures 4.2, 4.6, 4.25, and 4.26 show that the algorithm can be carried out with an

acceptable performance, in the case of high initial point deviation. The initial values are set

to the area boundaries in Figures 4.25 and 4.26.

The joint pdf of measurements at the FC for the digital case is derived. It is more complex

compared to the function in the analog case. Therefore more iterations are required for

convergence, and this requires faster FC processor than the analog case. On the other hand,

the existence of the common quantizer in the digital case gives the option of adjusting the

accuracy, signal power, and the required channel bandwidth.

5.2 Claimed Novelties

The following novelties are claimed in this thesis:

1. Tracking a target generating a random field, the field is modeled as spatial Poisson

process.

2. A compound solution combining Bisection and Secant methods is applied to solve

for ML estimates of unknown parameters. The solution is fast and exhibits good

convergence.

3. Numerical analysis is performed. Both digital and analog scenarios are analyzed. SE

is analyzed as a function of sensors in WSN, SNRo, SNRc, and quantization levels.

Tracking examples are generated.
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5.3 Future Work

This work can be extended to many ways. Here are only a few examples:

• Instead of only one target, the work could be extended to localize multi-target objects.

• This work assumes a network of the same type sensors (homogeneous network), and

could be extended to include heterogeneous sensors.

• Different modulation methods could be adopted to test the effect of each method on

the system performance.

• The used quantizer here is common for all the sensors, assigning a dynamic quantizer

for each sensor is a worthy subject for further research study.

• The sensors in our thesis are assumed to be ideal, another research could be issued by

supposing some malfunctioning sensors in the network (byzantine attack).

• More sources of distortions can be considered in the channel, such as fading, multi-path

loss, and interference.
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