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Abstract

Pseudospectral Methods for Non-Smooth Evolutionary Problems

By Chris Guenther

A pseudospectral approach is u sed to solve non-smooth evolutionary

problems using Fourier collocation and Chebyshev collocation. It is

well known that pseudospectral methods for smooth problems can

offer superior accuracy over finite difference and finite element

methods. 

This paper explores the use of pseudospectral methods for non-

smooth evolutionary problems in the area of hyperbolic heat

transf er. Boundary and initial conditions are considered which

cause instantaneous jumps, in the temperature and flux, prior to

the propag ation of a thermal wave into the medium. There is a

considerable amount of literat ure that has investigated hyperbolic

heat transfer under similar conditions, the common problems

throughout theses investigations is the presence of numerical

oscillation at the wave front. Finite difference and finite element

methods have both been used, and both methods exhibit severe

numerical oscillation at the wave front. In an attempt to reduce

this oscillation extremely fine grids and severe timestep

restrictions had to be introduced, but even these attempts still
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exhibited some oscillation.

This paper will demonstrate that pseudospectral methods, when

used correctly, can eliminate the numerical oscillation at the wave

front and accurately resolve the instantaneous jump at the

boundary. Furthermore, pseudospectral methods can be used

successfully with coarser grids and larger timesteps and still

provide superior results.

This paper will also investigate hyperbolic heat transfer with

boundary conditions that contain a continuous periodic flux with

surface radiation. These boundary conditions have never before been

inves tigated in the literature on hyperbolic heat transfer.

Previous research has only considered boundary conditions that

contain a constant flux with radiation r a periodic on-off pulse

with radiation. In either case, extremely fine grids were ne eded to

prevent severe numerical oscillation. This paper will compare the

hyperbolic and parabolic thermal response due to the periodic flux,

under a wide range of frequencies, as well as show how

pseudospectral methods can be used successfully in the case of

periodic flux with surface rad iation without the need to introduce

fine spatial grids and prohibitively small timesteps.
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Chapter 1

Pseudospectral Methods

1.1 Introduction

The solutions of most partial di�erential equations can not be found in closed

form. Even on the rare occasion an exact solution can be found, it is usu-

ally hard to work with. Alternatively, numerical solutions can be found to

most well posed partial di�erential equations. The more popular methods

include �nite di�erence and �nite element. These methods are similar in

that they both are applied locally along the domain of interest to produce a

global approximation. Spectral methods, on the other hand, are numerical

techniques applied globally across the entire domain of interest to produce
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an approximation. Further discussion on the comparison of �nite di�erence

methods and spectral methods can be found in Fornberg (1987,1996).

Given a mixed initial boundary value problem, the idea behind spectral

methods is to approximate the solution u(x; t) by
P
k ûk(t)�k(x). The imme-

diate questions that arise are how to select the trial functions �k(x) and how

to determine the coe�cients ûk(t).

For periodic problems the appropriate trial functions are trigonometric

polynomials. For non-periodic problems, orthogonal polynomials of Jacobi

type are the correct choice. Chebyshev and Legendre polynomials are the

most common, and this work considers only Chebyshev polynomials. The

expansion coe�cients ûk(t) will be determined by the particular spectral

method employed. The two types of spectral methods covered in this paper

are Fourier collocation and Chebyshev collocation. These methods are also

known as pseudospectral or collocation methods.

The idea of approximating a solution by a truncated series is certainly

not a recent development. In the past the problem was how to numerically

compute these series with a su�ciently large number of terms, and how

to handle non-linear terms. For certain applications the problems mentioned

above were virtually insurmountable which led to the use of �nite di�erence or

2



�nite elementmethods to numerically solve the problem. For many problems,

especially in the area of 
uid mechanics, the relatively low accuracy of these

methods will not produce accurate representations of the 
ow.

In the 1970's, the need for accurate representation of complex 
ows led

to a revival of Fourier series methods. Some of the earliest applications

to partial di�erential equations were done by Kreiss and Oliger (1972) and

Orszag (1972). The �rst comprehensive report on the theory of spectral

methods was written by Gottlieb and Orszag (1977). The reason for the

success of these methods during that decade is due to two facts. First,

the rapid development of faster and more powerful computers, and second,

e�cient algorithms (Fast Fourier Transforms) to handle large sums. These

improvements allowed one to e�ciently transform the problem from physical

space to the space of the trial functions. Spatial derivatives are calculated

in this space and the problem is then inverted back to physical space. Once

the problem has been inverted back to physical space, non-linear terms are

evaluated as they appear in the problem and derivatives are replaced by

their spectral approximations. Orszag (1972) called this treatment of non-

linear terms pseudospectral. The literature also refers to this procedure as

collocation. This paper will begin with this type of spectral method.

3



1.2 Pseudospectral (Fourier Collocation)

De�ne IN to be an interpolant operator. If u(x; t) is a periodic function

of x then IN (u) is the trigonometric interpolation polynomial of u on some

chosen set of grid points xj. That is IN(u(xj; t)) = u(x; t)x=xj. The following

set of grid points is common to Fourier collocation methods: xj =
2�j
N
; j =

0; 1; 2; : : : ; N � 1. The reason for the popularity of these grid points is the

availability of Fast Fourier Transforms (FFT) which speed up the calculations

for large N. For simplicity, this section considers N to be an integer power of

2, but the theory that follows is not restricted to this choice of N.

For numerical work, the basic issue is to replace u(x; t) by IN (u) given in

terms of a �nite sum of trigonometric polynomials. Following the approach

by Canuto et al.(1988) the interpolating function is

IN (u) =

N
2
�1X

k=�N
2

ûk(t)�k(xj): (1.1)

For periodic problems the trial function is given by �k(xj) = eikxj . Hence,

the interpolant is

IN (u) =

N
2
�1X

k=�N
2

ûk(t)e
ikxj : (1.2)

Multiplying both sides of the interpolant by e�ilxj , �N
2 � l � N

2 � 1 and
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summing over j, we get

N�1X
j=0

IN(u)e
�ilxj =

N�1X
j=0

u(xj; t)e
�ilxj =

N�1X
j=0

N
2
�1X

k=�N
2

ûk(t)e
�ikxje�ilxj

and, using the discrete orthogonality property,

1

N

N�1X
j=0

eipxj =

8>>><>>>:
1 p = Nm; m = 0;�1;�2; : : :

0 otherwise

we get

ûk(t) =
1

N

N�1X
j=0

u(xj; t)e
�ikxj : (1.3)

The coe�cient ûk(t) given above amounts to taking the discrete Fourier

Transform (DFT) of u(x; t) at the grid points xj, while IN(u) supplies the

inversion formula or inverse discrete Fourier transform (IDFT) i.e.,

u(xj; t) =

N
2
�1X

k=�N
2

ûk(t)e
ikxj; j = 0; 1; : : : N � 1: (1.4)

Problems that demonstrate the e�ectiveness of pseudospectral methods

are di�erential equations with periodic boundary conditions. To calculate

spatial derivatives required by these types of problems the DFT and IDFT

can be used. For example, suppose the problem contains the term @u

@x
. The

pseudospectral approximation to the �rst derivative is

@u

@x
� @(IN(u))

@x
=

N
2
�1X

k=�N
2

ûk(t)
@(eikxj)

@xj
(1.5)
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where ûk(t) is given above. Hence, the �rst derivative can be approximated

by �rst performing a DFT of u(x; t) to �nd the discrete Fourier coe�cients

ûk(t). Multiplying these coe�cients by the complex number @(eikxj )
@xj

and

summing over k, takes the result back to physical space and provides the

approximation of the �rst derivative. The key to this type of di�erentiation

is that derivatives of the interpolant IN(u) are taken exactly in Fourier space

as opposed to �nite di�erence methods where the derivative is approximated

in physical space. Higher derivatives pose no real challenge since

@p(IN(u))

@xp
=

N
2
�1X

k=�N
2

ûk(t)
@p(eikxj)

@xpj
(1.6)

i.e., higher derivatives are still calculated in the same manner as the �rst

derivative with just a change in the complex multiplication. For large prob-

lems (N � 100 or larger) the DFT and IDFT would be performed by an

FFT algorithm which requires O(N logN) operations as opposed to O(N2)

arithmetic operations without the FFT. For actual implementation of the

above procedure it might be helpful to think of u(xj; t) not as an explicit

function, but rather as a vector containing a discrete set of data points at

some time level t. Since this approach for producing pseudospectral approx-

imations of spatial derivatives is a linear process, an elegant alternative is to

6



use matrix-vector operations (Sanz-Serna 1994).

Sanz-Serna's approach de�nes the trial function as

�k(x) = e
2�ki
L

x; k = 0;�1;�2; : : : : (1.7)

where �k(x) forms a system of L-periodic pairwise orthogonal functions. Each

L-periodic function u(x; t) = u(x+ L; t) in L2[0; L] can be represented by

u(x; t) =
1X

k=�1

ûk(t)�k(x): (1.8)

The series given above is the Fourier series of u(x; t). For numerical work the

Fourier series is truncated and we de�ne the interpolating polynomial IN(u)

as

IN(u) =

N
2X

k=�N
2

ûk(t)�k(x); N = 0; 1; : : : : (1.9)

The individual terms of this truncated series are the Fourier modes of u(x; t).

A crucial property of the interpolating polynomial is the fact that as N !1,

ku� IN(u)k ! 0.

Discretizing the variable x by choosing the grid points xj = j�x, �x =

L

N
, j = 0; 1; : : : ; N � 1, the interpolating polynomial becomes

IN(u(xj; t)) =

N
2X

k=�N
2

ûk(t)e
2�kij

N : (1.10)
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Multiplying the interpolant by e� 2�kij
N

and summing over j yields

ûk(t) =
1

N

N�1X
j=0

u(xj; t)e
�2�ikj

N ;
�N
2
� k � N

2
(1.11)

where we have used the fact IN(u(xj; t)) = u(xj; t).

Due to the periodicity of the problem, only the points x0; x1; : : : ; xN�1

carry independent information. Hence, on the grid xj, only the trial functions

given by �0; : : : ; �N�1 are di�erent, and �0(x) = �N (x); ��1(x) = �N�1(x)

and so on. This implies that the coe�cients ûk(t) follow the relation û�n(t) =

ûN�n(t). These relations are known as aliasing. By using the e�ect of alias-

ing, the coe�cients ûk(t) can be expressed as

ûk(t) =
1

N

N�1X
j=0

u(xj; t)e
�2�ikj

N ; k = 0; 1; 2; : : : ; N � 1: (1.12)

The fact that aliasing requires û�N
2

= ûN
2

and ��N
2

= �N
2

gives the correct

choice for the interpolation polynomial

IN(u) =

N
2X

k=�N
2

00ûk(t)�k(x); N = 0; 1; 2; : : : ; : : : : (1.13)

The double prime denotes the �rst and last terms should be halved. Similarly,

the derivative of the interpolant is

@IN(u)

@x
=

N
2X

k=�N
2

00ûk(t)�k�k(x); �k =
2�ik

L
: (1.14)

8



The right hand side of the derivative of the interpolant is

1

2
(û�N

2

��N
2

��N
2

) + : : :+ : : :+ ûN
2
�1�N

2
�1�N

2
�1 +

1

2
(ûN

2

�N
2

�N
2

):

Using û�N
2

= ûN
2

and ��N
2

= �N
2

along with the result

��N
2

=
2�i(�N

2
)

L
= �2�i(N

2
)

L
= ��N

2

implies that the terms jkj = N

2
do not contribute. Hence,

@IN(u)

@x
=

(N
2
�1)X

k=�(N
2
�1)

ûk(t)�k�k(x); �k =
2�ik

L
: (1.15)

Although the terms jkj = N

2 do not contribute because of the �rst derivative

operator, higher derivatives will have di�erent contributions.

The coe�cients

ûk(t) =
1

N

N�1X
j=0

u(xj; t)e
�2�ikj

N ; k = 0; 1; : : : ; N � 1 (1.16)

can be expressed in matrix form as2666666664

û0(t)

...

ûN�1(t)

3777777775
= 1

N
FN

2666666664

u(x0; t)

...

u(xN�1; t)

3777777775
where the (k; j) element of the matrix FN , k; j = 0; 1; : : : N �1 is !N = e�

2�i
N

and the (k; j) entry is the kj-th power of !N .

9



The N x N matrix given above is denoted by FN and performs a discrete

Fourier transform of u(xj; t). For example, if N = 4 then, !4 = e�
�i
2 = �i

and

F4 =

266666666666664

1 1 1 1

1 �i �1 i

1 �1 1 �1

1 i �1 �i

377777777777775
:

Recall that the �rst derivative of the interpolant IN(u) was given as

@(IN(u))

@x
=

N
2
�1X

k=�(N
2
�1)

ûk(t)�ke
ikxj ; �k =

2�ki

L
:

This process of complex multiplication times the discrete Fourier coe�cients

can be expressed as the product of a diagonal matrix � times PFN where P

is a permutation matrix given by

P =

26664 ON
2

IN
2

IN
2

ON
2

37775,

IN
2

is the N

2 x N

2 identity matrix, and ON
2

is the zero matrix. The permuta-

tion matrix P is needed to make sure the complex number �k is multiplying

the correct discrete Fourier coe�cient. Once the permutation P has been

10



performed on FN the diagonal matrix � which performs the complex multi-

plication is given by

� = Diag(0; ��N
2
+1; ��N

2
+2; : : : ; ��1; �0; �1; : : : ; �N

2
�1): (1.17)

Notice the zero term of �. This entry ensures there is no contribution from

the jkj = N
2 terms. The process of �nding an IDFT is also linear and F�1

N is

given by the simple relation

F�1
N =

1

N
�FN (1.18)

where the bar over FN denotes complex conjugation. The �rst derivative is

now approximated by the following formula

@u(xj; t)

@x
� 1

N
�FNP�PFNu(xj; t): (1.19)

The bar under u denotes the fact that u(xj; t) is really a vector whose entries

are data values on the grid xj. The matrix 1
N
�FNP�PFN , denoted by D, is

called the pseudospectral di�erentiation matrix. In summary, @

@x
is approx-

imated by D which operates on the vector u containing a given set of data

values on the grid xj at some time level t. D is composed of three parts.

The �rst part is PFN which �nds the discrete Fourier transform of u(xj; t)

and permutes the result to perform the correct complex multiplication. �

11



is a diagonal matrix which multiplies the discrete Fourier transform by the

complex number �k. The last part
1
N
FNP permutes the previous result back

to its original order and then performs the inverse discrete Fourier transform

to bring the result back to physical space. Du represents the pseudospectral

approximation of the �rst derivative of u at the grid points xj.

To take spatial derivatives using the pseudospectral matrix Dp we would

never actually calculate the product �FNP�pPFN . Instead, the only matrix-

vector multiplication is done by the Fourier transform matrix FN and the

inverse 1
N
�FN . The operation by the permutation matrix P can be done by

simply rearranging the terms of the vector FNu(xj; t). Since �p is a diagonal

matrix, the product �pPFNu(xj; t) is done componentwise. The permutation

of this result is again done by rearranging the components to undo the action

of the �rst permutation. This same procedure would also be advisable using

an FFT approach the cost being O(N). A FORTRAN subroutine of this

process is included in Appendix A.

The pseudospectral di�erentiation matrix D is a full matrix. When using

�nite di�erence methods to approximate derivatives the process can also be

represented by a matrix-vector operation. For example, using a second order

12



�nite di�erence method

@u(xj; t)

@x
� u(xj+1; t)� u(xj�1; t)

2�x
; j = 0; 1 : : : ; N � 1:

The right hand side of this approximation can be written as2666666666666666666666664

0 1
2�x

0 : : : : : : � 1
2�x

� 1
2�x

0 1
2�x

0 : : : 0

0 � 1
2�x 0 1

2�x : : : 0

...
...

...
...

...
...

...
...

...
...

...
...

1
2�x

0 0 : : : � 1
2�x

0

3777777777777777777777775

2666666666666666666666664

u(x0; t)

u(x1; t)

...

...

...

u(xN�1; t)

3777777777777777777777775

:

The use of �nite di�erence methods produces sparse matrices. For the case

of periodic problems these matrices are circulant. To increase the accuracy

of a �nite di�erence approximation, 4th order or 6th order central di�erence

schemes could be used. The e�ect of the increased accuracy using matrices

would be 4 non-zero or 6 non-zero elements per row and as more and more

accuracy is obtained, the number of non-zero elements per row is increased.

Pseudospectral methods can be viewed as the limit of �nite di�erence ma-

trices as the order of accuracy increases. Further details on the relationship

between pseudospectral and �nite di�erence matricies can be found in Forn-
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berg(1996).

One of the advantages of a pseudospectral approach is the treatment of

boundary terms. In �nite di�erence methods of increasing order, the cost

of evaluating boundary terms also increases since �nite di�erence formulas

at the boundary require grid values outside the computational domain. The

use of ghost points (Smith 1985) or other such techniques must be used to

evaluate boundary terms. Fourier collocation methods do not require any

special treatment of the boundary terms because the trial functions auto-

matically satisfy the boundary conditions due to the periodicity of the prob-

lem. Fourier collocation methods follow closely the actual conditions of the

di�erential equation.

Higher derivatives, as we saw earlier, are simply found by the appropri-

ate change in the complex multiplication. This is also the case using the

pseudospectral di�erentiation matrix D. The approximation of @p

@xp
results

in �pk as the complex multiplication. This process is easily implemented by

an appropriate change from � to �p.

The p-th derivative of the interpolant is

@pIN(u)

@xp
=

N
2X

k=�N
2

00ûk(t)(�k)
p�k(x): (1.20)
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For example, the second derivative would be

@2IN(u)

@x2
=

N
2X

k=�N
2

00ûk(t)(�k)
2�k(x): (1.21)

Now

�2�N
2

=

 
2�i(�N2 )

L

!2

= �
 
2�(N2 )

L

!2

=

 
2�i(N2 )

L

!2

= �2N
2

; (1.22)

and

�2 = Diag(�2�N
2

; : : : ; �2�1; �
2
0; �

2
1; : : : ; �

2
N
2
�1): (1.23)

Hence, for the second derivative there is a contribution from the jkj = N

2

terms. In general, for higher derivatives, the only change in the pseudospec-

tral di�erentiation matrix D is the diagonal matrix �.

The matrix representation for the p-th derivative operator is

Dp =
1

N
�FNP�

pPFN ; (1.24)

where

�p = Diag(�p�N
2

; : : : ; �p�1; �
p
0; �

p
1; : : : ; �

p
N
2

): (1.25)

A word of caution is in order when evaluating �p. For example, �2 6= ��

since the �rst entry of � is zero the �rst entry of the product �� would also

be zero, but we have just seen this is not the case for �2. As Sanz-Serna(1994)
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points out, the di�erence between �2 and �� is small due to the fact that

the di�erence between the two quantities only involves the highest Fourier

modes of u(xj; t).

Unfortunately, pseudospectral methods require that the problem have

periodic boundary conditions. Finite di�erence and �nite element methods

have no such limitation. For problems that do have periodic boundary con-

ditions, the accuracy of a �nite di�erence or �nite element method versus

Fourier collocation is not even a close race. For smooth solutions, the errors

using a p-th order �nite di�erence method are never better than (�xp). For

pseudospectral methods the solution error goes to zero as N ! 1. This

level of accuracy is typically referred to as spectral accuracy. The rapid rate

of convergence of pseudospectral methods is due to the fact that the inter-

polating polynomial IN (u) shares the same type of convergence properties

as a truncated Fourier series. Both the discrete Fourier coe�cients and the

coe�cients of a truncated Fourier series decaying at a rate faster than al-

gebraically. The relationship between discrete Fourier coe�cients and the

coe�cients uk of a in�nite Fourier series is

ûk = uk +
1X

m=�1;m6=0

uk+Nm; k = �N
2
; : : : ;

N

2
� 1: (1.26)
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This formula shows that the discrete Fourier coe�cients depend not only on

the k-th mode of u(x; t) , but on all the modes of u(x; t) which are indistin-

guishable on the grid. This is the e�ect of aliasing and, for k large enough,

the errors due to this e�ect are small. Further details on the e�ects of aliasing

in spectral methods can be found in Canuto et al.(1988).

The rapid rate of convergence due to the decay of the Fourier coe�cients

allows the use of very coarse grids while still achieving excellent results.

By using such coarse grids, many periodic problems can be solved with the

same or even less computational cost than �nite di�erence or �nite element

methods.

As the work proceeds it will become clear that non-periodic and non-

smooth data do present problems, but are not reason enough to abandon

spectral methods in favor of �nite di�erence or �nite element methods. Dif-

ferent analytical and numerical tools can be used on many problems that

have non-smooth data or are non-periodic. Examples of problems with non-

smooth data are given in Chapters 2 and 3. The use of spectral methods for

non-periodic problems is the subject of the next section and is also discussed

in Chapters 2 and 3.
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1.3 Pseudospectral(Chebyshev Collocation)

For non-periodic problems we replace u(x; t) by the interpolant

IN(u) =
NX
k=0

ûk(t)�k(x): (1.27)

The term pseudospectral still applies since the treatment of non-linear terms

will remain the same. What has changed is the choice of trial functions. For

non-periodic problems the most popular choice for the trial functions �k(x)

are Chebyshev polynomials. Again we require IN(u(xj; t)) = u(x; t)x=xj on

some chosen set of grid points xj. Since the properties of Chebyshev poly-

nomials are not as common as the properties of Fourier series, we will begin

with a discussion of Chebyshev polynomials on the interval [�1; 1].

Chebyshev polynomials on [�1; 1] are de�ned as

Tk(x) = cos k�; � = arccosx: (1.28)

From the trigonometric identity

cos (k + 1)� + cos (k � 1)� = 2 cos � cos k�

we have the relation

Tk+1(x) + Tk�1(x) = 2xTk(x)
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which gives the following three term recurrence relation

Tk+1(x) = 2xTk(x)� Tk�1(x): (1.29)

When k = 0, T0(x) = 1 and when k = 1, T1(x) = cos(arccos x) = x: With

these two Chebyshev polynomials and using the recurrence relation above we

can generate every Chebyshev polynomial. The next several are given by

T2(x) = 2x2 � 1

T3(x) = 4x3 � 3x

T4(x) = 8x4 � 8x2 + 1

T5(x) = 16x5 � 20x3 + 5x

...

The �rst six Chebyshev polynomials are shown in �gure 1. From this �gure

it is easily seen that Tk(�1) = (�1)k and jTk(x)j � 1. For problems that

involve non-linear terms the following is very important:

Ts(x)Tr(x) = cos (s�) cos (r�)

=
1

2
(cos (s+ r)� + cos (s� r)�)

=
1

2
(Ts+r(x) + Ts�r(x)): (1.30)
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For numerical work we will be interested in spatial derivatives of the

interpolant of u. A very useful property in calculating spatial derivatives of

Chebyshev polynomials is found as follows:

Z
Tk(x)dx =

Z
cos k arccosxdx

= �
Z
cos k� sin �d�

= �1

2

Z
(sin(1� k)� + sin(1 + k)�)d�

= �1

2

Z
(sin(k + 1)� � sin(k � 1)�)d�

=
1

2

�
1

k + 1
cos (k + 1)� � 1

k � 1
cos (k � 1)�

�

=
1

2

 
Tk+1(x)

k + 1
� Tk�1(x)

k � 1

!
; k = 2; : : : ; N: (1.31)

For the special cases k = 0 and k = 1 we have

Z
T0(x)dx = T1(x) (1.32)

and

Z
T1(x)dx =

Z
xdx =

x2

2
;

where the constants of integration are provided by the normalization Tk(1) =

1. Writing this result in terms of Chebyshev polynomials we get

Z
T1(x)dx =

1

4
(T0(x) + T2(x)) : (1.33)
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This property allows the calculation of derivatives of Tk(x) in terms of other

Chebyshev polynomials.

De�ne p(x) to be a �nite Chebyshev series

p(x) =
NX
k=0

akTk(x): (1.34)

When we di�erentiate a Chebyshev polynomial of degree n the result is an

(n-1) degree polynomial. We want to be able to evaluate derivatives of Cheby-

shev polynomials in terms of other Chebyshev polynomials. Letting

p
0

(x) =
N�1X
k=0

ckTk(x)

and integrating the equation with respect to x yields

Z
p
0

(x)dx =
N�1X
k=0

ck

Z
Tk(x)dx:

Using (1.31), the right hand side becomes

c0

Z
T0(x)dx+ c1

Z
T1(x)dx+

1

2

N�1X
k=2

ck

�
1

k + 1
Tk+1(x)� 1

k � 1
Tk�1(x)

�
;

and, equating this to p(x), we get

NX
k=0

akTk(x) = a0T0(x) + c0T1(x) +

c1
4
T2(x) +

1

2

N�1X
k=2

ck

�
1

k + 1
Tk+1(x)� 1

k � 1
Tk�1(x)

�
:
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Matching coe�cients we have the following relations for k = 0; 1

a0 = a0; a1 = c0 � c2
2
;

for 2 < k < N � 1 we have

ak =
1

2k
(ck�1 � ck+1) ;

and for k = N � 1; N

aN�1 =
cN�2

2(N � 1)
; aN =

cN�1
2N

:

Calculating ck in succession for decreasing k gives the recurrence relation

cN+1 = 0

cN = 0

ck�1 = ck+1 + 2kak; k = N � 2; : : : ; 2

and for k = 1, 2c0 = c2 + 2a1. This enables us to relate derivatives of a

Chebyshev polynomial in terms of other Chebyshev polynomials i.e., we can

write

@

@x

NX
k=0

ûk(t)Tk(x) =
NX
k=0

ûk(t)
d

dx
Tk(x) =

NX
k=0

û
(1)
k (t)Tk(x);

where û(1)k (t) denotes the new coe�cients that results in taking the �rst

derivative of Tk(x). Using the recurrence relation for ck and changing the
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subscript from k to k +1, we have the following recurrence relation in terms

of û
(1)
k

û
(1)
N+1(t) = 0

û
(1)
N (t) = 0

ckû
(1)
k (t) = û

(1)
k+2(t) + 2(k + 1)ûk+1(t); k = N � 2; : : : ; 1; 0 (1.35)

where ck = 2 if k = 0; N and ck = 1 if 0 < k < N . For the second derivative

of the interpolant

@2

@x2

NX
k=0

ûk(t)Tk(x) =
NX
k=0

ûk(t)
d2

dx2
Tk(x) =

NX
k=0

û
(2)
k (t)Tk(x)

and using an analogous procedure to that described previously, the coe�-

cients û
(2)
k (t) are

û
(2)
N+1(t) = 0

û
(2)
N (t) = 0

ckû
(2)
k (t) = û

(2)
k+2(t) + 2(k + 1)û(1)k+1(t); k = N � 2; : : : ; 1; 0: (1.36)

For higher derivatives of order p the recurrence relation for the coe�cients is

û
(p)
N+1(t) = 0

û
(p)
N (t) = 0

ckû
(p)
k (t) = û

(p)
k+2(t) + 2(k + 1)û(p�1)k+1 (t); k = N � 2; : : : ; 1; 0: (1.37)
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Problems involving spatial derivatives of any order can be calculated by

these recurrence relations. An important feature of these coe�cients is that

they can be generated simply, with a single loop of a computer program, once

the coe�cient ûk(t) has been found.

To �nd the coe�cients ûk(t) �rst recall the interpolant using Chebyshev

polynomials given by

IN (u) =
NX
k=0

ûk(t)Tk(x):

By requiring the interpolant to satisfy u(x; t) at a chosen set of grid points xj

we have the following expansion of u(x; t) in terms of Chebyshev polynomials

IN(u) =
NX
k=0

ûk(t)Tk(xj); xj = cos
�j

N
; j = 0; 1; : : : ; N: (1.38)

This particular choice of grid points is called Gauss-Lobatto. Gauss-Lobatto

points are the most common points used, others can be found in Canuto et

al.(1988). An interesting fact is that the Gauss-Lobatto points, as well as

the others mentioned above, are not evenly spaced along [�1; 1], but rather

the distance between the points decreases quadratically as the grid points

approach �1. This concentration of points near the boundaries is very help-

ful in problems with boundary layers or problems with di�cult boundary

conditions. Unfortunately, this type of spacing of the grid points also plays
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an important role in the severe stability restrictions required in some prob-

lems when using Chebyshev collocation. As we saw earlier, Fourier colloca-

tion uses evenly spaced grid points. Even spacing could result in very poor

approximations using Chebyshev polynomials due to Runge phenomena (Is-

sacson and Keller 1966). Under certain circumstances (singularities in the

complex plane) Runge phenomena causes the approximation to diverge with

increasing N values even though the function is continuously di�erentiable.

An expression for the discrete Chebyshev coe�cients ûk(t) can be found

from

NX
j=0

1

cj
Tk(xj)Tl(xj) =

N

2
ck�kl (1.39)

where c0 = cN = 2, ck = 1, for 0 < k < N . This property is called the

discrete orthogonality property.

Recall Tk(x) = cos k�; � = arccos x at the Gauss-Lobatto points xj =

cos �j
N
; Tk(xj) = cos kj�

N
. From the discrete orthogonality property

NX
j=0

1

cj
Tk(xj)Tl(xj) =

NX
j=0

1

cj
cos

kj�

N
cos

kl�

N

=
1

2

NX
j=0

1

cj

 
cos

(k + l)�

N
j + cos

(k � l)�

N
j

!

=
1

2

NX
j=0

1

cj
cos �1j +

1

2

NX
j=0

1

cj
cos �2j
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where

�1 =
(k + l)�

N
; �2 =

(k � l)�

N
:

Expanding the right hand leads to

1
2

�
1

2
+ cos �1 + : : :+ cos (N � 1)�1 +

1

2
cosN�1

�
+

1
2

�
1

2
+ cos �2 + : : :+ cos (N � 1)�2 +

1

2
cosN�2

�
:

Using the trigonometric identity

1

2
+ cos � + : : :+ cos (N � 1)� +

1

2
cosN� =

1

2
sinN� cot

�

2

in this expansion yields

1

4

"
sinN�1 cot

�1
2
+ sinN�2 cot

�2
2

#
:

When k 6= l, sinN�1 = sinN�2 = 0. For k = l and k; l 6= 0; N the equation

becomes

1

2

NX
j=0

1

cj

 
cos

(k + l)�

N
j + cos

(k � l)�

N
j

!

=
1

2

NX
j=0

1

cj

 
cos

2k�

N
j + 1

!

=
1

2

NX
j=0

1

cj
cos �j +

1

2

NX
j=0

1

cj
; � =

2�

N
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=
1

2

�
1

2
+ cos � + : : :+ cos (N � 1)� +

1

2
cosN�

�

+
1

2

�
1

2
+ 1 + : : :+ 1 +

1

2

�

=
1

4
sinN� cot

�

2
+
N

2

=
N

2
;

since sinN� = 0. When k = l = 0, we have

NX
j=0

1

cj
T0(xj)T0(xj) =

NX
j=0

1

cj
= N:

When k = l = N , the equation reduces to

NX
j=0

1

cj
TN (xj)TN(xj) =

NX
j=0

1

cj
cos2 j� =

NX
j=0

1

cj
= N;

which proves the discrete orthogonality relation.

Multiplying the interpolant of u by 1
cj
gives us

1

cj
u(xj; t) =

1

cj

NX
k=0

ûk(t)Tk(xj):

Multiplying this result by Tl(xj) and summing over j gives

NX
j=0

1

cj
u(xj; t)Tl(xj) =

NX
j=0

1

cj

NX
k=0

ûk(t)Tk(xj)Tl(xj)

=
NX
k=0

ûk(t)
NX
j=0

1

cj
Tk(xj)Tl(xj):
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Now apply the discrete orthogonality relation for l = k,

N

2
ckûk(t) =

NX
j=0

1

cj
u(xj; t)Tk(xj);

to yield the formula for the discrete Chebyshev coe�cients given by

ûk(t) =
2

Nck

NX
j=0

1

cj
u(xj; t)Tk(xj); k = 0; 1; : : : ; N: (1.40)

To summarize the results, we are interested in numerically solving non-

periodic di�erential equations using the method of Chebyshev collocation.

For example, the approximation of @u
@x

would be

@u

@x
� @u(xj; t)

@x
=

NX
k=0

û
(1)
k Tk(xj) (1.41)

and @2u
@x2

is

@2u

@x2
� @2u(xj; t)

@x2
=

NX
k=0

û
(2)
k Tk(xj): (1.42)

For either of the examples above, or even higher derivatives, the �rst step

is to determine the discrete Chebyshev coe�cients given by (1.40). This step

amounts to transforming the problem to Chebyshev space. Applying the

recurrence relation given in (1.37) allows us to �nd û
(p)
k (t), p = 1; 2; : : : ;M .

Once û(p)k (t) has been found, the last step in �nding the approximation of

@pu

@xp
is to evaluate

NX
k=0

û
(p)
k (t)Tk(xj): (1.43)
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This step is the inverse, taking the problem from Chebyshev space back to

physical space. Again, the di�erentiation is taking place in the space of

the trial functions i.e., Chebyshev space, as opposed to approximating the

derivative in physical space. A FORTRAN subroutine for taking derivatives

in Chebyshev space is provided in Appendix B.

A very nice feature of approximating spatial derivatives as outlined above

using Gauss-Lobatto points is the availability of an FFT to determine ûk(t),

and to invert the problem back to physical space. This is one of the main

reasons for the popularity of Gauss-Lobatto points.

The process of �nding spatial derivatives using Chebyshev collocation is

also a linear process. Hence, an alternative way to calculate derivatives is by a

matrix operation. The matrix we require can be generated by di�erentiating

the Lagrange polynomials  j which are 1 at the grid points xj and zero at

all other collocation points. For the Gauss-Lobatto points, the Lagrange

polynomials are

 j(x) =
(�1)j+1(1 � x2)T 0

N(x)

cjN2(x� xj)
: (1.44)

Solomono� and Turkel(1989) provide details on di�erentiating  j. The result,

29



in matrix form, is

D j =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

cl
cj

(�1)l+j

(xl�xj)
l 6= j

�xj

2(1�x2j)
1 � l = j � N � 1

2N2+1
6

l = j = 0

�2N2+1
6

l = j = N:

This is used to approximate @u

@x
by operating on a vector of grid values,

u(xj; t), by the matrix D j i.e.,

@u

@x
� D j (u(xj; t)): (1.45)

The second derivative D2
 j

can be found in Peyret(1986).

Matrix di�erentiation requiresO(N2) operations compared toO(N logN)

for Chebyshev transform methods using an FFT. This di�erence in operations

makes matrix di�erentiation practical only for problems where N is small. For

such problems, the di�erence in errors incurred in calculating derivatives by

matrix or transform methods is small. Breuer and Everson (1992) point out,

that for large N, matrix di�erentiation magni�es the di�erentiation errors by

an additional factor of N2.

Using Chebyshev collocation to approximate spatial derivatives results

in the magnitude of the error being the most extreme near the boundaries
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of the computational domain. The source of these errors is the coupling

of coe�cients found in the recurrence relation which links coe�cients of a

Chebyshev polynomial to those of its derivative. This is not the case in

Fourier collocation where the entries of � represent the coe�cients due to

di�erentiation which do not depend on the value of any other coe�cient.

It is for this reason that errors incurred in approximating derivatives using

Fourier collocation are smaller than those using Chebyshev collocation and

are evenly distributed throughout the computational domain.

Until now, we have restricted our Chebyshev collocation method to the

interval [�1; 1]. Any �nite interval a � x
0 � b can be mapped to the range

�1 � x � 1 by

x
0

=
1

2
(b� a)x+

1

2
(b+ a): (1.46)

Since many problems are solved on the interval [0; 1] we will discuss Cheby-

shev collocation on the interval [0; 1] next. This particular interval is so

common that the Chebyshev polynomials de�ned on [0; 1] are called modi-

�ed Chebyshev polynomials and are denoted T �k (x).

T �k (x) = Tk(2x � 1); 0 � x � 1; k = 0; 1; : : :
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The �rst few polynomials are

T �0 (x) = 1

T �1 (x) = 2x� 1

T �2 (x) = 8x2 � 8x + 1

T �3 (x) = 32x3 � 48x2 + 18x � 1

and with the three term recurrence relation

T �k+1(x) = 2(2x� 1)T �k (x)� T �k�1(x) (1.47)

we can generate any order modi�ed Chebyshev polynomial we choose. The

graph of the �rst six modi�ed Chebyshev polynomials can be found in Figure

2.

Rather than using the modi�ed Chebyshev polynomials, we could simply

map the interval [0; 1] to [�1; 1] and then use the theory given previously.

The di�erence in approximating functions with the same number of terms

between the two intervals can by seen by the following example.

Suppose we want to approximate x3 + x2 by a polynomial of degree 2.

The idea is to express x3 + x2 in the form kT3(x) + q2(x) where q2(x) is

a polynomial of degree 2 and x3 + x2 � q2(x) has the smallest maximum
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deviation from zero. Since T3(x) = 4x3 � 3x, we have

x3 + x2 =
1

4
T3(x) +

3

4
x+ x2;

which implies that

q2(x) = x2 +
3

4
x

is the best second order polynomial approximation to x3 + x2 in the range

(�1; 1). Using the fact jTk(�1)j � 1 implies that the magnitude of the

maximum error of q2(x) is
1
4 . Now suppose we wish to �nd the best second

order approximation of x3+x2 on (0; 1). Following the same argument above

x3 + x2 = kT �3 (x) + p2(x)

where T �3 (x) = 32x3 � 48x2 + 18x� 1. Then,

x3 + x2 =
1

32

�
32x3 � 48x2 + 18x� 1

�
+ p2(x)

= x3 � 3

2
x2 +

9

16
x� 1

32
+ p2(x)

which implies that

p2(x) =
5

2
x2 � 9

16
x+

1

32

is the best second order polynomial approximation to x3 + x2 in the range

(0; 1) and the magnitude of the maximumerror is 1
32. To achieve an equivalent
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amount of accuracy using Chebyshev polynomials de�ned on [�1; 1] would

require a 4-th order polynomial. Figures 3 and 4 compare the polynomials

q2(x) and p2(x).

For non-linear problems, the evaluation T �s (x)T
�
r (x) is very important.

To evaluate this product we begin with the fact that

Ts(Tr(x)) = cos (s arccos (cos (r�)))

= cos (sr�) = cos (rs�)

= Tsr(x) = Trs(x)

= Tr(Ts(x)):

For the case s = 2 we have

Tr(T2(x)) = Tr(2x
2 � 1) = T2(Tr(x)) = 2T 2

r (x)� 1 = T2r(x)

Replacing x2 by x gives

Tr(2x� 1) = T �r (x) = 2T 2
r (x

1

2 ) = T2r(x
1

2 );

and using the above results we obtain

T �s (x)T
�
r (x) = T2s(x

1

2 )T2r(x
1

2 )

=
1

2

�
T2s+2r(x

1

2 ) + T2s�2r(x
1

2 )
�
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=
1

2

�
T2(s+r)(x

1

2 ) + T2(s�r)(x
1

2 )
�

=
1

2

�
T �s+r(x) + T �s�r(x)

�
:

To evaluate derivatives of modi�ed Chebyshev polynomials in terms of

others we begin with

Z
T �k (x)dx =

Z
Tk(2x� 1)dx

=
Z
cos k arccos (2x � 1)dx

= �1

2

Z
cos k� sin �d�; cos � = 2x� 1

= �1

4

Z
(sin (k + 1)� � sin (k � 1)�)d�

=
1

4

 
cos (k + 1)�

k + 1
� cos (k � 1)�

k � 1

!

=
1

4

 
T �k+1(x)

k + 1
� T �k�1(x)

k � 1

!
:

In an analogous procedure to that used before, the recurrence relation

that links coe�cients of Chebyshev polynomial to those of its derivatives is

given by

û
(1)
N+1(t) = 0

û
(1)
N (t) = 0

ckû
(1)
k (t) = û

(1)
k+2(t) + 4(k + 1)ûk+1(t); k = N � 1; : : : ; 1; 0: (1.48)
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The coe�cients of higher derivatives are

û
(p)
N+1(t) = 0

û
(p)
N (t) = 0

ckû
(p)
k (t) = û

(p)
k+2(t) + 4(k + 1)û

(p�1)
k+1 (t); k = N � 1; : : : ; 1; 0 (1.49)

for p = 2; 3; : : :.

The Chebyshev transform and inverse transform are given by the same

formulas as before, with Chebyshev polynomials replaced by the modi�ed

Chebyshev polynomials

ûk(t) =
2

Nck

NX
j=0

1

cj
u(xj; t)T

�
k (xj) (1.50)

and the inverse given by

uk(xj; t) =
NX
j=0

ûk(t)T
�
k (xj); k = 0; 1; : : : N: (1.51)

A popular choice for the grid points xj is

xj =
1

2

�
1 + cos

�j

N

�
; j = 0; 1; : : : ; N: (1.52)

The modi�ed Chebyshev polynomials approximation, on [0; 1], for spatial

derivatives of order p is given by

@puk(xj; t)

@xp
=

NX
k=0

û
(p)
k (t)T �k (xj); p � 1 (1.53)
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Again, we see the familiar pattern inherent to pseudospectral methods. That

is, interpolate u(x; t) on a set of grid points xj using modi�ed Chebyshev

polynomials to transform the problem to Chebyshev space. Then perform

the required di�erentiation in that space, and �nally interpolate again to

bring the problem back to physical space. A FORTRAN subroutine of this

process for modi�ed Chebyshev polynomials is provided in Appendix C.

For problems that have a certain degree of smoothness, Chebyshev and

modi�ed Chebyshev polynomials both guarantee spectral accuracy. That is,

the k-th coe�cients of both polynomials decay at a rate faster than any in-

verse power of k. The rapid convergence of Chebyshev collocation depends

only on the smoothness of the problem, where the convergence of the Fourier

series depends on the values of the function and its derivatives at the bound-

aries, as well as the smoothness of the function (Gottlieb and Orszag 1977).

It is this rapid decay of the coe�cients that makes Chebyshev collocation a

good choice for non-periodic problems. Special care should be used before ap-

plying Chebyshev collocation to non-periodic problems. Many non-periodic

problems with appropriate boundary conditions can be made into an even or

odd extension of the initial conditions, allowing one to use Fourier collocation

on a non-periodic problem. Details of this process are given in Chapter 3 on
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hyperbolic heat transfer.

1.4 Boundary Conditions

We saw earlier that the interpolant in Fourier collocation automatically satis-

�es the boundary conditions of the di�erential equation and does not require

any special treatment of the boundary conditions. However, this in not the

case with Chebyshev collocation. Chebyshev collocation requires the user to

decide on two di�erent approaches to evaluate the boundary conditions of

the di�erential equation.

The �rst approach is to leave the interpolant in the form given by equa-

tions (1.38) or (1.51). Using either of these interpolating polynomials at any

given time level we must �rst evaluate any boundary conditions given by the

di�erential equation before interpolating across the computational domain.

Notice for explicit time-di�erencing schemes that have multiple stages, for

example p-th order Runge-Kutta, interpolation is done p-times per time step.

Hence, boundary conditions will have to be evaluated at each internal stage

prior to interpolation. This treatment of boundary conditions can be used in

most problems and certainly would be the method of choice for complicated
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non-linear boundary conditions.

The other method for handling boundary conditions rede�nes the trial

function �k(xj) so that the boundary conditions are automatically satis�ed

during interpolation. For example, suppose we wish to solve the following

partial di�erential equation

ut + ux = f(x; t); �1 � x � 1; t > 0

u(�1; t) = 0; u(x; 0) = g(x):

Assuming the problem is non-periodic, and the domain of interest is [�1; 1],

the appropriate choice for the trial functions would be the Chebyshev poly-

nomials �k(x) = Tk(x). The term we wish to approximate using Chebyshev

collocation is ux on some set of grid points xj:

ux =
@u(xj; t)

@x
�

NX
k=0

û
(1)
k (t)Tk(xj); j = 0; 1; : : : N:

In evaluating this expression we could avoid evaluating the boundary con-

dition u(�1; t) = 0 prior to interpolation by rede�ning the trial function to

be

�k(x) = Tk(x)� (�1)kT0(x):

Now notice that the trial functions individually satisfy the boundary condi-
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tions

�k(�1) = Tk(�1)� (�1)kT0(�1) = (�1)k � (�1)k = 0:

Hence, we can interpolate at any given time level without having to evaluate

the boundary condition.

Obviously, the above procedure is only applicable to problems with sim-

ple boundary conditions, for example, Dirichlet or Neumann. This type of

procedure is very useful in boundary value problems, examples of which can

be found in Karageorghis(1988) and (Karageorghis and Phillips 1989). Prob-

lems with complicated boundary conditions would have to be solved using

the �rst procedure.

There are several ways to evaluate boundary conditions using Chebyshev

collocation on problems de�ned on semi-in�nite or in�nite domains. One

method would be to truncate the semi-in�nite or in�nite interval to a �nite

one and then apply the previous results. An alternative is to map the semi-

in�nite or in�nite interval to a �nite one by algebraic or exponential mappings

Canuto et al.(1988) and Boyd(1982, 1987, 1989).

Before closing this chapter, it should be mentioned that other spectral

methods exist, as well as other trial functions for the methods already dis-
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cussed. To date, the most comprehensive collection of di�erent methods and

various trial functions can be found in Canuto et al.(1988), (Gottlieb and

Orszag 1977), Boyd(1989), and Fornberg(1996).
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Chapter 2

Evolutionary Problems

2.1 Introduction

To demonstrate the e�ectiveness of pseudospectral techniques in solving par-

tial di�erential equations, the following problems have been selected: one

dimensional wave equation with non-constant coe�cients, linear and non-

linear forms of the heat equation, third order KdV equation, and Burgers

equation. These problems will serve two purposes. First, to demonstrate the

superior accuracy of pseudospectral methods over �nite element and �nite

di�erence methods and to show how the theory presented in Chapter 1 is

e�ciently implemented. Burgers equation will also demonstrate some of the
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di�culties of using pseudospectral methods on problems with non-smooth

data.

2.2 Linear Problems

In the �rst example we apply Chebyshev collocation to the hyperbolic prob-

lem ut +
x+1
t+1ux = 0. To advance the solution in time we will use 4-th order

Runge-Kutta time di�erencing. The problem, with initial and boundary

conditions, is

ut +
x+ 1

t+ 1
ux = 0; �1 � x � 1; t > 0 (2.1)

u(x; 0) = sin (�(x+ 1)); u(�1; t) = 0: (2.2)

The exact solution is given by

u(x; t) = sin

 
�(x+ 1)

t+ 1

!
: (2.3)

To discretize in space we begin by choosing a set of N + 1 grid points

xj = cos
�j

N
; j = 0; 1; : : : N: (2.4)
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We represent the current solution u(xj; tn), n = 0; 1; : : : where n = 0 corre-

sponds to the initial data as

u(xj; t
n) =

NX
k=0

ûk(t
n) cos

�kj

N
: (2.5)

Since we are interested in using Chebyshev collocation to approximate the

term @u

@x
the �rst step would be to invert the above result to obtain the discrete

Chebyshev coe�cients. For N large this step would use the FFT, but we will

consider N small enough not to need the FFT. Under this assumption, the

inversion of (2.5) is

ûk(t
n) =

2

Nck

NX
j=0

1

cj
u(xj; t

n) cos
�kj

N
; k = 0; 1; : : : N: (2.6)

Equation (2.6) interpolates across the entire computational domain and this

requires the boundary conditions to be evaluated prior to interpolating. Al-

ternatively, we could rede�ne the trial functions to automatically satisfy the

boundary conditions. From the recurrence relations given in Chapter 1 for

Chebyshev polynomials on [�1; 1] we can determine the coe�cients û
(1)
k (tn).

The approximation for the �rst derviative of u is

@u

@x
� @u(xj; tn)

@x
=

NX
k=0

û
(1)
k (tn) cos

�kj

N
: (2.7)
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Next, we evaluate �
xj + 1

tn + 1

�
@u(xj; tn)

@x
(2.8)

at each of the grid points and at the appropriate time level. Notice, that by

evaluating the right hand side of equation (2.1), we have reduced the partial

di�erential equation to a system of ordinary di�erential equations, and are

now free to select a time integration subroutine. In this case we are using

4-th order Runge-Kutta to advance the solution from time level tn ! tn+1;

n = 0; 1; : : :. Table 2.1 gives the magnitude of the maximum error

N Chebyshev Collocation Finite Di�erence

6 1.02 (-2) .15

8 4.29 (-4) .09

12 1.88 (-7) .08

16 2.09 (-11) .07

32 3.95 (-12) .06

Table 2.1

(L1 error) de�ned by

maxjku(x; t)� u(xj; t
n)k (2.9)
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which represents the maximum error between the numerical and exact solu-

tion u(x; t) evaluated at the grid points x = xj and time level t = tn. Results

from a �nite di�erence method are also given in Table 2.1 and there is a clear

superiority in the accuracy of the Chebyshev collocation.

Our next example is the classical heat equation

@u

@t
=
@2u

@x2
: (2.10)

Again we use 4-th order Runge-Kutta in time and Chebyshev collocation in

space. The mixed initial boundary value problem is

@u

@t
=
@2u

@x2
; �1 � x � 1; t > 0 (2.11)

u(x; 0) = sin �x (2.12)

with homogeneous Dirichlet boundary conditions

u(�1; t) = 0; u(1; t) = 0: (2.13)

The exact solution is

u(x; t) = e��
2t sin�x: (2.14)

Once again we choose the grid points to be

xj = cos
�j

N
; j = 0; 1; : : : N (2.15)
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and the trial function to be Chebyshev polynomials. In this example we

are interested in using Chebyshev collocation to approximate the second

derivative term. This approximation at a given time level is

@2u

@x2
� @2u(xj; tn)

@x2
=

NX
k=0

û
(2)
k (tn) cos

k�j

N
: (2.16)

Once the coe�cient û
(2)
k (tn) has been determined, (2.16) is used to advance

the solution from tn ! tn+1, n = 0; 1; : : :. Table 2.2 compares the maximum

errors obtained with increasing N and also presents the results obtained from

second order �nite di�erences. The superior accuracy of the spectral method

over the �nite di�erence method is once again shown dramatically. Doubling

the number of grid points from 8 to 16 results in the �nite di�erence error

being divided roughly by a factor of 4 as would be expected for second order

accuracy. The spectral method error, on the other hand, is divided by a

factor on the order of 107 when N is increased form 8 to 16.
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N Chebyshev Collocation Finite Di�erence

8 4.67 (-5) .064

10 8.94 (-7) .035

12 1.22 (-8) .025

14 1.30 (-10) .017

16 1.78 (-12) .013

Table 2.2

Before proceeding to the next example, it is worth mentioning that if

the spatial derivatives in the previous two problems had been approximated

using the matrixD j mentioned in Chapter 2, the maximumerror is virtually

identical to the errors given in Tables 2.1 and 2.2. Again, this is due to the

small size of N used in the previous examples.

Problems that have higher and multiple derivatives do not produce any

additional complications. For example, a linearized version of the KdV equa-

tion is

ut = ux + uxxx; 0 � x � 1; t > 0 (2.17)

with initial conditions

u(x; 0) = cos 2�x: (2.18)
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The exact solution to this problem is given by

u(x; t) = cos 2�(x� (4�2 � 1)t): (2.19)

To solve this problem one could use the modi�ed Chebyshev polynomials to

approximate the �rst and third derivatives of u, but this approach does not

make use of the fact that the problem is periodic. Hence, a better approach

would be to use Fourier collocation to approximate the derivative terms. The

�rst step in using Fourier collocation would be to form the matrix FN given

in Chapter 1. Again, we are assuming that N is small enough not to require

the use of the FFT. Notice that FN can be found once and used at each time

level. The next step would be to calculate the diagonal matrices � and �3.

The approximations for the �rst and third derivatives are

@u

@x
� D(u(xj; t

n)) =
1

N
�FNPN�PNFNu(xj; t

n) (2.20)

and

@3u

@x3
� D3(u(xj; t

n)) =
1

N
�FNPN�

3PNFNu(xj; t
n) (2.21)

where the bar under u is used to remind us that we are really treating u as a

vector of discrete data values at some time level tn. Once these approxima-

tions have been evaluated, the solution can be advanced in time. This version
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of the KdV equation shows a wave pro�le given by the initial condition prop-

agating to the right as time increases. Figure 5 compares the pro�les of the

exact and numerical solutions at time t = :52. Forth order Runge-Kutta was

used to advance the solution in time. This �gure clearly shows the lack of

any appreciable dissipative or dispersive errors that are so common in other

methods. Before we proceed, the fact that the entries of FN , �(p), and �FN are

complex requires extra care in any computer program due to the sensitivity

individual compilers might have in performing complex manipulations. To

eliminate any problems it is suggested that the problem be split into real and

imaginary parts, eliminating the need to perform complex operations.

The problems in this section should demonstrate the ease at which spa-

tial derivatives are approximated using collocation methods. Problems with

higher derivatives or variable coe�cients do not produce any complications.

Spatial derivatives are simply replaced by their pseudospectral approxima-

tion and any other terms present in the problem are evaluated at the chosen

grid points and time level. Although the choice of Runge-Kutta for time dif-

ferencing was selected due to its accuracy and ease of implementation, other

time di�erencing schemes such as implicit and predictor-corrector methods

can also be used.
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The reason that the particular time di�erencing scheme is not dependent

on Chebyshev or Fourier collocation is because the original partial di�erential

equation is discretized in space only using pseudospectral methods. The time

derivatives are left continuous. Once the spatial derivatives, and other terms

present in the problem, have been evaluated the user is free to choose the time

di�erencing scheme. This freedom to choose any appropriate time stepping

routine will be very important in problems with certain stability restrictions.

Examples are presented in the next section and in Chapter 3.

2.3 Non-Linear Problems

When considering the use of spectral methods on a non-linear problem it

is preferable to choose pseudospectral methods over other spectral methods

to solve the problem. The reason for this is due to the way pseudospectral

methods approximate the non-linear terms in the di�erential equation.

Suppose the problem contains the term @pu2

@xp
. To approximate this term

using pseudospectral methods we would �rst evaluate u2 on a chosen set of

grid points xj, j = 0; 1; : : : N . The p-th derivative would then be found fol-

lowing the technique described in section 2.1. For example, suppose Cheby-
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shev collocation is used, then

@pu2

@xp
� @p(u(xj; tn))2

@xp
=

NX
k=0

û
(p)
k (tn)Tk(xj) (2.22)

where û(p)k (tn) is found using the recurrence relation given by (1.36). The

discrete Chebyshev coe�cients are

ûk(t
n) =

2

Nck

NX
j=0

1

cj
(u(xj; t

n))2Tk(xj): (2.23)

Had the problem been periodic, Fourier collocation would give

@pu2

@xp
� Dp(u(xj; t

n))2 =
1

N
PNFN�

pPNFN(u(xj; t
n))2: (2.24)

The bar under u reminds us that u is used as a vector of grid point values

and (u(xj; tn))2 is found by squaring each of the components of u.

Pseudospectral methods treat combinations of the dependent variable and

its derivatives just as they appear in the di�erential equation. For example,

the term u@u
@x

is approximated by �rst evaluating @u

@x
a collocation methods de-

scribed earlier, and u is evaluated at the chosen grid points. These terms are

then multiplied together to produce the required approximation. Chebyshev

collocation gives

u
@u

@x
� u(xj; t

n)
@u(xj; tn)

@x
= u(xj; t

n)
NX
k=0

û
(1)
k (tn)Tk(xj) (2.25)
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and Fourier collocation gives

u
@u

@x
� u(xj; t

n)
@u(xj; tn)

@x
= u(xj; t

n)Du(xj; t
n) (2.26)

where D is the pseudospectral di�erentiation matrix.

Suppose we wish to solve a non-linear version of the heat equation

@u

@t
= 4

@2u2

@x2
; �1 � x � 1; t > 0: (2.27)

If we assume u = u(x � ct), and substitute this into the PDE integrating

with respect to x� ct we obtain a particular solution given by

2u� 3 + log (u� :5)� 2(2t � x+ 1

2
): (2.28)

The solution u can not be solved explicitly, and both the initial and boundary

conditions must be determined by iteration.

Since the problem does not possess any periodicity, Chebyshev collocation

on [�1; 1] will be used to �nd a numerical solution. The term we wish to

approximate using Chebyshev collocation is @2u2

@x2
and is given by

@2u2

@x2
� @2(u(xj; tn))2

@x2
=

NX
k=0

û
(2)
k (tn)Tk(xj) (2.29)

where û(2)k (tn) is found by the recurrence relation (1.36) and

ûk(t
n) =

2

Nck

NX
j=0

1

cj
(u(xj; t

n))2Tk(xj): (2.30)
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The grid points xj are the standard Gauss-Lobatto points. Newton iteration

is used to determine the initial conditions u(x; 0) and the boundary conditions

u(�1; t) and u(1; t). These boundary conditions must be evaluated at each

time level prior to any interpolation.

The results given in Table 2.3 are for 4-th order Runge-Kutta and N = 10.

The table compares the numerical solution and exact solution at each of the

grid points xj, in (�1; 1).

x Chebyshev Collocation Exact Solution

-.9510 2.2078968945112 2.2078968944878

-.8090 2.1531632195072 2.1531632195120

-.5877 2.0687523236070 2.0687523236061

-.3090 1.9639420734623 1.9639420734627

0.0 1.8499618380357 1.8499618380355

.3090 1.7385292210325 1.7385292210329

.5877 1.6404123987258 1.6404123987251

.8090 1.5643223500175 1.5643223500212

.9510 1.5163586147859 1.5163586146713

Table 2.3
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The maximum error for the results above is 2:33 x 10�11. To achieve these

results, a time step of :0001 was needed because of stability restrictions.

The Crank-Nicolson scheme with iteration can produce results accurate to 5

decimal places with a time step of :005 and grid spacing of :1. If we try to

increase the time step using Chebyshev collocation, even to :0005, over
ow

occurs. If the number of grid points is increased the stability requirements

become even more severe. Can we conclude that, unless extremely accurate

results are required, �nite di�erence methods would be the method of choice

for this problem?

Gottlieb and Orszag(1977) point out that second derivatives being ap-

proximated by Chebyshev collocation using explicit time stepping can have

time step restrictions �t � 1
N4 as N !1 due to the high resolution near the

boundaries. In fact, when one tries to push the stability requirements, er-

rors �rst start to increase near the boundaries. Since the methods are global,

these errors quickly propagate throughout the computational domain and af-

fect the output in just a few time steps. To relax these prohibitive time step

restrictions, implicit time di�erencing is used. The trapezoidal rule allowed

the time step restriction to be relaxed, but the results for N = 10 still were

not competitive with the Crank-Nicholson scheme described earlier. Various

55



predictor-corrector methods also have limited success with this problem and

in many cases can not improve on the stability requirements found in the

4-th order Runge-Kutta method. To achieve better accuracy than �nite dif-

ference methods and with a comparable amount of computational cost, the

variable time stepping Runge-Kutta-Fehlberg method was used. For N = 10

this method still requires 1600 steps to advance the solution to t = :5 with

a maximum error of 9:54 x 10�10. By decreasing N to 6, only 128 steps are

needed to achieve an L1 error of 3:83 x 10�7. These results are obtained

without the need to iterate the solution at each time level which is neces-

sary in the Crank-Nicolson method. Hence, by choosing an appropriate time

stepping routine it is possible to relax the stability restrictions of Chebyshev

collocation and still produce accurate results e�ciently.

The next non-linear problem we wish to investigate is Burgers equation

given by

@u

@t
+ u

@u

@x
= �

@2u

@x2
; �1 � x � 1; t > 0 (2.31)

with initial and boundary conditions

u(x; 0) = � sin�x; u(�1; t) = u(1; t) = 0: (2.32)

The coe�cient � is a positive constant. Burgers equation combines non-
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linear propagation and di�usion. With � = 10�2

�
the exact solution develops

a steep gradient symmetric about the origin. We have already seen how

rapidly pseudospectral methods converge for smooth data, but this problem

has a region of rapid change over a very small spatial region. The semi-

discrete version of Burgers equation using Chebyshev polynomials is

@u

@t
= �u(xj; tn)

NX
k=0

û
(1)
k (tn)Tk(xj) + �

NX
k=0

û
(2)
k (tn)Tk(xj) (2.33)

with Gauss-Lobatto points

xj = cos
�j

N
; j = 0; 1; : : : ; N: (2.34)

Figures 6-8 for N = 32; 64; 128 show the solution using 4th order Runge-

Kutta at time t = 0; :3; :5. These �gures show the development of numerical

oscillation near the origin due to the steep gradient which has developed.

To resolve this region, and reduce the numerical oscillation, large numbers of

Chebyshev polynomials are needed in the approximation. The position of this

steep gradient is centered in a region where there is the least amount of spatial

resolution. Recall, standard grid point spacing for Chebyshev collocation

decreases quadratically towards the boundaries (�1). The lack of grid points

near the origin for small N is not su�cient to produce a sharp pro�le in
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the numerical solution. A large value of N is needed to ensure su�cient

resolution in the vicinity of the sharp gradient.

A naive solution to this dilemma would be to simply add more points

near the origin. The problem with this approach is, unlike �nite di�erence

schemes, grid point spacing for pseudospectral methods can not be chosen

arbitrarily. In the next section coordinate transformations are introduced

which can eliminate the resolution problem near the origin.

2.4 Coordinate Transformations

As we saw in the previous section, Burgers equation required a large number

of Chebyshev polynomials to accurately resolve the area near the origin.

It was determined that for smaller numbers of polynomials, the spacing of

Gauss-Lobatto points prevented accurate resolution near the origin.

In an attempt to decrease the number of Chebyshev polynomials and keep

the resolution near the origin sharp we introduce the following coordinate

transformation, Peyret (1986),

x = g(�) (2.35)
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where

g(�) = (1 � �)�3 + ��: (2.36)

The e�ect of this odd function is to transform the Gauss-Lobatto points

to a grid which has an increased number of points near the origin and less

resolution towards the boundaries. Notice g(�1) = �1 and � is a parameter

to be determined. The e�ect � has is to increase the resolution near the

origin as �! 0 and map the Gauss-Lobatto points to Gauss-Lobatto points

as �! 1.

Recall Burgers equation is

@u

@t
+ u

@u

@x
= �

@2u

@x2
; �1 < x < 1; t > 0 (2.37)

with initial conditions

u(x; 0) = � sin�x (2.38)

and boundary conditions

u(�1; t) = 0; u(1; t) = 0: (2.39)

Using the odd function de�ned above and the chain rule gives us the required

derivatives in our transform space i.e.,

@u

@x
=
@u

@�

@�

@x
=

1

g0
@u

@�
(2.40)
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@2u

@x2
=

@

@x

@u

@x
=

@

@�

@�

@x

 
1

g0
@u

@�

!
=

1

(g0)

@

@�

 
1

(g0)

@u

@�

!
(2.41)

@2u

@x2
=

1

(g0)

@u

@�

@

@�

 
1

(g0)

!
+

1

(g0)2
@2u

@�2
(2.42)

@2u

@x2
=

1

(g0)

@u

@�

(�g00)
(g0)2

+
1

(g0)2
@2u

@�2
(2.43)

@2u

@x2
=

1

(g0)2

"
@2u

@�2
� g

00

g0
@u

@�

#
: (2.44)

Hence, Burgers equation in transformed space is

@u

@t
= � u

g0
@u

@�
+

�

(g0)2

"
@2u

@�2
� g

00

g0
@u

@�

#
; �1 < � < 1; t > 0 (2.45)

with initial condition

u(�; 0) = � sin (�(g(�))) (2.46)

and boundary conditions

u(�1; t) = 0; u(1; t) = 0: (2.47)

For this problem � = 10�2

�
and � = 2

5. Chebyshev collocation was used to

approximate the spatial derivatives and 4-th order Runge-Kutta was used to

advance the solution. Figures 9-11 show the results for N = 32; 64; 128. The

parameter � was chosen such that one value could be used over a wide variety

of N values and time. For even greater accuracy � could be determined at
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each time step so the error under some suitable norm is minimized. Experi-

ments for smaller values of � were also conducted resulting in poorer approx-

imations despite the fact that the resolution near the origin is increased for

small values of �. The reason for this is, as � is decreased, resolution away

from the origin is also decreased. Since pseudospectral methods are global in

character this decrease in resolution could a�ect the overall accuracy of the

method.

Notice that coordinate transformation could be used in problems where

sharp gradients propagate over time. In such problems we would have to

locate the region of the sharp gradient and then rede�ne the mapping g(�)

accordingly.

Before closing this section it should be mentioned that other transfor-

mations are possible. A good source for other techniques can be found in

Bayliss and Turkel (1992) and Boyd (1992). Domain decomposition which

breaks up the computational domain into a �nite number of intervals and

solves each interval individually is suitable in this problem and many other

problems. Details can be found in Canuto et al.(1988).

The non-linear heat equation and Burgers equation demonstrated how

pseudospectral methods are used in non-linear partial di�erential equations.
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The straightforward way pseudospectral methods treat non-linear termsmakes

it clear why these methods are usually chosen �rst over other spectral meth-

ods. Unfortunately, many non-linear problems have complications other than

just the approximation of spatial derivatives and non-linear terms. Time-step

restrictions and non-smooth data are just some of the complications we face

in solving non-linear evolutionary problems. These complications are not

just restricted to non-linear problems. Chapter 3 will demonstrate that non-

smooth data are also a problem for linear evolutionary problems.

62



Chapter 3

Hyperbolic Heat Transfer

3.1 Introduction

Despite the frequent use of the heat equation in examples and problems,

what is usually not discussed is the invalidity of the heat equation under

certain circumstances. The heat equation is not valid for applications where

the temperature is near zero or at moderate temperatures when the elapsed

time during a transient is extremely small Luikov (1976). Under the latter

situation the wave nature of thermal transport becomes dominant. Further-

more, this thermal wave travels through the medium as a steep wave front

with a �nite speed of propagation. This behavior is in sharp contrast to the
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classical parabolic heat equation which predicts in�nite speed of propagation

and a non-zero temperature gradient throughout the medium.

To model hyperbolic heat transfer we �rst begin with a modi�cation of

Fourier's law, q = �krT , given by

�
@q

@t
+ q = �krT (3.1)

where q is the 
ux and T is the temperature. The constants k and � are the

thermal conductivity and relaxation time. The relaxation time is de�ned as

� = �

c2
where � is a thermal di�usive term, and c is the speed of propagation

of the thermal wave. The relaxation time � implies there is a �nite build

up time before the onset of a thermal response due to an imposed temper-

ature gradient. That is, heat 
ow does not start instantaneously but grows

gradually with a relaxation time of � . Similarly, heat 
ow does not cease

immediately, but dies out gradually after a temperature gradient is removed.

The one dimensional energy equation is given by

�@q(x; t)
@x

= �cv
@T (x; t)

@t
(3.2)

where � is the density and cv is the speci�c heat. The following non-

dimensional quantities

t� =
c2t

2�
; x� =

cx

2�
(3.3)
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T �(x�; t�) =
T (x; t)� T0
�fr=kc

; q�(x�; t�) =
q(x; t)

fr
(3.4)

where T0 is taken as zero and fr is a reference heat 
ux are introduced in

equations (3.1) and (3.2) which yield the following non-dimensional hyper-

bolic system

@T

@t
= �@q

@x
(3.5)

@q

@t
= �2q � @T

@x
(3.6)

where starred quantities have been dropped for notational ease. Alterna-

tively, we could substitute (3.1) into (3.2) and again use the non-dimensional

variables de�ned above to yield the non-dimensional hyperbolic heat equation

given by

@2T

@t2
+ 2

@T

@t
=
@2T

@x2
: (3.7)

This equation is also referred to in literature as the telegraph equation (Za-

uderer 1983) or equation of non-Fourier heat conduction (Glass et al. 1987).

Pseudospectral methods will be used to solve both the hyperbolic system

and the hyperbolic heat equation. Both models predict hyperbolic behavior,

and the particular choice is usually determined by the boundary conditions.

This chapter will demonstrate that pseudospectral methods give superior
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results over previous research which used �nite di�erence and �nite element

methods.

Carey and Tsai (1982) were one of the �rst to investigate hyperbolic heat

transfer numerically. They considered the hyperbolic heat equation with

Dirichlet boundary conditions. To approximate spatial derivatives they used

a �nite element method and tried, commercially available, time integration

packages. All of their results were plagued by numerical oscillation espe-

cially at the wave front, and their attempts to reduce the oscillation smeared

the pro�le of the wave front. Glass et al.(1985, 1987) also considered this

same problem using MacCormack predictor-corrector scheme. In an attempt

to reduce the numerical oscillation they considered 1000 grid points on the

interval [0,1]. Even with such a �ne mesh, numerical oscillation was still

present at the wave front.

Glass, Ozisik, and Vick (1985) considered the e�ects of radiation on hy-

perbolic heat transfer and compared the results to parabolic behavior. Again,

1000 grid points had to be used to reduce oscillation at the wave front. In

addition, very small timesteps also had to be used to prevent instabilities.

This chapter will consider the same problemsmentioned above and demon-

strate that pseudospectral methods, when used correctly, can produce supe-
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rior results without numerical oscillation at the wave front and can do so

with coarse grids and large timesteps. Pseudospectral methods will also be

used in this chapter to investigate boundary conditions given in terms of a

continuous periodic 
ux with radiation. This generalizes and extends the

work of (Glass, Ozisik, and Vick 1985), who only considered boundary con-

ditions with a constant 
ux with radiation. The results of this investigation

will show pseudospectral methods can produce excellent results without the

need to introduce �ne grids or prohibitively small timesteps.

3.2 Hyperbolic Heat Equation

Consider the hyperbolic heat equation (3.7) de�ned on the interval [0; 1] with

initial and Dirichlet boundary conditions given by

T (x; 0) = 0;
@T (x; 0)

@t
= 0 (3.8)

T (0; t) = 1; T (1; t) = 0: (3.9)

Under these conditions the temperature at the boundary instantaneously

jumps to 1 and a thermal wave with a sharp jump at the wave front propa-

gates into the medium re
ecting o� the boundaries before reaching a steady
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state. Fortunately, the problem is linear and an exact solution can eas-

ily be reached. Introducing the function v(x) = 1 � x and substituting

T (x; t) = v(x)+w(x; t) into the hyperbolic heat equation produces the equiv-

alent problem in terms of w(x; t)

@2w

@t2
+ 2

@w

@t
=
@2w

@x2
(3.10)

with initial conditions

w(x; 0) = x� 1;
@w(x; 0)

@t
= 0 (3.11)

and homogeneous Dirichlet boundary conditions

w(0; t) = 0; w(1; t) = 0: (3.12)

Using separation of variables gives the following expression

w(x; t) = � 2

�
e�t

1X
n=1

sin
p
�x

n

 
cos �t+

sin�t

�

!
(3.13)

where

p
� = n�; � =

p
� � 1: (3.14)

Hence, our temperature distribution is given by

T (x; t) = 1� x� 2

�
e�t

1X
n=1

sin
p
�x

n

 
cos �t+

sin�t

�

!
: (3.15)
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To solve this problem numerically a common approach, due the non-

periodic nature of the problem, is to reduce the problem to a system of �rst

order equations and use Chebyshev collocation to approximate the second

derivative term. This approach accurately resolves the wave front, but se-

vere numerical oscillation is present at the left hand boundary due to the

sudden jump in temperature required by the boundary condition T (0; t) = 1.

Alternatively, �nite di�erence methods could be used, but the results are

plagued by numerical oscillation, especially in the vicinity of the wave front.

These oscillations can by reduced by the use of arti�cial viscosity, but only

at the expense of smearing the pro�le of the wave front.

Pseudospectral methods can be used successfully on this problem. To use

them correctly, we follow the same procedure as with the exact solution. By

introducing the function v(x) = 1�x and substituting T (x; t) = v(x)+w(x; t)

results in a partial di�erential equation in terms of w(x; t),

wtt + 2wt = wxx; (3.16)

with initial conditions given by

w(x; 0) = x� 1; wt(x; 0) = 0 (3.17)

69



and homogeneous Dirichlet boundary conditions

w(0; t) = 0; w(1; t) = 0: (3.18)

Notice these initial conditions have absorbed the sudden change at the left

hand boundary. The initial conditions are now oddly extended on the interval

[�1; 1]. This choice of an odd extension is due to the Dirichlet boundary con-

ditions. Had the boundary conditions been Neumann boundary conditions

the appropriate extension would be an even extension of the initial condi-

tions. This results in a problem with arti�cially imposed periodic boundary

conditions. The pseudospectral approach now uses Fourier collocation to ap-

proximate the spatial derivative wxx. Letting u(x; t) = wt(x; t) gives the �rst

order system

wt = u (3.19)

ut = �2u+ wxx (3.20)

with initial conditions

w(x; 0) =

8>>>>>>>><>>>>>>>>:

x+ 1 �1 � x < 0

0 x = 0

x� 1 0 < x � 1
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u(x; 0) = 0; �1 � x � 1

and boundary conditions

w(�1; t) = 0; w(1; t) = 0: (3.21)

The �rst step is to evaluate the right hand side of the system. Since initially

u(x; 0) = 0 the only term we need to evaluate is wxx. This approximation is

given by

@2w(xj; 0)

@x2
� D2w(xj; 0) =

1

N
�FNPN�

2PNFNw(xj; 0) (3.22)

where w(xj; 0) is the odd extension of the initial conditions. Once wxx has

been replaced by its pseudospectral approximation, the solution can be ad-

vanced in time by an appropriate time integration scheme, which we choose

to be 4th order Runge-Kutta. After the dependent quantities u and w have

been updated, we repeat the same process of evaluating the right hand side

of the system at the new time level and again step in time. This process

is repeated until the desired time level is reached. The �nal temperature

distribution at time t = tn is given by

T (xj; t
n) = v(xj) + w(xj; t

n): (3.23)
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Figures 12-14 compare the exact and numerical solutions of the temperature

pro�le on the interval [0; 1] at times t = :5; t = :75; t = 1:0 with N = 16 and

a timestep of :05. It is clear that even with such a coarse grid this technique

of producing homogeneous boundary conditions and arti�cially imposing pe-

riodicity into the new problem produces extremely accurate results, eliminat-

ing any numerical oscillation without smoothing the wave front. Furthmore,

overshoot at the wave front (the Gibbs phenomenon) is not present in these

results despite using a truncated Fourier series as a trial function. The reason

Gibbs phenomenon is not present is because Fourier collocation is used only

on the transient part of the solution (w(x; t)) which does not have any sharp

jumps in its solution.

This numerical solution also explains why we chose the hyperbolic heat

equation over the hyperbolic system. Had we tried to solve the hyperbolic

system, the sudden jump in temperature at the left hand boundary would

result in a severe oscillation. This oscillation is caused by trying to approxi-

mate the derivative @T
@x

when T is a piecewise function with a discontinuous

jump at x = 0. The sudden jump in temperature at the boundary also

causes a jump in the 
ux q at the boundary. Hence, any approximation of @q
@x

is plagued by oscillation, further degrading any attempt to solve the system
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numerically.

In some problems, the boundary conditions are given in terms of the


ux. Since we are interested in boundary conditions with a periodic 
ux and

radiation a closer look at the hyperbolic system with boundary conditions

given in terms of the 
ux is in order. For example, suppose we have the

following hyperbolic system de�ned on the semi-in�nite interval [0;1) by

@T

@t
= �@q

@x
(3.24)

@q

@t
= �2q � @T

@x
(3.25)

with initial conditions

q(x; 0) = 0; T (x; 0) = 0 (3.26)

and boundary conditions

q(0; t) = f(t);
@T (x; t)

@t
= �@q(0; t)

@x
(3.27)

q(x; t) = 0; T (x; t) = 0; x!1: (3.28)

Since the boundary conditions are given in terms of the 
ux, we eliminate

T (x; t) from the hyperbolic system by di�erentiating (3.25) with respect to

time and using (3.24) produces

qtt + 2qt = qxx: (3.29)
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This second order hyperbolic equation requires two initial conditions and two

boundary conditions for q(x; t).

Rather than working with the semi-in�nite interval we truncate this to

interval [0; L], and require q(L; t) = 0, and T (L; t) = 0. This now provides

the required boundary conditions for the 
ux

q(0; t) = f(t); q(L; t) = 0: (3.30)

Since the 
ux and temperature are both zero initially, (3.25) provides the

other initial conditions for the 
ux i.e., qt(x; 0) = 0. Notice that for f(t) = 1

and L=1, we have the same problem as before in terms of the 
ux. This

problem is linear and an exact solution, using separation of variables, is

q(x; t) = 1 � x� 2

�
e�t

1X
n=1

sin
p
�x

n

 
cos�t+

1

�
sin�t

!
(3.31)

where

p
� = n�; � =

p
� � 1: (3.32)

Using the non-dimensional form of the energy equation provides us with the

temperature distribution

T (x; t) = t+
2

�2

1X
n=1

cos
p
�x

n2

 
2 � 2e�t cos �t+

�2 � 1

�
e�t sin �t

!
: (3.33)

74



If the boundary condition for the 
ux is given in terms of some periodic

function f(t) = cos !t, where ! is the frequency of the 
ux, the exact solution,

by separation of variables, in terms of the 
ux is

q(x; t) = cos!t(1 � x)+

1X
n=1

"�2e�tp
�

 
cos �t+

1

�
sin �t

!
+A cos!t+B sin!t

#
sin
p
�x (3.34)

where � and � are given above and

A =
�2!4 � 2!2(4 � �)p
�(4!2 + (� � !2)2 ; B =

4!�p
�(4!2 + (� � !2)2 : (3.35)

The temperature distribution is

T (x; t) =
1

!
sin!t+

1X
n=1

"
2

�2 + 1

 
2 + (� � 1

�
e�t sin�t� 2e�t cos�t

!
+ Â+ B̂

#
cos
p
�x: (3.36)

where

Â = �A sin!t

!
; B̂ =

B(cos!t� 1)

!
: (3.37)

It is interesting to note that in the limit as ! ! 0, the temperature

distribution agrees with the solution when q(0; t) = 1. When ! ! 1, the

temperature distribution given in (3.36) approaches the solution found when

q(0; t) = 1. The di�erence is the term t found in equation (3.33). In other
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words, as the frequency of the 
ux at the boundary increases, the temperature

distribution approaches the same pro�le as in the case when the 
ux is the

constant q(0; t) = 1. The pro�le is shifted vertically down a distance of t.

To see graphically the e�ect of the periodic 
ux on the hyperbolic heat

equation under di�erent frequencies it is helpful to compare the pro�le with

the parabolic case. The non-dimensional problem using Fourier's law of heat

conduction and the one dimensional energy equation is

@T

@t
= �@q

@x
(3.38)

@T

@x
+ 2q = 0: (3.39)

Eliminating T (x; t) from the parabolic system and using the previous initial

and boundary conditions with L = 1 gives

2
@q

@t
=
@2q

@x2
(3.40)

q(x; 0) = 0; q(0; t) = cos!t; q(1; t) = 0: (3.41)

Figures 15-19 show the pro�les of the exact solutions for the hyperbolic and

parabolic cases at times t=.5 for ! = 0; :5; 1; 10; 100.

Figures 20-22 for ! = 1; 10; 100 show the surface response (temperture at

the boundary x = 0) of the hyperbolic and parabolic cases. The �rst funda-

mental di�erence between the hyperbolic and parabolic cases is the di�erence
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in the magnitude of the temperature at the surface. The parabolic case im-

plies a gradual increase in surface temperature and a faster convergence to

periodic behavior. The hyperbolic case implies an immediate response to the


ux resulting in a much higher prediction for the surface temperature. Each

of the Figures for the hyperbolic case show a jump in surface temperature at

time t � 2:0. This is due to the time it takes the thermal wave to propagate

across the medium, re
ect o� the right hand boundary, and then hit the left

boundary at t � 2:0. When this re
ecting thermal wave hits the boundary it

causes a sudden jump in the surface temperature. This shows how hyperbolic

heat transfer travels as a wave with �nite speed of propagation. This also

shows that the speed of the propagating thermal wave is independent of the

frequency of the periodic 
ux being applied to the surface. In fact, for ! = 0

(constant 
ux), the speed of propagation of the thermal wave is the same as

the case for a periodic 
ux. Finally, these �gures demonstrate that for this

problem, hyperbolic heat transfer with a fast enough changing 
ux at the

boundary, the surface temperature never drops below the initial levels.

The case of periodic 
ux with radiation e�ects at the boundary has not

been investigated, and one of our goals in this work is to study the e�ects

that radiation, combined with a periodic 
ux, has on the temperature distri-

77



bution for an opaque medium. Radiation introduces a non-linear term into

the boundary condition, eliminating the possibility of an analytical solution.

Hence a numerical solution must be found to investigate this problem. To

develop a numerical method, which will produce accurate results, we �rst

consider the hyperbolic system

@T

@t
= �@q

@x
(3.42)

@q

@t
= �2q � @T

@x
(3.43)

with initial conditions

q(x; 0) = 0; T (x; 0) = 0 (3.44)

and boundary conditions

q(0; t) = cos !t;
@T (0; t)

@t
= �@q(0; t)

@x
(3.45)

q(1; t) = 0; T (1; t) = 0: (3.46)

To solve this problem numerically we could use the fact that it is linear and

use Fourier collocation as we did earlier, but if the e�ects of radiation are

included which will make the problem non-linear, Fourier collocation is no

longer applicable. Hence, we will disregard solving the system numerically
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by arti�cially imposing periodic boundary conditions and using Fourier col-

location and try to solve the system directly, since we want to eventually

consider the e�ects of radiation.

The �rst di�culty we must address is the jump in the 
ux given by

the boundary conditions. A large time step initially would certainly reduce

the magnitude of the jump , but then stability constraints of the numeri-

cal scheme make this e�ort useless. As we pointed out earlier, this jump

will produce numerical oscillation when we try to approximate the spatial

derivatives. To reduce the oscillation caused by the jumps in both depen-

dent quantities we will eliminate T (x; t) from the system so we only have to

worry about the jump in the 
ux. The problem then becomes

@2q

@t2
+ 2

@q

@t
=
@2q

@x2
: (3.47)

The initial and boundary conditions have not changed, and we will take the

frequency to be ! = :5.

We �rst reduce the second order problem to a system of �rst order equa-

tions, then apply Chebyshev collocation to approximate qxx. We will use

4-th order Runge-Kutta to advance the solution from qn to qn+1. Once we
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have qn+1 we use the non-dimensional energy equation

@T

@t
= �@q

@x
(3.48)

to �nd the temperature distribution.

Figures 23 and 24 show that the sudden jump in the 
ux results in severe

numerical oscillation in the temperature pro�le. Various numerical schemes

including operator splitting, predictor-corrector methods, and fully implicit

schemes were tried. The results were all plagued by numerical oscillation

due to the jump in the dependent quantities and the e�ects this had on

Chebyshev collocation. Increasing the number of grid points does help to

reduce the amplitude of the oscillation, but the time step restrictions due to

further increasing the number of grid points makes this method impractical.

Other spectral methods were also used in an attempt to reduce the oscillation.

Tau methods which are spectral methods that use the same trial functions

as pseudospectral methods in a fully discrete manner (Gottlieb and Orszag

1977), were also used. Tau methods did a better job handling the oscillation

due to the jump at the boundary but the pro�le at the wave front was

smeared. Despite the poor results, tau methods should not be overlooked.

Excellent results can be found in Karageorghis (1988) and (Karageorghis and
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Phillips 1989). In addition to these papers (Gottlieb and Orszag 1977) and

Peyret (1986) also provide very useful information on using tau methods.

In the next sections we introduce some of the tools one can use to han-

dle non-smooth data when using pseudospectral techniques. By using these

techniques to reduce the oscillation to an acceptable level and doing so with

a realistic number of grid points, will give us con�dence in the numerical

scheme and allow us to go on to the more interesting problem of the e�ects

of radiation.

3.3 Perturbing the Initial Conditions

A simple, easy to implement, technique that attempts to damp out numerical

oscillation is to perturb the initial conditions. In the case of the hyperbolic

heat equation with a periodic 
ux, eliminating the temperature from the

hyperbolic system gives

@2q

@t2
+ 2

@q

@t
=
@2q

@x2
(3.49)

with initial conditions

q(x; 0) = 0; qt(x; 0) = 0 (3.50)
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and boundary conditions

q(0; t) = cos!t; q(1; t) = 0: (3.51)

The initial conditions are zero and ,instantaneously, the 
ux at the surface

jumps. To help smooth out this transition we de�ne

q(x; 0) = e��x (3.52)

where � is a parameter to be determined. Rede�ning the initial conditions in

this way helps to absorb the sudden change at the boundary into the initial

conditions. Figure 25 shows the temperature pro�le at time t = :5 with

q(x; 0) = e�100x. Recall, the temperature distribution is given by

@T

@t
= �@q

@x
: (3.53)

Figure 25 shows that this technique is ine�ective in reducing any of the

numerical oscillation. Experiments were run over a wide variety of values

for the parameters � and !, and the results were all disappointing. Tests

were also done keeping the initial conditions �xed at zero and perturbing

the boundary condition at x = 0 using the same function in (3.52). This

was done during the �rst time step in the �rst internal stage of the Runge-

Kutta scheme. Results of this did not produce any improvement. Variable
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time stepping and �ner grids were also used in addition to these techniques

without any signi�cant improvement.

3.4 Conservative Smoothing

Arti�cial viscosity is one of the most widely used techniques to suppress nu-

merical oscillation. Unfortunately, it is also smears sharp gradients. In shock

computations, arti�cial viscosity creates a wider spatial region over which the

shock is de�ned Guenther et al.(1994). As a result of this smearing arti�cial

viscosity was not used in this paper. Hicks (1969) developed a technique he

termed conservative smoothing to handle numerical oscillation. Fortunately,

the term smoothing is not due to the smoothing of gradients, but rather how

the technique smoothes out the spikes or numerical oscillation. It can be

shown (Guenther et al. 1994) that arti�cial viscosity of the type developed

by von Neumann and Richtmyer is a special case of conservative smoothing.

One of the main advantages of conservative smoothing over arti�cial viscosity

is the ability to selectively use it on any part of the computational domain.

In addition to being able to use it selectively in space, it can also be used

selectively in time.
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For the hyperbolic heat problem we will use conservative smoothing selec-

tively in both space and time. Before using it on the hyperbolic heat problem

it is helpful to demonstrate how it is used on a simple problem. Consider the

conservation of volume given by

@V

@t
=
@u

@x
(3.54)

where V is volume and u is momentum. The discrete analogue of the equation

given by von Neumann and Richtmyer is

(Vt)
n+ 1

2

j+ 1

2

=
V n+1
j+ 1

2

� V n
j+ 1

2

tn+1 � tn
(3.55)

and

(ux)
n+ 1

2

j+ 1

2

=
u
n+ 1

2

j+1 � u
n+ 1

2

j

xj+1 � xj : (3.56)

For simplicity we will consider a uniform mesh size

xj = j�x; 0 � j � J (3.57)

with boundaries

xL = x0; xR = xJ : (3.58)

It should be pointed out that conservative smoothing is not restricted to the

one dimensional case or limited to uniform mesh size. We can use this fact to
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our advantage due to the grid spacing required by the Gauss-Lobatto points.

De�ne a midpoint mesh by

xj+ 1

2

=
xj + xj+1

2
; 0 � j � J � 1: (3.59)

Next, conservatively rezone the volume distribution V on the original mesh

to a V̂ distribution on the midpoint mesh

V̂j =
Vj� 1

2

+ Vj+ 1

2

2
; 1 � j � J � 1; (3.60)

with boundary conditions

V̂0 = V 1

2

; V̂J = VJ� 1

2

: (3.61)

The term "conservatively rezone" implies the total volume before is equal to

the total volume after. Proof of this fact is given by Guenther et al.(1994).

Next, we conservatively rezone the V̂ distribution on the midpoint mesh to

the eV distribution on the original mesh

eVj+ 1

2
=
V̂j+1 + V̂j

2
; 0 � j � J � 1: (3.62)

In terms of the original V distribution

eVj+ 1

2

=
Vj+ 3

2

+ 2Vj+ 1

2

+ Vj� 1

2

4
; 1 � j � J � 2 (3.63)
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with boundary conditions

eV 1

2
=
V 3

2
+ 2V 1

2
+ V� 1

2

4
; eVJ� 1

2
=
VJ+ 1

2
+ 2VJ� 1

2
+ VJ� 3

2

4
: (3.64)

Notice the terms V� 1

2
and VJ+ 1

2
both are outside the computational domain.

By de�ning these points by

V� 1

2
= V 1

2
; VJ+ 1

2
= VJ� 1

2
(3.65)

we have a single recipe for the conservatively smoothed volume eV i.e.,

eVj+ 1

2

=
Vj+ 3

2

+ 2Vj+ 1

2

+ Vj� 1

2

4
; 0 � j � J � 1: (3.66)

This conservatively smoothed variable eV can now be advanced in time. No-

tice that this method could have �rst advanced the volume V , and then

conservatively smoothed this quantity at the new time level. In addition to

smoothing the volume V , we could have also smoothed the momentum u.

Our problem �rst solves for the 
ux q given by the mixed initial boundary

problem

@2q

@t2
+ 2

@q

@t
=
@2q

@x2
(3.67)

with initial conditions

q(x; 0) = 0; qt(x; 0) = 0 (3.68)
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and boundary conditions

q(0; t) = cos!t; q(1; t) = 0: (3.69)

Once q is found we can use the one dimensional energy equation

@T

@t
= �@q

@x
(3.70)

to solve for the temperature.

The results given earlier demonstrated that as time advanced, the nu-

merical method using Chebyshev collocation did and excellent job resolving

the area in the vicinity of the wave front, but the sudden jump due to the

boundary conditions at x = 0 caused severe oscillation. By locating the wave

front at the time levels when conservative smoothing is used allows us to use

conservative smoothing on the 
ux, or temperature, or both, behind the wave

front. This selective use of conservative smoothing is one of the main ad-

vantages in using it over arti�cial viscosity of the von Neumann-Richtmyer

type.

Figure 26 shows the results using conservative smoothing on the problem

given above. Smoothing was performed on the 
ux after it was advanced in

time. This smoothed 
ux was then used to �nd @q

@x
. The temperature is then

advanced to the new time level explicitly in terms of conservatively smoothed
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quantities. Smoothing was also performed prior to advancing the 
ux in

time, but the results of this did not o�er any signi�cant improvement over

smoothing after advancing the 
ux in time. Smoothing was done on the �rst

5 time steps and then turned o�. Prior to the �nal time, in this case t = :5,

smoothing was turned back on for the �nal several time steps. The location

of the smoothing was always selected behind the wave front, preventing any

signi�cant smearing of the wave front. As this �gure shows, conservative

smoothing could not remove all the oscillation near the boundary and, in

fact, this oscillation is even more pronounced if the smoothing is kept o�

after the initial amount of smoothing has been performed. Experiments

were performed for various times and values of !, 0 � ! � 1. The smoothing

routine was identical to above recipe. In each case the wave front remained

sharp and the oscillation at the boundary x = 0 was always within the levels

found in Figure 26.

With a numerical method in place that can successfully model the hyper-

bolic system directly we can now investigate the case of a periodic 
ux with

radiation. The problem is

@2q

@t2
+ 2

@q

@t
=
@2q

@x2
(3.71)
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with initial conditions

q(x; 0) = 0; qt(x; 0) = 0 (3.72)

and boundary conditions

q(0; t) = cos!t� �T 4(0; t); q(1; t) = 0: (3.73)

The parameter � is a non-dimensional surface absorptivity constant (Glass,

Ozisik, and Vick 1985) which in this problem we take as 0 � � � :5. Un-

der these conditions the surface is completely absorbing and the 
ux at the

boundary remains positive. Again, we �rst solve for the 
ux q and then use

the energy equation to solve for the temperature. Recall that Chebyshev col-

location requires us to interpolate across the entire domain and this requires

the boundary conditions to be known prior to interpolating. It is obvious

that the present boundary conditions will prevent this requirement from be-

ing explicitly satis�ed. Hence, iteration will be performed to evaluate the

boundary conditions and advance the 
ux in time.

To evaluate the boundary conditions, the previous value for T (0; t) was

used to begin the internal stages of the Runge-Kutta subroutine. Once the

Runge-Kutta subroutine advanced the 
ux q using conservative smoothing

we could then calculate @q

@x
and use the energy equation to determine the
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temperature at the boundary. This new value for the temperature at the

boundary was then used to repeat the process again. Five iterations were

found to be satisfactory to evaluate the boundary conditions and advance

the 
ux to the next time level.

Figure 27 shows the pro�le of the temperature at time t = :5 for various

values of �. This �gure also shows the temperature pro�le for the parabolic

case when � = :5. As � is increased the e�ects of radiation become more

pronounced causing the magnitude of the 
ux to decrease at the boundary,

which reduces the temperature response. As we saw before, hyperbolic heat

transfer results in a larger response to an imposed temperature gradient, and

the di�erence between hyperbolic behavior and parabolic behavior is quite

pronounced. When radiation e�ects are considered, the behavior between hy-

perbolic and parabolic behavior begins to converge. This is shown in Figure

27 by the fact the temperature response when � = :5 is quite similar near the

surface between the hyperbolic and parabolic cases. This convergence can

be explained by the fact that hyperbolic behavior results in a higher surface

temperature which then loses more energy due to the e�ects of radiation than

the case of parabolic behavior. The results shown in Figure 27 used 40 grid

points and a �xed timestep of .001. These values di�er dramatically from
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Glass, Ozisik, and Vick (1985), where 1000 grid points and variable timestep-

ping with extremely small initial steps were needed to prevent instabilities

and reduce numerical oscillation at the wave front.
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Summary and Recommendations

The results in Chapter 3 demon strate pseudospectral methods can be

used successfully in hyperbolic heat transfer. When radiation

effects are neglected, and the problem is linear, artificially

imposing periodic boundary conditions and using Fourier coll ocation

significantly improves previous results which used finite

difference and finite element methods. By using Fourier coll ocation

only on the transient part of the solution, numerical oscillation

is prevented at the wave front without smearing its profile.

Furthermore, these results are obtained with a mesh of only 16 grid

points and a fixed timestep of .05.

When radiation effects were considered Chebyshev collocation

with conservative smoothing had to be used, because of the non-

linear effects of the radiation term and the sudden jump in

dependent quantities at the boundary. These results dramatically

improved the computational eff ort previously needed to investigate

the effects of radiation. Pseudospectral methods allowed for a much

coarser grid and larger timestep than previous methods. 

For a very fast fluctuating flux the methods presented in this

work, as they stand, are not sufficient to model this behavior.

This is the reason why omega was restricted to a small value.

Certainly Figures 20-22 are motivation enough to numerically

investigate this problem for larger values of omega and the effects

radiation would have on the te mperature response. The challenge of
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this problem is in developing a technique that when used

withChebyshev collocation would capture the rapidly changing

cond itions near the surface. Other trial functions could be

cons idered, and rational functions would certainly be a logical

begin ning. In addition to different trial functions, domain

decomposition that would split the problem into fast and slow

varying regions might also prove helpful.



94

Bibliography

Abramowitz, M. and A. Stegun, Eds., (1965). Handbook of Mathematical Functions. 

New York: Dover publishing. 

Baumeister, K. and T., Hamill (1969). "Hyperbolic Heat-Conduction Equation-A 

Solution for the Semi-Infinite Body Problem," J. of Heat Transfer Nov. 543-

548 .

Bayliss, A. and  E. Turkel (1992). "Mappings and Accuracy for Chebyshev 

Pseudospectral  Approximations," J. of Computational Physics 101, 349-

359.

Bird, R., W. Stewart, and E. Lightfoot (1960). Transport Phenomena. New York: John 

Wiley & Sons.

Boyd, J., (1982). "The Optimization of Convergence for Chebyshev Polynomial Meth

ods in an Unbounded Domain," J. of Computational Physics 45, 43-79.

Boyd, J., (1987). "Spectral Methods Using Rational Basis Functions on an Infinite 

Interval," J. of Computational Physics 69, 112-142.

Boyd, J., (1989).  Chebyshev and Fourier Spectral Methods. New York: Springer-

Verlag.

Boyd, J., (1992). "Multiple Expansions and Pseudospectral Cardinal Functions," J. of 

Computational Physics 103, 184-186.

Breuer, K., and R. Everson (1992). "On The Errors Incurred Calculating Derivatives 

Using Chebyshev Polynomials," Journal of Computational Physics 99, 56-



95

67.

Burden, R. and D., Faires (1985). Numerical Analysis 3rd ed. Massachusetts: Prindle 

Weber and Schmidt.

Canuto, C., M., Hussaini, A., Quarteroni, and A., Zang (1988). Spectral Methods in 

Fluid Dynamics. New York: Springer-Verlag.

Carey, G., M., Tsai (1982). "Hyperbolic Heat Transfer With Reflection," Numerical 

Heat Transfer, 5, 309-327.

Conte, S., and C., deBoor (1972). Elementary Numerical Analysis. New York: 

McGraw-Hill.

Fornberg, B., (1987). "The Pseudospectral Method: Comparison With Finite Difference 

for the Elastic Wave Equation," Geophysics, 52, 483-501.

Fornberg, B., (1996). A Practical Guide to Pseudospectral Methods. New York: 

Cambridge University Press.

Fox, L., and I., Parker (1968). Chebyshev Polynomials in Numerical Analysis. New 

York: Oxford University Press.

Frankel, J., and B., Vick (1985). "J. Applied Physics," Flux Formulation of Hyperbolic 

Heat Conduction," 58 no. 9 3340-3345.

Glass, D., M., Ozisik, and D. McRae (1987). "Hyperbolic Heat Conduction With 

Radiation in an Absorbing and Emitting Medium," Numerical Heat Transfer 12, 

321-333.

Glass, D., M., Ozisik, D., McRae, and B. Vick (1985). "On The Numerical Solution of 

Hyperbolic Heat Conduction," Numerical Heat Transfer 8,  497-504.



96

Glass, D., M., Ozisik, and B. Vick (1985). "Hyperbolic Heat Conduction With Surface 

Radiation," Int. J. Heat and Mass Transfer 28, 10, 1823-1830.

Glass, D., M., Ozisik, and B. Vick (1987). "Non-Fourier Effects on Transient Tem

perature Resulting From Periodic On-Off Heat Flux," Int. J. Heat and Mass

Transfer 30, 8, 1623-1631.

Gottlieb, D., and S. Orszag (1977). Numerical Analysis of Spectral Methods: Theory 

and Applications. Philadelphia: SIAM-CBMS

Gottlieb, D., and E., Turkel. (1985). Topics in Spectral Methods for Time Dependent 

Problems. New York: Springer-Verlag.

Guenther, C., D., Hicks, and J., Swegle (1994). "Conservative Smoothing Versus 

Artificial Viscosity," Sandia Report Sand94-1853 UC-705.

Haberman, R., (1987). Elementary Applied Partial Differential Equations. New Jersey: 

             Prentice Hall.

Hamming, R., (1962). Numerical Methods for Scientists and Engineers. New York: 

McGraw Hill.

Hicks, D., (1969). "The Convergence of Numerical Solutions of Hydrodynamic Shock 

              Problems," Ph.D. Thesis, University of New Mexico.

Isaacson, E. and H. Keller (1966). Analysis of Numerical Methods. New York: John 

Wiley and Sons.

Karageorghis, A., (1988). "Chebyshev Spectral Methods for Solving Two-Point 

Boundary Value Problems Arising in Heat Transfer," Computational Methods 

in Applied Mechanics and Engineering 70, 103-121.



97

Karageorghis, A. and T. Phillips (1989). "Spectral Collocation Methods for Stokes 

Flow in Contraction Geometries and Unbounded Domains," Journal of

Compu tational Physics 80, 314-330.

Kreiss, H. and J. Oliger (1972). "Comparison of Accurate Methods for the Integration 

of Hyperbolic Equations," Tellus, 24, 199-215.

Kreith, F., (1973). Principles of Heat Transfer. New York: Harper and  Row.

Luikov, A., V. Bubnov, and I. Soloviev (1976). "On Wave Solutions of the Heat  

Conduction Equation," International Journal of Heat and Mass Transfer 19, 

245-248.

Majda, A., J., McDonough, and S., Osher (1978). "The Fourier Method for Nonsmooth 

Initial Data," Mathematics of Computation 32 no. 144, 1041-1081.

Mitchell, A., and D. Griffiths (1980). The Finite Difference Methods in Partial 

Differential Equations. New York: John Wiley and Sons.

Orszag, S., (1972). "Comparison of Pseudospectral and Spectral Approximations," 

Studies in Applied Mathematics, 51, 253-259.

Peyret, R., (1986). "Introduction To Spectral Methods With Application to Fluid 

Mechanics," von-Karman Institute for Fluid Dynamics Lecture Series 1986-04.

Press, W., S., Teukolsky, W., Vetterling, and W., Flannery (1992). Numerical Recipes 

            in Fortran 2nd Eds. New York: Cambridge

University Press.

Rivlin, T., (1974). Pure and Applied Mathematics. New York: John Wiley and Sons.

Sansone, G., (1959). Orthogonal Functions. New York: Interscience Publishers Inc.



98

Sanz-Serna, J., (1994). "Fourier Techniques in Numerical Methods for Evolutionary 

Problems," Universidad De Valladolid Applied Mathematics and Computa-

tional Report 1994/10.

Smith, G., (1985). Numerical Solution of Partial Differential Equations. Oxford, Eng

land: Clarendon Press.

Solomonoff, A., and E. Turkel (1989). "Global Properties of Pseudospectral Methods,"

Journal of Computational Physics 81, 239-276.

Spiegel, M., (1968). Schaum's Oulines Mathematical Handbook. New York: McGraw-

Hill.

Strang, G., (1986). Introduction to Applied Mathematics. Massachusetts: Wellesley-

Cambridge Press.

Tang, D., and N. Araki (1996). "Non-Fourier Heat Conduction in a Finite Medium 

Under Periodic Surface Therma Disturbance," Int. J. Heat and Mass Trans-

fer 39 no. 8, 1585-1590.

Voigt, R., D., Gottlieb, and Y. Hussaini, Eds. (1984). "Spectral Methods for Partial 

Differential Equations," Philadelphia: SIAM.

Zauderer, E., (1983). Partial Differential Equations of Applied Mathematics. New 

York: John Wiley and Sons.

 



99

Appendix A

   subroutine fmatrix(fr,fi)
c  this subroutine calculates the n x n Fourier transform matrix
c  recall this matrix is complex this subroutine calculates both
c  the real fr and complex fi entries
      double precision fr(n,n),fi(n,n)   
      double precision dim,pi,val1,val2
      integer r,s,i,j
      dim=n
      pi=3.141592653589793d0
      val1=2d0*pi/dim
      do 1 j=1,n
      do 2 i=1,n
      r=j-1
      s=i-1
      val2=val1*r*s
      fr(i,j)=dCOS(val2)
      fi(i,j)=-dSIN(val2)       
2     continue
1     continue
      return
      end 
                                    
c     This subroutine transforms the vector real part vinr and
c  complex part vini to Fourier space
c     and takes the required spatial derivative. 
      subroutine fouriercolloc(fr,fi,vinr,vini,yr,yi)
      double precision fr(n,n) ,fi(n,n),vinr(n),vini(n),yr(n),yi(n)
      double precision sqlam(n)   
      double precision st2r(n),st2i(n)
      double precision sumr,sumi,dim,al,pi,val1
      integer m
      pi=3.141592653589793d0
c  the problem is periodic with period al
      al=2.0d0
      dim=n
      val1=2d0*pi/al
      m=n/2
c     lambda matrix(this matrix is a diagonal matrix) 
      do 10 i=1,n  
      sqlam(i)=-((val1)*(i-1-n))**2
10    continue 
c     Calculate the second derivative using the spectral 
c     differentiation matrix in terms of real and imaginary parts
      do 20 i=1,n
      sumr=0.0d0
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      sumi=0.0d0                              
c     The transform of the given vector in terms or real 
c     and imaginary parts.
      do 30 k=1,n          
      sumr=sumr+fr(i,k)*vinr(k)-fi(i,k)*vini(k)
      sumi=sumi+fi(i,k)*vinr(k)+fr(i,k)*vini(k)
30    continue
      yr(i)=sumr
      yi(i)=sumi             
      st2r(i)=yr(i)
      st2i(i)=yi(i)
20    continue       
c     Permute the transformed vector
      do 40 i=1,m
      yr(i)=st2r(i+m)
      yr(i+n)=st2r(i)
      yi(i)=st2i(i+m)
      yi(i+n)=st2i(i)
40    continue
c     Multiply the vector by lambda squared                
      do 50 i=1,n
      st2r(i)=sqlam(i)*yr(i)
      st2i(i)=sqlam(i)*yi(i)
50    continue
c     Permute back
      do 60 i=1,m
      yr(i)=st2r(i+m)
      yr(i+n)=st2r(i)
      yi(i)=st2i(i+m)
      yi(i+n)=st2i(i)
60    continue  
c     Invert back out of Fourier space                 
      do 70 i=1,n             
      sumr=0d0
      sumi=0d0                
      do 80 k=1,n
      sumr=sumr+fr(i,k)*yr(k)+fi(i,k)*yi(k)
      sumi=sumi-fi(i,k)*yr(k)+fr(i,k)*yi(k)
80    continue
      st2r(i)=sumr
      st2i(i)=sumi
70    continue 
c     The second derivative is approximated by:
c     yr=real part
c     yi=imaginary part
      do 90 i=1,n
      yr(i)=st2r(i)/dim 
      yi(i)=st2i(i)/dim                                 
90    continue           
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Appendix B
Subroutine Cheby(uhat,u1,u2,uinit,diffu,diff2u)
double precision uhat(n),u1(n),u2(n),uinit(n)
double precision diffu(n),diff2u(n)

c calculates the first and second derivatives of a
c vector of n-data values uinit(n). The results are stored
c in diffu(n), diff2u(n)

double precision c(n)
double precision pi,sum,sum2
pi=3.141592653589793d0
do 1 i=1,n
if(i.eq.1.or.i.eq.n)then
c(i)=2.0d0
else
c(i)=1.0d0
endif

1 continue
c calculates the discrete Chebyshev coefficients

do 2 i=1,n
sum=0.0d0
do 3 j=1,n
sum=1.0d0/c(j)*uinit(j)*dCOS(pi*(j-1.0d0)*(i-1.0d0)/n)+sum

3 continue
uhat(i)=(2.0d0/((n-1.0d0)*c(i)))*sum

2 continue
c recurrence relation to find derivative coefficients

u2(n+1)=0.0d0
u2(n)=0.0d0
u1(n+2)=0.0d0
u1(n)=0.0d0
do 4 i=n-1,1,-1
u1(i)=1.0d0/c(i)*(u1(i+2)+2.0d0*(i*u(i+1))
u2(i)=1.0d0/c(i)*(u2(i+2)+2.0d0*(i*u1(i+1))

4 continue
do 5 i=1,n
sum=0.0d0
sum2=0.0d0
do 6 j=1,n
sum=u1(j)*dCOS(pi*(i-1.0d0)*j-1.0d0)/(n-1))+sum
sum2=u2(j)*dCOS(pi*(i-1.0d0)*j-1.0d0)/(n-1))+sum2

6 continue
c the first and second derivatives are below

diffu(i)=sum
diff2u(i)=sum2

5 continue
return
end
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Appendix C

Subroutine Cheby(uhat,u1,u2,uinit,diffu,diff2u)
double precision uhat(n),u1(n),u2(n),uinit(n)
double precision diffu(n),diff2u(n)
double precision c(n)
double precision pi,sum,sum2
pi=3.141592653589793d0
do 1 i=1,n
if(i.eq.1.or.i.eq.n)then
c(i)=2.0d0
else
c(i)=1.0d0
endif

1 continue
c calculates the discrete Chebyshev coefficients

do 2 i=1,n
sum=0.0d0
do 3 j=1,n
sum=1.0d0/c(j)*uinit(j)*dCOS((i-1.0d0)*dACOS(-dCOS(pi*

           (j-1.0d0)/(n-1))))+sum
3 continue

uhat(i)=(2.0d0/((n-1.0d0)*c(i)))*sum
2 continue
c recurrence relation to find derivative coefficients

u2(n+1)=0.0d0
u2(n)=0.0d0
u1(n+2)=0.0d0
u1(n)=0.0d0
do 4 i=n-1,1,-1
u1(i)=1.0d0/c(i)*(u1(i+2)+4.0d0*(i*u(i+1))
u2(i)=1.0d0/c(i)*(u2(i+2)+4.0d0*(i*u1(i+1))

4 continue
do 5 i=1,n
sum=0.0d0
sum2=0.0d0
do 6 j=1,n
sum=u1(j)*dCOS((j-1.0d0)*dACOS(-dCOS(pi*

     (i-1.0d0/(n-1.0d0))))+sum
sum2=u2(j)*dCOS((j-1.0d0)*dACOS(-dCOS(pi*

     (i-1.0d0/(n-1.0d0))))+sum2
6 continue
c the first and second derivatives are below

diffu(i)=sum
diff2u(i)=sum2

5 continue
return



Chebyshev Polynomials
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Chebyshev Polynomials

Figure 3

-0.5

0.0

0.5

1.0

1.5

2.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

approximation exact

Modified Chebyshev Polynomials

Figure 4

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

approximation exact

104



KdV Equation

Figure 5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Numerical Exact

Burgers Equation N=32

Figure 6

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

t=0 t=.3 t=.5

105



Burgers Equation N=64

Figure 7
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Burgers Equation N=32

Figure 9
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Burgers Equation N=128

Figure 11
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Temperature t=.75, N=16

Figure 13
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Temperature t=.75, N=16

Figure 13
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Temperature vs Parabolic (t=.5,omega=1)

Figure 17

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T

Position x

Hyperbolic Parabolic

Hyperbolic vs Parabolic (t=.5,omega=10)

Figure 18
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Hyperbolic vs Parabolic t=.5,omega=100

Figure 19
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Temperature at x=0

Figure 21
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Figure 22
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Temperature at x=0

Figure 21
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Perturbing the I.C. (t=.5,omega=.5)

Figure 25
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Conservative Smoothing (t=.5,omega=.5)

Figure 26
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Hyperbolic System with Radiation

Figure 27  (omega=.5)
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