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ABSTRACT

A Statistical Framework for the Development of Prediction and

Clustering Models in the Hazard Assessment of Nanomaterials

Ying Pei

Compared to conventional materials or chemicals, it remains challenging to fully

assess the hazards of various nanomaterials (NMs) stemming from their physicochemical

properties. Tremendously large variety of NMs calls for high-throughput screening methods,

and the ultimate goal of nanotoxicology is to develop prediction models, also referred to as

QNAR (quantitative nanostructure-activity relationships), which relate the adverse bioac-

tivity effects of NMs to their physicochemical properties. Such models enable the prediction

of a new NM’s toxicity without performing additional biological experiments, which leads to

substantial savings in time and money. For the efficient development of prediction models,

a statistical framework is provided and demonstrated in this dissertation.

There are four stages of analysis and modeling in this framework: variable selection,

design of experiments, quantitative modeling and shape clustering. Variable selection is first

performed on existing nanotoxicology data to identify the important predictors, most of

which are materials’ physicochemical properties, for NMs’ toxicity. Then design of experi-

ments is carried out in the space of identified predictors for efficient data collection. Third,

stochastic kriging with qualitative factors (SKQ) is employed to model the relationship be-

tween predictors and toxicity responses for the development of prediction models. Lastly,

shape clustering methods are adapted to cluster NMs based on their toxicity profiles.

This framework has been illustrated by a simulation case derived from a nanotoxicol-

ogy database including 25 in-vivo studies for 1899 rodent animals.
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Chapter 1

Introduction

1.1 Motivation of the Research

Commercialization of nanotechnology is giving rise to extensive applications of nanomaterials

(NMs) in areas such as environment [1, 2, 3, 4], energy [5, 6, 7, 8] and biomedicine [9, 10,

11, 12]. The large introduction of engineered NMs to the market [13] will inevitably lead

to increasing exposure of humans and environment to NMs, which presents social concerns

about the potential hazard of NMs [14]. Therefore, developing appropriate hazard assessment

approaches for NMs is under urgent and rising need to ensure the sustainable exploitation

of NMs [15]. Hazard assessment methods and tools applied to conventional chemicals and

materials may not be readily and suitably adaptable for NMs due to insufficient capacity to

fully assess risks associated with all NMs [16, 17, 18, 19]. The rapid proliferation of different

types of NMs means that efforts to test toxicity of these variants through traditionally

biological experimentation will be burdensome, even infeasible.

How to reduce the work of testing the large and growing number of NMs, and eventu-

ally achieve the transition out of animal testing paradigm for huge variety of newly emerging

NMs? To address this question, a statistical framework is proposed which gives birth to the

prediction and clustering models. The prediction model is a mathematical description of how

the adverse bioactivity effects are functionally related to the identifiers of NM. Herein, the

scope of identifiers covers physicochemical properties of NMs, experimental conditions and

study scenarios [20, 21]. The adverse bioactivity effects refer to the toxic endpoints which

may vary in different context [22]. The prediction model enables the quantitative assessment
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of a new NM’s bioactivity behavior without performing biological experiments on it. The

clustering model is able to cluster NMs based on their entire bioactivity profiles.

1.2 Plan and Objective of the Research

The proposed framework consists of four portions given as follows.

Variable Selection. Based on the real nanotoxicology database constructed from 25 in-

vivo studies, variable selection is performed to identify the important factors which are

mainly responsible for variations in the toxicity response.

Design of Experiments. In the space formed by the important variables identified above,

design of experiments (DOE) is carried out for efficient data collection.

Quantitative Modeling. Based on the sample data collected following the experimental

design, a kriging model named stochastic kriging with qualitative factors (SKQ) is

employed to model these data and generate the prediction model quantifying NMs’

bioactivity profiles.

Shape Clustering. Cluster the different types of NMs based on their bioactivity profiles,

the estimation and inference of which are rendered by SKQ modeling.

The objective of this work is to develop a statistical framework for the establishment

of prediction and clustering models. Given a new material’s physicochemical properties, the

prediction model is able to estimate its bioactivity profile, based on which the clustering

model is then employed to assign the material to a potency group (Figure 1.1). The outputs

of this framework are threefold. First, a list of important variables contributing to the

NM toxicity is generated which potentially provides guidance for the future design and

production of safer NMs [23, 24, 25]. Second, a quantitative prediction model is built, which

fulfills the goal of predicting the biological effects (toxicity) of a NM from its physicochemical

properties without performing biological experiments on it. Third, the clustering model is

2



able to classify new materials based on their entire predicted bioactivity profiles [26, 27, 28].

1.3 Challenge of the Research

A number of challenges are involved in developing such a framework. First, the nanotox-

icology data collected from biological experiments are relatively scarce [29, 30, 31], highly

variable and subject to variance heterogeneity [32, 33, 34]. Second, the target quantitative

relationship is high-dimensional, complex and nonlinear [35, 14, 36] . As mentioned in Sec-

tion 1.1, NM toxicity is potentially affected by a large number of factors including various

physicochemical properties. These factors include both quantitative and qualitative ones.

Third, the estimated bioactivity profiles of NMs are subject to uncertainty (inherited from

the randomness of biological data), and the clustering methods need to accommodate that

estimation uncertainty.

1.4 Contribution of the Research

The QNAR (quantitative nanostructure-activity relationships [37]) model investigated by

the framework and methods in this work is of the largest scale and most powerful prediction

capability compared to those existed in the nantoxicology literature. Six material physic-

ochemical properties (e.g., diameter, surface area and zeta potential), one animal-related

factor (i.e., gender) and three exposure conditions (e.g., dose and post-exposure time) are

identified from the NIOSH/CIIT/ENPRA database as having significant impacts on NM’s

bioactivity. These ten factors serve as predictors in the QNAR model fitted by a kriging

method from simulation data mimicking the NIOSH/CIIT/ENPRA data.

Based on the QNAR estimation and inference for an new NM, shape clustering meth-

ods were adapted to classify this material into a potency category according to its entire

5-dimensional bioactivity profile rendered by the QNAR while factoring into account the

3
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Figure 1.1: The Objective of the Framework
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estimation uncertainty. To the best of our knowledge, this is the first effort to cluster NM

based on their predicted high-dimensional profiles subject to uncertainty.

In addition, this work illustrates the importance of experimental design for modeling

high-dimensional QNAR, the quantitative relationship between the bioactivity response and

multiple (10 in our case) predictors. Design of experiments methods were developed to

provide a good coverage of the 10-dimensional predictor space as well as to achieve a complex

and nonlinear QNAR of high quality. The experimental design for fitting the target QNAR

sheds light on the real experimental effort (samples sizes) needed to achieve a high-quality

QNAR model of high dimension.
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Chapter 2

Data Description

The data involved in this work is derived from the NIOSH/CIIT/ENPRA database

of nanotoxicology [38]. It includes 25 in-vivo rodent studies comprising of data for 1899

unique animals, which were provided by researchers from NIOSH (National Institute for

Occupational Safety and Health), CIIT (renamed Hamner Institute), and ENPRA (the Eu-

ropean Framework 7 Program on Engineered Nano-Particle Risk Assessment). The toxicity

endpoint considered is the PMNs (polymorphonuclear leukocyte cells), which is a popular

measure of pulmonary inflammation. The endpoint indicator was measured in BALF (bron-

choalveolar lavage fluid) extracted from the lungs of rodents and reported as counts per

subject animal. To address the differences in BALF and PMNs counting methods across

laboratory, the PMN percentage is used as the response of interest, which is calculated as

the number of PMNs counted in the cell sample divided by the total number of cells counted.

In the complied NIOSH/CIIT/ENPRA database, there are a total of 21 input vari-

ables which can be classified as material-related variables (physicochemical properties),

animal-related variables and exposure condition variables.

Material-Related Factors:

• Material: The database includes the study of six materials: titanium diox-

ide (TiO2), iron oxide (Fe3O4), silver (Ag), multi-walled carbon nanotubes

(MWCNT), zinc oxide (ZnO), and crystalline silica. Each material is charac-

terized by several physicochemical properties.
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• Material Category: It describes the type of materials according to their chemi-

cal structure. In this data set, all the materials belong to one of the three material

categories: metal, metal oxide and carbon.

• Material Manufacturer: This factor indicates the source of materials. All NMs

in this database come from eight companies or labs, e.g. Purest Colloids, Inc.,

Dr. Nianqiang Wu’s lab, etc.

• Structure Form: It describes the physical structure of a material: belt, particle

and tube.

• Crystal Structure: This is a binary factor representing whether the material

has crystal structure or not.

• Crystal Type: It gives the specific crystal form if a material has crystal struc-

ture. Four crystal types are involved in this data set: anatase, crystalline quartz,

rutile and zincite.

• Diameter: The median diameter of the individual material either measured or

stated by manufacturer’s specification. It ranges over [7, 300] nm.

• Length: The median length of the individual material either measured or stated

by manufacturer’s specification. It ranges over [0.13, 20] µm. The values of this

factor are missing for half of the observations in data set.

• Aerodynamic Diameter GDS and Median Aerodynamic Diameter: The

description of particle size. Only 4 out of 25 studies reported the values of them

as {1.84, 1.94, 1.71, 2.6} for aerodynamic diameter GDS and {1.62, 1.8, 1.44, 1.44}

for median aerodynamic diameter in the unit of µm.

• Surface Area: The specific surface area of materials measured by the BET gas

adsorption method in the range of [5.1, 322] m2/g. Almost 26% of the observations

of this factor are missing.
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• Zeta Potential: It describes the degree of repulsion b/w surface charge of ma-

terials. Half of the observations in the database have zeta potential values which

ranges over [−39.5,−9.35] mV .

• Density: It is a physical property of material. This factor was not reported

quantitatively. Only 5 out of 25 studies provided density of materials.

• Contaminants: This factor indicates whether a material contains impurity and

the corresponding type of impurities. Among all the 25 studies, only one used the

ZnO with impurity of Fe.

• Modification Type: This factor describes what modification was done for ma-

terials. There are three types of modification reported in 5 studies: purified,

functionalized and coated.

Animal-Related Factors:

• Species: This factor indicates the species of rodent animals used in the studies:

rat and mouse.

• Gender: The sex of animals: female and male.

• Strain: This factor indicates the specific strains of animals which includes

Sprague-Dawley, F344, C57BL/6N, C57BL/6J, and C57BL/6-Apoetm1 across

the studies.

Exposure Condition Factors:

• Dose Metric: A normalized deposited dose was used as the dose metric. In

order to account for the differences in animal size, the deposited dose mass was

normalized by the wet lung weight of the species. The dose metric ranges over

[0, 2677.78] in the unit of µg/g.
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• Post-Exposure Duration: The number of days between the final exposure

to NMs and the measurement of the toxicity status of the animal subject, also

referred to as recovery period. It is within the range of [0, 364] days.

• Exposure Route: The mode of exposure utilized in studies: inhalation (Inh),

pharyngeal aspiration (PA) and instillation (IT).

• Exposure Days: The time period in days between the first day of exposure and

the last day of exposure by the animal subject to NMs.

Herein, the NIOSH/CIIT/ENPRA database has 1899 observations in rows, a total of

21 input variables and one dependent variable in columns.
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Chapter 3

Variable Selection

Variable selection was performed first to identify, among the 21 input variables, the

most important ones (e.g., diameter, zeta potential, etc.) that have a significant impact on

an NM’s toxicity.

3.1 Literature Review

In this section, a brief overview of general variable selection methods is given, followed by

discussions regarding suitable methods for nanotoxicology data in particular.

Among the numerous variable selection methods, the All Subsets Models (ASM)

method is one of the most simple and straight-forward ones [39]. It consists in the generation

of models including all the possible combinations of the entire variable candidates, from size

1 to p, with p being the total number of variables. The drawbacks of this method are

apparent. First, this method may well be infeasible for cases with a large number of variable

candidates due to the extremely heavy computational burden: the number of combination

subsets is 2p − 1. Second, this method is dependent on selection criteria such as SSE, R2,

Mallows’ Cp and AIC. Different criteria may result in different selections, causing confusion

and extra work.

StepWise methods (SW) are also commonly known and widely used, which employ

two different schemes: forward selection and backward elimination [40, 41]. The forward

selection starts with a model with no variable and proceeds by adding one variable at a time

until the stop criterion is met. Backward elimination proceeds in the opposite direction: It
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starts from a model including all the p variables and eliminates variables step by step. The

main problem of SW lies in that it is a greedy algorithm, making locally optimal choices at

each step while may well lead to suboptimal results in the end. It is also computationally

expensive for large-p cases due to the iterations involved [42].

Least squares regression shrinkage is a variable selection method which is more com-

putationally intensive [43]. It includes a number of efficient algorithms: LASSO, Ridge

regression and Elastic Net. These methods are the constrained versions of ordinary least

squares, each of which penalizes the l1 norm of weights in different ways. LASSO minimizes

residual sum of squares subject to the sum of the absolute values of the coefficients being

less than a constant [44, 45]. The additional constraint of ridge regression is regarding the

sum of the squared values of the coefficients [46, 47]. Elastic Net combines the penalty terms

of LASSO and ridge regression [48, 49]. Due to such constraints, it tends to force (or shrink)

some coefficients to be exactly zero and hence realizes variable selection. The shortcoming

of these methods is that the degree of sparsity in the solution (shrinkage level) is dependent

on the tuning parameter λ [42, 44, 50]. The higher λ is, the more coefficients are shrunk to

0.

As noted earlier, the NIOSH/CIIT/ENPRA data have substantial missing values,

and the responses are subject to heterogeneous errors. The variable selection methods above

are not ready to be applied on this dataset. First, these methods are not able to cope with

missing values present in the input variables. Second, these regression-based methods reply

on the assumption of homogeneous errors and don’t work well with the drastic heterogeneity

in the nanotoxicology database.

Considering the features of the NIOSH/CIIT/ENPRA database, regression tree (RT)

has been identified as a feasible method of variable selection. RT successively partitions the

whole data set into binary groups corresponding to subregions of the input space, and within

each subregion the homogeneity assumption approximately holds. The binary search scheme

11



Table 3.1: List of the 10 Predictor Variables

Category Selected Variable Units Variable Type

Exposure
Condition

Dose Metric µg/g Quantitative

Post-Exposure Dura-
tion

day Quantitative

Exposure Route instillation, inhala-
tion, aspiration

Qualitative

Animal-
related

Gender female, male Qualitative

Material-
related

Diameter nm Quantitative

Length um Quantitative

Zeta Potential mV Quantitative

Surface Area m2/g Quantitative

Material Category carbon, metal, metal
oxide

Qualitative

Structure Form belt,particle,tube Qualitative

of RT allows it to accommodate dataset with missing values while utilizing all the available

data.

3.2 Results of Variable Selection

Applying RT to the NIOSH/CIIT/ENPRA database, 10 out of 21 independent variables

are chosen as important and thus used to build the prediction model. These 10 predictors

include six quantitative and four qualitative variables (Table 3.1 ).

3.3 Discussion

From table 3.1, the selected predictors consist of 3 exposure-condition variables, 1 animal-

related variable, and 6 material-related variables. These factors have also been reported

12



in the nanotoxicology literature to have impacts on animals’ bioactivity responses to NM

exposure.

Dose level and post-exposure duration are long known to affect NM’s toxicity. The

limits of silver nanoparticles used for medicinal purposes were suggested in Tiwari et al.

[51] by exploring the effect of various doses of silver nanoparticles in rats. Pauluhn et al.

[52] provided strong evidence that pulmonary toxicity was dependent on the volume-based

cumulative lung dose of NMs. Particle volume dose was used to predict the OELs (occu-

pational exposure levels) of low-toxicity isometric biopersistent particles [53]. Schmid et al.

[54] showed that surface area dose was the best predictor of acute pulmonary inflammation

in mice and rates exposed to various types of NMs by instillation. Post-exposure duration

provides information on the persistence of pulmonary inflammation after the end of exposure

for long-term effects of the material [55]. Exposure route was shown to influence the pul-

monary inflammatory response, with statistically significant increase in BALF neutrophils

after TiO2 instillation compared to TiO2 inhalation which resulted in a modest increase in

BALF neutrophils[56].

Different in-vivo toxicity profiles were reported in many papers. A gender-related

difference in the accumulation of silver nanoparticles was noted in the kidneys of rats, with

a twofold higher concentration in the female kidneys than that in the male kidneys after

inhalation exposure [57, 58]. Gender-related differences were also reported for mice exposed

to silver nanoparticles in blood and distribution in lungs and kidneys [59].

As selected material-related variables, diameter, length and surface area play a sig-

nificant role in the toxicity behavior of NMs. Particle sizes and surface areas of NMs were

reported to be influential in dictating their toxicity [60, 61, 62, 63]. Researchers also showed

a significant correlation between zeta potential and pulmonary inflammation [64]. The im-

pacts of material category and structure form have been studied as well. Porter et al. [65]

investigated the effect of structure form on lung toxicity in rodents by three shapes of tita-

nium dioxide NMs. It was found that the severity of pulmonary response for particle type

13



of NM is less than that of belt type. A comparison between metal oxide nanoparticles and

carbon nanotubes was made in Karlsson et al. [66], and the toxicity effects of these two

types of NMs were different. In the study of Studer et al. [67], two forms of copper (copper

oxide and carbon-coated copper) showed distinctly different responses, with copper oxide

being more toxic compared to copper.

3.4 Simulation Model

The NIOSH/CIIT/ENPRA database includes a large amount of data collected from 25 in-

vivo studies for 1899 rodent animals. However, these data points are far from well designed

to provide a fair coverage of the 10-dimensional space spanned by the 10 identified impor-

tant predictors. Thus, the database is not adequate to quantify the dependence of toxicity

responses upon the 10 predictors, much less to serve as a source for both estimation (es-

timating the relationship of toxicity vs. the 10 predictors) and validation (validating the

prediction capability of the estimation model by using a different dataset) data.

Due to the inadequacy of the NIOSH/CIIT/ENPRA database, we developed a simula-

tion model to demonstrate and assess the statistical framework and methods. The simulation

model was derived from the NIOSH/CIIT/ENPRA database, and designed to generate data

that have the major features of a biological dataset such as error heterogeneity. In compar-

ison to real experiments, simulation-based experiments render the following advantages in

illustrating statistical methods. First, simulation experiments can be designed by a statisti-

cian and carried out on a computer. As will be seen in Chapter 4, an efficient design in the

10-dimensional input space is critical to achieving a quality model of the target relationship.

Second, a simulation model provides the true benchmark to evaluate the estimated model

at any point in the input space.

The simulation model consists of a number of neural network (NN) models and

normally-distributed random errors with heterogeneous variances. The NN models are fit-

ted from the NIOSH/CIIT/ENPRA data representing the input-output relationships, after
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missing values are filled in by the tree-based imputation method [68]. There are three types

of approaches to handle missing values in the literature: deletion, disregarding and impu-

tation. When the missing percentage is more than 5% of the total number of observations,

which is the case with the NIOSH/CIIT/ENPRA data, deletion is not recommended. Dis-

regarding means using the modeling methods which can be applied with the presence of

missing values [68, 69, 70], and the resulting models from these methods may well provide

the same response predication for a wide range of inputs. Imputation seeks to fully utilize

the available information in the data and fill in the missing values.

It is worth noting that a setting of 4 qualitative variables corresponds to a combination

category. For each category, there is a seven-dimensional response surface which is modeled

by neural network and heterogeneous variance errors are introduced based on the features

of existing nanotoxicology data.
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Chapter 4

Design of Experiments

4.1 Literature Review

Currently, the adopted designs in nanotoxicology studies are typically generated by experi-

menters based on their empirical experiences [71, 72]. Since most of the studies only focus

on dose-response or dose-time-response relationships [73, 74, 72, 75], the traditional designs

usually involve equally-spaced levels in dose and/or time range for each NMs of interest. If

such designs are applied to the 10-dimensional input space, it will lead to a tremendously

large number of design points, which are not affordable with limited resources.

How to allocate limited samples to a high-dimensional input space, with the target

response surfaces being complex and nonlinear? Sequential experimental design procedures

involving multiple (greater than or equal 2) stages of experimentation are usually employed

to enable a learning process [76, 77]. In the initial stage, the input space is well defined with

each input factor having its specified ranges or categories, but no information is available

regarding the target response surfaces. To achieve a fair coverage of the input space for

initial exploration, a model-independent design [78] such as a fractional factorial design [79]

or space-filling design [80, 81] is usually adopted here. On the initial data, features of the

target response surfaces (e.g., surface nonlinearity and variance heterogeneity) are explored,

and the information obtained is used to guide the follow-up stage of experimentation. In

a follow-up stage, the design of additional samples are determined aiming at optimizing

the quality of the resulting model fitted from all the data collected so far plus the samples

to be allocated by this stage. A model-based design [82] is typically adopted for design
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augmentation factoring into account the particular features of target response surfaces. A

sequential design is terminated once the desired model quality has been achieved or the

limited budget has been exhausted. In the context of biological experimentation, a limited

budget (sample size) is imposed and a two-stage procedure is adopted.

4.2 Two-Stage Optimum Design of Experiments

The two-stage procedure developed by [78] was adopted to perform the design of experiments

in the 10-dimensional input space for the modeling of the target response surfaces quantifying

the dependence of the PMN toxicity response upon the 10 predictors.

In Table 4.1, the ranges for each of the 6 quantitative factors and levels involved in

the initial design are given.

4.2.1 Initial Design

Two types of designs are commonly used for initial exploration: space-filling design and

fractional factorial design. In this case, there are both quantitative and qualitative factors.

To implement a factorial design, certain levels need to be selected for the quantitative

factors. As shown in Table 4.1, 3 discrete levels were selected for each quantitative factor:

lowest, middle, and highest values of the specified range, leading to one factor (Gender)

with 2 levels, and nine factors with 3 levels. A full factorial design requires the complete

combinations of all the factor levels, that is, 2×39 = 39366 distinct design points to be sam-

pled, which is unrealistically large. Thus, a mixed fractional factorial design was employed

here: d1 = 2 × 39−4 = 486 design points were generated to provide a good coverage in the

10-dimensional space.

If the initial budget only allows d1 < 486 design points, then a space-filling design

can be considered. In the subspace of the 4 qualitative factors, a fractional factorial design

such as 2 × 33−1 = 18 can be first generated. Then, across the 18 slices (categories formed

by the 4 qualitative factors), the sliced Latin hypercube design [83] can be performed to
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Table 4.1: Ranges of Predictors and Levels Involved

Predictor
Variables

Variable Type Feasible Range Levels in Initial De-
sign

Levels for Check
Points

Dose Met-
ric

Quantitative [0, 2677.78] 0,1338.89, 2677.78 669.445, 2008.34

Post-
Exposure
Duration

Quantitative [0, 364] 0, 182, 364 91, 273

Exposure
Route

Qualitative Inh, IT, PA NA NA

Gender Qualitative Male, Female NA NA

Diameter Quantitative [7, 300] 7, 154, 300 80.25, 226.75

Length Quantitative [0.13, 20] 0.13, 10, 20 5, 15

Surface
Area

Quantitative [5.1, 322] 5.1, 163, 322 84, 243

Zeta Po-
tential

Quantitative [-39.5, -9.35] -39.5, -24.35, -9.35 -32, -17

Material
Category

Qualitative Carbon, Metal,
Metal Oxide

NA NA

Structure
Form

Qualitative Belt, Particle,
Tube

NA NA
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generate d1/18 points in each slice, leading to an initial design of d1 distinct points in total.

The resulting sliced design provides an even coverage of each slice, and all the design points

have the maximum stratification in any one-dimensional projection when collapsed across

the slices.

Once the locations of the initial design points have been determined, then 5 replica-

tions (which is the typical practice in biological experiments) were assigned to each point.

In the fractional factorial design adopted for this work, a total of 486 × 5 = 2430 samples

were used.

4.2.2 Second-Stage Design

Following the second-stage design method in Pei et al. [78], information was derived from

the initial-stage data and used to find the augmented design by solving an IMSE (integrated

mean squared error) minimization problem. The additional design points were restricted

to the 18 categories formed by the 4 qualitative factors from the initial stage, and the

optimization search was performed over the 18 slices.

In this work, d2 = 162 additional design points (810 = 162× 5 samples) were added

in the second stage. In both stages, a total of d = d1 + d2 = 648 distinct design points were

included with 3240 samples. Considering the fact that the input space is 10-dimensional,

this experimental budget is reasonable and low, and can be lowered if space-filling designs

are used in the initial stage. Recall that with only 3 levels selected for each of the six

quantitative factors, the naive full factorial design calls for 2 × 39 = 39366 design points

(factor combinations) and 39366 × 5 samples, which serves as a conservative benchmark

budget under the current design practice in nanotoxicology .

4.2.3 Estimation and Validation Data

The estimation data (ED), to which the prediction model was fitted, were generated by

simulation experiments at the d = 648 design points from the two-stage procedure. The ED
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are spread across the 18 categories out of the total 2× 33 = 54 combination settings of the

4 qualitative factors.

To evaluate the fitted model, a validation data (VD) set was generated separately at

2304 check points. These check points are allocated in the remaining 36 = 54−18 categories

of the qualitative factor settings, and constitute a full combination of the quantitative factor

levels in each category. The levels selected for each quantitative factor in check points are

given in the last column of Table 4.1.
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Chapter 5

Estimation and Inference of the Prediction Model

In this chapter, the prediction model, which enables the quantitative assessments

of a new NM’s bioactivity behavior without performing additional biological experiments,

is estimated by a statistical modeling method referred to as SKQ (stochastic kriging with

qualitative factors) [84].

SKQ is a statistical modeling method allowing its predictors to be high-dimensional

quantitative and qualitative factors [84]. SKQ is flexible and general. In particular, it

employs an adaptive mechanism (Gaussian correlation) to capture the inherent similarity

(more or less or none) across categories, which could be different study types, different

material types/shapes, etc. By synergistically modeling the data across different categories,

SKQ pools information together and results in fitted models of improved quality.

Compared to other powerful statistical models such as support vector machine [85,

86, 87] and artificial neural network [88, 89, 90], the main advantage of SKQ lies in its ability

to capture heterogeneous errors, which is a known feature of biological data, and enable valid

statistical inference: SKQ not only provides a fitted bioactivity profile, but also quantifies

the uncertainty of the estimated profile.

The comparison of SKQ and its closest parametric counterpart, mixed effects mod-

eling (MEM) [91, 92, 93], was performed in Wang et al. [85] and briefly summarized here.

As a parametric regression method, MEM is subject to restrictive assumptions such as a

prior-assumed functional form (e.g., logistic function) for the target relationships. More-

over, MEM builds its information-pooling ability upon the assumed model commonality: A

21



common functional form has to be used for bioactivity profiles across all the categories, and

such a commonality assumption is also required for the error variance structure. These as-

sumptions can be easily violated in biological data. Through an empirical case, Wang et al.

shows that SKQ has superior performance over MEM even when all the MEM assumptions

are satisfied.

In the literature of nanotoxicology, the majority of existing work for QNAR devel-

opment are restricted to one type of NMs. For instance, Mu et al. [94, 95, 96] developed

prediction models based on the data for metal oxide nanoparticles alone, and their models

cannot be used for prediction of other types of NMs (e.g., metal or carbon NMs). In ad-

dition, the predictors in a lot of papers [97, 98, 35] involve quantitative factors only, while

qualitative factors such as gender are disregarded. The 10 predictors identified from the

NIOSH/CIIT/ENPRA database, which includes 25 individual studies, provide a broader

coverage of material properties across different types of NMs and involve both quantitative

and qualitative factors.

5.1 Model Estimation and Inference

Following the design in Chapter 4, the locations of a total of d = 648 distinct design points

denoted as {wi; i = 1, 2, . . . d} were determined in the 10-dimensional input space. The

estimation data (ED) were generated via simulation experiments (Section 3.4) at these design

points with 5 replications at each point. Denote the estimation data as {wi, yj(wi)} for

i = 1, 2, . . . , d and j = 1, 2, . . . , 5 and the sample variances obtained from the 5 replications

at design points as V̂ar[ε(wi))].

On the ED, the SKQ fitting procedure [84] was applied, and the resulting prediction

model allows for the estimation and inference of the expected toxicity response at an arbitrary

point/setting w of the input space. That is, the estimated expected response Ŷ(·) and the

estimated variance V̂ar[ε(wi))] are both available analytically.
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5.2 Model Validation

As explained in Section 4.2.3, a separate validation data (VD) set was generated to evaluate

the goodness of the prediction model fitted from the ED.

There are 4 qualitative predictors leading to a total of 54 combination categories,

which are listed in Table 5.1. The 648 design points in the ED spread across 18 categories,

as shown in the first column of the table. The 2304 check points included in the VD are

allocated in the remaining 36 categories. The quantitative levels of the check points also

differ from those of the design points, as pointed out previously in Section 4.2.3.

At each check point, the deviation between the estimated expected response and its

true value (available from the simulation model) is calculated. The deviations at check points

included in each one of the 36 validation categories are plotted in one histogram, leading

to 36 histograms in Figure 5.1-5.2. From these deviation histograms, it can be seen that

the SKQ prediction model is able to provide accurate estimates for the toxicity responses

throughout the input space. Note that the histograms in Figure 5.1-5.2 are obtained from

one macro-replication: Generate an ED following the design procedure, fit SKQ to the ED

and evaluate the fitted SKQ at all the check points. One hundred macro-replications have

been performed in our work, and each one leads to similar histograms in terms of the ranges

of deviations.

This case is built on the simulation model (Section 3.4) whose output data mimic

those from real biological experiments. As explained earlier, simulation is typically em-

ployed for the illustration and evaluation of statistical methods [99], because the design and

implementation of simulation experiments can be easily done and the true benchmarks are

always available to evaluate the fitted model.

This case demonstrates the critical role of experimental design and SKQ’s prediction

capability in the development of QNAR.
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Table 5.1: Combination Categories of Estimation and Validation Data.

Data Type
Combination The Setting of 4 Qualitative Variables

Category Gender Exposure Route Material Cate-
gory

Structure Form

Estimation Category1 female inhalation carbon belt

Validation Category2 female instillation carbon belt

Validation Category3 female aspiration carbon belt

Estimation Category4 male inhalation carbon belt

Validation Category5 male instillation carbon belt

Validation Category6 male aspiration carbon belt

Validation Category7 female inhalation metal belt

Validation Category8 female instillation metal belt

Estimation Category9 female aspiration metal belt

Validation Category10 male inhalation metal belt

Validation Category11 male instillation metal belt

Estimation Category12 male aspiration metal belt

Validation Category13 female inhalation metal oxide belt

Estimation Category14 female instillation metal oxide belt

Validation Category15 female aspiration metal oxide belt

Validation Category16 male inhalation metal oxide belt

Estimation Category17 male instillation metal oxide belt

Validation Category18 male aspiration metal oxide belt

Validation Category19 female inhalation carbon particle

Estimation Category20 female instillation carbon particle

Validation Category21 female aspiration carbon particle

Validation Category22 male inhalation carbon particle

Estimation Category23 male instillation carbon particle

Validation Category24 male aspiration carbon particle

Estimation Category25 female inhalation metal particle

Validation Category26 female instillation metal particle

Validation Category27 female aspiration metal particle

Estimation Category28 male inhalation metal particle

Validation Category29 male instillation metal particle

Validation Category30 male aspiration metal particle

Validation Category31 female inhalation metal oxide particle

Validation Category32 female instillation metal oxide particle

Estimation Category33 female aspiration metal oxide particle

Validation Category34 male inhalation metal oxide particle

Validation Category35 male instillation metal oxide particle

Estimation Category36 male aspiration metal oxide particle

Validation Category37 female inhalation carbon tube

Validation Category38 female instillation carbon tube

Estimation Category39 female aspiration carbon tube

Validation Category40 male inhalation carbon tube

Validation Category41 male instillation carbon tube

Estimation Category42 male aspiration carbon tube

Estimation Category43 female inhalation metal tube

Validation Category44 female instillation metal tube

Validation Category45 female aspiration metal tube

Validation Category46 male inhalation metal tube

Estimation Category47 male instillation metal tube

Validation Category48 male aspiration metal tube

Estimation Category49 female inhalation metal oxide tube

Validation Category50 female instillation metal oxide tube

Validation Category51 female aspiration metal oxide tube

Estimation Category52 male inhalation metal oxide tube

Validation Category53 male instillation metal oxide tube

Validation Category54 male aspiration metal oxide tube
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Experimental design plays a critical role in the quantification of high-dimensional relation-

ships such as the one investigated here. An efficient design allows for the development

of a high-quality prediction model with a reasonable amount of experimental effort. In

this case, 648 distinct design points are employed in the 10-dimensional input space

to provide a fair coverage of the space as well as to precisely capture the complex and

nonlinear response surfaces. (Please refer to Section 4.2 for the experiments/samples

required by a naive full-combination design.)

To a well-designed data set, SKQ is able to fit a high-quality prediction model. The 648

design points in the ED involve material-factor settings corresponding to the NMs

on which biological experiments have been performed. To the ED collected on these

old NMs, the prediction model is fitted. The 2304 check points in the VD involve

material-factor settings corresponding to new NMs that have not been investigated.

The prediction model is able to render accurate estimates for these new NMs’ expected

toxicity behaviors.
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Figure 5.1: Histograms of deviations for the first group of 18 categories in VD.
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Figure 5.2: Histograms of deviations for the second group of 18 categories in VD.
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Chapter 6

Shape Clustering

Clustering of NMs based on their potency is an important step in hazard assess-

ment [16]. With the SKQ prediction model developed in the previous chapter, a new NM’s

5-dimensional toxicity profile (the toxicity response vs. 4 non-material factors) can be es-

timated without performing additional experiments on this material. In this chapter, clus-

tering methods will be developed/adapted to group NMs based on their estimated toxicity

profiles along with the estimation uncertainty.

6.1 Literature Review

In the literature of nanotoxicology, the majority of clustering methods directly used material

properties [26, 100, 27] to group NMs. In these work, clustering was performed in the space

formed by one, two, or several material properties, with no effort to quantify how these

properties affect NMs’ bioactivity. Some researchers [38, 101, 102] sought to derive potency

information from exposure-response profiles for NM clustering. For instance, Drew et al.

[38] used BMD (benchmark dose) estimates as a measure of potency to group materials.

However, BMD is a single point on the 5-dimensional toxicity profile for a specified NM, and

can at best provide a snapshot of the material’s toxicity behavior. Thus, in this chapter,

shape clustering methods are adapted to cluster NMs by utilizing their complete toxicity

profiles while taking into account the profile estimation uncertainty.
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6.2 Statement of Shape Clustering Problem

For convenience of discussions, notations for shape clustering are provided as follows.

• n: the number of objects (or shapes) to be clustered.

• Oj: the jth object, with j = 1, 2, . . . , n.

• k: the number of clusters with k < n.

• {Ci; i = 1, 2, . . . , k}: the collection of k clusters formed from n objects.

• ni: the size of (number of objects included in) the ith cluster Ci with i = 1, 2, . . . , k.

• µi: the centroid of the ith cluster Ci.

• d(O,O′): the distance between the two objects O and O′.

Given the n objects {Oj; j = 1, 2, . . . , n} and the desired number of clusters k, shape

clustering groups the objects into k disjoint clusters C∗ = {C∗1 , C∗2 , . . . , C∗k} which seeks to

maximize the homogeneity within a cluster and/or the separation across clusters.

The optimization objective of shape clustering can be formulated in different ways

[103], and herein, three most commonly-used formulations are breifly reviewed.

• Objective I: Minimize within-cluster sum of squared distance [104, 105].

min
k∑
i=1

∑
O∈Ci

d(O,µi)
2 (6.1)

where µi is a centroid obtained from

µi = argmin
w

∑
O∈Ci

d(w,O)2 (6.2)

with w being a vector of the same dimension of an object.
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• Objective II: Minimize within-cluster variance [106].

min
k∑
i=1

2

ni
(
∑

Oa∈Ci

∑
b<a,Ob∈Ci

d(Oa,Ob)
2) (6.3)

• Objective III: Minimize within-cluster distances and maximize distances between clus-

ters [107].

min
∑

Oa∈Ci

∑
b<a,Ob∈Ci

d(Oa,Ob)
2 (6.4)

and

Max Min
Oa∈Ci,Ob∈Cj ,Ci 6=Cj

d(Oa,Ob)
2 (6.5)

In a shape clustering objective, the distance d(O,O′) can be defined by different

metrics as follows.

• Euclidean distance. Let X = (x1, x2, . . . , xp) and Y = (y1, y2, . . . , yp) be two points in

the p-dimensional Euclidean space. The Euclidean distance is defined as:

dE(X,Y) =

√√√√ p∑
i=1

(xi − yi)2. (6.6)

• Hausdorff distance[108]. Let X and Y be two non-empty subsets. We define their

Hausdorff distance dH(X,Y) by

dH(X,Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)} (6.7)

where sup represents the supremum and inf the infimum. The Hausdorff distance is

very sensitive to noise: an outlier can substantially affect the distance value.
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• Frechet Distance [108]. Let X and Y be two parameterized curves X(α(t)) and Y (β(t)).

Then, the Frechet distance is defined as the following:

dF (X, Y ) = inf
α,β

max
t∈[0,1]

{d(X(α(t)), Y (β(t)))} (6.8)

How to solve the optimization problem of clustering? The algorithms can be roughly

divided into two categories: optimal and heuristic methods. Examples of the optimal meth-

ods include Wu et al. [109], which developed a graph theoretic approach to solve the image

segmentation problem, and Gath et al. [110], which used maximum-likelihood estimation

to obtain the optimal solutions. Clustering heuristics mainly include K-means [111, 112],

hierarchical clustering [113] and density-based clustering methods [114].

6.3 Shape Clustering of Nanomaterials

In light of the fact that NMs’ toxicity profiles (objects) are estimated from the SKQ prediction

model and subject to uncertainty, we chose to adapt the following two algorithms for NM

clustering: K-shape clustering algorithm with uncertainty (KSCAU) [105], and density-based

clustering algorithm with uncertainty (DBCAU) [114]. These algorithms were adapted to

accommodate the estimation uncertainty of the prediction model.

6.3.1 K-Shape Clustering Algorithm with Uncertainty

KSCAU [105] is a heuristic clustering method, which solves the optimization problem (6.1)

through a series of refinement iterations. The KSCAU algorithm adapted for NM clustering

is given in Algorithm 1.

The inputs of KSCAU are listed and explained as follows.

• {Oj; j = 1, 2, . . . , n}: n objects to be clustered. In our case, each object is a response

vector representing the toxicity profile of an NM, which is estimated from the SKQ
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Algorithm 1: KSCAU

Input: (a) The n toxicity profiles estimated by the SKQ prediction model
{O1,O2,...,On}; (b) The preliminary number of clusters k; (c) The fitted

SKQ prediction model Ŷ(·) and the estimated variances at the design points

V̂ar[Ŷ(·)]; (d) The locations of design points {wi; i = 1, 2, . . . d} and the

sample variances at the design points V̂ar[ε(·)].
Output: {lj; j = 1, 2, . . . , n}: the cluster label of each object Oj, with

lj ∈ {1, 2, . . . , k}
.
Initial Step:
Randomly assign n profiles to k clusters and compute the initial k centroids by
Equation (6.2).

Iterative Refinement Procedure:
while !Stop do

for j = 1 to n do
Compute the expected distance from each object to the k centroids by
applying Algorithm 2 with Inputs (c) and (d) and the current cluster labels
of the objects.

Update the cluster label of each object as follows:

lj = argmin
i

(Expected Distance (Oj,µi)). (6.9)

end
for i = 1 to k do

Check if Ci is empty, and delete empty clusters to update k.
end
for i = 1 to k do

Based on the current cluster labels of each object, compute the k centroids
by Equation (6.2).

end

if L(Iteration) = L(Iteration−1) then
Stop = 1

end
Iteration = Iteration+ 1

end
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prediction model:

Oj = (Ŷj1, Ŷj2, . . . , Ŷjg).

A total of g points in the 5-dimensional profile (evenly-spaced across the 4 non-material

factors) for a NM selected to form its numerical object.

• k: the preliminary number of clusters. k can be set in a somewhat arbitrary manner

as long as it is less than n. The algorithm iterates to refine the value of k. k is

recommended to be set as a large number.

• The fitted SKQ prediction model, denoted as Ŷ(·) and the estimated variances of the

expected responses at the design points V̂ar[Ŷ(·)].

• The locations of design points in the estimation data {wi; i = 1, 2, . . . d} to which the

SKQ model was fit and the sample variances obtained from the 5 replications at design

points V̂ar[ε(·)].

These inputs will be passed onto Algorithm 2 to compute the expected distance from an

object to a centroid by bootstrapping resampling methods.

In the initial step, the n objects are randomly assigned to k clusters. Then, the cen-

troid of each cluster is computed by Equation (6.2). Once the initial centroids are obtained,

an iterative refinement procedure is performed with two steps involved in each iteration.

Step 1: For each object, apply the bootstrapping algorithm 2 to estimate its expected

distance to each of the k centroids, and update its cluster label by assigning it to the

closest centroid cluster. In contrast to the traditional distance metrics which are de-

terministic, the expected distance is a probabilistic measure of the object-to-centroid

distances subject to estimation uncertainty. Herein, the Euclidean distance metric (6.6)

is adopted. How to obtain the expected Euclidean distance between two estimated vec-

tors (one object and one centroid)? SKQ enables the analytical approximations for such

expectation estimates by providing analytical expressions for the mean, variance and

covariance estimates of the estimated responses Ŷ(·) (vector components). However,
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since the distance metric (6.6) is a nonlinear function of the two vectors, analytical

approximations may well fall short of accuracy compared to numerical methods, which

is adopted for the estimation of expected distances in this work. Algorithm 2 provides

the bootstrap resampling procedure for this purpose: For each resampled estimation

data set, a SKQ model is fitted, and provides a collection of estimated objects and cen-

troids leading to the estimates of object-to-centroid distances; Across the resampled

data sets, the distance expectation can be estimated based on the distances obtained

from each resampled data.

Step 2: After the cluster label of each object is updated, the clusters with no affiliation

will be deleted. Accordingly, the value of k is updated and new centroids are formed

based on the current cluster memberships.

These two steps are repeated until there is no change in cluster labels from the previous to

current iteration.

KSCAU is a shape clustering algorithm which accommodates uncertain objects. The

resulting number of clusters is obtained from the iterative refinement procedure, and does

not need to be specified in advance as traditional K-means algorithm. However, if the initial

value of k is set to be a very small number, it can not increase with iterations. In addition,

different initial partition of objects in the initial step may result in different clustering results.

6.3.2 Density-based Clustering Algorithm with Uncertainty

Density-based clustering algorithm with uncertainty (DBCAU) (Algorithm 3) is an adapted

density-based clustering algorithm. Clusters are considered as regions in which the objects

are dense. The key idea of DBCAU lies in identifying core objects and their reachable

neighbors by means of calculating the respective probabilities.

Some definitions of regarding DBCAU are provided below.

Definition 1 Radius r and threshold m:

r is a distance threshold and m the minimum number of objects contained in a cluster.
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Algorithm 2: Estimating the expected distance via bootstrapping

Input: (a) The cluster labels of the n objects; (b) The resample size B; (c) The

fitted SKQ prediction model Ŷ(·) and the estimated variances at the design

points V̂ar[Ŷ(·)]; (d) The locations of design points {wi; i = 1, 2, . . . , d} and

the sample variances at the design points V̂ar[ε(·)].
Output: The expected distances between objects and centroids.
for i = 1 to B do

(i) Resampling: At each design point wi (i = 1, 2, . . . , d), generate t random

errors ebj(wi) from the normal distribution N(0, V̂ar[Ŷ(wi)] + V̂ar[ε(wi)]), and
the resampled observations are represented as:
ybj(wi) = Ŷ(wi) + ebj(wi); j = 1, 2, ..., t.

(ii) To the resampling data {wi, y
b
j(wi)}, generated at the design points , fit the

SKQ model and denote the resulting model as Ŷ
b
(·).

(iii) Based on the fitted SKQ model Ŷ
b
(·), generate the toxicity profiles of the n

NMs denoted as {Ob
j; j = 1, 2, . . . , n};

(iV) Based on the cluster labels of the n objects, compute the centroid µb
i

(i = 1, 2, . . . , k) for each cluster of estimated profiles;
(V) For i = 1, 2, . . . , k and j = 1, 2, . . . , n, calculate the Euclidean distance
between Ob

j and µb
i denoted as dbE(Ob

j,µ
b
i).

end
The expected distance between Oj and µi is obtained by the following equation:

dE(Oj,µi) =

∑B
b=1 d

b
E(Ob

j,µ
b
i)

B
; i = 1, 2, . . . , k; j = 1, 2, . . . , n (6.10)
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Definition 2 Core object:

At a given r and m, O is called a core object if the number of its neighbors is not less

than m. Object O′ is called the neighbor of O if the distance between O′ and O is not

greater than r.

Definition 3 Core object probability:

Since DBCAU considers the uncertainty of objects, the core object definition needs to

be enhanced by involving the likelihood that O is a core object. Let D be the set of

all objects. Then, the core object probability of an object O is defined as:

P core(O) =
∑

A⊆D,|A|≥m

∏
O′∈A

Pd(O
′,O)(r)

∏
O′′∈D\A

(1− Pd(O′′,O)(r)) (6.11)

where

Pd(O
′,O)(r) = P (d(O′,O) ≤ r) (6.12)

Definition 4 Directly density-reachable

An object O′ is directly density-reachable from an object O w.r.t r and m if two

requirements are met: (i) O is a core object; (ii) O′ is the neighborhood of O.

Definition 5 Reachability Probability

Similarly, definition 4 needs to be adapted to the probability of object O′ to be directly

density-reachable to O. The reachability probability of O′ is defined as follows:

P reach(O′,O) = P core(O) · Pd(O′,O)(r) (6.13)

The inputs of DBCAU are as follows.

• r: The radius which is a distance threshold;

• m: A threshold representing the minimum number of objects contained in one cluster.
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Algorithm 3: DBCAU

Input: (a) The radius r; (b)The threshold m; (c) The fitted SKQ prediction model

Ŷ(·) and the estimated variances at the design points V̂ar[Ŷ(·)]; (d) The
locations of design points {wi; i = 1, 2, . . . d} and the sample variances at

the design points V̂ar[ε(·)].
Output: {lj; j = 1, 2, . . . , n}, the cluster labels of each object Oj and

lj ∈ {1, 2, . . . , k}
for j = 1 to n do

Compute the core probability of each object by Equation (6.11) and Algorithm 4.
if The probabality is greater than 0.5 then

I(j) = 1
else

I(j) = 0
end

end
for j = 1 to n do

Compute reachability probabilities of Oj to all core objects. Get the cluster
label based on the maximum reacheability probability

lj = argmax
i
{P reach(Oj,Oi) · I(i)} (6.14)

end
for i = 1 to sum(I) do

Merge clusters to refine lj
end
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• The fitted SKQ prediction model, denoted as Ŷ(·) and the estimated variances of the

expected responses at the design points V̂ar[Ŷ(·)].

• The locations of design points in the estimation data {wi; i = 1, 2, . . . d} to which the

SKQ model was fit and the sample variances obtained from the 5 replications at design

points V̂ar[ε(·)].

The DBCAU is based on the fact that a cluster is equivalent to the set of objects

which are reachable from an arbitrary core object. The retrieval of these reachable objects

is performed by a scheme including three steps.

Step 1: Check the r-neighborhood of every object in the set and compute the probabilities

of each object to be a core by Equation (6.11). If the core object probability is greater

than 0.5, then this object is identified as a core object. In our case, Euclidean distance

is used as the distance metric. How to obtain the value of Pd(O,O
′)(r) involved in

Equation (6.11)? Due to the same reasons mentioned in Section 6.3.1, a numeric

method was adopted to estimate the value of Pd(O,O
′)(r) (Algorithm 4). Algorithm

4 used the bootstrap resampling procedure to generate a certain number of resampled

estimation data sets, to which the SKQ models were fitted. Thus, a collection of

estimated profiles of the desired two NMs O and O′ was produced, leading to the

estimates of distances between O and O′. Then the value of Pd(O,O
′)(r) is estimated

by the ratio of the number of distances not greater than r to the total number of

distances.

Step 2: Go through every object again. For a certain object, compute the reachability

probabilities of this object to all identified core objects; Assign it to the cluster of that

core object with the maximum reachability probability.

Step 3: Go through every core object and check their neighbors. For one core object, if

there are any (or only one) core objects contained in its neighborhood, then merge the

affiliation of those (or one) core objects into this neighborhood as one cluster.
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DBCAU inherits the advantage of density-based clustering algorithm in that the

resulting number of clusters does not need to be predetermined, and that it is robust to

outliers. However, the clustering results are sensitive to the setting of radius r and threshold

m. A big r and small m tend to produce less clusters, and a small r and large m may result

in more clusters.

Algorithm 4: Pd(O,O
′)(r) Calculation

Input: (a) The resample size B; (b) The radius r; (c) The fitted SKQ prediction

model Ŷ(·) and the estimated variances at the design points V̂ar[Ŷ(·)]; (d)
The locations of design points {wi; i = 1, 2, . . . d} and the sample variances

at the design points V̂ar[ε(·)].
Output: Pd(O,O

′)(r)
for i = 1 to B do

(i) Resampling: At each design point wi (i = 1, 2, . . . , d), generate t random

errors ebj(wi) from the normal distribution N(0, V̂ar[Ŷ(wi)] + V̂ar[ε(wi)]), and
the resampled observations are represented as:
ybj(wi) = Ŷ(·) + ebj(wi); j = 1, 2, ..., t.

(ii) To the resampling data set {wi, y
b
j(wi)}, generated at the design points , fit

the SKQ model and denote the resulting model as Ŷ
b
(·).

(iii) Based on the SKQ model Ŷ
b
(·), generate the estimated profiles of the

desired two NMs and denote the obtained profiles as Ob and O′b.
(iV) Calculate the Euclidean distance of these two objects denoted as
dbE(Ob,O′b).

end
Idx=0;
for i = 1 to B do

if dbE(Ob,O′b) is not greater than r then
Idx=Idx+1

end

end
Compute Pd(O,O

′)(r) by the following equation:

Pd(O,O
′)(r) =

Idx

B
(6.15)
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Figure 6.1: The plot of 17 fitted dose-response curves

6.3.3 Empirical Studies

Empirical case studies were designed and performed to illustrate the two clustering algo-

rithms.

Case 1: A simple case is developed whose clustering results can be displayed in 2-D graphs,

with objects being 17 dose-response curves.

Case 2: A large case is developed with objects being 81 five-dimensional profiles.

Case 1: Clustering 17 dose-response curves

Based on the estimated SKQ prediction model, 17 dose-response curves are extracted to be

the target objects. Figure 6.1 shows the plot of 17 fitted dose-response curves.
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Figure 6.2: KSCAU clustering results of Case 1

Clustering Results Figure 6.2 and 6.3 displayed the clustering results by KSCAU and

DBCAU separately. In Figure 6.2, three clusters colored as blue, pink and yellow are gen-

erated among the 17 profiles. In Figure 6.3, 17 dose-response profiles are divided into 4

clusters colored as light blue, red, yellow and pink.

Although the clustering results from two algorithms are a little bit different, they are

both reasonable as can be seen from the figures. DBCAU results are sensitive to the two

pre-specified parameters: r and m. With suitable values of r and m, the clustering result of

DBCAU may be the same as that of KSCAU. For KSCAU, the resulting number of clusters k

is generated by the iterative procedure. But the initial value of k is better set as a relatively

large number smaller than n, since the value of k cannot be increased with iterations.

41



0 20 40 60 80 100 120 140 160 180 200

Dose

0

10

20

30

40

50

60

70

80

R
es

po
ns

e

Figure 6.3: DBCAU clustering results of Case 1 with r = 1.5 and m = 2

Case 2: Clustering 81 five-dimensional profiles

Based on the estimated SKQ prediction model, five-dimensional toxicity profiles of 81 NMs

are derived to be clustered.

Generating the 81 five-dimensional Profiles There are six material-related variables

in the prediction model obtained in Chapter 5: diameter, length, surface area, zeta potential,

material category and structure form. Since diameter, length and surface area determine the

size of a NM together, the values of these three variables are bundling. That is, taking the

maximum, middle and minimum values of theses three variables simultaneously to represent

the large, median and small size of NMs. For zeta potential, three discrete levels are taken

as well. Since there are three levels for the qualitative variables “material category” and

“structure form”, 81 different kinds of NMs characterized by the six material-related variables
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are defined. On the basis of the prediction model , 81 five-dimensional toxicity profiles of

NMs were estimated.

Clustering Results Table 6.1 displays the resulting clusters by two methods and the

values of material-related factors of the corresponding kinds of NMs. Similar to the situation

occurring in the first example, the clustering results of two algorithms differ with each other

a little bit. DBCAU produced 8 clusters while KSCAU produced 7 clusters. As I mentioned

before, the difference is due to the determination of values of the two parameters involved

in DBCAU.

The clustering results are consistent with the general knowledge in the nanotoxicology

literature. NMs of belt or tube shape are generally more toxic than those shaped in particles.

NMs of small size are generally more toxic than those of large size.
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Table 6.1: Clustering Results of the 81 NMs

NM KSCAU
cluster
label

DBCAU
cluster
label

Material Category Structure
Form

Diameter Length Surface
Area

Zeta Potential

NM1 1 1 Metal Tube 300 20 322 -9.35

NM2 1 1 Metal Oxide Tube 300 20 322 -9.35

NM3 1 1 Carbon Tube 300 20 322 -9.35

NM10 1 1 Metal Tube 154 10 163 -9.35

NM11 1 1 Metal Oxide Tube 154 10 163 -9.35

NM12 1 1 Carbon Tube 154 10 163 -9.35

NM19 1 1 Metal Tube 7 0.13 5.1 -9.35

NM20 1 1 Metal Oxide Tube 7 0.13 5.1 -9.35

NM21 1 1 Carbon Tube 7 0.13 5.1 -9.35

NM4 2 2 Metal Belt 300 20 322 -9.35

NM5 2 2 Metal Oxide Belt 300 20 322 -9.35

NM6 2 2 Carbon Belt 300 20 322 -9.35

NM13 2 2 Metal Belt 154 10 163 -9.35

NM14 2 2 Metal Oxide Belt 154 10 163 -9.35

NM15 2 2 Carbon Belt 154 10 163 -9.35

NM22 2 2 Metal Belt 7 0.13 5.1 -9.35

NM23 2 2 Metal Oxide Belt 7 0.13 5.1 -9.35

NM24 2 2 Carbon Belt 7 0.13 5.1 -9.35

NM7 3 3 Metal Tube 300 20 322 -9.35

NM8 3 3 Metal Oxide Tube 300 20 322 -9.35

NM9 3 3 Carbon Tube 300 20 322 -9.35

NM16 3 3 Metal Tube 154 10 163 -9.35

NM17 3 3 Metal Oxide Tube 154 10 163 -9.35

NM18 3 3 Carbon Tube 154 10 163 -9.35

NM61 3 8 Metal Tube 300 20 322 -39.5

NM62 3 8 Metal Oxide Tube 300 20 322 -39.5

NM63 3 8 Carbon Tube 300 20 322 -39.5

NM70 3 8 Metal Tube 154 10 163 -39.5

NM71 3 8 Metal Oxide Tube 154 10 163 -39.5

NM72 3 8 Carbon Tube 154 10 163 -39.5

NM79 3 8 Metal Tube 7 0.13 5.1 -39.5

NM80 3 8 Metal Oxide Tube 7 0.13 5.1 -39.5

NM81 3 8 Carbon Tube 7 0.13 5.1 -39.5

NM25 4 4 Metal Tube 7 0.13 5.1 -9.35

NM26 4 4 Metal Oxide Tube 7 0.13 5.1 -9.35

NM27 4 4 Carbon Tube 7 0.13 5.1 -9.35

NM28 5 5 Metal Particle 300 20 322 -24.35

NM29 5 5 Metal Oxide Particle 300 20 322 -24.35

NM30 5 5 Carbon Particle 300 20 322 -24.35

NM34 5 5 Metal Particle 300 20 322 -24.35

NM35 5 5 Metal Oxide Particle 300 20 322 -24.35

NM36 5 5 Carbon Particle 300 20 322 -24.35

NM37 5 5 Metal Particle 154 10 163 -24.35

NM38 5 5 Metal Oxide Particle 154 10 163 -24.35

NM39 5 5 Carbon Particle 154 10 163 -24.35

NM43 5 5 Metal Particle 154 10 163 -24.35

NM44 5 5 Metal Oxide Particle 154 10 163 -24.35

NM45 5 5 Carbon Particle 154 10 163 -24.35

NM46 5 5 Metal Particle 7 0.13 5.1 -24.35

NM47 5 5 Metal Oxide Particle 7 0.13 5.1 -24.35

NM48 5 5 Carbon Particle 7 0.13 5.1 -24.35

NM52 5 5 Metal Particle 7 0.13 5.1 -24.35

NM53 5 5 Metal Oxide Particle 7 0.13 5.1 -24.35

NM54 5 5 Carbon Particle 7 0.13 5.1 -24.35

NM55 5 5 Metal Particle 300 20 322 -39.5

NM56 5 5 Metal Oxide Particle 300 20 322 -39.5

NM57 5 5 Carbon Particle 300 20 322 -39.5

NM64 5 5 Metal Particle 154 10 163 -39.5

NM65 5 5 Metal Oxide Particle 154 10 163 -39.5

NM66 5 5 Carbon Particle 154 10 163 -39.5

NM73 5 5 Metal Particle 7 0.13 5.1 -39.5

NM74 5 5 Metal Oxide Particle 7 0.13 5.1 -39.5

NM75 5 5 Carbon Particle 7 0.13 5.1 -39.5

NM31 6 6 Metal Belt 300 20 322 -24.35
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Table 6.2: Continued

NM KSCAU DBCAU Material Category Structure
Form

Diameter Length Surface
Area

Zeta Potential

NM32 6 6 Metal Oxide Belt 300 20 322 -24.35

NM33 6 6 Carbon Belt 300 20 322 -24.35

NM40 6 6 Metal Belt 154 10 163 -24.35

NM41 6 6 Metal Oxide Belt 154 10 163 -24.35

NM42 6 6 Carbon Belt 154 10 163 -24.35

NM49 6 6 Metal Belt 7 0.13 5.1 -24.35

NM50 6 6 Metal Oxide Belt 7 0.13 5.1 -24.35

NM51 6 6 Carbon Belt 7 0.13 5.1 -24.35

NM58 7 7 Metal Belt 300 20 322 -39.5

NM59 7 7 Metal Oxide Belt 300 20 322 -39.5

NM60 7 7 Carbon Belt 300 20 322 -39.5

NM67 7 7 Metal Belt 154 10 163 -39.5

NM68 7 7 Metal Oxide Belt 154 10 163 -39.5

NM69 7 7 Carbon Belt 154 10 163 -39.5

NM76 7 7 Metal Belt 7 0.13 5.1 -39.5

NM77 7 7 Metal Oxide Belt 7 0.13 5.1 -39.5

NM78 7 7 Carbon Belt 7 0.13 5.1 -39.5
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Chapter 7

Summary

This work developed a statistical framework including four stages.

Variable selection: To identify important predictors for an NM’s toxicity, variable selec-

tion is first performed.

Design of experiments: In the high-dimensional space of the important predictors, design

of biological experiments is performed for modeling efficiency.

Modeling and inference: To the well-designed biological data, kriging-based method is

employed to quantify the dependence of an NM’s toxicity upon the important predic-

tors.

Shape clustering: Based on the toxicity profiles and estimation uncertainty rendered by

the quantitative prediction model, shape clustering is carried out for potency grouping

of NMs.

This framework intends to provide a statistical roadmap for the generation of QNAR

(quantitative nanostructure-activity relationships) prediction model and high-throughput

toxicity grouping of NMs. In particular, through simulation-based studies, the importance

of experimental design in generating a high-quality QNAR is demonstrated: With limited

sample size, biological experiments need to be designed in such a way that the samples at

least provide a fair coverage of the high-dimensional predictor space; the efficient assignment

of samples also depends on the shape of target QNAR. Without a good experimental design,

the collected biological data will not contain the necessary information needed to map a

comprehensive QNAR in the specified predictor (design) space.
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[102] Tommi Tervonen, Igor Linkov, José Rui Figueira, Jeffery Steevens, Mark Chappell,

and Myriam Merad. Risk-based classification system of nanomaterials. Journal of

Nanoparticle Research, 11(4):757–766, 2009.

[103] Pierre Hansen and Brigitte Jaumard. Cluster analysis and mathematical programming.

Mathematical programming, 79(1-3):191–215, 1997.

[104] MR Rao. Cluster analysis and mathematical programming. Journal of the American

statistical association, 66(335):622–626, 1971.

[105] John Paparrizos and Luis Gravano. k-shape: Efficient and accurate clustering of time

series. In Proceedings of the 2015 ACM SIGMOD International Conference on Man-

agement of Data, pages 1855–1870. ACM, 2015.

[106] Anuj Srivastava, Shantanu H Joshi, Washington Mio, and Xiuwen Liu. Statistical shape

analysis: Clustering, learning, and testing. IEEE Transactions on pattern analysis and

machine intelligence, 27(4):590–602, 2005.

[107] Lin Yu Tseng and Shiueng Bien Yang. A genetic clustering algorithm for data with

non-spherical-shape clusters. Pattern Recognition, 33(7):1251–1259, 2000.

[108] Remco C Veltkamp. Shape matching: Similarity measures and algorithms. In Shape

Modeling and Applications, SMI 2001 International Conference on., pages 188–197.

IEEE, 2001.

[109] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data cluster-

ing: Theory and its application to image segmentation. IEEE transactions on pattern

analysis and machine intelligence, 15(11):1101–1113, 1993.

[110] Isak Gath and Amir B. Geva. Unsupervised optimal fuzzy clustering. IEEE Transac-

tions on pattern analysis and machine intelligence, 11(7):773–780, 1989.

[111] James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[112] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An efficient k-means clustering

algorithm. 1997.

57



[113] H-P Kriegel and Martin Pfeifle. Hierarchical density-based clustering of uncertain data.

In Data Mining, Fifth IEEE International Conference on, pages 4–pp. IEEE, 2005.

[114] Hans-Peter Kriegel and Martin Pfeifle. Density-based clustering of uncertain data.

In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge

discovery in data mining, pages 672–677. ACM, 2005.

58


	A Statistical Framework for the Development of Prediction and Clustering Models in the Hazard Assessment of Nanomaterials
	Recommended Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation of the Research
	1.2 Plan and Objective of the Research
	1.3 Challenge of the Research
	1.4 Contribution of the Research

	2 Data Description
	3 Variable Selection
	3.1 Literature Review
	3.2 Results of Variable Selection
	3.3 Discussion
	3.4 Simulation Model

	4 Design of Experiments
	4.1 Literature Review
	4.2 Two-Stage Optimum Design of Experiments
	4.2.1 Initial Design
	4.2.2 Second-Stage Design
	4.2.3 Estimation and Validation Data


	5 Estimation and Inference of the Prediction Model
	5.1 Model Estimation and Inference 
	5.2 Model Validation

	6 Shape Clustering 
	6.1 Literature Review
	6.2 Statement of Shape Clustering Problem
	6.3 Shape Clustering of Nanomaterials
	6.3.1 K-Shape Clustering Algorithm with Uncertainty
	6.3.2 Density-based Clustering Algorithm with Uncertainty
	6.3.3 Empirical Studies


	7 Summary
	References

