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ABSTRACT

Simulation Factor Screen in Binary Response Models

Minqi Li

To eliminate unimportant factors so that the remaining important factors can be

further studied in later experimentation, screening experiments (which may be physical or

simulation based) are typically performed. This thesis proposes a hybrid statistical procedure

for efficient factor screening via simulation experiments. The hybrid procedure is particularly

developed for cases where the system response is binary, as opposed to continuous; such a

factor-screening procedure does not exist yet in the literature.

The proposed hybrid procedure integrates two screening methods: the sequential

factorial design with multivariate sequential test (SFD-MT), which is newly developed in

this work, and the modified controlled sequential bifurcation (CSB), which is adapted from

the existing CSB method. At the beginning of the procedure, a pre-screening process is

conducted to obtain the preliminary estimates of factor effects, and to determine whether

SFD-MT or modified CSB will be used for factor screening. Then the selected screening

method (either SFD-MT or modified CSB) are performed to identify the important factors

based on simulation experiments. In both SFD-MT and CSB, the type I and type II errors

are approximately controlled through appropriate hypothesis tests. The efficiency of the

hybrid procedure over the CSB in the literature is demonstrated via empirical experiments.
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Chapter 1

Introduction

1.1 Background

Factor screening is usually the first phase of experiment to investigate a system [1]. As the

complexity of system increases, there are usually a large number of factors included while

only a few of them are really important [2][3][4]. For instance, in the nuclear waste disposal

problems, the simulation model has up to 3000 factors while less than 1% of the total are

important [5][6][1]. Thus, factor screening is implemented to identify the important factors

that have a significant impact on the system performance at the initial stage, then further

experiments can be conducted on these important factors which may have interactions or

higher order effects [1].

Trocine [1] has stated that there are mainly three criteria for a good factor screening

procedure: effectiveness, efficiency and robustness. Effectiveness means that the screening

procedure is able to find the true important factors. However, since the system being in-

vestigated are unknown to us, the effectiveness is difficult to measure directly. The second

criteria is efficiency which is judged by the number of experiment runs needed for the proce-

dure. The efficiency of a screening method depends on the size of the problem and also the

underlying data structure from the system response. The third criteria is the robustness. A

robust screening method means that it requires little prior information of the system and

can be used in a wide area.

To meet the three criteria, good experiment design is needed in a factor screening pro-

cedure. The most commonly used experimental design is the fractional factorial design [7].

1



However, the number of experiment runs needed is huge when it is used in large size prob-

lem. To conduct factor screening on large-scale cases, a number of screening methods have

been developed in the past thirty years. Trocine [1] made a complete overview of screening

methods available for more than 20 factors such as the two-stage group screening method [8]

[9][10], sequential bifurcation [2], super saturated design [11] and Trocine screening method

[1].

In this thesis work, simulation experiments will be used to generate data for the sys-

tem of interest. As indicated by Wan [3], simulation experiments have many advantages over

physical experiments. Physical experiments usually deal with less than 20 factors and each

experiment run costs considerable time and money. While simulation is usually cheaper and

faster and can deal with a large number of factors that are impossible for physical experi-

ments. Also, it is more convenient to adjust factor settings in the simulation experiments. In

recent years, simulation has been widely used in operational research area. For example, in

semiconductor industry, since the manufacturing process is very complicated: mixed types

of products exist and each type of product may share common resources, simulation becomes

a powerful tool to locate the bottleneck and improve the performance of the system.

1.2 Problem Statement and Objective

All the simulation screening methods proposed in the existing works only handle linear

models with normally distributed error term, while in the real word categorical responses

are commonly encountered as well. The binary response is the most common case of the

categorical models and logistic regression is usually used to analyze the binary experiment

results. Since the assumption of normal response is not meet in our case, many of the

proposed experimental designs can not be used. In this thesis work, a new screening method

is proposed which takes a hybrid framework [12] and combines two simulation screening

procedures: Sequential Factorial Design with Multivariate Sequential Test (SFD-MT) and

modified CSB [3]. At the pre-screen stage, the new method uses fractional factorial design
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and logistic regression to get a rough estimation of the factor effects. Then factors are

divided into potential important group and potential unimportant groups based on which

the appropriate screening method is selected.

The objective of this work is to develop an efficient screening procedure by combining

an appropriate sequential test and experimental design techniques to meet the error control

requirement. There are two major challenges involved in this work. First, the proper screen-

ing framework and the multivariate sequential test method used in the SFD-MT need to be

determined. Secondly, CSB needs to be modified such that it can be used into the binary

response model. Since CSB was originally designed for linear model with normal errors, the

binary response for experiments must be transformed properly to be asymptotically normally

distributed.

This thesis work is organized as follows: chapter 2 reviews the existing work and

introduces the screening method that will be used here. Chapter 3 describes the model we

used and some notations in this work. Chapter 4 gives the details of SFD-MT and modified

CSB as well as the performance of the hybrid method. Chapter 5 presents the empirical

results and compares the hybrid method with SFD-MT and CSB. Chapter 6 provides a

conclusion of this thesis work.
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Chapter 2

Literature Review

In this chapter, screening methods proposed in the existing works are presented.

Some of them focus on the efficiency and require many prior information of the systems,

while others focus on the effectiveness and are required to control the error at user-specified

level.

Watson [8] proposed the method of two-stage group screening which partitioned fac-

tors into groups by prior knowledge. In the first stage, all factors in the same groups are set

to the same level such that each group can be dealt with like single factor. Then fractional

factorial design is conducted on groups to test the group importance. In the second stage,

factors in the important groups are partitioned into individual ones and fractional factorial

design is run again on these factors to identify the important factors. The method is highly

efficient since the number of the simulation runs required is usually only slightly higher than

the number of factors. However, many assumptions are needed before experiment can be con-

ducted. Mauro [9][10] demonstrated performance of the two-stage group screening method

with empirical study. His works relaxed the assumptions and allowed unknown directions

of effects and existence of interaction effects. His work has also shown the effect of design

parameters on the performance of the two-stage group screening method.

Bettonvil and Kleijnen [2] developed sequential bifurcation (SB) which deals with the

deterministic model. Cheng [13] expanded the SB into stochastic case where normal error

with constant variance exists. SB requires known direction of factor effects and the same

sign of main and interactive effects. The screening process is actually testing the effect of
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factor groups, which is the sum of the effect coefficients. The idea is quite straight forward:

if a group is unimportant, then there are no important factors included so all factors in that

group should be eliminated; if a group is important, then there may be some important

factors contained in the group and the group should be divided into two subgroups and

further experiment run is conducted. This bifurcation terminates when there is no important

groups can be separated. SB is highly efficient if important factors are clustered in the factor

list. Thus, if there is some prior information, factors can be assigned positions appropriately

before the screening procedure being conducted [13].

Trocine [1] introduced a new screening method called Trocine Screening Procedure

which uses a three-stage experimental design. In the first stage, 3 replicates are run by

setting all factors to higher level to estimate the range of the experiment region; in the

second stage, several numbers of simulation runs determined by the number of factors are

run. These runs are designed such that no factors are positively aliased with each other.

In the third stage, new design points are generated based on a genetic algorithm. Finally,

factors are ranked by scores and the top 25% of factors are selected as important ones.

Holcomb [11] investigated the contrast distribution in the super saturated design

(SSD). The design matrix was partitioned for important factors and unimportant factors

randomly since no prior knowledge of the system existed. It stated that the distribution of

the contrast could be approximated by normal distribution. In the simulation study, several

previous proposed SSD method based on contrast were compared in the linear model with

constant coefficient and varying coefficient. Holcomb mentioned that the SSD is just a pre-

screen method that eliminated a large portion of unimportant factors and the efficiency of

SSD depends on the number of unimportant factors in the group and the prior information

available for the system.

All of these methods assume linear model with equal variance or even zero variance

and the efficiency of them are extremely high in certain cases. However, the disadvantage

is that many of the assumptions used can not be meet in the real word such that the
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performance of these methods can not be guaranteed. The Controlled Sequential Bifurcation

(CSB) by Wan et al. [3] and Controlled Sequential Factorial Design (CSFD) by Shen and

Wan [14] are designed to control both the type I and type II error and require less prior

information of the system. These two methods can deal with linear models with heterogenous

variance and provide desired error control. CSB has combined the hypothesis test developed

by Kim [15] with sequential bifurcation procedure proposed by Bettonvil and Kleijnen [2].

It requires known direction of factor effects and assumes that there are only main effects in

the model. The framework of CSB is the same as the sequential bifurcation but the effect

of groups are tested by sequential test to control the error. CSB-X by Wan et al. [16]

improves the efficiency and efficacy of CSB by incorporating a fold-over design to deal with

the interaction effects that exists in the model.

CSFD generates random observations in batches by fractional factorial design and

tests factor effects one by one. The procedure first generates a number of observations to

get an initial estimation of factor effects, then more observations will be generated during

the procedure if no conclusion has been reached out. All random observations can be used

during screening procedure and the importance of interaction effects can also be tested if

fractional factorial designs with resolution IV or V are used.

2.1 SFD-MT and Modified CSB

All the screening methods introduced above assume that the response of the model is nor-

mally distributed. To deal with the binary response case, we introduce two new methods:

SFD-MT and Modified CSB.

SFD-MT combines experimental design with a sequential hypothesis test method with

multiple endpoints. The way SFD-MT deals with observations is similar to that in CSFD:

observations are generated in batches and we call each batch as one replication [14]. Within

each replication, observations provide one estimate for effect coefficients by using Maximum

likelihood Estimation (MLE) [17]. The importance of factor effects are determined based on
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these replications. Since the estimates of effect coefficients by MLE usually have correlations

with each other, it is not appropriate to test the factor effects one by one as in CSFD. Thus

the SFD-MT tests the importance of group of factors based on the estimates of coefficients

and the correlations of the estimates. Besides, a sequential bifurcation frame is used in the

procedure. Since some estimates of factor effect coefficients have high correlation with each

other, we are likely to put those factors into the same subgroup when splitting. Replications

generated in different splitting stages can be used during the entire screening procedure.

SFD-MT can work with binary response model or linear model with highly heterogenous

variance.

Since estimates of effect coefficients have correlation with each other, we would like

to test the importance of factor effects in group. Sequential hypothesis test with multiple

endpoints is needed in our screening procedure. Jennison and Turnbull [18] proposed multiple

sequential test based on the exact distribution of test statistics. The test requires that the

covariance matrix can be written in the form of a known matrix and a scalar. However, in

a binary response model, the covariance matrix of estimates of effect coefficients is usually

completely unknown. Tang et al. [19] developed a sequential test based on the test proposed

by O’Brien [20]. This sequential test can be applied to the situation when covariance matrix

is completely unknown. However, when the number of factors is large, the convergency of

the asymptotically normal distribution will be slow and affects the performance of the test.

The sequential test used in SFD-MT was proposed by Jackson and Bradley [21]. There is

no requirement on the covariance matrix and the direction of the factor effects. A heuristic

method was prompted to modify the test such that it can be used here. It can be shown that

that type I error can be controlled during the entire screening procedure and the performance

of power control will be evaluate in the empirical study.

Modified CSB has the same splitting framework of the CSB but it deals with different

responses within each splitting stage. Original CSB is used in linear model with normal error

terms, so the test statistics used in every splitting stage is strictly normally distributed. On
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the other hand, modified CSB is dealing with binary response model and the log odds ratio

is used to test the group effects. By large sample theory, log odds ratio is asymptotically

normally distributed under certain constraints. So if we design the experiment appropriately,

it can be treated as a normally distributed random variable and many sequential tests can

be used to control the type I error and the power in our case.
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Chapter 3

Model Description

Suppose there are p factors to be tested in the group. Let β = (β1, ..., βp−1, βp)T be effect

coefficients and β̂ = (β̂1, ..., β̂p−1, β̂p)T be the estimator of β. β̂ can be calculated from a

logistic regression process and is asymptotically normally distributed as β̂ ∼ N(β,Σ) under

certain condition. The covariance matrix Σ is usually unknown but can be estimated by

sample covariance matrix Σ̂. Binary response model is considered here and we assume that

there is no interaction effects between two factors. Suppose that the response variable Y

satisfies binomial distribution with Pr(Y = 1) = π(x) and Pr(Y = 0) = 1− π(x), then we

can investigate it by logistic regression. Let the Logit link function be η = logit(π(x)), then

η has the following linear form:

log(
π(x)

1− π(x)
) = η = β0 +

p−1∑
i=1

βixi

Here x = (x1, x2, ..., xp) are level settings and β = (β1, β2, ..., βp)T are effect coefficients. The

β0 is the intercept terms which is not of our interest.

The objective of screening procedure is to classify factors into important ones and

unimportant ones with controlled type I error and type II error. Typically in factor screen,

type I error means that an unimportant factor is classified as important; type II error means

that an important factor is classified as unimportant. Suppose that we have two thresholds,

∆0 and ∆1 which satisfy ∆0 < ∆1. Each factor effect is compared with the two thresholds.

For i = 0, 1, 2, ..., p − 1, when |βi| < ∆0, we should have probability ≤ α to classify factor

i as important; when |βi| > ∆1, we should have probability ≤ γ to classify factor i as
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unimportant, when ∆1 ≥ |βi| ≥ ∆0, we expect the screening procedure to classify them

as important but not guarantee to do that [14]. Wan et al. [3] proposed a cost model to

determine the thresholds and factor effects such that all the factor effects can be compared

in the same standard. After some minor change, the cost model is good to be implemented

into this screening procedure. Here are notations that will be used in this paper:

◦ p: Total number of factors in the group.

◦ α: The probability to make type I error.

◦ γ: The probability to make type II error.

◦ 40: Lower Threshold.

◦ 41: Higher Threshold.

◦ N0: Initial number of replications generated in SFD-MT or modified CSB.

Notations used in SFD-MT:

◦ l: Number of observations at each design point for logistic regression.

◦ Y (i): The random observation in the ith replication.

◦ β̂(i): estimate of β from the ith replication.

◦ β̂j(i): estimate of βj from the ith replication.

◦ B(n) = 1
n

∑n
i=1 β̂(i) is the average of estimated effect coefficients from n replications.

◦ Σ̂(n) = 1
n

∑n
i=1

(β̂(i)−B(n))(β̂(i)−B(n))T

n−1
is the sample covariance matrix estimated from n

replications.

Notations used in modified CSB:

◦ lc: number of observations within each replication.

◦ mk(i): The number of successes in the ith replication at level k.

◦ LOk(i): The log odds ratio calculated from the ith replication at level k.

◦ D(k2, k1)(j): D(k2, k1)(j) = 1
j

∑j
i=1(LOk2(i)−LOk1(i)), j = min(nk1 , nk2) is the average of

the difference of log odds ratio of level k1 and level k2 from the first j replications.
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Chapter 4

Methodology

The hybrid methodology proposed by Shen et al. [12] is used here to conduct the simulation-

based factor screening. The idea is straight forward since both modified CSB and SFD-MT

have drawbacks when dealing with certain factor groups. Modified CSB is highly efficient

only when the number of potential important factors (factor effect coefficient greater than

∆0) is small and these factors are clustered. SFD-MT is inefficient when deals with a large

number of factors.

The hybrid method contains two phases. In phase I, fractional factorial design con-

sidering all factors is conducted to get a rough estimate of all factor effect coefficients.

Then based on the prescreening results, factors are divided into three groups based on a

user-specified threshold 4t > 0, called splitting threshold. Assume that the estimate of

coefficient βi in the prescreeng is β̂i. Then for the ith factor, if |β̂i| ≥ 4t, then it will be

put into the first group, called IMP group; if 0 ≤ β̂i < 4t, it will be put into the second

group, called P-UNIMP group; if 0 < β̂i < 4t, it will be put into the third group, called

N-UNIMP group [12]. The factors in the P-UNIMP and N-UNIMP are ordered based on

the absolute values of their effect coefficients which are estimated in the prescreen. Since

the number of important factors are assumed to be small, the size of the IMP group that

contains potentially important factors is expected to be relatively small. On the other hand,

the P-UNIMP and N-UNIMP groups that contain potentially unimportant factors should

have a larger size than the IMP group and the potentially important factors, if there is

any, should be clustered after the ordering. In phase II, the three groups are screened by
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Figure 4.1: The flowchart of the screening procedure

appropriate procedure. SFD-MT is implemented to screen the IMP group and the modified

CSB, which will be introduced in the later section, is implemented to screen the P-UNIMP

and N-UNIMP group. The flowchart 4.1 shows the framework of the hybrid method. We

organize this chapter as follows: section 4.1 will introduce the SFD-MT procedure; section

4.2 tells the detail of modified CSB; section 4.3 talks about the error control of this hybrid

12



method. For all the experimental design used in our work, we assume the factor have two

levels: 1, −1, which is the higher level and lower level respectively.

4.1 SFD-MT

In SFD-MT, we generate random observations in batches to estimate effect coefficients and

each batch is called a replication. Since only main effects exist, resolution III fractional

factorial design is used within each replication. As indicated in Montgomery [7], if there

are p main effects, we can find an m satisfying 2m−1 ≤ p < 2m to construct resolution III

fractional factorial design. Since observations are independent with each other in different

replications, the estimate from each replication is also independent with each other. In this

section, we assume that the group being screened by SFD-MT contains p factors β1, β2, ..., βp.

The general framework of SFD-MT is similar to CSB [3], which is shown bellow:

Initialization: Generate N0 replications, calculate β̂(N0), Σ̂(N0) and set sample size n

equal to N0. Assign index i to βi for i = 1, 2, ...p − 1, p. Create an empty FIFO queue.

Construct a group that contains all the factors and put this group into the FIFO queue. All

groups are tagged by their orders of entering the FIFO queue. For instance, the group that

contains all factors is tagged by index 1 since it is the first one which enters the FIFO queue.

While FIFO queue is not empty, do

Remove a group from the queue and test the importance of the group effect. Generate more

replications if needed and update sample size n. If the test result is:

Important and group size= 1: The only factor in the group is classified as important.

Important and group size> 1: Split it into two subgroups based on sample covariance

matrix Σ̂(n) and then add each subgroup into the FIFO queue.

Unimportant: Classify all the factor in the group as unimportant.

End

13



Figure 4.2: The flowchart of the SFD-MT

Flowchart in figure 4.2 gives an overview of how the SFD-MT works. In section 4.1.1, we

will talk about the experimental design used and how we calculate the estimate of effect

coefficients from observations. The details of implementing the sequential test into screening

procedure is introduced in section 4.1.2. The group splitting process is introduced in section

4.1.3. The performance of the SFD-MT is discussed in section 4.1.4.

14



4.1.1 Replications Generation

Resolution III fractional factorial design is used to generate replications. If we have p factors

totally, then there exists an m less than p such that 2m−1 ≤ p < 2m and corresponding

fractional factorial design can be conducted [7]. In logistic regression, effect coefficients are

estimated by maximum likelihood estimation. Let M be the total number of design points

and li be the number of observations at each design point, i = 1, 2, ...,M , so within each

replication, there are totally ΣM
i=1li observations. The number of observations at each design

point need to be set large enough to guarantee the convergency of the iterative weighted

least square algorithm when fitting the model. The details of MLE for logistic regression

can be found in McCullagh [17] and have been put it in Appendix.

The sequential hypothesis test used here requires normal distribution of β̂(i), i =

1, 2, ..., n. Beer [22] has proved that as the number of design points, M , grows large, the

MLE will be asymptotically normally distributed. Usually when M is large, sparsity always

exists, which means there exists some li that equals to 1. But we do not need to worry

about this problem in simulation experiments. If the number of factors is large, we usually

have a M large enough to guarantee the asymptotically normality of maximum likelihood

estimator.

4.1.2 Test Procedures

Assume that at certain splitting stage of SFD-MT, we are testing the group k which is the

kth group entering the FIFO queue. Group k contains m factors and in the previous stage,

n replications have already been generated (n ≥ N0). The index of the m factors in group

k is (i1, i2, ...im) which satisfies 0 ≤ ij ≤ p, j = 1, 2, ...,m and i1 < i2 < ... < im. If we write

B(n) = (b1(n), b2(n), ...bp(n)), Σ = (aij)p×p and Σ̂(n) = (âij(n))p×p, i, j = 1, 2..., p, then the

estimate of effect coefficients and sample covariance matrix used in current stage for group

k is Bk(n) = (bi1(n), bi2(n), ..., bim(n)) and Σ̂k(n) = (âilih(n))m×m, l, h = 1, 2, ...,m. If we

write βk = (βi1 , βi2 , ..., βim)T and Σk = (ailih)m×m, l, h = 1, 2, ...,m, we do the hypothesis
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test

H0 : (βk)T Σ−1
k β

k = λk
0(n)2

against the alternative

Ha : (βk)T Σ−1
k β

k = λk
1(n)2

The rule of choosing λk
0(n)2 and λk

1(n)2 will be talked in section 4.14. The ratio test procedure

developed by Jackson and Bradley [21] is shown bellow :

Initialization: n replications have been generated in previous stages (n ≥ N0). We calculate

T 2
k (n) = n(Bk(n))T Σ̂k(n)−1Bk(n)

Ratiok(n) =
p1k(n)

p2k(n)
= exp(−n(λk

1(n)2−λk
0(n)2)/2)

1F1(n/2, k/2;nλk
1(n)2T 2

k (n)/2(n− 1 + T 2
k (n)))

1F1(n/2, k/2;nλk
0(n)2T 2

k (n)/2(n− 1 + T 2
k (n)))

While γ/(1− α) ≤ Ratiok(n) ≤ (1− γ)/α do

Generate the n + 1th replication and replace n by new value n + 1. Then update the value

of B(n), Bk(n), Σ̂(n), Σ̂k(n), λk
0(n)2, λk

1(n)2, T 2
k (n) and Ratiok(n).

End

If Ratiok(n) > (1− γ)/α Then classify group k as important.

If Ratiok(n) < γ/(1− α) Then classify group k as unimportant.

4.1.3 Splitting Process

The splitting process is implemented based on the sample covariance matrix. Assume that

group k containing m factors has been classified as important. All the notations used are

the same as in section 4.1.2. Also assume that n replications have been generated and

Σ̂k(n) = (âilih(n))m×m, l, h = 1, 2, ...,m. We want to split the group into two subgroups. If

m is even, each subgroup has m/2 factors; if m is odd, one subgroup has [m/2] + 1 factors

and the other has [m/2] factors. Since the higher the correlation between two estimates of

effect coefficients is, the more likely the two estimates would “affect” each other. So our
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general idea is to put factors into the same group if estimates of their effect coefficients have

high correlations. The detailed splitting process is described as follows:

Step 0. Creat an empty remaining list.

Step 1. Rank the absolute value of âilih(n), l > h, l, h = 1, 2, ...,m and put them into a

remaining list.

Step 2. If âil0 ih0
(n) has the largest absolute value, put factor il0 and ih0 into subgroup 1

and remove âil0 ih0
(n) from the remaining list.

Step 3. Find the one in the remaining list that has the largest absolute value, if one of its

two index is already in subgroup 1, we put the factor with the other index into subgroup 1;

otherwise we put both of them into subgroup 1.

Step 4. Check the number of factors in subgroup 1. When m is odd, if the number of

factors in subgroup 1 is less than [m/2], return to step 3; otherwise put all other factors that

are not in subgroup 1 into subgroup 2 and the splitting process is completed. When m is

even, if the number of factors in subgroup 1 is less than m/2, return to step 3, else if the

number of factors in group 1 is greater than or equals to m/2, put all other factors not in

subgroup 1 into subgroup 2 and the splitting process is completed.

4.1.4 Performance of SFD-MT

The SFD-MT is supposed to control type I error and type II error when we do the hypothesis

|βi| < ∆0 against |βi| ≥ ∆0

Given a p−dimension multivariate normal population y with covariance matrix Σ, the ratio

test can handle the following composite hypothesis and control type I error α and type II

error γ:

H0 : βT Σ−1β = λ2
0 against H1 : βT Σ−1β = λ2

1
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The form of this composite hypothesis is different from the previous one. The test satisfies

that if βT Σ−1β is less than or equal to λ2
0, it has the probability 1 − α to accept the null

hypothesis; if βT Σ−1β is greater than or equal to λ2
1, it has the probability 1 − γ to reject

the null hypothesis; if βT Σ−1β is greater than λ2
0 but less than λ2

1, the test should reject

the null hypothesis but not guarantee to do that. As indicated by Jackson and Bradley [21],

there exists many ways to specify λ2
0 and λ2

1 when applying this test to real cases while each

case needs to be handled individually. In our case, we will select the two thresholds in a

heuristic way.

Suppose Σ−1 = (σ−1
ij )p×p is the inverse of the covariance matrix. Then we have

βTΣ−1β =
∑p

i=1 σ
−1
ii β

2
i +

∑p
i=1

∑
j<i 2σ−1

ij βiβj. Our goal is to compare the group effect, which

is the sum of effect coefficients, with the two threshold, but βTΣ−1β can only be considered

as a weighted sum of square of effect coefficients plus the weighted sum of product of two effect

coefficients. Thus by intuition, we multiply threshold ∆2
0 and ∆2

1 by σ−1
ii +

∑p
i=1

∑
j<i 2σ−1

ij

divided by the number of factors in the group p at every stage when testing the importance

of the group. This is what we have for λ2
0 and λ2

1 in the test procedure. When there is only

one factor in the group, the hypothesis we are testing is:

H0 : β2
i σ

−1
ii = λ2

0 = ∆2
0σ

−1
ii against H1 : β2

i σ
−1
ii = λ2

1 = ∆2
1σ

−1
ii

This is actually testing |βi| = ∆0 against |βi| = ∆1.

Since some approximations have been used to modify the sequential test, we can not

guarantee even stepwise power control in each splitting stage. But in the evaluation section,

we can see that this screen method controls type II error strictly. On the other hand, type
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I error can always be controlled during SFD-MT. Here is a short proof of it:

Pr(Type I error) = Pr(Classify βi as important|βi is unimportant)

= Pr(Classify all groups contain βi as important|βi is unimportant)

<= Pr(Classify size=1 group contains βi as important|βi is unimportant)

= α

4.2 Modified CSB

The only difference between CSB by Wan et al.[3] and modified CSB is at each splitting

stage. The general frameworks of the two are exactly the same. Assume that the group

being tested has p factors and all the factors have two level settings. The binary response

model with logit link is written as:

η = log(
p

1− p
) = β0 + β1x1 + ...+ βpxp

where β0 is the intercept. We define that a model with level k as

η(k) = β0 + β1 + ...+ βk − βk+1 − ...− βp

Thus in a model with level k, we set the first k factors in their higher levels and factors k+ 1

to p in their lower levels [3]. Notice that 1
2
(η(k1)− η(k2)) =

∑k2
i=k1+1 βi, so if we want to test

the importance of a group containing factors k1 + 1, k1 + 2, ...k2, k1 < k2, η̂(k1) and η̂(k2)

can be used to estimate the value of
∑k2

i=k1+1 βi.

We generate observations in batches in the model with level k and each batch is called

a replication which contains lc observations. Define mk(i) as the number of successes in the
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ith replication for level k, then we have the log odds ratio LOk(i) to be

LOk(i) = log[mk(i)/(l −mk(i))]

To test the effect of the group that contains factors k1, k1 + 1, ..., k2, the average of the

difference of the log odds ratio is used. Assume that for model with level ki, there are ni

replications already being generated in previous splitting stage, then

D(k2, k1)(j) =
1

j

j∑
i=1

(LOk2(i)− LOk1(i)), j = min(nk1 , nk2)

is used as an estimate of the group effect. By large sample theory, if none of

mk1(i), lc − mk1(i), mk2(i), lc − mk2(i) are very small, LOk2(i) − LOk1(i) is asymptot-

ically normally distributed with mean 2(βk1 + βk1+1 + ... + βk2) and standard deviation√
1

mk1
(i)

+ 1
lc−mk1

(i)
+ 1

mk2
(i)

+ 1
lc−mk2

(i)
[23]. Thus, if the number of observations within each

replication, lc, is set to be large enough, we can treat D(k2, k1)(j) as normally distributed

response. The sequential test proposed by Jackson and Bradley [21] can be used here to test

the hypothesis:

H0 :
k2∑

i=k1

βi = ∆0 against H1 :
k2∑

i=k1

βi = ∆1

The framework of the modified CSB is similar to the CSB [3] and is described bellow. Some

notations used are the same as in section 3.1.

Initialization: Create an empty FIFO queue. Construct a group that contains all the factor

effects (k1 = 1, k2 = p) and put this group into the FIFO queue.

While FIFO queue is not empty, do

Remove a group from the FIFO queue and test the importance of the group effect.

Assume that the group contains factors k1, k1 + 1, ..., k2, k1 ≤ k2. First check nk1 and nk2 , if

nki
is less than the initial number of replications N0, then generate N0 − nki

replications for

model at level ki and update the value of nki
. Then set n = min(nk1 , nk2) and calculate the

20



following statistic:

D(k2, k1)(n) =
1

n

n∑
i=1

(LOk2(i)− LOk1(i))

S(k2, k1)
2(n) =

1

n− 1

n∑
i=1

(LOk2(i)− LOk1(i)−D(k2, k1)(n))2

T 2(n) = n ∗D(k2, k1)(n)2/S(k2, k1)(n)2

λ2
1(n) = (241)

2/S(k2, k1)
2(n)

λ2
0(n) = (240)

2/S(k2, k1)
2(n)

Ratio(n) = exp(−n(λ1(n)2 − λ0(n)2)/2)
1F1(n/2, k/2;nλ1(n)2T 2(n)/2(n− 1 + T 2(n)))

1F1(n/2, k/2;nλ0(n)2T 2(n)/2(n− 1 + T 2(n)))

While γ/(1− α) ≤ Ratio(n) ≤ (1− γ)/α do

Set n = n+ 1. Now if nki
, i = 1, 2, is less than n, generate one more replication at level nki

and update the value of nki
. Update the value of D(k2, k1)(n), S(k2, k1)

2(n), T 2(n), λ2
1(n),

λ2
0(n), Ratio(n).

End

If Ratio(n) > (1− γ)/α and group size equals to one, then classify the factor in the group

as important.

If Ratio(n) > (1 − γ)/α and group size is greater than one, then classify the group as

important and split it into two subgroups. All factors in the first subgroup have smaller

index than factors in the second subgroup. Put two subgroups into the FIFO queue.

If Ratio(n) < γ/(1−α), then classify the group as unimportant and also classify all factors

in the group as unimportant.

End
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4.3 Performance of Hybrid Method

The CSB can control the overall type I error and stepwise type II error [3]. But the modified

CSB has implemented the asymptotically normally distribution of the log odds ratio, so

the error control of modified CSB can not be guaranteed here. As indicated in section

4.14, the SFD-MT can guarantee the overall type I error but can only control stepwise

type II error approximately. Thus, we can only demonstrate the performance of the hybrid

method in the empirical study. Another thing needs to be mentioned here is that the factor

misassignment in the prescreening stage can also affect the performance of the screening

procedure. As indicated by Shen et al. [12], there are three types of factor misassignment in

the prescreening stage: (1) an important factors being assigned to P-UNIMP or N-UNIMP;

(2) an unimportant factors being assigned to IMP; (3) a factor with positive coefficient being

assigned to N-UNIMP or a factor with negative coefficient being assigned to P-UNIMP. All

the three misassignments have no effect on the overrall type I error control while the second

and third misassignment would effect the overall power of the hybrid method. In the next

chapter, we will see that the effect of the factor misassignments to the screening procedure

is very small.
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Chapter 5

Empirical Evaluation

A series of simulation-based experiments have been conducted to study the perfor-

mance of the hybrid method on binary response model. The hybrid method are compared

with SFD-MT in the 100-factor case experiment and also compared with modified CSB in

the 200-factor case and 300-factor case. For each case, 500 independent trials are run and the

average of simulation results are presented in tables. Resolution III factorial design is used

in the prescreening experiment of the hybrid method and there are 30 observations at each

design point in the prescreen experiment. The initial number of replications in SFD-MT

is set to be equal to the number of factors in IMP plus 10 in order to make sure that the

sequential test can proceed successfully. For the hybrid method, different splitting thresh-

old ∆t is used to find the optimum one based on efficiency. The performance of screening

method is measured by two criterion: (1) the simulation runs it requires; (2) the probability

it classifies factors into the correct group. In our experiments, the probability of a factors

being classified as important is estimated by the percent of times it is classified as important

in the 500 trials. Some parameter settings used in all the three cases are listed in the table

5.1.

5.1 100-factor case

In the 100-factor case, we generate the effect coefficients in the following way: 5% equal

to ∆1 = 0.2; 5% are uniformly distributed between ∆0 = 0.05 and ∆1 = 0.2; 5% equal

to ∆0 = 0.05. The sign of the coefficients are generated randomly with equal chance to
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Table 5.1: Some parameter settings for the screen procedure

Parameter Value
∆0 0.05
∆1 0.2
α 0.05
γ 0.05

N0 in modified CSB 30
lc 20
l 10

be positive or negative. The simulation experiment results are listed in table 5.2. The

first column shows the names of the factors and the second column gives the corresponding

factor effect coefficients. Here, β1 through β5 are important ones and we expect that they

can be classified as important with a probability higher than 0.95; β6 through β10 are in the

indifferent zone so we do not care if they are classified as important; β11 through β15 are

unimportant ones and we expect that the probability to classify them as important is less

than 0.05. Columns 3 to 7 of table 5.2 shows the percent of times of the factors to be classified

as important by corresponding screening procedure. The third column shows the results for

SFD-MT and columns 4 to 7 are for the hybrid method with different splitting threshold.

The splitting thresholds are set to be equal to ∆0, 1.3∆0, 1.5∆0 and 1.7∆0 as shown in

the table. Here, Table 5.2 only lists 15 factors since all the factors with zero effect have an

estimated probability of 0 (or very close to zero) to be classified as important. The simulation

results show that the SFD-MT could give a highly accurate factor screening. For example,

β1 through β5 are all classified as important with a probability of 0.98, while unimportant

factors β11 through β15 are classified as important with probability zero. However, the

efficiency of SFD-MT is proved to be low since it costs nearly 150, 000 simulation runs. On

the other hand, the hybrid method meets the error control requirement and uses only 25%

of simulation runs as SFD-MT does. The low efficiency of SFD-MT is caused by the use of

the fractional factorial design to generate replications for all factors in every splitting stage.
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Table 5.2: Simulation experiment results of 100-factor case

Factor Index Factor Effect SFD-MT ∆0 1.3 ∗∆0 1.5 ∗∆0 1.7 ∗∆0

β1 0.200 0.98 1.00 1 1 1
β2 -0.200 0.98 0.99 1 0.99 0.99
β3 -0.200 0.98 1.00 0.99 1 1
β4 -0.200 0.98 1.00 1 1 1
β5 0.200 0.98 1.00 0.99 1 1
β6 -0.110 0.38 0.40 0.36 0.44 0.49
β7 0.082 0.00 0.07 0.1 0.13 0.19
β8 0.098 0.02 0.17 0.21 0.27 0.35
β9 -0.175 0.98 1.00 0.96 0.98 1
β10 0.131 0.95 0.91 0.73 0.83 0.79
β11 0.050 0.00 0.00 0.01 0.01 0.01
β12 -0.050 0.00 0.00 0.01 0 0
β13 -0.050 0.00 0.00 0 0 0.02
β14 0.050 0.00 0.00 0.01 0 0.03
β15 0.050 0.00 0.00 0 0.01 0.03

number of simulation runs 147962 35534 33718 35504 36825

Most of factors are unimportant and it is not worthy to waste too many observations on

those factors. As the group size grows larger, this drawback of SFD-MT would be more

obvious.

Table 5.3 shows the simulation runs needed in prescreen stage, stage of modified CSB

and stage of SFD-MT in hybrid method. As the splitting threshold ∆t changes from ∆0 to

1.7∆0, we can see that when ∆t equals to 1.3∆0, the hybrid method runs with the highest

efficiency. However, we can not conclude that the optimum splitting threshold in 100-factor

case is 1.3∆0, since the optimal value varies with the coefficients of factors in the group being

tested.

5.2 200-factor case and 300-factor case

In the simulation experiment of the 200-factor and 300-factor cases, all the factor effects

have known direction in order to meet the requirement of conducting modified CSB. We only
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Table 5.3: Assignment of simulation runs for hybrid method in 100-factors case

SFD-MT ∆0 1.3 ∗∆0 1.5 ∗∆0 1.7 ∗∆0

Prescreen 0 3840 3840 3840 3840
Modified CSB 0 12875 17289 20996 24153

SFD-MT 147962 18819 12589 10667 8832
Total 147962 35534 33718 35504 36825

compare modified CSB and hybrid method in these two cases since SFD-MT is inefficient

in large-scale problem. For the effect coefficients, 2.5% equal to ∆1 = 0.2; 5% are uniformly

distributed between ∆0 = 0.05 and ∆1 = 0.2; 2.5% equal to ∆0 = 0.05. All other effect

coefficient are set to zero. Modified CSB are run in two scenarios: (1) All factors are

randomly distributed in the group. (2) Important factors are clustered together which is the

optimal case for modified CSB. Effect coefficients are generated for 200 and 300 factors case

and the simulation results for all non-zero effect coefficients are listed in Table 5.4 and Table

5.5. The column CSB(1) and CSB(2) represent the scenario one and two for modified CSB

respectively. The simulation results show that the modified CSB works well when important

factors are clustered. It meets the error control requirement strictly and does not require

too many experiment runs. But in scenario one when factors are distributed randomly in

the group, modified CSB can not meet the error control requirement and the number of

runs required increase dramatically. For example, in the 200-factor case, the modified CSB

uses 183, 830 runs in scenario one but only 45, 205 in scenario two. And for the important

factor β1, modified CSB classified it as important in a probability 0.922 in the scenario one,

which is less than the target value 0.95; while in scenario two, the probability increases to

0.998. On the other hand, the hybrid method is stronger than modified CSB in detecting

the important factors (factors with effect coefficient 0.2) in both scenarios since it has higher

estimated probability in classifying them as important. And if the splitting threshold ∆t is

chosen appropriately, the number of simulation runs used is 41551 and 61045 in the 200-

factor case and 300-factor case compared with 45205 and 65704 used in modified CSB in the
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Table 5.4: Simulation experiment results of 200-factor case

Factor Index Factor Effect CSB(1) CSB(2) ∆0 1.3 ∗∆0 1.5 ∗∆0 1.7 ∗∆0

β1 0.200 0.922 0.998 1.00 1.00 1.00 1.00
β2 0.200 0.974 0.992 1.00 1.00 1.00 1.00
β3 0.200 1.00 1.00 0.992 1.00 1.00 1.00
β4 0.200 0.964 0.974 1.00 1.00 1.00 1.00
β5 0.200 0.826 0.994 1.00 1.00 1.00 1.00
β6 0.190 0.976 1.00 1.00 1.00 1.00 1.00
β7 0.177 0.996 1.00 0.99 1.00 1.00 1.00
β8 0.164 0.954 0.98 1.00 1.00 0.99 1.00
β9 0.161 0.678 0.942 0.99 1.00 1.00 1.00
β10 0.152 0.926 0.98 0.99 0.99 0.96 0.99
β11 0.148 0.078 0.97 0.96 0.95 0.98 0.98
β12 0.148 0.84 0.758 0.98 0.95 0.99 0.97
β13 0.109 0.64 0.446 0.49 0.37 0.42 0.66
β14 0.076 0.006 0.132 0.15 0.12 0.23 0.32
β15 0.055 0 0.142 0 0.02 0.05 0.02
β16 0.050 0.342 0.04 0 0.03 0.05 0.04
β17 0.050 0.372 0.014 0.03 0.03 0.01 0.03
β18 0.050 0.004 0.024 0.01 0.03 0.04 0.09
β19 0.050 0.048 0.006 0.02 0.02 0.02 0.01
β20 0.050 0.008 0 0.01 0.05 0.03 0.06

number of simulation runs 183830 45205 45271 41551 44617 45049

scenario two. This indicates that the hybrid method can save the simulation runs at about

10% and 5% in 200-factor case and 300-factor case respectively than modified CSB in its

optimal scenario. Also, note that the hybrid method does not require the known direct of

factor effects, which is necessary for modified CSB.
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Table 5.5: Simulation experiment results of 300-factor case

Factor Index Factor Effect CSB(1) CSB(2) ∆0 1.3 ∗∆0 1.5 ∗∆0 1.7 ∗∆0

β1 0.200 0.99 0.99 1.00 1.00 1.00 1.00
β2 0.200 0.99 1.00 1.00 1.00 1.00 1.00
β3 0.200 0.99 1.00 1.00 1.00 1.00 1.00
β4 0.200 1.00 1.00 1.00 1.00 1.00 1.00
β5 0.200 1.00 0.99 1.00 1.00 1.00 1.00
β6 0.200 0.97 0.99 1.00 1.00 1.00 1.00
β7 0.200 0.80 0.98 1.00 1.00 1.00 1.00
β8 0.200 0.60 1.00 1.00 1.00 1.00 1.00
β9 0.193 0.20 0.99 1.00 1.00 1.00 1.00
β10 0.181 0.39 0.88 1.00 1.00 1.00 1.00
β11 0.178 0.99 1.00 1.00 1.00 1.00 1.00
β12 0.165 0.85 1.00 1.00 1.00 1.00 0.99
β13 0.163 0.99 0.59 1.00 1.00 1.00 0.98
β14 0.161 0.89 0.40 1.00 1.00 0.99 0.99
β15 0.153 0.00 0.99 0.99 1.00 0.99 0.99
β16 0.127 0.72 0.84 0.9 0.87 0.85 0.84
β17 0.096 0.23 0.30 0.51 0.15 0.17 0.28
β18 0.076 0.10 0.41 0.29 0.18 0.15 0.19
β19 0.075 0.87 0.45 0.2 0.12 0.24 0.22
β20 0.075 0.00 0.36 0.24 0.12 0.2 0.27
β21 0.065 0.00 0.18 0.23 0.15 0.12 0.21
β22 0.053 0.00 0.02 0.07 0.06 0.1 0.13
β23 0.050 0.68 0.01 0.06 0.11 0.06 0.09
β24 0.050 0.86 0.00 0.01 0.07 0.11 0.07
β25 0.050 0.74 0.01 0.05 0.03 0.07 0.05
β26 0.050 0.24 0.00 0.04 0.08 0.09 0.06
β27 0.050 0.37 0.01 0.04 0.05 0.08 0.03
β28 0.050 0.02 0.00 0.05 0.09 0.11 0.06
β29 0.050 0.00 0.00 0.10 0.07 0.07 0.06
β30 0.050 0.00 0.00 0.02 0.03 0.06 0.12

number of simulation runs 368180 65074 68649 61045 68140 70322
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Chapter 6

Conclusion

This thesis work proposed two simulation-based factor screening methods, SFD-MT

and modified CSB, which can be used on binary response model. SFD-MT is a new method

combining sequential bifurcation process and multivariate sequential test. Few prior knowl-

edge and assumptions are needed before it can be implemented. The empirical study have

demonstrated the effectiveness of both SFD-MT and modified CSB. The drawback of SFD-

MT is its low efficiency when used in large-scale screening problems. The modified CSB

requires the known direction of factor effects and works well only when important factors

are clustered, which is usually impossible in the real case. The hybrid method has been

proved to be superior than SFD-MT and modified CSB in both efficiency and robustness.

The pre-screening stage gives a rough estimation of the effect coefficients and allows SFD-MT

and modified CSB to be implemented efficiently in the following screening process. Since

the hybrid method is the combination of SFD-MT and modified CSB, there are a lot of pa-

rameters, such as the splitting threshold, the number of observations at each design point in

pre-screening stage, need to be determined before conducting the screening procedure. Un-

fortunately, this thesis work does not provide a way to find the optimum parameter settings,

which is an interesting topic for the further research.
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Appendix A

Maximum Likelihood Estimation

Let the p× 1 vector β be factor effect coefficients and the n× p matrix X be design

matrix. At each design point, the number of observations is li, i = 1, 2, ...n. Then by

Newton-Raphson method, the MLE of β in logistic regression can be calculated by the

following iteration:

β(k+1) = β(k) + (XW (k)X)−1XT (y − µ(k))

W (k) is a n × n matrix with lip̂
(k)
i (1 − p̂(k)

i ) on the diagonal and zeros everywhere else. µ

is a n × 1 vector with µ(i) = lip̂
(k)
i . p̂

(k)
i is the probability of success for response y(i)

estimated at iteration k. A usual way to get initial value β(0) is to use the least square

estimator β(0) = (XTX)−1XTy [17]. The iteration continues until the change between

current estimation and the previous one is less than a user-specified accurate level.

The convergency is sometimes a problem when X is poorly designed or one of pi is

closed to one or zero [17]. When coded in Matlab, a boundary value can be assigned to the

odds if the estimate odds is infinity or zero.
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Appendix B

The Matlab program code for the Hybrid Method

Listing B.1: First-stage pre-screen in the Hybrid Method in 100-factor case

%Fi l e name Hybr idsmal l .m
%Input : Index o f the f a c t o r in the group

function [ ]= Hybridsmall ( t o t a l i nd ex )
%Hybrid method screen group wi th unknown e f f e c t d i r e c t

global beta %c o e f f i c i e n t
global i n t e r c e p t ; %in t e r c e p t c o e f f i c i e n t
global de l ta0 %lower t h r e s ho l d
global group1 %po t e n t i a l important group
global error ; %error in the i t e r a t i v e a r g o l r i t h in MLE;
global r e p f i r s t s t a g e ; %r e p l i c t i o n at each de i sgn po in t
global es t imate %rough es t imate in the pre−screen s t a g e
global to ta l sample1 %number o f runs in the pre−screen s t a g e
global to ta l sample2 %number o f runs in modi f ied CSB
global to ta l sample3 %number o f runs in SFD−MT
global r e p l i c a t i o n %number o f runs r equ i r ed at each l e v e l in modi f ied CSB
global N0 %i n i t i a l sample s i z e in SFD−MT
global s i g f a c t o r %important f a c t o r s by screen ing procedure
global record2
%record o f log−odds r a t i o at each l e v e l in modi f ied CSB in p o s i t i v e group
global numofrep2
%record o f number o f r e p l i c a t i o n at each l e v e l in modi f ied CSB in p o s i t i v e group
global groupindex2
%record the index o f f a c t o r s used in CSB in p o s i t i v e group
global record3
%record o f log−odds r a t i o at each l e v e l in modi f ied CSB in nega t i v e group
global numofrep3
%record o f number o f r e p l i c a t i o n at each l e v e l in modi f ied CSB in naga t i v e group
global groupindex3
%record the index o f f a c t o r s used in CSB in naga t i v e group
global samplerecord ; %record o f sample generated in SFD−MT
global samplecov ; %sample covar iance matrix in SFD−MT
global B %sample average in SFD−MT
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global n ; %r e p l i c a t i o n generated in SFD−MT

%i n i t i a l i z e
to ta l sample1 =0;
tota l sample2 =0;
tota l sample3 =0;
p=length ( t o t a l i nd ex ) ;
c u r r e n t f a c t o r =[ i n t e r c e p t ; beta ] ; % in t e r c e p t p l u s f a c t o r e f f e c t

%MLE in pre−screen
Matrix=DesignM (100 ) ;
%genera te des i gn matrix o f r e s o l u t i o n I I I FFD des ign in the pre−sc reen ing s t a g e
[ rowdim coldim ]= s ize ( Matrix ) ;
D=[ ones ( rowdim , 1 ) Matrix ] ;
[ rowdim colddim ]= s ize (D) ;
Y=zeros ( rowdim , 1 ) ;
o r i g i n p i=zeros ( rowdim , 1 ) ;
for i = 1 : rowdim

exp(D( i , : ) ∗ cu r r e n t f a c t o r )/(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ;
Y( i ,1)= binornd ( r e p f i r s t s t a g e , exp(D( i , : ) ∗ cu r r e n t f a c t o r ) / . . .
(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ) ;
o r i g i n p i ( i ,1)=exp(D( i , : ) ∗ cu r r e n t f a c t o r )/(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ;%%%%

end
M=ones ( rowdim , 1 )∗ r e p f i r s t s t a g e ;
r e sponse=zeros ( rowdim , 1 ) ;
temp=0;
for i = 1 : rowdim

temp=log (Y( i , 1 ) / ( r e p f i r s t s t a g e−Y( i , 1 ) ) ) ;
i f temp > 3

temp= 3 ;
else i f temp < −3

temp = −3;
end

end
re sponse ( i ,1)=temp ;

end
beta0= inv (D’∗D)∗D’∗ re sponse ;%s t a r t i n g va lue by l i n e a r r e g r e s s i on
o ld=beta0 ;
new=0;
tempt=beta0 ;
i t e r =0;
pi=zeros ( rowdim , 1 ) ;
Wvector=zeros ( rowdim , 1 ) ;
mu=zeros ( rowdim , 1 ) ;
while (norm( tempt−new ) ) ˆ 0 . 5 > error

tempt=old ;
for i =1:rowdim

pi ( i ,1)= exp(D( i , : ) ∗ o ld )/(1+exp(D( i , : ) ∗ o ld ) ) ;
Wvector ( i )=M( i , 1 )∗ pi ( i ,1)∗(1−pi ( i , 1 ) ) ;
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mu( i ,1)=M( i , 1 )∗ pi ( i , 1 ) ;
end
W=diag (Wvector ) ;
new=old+inv (D’∗W∗D)∗D’ ∗ (Y−mu) ;
o ld=new ;
i t e r=i t e r +1;
%i t e r

end
es t imate=new ;
tota l sample1=tota l sample1+rowdim∗ r e p f i r s t s t a g e ;

%pa r t i t i o n f a c t o r in p o t e n t i a l important group and unimportant group
group1 = [ ] ; % po t e n t i a l important group
group2 = [ ] ; % po t e n t i a l unimportant p o s i t v e group
group3 = [ ] ; % po t e n t i a l unimportant naga t i v e group
for i =2:p+1

i f abs ( e s t imate ( i ))>=1.9∗ de l ta0 ;
group1=[group1 i −1] ;

end
i f es t imate ( i ) < 1 .9∗ de l ta0 && est imate ( i )>0

group2=[group2 i −1] ;
end
i f es t imate ( i ) <=0 && est imate ( i )>(−1.9∗ de l ta0 )

group3=[group3 i −1] ;
end

end
value2=zeros (1 , length ( group2 ) ) ;
va lue3=zeros (1 , length ( group3 ) ) ;
for j =1: length ( group2 )

value2 ( j )=est imate ( group2 ( j )+1);
end
for j =1: length ( group3 )

value3 ( j )=est imate ( group3 ( j )+1);
end
group2=[group2 ; value2 ] ;
group3=[group3 ; value3 ] ;
group2=sort rows ( group2 ’ , 2 ) ;
group3=sort rows ( group3 ’ , 2 ) ;
a2=zeros ( length ( group2 ) , 1 ) ;
a3=zeros ( length ( group3 ) , 1 ) ;
for i =1: length ( group2 )

a2 ( i ,1)= i ;
end
for i =1: length ( group3 )

a3 ( i ,1)= i ;
end
groupindex2=[group2 ( : , 1 ) a2 ] ’ ;
groupindex3=[group3 ( : , 1 ) a3 ] ’ ;
r ecord2=zeros ( length ( group2 )+1 ,2000) ;
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record3=zeros ( length ( group3 )+1 ,2000) ;
numofrep2=zeros ( length ( group2 )+1 ,1) ;
numofrep3=zeros ( length ( group3 )+1 ,1) ;

%CSB screen unimportant p o s i t i v e group
csb2 ( groupindex2 ) ;
to ta l sample2=tota l sample2+sum( numofrep2 )∗ r e p l i c a t i o n ;
%CSB screen unimportant naga t i v e group
csb3 ( groupindex3 ) ;
to ta l sample2=tota l sample2+sum( numofrep3 )∗ r e p l i c a t i o n ;

%SFD−MT
N0=length ( group1 )+10;
l o g i t s c r e e n ;
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Listing B.2: First-stage pre-screen in the Hybrid Method in 200-factor case

%Fi l e name : Hybr i d s l a r ge .m
%Input : t o t a l index o f f a c t o r s in the group

function [ ]= Hybr id large ( t o t a l i nd ex )
%Hybride method screen f a c t o r s wi th known e f f e c t d i r e c t

global beta %c o e f f i c i e n t
global i n t e r c e p t ; %in t e r c e p t c o e f f i c i e n t
global de l ta0 %lower t h r e s ho l d
global group1 %po t e n t i a l important group
global error ; %error in the i t e r a t i v e a r g o l r i t h in MLE;
global r e p f i r s t s t a g e ; %r e p l i c t i o n at each de i sgn po in t
global es t imate %rough es t imate in the pre−screen s t a g e
global to ta l sample1 %number o f runs in the pre−screen s t a g e
global to ta l sample2 %number o f runs in modi f ied CSB
global to ta l sample3 %number o f runs in SFD−MT
global r e p l i c a t i o n %number o f runs r equ i r ed at each l e v e l in modi f ied CSB
global N0 %i n i t i a l sample s i z e in SFD−MT
global s i g f a c t o r %important f a c t o r s by screen ing procedure
global record2
%record o f log−odds r a t i o at each l e v e l in modi f ied CSB in p o s i t i v e group
global numofrep2
%record o f number o f r e p l i c a t i o n at each l e v e l in modi f ied CSB in p o s i t i v e group
global groupindex2
%record the index o f f a c t o r s in o r i g i n a l f a c t o r group and new group when used in CSB
global samplerecord ; %record o f sample genera ted in SFD−MT
global samplecov ; %sample covar iance matrix in SFD−MT
global B %sample average in SFD−MT
global n ; %r e p l i c a t i o n generated in SFD−MT

%i n i t i a l i z i n g
to ta l sample1 =0;
tota l sample2 =0;
tota l sample3 =0;
s i g f a c t o r = [ ] ;
p=length ( t o t a l i nd ex ) ;
c u r r e n t f a c t o r =[ i n t e r c e p t ; beta ] ; % add i n t e r c e p t terms in to the f a c t o r vec t o r

%MLE in pre−screen
Matrix=DesignM (200 ) ;
%genera te des i gn matrix o f r e s o l u t i o n I I I FFD in the pre−sc reen ing s t a g e
[ rowdim coldim ]= s ize ( Matrix ) ;
D=[ ones ( rowdim , 1 ) Matrix ] ;
[ rowdim colddim ]= s ize (D) ;
Y=zeros ( rowdim , 1 ) ;
o r i g i n p i=zeros ( rowdim , 1 ) ;
for i = 1 : rowdim
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exp(D( i , : ) ∗ cu r r e n t f a c t o r )/(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ;
Y( i ,1)= binornd ( r e p f i r s t s t a g e , exp(D( i , : ) ∗ cu r r e n t f a c t o r ) / . . .
(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ) ;
o r i g i n p i ( i ,1)=exp(D( i , : ) ∗ cu r r e n t f a c t o r )/(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ;%%%%

end
M=ones ( rowdim , 1 )∗ r e p f i r s t s t a g e ;

r e sponse=zeros ( rowdim , 1 ) ;
temp=0;
for i = 1 : rowdim

temp=log (Y( i , 1 ) / ( r e p f i r s t s t a g e−Y( i , 1 ) ) ) ;
i f temp > 3

temp= 3 ;
else i f temp < −3

temp = −3;
end

end
re sponse ( i ,1)=temp ;

end
beta0= inv (D’∗D)∗D’∗ re sponse ; %s t a r t i n g va lue by l i n e a r r e g r e s s i on

o ld=beta0 ;
new=zeros (p+1 ,1) ;
tempt=beta0 ;
e s t imate=zeros (p+1 ,1) ;
i t e r =0;
pi=zeros ( rowdim , 1 ) ;
Wvector=zeros ( rowdim , 1 ) ;
mu=zeros ( rowdim , 1 ) ;
while (norm( tempt−new ) ) ˆ 0 . 5 > error

tempt=old ;
for i =1:rowdim

pi ( i ,1)= exp(D( i , : ) ∗ o ld )/(1+exp(D( i , : ) ∗ o ld ) ) ;
Wvector ( i )=M( i , 1 )∗ pi ( i ,1)∗(1−pi ( i , 1 ) ) ;
mu( i ,1)=M( i , 1 )∗ pi ( i , 1 ) ;

end
W=diag (Wvector ) ;
new=old+inv (D’∗W∗D)∗D’ ∗ (Y−mu) ;
o ld=new ;
i t e r=i t e r +1;

end
es t imate=new ;
tota l sample1=tota l sample1+rowdim∗ r e p f i r s t s t a g e ;

%pa r t i t i o n f a c t o r in p o t e n t i a l important group and unimportant group
group1 = [ ] ; %po t e n t i a l important group
group2 = [ ] ; %po t e n t i a l unimportant group
for i =2:p+1

i f abs ( e s t imate ( i ))>=de l ta0 ;
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group1=[group1 i −1] ;
end
i f abs ( e s t imate ( i ) ) < de l ta0

group2=[group2 i −1] ;
end

end
value2=zeros (1 , length ( group2 ) ) ;
for j =1: length ( group2 )

value2 ( j )=est imate ( group2 ( j )+1);
end
group2=[group2 ; value2 ] ;
group2=sort rows ( group2 ’ , 2 ) ;
a2=zeros ( length ( group2 ) , 1 ) ;
for i =1: length ( group2 )

a2 ( i ,1)= i ;
end
groupindex2=[group2 ( : , 1 ) a2 ] ’ ;
r ecord2=zeros ( length ( group2 )+1 ,2000) ; % 2000 may not be enough
numofrep2=zeros ( length ( group2 )+1 ,1) ;

%Modif ied CSB on p o t e n t i a l unimportant group
csb2 ( groupindex2 ) ;
to ta l sample2=tota l sample2+sum( numofrep2 )∗ r e p l i c a t i o n ;
%SFD−MT in p o t e n t i a l important group
N0=length ( group1 )+10;
l o g i t s c r e e n ;
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Listing B.3: Modified CSB for positive potential important group

%Fi l e name : csb2 .m
%Input : index o f f a c t o r s in the p o s i t i v e p o t e n t i a l important group

function [ ]= csb2 ( cur rent index )
%modi f ied csb used in p o s i t i v e p o t e n t i a l unimportant group

global beta
global i n t e r c e p t
global alpha %type I error
global gamma %type I I error
global r e p l i c a t i o n
global sbn0 % i n t i a l number o f samples in s e q u en t i a l t e s t used in CSB
global de l ta0
global de l ta1 %higher t h r e s h o l d
global kk %times o f m in i f i c a t i on
global mul t ip l e %min i f ac t i on when c a l c u l a t i n g hypergeometr ix f unc t i on
global s i g f a c t o r
global record2
global numofrep2
global groupindex2

%i n i t i a l i z e
mul t ip l e=1e−50;
kk=0;
dim=s ize ( groupindex2 ) ;
p=dim ( 1 , 2 ) ;
currentdim=s ize ( cur r ent index ) ;
currentp=currentdim ( 1 , 2 ) ;
l e v e l 2=current index (2 , currentp ) ;
l e v e l 1=current index (2 ,1)−1;
eta1=in t e r c e p t ;
eta2=in t e r c e p t ;

%modi f ied CSB
for i =1: l e v e l 2

eta2=eta2+beta ( groupindex2 (1 , i ) ) ;
end
for i=l e v e l 2 +1:p

eta2=eta2−beta ( groupindex2 (1 , i ) ) ;
end
for i =1: l e v e l 1

eta1=eta1+beta ( groupindex2 (1 , i ) ) ;
end
for i=l e v e l 1 +1:p

eta1=eta1−beta ( groupindex2 (1 , i ) ) ;
end
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p1=1/(1+exp(−eta1 ) ) ;
p2=1/(1+exp(−eta2 ) ) ;
count=1;
%genera te o b s e r va t i on s at l e v e l 1 and l e v e l 2
while numofrep2 ( l e v e l 2 +1,1)< sbn0

m2=binornd ( r e p l i c a t i o n , p2 ) ;
record2 ( l e v e l 2 +1, count)=m2;
numofrep2 ( l e v e l 2 +1,1)=numofrep2 ( l e v e l 2 +1 ,1)+1;
count=count+1;

end
count=1;
while numofrep2 ( l e v e l 1 +1,1)< sbn0

m1=binornd ( r e p l i c a t i o n , p1 ) ;
record2 ( l e v e l 1 +1, count)=m1;
numofrep2 ( l e v e l 1 +1,1)=numofrep2 ( l e v e l 1 +1 ,1)+1;
count=count+1;

end

%ra t i o s e q u en t i a l t e s t beg in
l o r =0;
B=0;
samplecov=0;
samplerecord = [ ] ;
n=0;
%ca l c u l a t i n g r a t i o
for i =1: sbn0

n=i ;
summation=0;
m1=record2 ( l e v e l 1 +1, i ) ;
m2=record2 ( l e v e l 2 +1, i ) ;
%some approximation used when m2 or m1 equa l s to r e p l i c a t i o n
i f m2==r e p l i c a t i o n && m1==r e p l i c a t i o n

l o r =0;
else i f m2==r e p l i c a t i o n && m1˜=r e p l i c a t i o n && m1˜=0

l o r=log ( ( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n−m1)/m1/ 0 . 5 ) ;
else i f m2˜=r e p l i c a t i o n && m2˜=0 && m1==r e p l i c a t i o n

l o r=log (m2∗0 . 5/ ( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n−m2) ) ;
else i f m2==0 && m1==0

l o r =0;
else i f m2==0 && m1˜=0 && m1˜=r e p l i c a t i o n

l o r=log ( 0 . 5∗ ( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n −0 . 5 ) ) ;
else i f m2˜=0 && m2˜=r e p l i c a t i o n && m1==0

l o r =(m2∗( r e p l i c a t i o n −0 .5)/0 .5/( r e p l i c a t i o n−m2) ) ;
else i f m2==r e p l i c a t i o n && m1==0

l o r =(( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n −0 . 5 ) / 0 . 5 / 0 . 5 ) ;
else i f m2==0 && m1==r e p l i c a t i o n

l o r =(0.25/( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n −0 . 5 ) ) ;
else
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l o r=log (m2∗( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n−m2) ) ;
% log odds ra t i o , asymtot i c normal

end
end

end
end

end
end

end
end
samplerecord=[ samplerecord l o r ] ;
B=((n−1)∗B+l o r )/n ;
for j =1:n

summation=summation+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=summation /(n−1);

end
Tn2=n∗(B) ’∗ inv ( samplecov )∗ (B) ; %t e s t s t a t i s t i c s
l og1=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
l o g r a t i o=−4∗n∗( de l t a1ˆ2−de l ta0 ˆ2)/2+ log1−log2 ;

while l o g r a t i o > log (gamma/(1−alpha ) ) && l o g r a t i o < log ((1−gamma)/ alpha )
%one r e p l i c a t i o n added each t imes
n=n+1;
i f numofrep2 ( l e v e l 2 +1 ,1) < n

record2 ( l e v e l 2 +1,n)=binornd ( r e p l i c a t i o n , p2 ) ;
numofrep2 ( l e v e l 2 +1,1)=numofrep2 ( l e v e l 2 +1 ,1)+1;

end
i f numofrep2 ( l e v e l 1 +1 ,1) < n

record2 ( l e v e l 1 +1,n)=binornd ( r e p l i c a t i o n , p1 ) ;
numofrep2 ( l e v e l 1 +1,1)=numofrep2 ( l e v e l 1 +1 ,1)+1;

end
m2=record2 ( l e v e l 2 +1,n ) ;
m1=record2 ( l e v e l 1 +1,n ) ;
summation=0;

i f m2==r e p l i c a t i o n && m1==r e p l i c a t i o n
l o r =0;

else i f m2==r e p l i c a t i o n && m1˜=r e p l i c a t i o n && m1˜=0
l o r=log ( ( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n−m1)/m1/ 0 . 5 ) ;

else i f m2˜=r e p l i c a t i o n && m2˜=0 && m1==r e p l i c a t i o n
l o r=log (m2∗0 . 5/ ( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n−m2) ) ;

else i f m2==0 && m1==0
l o r =0;

else i f m2==0 && m1˜=0 && m1˜=r e p l i c a t i o n
l o r=log ( 0 . 5∗ ( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n −0 . 5 ) ) ;

else i f m2˜=0 && m2˜=r e p l i c a t i o n && m1==0
l o r =(m2∗( r e p l i c a t i o n −0 .5)/0 .5/( r e p l i c a t i o n−m2) ) ;

else i f m2==r e p l i c a t i o n && m1==0
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l o r =(( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n −0 . 5 ) / 0 . 5 / 0 . 5 ) ;
else i f m2==0 && m1==r e p l i c a t i o n

l o r =(0.25/( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n −0 . 5 ) ) ;
else

l o r=log (m2∗( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n−m2) ) ;
% log odds ra t i o , asymtot i c normal

end
end

end
end

end
end

end
end

samplerecord = [ samplerecord l o r ] ;
B=((n−1)∗B+l o r )/n ;
for j =1:n

summation=summation+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=summation /(n−1);
Tn2=n∗(B) ’∗ inv ( samplecov )∗ (B) ;
l og1=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
l o g r a t i o=−4∗n∗( de l t a1ˆ2−de l ta0 ˆ2)/2+ log1−log2 ;

end
%ra t i o t e s t end%

i f l o g r a t i o <= log (gamma/(1−alpha ) )
accept = 1 ;

%s p l i t t i n g when group s i z e i s g r ea t e r than 1
else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && currentp >1

accept =0;
index1=current index ( : , 1 : f loor ( currentp / 2 ) ) ;
index2=current index ( : , f loor ( currentp /2)+1: currentp ) ;
csb2 ( index1 )
csb2 ( index2 )

%c l a s s i f i e d important f a c t o r s i f group s i z e e qua l s to 1
else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && currentp==1

accept =0;
s i g f a c t o r =[ s i g f a c t o r cur rent index ( 1 , 1 ) ] ;

end
end

end
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Listing B.4: Modified CSB for negative potential important group

%Fi l e name : csb3 .m
%Input : index o f f a c t o r s in the nega t i v e p o t e n t i a l important group

function [ ]= csb3 ( cur rent index )
%modi f ied csb used in naga t i v e p o t e n t i a l unimportant group
global beta
global i n t e r c e p t
global alpha %type I error
global gamma %type I I error
global r e p l i c a t i o n % be t t e r > 20
global sbn0 % i n t i a l number o f samples in s e q u en t i a l t e s t used in CSB
global de l ta0
global de l ta1 %higher t h r e s h o l d
global kk %times o f m in i f i c a t i on
global mul t ip l e %min i f ac t i on when c a l c u l a t i n g hypergeometr ix f unc t i on
global s i g f a c t o r
global record3
global numofrep3
global groupindex3

%i n i t i a l i z e
mul t ip l e=1e−50;
kk=0;
dim=s ize ( groupindex3 ) ;
p=dim ( 1 , 2 ) ;
currentdim=s ize ( cur r ent index ) ;
currentp=currentdim ( 1 , 2 ) ;
l e v e l 2=current index (2 , currentp ) ;
l e v e l 1=current index (2 ,1)−1;
eta1=in t e r c e p t ;
eta2=in t e r c e p t ;

%modi f ied CSB
for i =1: l e v e l 2

eta2=eta2−beta ( groupindex3 (1 , i ) ) ;
end
for i=l e v e l 2 +1:p

eta2=eta2+beta ( groupindex3 (1 , i ) ) ;
end
for i =1: l e v e l 1

eta1=eta1−beta ( groupindex3 (1 , i ) ) ;
end
for i=l e v e l 1 +1:p

eta1=eta1+beta ( groupindex3 (1 , i ) ) ;
end
p1=1/(1+exp(−eta1 ) ) ;
p2=1/(1+exp(−eta2 ) ) ;

42



count=1;
%genera te o b s e r va t i on s at l e v e l 1 and l e v e l 2
while numofrep3 ( l e v e l 2 +1,1)< sbn0

m2=binornd ( r e p l i c a t i o n , p2 ) ;
record3 ( l e v e l 2 +1, count)=m2;
numofrep3 ( l e v e l 2 +1,1)=numofrep3 ( l e v e l 2 +1 ,1)+1;
count=count+1;

end
count=1;
while numofrep3 ( l e v e l 1 +1,1)< sbn0

m1=binornd ( r e p l i c a t i o n , p1 ) ;
record3 ( l e v e l 1 +1, count)=m1;
numofrep3 ( l e v e l 1 +1,1)=numofrep3 ( l e v e l 1 +1 ,1)+1;
count=count+1;

end

%ra t i o s e q u en t i a l t e s t beg in
l o r =0;
B=0;
samplecov=0;
samplerecord = [ ] ;
n=0;
for i =1: sbn0

n=i ;
summation=0;
m1=record3 ( l e v e l 1 +1, i ) ;
m2=record3 ( l e v e l 2 +1, i ) ;
%some approximation used when m2 or m1 equa l s to r e p l i c a t i o n
i f m2==r e p l i c a t i o n && m1==r e p l i c a t i o n

l o r =0;
else i f m2==r e p l i c a t i o n && m1˜=r e p l i c a t i o n && m1˜=0

l o r=log ( ( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n−m1)/m1/ 0 . 5 ) ;
else i f m2˜=r e p l i c a t i o n && m2˜=0 && m1==r e p l i c a t i o n

l o r=log (m2∗0 . 5/ ( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n−m2) ) ;
else i f m2==0 && m1==0

l o r =0;
else i f m2==0 && m1˜=0 && m1˜=r e p l i c a t i o n

l o r=log ( 0 . 5∗ ( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n −0 . 5 ) ) ;
else i f m2˜=0 && m2˜=r e p l i c a t i o n && m1==0

l o r =(m2∗( r e p l i c a t i o n −0 .5)/0 .5/( r e p l i c a t i o n−m2) ) ;
else i f m2==r e p l i c a t i o n && m1==0

l o r =(( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n −0 . 5 ) / 0 . 5 / 0 . 5 ) ;
else i f m2==0 && m1==r e p l i c a t i o n

l o r =(0.25/( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n −0 . 5 ) ) ;
else

l o r=log (m2∗( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n−m2) ) ;
% log odds ra t i o , asymtot i c normal

end
end
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end
end

end
end

end
end
samplerecord=[ samplerecord l o r ] ;
B=((n−1)∗B+l o r )/n ;
for j =1:n

summation=summation+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=summation /(n−1);

end
Tn2=n∗(B) ’∗ inv ( samplecov )∗ (B) ; %t e s t s t a t i s t i c s
l og1=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
l o g r a t i o=−4∗n∗( de l t a1ˆ2−de l ta0 ˆ2)/2+ log1−log2 ;

while l o g r a t i o > log (gamma/(1−alpha ) ) && l o g r a t i o < log ((1−gamma)/ alpha )
n=n+1;
i f numofrep3 ( l e v e l 2 +1 ,1) < n

record3 ( l e v e l 2 +1,n)=binornd ( r e p l i c a t i o n , p2 ) ;
numofrep3 ( l e v e l 2 +1,1)=numofrep3 ( l e v e l 2 +1 ,1)+1;

end
i f numofrep3 ( l e v e l 1 +1 ,1) < n

record3 ( l e v e l 1 +1,n)=binornd ( r e p l i c a t i o n , p1 ) ;
numofrep3 ( l e v e l 1 +1,1)=numofrep3 ( l e v e l 1 +1 ,1)+1;

end
m2=record3 ( l e v e l 2 +1,n ) ;
m1=record3 ( l e v e l 1 +1,n ) ;
summation=0;

i f m2==r e p l i c a t i o n && m1==r e p l i c a t i o n
l o r =0;

else i f m2==r e p l i c a t i o n && m1˜=r e p l i c a t i o n && m1˜=0
l o r=log ( ( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n−m1)/m1/ 0 . 5 ) ;

else i f m2˜=r e p l i c a t i o n && m2˜=0 && m1==r e p l i c a t i o n
l o r=log (m2∗0 . 5/ ( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n−m2) ) ;

else i f m2==0 && m1==0
l o r =0;

else i f m2==0 && m1˜=0 && m1˜=r e p l i c a t i o n
l o r=log ( 0 . 5∗ ( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n −0 . 5 ) ) ;

else i f m2˜=0 && m2˜=r e p l i c a t i o n && m1==0
l o r =(m2∗( r e p l i c a t i o n −0 .5)/0 .5/( r e p l i c a t i o n−m2) ) ;

else i f m2==r e p l i c a t i o n && m1==0
l o r =(( r e p l i c a t i o n −0.5)∗( r e p l i c a t i o n −0 . 5 ) / 0 . 5 / 0 . 5 ) ;

else i f m2==0 && m1==r e p l i c a t i o n
l o r =(0.25/( r e p l i c a t i o n −0.5)/( r e p l i c a t i o n −0 . 5 ) ) ;

else
l o r=log (m2∗( r e p l i c a t i o n−m1)/m1/( r e p l i c a t i o n−m2) ) ;
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% log odds ra t i o , asymtot i c normal
end

end
end

end
end

end
end

end
samplerecord = [ samplerecord l o r ] ;
B=((n−1)∗B+l o r )/n ;
for j =1:n

summation=summation+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=summation /(n−1);
Tn2=n∗(B) ’∗ inv ( samplecov )∗ (B) ;
l og1=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,1/2 ,n∗4∗ de l ta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
l o g r a t i o=−4∗n∗( de l t a1ˆ2−de l ta0 ˆ2)/2+ log1−log2 ;

end
%ra t i o t e s t end%

i f l o g r a t i o <= log (gamma/(1−alpha ) )
accept = 1 ;

%s p l i t t i n g when group s i z e i s g r ea t e r than 1
else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && currentp >1

accept =0;
index1=current index ( : , 1 : f loor ( currentp / 2 ) ) ;
index2=current index ( : , f loor ( currentp /2)+1: currentp ) ;
csb3 ( index1 ) ;
csb3 ( index2 ) ;
%c l a s s i f i e d important f a c t o r s i f group s i z e e qua l s to 1

else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && currentp==1
accept =0;
s i g f a c t o r =[ s i g f a c t o r cur rent index ( 1 , 1 ) ] ;

end
end

end
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Listing B.5: SFD-MT on the entire potential important group

%Fi l e name : l o g i t s c r e e n .m
%Input : index o f f a c t o r s in the p o s i t i v e p o t e n t i a l important group

function [ ]= l o g i t s c r e e n %SFD−MT begore any s p l i t t i n g o f the group

global s i g f a c t o r ;
global gamma; %type I I error ;
global alpha ; %type I error ;
global N0 ; %i n i t i a l # of r e p l i c a t i o n
global de l ta0 ; %lower t h r e s ho l d ;
global de l ta1 ; %higher t h r e s h o l d ;
global mul t ip l e ;
global kk
global samplerecord ;
global samplecov ;
global B
global n ;
global group1 ;

%i n i t i a l i z e
samplerecord = [ ] ;
mu l t ip l e=1e50 ;
kk=0;
p = length ( group1 ) ; % leng t h o f f a c t o r vec t o r inc l ude i n t e r c e p t
cur rent index=group1 ;
index1 = [ ] ;
index2 = [ ] ;
indexo f index1 = [ ] ;
indexo f index2 = [ ] ;
n=0;

B =l o g i t r e g ( cur rent index ) ; %p+1 by 1 s ince i n t e r c e p t e f f e c t inc luded
samplecov=0;
samplerecord=B; % save the sample genera ted

%genera te i n i t i a l number o f sample , s e q u e n t i a l t e s t beg in
for i =2:N0

n=i ;
sum=0;
tempt=l o g i t r e g ( cur rent index ) ;
samplerecord=[ samplerecord tempt ] ;
B=((n−1)∗B+tempt )/n ;
for j =1:n

sum=sum+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=sum/(n−1);

end
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%ca l c u l a t e the t h r e s h o l d used in each s p l i t t i n g s t a g e var ing wi th n
invsamplecov=inv ( samplecov ) ;
sum1=0;
sum2=0;
for i =1:p

sum1=sum1+invsamplecov ( i , i ) ;
end
for i =1:p

for j =1: i−1
sum2=sum2+2∗ invsamplecov ( i , j ) ;

end
end
temptdelta1=de l ta1 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
temptdelta0=de l ta0 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
Tn2=n∗(B) ’∗ inv ( samplecov )∗ (B) ;

%ca l c u l a t e l o g ra t i o , some approximation used by m in i f i c a t i on
l og1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while log2 ==i n f

kk=kk+1;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
kk2=kk ;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while l og1 == i n f

kk=kk+1;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
log2=log2−(kk−kk2 )∗ log ( mu l t ip l e ) ;
l o g r a t i o=−n∗( temptdelta1ˆ2−temptdelta0 ˆ2)/2+ log1−log2 ;

%No conc lus ion wi th i n i t i a l number o f sample , genera te more r e p l i c a t i o n
while l o g r a t i o > log (gamma/(1−alpha ) ) && l o g r a t i o < log ((1−gamma)/ alpha )

n=n+1; %one r e p l i c a t i o n generated
tempt=l o g i t r e g ( cur rent index ) ;
samplerecord = [ samplerecord tempt ] ;
B=((n−1)∗B+tempt )/n ;
sum=0;
for j =1:n

sum=sum+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=sum/(n−1);

%ca l c u l a t e the t h r e s h o l d used a f t e r n updated
invsamplecov=inv ( samplecov ) ;
sum1=0;
sum2=0;
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for i =1:p
sum1=sum1+invsamplecov ( i , i ) ;

end
for i =1:p

for j =1: i−1
sum2=sum2+2∗ invsamplecov ( i , j ) ;

end
end
temptdelta1=de l ta1 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
temptdelta0=de l ta0 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
Tn2=n∗(B) ’∗ inv ( samplecov )∗ (B) ;
%ca l c u l a t e l o g ra t i o , some approximation used by m in i f i c a t i on
l og1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while log2 ==i n f

kk=kk+1;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
kk2=kk ;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while l og1 == i n f

kk=kk+1;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
log2=log2−(kk−kk2 )∗ log ( mu l t ip l e ) ;
l o g r a t i o=−n∗( temptdelta1ˆ2−temptdelta0 ˆ2)/2+ log1−log2 ;

end
%se qu en t i a l t e s t end

temptsamplecov=samplecov ;
i f l o g r a t i o <= log (gamma/(1−alpha ) )

accept = 1 ;

else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && p > 2
%s p l i t i n g important group when group s i z e i s g r ea t e r than 2
accept = 0 ;
max=0;
maxindex = [ ] ;
%s p l i t t i n g proces s
while ( length ( index1 ) < p/2 )

for i = 1 : p
for j = i+1 : p

i f abs ( temptsamplecov ( i , j ) ) >= max
i 0=i ;
j 0=j ;
max = abs ( temptsamplecov ( i0 , j 0 ) ) ;

maxindex=[ i 0 j 0 ] ;
end

end
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end
max=0;
temptsamplecov ( i0 , j 0 )=0;
a l r e ady in = 0 ; %judge i f some f a c t o r i s a l r eady in the group
for l =1: length ( index1 )

i f i 0 == indexo f index1 ( l )
a l r e ady in = 1 ;
break

end
end
i f a l r eady in == 0

index1=[ index1 cur rent index ( i 0 ) ] ;
indexo f index1 =[ indexo f index1 i 0 ] ;

end
a l r eady in = 0 ;
for l =1: length ( index1 )

i f j 0 == indexo f index1 ( l )
a l r e ady in = 1 ;
break

end
end
i f a l r eady in == 0

index1=[ index1 cur rent index ( j0 ) ] ;
indexo f index1 =[ indexo f index1 j0 ] ;

end
end
a l r eady in = 0 ;
for l = 1 : length ( cur r ent index )

a l r eady in =0;
for t =1: length ( index1 )

i f l == indexo f index1 ( t )
a l r e ady in = 1 ;
break

end
end

i f a l r eady in == 0
index2 = [ index2 cur rent index ( l ) ] ;

end
end
l o g i t s p l i t ( index1 ) ; %subgroup be ing screened
l o g i t s p l i t ( index2 ) ; %subgroup be ing screened
else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && p == 1

%important group wi th s i z e 1
accept =0;
s i g f a c t o r =[ s i g f a c t o r cur rent index ] ;
else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && p == 2

%s p l i t t i n g wi th s i z e two group
index1=current index ( 1 ) ;
index2=current index ( 2 ) ;
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l o g i t s p l i t ( index1 ) ;
l o g i t s p l i t ( index2 ) ;

end
end
end

end
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Listing B.6: SFD-MT on the subgroups of the potential important group

%Fi l e name : l o g i t s p l i t .m
%Input : index o f f a c t o r s in the subgroup o f the p o s i t i v e p o t e n t i a l important group

function [ ]= l o g i t s p l i t ( indexvec tor )
%SFD−MT a f t e r s p l i t t i n g o f the group

global s i g f a c t o r ;
global gamma; % type 2 error ;
global alpha ; % type 1 error ;
global de l ta0 ; % lower t h r e s ho l d ;
global de l ta1 ; % higher t h r e s h o l d ;
global mul t ip l e ;
global kk ;
global samplerecord ;
global samplecov ;
global B;
global group1 ;
global n ;

%i n i t i a l i z e
mul t ip l e=1e50 ;
kk=0;
p = length ( indexvec to r ) ;
cur rent index=indexvec to r ;
index1 = [ ] ;
index2 = [ ] ;
indexo f index1 = [ ] ;
indexo f index2 = [ ] ;
temptsamplecov=zeros (p , p ) ; %covar iance matrix used when t e s t i n g subgroup
temptB=zeros (p , 1 ) ;
for i =1:p

for j =1:p
temptsamplecov ( i , j )=samplecov . . .
( length ( group1 ( group1<=current index ( i ) ) ) , . . .
length ( group1 ( group1<=current index ( j ) ) ) ) ;

end
end
for i =1:p

temptB( i ,1)=B( length ( group1 ( group1<=current index ( i ) ) ) ) ;
end

%ca l c u l a t e the t h r e s h o l d used in each s p l i t t i n g s t a g e var ing wi th n
invsamplecov=inv ( temptsamplecov ) ;
sum1=0;
sum2=0;
for i =1:p

sum1=sum1+invsamplecov ( i , i ) ;
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end
for i =1:p

for j =1: i−1
sum2=sum2+2∗ invsamplecov ( i , j ) ;

end
end
temptdelta1=de l ta1 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
temptdelta0=de l ta0 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;

%%ca l c u l a t e l o g ra t i o , some approximation used by m in i f i c a t i on
Tn2=n∗( temptB ) ’∗ inv ( temptsamplecov )∗ ( temptB ) ;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while log2 ==i n f

kk=kk+1;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
kk2=kk ;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

while l og1 == i n f
kk=kk+1;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
log2=log2−(kk−kk2 )∗ log ( mu l t ip l e ) ;
l o g r a t i o=−n∗( temptdelta1ˆ2−temptdelta0 ˆ2)/2+ log1−log2 ;

%No con l u s t i on go t wi th current sample s i z e , genera te more r e p l i c a i t o n
while l o g r a t i o > log (gamma/(1−alpha ) ) && l o g r a t i o < log ((1−gamma)/ alpha )

n=n+1 ; %one r e p l i c a t i o n generated
tempt=l o g i t r e g ( group1 ) ;
samplerecord = [ samplerecord tempt ] ;
B=((n−1)∗B+tempt )/n ;
sum=0;
for j =1:n

sum=sum+(( samplerecord ( : , j )−B)∗ ( samplerecord ( : , j )−B) ’ ) ;
end
samplecov=sum/(n−1);
for i =1:p

for j =1:p
temptsamplecov ( i , j )=samplecov . . .
( length ( group1 ( group1<=current index ( i ) ) ) , . . .
length ( group1 ( group1<=current index ( j ) ) ) ) ;

end
end
for i =1:p

temptB( i ,1)=B( length ( group1 ( group1<=current index ( i ) ) ) ) ;
end
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%ca l c u l a t e the t h r e s h o l d used in each s p l i t t i n g s t a g e var ing wi th n
invsamplecov=inv ( temptsamplecov ) ;
sum1=0;
sum2=0;
for i =1:p

sum1=sum1+invsamplecov ( i , i ) ;
end
for i =1:p

for j =1: i−1
sum2=sum2+2∗ invsamplecov ( i , j ) ;

end
end
temptdelta1=de l ta1 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
temptdelta0=de l ta0 ∗ ( ( sum1+sum2)/p ) ˆ 0 . 5 ;
Tn2=n∗( temptB ) ’∗ inv ( temptsamplecov )∗ ( temptB ) ;

%ca l c u l a t e l o g ra t i o , some approximation used by m in i f i c a t i on
l og1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while log2 ==i n f

kk=kk+1;
log2=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta0 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
kk2=kk ;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;
while l og1 == i n f

kk=kk+1;
log1=log ( con f luenthyper (n/2 ,p/2 ,n∗ temptdelta1 ˆ2∗Tn2/2/(n−1+Tn2 ) ) ) ;

end
log2=log2−(kk−kk2 )∗ log ( mu l t ip l e ) ;
l o g r a t i o=−n∗( temptdelta1ˆ2−temptdelta0 ˆ2)/2+ log1−log2 ;

end
%se qu en t i a l t e s t end

i f l o g r a t i o <= log (gamma/(1−alpha ) )
accept = 1 ;

else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && p > 2
%s p l i t i n g important group when group s i z e i s g r ea t e r than 2
accept = 0 ;
max=0;
maxindex = [ ] ;
while ( length ( index1 ) < p/2 )

for i = 1 : p
for j = i+1 : p

i f abs ( temptsamplecov ( i , j ) ) >= max
i 0=i ;
j 0=j ;
max = abs ( temptsamplecov ( i0 , j 0 ) ) ;

maxindex=[ i 0 j 0 ] ;
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end
end

end
max=0;
temptsamplecov ( i0 , j 0 )=0;
a l r e ady in = 0 ; %judge i f some f a c t o r i s a l r eady in the group
for l =1: length ( index1 )

i f i 0 == indexo f index1 ( l )
a l r e ady in = 1 ;
break

end
end
i f a l r eady in == 0

index1=[ index1 cur rent index ( i 0 ) ] ;
indexo f index1 =[ indexo f index1 i 0 ] ;

end

a l r eady in = 0 ;
for l =1: length ( index1 )

i f j 0 == indexo f index1 ( l )
a l r e ady in = 1 ;
break

end
end
i f a l r eady in == 0

index1=[ index1 cur rent index ( j0 ) ] ;
indexo f index1 =[ indexo f index1 j0 ] ;

end
end

a l r eady in = 0 ;

for l = 1 : length ( cur r ent index )
a l r eady in =0;
for t =1: length ( index1 )

i f l == indexo f index1 ( t )
a l r e ady in = 1 ;
break

end
end

i f a l r eady in == 0
index2 = [ index2 cur rent index ( l ) ] ;

end

end
l o g i t s p l i t ( index1 ) ; %subgroup be ing screened
l o g i t s p l i t ( index2 ) ; %subgroup be ing screened

else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && p == 1
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%important group wi th s i z e 1
accept =0;
s i g f a c t o r =[ s i g f a c t o r cur rent index ] ;

else i f l o g r a t i o >= log ((1−gamma)/ alpha ) && p == 2
%s p l i t t i n g wi th s i z e two group
accept =0;
index1=current index ( 1 ) ;
index2=current index ( 2 ) ;
l o g i t s p l i t ( index1 ) ;
l o g i t s p l i t ( index2 ) ;

end
end
end

end
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Listing B.7: logistic regression process

%Fi l e name : l o g i t r e g .m
%Input : index o f f a c t o r s in group be ing t e s t e d

function [ e s t imate ]= l o g i t r e g ( cur rent index )
%es t imat ion the e f f e c t c o e f f i c i e n t by l o g i s t i c r e g r e s s i on

global beta ;
global i n t e r c e p t
global error ; % error in MLE;
global rep ; %r e p l i c t i o n at each de i sgn po in t in SFD−MT
global to ta l sample3 ;

%I i n i t i a l i z e
p=length ( cur r ent index ) ; % in t e r c e p t e f f e c t not inc luded
cu r r e n t f a c t o r=zeros (p+1 ,1) ;
c u r r e n t f a c t o r (1 ,1)= i n t e r c e p t ;
for i =2:p+1

cu r r e n t f a c t o r ( i ,1)=beta ( cur r ent index (1 , i −1)) ;
end
Matrix=DesignM(p ) ;
[ rowdim coldim ]= s ize ( Matrix ) ;
D=[ ones ( rowdim , 1 ) Matrix ] ;
% D i s the Design Matrix wi th i n t e r c e p t in the column one
coldim=coldim+1;

%MLE beg in s
Y=zeros ( rowdim , 1 ) ;
o r i g i n p i=zeros ( rowdim , 1 ) ;
for i = 1 : rowdim

exp(D( i , : ) ∗ cu r r e n t f a c t o r )/(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ;
Y( i ,1)= binornd ( rep , exp(D( i , : ) ∗ cu r r e n t f a c t o r ) / . . .
(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ) ;
o r i g i n p i ( i ,1)=exp(D( i , : ) ∗ cu r r e n t f a c t o r )/(1+exp(D( i , : ) ∗ cu r r e n t f a c t o r ) ) ;%%%%

end
M=ones ( rowdim , 1 )∗ rep ;
re sponse=zeros ( rowdim , 1 ) ;
temp=0;
for i = 1 : rowdim

temp=log (Y( i , 1 ) / ( rep−Y( i , 1 ) ) ) ;
i f temp > 4

temp= 4 ;
else i f temp < −4

temp = −4;
end

end
re sponse ( i ,1)=temp ;

end
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beta0= inv (D’∗D)∗D’∗ re sponse ; %i n i t i a l e s t ima t ion
o ld=beta0 ;
new=0;
tempt=beta0 ;
i t e r =0;
pi=zeros ( rowdim , 1 ) ;
Wvector=zeros ( rowdim , 1 ) ;
mu=zeros ( rowdim , 1 ) ;

while (norm( tempt−new ) ) ˆ 0 . 5 > error && i t e r <15
tempt=old ;
for i =1:rowdim

pi ( i ,1)= exp(D( i , : ) ∗ o ld )/(1+exp(D( i , : ) ∗ o ld ) ) ;
Wvector ( i )=M( i , 1 )∗ pi ( i ,1)∗(1−pi ( i , 1 ) ) ;
mu( i ,1)=M( i , 1 )∗ pi ( i , 1 ) ;

end
W=diag (Wvector ) ;
new=old+inv (D’∗W∗D)∗D’ ∗ (Y−mu) ;
o ld=new ;
i t e r=i t e r +1;

end
es t imate=zeros (p , 1 ) ;
for i =1:p

es t imate ( i ,1)=new( i +1 ,1) ;
end
to ta l sample3=tota l sample3+rep ∗rowdim ; %number o f runs inc r ea s e s
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Listing B.8: Genarate design matrix of resolution III fraction factorial design

%Fi l e name : DesignM .m
%Input : number o f f a c t o r s in the group

function [D]=DesignM( numberofdesign )
%genera te des i gn matrix o f r e s o l u t i o n I I I f r a c t i o n a l f a c t o r i a l des i gn
%with up to 500 f a c t o r s
M=numberofdesign ; % Total number o f f a c t o r s in the group
% f ind m
i f M<3

D=( f f 2n (M) −0 .5)∗2 ;
end
i f M >=3
m=3;
while 2ˆm <= M+1

m=m+1;
end

fu l l=( f f 2n (m)−0.5)∗2 ; % f u l l f a c t o r i a l des i gn
d im fu l l=s ize ( f u l l ) ;
D=[ f u l l zeros ( d im fu l l ( 1 ) ,M−m) ] ;
dimension=s ize (D) ;

% now genera te the m+1 to M Column
n=0;
%confounded wi th two−f a c t o r i n t e r a c t i o n terms
for l =1:m−1

for k=l +1:m
%ca l c u l a t e the m+n th coluumn
n=n+1;
i f (m+n)<=dimension (2 )

for i =1: dimension (1 )
D( i ,m+n)=D( i , l )∗D( i , k ) ;

end
end

end
end

%confounded wi th three−f a c t o r i n t e r a c t i o n terms
i f m+n<dimension (2 )

for l =1:m−2
for k=l +1:m−1

for p=k+1:m
n=n+1;
i f m+n<=dimension (2 )

for i =1: dimension (1 )
D( i ,m+n)=D( i , l )∗D( i , k )∗D( i , p ) ;

end
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end
end

end
end

end
%confounded wi th four−f a c t o r i n t e r a c t i o n terms
i f m+n<dimension (2 )

for l =1:m−3
for k=l +1:m−2

for p=k+1:m−1
for q=p+1:m

n=n+1;
i f m+n<=dimension (2 )

for i =1: dimension (1 )
D( i ,m+n)=D( i , l )∗D( i , k )∗D( i , p)∗D( i , q ) ;

end
end

end
end

end
end

end
%confounded wi th f i v e−f a c t o r i n t e r a c t i o n terms

i f m+n<dimension (2 )
for l =1:m−4

for k=l +1:m−3
for p=k+1:m−2

for q=p+1:m−1
for o=q+1:m

n=n+1;
i f m+n<=dimension (2 )

for i =1: dimension (1 )
D( i ,m+n)=D( i , l )∗D( i , k )∗D( i , p)∗D( i , q )∗D( i , o ) ;

end
end

end
end

end
end

end
end

%confounded wi th s ix−f a c t o r i n t e r a c t i o n terms
i f m+n<dimension (2 )

for l =1:m−5
for k=l +1:m−4

for p=k+1:m−3
for q=p+1:m−2

for o=q+1:m−1
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for h=o+1:m
n=n+1;
i f m+n<=dimension (2 )

for i =1: dimension (1 )
D( i ,m+n)=D( i , l )∗D( i , k )∗D( i , p)∗D( i , q )∗D( i , o )∗D( i , h ) ;

end
end

end
end

end
end

end
end

end
end
%confounded wi th seven−f a c t o r i n t e r a c t i o n terms
i f m+n<dimension (2 )

for l =1:m−5
for k=l +1:m−4

for p=k+1:m−3
for q=p+1:m−2

for o=q+1:m−1
for h=o+1:m

for g=h+1:m
n=n+1;
i f m+n<=dimension (2 )
for i =1: dimension (1 )

D( i ,m+n)=D( i , l )∗D( i , k )∗D( i , p)∗D( i , q )∗D( i , o )∗D( i , h)∗D( i , g ) ;
end

end
end

end
end

end
end

end
end

end

end
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Listing B.9: calculating confluent hypergeometric function

%Fi l e name : con f l u en thype r .m
%Input : parameters in the con f l u en t hypergeometr ic f unc t i on

function [ new ] = con f luenthyper ( a , c , x )
%ca l c u l a t e the con f l u en t hypergeometr ic f unc t i on wi th r e a l va lue
global mul t ip l e ; %min i f i c a t i on
global kk ; %number o f m in i f i c a t i on
n=1;
new=(1+a∗x/c )/ ( mu l t ip l e ˆkk ) ;
tempt = [ ] ;
o ld =0;
i n i t i a lm i n =200;
min=in i t i a lm i n ; %minimum number o f l oops in wh i l e loop
while abs ( old−new) > 1e−5 | | n<min | | Fuzhu (a , c , x , n)< Fuzhu (a , c , x , n+1)

tempt=new ;
new=new+Fuzhu (a , c , x , n ) ;
o ld=tempt ;
n=n+1;

end
%prevent the m in i f i c a t i on to make the va lue zero
while new == 0

min=in i t i a lm i n+min ;
n=1;
new=(1+a∗x/c )/ ( mu l t ip l e ˆkk ) ;
tempt = [ ] ;
o ld =0;
while abs ( old−new) > 1e−5 | | n<min | | Fuzhu (a , c , x , n)< Fuzhu (a , c , x , n+1)

tempt=new ;
new=new+Fuzhu (a , c , x , n ) ;
o ld=tempt ;
n=n+1;

end
end
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Listing B.10: calculating terms in the confluent hypergeometric function

%Fi l e name : con f l u en thype r .m
%Input : parameters in the con f l u en t hypergeometr ic f unc t i on

function [ va lue ] = Fuzhu (a , c , x , n )
%ca l u l a t e terms in the con luent hypergeometr ic f unc t i on

global mul t ip l e ; %min i f i c a t i on
global kk ; %number o f m in i f i c a t i on
l o gva lue=log ( a)−log ( c ) ;
for i =1:n

l ogva lue=logva lue+log ( a+i )−log ( c+i )−log ( i +1);
end
l o gva lue=logva lue+(n+1)∗ log ( x)−kk∗ log ( mu l t ip l e ) ;
va lue=exp (1)ˆ l ogva lue ;
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