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ABSTRACT 
 

Elucidating Mechanisms of  
Canonical Wnt – ephrin-B Crosstalk 

 

William Tyler Koch 
 

Throughout development, canonical Wnt signaling contributes to the formation 
and maintenance of a wide array of cells, tissues, and organs.  Dys-regulated Wnt 
signaling during embryonic development is implicated in developmental defects known 
as neurochristopathies, including craniofacial and heart defects, as well as defects in 
neural development.  Due to its roles in stem cell maintenance and self-renewal, tissue 
homeostasis, and regeneration, aberrant Wnt signaling in adult tissues can result in 
various forms of cancer, including colorectal cancer, breast cancer, lung cancer, and 
gastro-intestinal cancer, among others.  Dys-regulated Wnt signaling is also implicated 
in other pathologies including bone disease, and metabolic diseases, such as Type II 
diabetes.  Our lab has previously identified a novel crosstalk between canonical Wnt 
signaling and ephrin signaling.  Ephrin signaling occurs through the interaction of ephrin 
ligands and Eph receptor tyrosine kinases, and is bidirectional.  Due to the roles of 
ephrin signaling in tissue development and maintenance, aberrant ephrin signaling is 
implicated in many diseases including bone remodeling diseases, diabetes, and cancer.  
The molecular mechanism of the crosstalk between canonical Wnt signaling and ephrin-
B signaling remains unknown.  β-catenin is a key intracellular effector of canonical Wnt 
signaling that transduces the signal to the nucleus, where β-catenin interacts with the 
TCF/LEF transcription factors and activates transcription of target genes.  Due to its 
central role in transducing the canonical Wnt signal to the nucleus, we predict that 
ephrin-B signaling antagonizes canonical Wnt signaling by affecting the stability and/or 
sub-cellular localization of β-catenin, or the interaction between β-catenin and TCF/LEF 
transcription factors.  By employing mouse ephrin-B constructs in human cell lines, we 
show that the canonical Wnt - ephrin-B crosstalk is conserved between frogs and 
mammals.  We also found that ephrin-B antagonism of canonical Wnt signaling is likely 
independent of ubiquitin proteasome system (UPS)-mediated degradation of β-catenin. 
Furthermore, confocal immunofluorescence microscopy revealed that overexpression of 
ephrin-B in HEK293T cells treated with lithium chloride (LiCl) seems to promote 
membrane localization of β-catenin, particularly at the apical Z sections.  These results 
suggests that re-localization of β-catenin to the cell membrane may contribute to the 
ephrin-B antagonism of canonical Wnt signaling.  
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We stare straight into nothing 
But we call it all the same 

- Adam Granduciel 
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Chapter 1: Introduction 

1.1: Canonical Wnt Signaling 
1.1.1: Canonical Wnt Signaling 

There are 19 identified mammalian Wnt homologs, which include 22 cysteine 

residues whose spacing and arrangement is highly conserved, a signal sequence for 

secretion, and potential glycosylation sites (Kikuchi, 2011; Mikels, 2006).  Wnt ligands do not 

function as a classical morphogen by establishing a chemical gradient, but instead 

mediate close range signaling between cells that are close to one another (Clevers, 2012).  

Wnt ligands are palmitoylated in the endoplasmic reticulum (ER) by the Porcupine 

(Porc) enzyme, and are glycosylated to ensure proper secretion (Takada, 2006; Lorenowicz, 2009; 

Port, 2010; Herr, 2012; Clevers, 2012).  Palmitoylated Wnt ligands are transported to the Golgi 

network where they bind to the Evi/Wntless multi-pass transmembrane protein (Takada, 

2006; Lorenowicz, 2009; Port, 2010; Herr, 2012; Clevers, 2012).  The Wnt/Evi/Wntless complexes are 

secreted from the Golgi network in endosomal vesicles, which transport Wnt ligands to 

the plasma membrane to be secreted from the cell (Takada, 2006; Lorenowicz, 2009; Port, 2010; Herr, 

2012; Clevers, 2012).  Wnt ligands were first found to bind the cysteine rich domain (CRD) of 

Frizzled (Fz), a 7-transmembrane protein of the GPCR family (Bhanot, 1996).  The 

palmitoleic acid group extends from the “thumb” region of the Wnt ligand into the 

cysteine rich domain (CRD) of Fz, reinforcing the Wnt-Fz interaction (Takada, 2006; Lorenowicz, 

2009; Port, 2010; Herr, 2012; Clevers, 2012).  A single Wnt can bind multiple Fz receptors and a single 

Fz receptor can also bind multiple Wnt ligands (Bhanot, 1996).  Upon binding of Wnt ligand, 

Fz forms receptor complexes with co-receptors, including low-density lipoprotein 

receptor-related proteins 5/6 (LRP5/6), receptor Tyr kinase-like orphan receptors 1/2 

(Ror1/2), and protein Tyr kinase 7 (PTK7) (Li, 2005;
 
Grumolato, 2010;

 
Peradziryi, 2012).   

Wnt ligands also bind various agonists, such as the R-spondin family and Norrin, 

and antagonists, such as Cerberus, Dickopf-related protein 1 (DKK1), secreted Frizzled-

related protein (SFRP), Wnt inhibitory factor (WIF), Sclerostin (and its homologue 

Wise), which regulate Wnt signaling by affecting the assembly of ligand – receptor 

complexes and/or the recruitment of co-receptors, or by affecting receptor endocytosis 
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(Cruciat, 2012; Niehrs, 2012).  Furthermore, Wnt ligands have since been found to also bind 

alternate receptors independently of Fz through their interaction with a CRD and/or a 

Wnt inhibitory factor (WIF) domain (Mikels, 2006).  In this manner, Wnt ligands were found to 

bind the CRDs of Ror and the muscle skeletal receptor Tyr kinase (MUSK), as well as 

the WIF domain of the cell surface atypical receptor tyrosine kinase, receptor Tyr 

kinase (Ryk).  These receptors may function as alternate receptors and/or Fz co-

receptors (Mikels, 2006).  Specific combinations of Wnt ligands, receptors, co-receptors, and 

cellular context induce various downstream signaling events which induce different 

cellular responses.  Depending on the induced downstream signaling events and the 

cellular responses elicited, Wnt signaling is defined as either canonical or non-

canonical.  Generally speaking, canonical Wnt signaling involves binding of Wnt ligands 

to Fz/LRP5/6, resulting in the stabilization and nuclear localization of the intracellular 

effector, β-catenin, which in turn binds to T-cell/lymphoid enhancer factor (TCF/LEF) 

transcription factors and activates transcription of canonical Wnt target genes.  Non-

canonical Wnt signaling, however, involves Wnt5a, Wnt11, or other Wnt ligands binding 

to alternate Wnt receptors, such as Ryk, Ror, and MUSK, or to Fz, which recruits 

alternate co-receptors, ultimately resulting in activation of distinct downstream 

intracellular signaling events which may not involve stabilization and nuclear localization 

of β-catenin. Accordingly, canonical Wnt signaling is commonly referred to as β-catenin 

dependent Wnt signaling, while non-canonical Wnt signaling is commonly referred to as 

β-catenin independent Wnt signaling.  Canonical Wnt signaling will be our focus 

heretofore. 

Canonical Wnt signaling is activated during embryonic development, as well as in 

proliferating, migrating, and differentiating cells in adult tissues (Teo, 2010; Schambony, 2013; 

Aman, 2008).  Canonical Wnt signaling plays key roles in embryonic development, 

contributing to processes of axis patterning, cell fate specification, cell polarity, cell 

proliferation, and cell migration (Peterson, 2009; Hikasa, 2013; Clevers, 2006a; van Amerongen, 2009).  

Canonical Wnt is involved in gastrulation and body axis formation, including 

specification of anteroposterior and dorsoventral axes (van Amerongen, 2009; Hikasa, 2013; Peterson, 

2009).  Canonical Wnt signaling induces mesoderm and endoderm during embryonic 

development, and contributes to hematopoiesis (Clevers, 2006a).  At later stages, canonical 
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Wnt signaling also contributes to the formation and maintenance of cartilage and bone, 

heart, muscle, neurons of the peripheral and central nervous systems, skin, blood cells, 

and other tissues (Regard, 2012; Baron, 2013; Buikema, 2014; von Maltzahn, 2012; Patthey, 2008; Salinas, 2012; Lim, 

2013; Lento, 2013).  One example of the function of canonical Wnt signaling in development is 

its involvement in the induction of neural crest cells, which migrate throughout the 

embryo and differentiate, contributing to multiple tissues and organs including the 

peripheral nervous system, the heart, and craniofacial bone and cartilage (Elkouby, 2010; Wu, 

2005; Le Douarin,1999).  Dys-regulated Wnt signaling affects neural crest cell development, 

and is implicated in developmental defects known as neurochristopathies, including 

craniofacial and heart defects, as well as defects in neural development (Etchevers, 2006; 

Alexander, 2014; Veerle, 2008; Patthey, 2008).  

Canonical Wnt signaling is also involved in stem cell maintenance and self-

renewal, tissue homeostasis, regeneration, and regulates insulin sensitivity in cells 
(Clevers, 2014; Clevers, 2012; Palsgaard, 2012; Abiola, 2009).   Aberrant Wnt signaling can result in various 

forms of cancer, including colorectal cancer, gastrointestinal cancer, breast cancer, lung 

cancer, glioblastoma, leukemia, melanoma, among others (Clevers, 2012; Giles, 2003; Morin, 1997; 

Logan, 2004; Reya, 2005; Bienz, 2000; de Lau, 2007; Schepers, 2012; Howe, 2004; Nguyen, 2009; Rheinbay, 2013; Damsky, 

2011).  Aberrant Wnt signaling contributes to oncogenesis by promoting tumor cell 

proliferation and metastasis (Polakis, 2012; Clevers, 2012; Reya, 2005; Nguyen, 2009).  Canonical Wnt 

mutations that result in these cancers include mutations to β-catenin, mutations to APC 

and other components of the β-catenin destruction complex, overexpression of Wnt 

ligands, loss of inhibitors, and decreased activity of other signaling pathways that 

regulate canonical Wnt signaling (Morin, 1997; Polakis, 2012; Clevers, 2012; Reya, 2005; Logan, 2004).  In 

addition to developmental defects and its roles in carcinogenesis, dys-regulated Wnt 

signaling is implicated in other pathologies including bone disease, and metabolic 

diseases, such as Type II diabetes (Baron, 2013; Herr, 2012; Clevers, 2012). 

1.1.2: Dual Roles of β-catenin: β-catenin Structure and Function  

β-catenin is a key intracellular effector of canonical Wnt signaling that transduces 

the signal to the nucleus, where β-catenin interacts with the TCF/LEF transcription 

factors and activates transcription of Wnt/β-catenin target genes (Cadigan, 2012).  However, 
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non-canonical Wnt signaling, as mentioned earlier, is independent of β-catenin (van 

Amerongen, 2012).  In addition to its role in signaling, β-catenin plays a critical role in 

stabilizing cell-cell adherens junctions by interacting with classical cadherins such as E-

cadherin, a transmembrane protein, and linking it to cytoskeletal structures (Conacci-Sorrell, 

2003).  The recruitment and retention of β-catenin at adherens junctions through its 

binding to the cytoplasmic tail of E-cadherin result in a pool of intracellular, membrane-

bound β-catenin in the cell.  Along with the negative regulatory activity of the β-catenin 

destruction complex, a micro-environment that is restrictive of canonical Wnt signaling 

emerges in cells participating in many cell-cell interactions and free of Wnt ligand 

stimulation (i.e. cells that form tissues in vivo, and dense culture conditions in vitro). 

This phenomenon results in a decrease in nuclear β-catenin levels and Wnt signaling 

activation (Conacci-Sorrell, 2003). Due to this phenomenon, dense cell cultures have lower 

nuclear β-catenin and Wnt signaling activation than sparse cell cultures (Conacci-Sorrell, 2003).  

The ability of β-catenin to participate in these diverse activities within the cell is 

elucidated by its structure.   

β-catenin, a member of armadillo multigene family, is a 90 kDa protein, and is 

781 amino acids long (in humans), consisting of flexible N-terminal and C-terminal 

domains (NTD, CTD) flanking a rigid central region made up of 12 Armadillo repeats 
(Valenta, 2012).  The CTD is linked to the central region by a conserved helix, Helix-C (Xing, 

2008).  The various interaction partners of β-catenin bind to the long, positively charged 

groove of the Armadillo repeats by forming salt bridges with Lys312 and Lys435 (Valenta, 

2012).  Only one of these interaction partners, including E-cadherin, adenoma polyposis 

coli (APC), and TCF/LEF, can bind to β-catenin at a time, creating competition for β-

catenin and regulating the function of β-catenin based on its availability and subcellular 

localization (Figure 1) (Krieghoff, 2006; Valenta, 2012; Morgan, 2014).  Accordingly, maintenance of 

different pools of β-catenin within the cell and post-translational modifications control the 

spatial separation, retention, and stability of β-catenin, contributing to its dual role as a 

signaling molecule and structural protein (Valenta, 2012; Morgan, 2014). 
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Figure 1: β-catenin ARM Domain Interactors.  E-cadherin, Axin, APC, and the 
TCF/LEF transcription factors are known to interact with the ARM domain of β-catenin.  
Only one of these interaction partners, including E-cadherin, adenoma polyposis coli 
(APC), and TCF/LEF, can bind to β-catenin at a time, creating competition for β-catenin 
and regulating the function of β-catenin based on its availability and subcellular 
localization (Image reprinted with permission from Creative Commons: Image by 
Bubus12 (Own work) [CC BY 3.0 license], via Wikimedia Commons). 

  

http://creativecommons.org/licenses/by/3.0/
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1.1.3: Regulation of β-catenin Stability  
The balance between sequestration of β-catenin by cadherins at adherens 

junctions and canonical Wnt signaling activity affects the levels of cytoplasmic β-catenin 
(Conacci-Sorrell, 2003; Valenta, 2012).  In the absence of Wnt signaling, cytoplasmic β-catenin is 

phosphorylated and ubiquitinated, marking it for degradation via the 26S proteasome by 

a multi-protein destruction complex that resides in the cytoplasm known as the β-

catenin destruction complex.  The β-catenin destruction complex, hereafter referred to 

solely as the destruction complex, consists of Dishevlled (Dvl), the scaffold proteins 

Axin and APC, the kinases glycogen synthase kinase 3 β (GSK3β) and casein kinase 1 

α (CK1α), the phosphatase protein phosphatase 2A (PP2A), and the E3 ubiquitin ligase 

F-box protein β-transducin repeat containing protein (β-TrCP) (Li, 2012b; Stamos, 2013; Valenta, 

2012; Clevers, 2012).  Cytoplasmic β-catenin binds to APC and Axin, which recruit β-catenin to 

the destruction complex (Li 2012; Clevers, 2012; Stamos 2013).  These interactions bring β-catenin 

in close proximity of CK1α and GSK3β, allowing their sequential phosphorylation of β-

catenin (Liu 2002; Zeng, 2005; Verheyen, 2010).  CK1α phosphorylates β-catenin at Ser45, which 

primes β-catenin for the subsequent sequential phosphorylation of Thr41, Ser37, and 

Ser33 by GSK3β (Liu 2002; Zeng, 2005; Verheyen, 2010).  Phosphorylation of β-catenin by GSK3β 

is dependent upon interaction of GSK3β with Axin and APC (Valenta, 2012).  These 

phosphorylation events result in the formation of the DSGXXS degron motif at the N-

terminal domain of β-catenin, which is recognized by the F-box protein β-transducin 

repeat containing protein (β-TrCP) (Lau, 2012; Clevers, 2012; Valenta, 2012).  APC protects the 

phosphorylated DSGXXS degron from dephosphorylation by PP2A (Su, 2008).  Binding of 

β-TrCP associates β-catenin with the E3 ubiquitin ligase complex, Skp1/Cul1/F-box/ β-

TrCP (SCF β-TrCP), resulting in the ubiquitination of β-catenin and its subsequent 

degradation by the 26S proteasome (Hart, 1999; Latres,1999; Li 2012; Stamos 2013; Valenta, 2012).  The 

degradation of cytoplasmic β-catenin by the destruction complex prevents cytoplasmic 

accumulation of β-catenin, thereby preventing the translocation of β-catenin to the 

nucleus and the initiation of transcription of Wnt target genes (Li, 2012b; Clevers, 2012; Stamos, 

2013; Valenta, 2012).  In addition to degradation of cytoplasmic β-catenin, transcription of 

Wnt/β-catenin target genes are further repressed by epigenetic events in the absence of 

Wnt signaling.  The co-repressor Groucho binds to TCF/LEF transcription factors in the 
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absence of Wnt signaling, and along with other epigenetic factors, inhibits the 

transcription of Wnt target genes (Roose, 1998; Daniels, 2005; Clevers, 2012; Valenta, 2012). 

Binding of Wnt ligands to Fz and LRP5/6 results in inhibition of the β-catenin 

destruction complex (Valenta, 2012).  In the presence of canonical Wnt ligand, Fz and 

LRP5/6 form a heterodimeric receptor complex (Valenta, 2012; Clevers, 2012).  The cytoplasmic 

tail of Fz interacts with Dvl, and the DIX domain of the associated Dvl is exposed upon 

binding of Wnt to Fz (Chen, 2003; Valenta, 2012).  Axin binds to the exposed DIX domain, 

recruiting the associated destruction complex components to the receptor complex 
(Schwarz-Romond, 2007; Fiedler, 2011; Clevers, 2012; Valenta, 2012).  This brings CK1γ/ε of the destruction 

complex into proximity of LRP5/6, allowing CK1γ/ε to phosphorylate LRP5/6, which 

blocks GSK3β activity (Liu, 2002; Zeng, 2005; Valenta, 2012).  This Wnt – induced inhibition of the β-

catenin destruction complex results in the stabilization of β-catenin in the cytoplasm, 

allowing β-catenin to translocate to the nucleus and initiate transcription of Wnt target 

genes by displacing the co-repressor Groucho and binding to TCF/LEF transcription 

factors, and recruiting other transcriptional co-activators and histone modifiers including 

Brg1, CBP/p300, Cdc47, Bcl9, and Pygopus (Li, 2012a; Clevers, 2012; Roose, 1998; Daniels, 2005; 

Mosimann, 2009; Hecht, 2000; Takemaru, 2000; Li, 2007; Brack, 2009; Schwab, 2007). The mechanisms by which 

β-catenin is transported into and out of the nucleus are not completely clear (Krieghoff, 2006; 

Morgan, 2014; Valenta, 2012). 
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Figure 2: Canonical Wnt Signaling.  (Left) In the absence of Wnt ligand, LRP5/6 is 
not phosphorylated, and the destruction complex, consisting of Dvl, Axin, GSK3-β, APC, 
and β-TrCP, resides in the cytoplasm where it binds, phosphorylates, and ubiquitinates 
β-catenin, marking β-catenin for degradation by the proteasome.  (Right) Wnt ligands 
secreted from nearby cells bind to the Fz receptor, inducing the recruitment of the co-
receptors LRP5/6.  The assembly of this receptor complex triggers the association of 
the destruction complex with phosphorylated LRP.  The association of the destruction 
complex with the Wnt/Fz/Lrp5/6 receptor complex blocks the phosphorylation of β-
catenin by GSK3β, thus preventing recognition of β-catenin by β-TrCP and the 
subsequent degradation of β-catenin by the proteasome.  The net effect of these 
interactions is the stabilization of β-catenin in the cytoplasm, which allows β-catenin to 
enter the nucleus where it binds TCF/LEF transcription factors and regulates the 
transcription of canonical Wnt target genes (Image reprinted with permission from 
InTechOpen: Image Copyright © 2013 Inestrosa, N.C., Varela-Nallar, L. Published in 
[Wislet, 2013] under CC BY 3.0 license). 

http://creativecommons.org/licenses/by/3.0/
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Figure 3: Wnt Signaling in the Nucleus.  In the absence of Wnt signals, the co-
repressor Groucho binds to TCF and represses its target genes.  Following the 
activation of Wnt signaling and the subsequent stabilization of β-catenin in the 
cytoplasm, β-catenin migrates into the nucleus where it replaces Groucho from 
TCF/LEF and recruits transcriptional coactivators and histone modifiers such as Brg1, 
CBP, Cdc47, Bcl9, and Pygopus to drive the expression of canonical Wnt target genes 
(Image reprinted with permission from Elsevier Inc: Cell [Clevers, 2012] Copyright © 
2012 Elsevier Inc). 
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1.1.4: β-catenin Subcellular Localization 

Although it is widely accepted that cytoplasmic accumulation of β-catenin 

precludes nuclear translocation of β-catenin, the mechanism by which β-catenin is 

transported into and out of the nucleus is unclear (Valenta, 2012).  While proteins less than 

30 kDA are readily diffusible through the nuclear pores, proteins larger than 50 kDA, like 

β-catenin (90 kDA), require active transport via the nuclear receptor dependent 

(importin/exportin) pathways through the nuclear pore complex (NPC) (Morgan, 2014).  

Interestingly, β-catenin does not have a recognizable nuclear localization signal (NLS) 

or nuclear export signal (NES) necessary for transport through nuclear receptor 

dependent pathways, and does not require Ran-GTPase for transport (Eleftheriou, 2001; 

Fagotto, 1998; Wiechens, 2001; Yokoya, 1999).  Several proteins have been implicated in mediating 

nuclear import of β-catenin through the nuclear receptor dependent import pathway 

(importin α:β) by acting as chaperones, including adenomatous polyposis coli (APC), 

Ras-related C3 botulinum toxin substrate 1 (Rac1), Smad3/4, forkhead box M1 

(FoxM1), insulin receptor substrate 1 (IRS1), cell surface associated mucin 1 (MUC1), 

B-cell CLL/lymphoma 9 (BCL-9), and the androgen receptor (Henderson, 2000; Wang, 2014; Wu, 

2008; Jian, 2006; Li, 2006; Zhang, 2010; Zhang, 2011; Chen, 2005; Li, 2011; Wen, 2003; Brembeck, 2004; Krieghoff, 2006; 

Mulholland, 2002; Pawlowsk, 2002). 

In addition, the TCF/LEF transcription factors that are activated by β-catenin in 

the nucleus have also been proposed to chaperone β-catenin into the nucleus through a 

nuclear receptor-dependent pathway (Krieghoff, 2006; Molenaar, 1996; Behrens, 1996; Huber, 1996; Simcha, 

1998).  Similarly, several proteins have been implicated in mediating nuclear export of β-

catenin through the nuclear receptor dependent export pathway by binding 

chromosome maintenance region 1 (CRM1) and acting as chaperones, including APC, 

Axin, Chibby, menin, leucine zipper tumor suppressor 2 (LZTS2), p21-activated kinase 

4 (PAK4), and Kank (Henderson, 2000; Krieghoff, 2006; Neufeld, 2000a; Neufeld, 2000b; Rosin-Arbesfeld, 2003; Wang, 

2014; Cong, 2004; Wiechens, 2004; Li, 2008; Li, 2010; Cao, 2009; Thyssen, 2006; Li, 2012a; Wang, 2006). 

In contrast to chaperone-mediated transport of β-catenin through nuclear 

receptor dependent pathways, it has been demonstrated that β-catenin can be 

transported into and out of the nucleus through chaperone- and nuclear receptor-
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independent pathways (Eleftheriou, 2001; Fagotto, 1998; Wiechens, 2001; Yokoya, 1999).  The armadillo 

repeat sequences 10-12 (R10-12) of β-catenin directly bind phenylalanine-glycine FxFG 

or GLFFG repeats (FG repeats) of nucleoporins Nup62, Nup98, Nup153, and 

RanBP2/Nup358, facilitating transport of β-catenin through the NPC (Sharma, 2012).   Since 

the interaction partners of β-catenin generally bind armadillo repeat sequences 3-8 (R3-

8), R10-12 remain accessible, raising the possibility that β-catenin may shuttle its 

interaction partners into and out of the nucleus through these nuclear receptor and Ran-

GTPase independent mechanisms (Sharma, 2012).  Consistent with these mechanisms of β-

catenin transport, the subcellular localization of β-catenin may be controlled by retention 

through the relative abundance of β-catenin binding partners in the nucleus, cytoplasm, 

and at the cell membrane (Li, 2012a; Krieghoff, 2006; Morgan, 2014; Valenta, 2012). 
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1.2: Ephrin Signaling 
1.2.1: Ephrin Signaling 

Wei et al. have previously identified a novel crosstalk between canonical Wnt 

signaling and ephrin signaling, which likely involves alteration of the stability of β-

catenin, and/or the sub-cellular localization of β-catenin (Wei, 2010).  Ephrin signaling 

occurs through the interaction of ephrin ligands and Eph receptor tyrosine kinases, and 

can be unidirectional (forward or reverse) or bidirectional (forward and reverse 

simultaneously), depending on the directions of signal flow (Pasquale, 2010).  Forward 

signaling occurs when the signal is transduced from the ephrin ligand-expressing cell 

into the Eph receptor-expressing cell, while reverse signaling occurs in the opposite 

direction, simultaneously activating molecular pathways downstream of ephrins and 

Ephs (Pasquale, 2010).  Bidirectional signaling occurs when both forward and reverse 

signaling occur simultaneously via the same Eph/ephrin interaction (Pasquale, 2010).  

Transmembrane Eph receptors exclusively bind membrane-tethered ephrin ligands, and 

therefore, ephrin signaling requires cell-cell contact (Klein, 2012).  There are two sub-

classes of Eph receptors, including EphA and EphB (Klein, 2012).  In general, EphA 

receptors bind glycosylphosphotidylinositol (GPI)-linked ephrin-A ligands, while EphB 

receptors bind transmembrane ephrin-B ligands, however, there are some Eph 

receptors that can bind both ligand subclasses (Pasquale, 2008; Klein, 2012).   

Ephrin ligands and Eph receptors interact in trans, inducing the formation of 

Eph/ephrin heterodimers (Klein, 2012).  These heterodimers bind to other Eph/ephrin 

heterodimers, forming heterotetramers, which assemble into higher-order clusters through the 

recruitment of other ligand-bound Eph receptors (Klein, 2012).  These higher-order clusters are 

required for forward and reverse ephrin signaling, and the strength of the forward and reverse 

signals increases with the recruitment of additional ligand-bound receptors (Klein, 2012; Kania, 2016).  

Interestingly, Eph receptor clusters can laterally recruit additional Eph receptors independent of 

ephrins (Klein, 2012).  Within the clusters of Eph/ephrins, different sets of the Eph/ephrins 

may participate in forward and/or reverse signaling simultaneously, resulting in the 

phenomena of parallel and anti-parallel signaling (Kania, 2016).  Parallel signaling occurs 

when two or more adjacent Eph/ephrins signal simultaneously in the same direction 

(forward or reverse) (Kania, 2016).  Anti-parallel signaling occurs when two or more adjacent 
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Eph/ephrins signal simultaneously in opposite directions (Kania, 2016).  In addition, ephrin-A 

ligands can interact in cis with co-receptors (Klein, 2012).  Eph/ephrins can interact with 

other ligand/receptor systems, integrating environmental signals and disparate signaling 

events, producing diverse outcomes in terms of development and tissue homeostasis, 

maintenance, and function. 

Eph receptors have a highly conserved domain organization, consisting of a 

globular ligand binding domain (LBD), a cysteine rich region that includes a Sushi and 

an epidermal growth factor (EGF)-like domain, two fibronectin type III domains (FN1 

and FN2), a transmembrane (TM) helix, an intracellular juxtamembrane (JM) region that 

features several conserved tyrosine (Y) residues, a tyrosine kinase domain (TK), a 

sterile-α motif (SAM) protein-protein interaction domain, and a C-terminal Psd-95, Dlg, 

and Z01 domain (PDZ)-binding motif (Pasquale, 2008; Klein, 2012).  Ephrin-A and ephrin-B 

ligands possess an extracellular receptor-binding domain (RBD) (Klein, 2012).  Ephrin-A 

ligands are GPI-anchored, while ephrin-B ligands have a TM helix, an intracellular 

region with several conserved tyrosine residues and a C-terminal PDZ-binding motif 
(Klein, 2012). 

The JM region of Eph receptors suppresses the intrinsic Eph kinase activity 

through auto-inhibition due to its inactive conformation (Wybenga-Groot, 2001).  Activation of 

Eph receptors results in phosphorylation of tyrosine residues (P) of the JM domain, 

which relieves the auto-inhibition (Klein, 2012).  The kinase domain adopts an active 

conformation, resulting in phosphorylation of the TK and SAM domains and initiation of 

downstream signaling events through phosphorylation of intracellular effectors (Klein, 2012).  

In addition, the tyrosine residues of the intracellular region of ephrin-Bs are 

phosphorylated in response to binding with Eph receptors (Kullander, 2002). 

Forward ephrin signaling activates intrinsic tyrosine kinase activity of the Eph 

receptors, regulating the recruitment and activity of intracellular effector proteins such 

as non-catalytic region of tyrosine kinase adaptor protein 1 (Nck1) and Nck2 (also 

known as Grb4), phosphoinositide 3-kinase (PI3K), Vav2 and Vav3, Src, α2-chimerin, 

and ephexins (Klein, 2012; Kania, 2016).  These effectors are coupled to Ras homology (Rho) 

subfamily of Ras-like small GTP-ases, including Ras-related C3 botulinum toxin 
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substrate 1 (Rac1), cell division control protein 42 homolog (Cdc42), and RhoA (Klein, 2012; 

Kania, 2016).  By regulating the activity of Src family kinases and Ras/Rho family GTP-ases, 

ephrin signaling affects cytoskeletal dynamics (Klein, 2012; Kania, 2016). 

These events lead to the recruitment of PDZ domain-containing proteins, and 

possibly other effectors, such as the SH2/SH3 adaptor Grb4, p21 protein (Cdc42/Rac)-

activated kinase 1 (Pak1), and dedicator of cytokinesis 1 (Dock180), which then elicit 

cellular responses.  Reelin can also bind to ephrin-B1 and ephrin-B3, leading to the 

activation of disabled 1 (Dab1), which elicits cellular responses.   

The mechanism of reverse ephrin-B signaling is not well understood, but one 

mechanism involves recruitment of Src family kinases and tyrosine phosphorylation of 

its intracellular domain (Xu, 2002; Klein, 2012; Kania, 2016).  These events lead to the recruitment 

of PDZ domain-containing proteins, and possibly other effectors, such as the SH2/SH3 

adaptor Grb4, p21 protein (Cdc42/Rac)-activated kinase 1 (Pak1), and dedicator of 

cytokinesis 1 (Dock180), which then elicit cellular responses (Xu, 2002; Klein, 2012; Kania, 2016).  

Reelin can also bind to ephrin-B1 and ephrin-B3, leading to the activation of disabled 1 

(Dab1), which elicits cellular responses (Kania, 2016).  Although ephrin-A ligands lack an 

intracellular region, and therefore are not phosphorylated intracellularly, they also 

participate in reverse signaling by coupling to co-receptors, such as the Src family 

tyrosine kinase, Fyn, and the receptor tyrosine kinase, Ret, which elicit cellular 

responses (Klein, 2012; Kania, 2016). 

Termination of Eph/ephrin signaling is achieved by ectodomain cleavage or 

endocytosis.  When co-expressed in the same cell, A distintegrin and metalloprotease 

domain (ADAM)-type proteases cleave ephrin-A and ephrin-B proteins in cis (Hattori, 2000).  

When expressed in an adjacent, opposing cell, ADAM-type proteases cleave ephrin-A 

and ephrin-B proteins in trans (Janes, 2005).  In addition, Eph receptors are cleaved by 

metalloproteases and γ-secretase (Bai, 2011).  Endocytosis of complete Eph/ephrin 

complexes from the cell membrane can also achieve termination of Eph/ephrin signaling 
(Klein, 2012).  Ephrin-B can be trans-endocytosed into the EphB-expressing cell and EphB 

can be trans-endocytosed into the ephrin-B-expressing cell (Klein, 2012).  The balance 

between uni- and bi-directional endocytosis may depend on cellular context, may result 
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in unique downstream signaling events, and contributes to the various functions of 

Eph/ephrins (Marston, 2003; Zimmer, 2003; Pitulescu, 2010; Klein, 2012). 

Ephrin signaling affects cytoskeletal dynamics, driving changes in cell shape and 

cell-cell contacts (Klein, 2012; Kania, 2016).  Through these mechanisms, ephrin signaling 

contributes to cell-cell repulsion/adhesion, segregation, positioning, migration, 

proliferation, and axon guidance (Klein, 2012; Kania, 2016).  These cellular responses underlie 

the roles of ephrin signaling in development, such as patterning, morphogenesis, and 

tissue boundary formation.  These cellular responses also underlie the roles of ephrin 

signaling in tissue homeostasis, maintenance, and function in adult tissues (Klein, 2012; 

Kania, 2016).  Due to these critical roles of ephrin signaling, aberrant ephrin signaling is 

implicated in developmental defects and diseases including neuronal defects, bone 

remodeling diseases, diabetes, and cancer (Pasquale, 2008; Klein, 2012; Pasquale, 2010). 
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Figure 4:  Eph/ephrin Domain Organization and Signaling Modes.  
a) Transmembrane Eph receptor tyrosine kinases bind membrane-tethered ephrin 
ligands in trans, and therefore, ephrin signaling requires cell-cell contact.  Ephrin 
signaling affects cytoskeletal dynamics, driving changes in cell shape and cell-cell 
contacts.  Through these mechanisms, ephrin signaling contributes to cell-cell 
repulsion/adhesion, segregation, positioning, migration, proliferation, and axon 
guidance.  These cellular responses underlie the roles of ephrin signaling in 
development, such as patterning, morphogenesis, and tissue boundary formation, as 
well as the roles of ephrin signaling in tissue homeostasis, maintenance, and function in 
adult tissues.  b) Eph receptors (left) have a highly conserved domain organization, 
consisting of a globular ligand binding domain (LBD), a cysteine rich region that 
includes a Sushi and an epidermal growth factor (EGF)-like domain, two fibronectin type 
III domains (FN1 and FN2), a transmembrane (TM) helix, an intracellular 
juxtamembrane (JM) region that features several conserved tyrosine (Y) residues, a 
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tyrosine kinase domain (TK), a sterile-α motif (SAM) protein-protein interaction domain, 
and a C-terminal Psd-95, Dlg, and Z01 domain (PDZ)-binding motif.  Ephrin-A and 
ephrin-B ligands possess an extracellular receptor-binding domain (RBD). Ephrins 
(right) are divided into A and B classes based on their affinity for EphA or EphB 
receptors and whether they are tethered to the membrane via a 
glycosylphosphatidylinositol GPI linkage (class A), or as type-I transmembrane proteins 
(class B).  Unlike the GPI-anchored ephrin-A ligands, ephrin-B ligands have a TM helix, 
an intracellular region with several conserved tyrosine residues and a C-terminal PDZ-
binding motif.  The JM region of Eph receptors suppresses the intrinsic Eph kinase 
activity through auto-inhibition due to its inactive conformation.  Activation of Eph 
receptors results in phosphorylation of tyrosine residues (P) of the JM domain, which 
relieves the auto-inhibition.  The kinase domain adopts an active conformation, resulting 
in phosphorylation of the TK and SAM domains and initiation of downstream signaling 
events through phosphorylation of intracellular effectors.  Phosphorylation of the 
tyrosine residues of the intracellular domains of ephrin-B ligands also occurs in 
response to Eph-ephrin interaction, and is involved in reverse signaling.  In addition, the 
tyrosine residues of the intracellular region of ephrin-Bs are phosphorylated in response 
to binding with Eph receptors.  c) Ephrin signaling can be unidirectional (forward or 
reverse) or bidirectional (forward and reverse simultaneously), depending on the 
direction(s) of signal flow.  Arrows indicate signaling events, and X’s indicate the 
absence of signaling.  Forward signaling occurs when the signal is transduced from the 
ephrin ligand-expressing cell into the Eph receptor-expressing cell, while reverse 
signaling occurs in the opposite direction.  Bidirectional signaling occurs when both 
forward and reverse signaling occur simultaneously via the same Eph/ephrin interaction, 
simultaneously activating molecular pathways downstream of ephrins and Ephs.  
Because there may be multiple Eph/ephrin (A and/or B) and/or ephrin/Eph (A and/or B) 
interactions occurring simultaneously at the junctions between two cells, the 
phenomena of parallel and anti-parallel signaling emerge.  Parallel signaling occurs 
when two or more Eph/ephrins signal simultaneously in the same direction (forward or 
reverse), propagating forward or reverse signals in the same direction.  Anti-parallel 
signaling occurs when two or more Eph/ephrins signal simultaneously in opposite 
directions, simultaneously propagating forward signals in one direction and reverse 
signals in the opposite direction (Image reprinted with permission from Macmillan 
Publishers Ltd: Nature Reviews Molecular Cell Biology [Kania, 2016], Copyright © 
2016).  
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Figure 5:  Eph/ephrin Complexes and Receptor Clustering, and Downstream 
Molecular Pathways and Cellular Responses.  a) Ephrin ligands and Eph receptors 
interact in trans, inducing the formation of Eph/ephrin heterodimers.  These 
heterodimers bind to other Eph/ephrin heterodimers, forming heterotetramers, which 
assemble into higher-order clusters through the recruitment of other ligand-bound Eph 
receptors.  These higher-order clusters are required for forward and reverse ephrin 
signaling, and the strength of the forward and reverse signals increases with the 
recruitment of additional ligand-bound receptors.  Interestingly, Eph receptor clusters 
can laterally recruit additional Eph receptors independent of ephrins.  The tyrosine 
phosphorylation events (P), as described in Figure 4, are also shown. b) Crystal 
structure of a higher-order cluster of an ephrin-A5-EphA2 complex.  c) Schematic 
representations of downstream molecular pathways activated downstream of forward 
ephrin signaling that affect cytoskeletal changes underlying various cellular responses.  
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Forward ephrin signaling activates intrinsic tyrosine kinase activity of the Eph receptors, 
regulating the recruitment and activity of intracellular effector proteins such as non-
catalytic region of tyrosine kinase adaptor protein 1 (Nck1) and Nck2 (also known as 
Grb4), phosphoinositide 3-kinase (PI3K), Vav2 and Vav3, Src, α2-chimerin, and 
ephexins.  These effectors are coupled to Ras homology (Rho) subfamily of Ras-like 
small GTP-ases, including Ras-related C3 botulinum toxin substrate 1 (Rac1), cell 
division control protein 42 homolog (Cdc42), and RhoA.  By regulating the activity of Src 
family kinases and Ras/Rho family GTP-ases, ephrin signaling affects cytoskeletal 
dynamics.  d) The mechanism of reverse ephrin-B signaling is not well understood, but 
one mechanism involves recruitment of Src family kinases and tyrosine phosphorylation 
of its intracellular domain.  These events lead to the recruitment of PDZ domain-
containing proteins, and possibly other effectors, such as the SH2/SH3 adaptor Grb4, 
p21 protein (Cdc42/Rac)-activated kinase 1 (Pak1), and dedicator of cytokinesis 1 
(Dock180), which then elicit cellular responses.  Reelin can also bind to ephrin-B1 and 
ephrin-B3, leading to the activation of disabled 1 (Dab1), which elicits cellular 
responses.  Although ephrin-A ligands lack an intracellular region, and therefore are not 
phosphorylated intracellularly, they also participate in reverse signaling by coupling to 
co-receptors, such as the Src family tyrosine kinase, Fyn, and the receptor tyrosine 
kinase, Ret, which elicit cellular responses (Image reprinted with permission from 
Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology [Kania, 2016], 
Copyright © 2016).  



20 
 

1.3: Canonical Wnt – ephrin-B Crosstalk 
1.3.1: Evidence of Canonical Wnt – ephrin-B Crosstalk 

Wnt signaling and ephrin-B signaling are both involved in regulation of the 

intestinal stem cell niche, and the normal tissue homeostasis of the intestine (Clevers, 

2006b).  The small intestine contains protrusion known as villi, and the basal areas 

between these villi are known as crypts.  The cells in the intestinal crypts are stem cells 

and Paneth cells, which express EphB receptors (EphB2, EphB3, and EphB4) (Clevers, 

2006b; Kania, 2016).  As these cells differentiate, they proliferate and migrate up the villi from 

the intestinal crypt and come into contact with the differentiated cells at the apical 

portion of the villi, which express ephrin-B1 and ephrin-B2 (Clevers, 2006b; Kania, 2016).  Cell-

cell contact and the initiation of EphB/ephrin-B signaling between the ephrin-B1/B2 

expressing cells and the migrating EphB cells from the crypt leads to the loss of EphB 

expression in these cells, allowing for their differentiation and normal tissue 

homeostasis (Clevers, 2006b; Kania, 2016).  These events result in the formation of a gradient of 

EphB expression that is strongest at the base of the crypts and weakest at the apical 

portion of the villi, and an opposing ephrin-B gradient that is strongest at the apical 

portion of the villi and weakest at the base of the crypts (Clevers, 2006b; Kania, 2016).  Loss of 

ephrin-B signaling disrupts cell proliferation and positioning along the villus – crypt axis 
(Kania, 2016).  Mutations in the tumor suppressor gene APC (APCmut) leads to the 

constitutive activation of canonical Wnt signaling, and the transformation of these cells 

into tumor-initiating cells (cells inside the box labeled APCmut) (Clevers, 2006b).  These 

proliferate and migrate up the crypt, accumulating at the villi and forming benign poly-

like outgrowths, or adenomas (Clevers, 2006b).  These tumor-initiating cells express high 

levels of EphB receptors, and contact of these cells with normal differentiated cells 

expressing high levels of ephrin-B ligands at the apical portion of the villi results in 

activation of ephrin-B signaling (Clevers, 2006b).  EphB repulsive signals limit the spread of 

the tumor.  These findings illustrate how the orchestration of canonical Wnt and ephrin 

signaling programs can contribute to normal development and tissue homeostasis, and 

disruption of these signaling gradients can result in colorectal cancer. 
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Direct inhibition of Wnt signaling by ephrin-B signaling was suggested by the 

finding that the metalloprotease ADAM13 cleaves ephrin-B1, permitting canonical Wnt 

signaling during cranial neural crest (CNC) induction in Xenopus tropicalis embryos (Wei, 

2010).  Furthermore, wild-type Xenopus ephrin-B1 (ephrin-B1WT) and ephrin-B1ΔC (a 

mutant ligand that lacks the cytoplasmic tail and hence only promotes forward, but not 

reverse, ephrin signaling) inhibit Wnt reporter (TOP/FOP FLASH) expression when Wnt 

signaling is activated by Wnt8 in Xenopus tropicalis embryos and by Wnt3a in human 

embryonic kidney (HEK293T) cells (Wei, 2010). 

It has been shown previously that decreased nuclear β-catenin is a consequence 

of increased ephrin signaling through Eph receptors during carcinogenesis (Chiu, 2009).  

Taken together, these data indicate a novel crosstalk between Wnt and ephrin signaling 

axes in which ephrin-B signaling antagonizes canonical Wnt signaling.  The molecular 

mechanism that mediates this antagonistic interaction is unknown.  Furthermore, this 

antagonistic interaction provides a unique system in which to investigate the 

mechanisms of inhibition of canonical Wnt signaling.  Canonical Wnt signaling can be 

modulated through interactions at various levels of the canonical Wnt signaling axis 

including 1) ligand – receptor and receptor – receptor interactions, 2) β-catenin stability, 

3) β-catenin localization, and 4) β-catenin/TCF/LEF/DNA interactions (Figure 8).  

Therefore, we aimed to gain insight into the mechanisms of ephrin-B antagonism of 

canonical Wnt signaling by differentiating among these possibilities. 
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Figure 6: Canonical Wnt and Eph/ephrin Interactions in the Intestinal Stem Cell 
Niche and Colorectal Cancer Progression.  The small intestine contains protrusion 
known villi, and the basal areas between these villi are known as crypts.  1) The cells in 
the intestinal crypts are stem cells and Paneth cells, which express EphB receptors 
(EphB2, EphB3, and EphB4).  As these cells differentiate, they proliferate and migrate 
up the villi from the intestinal crypt and come into contact with the differentiated cells at 
the apical portion of the villi, which express ephrin-B1 and ephrin-B2.  Cell-cell contact 
and the initiation of EphB/ephrin-B signaling between the ephrin-B1/B2 expressing cells 
and the migrating EphB cells from the crypt leads to the loss of EphB expression in 
these cells, allowing for their differentiation and normal tissue homeostasis.  These 
events result in the formation of a gradient of EphB expression that is strongest at the 
base of the crypts and weakest at the apical portion of the villi, and an opposing ephrin-
B gradient that is strongest at the apical portion of the villi and weakest at the base of 
the crypts.  Loss of ephrin-B signaling disrupts cell proliferation and positioning along 
the villus – crypt axis.  2) Mutations in the tumor suppressor gene APC (APCmut) leads 
to the constitutive activation of canonical Wnt signaling, and the transformation of these 
cells into tumor-initiating cells (cells inside the box labeled APCmut).  These proliferate 
and migrate up the crypt, accumulating at the villi and forming benign poly-like 
outgrowths, or adenomas.  3) These tumor-initiating cells express high levels of EphB 
receptors, and contact of these cells with normal differentiated cells expressing high 
levels of ephrin-B ligands at the apical portion of the villi results in activation of ephrin-B 
signaling.  4) EphB repulsive signals limit the spread of the tumor (Image reprinted with 
permission from Eduard Battle Lab, IRB Barcelona [Batlle, 2007]). 
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Figure 7: Wild-type ephrin-B and ephrin-B1ΔC Inhibit Wnt3a – Induced Reporter 
Activity.  HEK293T cells were transfected with pTOP FLASH (TOP) and pFOP FLASH 
(FOP) and the indicated constructs and cultured for ~40 hours.  Cell lysates were 
processed for luciferase assays.  A representative experiment performed in triplicate is 
shown here.  Results are presented as average ratios of TOP vs. FOP luciferase 
activity, and the error bars represent standard deviations. *: P < 0.05, **: P < 0.01, *** P 
< 0.001 (Image reprinted with permission from Elsevier Inc: Developmental Cell [Wei, 
2010; supplement] Copyright © 2010 Elsevier Inc).  
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Figure 8: Regulation of the Wnt Signaling Axis.  Canonical Wnt signaling can be 
modulated through interactions at various levels of the canonical Wnt signaling axis 
including 1) ligand – receptor and receptor – receptor interactions, 2) β-catenin stability, 
3) β-catenin localization, and 4) β-catenin/TCF/LEF/DNA interactions (Image adapted 
with permission from InTechOpen: Image Copyright © 2013 Inestrosa, N.C., Varela-
Nallar, L. Published in [Wislet, 2013] under CC BY 3.0 license).  

http://creativecommons.org/licenses/by/3.0/
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1.3.2: Regulators of β-catenin Stability and Localization 
β-catenin levels and β-catenin subcellular localization are affected by interactions 

with protein modifiers within the cell, and other cellular signaling pathways.  β-catenin is 

modified by GSK3β and c-Jun N-terminal kinase 1 and 2 (JNK1, JNK2), and 

adenomatous polyposis coli (APC) and Ras-related C3 botulinum toxin substrate 1 

(Rac1) affect β-catenin subcellular localization (Liu, 2002; Zeng, 2005; Hu, 2008; Hu, 2009; Henderson, 

2000; Wang, 2014; Wu, 2008).  In addition, classical cadherins, such as E-cadherin, sequester β-

catenin to the cell membrane through the binding of β-catenin to the cytoplasmic tail of 

E-cadherin, resulting in a decrease in nuclear β-catenin and Wnt signaling activation 
(Conacci-Sorrell, 2003).  Therefore, dense cell cultures have lower nuclear β-catenin and Wnt 

signaling activation than sparse cell cultures (Conacci-Sorrell, 2003).  These effectors of β-

catenin stability and β-catenin subcellular localization represent potential nexuses 

through which ephrin-B signaling may interact with Wnt signaling. 

1.3.3: c-Jun N-terminal kinase 1 and 2 (JNK1, JNK2) 

One intriguing possible mediator of the ephrin-B induced antagonism of 

canonical Wnt signaling is JNK.  JNK is a downstream target of forward ephrin signaling 

and can prevent nuclear β-catenin accumulation (Stein, 1998; Liao, 2006).  In addition, it has 

previously been demonstrated that JNK1 and JNK2 can affect the stability, amount and 

subcellular localization of β-catenin (Hu, 2008; Hu, 2009; Wu, 2008).  JNK1 and JNK2 cause a 

reduction in β-catenin in HEK293T cells, with JNK2 causing a greater reduction in β-

catenin than JNK1, and this reduction in β-catenin occurs through the ubiquitin-

proteasome system (UPS) and is mediated by GSKβ (Hu, 2008; Hu, 2009).  Furthermore, 

preliminary data from Laura Christian, a former post-doc in the Wei lab, indicates that 

co-transfection of ephrin-B1ΔC and EphB2 in HeLa cells results in an increase in JNK 

activity (Figure 9) (Christian et al., unpublished).  Therefore, we propose that ephrin-B signaling 

antagonizes canonical Wnt signaling by activating JNK, preventing nuclear 

accumulation of β-catenin and inducing degradation of β-catenin via the UPS mediated 

by GSKβ. 
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Figure 9: Ephrin-B Signaling Activates c-Jun N-terminal kinase (JNK).  HeLa cells 
were transfected to express the indicated proteins, and in vitro JNK activity assays were 
carried out using a JNK Kinase Assay Kit (Cell Signaling Technology; 8794). JNK was 
pulled down from cell lysates by using an α JNK antibody, and incubated with 
recombinant c-Jun protein. Western blot was performed by using an α phospho-c-Jun 
antibody (Data courtesy of Dr. Laura Christian et al., unpublished). 
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Figure 10: Proposed Models for JNK-mediated ephrin-B Antagonism of Canonical 
Wnt Signaling.  (Model A) Forward ephrin-B signaling results in intracellular activation 
of Dvl.  Dvl activates downstream signaling events and initiates PCP signaling, which 
inhibits canonical Wnt signaling. (Model B) Forward ephrin-B signaling results in 
downstream activation of JNK.  JNK interacts with and modifies β-catenin, triggering 
nuclear export of β-catenin. 
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Chapter 2: Specific Aims 
2.1: Specific Aims 

1) To test if the ephrin-B antagonism of canonical Wnt signaling first described in 

Xenopus laevis is conserved in mammals. 

2) To determine the cellular processes that mediate this crosstalk by investigating 

the effects of ephrin-B signaling on the 2a) stabilization and 2b) subcellular 

localization of β-catenin. 

3) To determine how downstream effectors of ephrin-B signaling may interact with 

β-catenin, mediating this crosstalk. 
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2.2: Specific Aims Approaches 

Aims 1 and 2a were addressed using the TOP/FOP FLASH luciferase reporter 

assay as a read-out of activation of canonical Wnt signaling.  Overexpression of 

canonical Wnt ligands (Wnt3a or Wnt8), wild-type β-catenin (β-catenin WT), or a β-

catenin mutant (β-catenin*), or lithium chloride (LiCl) treatment were used to activate 

TOP/FOP FLASH reporter activity in human embryonic kidney (HEK293T) cells.  LiCl 

inhibits GSK3β, blocking phosphorylation of β-catenin and preventing its degradation by 

the UPS (Zhang, 2003).  Similarly, β-catenin* has serine (S)/threoinine (T) to aspartic acid 

(D) point mutations at Ser33, Ser37, Thr41, and Ser45, and cannot be modified by the 

destruction complex.  Expression of a mouse ephrin-B1 ligand lacking the cytoplasmic 

domain, ephrin-B1ΔC, in the presence of an activator of canonical Wnt (overexpression 

of Wnt ligands, β-catenin, or β-catenin*, or LiCl treatment) was tested to determine if 

ephrin-B antagonism of canonical Wnt signaling reported in Xenopus is conserved in 

mammals, and whether or not this effect depends on the normal function of the 

endogenous regulation of β-catenin stability via GSK3β. 

Aim 2a was addressed by measuring changes in total cellular β-catenin in 

HEK293T cell lysates in response to canonical Wnt and ephrin-B signaling.  The 

relevant Western blots were quantified using Image J (Schindelin, 2012; Walter, 2010; Eliceiri, 2012).  

In accordance with Aim 2b, the subcellular localization of β-catenin was observed using 

confocal immunofluorescence microscopy.  These images were prepared and analyzed 

using the image analysis software Adobe Illustrator, Fiji (Image J), and Vaa3d (Schindelin, 

2012; Walter, 2010; Eliceiri, 2012; Peng, 2010; Peng, 2014).  This analysis allowed visualization of the 

subcellular localization of β-catenin (in 3-D) in response to canonical Wnt and ephrin-B 

signaling. 

 Aim 3 was addressed by investigating the role of JNK in mediating the ephrin-B 

antagonism of canonical Wnt signaling.  The activation of JNK by ephrin-B signaling 

was reaffirmed using an in vitro JNK assay (Christian et al., unpublished data).  Inhibition of JNK 

using the JNK inhibitor, SP600125, and analysis of the corresponding effects on LiCl - 

induced activation of canonical Wnt signaling (TOP/FOP FLASH) was used to indicate 
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whether or not inhibition of JNK activity is sufficient to reverse the antagonistic effect of 

ephrin-B on canonical Wnt signaling (Bennett, 2001). 
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Chapter 3: Methods 

A combination of cell-based assays, biochemical techniques, and confocal 

immunofluorescence microscopy in HEK293T cells were used to investigate the 

molecular mechanisms of ephrin-B antagonism of canonical Wnt signaling.   

pCS2 vector-based plasmids were constructed previously including Mus 

musculus HA-ephrin-B1ΔC (ephrin-B1ΔC), wild-type Xenopus laevis β-catenin (β-

cateninWT), a mutant Xenopus laevis β-catenin that is constitutively active, β-catenin* 

(S33/37/41/T45D), Wnt3a, and Wnt8.  In addition, pTOP FLASH (TOP) and pFOP 

FLASH (FOP) luciferase reporter plasmids were obtained commercially (EMD Millipore; 

21-170).   

HEK293T cells were seeded and grown in Dulbecco’s Modified Eagle Medium 

(DMEM) high glucose (Gibco; 11965-092) supplemented with 5% fetal bovine serum 

(FBS) and 1:100 penn/strep at a controlled density for ~24 hours.  When the pan-JNK 

inhibitor, SP600125 (abcam; ab120065), was used, it was mixed with fresh DMEM 

media, and added to the appropriate wells, replacing the existing media after ~24 hours 

of growth post-seeding.  Auto H20 (vehicle control for LiCl) and DMSO vehicle controls 

were added in the same fashion as SP60125, as necessary, to evaluate any potential 

effects of these vehicles on the results.  Lipofectamine-based transfections (Invitrogen; 

L3000015) of these plasmids were performed after ~24 hours of growth post-seeding.  

For immunofluorescence experiments, the cells were grown on poly-D-lysine (molecular 

weight 70,000-150,000) coated coverslips (Sigma; P6407).  Following transfection, the 

cells were incubated at 37°C for ~24 hours.  The cells were then harvested and lysed in 

preparation for TOP/FOP FLASH luciferase reporter assay, Western blot, or other 

biochemical analysis, or fixed in preparation for immunofluorescence treatment and 

confocal microscopy.   

The TOP/FOP FLASH luciferase reporter assay was performed according to the 

manufacturer’s protocol and recommendation (Promega; E1500).  The Spectra max 

GeminiXPS plate reader and the SoftMax Pro 6 software from Molecular Devices were 

used in luminescence mode to measure the luminescence in relative luminescence 
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units (RLU) of the assayed cell lysate samples.  The average and standard deviation of 

the RLU measurements of three replicates of each treatment performed in parallel were 

calculated using Microsoft Excel. 

The Western blots were blocked with 5% bovine serum albumin (BSA) for one 

hour at room temperature with shaking.  Polyclonal rabbit α β-catenin (Sigma; C2206) 

was applied at a dilution of 1:4,000 and incubated overnight at 4°C with shaking.  

Polyclonal goat α rabbit horseradish peroxidase (HRP) secondary antibody (Sigma; 

A0545) was applied to each Western blot at a dilution of 1:25,000, and incubated for 30 

minutes at room temperature with shaking.  The HRP substrate was applied, and the 

Western blots were imaged using the ProteinSimple FluorChem Q system and the 

AlphaView 3.4.0 software.  The Western blots were stripped and blotted for β-actin by 

applying monoclonal mouse α β-actin HRP clone AC-15 (Sigma; A3854) at a dilution of 

1:25,000, and incubated for 30 min at room temperature with shaking.  The HRP 

substrate was applied and the Western blots were imaged as described above.  Two of 

the three Western blots were re-stripped and blotted for E-cadherin by applying 

monoclonal rabbit α E-cadherin clone 24E10 (Cell Signaling Technology; 3195) at a 

dilution of 1:1,000, and incubating overnight at 4°C with shaking.  The HRP substrate 

was applied to the Western blots and they were imaged as described above.  The 

Western blot images were quantified by calculating the integrated density of each band 

using the Image analysis software Image J (Schindelin, 2012; Walter, 2010; Eliceiri, 2012). The 

normalized values (adjusted relative density) of the signals were obtained by dividing 

the integrated density of the protein of interest band by the integrated density of the β-

actin band of that same sample.  The average and standard deviation of the adjusted 

relative density values of β-catenin under each treatment from three replicate Western 

blots were calculated. 

For immunofluorescence, the cells were fixed with 1:1 methanol:acetone.  The 

cells were blocked with blocking buffer (5% lamb serum, 0.3% Triton X-100 in 1x 

phosphate buffered saline (PBS)) for one hour at room temperature in a humid, light-

tight box.  Polyclonal rabbit α β-catenin (Sigma; C2206) and monoclonal mouse α HA 

clone HA-7 (Sigma; H9658) primary antibodies were applied at dilutions of 1:1000 as 
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necessary, and incubated overnight at 4°C in a humid, light-tight box.  Donkey α rabbit 

CF633 (Biotium; 20125) and polyclonal donkey α mouse Alexa 488 (Jackson 

ImmunoResearch Laboratories; 715-545-150) fluorescently conjugated secondary 

antibodies were each applied at the concentration 10 µg/mL, as necessary, to label β-

catenin and ephrin-B1ΔC (HA), respectively, and incubated for one hour at room 

temperature in a humid, light-tight box.  The coverslips on which the cells were grown 

and fixed were mounted onto a microscope slide using Vectashield (Vector 

Laboratories; H-1000).  The slides were imaged via Z-scan at 600x magnification using 

an Olympus Fluoview FV1000 confocal microscope and the Olympus Fluoview 4.1 

software.  Following fluorescent microscopy, the images obtained were prepared and 

analyzed using the imaging software Adobe Illustrator, Fiji (Image J), and Vaa3d 
(Schindelin, 2012; Walter, 2010; Eliceiri, 2012; Peng, 2010; Peng, 2014).  
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Chapter 4: Results 
Overexpression of the canonical Wnt ligands Wnt3a and Wnt8 was not sufficient 

to induce TOP/FOP FLASH reporter activity (Figures 11 and 12).  Overexpression of 

wild-type β-catenin (β-cateninWT), however, was sufficient to induce TOP/FOP FLASH 

reporter activity (Figure 13).  Co-expression of mouse ephrin-B1ΔC inhibited β-

cateninWT – induced TOP/FOP FLASH reporter activity (Figure 14).  Similarly, 24 hour 

LiCl treatment induced TOP/FOP FLASH reporter activity (Figure 15), and 

overexpression of mouse ephrin-B1ΔC abrogated the LiCl – induced TOP/FOP FLASH 

reporter activity (Figure 16).  β-catenin* overexpression also induced TOP/FOP FLASH 

reporter activity (Figure 17).  Co-expression with ephrin-B1ΔC abrogated the β-catenin* 

– induced TOP/FOP FLASH reporter activity (Figure 18). 

Levels of total cellular β-catenin were deduced by calculating the adjusted 

relative density and the average and standard deviation of the adjusted relative density 

values of β-catenin under each treatment from three replicate Western blots.  LiCl 

treatment results in an increase in total cellular β-catenin (Figures 19 and 20).  

Furthermore, overexpression of ephrinB1ΔC in the presence of LiCl treatment reduced 

the increase in total cellular β-catenin observed with LiCl alone (Figures 19 and 20).  

However, the increase in total cellular β-catenin upon LiCl treatment and the reduction 

of this effect with the addition of overexpression of ephrin-B1ΔC, as measured by the 

adjusted relative density of α β-catenin in Western blots, varied greatly among 

replicates (only one replicate is shown; Figure 19).  Indeed, these results were not 

statistically significant, as revealed by t-test’s. 

Levels of total cellular E-cadherin were deduced by calculating the adjusted 

relative density values of E-cadherin under each treatment from two replicate Western 

blots (one replicate is shown; Figure 21).  Total cellular E-cadherin increased in 

response to LiCl treatment Figure 21).  Total cellular E-cadherin also increased in 

response to ephrin-B1ΔC overexpression (Figure 21).  In one replicate Western blot for 

E-cadherin, overexpression of ephrin-B1ΔC together with LiCl treatment did not affect 

the increase in total cellular E-cadherin observed in response to LiCl treatment alone 

(Figure 21) However, in another replicate Western blot for total cellular E-cadherin, 
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overexpression of ephrin-B1ΔC together with 50 mM LiCl enhanced the observed 

increase in total cellular E-cadherin (data not shown).  However, more experiments 

need to be performed to verify these effects. 

Analysis of β-catenin subcellular localization using confocal immunofluorescence 

microscopy revealed that β-catenin subcellular localization varies in apical, middle, and 

basal Z-sections of HEK293T cells cultured to confluency (Figure 22).  Membrane-

localized β-catenin is very prominent at apical Z-sections, and is also apparent at basal 

Z-sections (Figure 22-25).  Cytoplasmic β-catenin is observed in all Z-positions, 

however, cytoplasmic space is lacking in HEK293T cells, especially once they form cell-

cell interactions and become more tightly organized (Figure 22-25).  Nuclear β-catenin 

is observed in some cells in the middle and apical Z-sections, and nuclear β-catenin 

punctae are observed in some cells in the apical Z-sections, particularly (Figure 22-25).  

LiCl treatment may enhance membrane localization of β-catenin at basal and, more 

prominently, apical Z-sections, and may enhance nuclear β-catenin punctae at apical Z-

sections (Figure 22-25).  Overexpression of ephrinB1ΔC also enhances membrane 

localization of β-catenin at basal and apical Z-sections, and the effect is even more 

prominent when LiCl treatment is applied in addition to overexpression of ephrin-B1ΔC 

(Figure 22-25). 

SP600125 does not prevent inhibition of LiCl – induced TOP/FOP FLASH 

reporter expression by ephrin-B1ΔC (Figure 26).  Rather, SP600125 seems to enhance 

the ephrin-B1ΔC antagonism of LiCl – induced TOP/FOP FLASH reporter expression 

(Figure 26). 
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Figure 11: Wnt3a Overexpression is Not Sufficient to Induce Reporter Activity.  
HEK293T cells were grown at a controlled density for ~24 hours.  The cells were 
transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated 
constructs and cultured for ~24 hours.  Cell lysates were processed for luciferase 
assays.  A representative experiment performed in triplicate is shown here.  Results are 
presented as average ratios of TOP vs. FOP luciferase activity measured as relative 
luminescence units (RLU), and the error bars represent standard deviations. *: P < 0.05, 
**: P < 0.01, *** P < 0.001. 
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Figure 12: Wnt8 Overexpression is Not Sufficient to Induce Reporter Activity.  
HEK293T cells were grown at a controlled density for ~24 hours.  The cells were 
transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated 
constructs and cultured for ~24 hours.  Cell lysates were processed for luciferase 
assays.  A representative experiment performed in triplicate is shown here.  Results are 
presented as average ratios of TOP vs. FOP luciferase activity measured as relative 
luminescence units (RLU), and the error bars represent standard deviations. *: P < 0.05, 
**: P < 0.01, *** P < 0.001. 
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Figure 13: Wild-type β-catenin Overexpression Induces Reporter Activity.  
HEK293T cells were grown at a controlled density for ~24 hours.  The cells were 
transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated 
constructs and cultured for ~24 hours.  Cell lysates were processed for luciferase 
assays.  A representative experiment performed in triplicate is shown here.  Results are 
presented as average ratios of TOP vs. FOP luciferase activity measured as relative 
luminescence units (RLU), and the error bars represent standard deviations. *: P < 0.05, 
**: P < 0.01, *** P < 0.001. 
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Figure 14: ephrin-B1ΔC Inhibits Wild-type β-catenin – Induced Reporter Activity.  
HEK293T cells were grown at a controlled density for ~24 hours.  The cells were 
transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated 
constructs and cultured for ~24 hours.  Cell lysates were processed for luciferase 
assays.  A representative experiment performed in triplicate is shown here.  Results are 
presented as average ratios of TOP vs. FOP luciferase activity measured as relative 
luminescence units (RLU), and the error bars represent standard deviations. *: P < 0.05, 
**: P < 0.01, *** P < 0.001. 
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Figure 15: LiCl Induces Reporter Activity.  HEK293T cells were grown at a controlled 
density for ~24 hours.  The cells were treated with 50 mM LiCl, transfected with pTOP 
FLASH (TOP) and pFOP FLASH (FOP) and the indicated constructs, and cultured for 
~24 hours.  Cell lysates were processed for luciferase assays.  A representative 
experiment performed in triplicate is shown here.  Results are presented as average 
ratios of TOP vs. FOP luciferase activity measured as relative luminescence units 
(RLU), and the error bars represent standard deviations. *: P < 0.05, **: P < 0.01, *** P 
< 0.001. 
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Figure 16: ephrin-B1ΔC Inhibits LiCl – Induced Reporter Activity.  HEK293T cells 
were grown at a controlled density for ~24 hours.  The cells were treated with 50 mM 
LiCl, transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated 
constructs, and cultured for ~24 hours.  Cell lysates were processed for luciferase 
assays.  A representative experiment performed in triplicate is shown here.  Results are 
presented as average ratios of TOP vs. FOP luciferase activity measured as relative 
luminescence units (RLU), and the error bars represent standard deviations. *: P < 0.05, 
**: P < 0.01, *** P < 0.001. 
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Figure 17: β-catenin* Overexpression Induces Reporter Activity.  HEK293T cells 
were grown at a controlled density for ~24 hours.  The cells were transfected with pTOP 
FLASH (TOP) and pFOP FLASH (FOP) and the indicated constructs and cultured for 
~24 hours.  Cell lysates were processed for luciferase assays.  A representative 
experiment performed in triplicate is shown here.  Results are presented as average 
ratios of TOP vs. FOP luciferase activity measured as relative luminescence units 
(RLU), and the error bars represent standard deviations. *: P < 0.05, **: P < 0.01, *** P 
< 0.001. 
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Figure 18: ephrin-B1ΔC Inhibits β-catenin* – Induced Reporter Activity.  HEK293T 
cells were grown at a controlled density for ~24 hours.  The cells were transfected with 
pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated constructs and cultured 
for ~24 hours.  Cell lysates were processed for luciferase assays.  A representative 
experiment performed in triplicate is shown here.  Results are presented as average 
ratios of TOP vs. FOP luciferase activity measured as relative luminescence units 
(RLU), and the error bars represent standard deviations. *: P < 0.05, **: P < 0.01, *** P 
< 0.001.  
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Figure 19: ephrin-B Signaling Affects Levels of Total Cellular β-catenin.  HEK293T 
cells were grown at a controlled density for ~24 hours.  The cells were treated with 50 
mM LiCl, transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the 
indicated constructs, and cultured for ~24 hours.  Western blots of whole cell lysates 
were carried out using α β-catenin. The Western blots were stripped and blotted for α β-
actin.  The adjusted relative density of each β-catenin band was calculated using Fiji, 
and normalized (to obtain the adjusted relative density) for the relative amount of cell 
lysate by dividing the integrated density of each β-catenin band by the respective 
integrated density of the respective β-actin band and setting the adjusted relative 
density of the negative control group to 1. 
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Figure 20: ephrin-B Signaling Affects Levels of Total Cellular β-catenin.  The 
averages and standard deviations of the adjusted relative densities of α β-catenin from 
three Western blots of cell lysates from three biological replicates of each treatment 
performed in parallel was calculated. 
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Figure 21: LiCl and ephrin-B Signaling Increase Levels of Total Cellular  
E-cadherin Independently and Co-Treatment Does Not Influence this Effect.  
HEK293T cells were grown at a controlled density for ~24 hours.  The cells were treated 
with 50 mM LiCl, transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and 
the indicated constructs, and cultured for ~24 hours.  Two of the Western blots of whole 
cell lysates blotted for  α β-catenin and α β-actin were re-stripped and blotted for α E-
cadherin (hence, α β-actin image is reproduced from Figure 19), and one of these 
Western blots is shown.  The adjusted relative density of each β-catenin band was 
calculated using Fiji, and normalized (to obtain the adjusted relative density) for the 
relative amount of cell lysate by dividing the integrated density of each β-catenin band 
by the respective integrated density of the respective β-actin band and setting the 
adjusted relative density of the negative control group to 1.  
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Figure 23: Subcellular Localization of β-catenin in R
esponse to ephrin-B
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Figure 24: Subcellular Localization of β-catenin in R
esponse to ephrin-B
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Figure 25: Subcellular Localization of β-catenin in R
esponse to ephrin-B
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Figure 26: Inhibition of c-Jun N-terminal kinase (JNK) Inhibits LiCl – Induced 
Reporter Activity and Enhances the ephrin-B1ΔC Inhibition of LiCl – Induced 
Reporter Activity.  HEK293T cells were grown at a controlled density for ~24 hours.  
50 µM SP600125 (pan-JNK inhibitor), 0.1% DMSO (vehicle control for SP600125), or 
0.01% auto H20 (vehicle control for LiCl) were added to fresh DMEM, and the media of 
the cells was replaced as necessary. The cells were treated with 50 mM LiCl, 
transfected with pTOP FLASH (TOP) and pFOP FLASH (FOP) and the indicated 
constructs, and cultured for ~24 hours.  Cell lysates were processed for luciferase 
assays.  A representative experiment performed in triplicate is shown here.  Results are 
presented as average ratios of TOP vs. FOP luciferase activity measured as relative 
luminescence units (RLU), and the error bars represent standard deviations. *: P < 0.05, 
**: P < 0.01, *** P < 0.001. 
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Chapter 5: Discussion 
As described earlier, the ephrin-B antagonism of canonical Wnt signaling was 

initially suggested in a TOP/FOP FLASH assay in HEK293T cells using Xenopus 

ephrin-B1 and ephrin-B1ΔC.  Therefore, we aimed to validate this novel interaction 

using a TOP/FOP FLASH assay in HEK293T cells using Mus musculus constructs in 

order to determine if this interaction is evolutionarily conserved in mammals.  

Overexpression of mammalian ephrin-B1ΔC in HEK293T cells inhibits TOP/FOP 

FLASH reporter activity induced by the application of LiCl, and overexpression of 

mammalian WT β-catenin and β-catenin* (Figures 16,14, and 18).  These results 

suggest that the ephrin-B antagonism of canonical Wnt signaling is evolutionarily 

conserved between amphibians and mammals. 

Because ephrin-Bs can mediate both forward and reverse signaling, we 

employed two ephrin-B constructs to determine whether forward or reverse ephrin-B 

signaling is responsible for the ephrin-B mediated antagonism of canonical Wnt 

signaling.  Ephrin-B1 mediates both forward and reverse signaling, while ephrin-B1ΔC 

mediates forward signaling, and when overexpressed, can dominant-negatively inhibit 

reverse signaling.  Because ephrin-B1 and ephrin-B1ΔC had similar effects on LiCl, β-

cateninWT, and β-catenin* - induced TOP/FOP FLASH reporter activity, we propose 

that the ephrin-B antagonism of canonical Wnt signaling in HEK293T cells is likely relies 

on forward, rather than reverse, ephrin-B signaling (Figures 16, 14, and 18; ephrin-B1 

data: Perfetto et al. unpublished data). 

Due to the central role of β-catenin in canonical Wnt signaling, we hypothesized 

that the ephrin-B antagonism of canonical Wnt signaling likely involves an alteration of 

the stability and/or subcellular localization of β-catenin.  To determine whether the 

ephrin-B antagonism of canonical Wnt signaling is dependent on the destruction 

complex-mediated degradation of β-catenin, we employed LiCl, which activates 

canonical Wnt signaling by inhibiting GSK3β, thereby preventing the degradation of β-

catenin whether it is newly synthesized β-catenin or β-catenin released from other 

interactors.  We also employed a β-catenin mutant described previously, β-catenin* that 

has mutations in the GSK3β-targeted sites and hence cannot be modified by the 
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destruction complex.  Overexpression of ephrin-B1ΔC inhibits LiCl-induced TOP/FOP 

FLASH activity in HEK293T cells (Figure 16).  Similarly, overexpression of ephrin-B1ΔC 

inhibits β-catenin* - induced TOP/FOP FLASH activity in HEK293T cells (Figure 18).  

Taken together, these results suggest that the ephrin-B can antagonize canonical Wnt 

signaling independently of the β-catenin destruction complex, and likely inhibits 

canonical Wnt signaling downstream of the destruction complex.  However, we cannot 

rule out additional effects upstream or at the level of regulation of β-catenin stability via 

GSK3β and the β-catenin destruction complex.  In line with this latter hypothesis, 

Western blots for β-catenin indicate that the ephrin-B antagonism of canonical Wnt 

signaling may involve a reduction in total cellular β-catenin levels (Figures 19 and 20). 

We employed immunofluorescence microscopy to investigate the effects of 

ephrin-B signaling on the subcellular localization of β-catenin.  As shown in 22-25, 

ephrin-B signaling may affect β-catenin subcellular localization, increasing the relative 

amount of β-catenin at the cell membrane.  Because total cellular β-catenin is 

distributed among membrane-bound, cytosolic and nuclear pools, an increase in the 

membrane-bound pool may result in reduction of the nuclear pool of β-catenin, which is 

the only fraction that is functional in mediating canonical Wnt signaling. To further test 

this hypothesis, we are in the process of quantifying functional β-catenin in HEK293T 

cells with and without ectopic ephrin-B1ΔC by purifying nuclear proteins from the cell 

lysates. 

JNK is activated downstream of ephrin-B signaling and JNK 1 and 2 directly 

interact with and phosphorylate β-catenin.  However, there are conflicting reports 

regarding the result of the JNK-phosphorylation of β-catenin (Hu, 2008; Hu, 2009; Liao, 2006; Wu, 

2008).  In addition, JNK 1 and 2- phosphorylation of β-catenin may have opposite effects.  

We confirmed that JNK is activated in response to ephrin-B signaling in HEK293T cells 

using a JNK Assay Kit (Figure 9).  Furthermore, we employed the pan-JNK inhibitor, 

SP600125, to determine if JNK activity is required for the ephrin-B antagonism of 

canonical Wnt signaling.  As shown in Figure 26, inhibition of JNK using SP600125 

does not prevent the ephrin-B – mediated inhibition of LiCl or β-catenin* – induced 

TOP/FOP FLASH activity, but rather seems to enhance the effect (Figure 26).  In 
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addition, inhibition of JNK alone inhibits LiCl – induced TOP/FOP FLASH activity (Figure 

26).  This result is consistent with reports that JNK-phosphorylation of β-catenin results 

in nuclear accumulation of β-catenin, and activates canonical Wnt signaling in HEK293T 

cells (Wu, 2008).  Future efforts will be focused on testing if other effectors of forward 

ephrin-B signaling, such as RhoA and Rac1, contribute to the inhibition of canonical Wnt 

signaling. 
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