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Abstract 

 

BAYESIAN SPATIO–TEMPORAL 

ANALYSIS OF ROAD TRAFFIC CRASHES 

Amin Azimian 

Road traffic crashes are one of the major causes of death and serious injury in the US, leading 

to economic losses and human suffering. In recent years, several research efforts have been 

made to screen areas and locate hotspots/zones and to identify the factors contributing to 

traffic crashes of different severity levels. Such research typically aggregates crash locations 

into spatial units at the macro level, such as counties, or at the micro level, such as road 

segments or intersections.  

Many crash estimation methods have been proposed in the literature. These methods 

range from classical approaches, such as the linear, Poisson, negative binomial, and logistic 

regression methods, to more state-of-the-art approaches, such as the empirical Bayesian 

(EB), spatial autoregressive, and full Bayesian methods. A considerable drawback of 

classical methods is that they cannot account for the regression-to-the-mean bias and 

potential unobserved heterogeneity, which can result in unstable and biased parameter 

estimates. Additionally, EB and spatial autoregressive methods are unable to address 

multilevel data and group-level random effects. By contrast, the full Bayesian framework is 

more flexible and can be easily extended to include random effect terms that can act as 

proxies for unobserved or missing covariates that have a spatial or temporal structure.  

Although the full Bayesian framework appears to be a promising methodology for 

dealing with crash data, the few previous studies in the area of road traffic safety that used 

this framework had some major limitations. Some studies performed their analyses in 
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univariate settings that did not account for correlations among crash severities, whereas other 

studies did not address spatial and/or temporal effects properly. Additionally, the key factors 

that might affect the number and/or severity of crashes, such as urbanity and hospital 

accessibility, were not explored. Finally, studies used either micro- or macro-level data to 

perform safety analyses for detecting hotspots. No comprehensive research combining the 

two has been conducted. All of these limitations might result in the loss of available 

information, as well as in biased and inconsistent findings. 

 This dissertation proposes an integrated safety screening approach that combines 

macro- and a micro-level analyses and accounts for the above-mentioned issues. This 

approach is illustrated using the case of West Virginia and is expected to provide a 

comprehensive and effective framework for use in transport safety planning.  

In the macro-level data analysis, various multivariate Bayesian models (Poisson 

lognormal models) were estimated to relate various county-level socio-economic and 

transport-related factors with crash occurrence/frequency while accounting for unobserved 

heterogeneity in a multivariate setting. In the micro-level data analysis, multi-level data were 

used to examine various Bayesian logit models, including nominal and order response 

models, in order to identify the micro-level factors contributing to fatality risk while 

accounting for random effects over space and time and between crashes. The results from 

the two levels were combined using a GIS-based approach to identify hotspots. 
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C H A P T E R  1 :  I N T R O D U C T I O N  

1.1.  Research Motivation and Problem Statement    

Over the past few decades, the use of transport systems has significantly grown because of 

the development of the highway system and the availability of inexpensive private vehicles to mid-

income social classes. Although such developments have contributed to economic growth and 

urban mobility, they have imposed direct and indirect costs on our communities, such as noise and 

air pollution, traffic congestion and delays, and road traffic crashes.  

Road traffic crashes are one of the major causes of death and serious injury in the US, causing 

economic losses and human suffering (CDC 2016). According to the National Safety Council, 

around six million traffic crashes occurred in the US in 2016, of which 34,439 were fatal and around 

two million were injury crashes that led to physical, social, and psychological consequences. The 

estimated cost of motor vehicle deaths, injuries, and property damage in 2016 was US$432.5 billion  

(National Safety Council, 2016.); this figure includes medical and work loss costs. Reducing crashes 

and their related consequences is therefore a critical issue.  

In recent years, many statistical models have been established to analyze traffic crashes at 

the macroscopic and microscopic levels. Macro-level crash studies have primarily focused on the 

quantification of the impacts of demographic, socio-economic, and area-level transport-related 

factors on aggregated traffic crashes (i.e., number of crashes per county or another geographical unit) 

by using count models. On the other hand, micro-level safety analyses have been used to analyze 

traffic crashes in particular road sections (e.g., segments, intersections), either focusing on crash 

count or on crash severity models; that is, count models aim to identify the relationship between 

crash frequency and road geometric features (e.g., lane width, presence of median barriers), whereas 

crash severity models are used to determine the effects of individual-level factors, such as age, 
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gender, and road condition, on severity outcomes. As macro- and micro-level analyses focus on two 

different dimensions, combining these two analyses could overcome some of the shortcomings of 

frameworks that use the two methods separately.  

Despite the substantial research efforts in the traffic safety field, major limitations have not 

been addressed properly in the literature. From a methodological standpoint, for example, 

conventional crash count models, such as the Poisson and negative binomial (NB) regression models, 

have been widely used in previous studies to establish the relationship between crash frequency and 

other potential factors. Compared with Poisson models, NB models are more common in traffic 

safety studies, as they account for the overdispersion in crash data. Nevertheless, NB and other 

classical count models ignore correlated unmeasured risk factors across space and time. Recent 

developments in statistical computations have allowed researchers to model spatial correlation using 

the conditional autoregressive model (CAR) in the Bayesian framework. In addition to CAR models, 

other spatial models, such as spatial autoregressive and spatial error models, account for spatial 

correlations; however, they are less common in traffic safety research, as introducing random effect 

terms is difficult. Additionally, classical models assume that crash occurrences are independent 

across different severity levels, which may result in biased parameter estimates. By contrast, the 

univariate CAR model can be extended to the multivariate conditional autoregressive (MCAR) 

model, which accounts for the correlation across different severity outcomes.  

Although crash data are of a hierarchical nature, most methods proposed by the literature do 

not account for this fact. A hierarchical structure here refers to either intrinsic spatial and temporal 

patterns and/or the fact that multiple individuals in multiple vehicles are typically involved in traffic 

crashes. Compared with conventional methods, the hierarchical Bayesian framework is more flexible 

and can be easily extended to include random effect terms that can act as proxies for unobserved or 
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missing factors; these factors can affect crashes and might have a spatial or temporal structure. 

Therefore, the hierarchical Bayesian framework appears to be a promising methodology for dealing 

with crash data. 

Additionally, another limitation of recent studies that utilize a full Bayesian framework is the 

omission of key factors that might affect the number and/or severity of crashes, such as urbanization 

levels and hospital accessibility. 

In light of the above, this dissertation proposes an integrated zonal screening approach that 

aims to identify sites with promise incorporating macro- and micro-level traffic safety analyses. The 

proposed framework will allow agencies to more accurately analyze the overall traffic safety of an 

area. Additionally, this dissertation seeks to investigate the relationship between traffic crashes and 

various macro- and micro-level factors by utilizing a hierarchical Bayesian approach. The case study 

of West Virginia (WV) is used to illustrate the framework and methods proposed in this dissertation.  

1.2. Research Goal and Framework 

The overarching goal of this dissertation is to present a screening approach by integrating 

both macro- and micro-level data in order to provide a comprehensive and effective method for use 

in transport safety planning. A comprehensive framework, shown in Figure 1.1, was developed to 

address this goal. 

The following are the five main tasks involved in the framework: 

1. Develop various Bayesian multivariate models (Poisson lognormal models) to relate 

various macro-level variables, such as socio-economic and transport-related factors, with 

crash occurrence/frequency while accounting for possible temporal effects and spatial 

autocorrelations  
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2. On the basis of the results of task 1, identify the hotspots in terms of number of crashes 

(i.e., counties that experienced a significant amount of crashes) and prioritize the high-risk 

counties based on the excess risk estimated from the best model in task 1 

3. Establish different hierarchical Bayesian logit models from micro-level data and identify 

the individual-level and road-specific factors contributing to fatal injuries in each census 

tract 

4. Identify high-risk census tracts in terms of risk of fatality of drivers involved in a fatal 

crash on the basis of the results from the best model in task 3 

5. Develop an integrated and comprehensive screening method by combining the results from 

tasks 2 and 4 using a GIS-based approach  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Research framework for the development of an integrated screening method 

 

 

1.3. Research Contributions 

 The original contributions of this dissertation to the state of the art are as follows: (1) the 

development of comprehensive spatio–temporal models that account for the unique nature of crash 

data, which can provide a more accurate crash estimation, (2) the integration of macro- and micro-

Excess risk estimation and county 

ranking and prioritization 

 

Macro-Level Data Analysis 
 

Micro-Level Data Analysis 
 

Development of the Bayesian Poisson 

lognormal model to predict the number of 

crashes per county 

Development of the hierarchical Bayesian logit 

model to predict the occupant’s injury severity 

at the census tract 

 

Excess risk estimation and census tract 

ranking and prioritization 

 

Development of an integrated safety 

screening method 
 



 

5 
 

level analyses to identify high-risk areas, and (3) the quantification of the impacts of various factors 

contributing to road traffic crashes. In a bid to avoid biased and inconsistent parameter estimates and 

to draw valid inferences about safety phenomena, the proposed models will account for unobserved 

heterogeneity. This approach can help state agencies to effectively handle their budget for improving 

road safety in high-risk areas and to inform crash prevention and control programs. 

1.4. Dissertation Organization 

 The dissertation is divided into six chapters that follow this introductory chapter, namely, 

the Literature Review, Data Collection and Exploratory Data Analysis, Methodology, Research 

Results, and Conclusions. Chapter 2 (Literature Review) synthesizes the specifications and 

techniques used in crash prediction, as well as highlights high-risk locations and the factors 

contributing to traffic crashes. Chapter 3 (Data Collection and Exploratory Data Analysis) 

describes the data processing techniques used to prepare the data collected for analysis and 

provides a description of the final data sets used for this dissertation. Chapter 4 (Methodology) 

presents the proposed macro- and micro-level data analysis techniques used. It also describes the 

proposed integrated screening approach and explains the planned methodology to combine the 

results of the two analyses. Chapter 5 (Research Results) analyzes the estimation output from the 

proposed models and reports the high-risk locations for the case study of WV. Chapter 6 

(Conclusions) provides the conclusions of this dissertation and discusses its contributions from 

both theoretical and empirical perspectives. It describes the planning and policy implications for 

traffic safety improvement. Finally, the chapter discusses the limitations of this dissertation and 

provides recommendations for future research.   
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C H A P T E R  2 :  L I T E R A T U R E  R E V I E W  

The literature review presented in this chapter consists of three main sections. First, applied 

statistical methods in traffic safety are discussed. Second, past research efforts related to traffic safety 

at the macroscopic level are presented. Finally, previous traffic safety studies at the microscopic 

level are summarized. 

2.1.  Statistical Methods Overview 

To date, many statistical methods have been developed to perform macroscopic and 

microscopic traffic safety analyses. Generally, such methods can be classified into classical methods 

(e.g., nominal safety measures, count, linear regression, and logit models), empirical Bayesian (EB) 

methods, spatial autoregressive models, and full Bayesian models.  

Classical methods, such as nominal safety measures (crash rate/frequency), have been 

primarily used by transportation agencies to detect and rank hazardous road segments and 

intersections. However, these methods ignore locations with zero crashes in the time analyzed. Other 

classical methods, such as Poisson, NB, linear regression, and logit models, have mostly been used 

to identify and establish the relationship between potential factors (either at the macro or micro level) 

and traffic crashes/severities, but not to rank them. Generally, these models ignore the hierarchical 

nature of crash data and are designed in a univariate framework, that is, the occurrence of traffic 

crashes of different severity levels is considered independent; in other words, the methods do not 

account for the correlation between different crash severities, thus violating traditional Gauss-

Markov assumptions (Darwiche, 2009). Nevertheless, the literature (see for example, Ma and 

Kockelman, 2006; Tunaru, 2002) has demonstrated the strong correlation among different types of 

crashes because of shared site-specific unobserved factors. Although significant studies examine 
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this topic in micro-level crash analysis, limited research has addressed these potential correlations 

between each type of crash in macroscopic safety analysis. 

The EB method has been widely used in micro-level safety studies; it has been proposed 

as an alternative to address many of the limitations of classical methods because it estimates the 

expected crash frequency in road segments or intersections by combining observed and predicted 

crash frequencies from a safety performance function (Hauer, 1986).  

 

Figure 2.1 Illustration of regression to the mean and the empirical Bayes estimate (revised from 

Gross et al. (2010)) 

 

Figure 2.1 shows that the difference between expected and predicted values refers to excess 

crash or the potential for safety improvement. In the EB method, the safety performance function 

(SPF) is usually developed using NB, which estimates the predicted crash frequency as a function 
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of road characteristics, such as the annual average daily traffic (AADT) and segment length. The 

main advantage of the EB method is that it accounts for the regression-to-the-mean bias. For 

example, the method recognizes that a road segment or an intersection with zero crash during a 

given time period is expected to experience some crashes, close to the average number of crashes 

in similar sites, in the long term. However, as the Institute of Transportation Engineers explains, 

the EB method is not a fully Bayesian model, and it is “complex and not ready for widespread 

implementation” (Pawlovich, 2003). Moreover, the development of an SPF requires a large 

database storing the characteristics of reference sites (e.g., AADT per road segment, segment 

length, lane width, shoulder width, road grade, presence of a horizontal curve). 

The spatial autoregressive model is a method to analyze datasets that contain 

observations on geographical units. The spatial weight matrix is its core component; this 

component allows researchers to explore how an event at one location is directly and indirectly 

affected by its neighbors. This model can be written in two main forms. The first form is the spatial 

lag model in which the spatial weight matrix is applied to the dependent variable along with a 

spatial autoregressive parameter, which can be estimated from the data. This approach can be 

written when an observation at a given location is affected by the observations measured at nearby 

locations. The second approach is used when only the error terms across different spatial units are 

spatially correlated. Spatial autoregressive models are well suited to the maximum likelihood 

method and the generalized method of moments estimation, which make introducing random effect 

terms difficult (Anselin, 2013; Banerjee, 2009). Note that in the conditional autoregressive 

framework in a full Bayesian approach, the introduction of random effect terms is easy because of 

the hierarchical conditional representation. 
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The full Bayesian method estimates the posterior value of parameters by using sampling 

techniques, such as marcov chain monte carlo (MCMC) methods. Among others, the method can 

provide credible intervals for posterior values and account for the regression-to-the-mean bias. It 

can also address unobserved heterogeneity over space, time, and crash severities (Lord and 

Mannering, 2010; Lord et al., 2005; Mannering and Bhat, 2014; Mannering et al., 2016). Ignoring 

this unobserved heterogeneity can decrease the efficiency of the estimator (Ma and Kockelman, 

2006; Mannering et al., 2016). 

From a spatial viewpoint, unobserved spatial heterogeneity might be caused by unmeasured 

variation or differences across zones; for example, some factors that may affect traffic crashes but 

have not been included in the model (because of data availability), such as the percentage of 

roadways with sidewalk or the percentage of roadways that have adequate lighting, can 

systematically vary across zones. On the other hand, spatial correlation might be caused by correlated 

unobserved factors in neighboring zones; for example, traffic crashes in one zone might be induced 

by unobserved factors, such as the lack of attractiveness in neighboring zones, which prompt their 

residents to travel in that zone. Many authors demonstrated the presence of spatial autocorrelation 

and heterogeneity in crash data across different spatial units (see for example, Aguero-Valverde and 

Jovanis, 2010, 2006a; Wang and Abdel-Aty, 2010; Liu and Sharma, 2018; Wang and Abdel-Aty, 

2006). Moreover, temporal correlation may exist in crash data because of the temporal nature of 

traffic laws, the economy, the weather, and travel demand and behavior et al. 2016; Liu and Sharma, 

2018).  

Crash occurrences across severity outcomes are not independent, so the use of a multivariate 

model when different crash severities need to be analyzed in the model is more suitable (Mannering 

and Bhat, 2014; Mannering et al., 2016). Many authors have utilized and compared Bayesian models 
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in univariate and multivariate settings, proving that multivariate models are superior to univariate 

models because they capture the within-area correlation among different crash severities (see for 

example, Aguero-Valverde, 2013; Barua et al., 2014; Boulieri et al., 2016; Wu and Donnell, 2016; 

Liu and Sharma, 2018; Y. Wang and Kockelman, 2013).  

Bayesian models can be specified through multiple/hierarchical levels. The basic idea of 

hierarchical Bayes (known else as multilevel modeling) is to think of the lowest-level units as 

organized into a hierarchy of successively higher-level units. For example, in terms of a crash, the 

hierarchy can be described as follows: individuals are involved in crashes, crashes occur in road 

sites, and road sites are located in greater regions (e.g., census tracts, counties). In view of this, the 

outcomes of an individual can be described as the sum of the effects for the individual, for the crash, 

for the road site, and for the region. Because of their capability to account for this hierarchy, 

hierarchical Bayes models have the potential to provide accurate crash estimates and rank locations 

with promise.  

2.2. Crash Factors 

Numerous factors can contribute to road traffic crashes. The Government Accountability 

Office ( US Government Accountability Office, 2003) classifies these factors as human, roadway 

environment, and vehicle factors. Human factors pertain to the behavior of road users (e.g., speeding, 

alcohol involvement), as well as driver limitations (e.g., decision errors, poor vision). Roadway 

environment factors involve design and road features, such as lane width, sight distance on vertical 

or horizontal curves, the presence of raised median barriers, types of intersections, and pavement 

conditions (e.g., rain, ice, snow, fog). Vehicle factors stand for vehicle characteristics (e.g., model 

type, model year) and any vehicle-related failures (e.g., undeployed airbag).  
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Many important factors affecting crashes, such as accessibility to hospitals, demographic 

characteristics, and highway infrastructure functional class, might systematically vary at the spatial 

scale and should be considered in crash modeling (Aguero-Valverde and Jovanis, 2006b). These 

potential factors might also be related with different hierarchical levels. (Huang and Abdel-Aty, 

2010) reported that crash data can be structured in multiple levels, and they proposed a five-level 

hierarchy, as shown in Figure 2.2. The proposed hierarchy implies that the factors affecting traffic 

crashes can be explored at both the macroscopic and microscopic levels. Figure 2.2 shows that in 

this study, the macroscopic level refers to geographic/spatial units (e.g., countries, regions), whereas 

the microscopic level concerns the traffic crash, vehicle, and individual levels. Hence, the use of a 

hierarchical technique would be critical to account for the multilevel effects of traffic crashes.  

 

Figure 2.2 Multilevel structure of crash data (Adapted from (H. Huang and Abdel-Aty, 2010)) 
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2.3.  Macroscopic Traffic Safety Research  

Both macroscopic and spatial data analysis techniques have been widely used in 

environmental sciences, enabling researchers to investigate important issues related to risk 

estimation, unmeasured confounding variables, and spatial dependence (Richardson, 1992). Later, 

such techniques were considered by traffic engineers to establish the relationship of traffic-related 

factors and socio-economic and demographic factors with crash frequencies and crash rates at 

various spatial units. In macro-level traffic safety studies, traffic crashes are generally grouped into 

spatial units, which range from counties to zip codes (Darwiche, 2009). As a pioneer work on traffic 

safety, (Smeed, 1949) developed an equation to predict the number of traffic fatalities (D) across 

different countries as a function of population (P) and the number of licensed motor vehicles (N). 

He assumed that the equation has a functional form of D=ANα.Pβ, where A, α, and β were estimated 

through least square methods. The resulting equation based on the data from 20 countries in 1938 

was as follows: D= 0.0003(N.P2)1/3. 

From a methodological standpoint, a wide range of macro-level methods has been utilized in 

the literature. These methods can be classified into (a) classical models, including NB models ( 

Abdel-Aty and Radwan, 1998; Chin and Quddus, 2003; Hadayeghi et al., 2003; Noland and Oh, 

2004; Noland and Quddus, 2004; Poch and Mannering, 1996), loglinear models (Abdel-Atyet al., 

1998; Lee et al., 2006; Washington, 2006), (b) spatial autoregressive models (LaScala, et al., 2000; 

Levine et al., 1995; Quddus, 2008; Rhee et al., 2016), and (c) full Bayesian or hierarchical models 

(Aguero-Valverde, 2013; Aguero-Valverde and Jovanis, 2010, 2006a; Boulieri et al., 2016; Cheng 

et al., 2018; Huang et al., 2010; Lee et al. 2015; Liu and Sharma, 2018; Miaou, 1994; Siddiqui, et 

al., 2012; Truong et al., 2016). In the following sections, literature that has used each class of methods 

described above is summarized. This literature review is not intended to be comprehensive; rather, 

it aims to present key representative studies that influenced this dissertation.  
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2.3.1. Classical Methods 

Abdel-Aty and Radwan (1998) conducted a county-level GIS-based crash analysis. The 

study found that counties with high population tend to have higher crash frequencies. The analysis 

concluded that rural counties tend to have more severe crashes than urban counties do.  

Hadayeghi et al. (2003) developed different NB models for fatal and nonfatal crashes. They 

used demographic, traffic demand, and network data variables as explanatory variables in their 

models. The variables that had significant effects on crash occurrence are the number of households, 

road length, vehicle kilometers traveled, intersection density, speed limit, and volume–capacity ratio. 

Noland and Quddus (2004) utilized NB models to analyze the association between 

demographic data and traffic fatalities. They reported that traffic analysis zones (TAZs) with higher 

employment density have more traffic crashes, whereas congested urbanized areas have fewer 

crashes. In a similar work, Noland and Oh (2004) used the NB model to predict county-level crashes 

based on demographic and infrastructure characteristics. The authors found that increases in the 

number of lanes appear to be associated with both increased traffic-related crashes and fatalities. 

Kim et al. (2006) estimated an NB model to explore the relationship between land use, 

population, and economic development and crashes in a uniform grid structure. The results showed 

that areas with a high level of commercial activities have higher vehicle-to-vehicle crashes. In 

addition, areas around schools are associated with higher frequencies of overall crashes. 

Loukaitou-Sideris et al. (2007) proposed an ordinary least squares (OLS) regression to model 

the frequency of pedestrian crashes and sociodemographic and land use characteristics at the census 

tract level. The study found that neighborhoods with high population and employment density, high 

traffic volumes, and a large concentration of commercial/retail and multifamily residential land uses 

have a higher probability for pedestrian crashes. 
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Kant (2008) analyzed the relationship between crash types and land use in Florida by using 

GIS. The study found that rear-end crashes and right turn crashes are more common on urban roads 

than on rural roads; however, run-off road crashes were more common on rural roads than on urban 

roads. 

Khan et al. (2008) utilized county-level aggregate crash data for the state of Wisconsin to 

analyze the spatial clusters of crashes and the correlation between snow and clusters of weather-

related crashes by using spatial statistics. The results identified the clustering of ice-related crashes 

around bridges in four counties with similar ice-related crash rates in southeast Wisconsin.  

Wier et al. (2009) developed an aggregate-level crash prediction model by using an OLS 

model. They modeled the natural log of the number of vehicle–pedestrian injury collisions over a 

five-year period at 176 census tracts in San Francisco. The independent variables examined in their 

study included street, land use, and population characteristics, and their final model was able to 

explain approximately 72% of the systematic variation in vehicle–pedestrian injury collisions at the 

census tract level. The contributing factors were traffic volume, employee and resident populations, 

arterial streets without public transit, proportion of people living in poverty, and proportion of people 

aged 65 and over. 

2.3.2. Spatial Autoregressive Models 

In an early study, Levine et al. (1995) developed a spatial lag model to predict the crash 

counts in Honolulu TAZs based on socio-economic factors and roadway characteristics. The study 

found a positive correlation between road mileage and crashes. They also reported that the predictors 

of accident vary depending on trip activities and changes over time.  
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LaScala et al. (2000) used the spatial error model to explore the correlation between 

pedestrian crashes across census tracts in San Francisco. Their study suggested that pedestrian crash 

rates are associated with traffic flow, population density, and education. 

Quddus (2008) developed three different models (the non-spatial NB regression model, the 

spatial error model, and the Bayesian model) to compare the relationship between dependent and 

independent variables. He found that the results from the NB and Bayesian models are similar. The 

results from the spatial error and lag models are generally consistent with those of the Bayesian 

models, except for the case of serious injuries. Finally, the authors reported that the results from the 

Bayesian hierarchical models are more consistent with the literature and more coherent in all cases. 

Rhee et al. (2016) fitted various spatially autoregressive models to fatal and crash data. They 

concluded that the spatial error model outperforms the spatial lag model and an OLS baseline 

regression. The results also indicated that an increased length of roads with a speed limit below 30 

km/h and a higher ratio of residents below the age of 15 are correlated with a lower traffic crash 

frequency, whereas a higher ratio of residents who moved to the TAZ, more vehicle kilometers 

traveled, and a greater number of access points with speed limit difference between side roads and 

the mainline above 30 km/h all increase the number of traffic crashes. 

Soro et al. (2017) developed four models from panel data, which were the non-spatial model, 

the spatial autoregressive model, the spatial error model, and the fixed effect spatial autoregressive 

model with autoregressive disturbances (SARAR). Accident rate and injury rate were used as the 

dependent variables. Additionally, socio-economic factors, such as population percentage, 

unemployment rate, gross regional product, road length, and passenger and truck traffic, were 

considered as the regressors. A comparison of the models indicated that the SARAR model has better 

performance than the other models, as it generates a smaller akaike information criterion (AIC). The 



 

16 
 

gross regional product, population, unemployment rate, and passenger traffic were also found to be 

significant and had negative coefficients, whereas road length and truck traffic had positive 

coefficients. 

2.3.3. Full Bayesian Models 

Several different hierarchical Bayesian models can be used for the estimation of spatial risk 

patterns based on spatially aggregated count data. The Bayesian hierarchical model proposed by 

(Besag, 1974) has been widely used by various researchers in the case of areal count data (Aguero-

Valverde and Jovanis, 2006b;  Huang et al., 2002; Miaou, 1994).  

Miaou et al. (2003) developed county-level spatial models of rural road crash frequency in 

Texas while controlling for roadway characteristics. Later, Aguero-Valverde and Jovanis (2006b) 

utilized full Bayes hierarchical models for county-level fatal crash counts in Pennsylvania. The 

authors explored the effects of county-level demographic (e.g., population, age, wealth) and weather 

condition variables (e.g., precipitation, total number of rainy days in a year). The conclusive results 

of the study indicate that population age cohort and road mileage have a positive impact on crash 

frequency, whereas vehicle miles traveled (VMT) decrease crash risk.  

Song et al. (2006) explored several full Bayesian multivariate spatial models for estimating 

the crash rates from intersection, intersection-related, driveway-access, and non-intersection crashes 

in 254 counties in Texas. They only used three covariates in their models: a surrogate variable to 

represent weather variations, the presence of a curve as a surrogate variable to capture spatial 

variations in the percentage of sharp horizontal curves, and a surrogate variable indicating spatial 

variations in roadside conditions. The study found that these variables have significant impacts on 

intersection and intersection-related crashes. 
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Huang et al. (2010) developed various Bayesian models and compared their performance by 

utilizing different exposure variables (population versus daily vehicle miles traveled). The results 

showed that no significant differences exist between the parameter estimates in those models with 

different exposure variables. However, the findings suggested that utilizing the population as 

exposure can improve the goodness of fit of the model. One limitation of this study is that the effect 

of ADT or a combination of population and VMT as the exposure variable was not investigated. 

Recently, various researchers have focused on the spatial analysis of non-motorist/pedestrian 

crashes by using Bayesian models (see for example Siddiqui et al., 2012 ; Wang and Kockelman, 

2013). Siddiqui et al. (2012) investigated the effect of spatial correlation by using a Bayesian spatial 

framework to model pedestrian and bicycle crashes in TAZs. Poisson lognormal models were used 

to relate pedestrian and bicycle crashes to roadway characteristics and to various demographic and 

socio-economic factors. Wang and Kockelman (2013) examined the relationship between pedestrian 

crash counts across census tracts in Austin, Texas and various land use, network, and demographic 

attributes by using the Poisson lognormal conditional auto regressive model. The authors found that 

a more diverse area that includes residential and commercial land uses is associated with a higher 

pedestrian crash risk across different severity levels. The main limitation of these two studies is that 

they ignored the spatial and temporal correlation between observations. In addition, the correlations 

among the crash severities were not investigated. 

Boulieri et al. (2016) extended a multivariate and univariate Bayesian framework to include 

temporal effects, and they compared different space-time models. The study concluded that the 

models with multivariate priors (i.e., correlated space effect models) outperform the univariate 

models. In addition, the findings of the study suggested that crash severities are spatially correlated. 

The major shortcomings of this study were as follows. First, intercept models were developed 
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without accounting for any potential risk factors; hence, this approach might not be sufficient to 

identify hotspot locations. Second, the temporal effects used in the proposed models do not allow 

the flexibility to fit the nonlinear effects of time. Third, similar to previous research, individual-level 

data were not considered.  

Bhat et al. (2017) established a multivariate model to jointly analyze pedestrian crashes at 

four different severity levels in census tracts in Manhattan, New York City. They proposed spatial 

random coefficients in the model but did not account for temporal effects. Population cohort, 

ethnicity, educational attainment, land use, activity intensities, and commute mode shares were used 

as independent variables. 

Finally, in a very recent study, Liu and Sharma (2018) developed a space-time model to 

analyze the annual county-level crash counts in Iowa from 2006 to 2015. They proposed spatial and 

temporal effects simultaneously. The results of the study showed that both spatial and temporal 

components contribute to the model’s overall goodness of fit. The study explored the impact of a 

few variables, such as income, unemployment rate, rainfall, snowfall, temperature, and VMT, on 

fatal, major injury, and minor injury crash counts. The findings suggested that VMT has a significant 

and positive association with all crash severities, whereas the unemployment rate is significant and 

negative in major and minor injury models. The remaining variable is found to be insignificant.  

2.4.  Microscopic Traffic Safety Research 

Microscopic analysis is one of the most widely used approaches to investigate the effects of 

drivers’ and occupants’ characteristics (e.g., age, gender) and road factors (e.g., geometric features, 

surface condition, lighting) on crash frequency/severity. Another important application of micro-

level data analysis is in the selection of candidate road segments and intersections for 

improvement. The Highway Safety Manual (HSM) is one of the popular sources providing a 
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comprehensive framework for network screening and the identification of hazardous locations. 

HSM presents various methods and performance measures, such as nominal safety measures (crash 

rate and crash frequencies), and the EB method for measuring and evaluating roadways and 

intersections in terms of crash frequency. This section presents various methods discussed in HSM, 

as well as in other research papers. Again, the literature review is not intended to be 

comprehensive; rather, it aims to present key representative studies that influenced this 

dissertation. 

2.4.1. Classical Methods 

2.4.1.1.  Nominal Safety Measures  

A review of the literature and safety manuals developed by transportation agencies shows 

that safety practitioners have extensively used nominal safety measures, such as crash frequency and 

crash rates, to identify hazardous locations. Taylor and Thompson (1977) developed a hazardous 

rating formula to detect hazardous road segments by combining accident-related criteria (i.e., number 

of accidents per year, accident rate, accident severities) and non-accident criteria (i.e., number of 

complaints from citizens, traffic conflicts, erratic maneuvers).  

Labadie and Barbaresso (1982) established a computerized priority program to rank roadside 

hazards. They considered different criteria (whether the roadway is curbed, the presence of 

horizontal curves, the presence of vertical curves, speed limit, distance from the pavement edge, 

roadway type) and related weight factors. They obtained the relative hazard rating by summing up 

the weighting factors associated with the criteria. 

Spring and Hummer (1995) used a basic GIS approach to determine accident frequency on 

bridges, curves, and intersections. They defined a threshold for crash frequency to determine 

hazardous road elements by interviewing traffic safety experts. 
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2.4.1.2.  Count Models 

(Miaou et al. (1992) developed four Poisson regression models to predict truck-involved 

crashes on rural road segments based on AADT, shoulder width, surrogate measures for horizontal 

curvature (i.e., horizontal curvature change rate, mean absolute horizontal curvature, maximum 

absolute horizontal curvature), and surrogate measures for vertical grade (i.e., vertical grade change 

rate, mean absolute vertical grade, maximum absolute vertical grade). A comparison of their models 

suggested that the mean absolute curvature and the vertical grade perform better than the other 

surrogate measures and are positively correlated with the number of truck crashes. Additionally, 

increases in AADT and shoulder width for a given road segment, with other variables held constant, 

increase truck crashes for that road segment.  

It should be noted that crash data tend to be overdispersed, that is, the variance exceeds the 

mean, whereas the Poisson model assumes equality of the mean and variance. Poisson models do 

not account for this and can underestimate the variance of parameter estimates. Hence, many safety 

practitioners use the NB model in lieu of Poisson models to account for overdispersion. 

Hadi et al. (1995) investigated the impacts of roadway features, including lane width, 

shoulder width, median width, and median type on fatal and injury crashes. Depending on highway 

type, increasing the length of road elements can reduce traffic crashes. Moreover, a raised median 

barrier is more effective in reducing traffic crashes in four-lane highways than in two-lane highways.  

Poch and Mannering (1996) used the NB model to explore the impacts of intersection 

characteristics on annual angle, rear-end, and approach-turn crashes in intersections. Traffic volume 

was found to increase all kinds of traffic crashes, whereas the presence of signal control, a permissive 

left turn, and stop control reduces the number of angle, rear-end, and approach turn crashes. 
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One of the major disadvantages of the NB model is that it is unable to distinguish between 

safe road segments that experienced zero crashes over time and unsafe road segments that had zero 

crashes at a given time, which can result in biased parameter estimates. To overcome this issue, many 

researchers utilized zero-inflated models, including the zero-inflated Poisson (ZIP) and zero-inflated 

negative binomial regression (ZINB) models. The logit component of the zero-inflated model 

separates safe and unsafe road segments (roads segments with zero and non-zero crash counts), 

whereas the Poisson or NB components predict the number of crashes. Shankar et al. (1997) 

investigated the applicability of ZIP and ZINB models to road segment crash frequencies. They 

found that the NB, ZINB, and ZIP models are a better fit to principal arterial, minor arterial, and 

collector arterial data.  

2.4.1.3.  Discrete Choice Models 

Discrete choice models or logit models have been widely used by safety practitioners to 

understand the individual-level factors (e.g., occupants’ characteristics and road features at crash 

locations) contributing to traffic severities, as well as to estimate the crash risk is discrete choice/logit 

model. For example, O’donnell and Connor  (1996) used ordered logit models to estimate the 

linkages between road users’ characteristics and traffic crashes at four different severity levels. Their 

results revealed that a left-rear seating position, being female, a blood alcohol content of more than 

0.08, failure to use a seatbelt, a light truck, and head-on collisions are likely to increase the risk for 

severe crashes.  

Bedard et al. (2002) used the multinomial logit model to identify the independent factors 

affecting drivers’ fatality risk in single-vehicle crashes with fixed objects. The results showed that 

seatbelt use and vehicle speed are negatively and positively associated with the risk of fatal crashes, 

respectively. 
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Kockelman and Kweon (2002) applied ordered probit models to explore the risk of different 

injury levels in single- and two-vehicle crashes. The results suggested that pickups and sport utility 

vehicles are more likely to increase the risk of severe crashes under single-vehicle crash conditions. 

However, in two-vehicle crashes, these vehicle types are associated with less severe injuries for their 

drivers and more severe injuries for the occupants. 

Srinivasan (2002) proposed the use of the ordered mixed logit model to model injury severity 

in a crash. The primary purpose of such a model is to accommodate random and correlated injury 

severity thresholds associated with various severity levels. The model results indicated that the injury 

severity thresholds for an individual are dependent on traffic, crash-related, and vehicle 

characteristics. Additionally, a significant unobserved variation in thresholds was observed. 

Krull et al. (2000) examined the risk of a driver’s injury in single-vehicle crashes in 

Michigan. They concluded that rollover involvement, passenger cars, failure to use a seatbelt, alcohol 

involvement, lighting, rural roads, higher speed limits, and dry pavements increase the risk of a 

driver’s injury severity.  

Khattak et al. (2003) used ordered probit models to investigate the risk factors that affect 

crash severities (from fatal, severe, moderate, and minor to no injury) in large truck rollovers in 

single-vehicle crashes. Traffic control violation, vehicle stopping, post-crash fire, driver drowsiness, 

and alcohol involvement were found to be associated with crash severity. 

Milton et al. (2008) developed a modeling approach to better analyze the injury severity 

distributions of accidents on highway segments. They used the mixed logit model to determine the 

proportion of severity of each crash on a roadway. Variables, such as average daily traffic per lane, 

average daily truck traffic, truck percentage, interchanges per mile, and weather condition, were 

modeled as random parameters, whereas roadway characteristics, such as the number of horizontal 
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curves, number of grade breaks per mile, and pavement friction, were modeled as fixed parameters. 

The results showed that the effects of average daily traffic per lane, average annual snow, percentage 

of trucks, average daily truck traffic, and number of interchange per mile on property damage only 

(PDO) crashes, possible injury crashes, and injury crashes vary across road segments. However, 

pavement friction is likely to reduce the risk of injury, whereas the number of horizontal curves and 

grade friction are likely to reduce possible injury crashes. 

Tay et al. (2011) proposed the use of the ordered multinomial logit model to examine the 

factors affecting the severity of pedestrian vehicle crashes in South Korea. Their results indicated 

that the factors increasing the probability of fatal injury to pedestrians include drivers’ sex (reference: 

female), drivers’ age and alcohol involvement, pedestrians’ age and sex, pedestrians’ location on the 

crosswalk, intersections, shoulder, outer (faster) lanes, freeways, provincial and national highways 

that are wider than 9 m, vehicle type and size, adverse weather conditions, dark hours, peak hours, 

and relatively rural areas. 

2.4.2. Empirical Bayes 

The EB method is based on Bayes’ theorem, and “it was developed based on the recognition 

that accident counts are not the only clue to the safety of an entity” Hauer et al. (2002). The EB 

method aims to increase the precision of crash estimation and to account for the regression-to-the-

mean bias. Hence, in the EB method, the expected crash counts on a road segment would be the 

weighted average of the observed crashes on a proposed road segment and the expected number of 

crashes in similar road segments, where the expected number of crashes for similar road segments 

can be obtained from classical regression models (e.g., NB regression), with traffic and geometric 

factors as the independent variables.  



 

24 
 

As an early work, Hauer and Persaud (1987) proposed an EB method to estimate the 

proportion of correctly and falsely identified deviant road segments. Later, Higle et al. (1988) 

focused on the identification of hazardous road segments by using EB estimates of accident rates. 

They assumed that the crash rates in road segments follow Gamma distribution, which was the basis 

for developing the probability distribution function for the corresponding road segment. Hence, a 

road segment is classified as a hazardous location if the probability that its accident rate for a road 

segment exceeds a certain value is relatively large. 

Hauer (1996) applied the EB method for the identification of sites with promise (SWiPs), 

which refer to hazardous locations. In the study, the author demonstrated that SWiPs are 

sites/locations whose number of crashes are higher than that of sites/location with similar 

characteristics.  

Persaud et al. (1999)  used the EB estimates of the expected number of crashes in 

signalized intersections and highway segments. They specified the NB method to model crash 

frequency based on AADT, segment length, and lane width, and the difference between the expected 

and observed number of crashes (which refers to excess crash frequency) was the basis to rank  

the sites. 

2.4.3. Full Bayesian Models 

Although the EB method has improved the process of crash estimation, it is not purely 

Bayesian (or it is not fully Bayesian), as it considers data for defining the prior distribution, and it 

does not indicate how the hyperparameter estimation error can be incorporated in the analysis. On 

the other hand, the hierarchical Bayes method  incorporates such errors or randomness at

different levels.  
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Davis (2000) used hierarchical Bayes and Gibbs sampling to estimate the accident rate by 

incorporating traffic volume errors. This model has improved the accuracy of accident rate 

estimation, and it is more reliable than classical models in identifying potential hazardous locations. 

Later, Davis and Yang  (2001) combined the full Bayesian approach and induced exposure models 

to identify the dangerous  intersections for older drivers. 

Tunaru (2002) proposed a full Bayesian multivariate Poisson lognormal model to model the 

crash severities for road segments at two crash severity levels: fatality and minor injuries from single 

and multi-vehicle crashes. The author ranked road segments by using the expected crash frequency 

for each severity level. A null model was proposed, as no covariates were included in the analysis. 

The entries of the covariance matrix were found to be significant, suggesting that a significant 

correlation exists between the severity levels. 

Kockelman and Damien (2008) developed a multivariate Poisson regression within a full 

Bayesian framework to estimate the number of victims per road segment in five different severity 

classes: fatal, disabling injury, non-disabling injury, possible injury, and non-injury. However, the 

authors assumed that the crash counts are not spatially correlated. 

Aguero-Valverde and Jovanis (2009) used full Bayes multivariate Poisson lognormal models 

to estimate the expected crash frequency as a function of road characteristics, such as lane and 

shoulder width, for different crash severity levels in both univariate and multivariate settings. The 

findings suggested that the multivariate Poisson lognormal model outperforms the univariate model 

and improves the crash frequency estimates. The covariances and correlations between  

contiguous crash severity levels are also found to be high. 

Jang et al. (2010) established four different models (Poisson, NB, ZIP, and ZINB) using a 

full Bayesian approach by including factors, such as degree of curvature and presence of a guiderail 
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and a median barrier, in all models. They compared model performance, and the results indicated 

that the ZIP model outperforms other models, as it has the highest posterior probability. The study 

also found that the Bayesian models utilizing power prior perform slightly better than the frequentist 

models do.  

Ahmed et al. (2011) used Bayesian hierarchical models with spatial and random effects to 

predict the crash frequencies on mountainous road segments based on driver behavior, traffic and 

geometric characteristics, and adverse weather conditions. The study found that roadway geometry, 

segment downgrades, and the snow season are positively associated with crash risk. 

Barua et al. (2014) investigated the effect of spatial and heterogeneous effects by using 

multivariate models of crash severities for two severity levels for 72 urban road segments. The study 

found that the model with both structured and unstructured spatial random effects has a better fit, 

suggesting that overdispersion and spatial correlation are present in the crash datasets. Similar to 

many other researchers, the authors did not investigate temporal effects in the crash dataset. 

Usman et al. (2016) developed three hierarchical logit models, namely, a multinomial logit 

model, a sequential binary logit model, and an ordered logit model. These models were estimated 

for collision data at three levels: the occupant level, the vehicle level, and the collision level. A 

comparison of these models indicated that the multinomial logit model provides a better fit than the 

other models do, and the occupant-based data results are more reliable than the vehicle- and collision-

based data results. The models did not explore spatial and temporal effects.  

Wang and Huang (2016) used a univariate hierarchical model to estimate the crash frequency 

on intersection and road segments. Their model accounts for the spatial correlations between road 

entities, as well as the shared unobserved effects for the intersection and road segments in the same 
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TAZ. The study results showed that crashes are positively associated with AADT and with more 

lanes and more access points. 

2.5.  Summary 

Various research efforts have been made to analyze traffic crashes at the macro and micro 

levels. The implemented methods can be classified into classical methods and more advanced 

methods, such as the EB, spatial autoregressive, and Bayesian approaches. As discussed earlier, 

some issues are associated with classical methods, as they cannot account for the regression-to-the-

mean bias and spatial effects, which can cause poor crash estimation. In addition, both EB and spatial 

autoregressive methods are unable to address multilevel data and group-level random effects. By 

contrast, the full Bayesian framework is more flexible and can be easily extended to include random 

effect terms and accommodate data with multilevel structure. Nevertheless, even if the full Bayesian 

framework appears to be an appropriate approach for dealing with crash data, as discussed earlier in 

this chapter, previous studies using this method have had some major limitations. First, analyses 

have frequently been performed in univariate settings that do not account for correlations among 

crash severities, which can decrease the efficiency of the estimator Ma and Kockelman (2006). 

Second, temporal effects have not been addressed properly, which might also lead to poor crash 

frequency estimation. Third, a possible relationship between urban and rural crashes and their 

severity outcomes have not been investigated. Fourth, the nature of the relationship between fatal 

crashes in one area and the average time to the nearest hospital has not been explored in terms of 

accessibility. Finally, individual-level data have not been combined with area-based data to identify 

high-risk locations, which can result in the loss of available information or, in some cases, even in 

the incorrect identification of high-/low-risk location. In light of the above, this study builds upon 

the literature and proposes an integrated safety screening approach that can be used to identify 



 

28 
 

hotspots. This approach can provide insights and guide the development and/or improvement of 

crash prevention and control programs. 
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C H A P T E R  3 :  D A T A  C O L L E C T I O N  A N D  E X P L O R A T O R Y  

D A T A  A N A L Y S I S  

In this study, two types of data are collected to perform the WV case study: macro or area-

based data and micro or individual-level data. A detailed description of the data sources is given 

below.  

3.1. Macro-level Data 

Area-based data for six years (2010–2015) were obtained from different resources, such as 

the West Virginia Department of Transportation (WVDfarsOT), the American Community Survey 

(ACS), the West Virginia GIS Technical Center, and the West Virginia Department of Health and 

Human Resources (DHHR). The data collected were manipulated and classified into crash data, 

transport-related factors, socio-economic and demographic factors, and environmental factors, 

which are described as follows: 

 Crash data 

County-level crash counts were obtained from the traffic engineering division of the 

WVDOT. The database includes crash frequency at different severity levels (fatal, injury, and PDO) 

for each WV county. 

 Transport-related factors 

Average travel time to the nearest hospital: As the availability of hospitals can 

contribute to the survival chance of an individual with severe injury, the average travel time to the 

nearest hospital in each county was considered an explanatory variable for use in the fatal crash 

model. The hospital location and road network were obtained from the West Virginia GIS 

Technical Center and were processed using various GIS tools in ArcMap environment. First, the 
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road network was converted to a raster file, which was used as the basis for converting each cell 

to a cost value. Traffic crash victims were assumed to be transported to the nearest hospital with 

the speed of 70 mph from any location. Hence, the cost of traversing a unit distance would be 

(1/70) h/mi or 5.33 x 10-4 min/meter. Second, as traffic crashes may occur anywhere on the road, 

the least accumulative travel time from any location to the nearest hospital/trauma center was 

calculated. Later, the average travel time to the nearest hospital was estimated for use as an 

independent variable in the fatal models. Figure 3.1 represents the framework for estimating the 

mean zonal travel time to the nearest hospital. The resulting map is shown in Figure 3.2. 

 

 

 

 

 

 

 

Figure 3.1 Framework for estimating the least cost/travel time to the nearest hospital 

 

Reclassify Raster Values to Add the Cost per Unit Distance 

Estimate the Least Accumulative Travel Time  

Convert Polyline to Raster  

Import Road Network and Hospital Shapefiles 

Calculate the Mean Travel Time to the Nearest Hospital per County  
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(a) 

 
(b) 

Figure 3.2 Map of (a) the least travel time to the nearest hospital and (b) the average access 

time to the nearest hospital per county  
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Median travel time to work: Median travel time may be associated with specific types of 

crashes. For instance, Lee et al. (2014) found that the portion of commuters with a commute time 

less than 15 minutes is negatively associated with at-fault crashes Lee et al. (2014). The median 

travel time to work was obtained from the ACS in the website of the US Census Bureau for the 

years 2010–2015. 

Intersection and road density: About 40% of pedestrian crashes occur at intersections, 

which may result in fatal or severe injuries Lord et al. (1998). Moreover, according to the Fatality 

Analysis Reporting System (FARS) encyclopedia, about 70% of fatalities occur on primary roads 

(i.e., arterial and interstates), and the remaining ones occur on secondary roads. Primary and 

secondary roadways have different speed limits and traffic loads that can affect crash frequency and 

crash severity. Thus, intersection density (number of intersections divided by county area) and 

primary and secondary roadway density (length of roadways divided by county area) were created 

using GIS tools for use in the models. The road network was obtained from the WV GIS Technical 

Center. 

 Socio-economic and demographic factors 

Socio-economic and demographic factors are generally recognized as an important 

predictor of traffic crashes, and they are used by transportation engineers to apply mitigation 

strategies and plan for the future. The US census website is an excellent repository of state- and 

county-level socio-economic and demographic statistics, such as population estimates by age, 

percentage of the population under poverty, median household income, median age, and 

percentage of population in the labor force. These variables were obtained from the ACS in the 

website of the US Census Bureau as population estimates per county for the years 2010–2015.  
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Driving under influence (DUI) arrests (per 10,000 population): The DUI arrest rate in 

a county is used to relate alcohol consumption to crash frequency at different levels. Data were 

obtained from the website of the West Virginia DHHR for the years 2010–2015. 

School density: According to the FARS, 131 people died in school-related crashes in 

2016–2015. Of these, 8% were riding in buses, and 21% were pedestrians, bicyclists, and others. 

Hence, identifying the relationship between school density and different crash outcomes is 

important. School density was estimated by dividing the number of schools per county over the 

county area. The school shapefile was obtained from the West Virginia GIS Technical Center. 

 Socio-economic and demographic factors 

Rurality versus urbanity: The Geography Division at the US Census Bureau has classified 

US counties into metro and non-metro areas based on population, county size, and economic trends. 

According to the US Census Bureau, metropolitan areas contain at least one urbanized area with a 

population of 50,000 residents or more (any county that is not a part of a metropolitan area is 

considered rural). Such information is used to identify metro and non-metro counties in WV. This 

variable is used to investigate the possible relationship between urban/rural crashes and crash 

severity outcomes. Data were obtained from the website of the US Census Bureau. 

Average ground elevation: Elevation is used as a surrogate variable to account for the 

topography of each county (mountainous versus flat areas) in order to explore their impacts on traffic 

crashes. The average ground elevation was estimated using the digital elevation model (DEM) 

obtained from the West Virginia GIS Technical Center (see Figure 3.3). 

Weather condition: The number of days with any measurable precipitation for each county 

is used as a surrogate for the climate condition. Because of lack of data, information for each county 
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was manually collected from the climate tab in the website of Sperling’s Best places for the year 

2016. 

 

 

(a) 

 

(b) 

Figure 3.3 Map of (a) the ground elevation from DEM and (b) the average ground elevation 

per county 

http://www.bestplaces.net/
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Figure 3.4 shows that all datasets from different resources are merged together for use in the 

macro-level data analysis. Table 3.1 presents the descriptive statistics of all data used in the macro-

level data analysis. 

TABLE 3.1 Descriptive statistics of the variables used in the macroscopic data analysis (330 

observations) 

Variable Mean St. Dev. Min. Max. 

Transport factors 

Fatal crashes 5.19 4.69 0 29 

Injury crashes 178.70 223.84 17 1558 

PDO crashes 531.95 766.73 27 4791 

Median travel time to work (minutes) 27.72 4.88 18.3 41.4 

Mean time to the hospital (minutes) 20.16 15.36 2.99 69.84 

Primary roadway density (miles per sq. mile) 0.06 0.09 0 0.37 

Secondary roadway density (miles per sq. mile) 0.405 0.17 0.20 0.91 

Intersection density 106.92 32.80 45.04 175.03 

Socio-economic factors 

Labor force (%) 52.23 6.66 30 68 

Median income (in thousands of dollars) 39.56 7.06 24.92 66.68 

Median age (years) 43.00 3.12 30 49.10 

Population with a B.S. degree or higher (%) 15.87 6.27 5.10 39.70 

Population under poverty (%) 18.95 4.92 10.40 34.50 

Male population (%) 49.88 1.90 45.10 59.70 

Population under 19 (%) 22.54 1.64 17.62 25.93 

Population between 20 to 24 (%) 5.96 1.90 4.55 16.30 

Population over 65 (%) 16.16 2.06 9.09 20.99 

Driving under influence (DUI) arrests per 10,000 drivers  47.29 29.30 5.10 227.48 

School density (number of schools per area) 0.04 0.039 0.01 0.22 

Environment-related factors 

Metro (1 if the county is a metropolitan area, 0 otherwise) 0.38 0.47 0 1 

Mean ground elevation (in hundreds of meters) 4.46 2.02 1.61 9.81 

Number of days with any measurable precipitation 90.11 10.90 70 122 

Exposure variable 

County population  33,646 33,237 5,816 193,102 
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Figure 3.4 Area-level data collection and preparation process 

 

3.2. Micro-level Data  

The individual-level crash dataset for six years (2010–2015) for use in the hierarchical logit 

model was obtained from the FARS in the website of the National Highway Traffic Safety 

Administration. The database provides many attributes associated with each crash; these attributes 

can be categorized into four classes, which are occupant characteristics, crash information, vehicle 

characteristics, and roadway and environmental characteristics. The occupant attributes include 

age, gender, alcohol involvement, and a number of other attributes related to the profile of the 

occupant and/or the situational factors during the crash. Crash information refers to the 

characteristics of the crashes, such as severity. Roadway and environmental attributes include 

roadway surface condition, weather condition, and lighting condition. Table 3.2 shows the 

summary statistics of all variables used in the micro-level data analysis.  
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The micro-level crash data were analyzed in ArcGIS software in order to identify the 

census tracts in which they are located. In preparation for the modeling, all crash points within a 

census tract were assigned a census track unique ID. Figure 3.5 presents the framework used to 

relate the crash points to the corresponding census tracts. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Procedure for relating crash points to census tracts 
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TABLE 3.2 Descriptive statistics of the variables used in the microscopic data analysis (3,724 

observations) 

 Variables Mean SD Min Max 

Occupant-level factors 

Severity (fatal=1, non-fatal=0) 0.462 0.499 0 1 

Gender (male=1, female=0) 0.674 0.469 0 1 

Age 39.378 20.333 0 99 

Occupant type (driver=1, otherwise=0) 0.658 0.474 0 1 

Ejection (occupant is ejected fully or 

partially=1, otherwise=0) 0.150 0.357 0 1 

Vehicle-level factors 

Speeding (yes=1, No=0) 0.342 0.468 0 1 

Alcohol involvement (yes=1, No=0) 0.222 0.415 0 1 

Crash-level factors 

Surface condition (dry=1, otherwise=0) 0.790 0.407 0 1 

Road alignment (straight=1, curve=0) 0.617 0.486 0 1 

Road type (divided=1, otherwise=0) 0.724 0.447 0 1 

Arterial 0.588 0.492 0 1 

Collector 0.287 0.452 0 1 

Weather (clear=1, otherwise=0) 0.664 0.472 0 1 

Lighting (daylight=1, otherwise=0) 0.585 0.493 0 1 

 

3.3. Exploratory Spatial Data Analysis   

Exploratory data analysis (EDA) is the first step in analyzing the data characteristics, and 

it aims to identify the outliers and crash trends. This section presents some key results from the 

exploratory analysis of the macro-level data collected.  

Figure 3.6 displays the histograms of the crash rates by severity, representing the density 

of the data. The figure shows that the crash rate distribution of all crash types tends to be skewed 

to the right, with a tail on the high end and taller bins on the low end, suggesting that more counties 

have a lower fatal crash rate in WV. An alternative way to present the distribution of spatial data 

is a boxmap. Figure 3.7 shows the boxmaps visualizing the distribution of the average crash rates 

per 10,000 population by severity based on six- year data (2010–2015).  
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(a) 

 
(b) 

 
(c) 

Figure 3.6 Histograms of the average over the years 2010–2015: (a) fatal crash rate, (b) injury 

crash rate, and (c) PDO crash rate 
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Each map is a choropleth map, in which quantile classification of the data has been applied to reflect 

the data distribution and identify anomalous counties. Figure 3.7(a) shows that Pendleton County 

has the highest average fatal crash rate among WV counties. Moreover, WV eastern and southern 

counties tend to have higher fatal crashes. Figure 3.7(b) shows that Raleigh and McDowell Counties 

experienced more injury crashes than other counties did when their population is accounted for. 

Finally, as shown in Figure 3.7(c), Ohio, Lewis, Cabell, Kanawha, Raleigh, and McDowell Counties 

are among those with the highest PDO crash rates in WV. 

Moran’s I statistics can also be used to investigate the presence of spatial autocorrelation 

between traffic crashes in neighboring counties. It is defined as follows: 
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,               (3.1) 

where I is Moran’s index value, N is the number of spatial units (counties), yi and yj are the crash 

rates related to targeted county i and neighboring county j, respectively, y is the average crashes, 

and wij is an element of a matrix of spatial weights. A Moran’s index value near +1.0 indicates 

clustering, an index value near −1.0 indicates dispersion, and a value close to zero indicates a random 

spatial pattern. 

Queen contiguity was used to calculate the spatial weight; that is, counties that share an edge or have 

coincident boundaries are considered neighboring (the spatial weight for a neighboring county is 1, 

otherwise 0) and included in computations for the targeted county (see Figure 3.8). The global 

Moran’s I statistics in each year from 2010 to 2015 are calculated using Geoda, and the results are 

summarized in Table 3.3. The results show no strong statistical evidence indicating that spatial 

autocorrelation is present in the crash data. 
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                  (a)                                                                                                             (b) 

 
                                                                                    (c) 

 

Figure 3.7 Boxmap of the average over the years 2010–2015: (a) fatal crash rate, (b) injury crash rate, and (c) PDO crash rate 



 

42 
 

TABLE 3.3 Global Moran’s I statistics  

Year 

Fatal Injury PDO 

Index P-value Index P-value Index P-value 

2015 −0.004 0.4 −0.07 0.3 −0.07 0.26 

2014 −0.01 0.4 −0.06 0.3 −0.05 0.4 

2013 0.04 0.2 −0.05 0.3 0.04 0.2 

2012 0.05 0.2 0.08 0.13 −0.03 0.4 

2011 0.03 0.3 −0.04 0.4 −0.01 0.4 

2010 0.1 0.1 0.02 0.3 0.003 0.4 

 

       

Figure 3.8 Queen’s case contiguity 

 

In addition, the Pearson correlation coefficients of fatal injury and PDO crashes were 

estimated and are summarized in Table 3.4. The results show that crashes of all crash severities are 

positively associated. For example, the locations with many fatal crashes will likely have many 

injury and PDO crashes. Figure 3.9 presents the average crash rates in 2010–2015 in WV. Figure 

3.9(a) shows that the fatal crash rate decreased from 1.88 in 2010 to 1.77 in 2011, increased again  

 

TABLE 3.4 Pearson correlation among crash severities 

Crashes Fatal Injury PDO 

Fatal 1 0.71 0.78 

Injury   1 0.87 

PDO     1 
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(a) 

 

 
(b) 

 
(c) 

Figure 3.9 Average (a) fatal crash rate, (b) injury crash rate, and (c) PDO crash rate in West 

Virginia  
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to 2.06 in 2012, but has been decreasing steadily since then. The injury crash rate was down from 

59.9 in 2010 to 32.7 in 2012. However, it suddenly increased to 53.0 in 2013 and remained stable 

from 2013 to 2015 (see Figure 3.9(b)). The PDO crash rate had a downward trend that started in 

2012 and continued to 2015 (see Figure 3.9 (c)). In general, the overview of traffic crashes shows 

an overall downward trend for fatal and PDO crashes. 

Various scatter plots were created to investigate the potential relationship between the 

explanatory variables and crashes. Figure 3.10 shows a number of variables with positive, negative, 

and no relationship with the fatal crash rate (per 10,000 population). For instance, a negative, non-

linear relationship seems to exist between the fatal crash rate and the median income, the labor force, 

the population with a BS degree or more, secondary roadway density, school density, the DUI rate, 

and the population with ages between 20 and 24. By contrast, the average travel time to the hospital 

is positively associated with the fatal crash rate. For the remaining variables, no obvious strong 

relationship seems to exist between them and the fatal crash rate, as the value of the fatal crash rate 

seems to change randomly. Additionally, according to the scatter plot of the fatal crash rate versus 

metropolitan areas, rural (i.e., nonmetropolitan) areas have a higher fatal crash rate. 

Figure 3.11 shows that the median travel time and the population under 19 are negatively 

correlated with the injury crash rate, whereas the population with a BS degree, the population 

between 20 and 24, and primary roadway density are positively associated with the injury crash rate. 

Finally, an examination of the scatter plots in Figure 3.12 shows the presence of strong correlations 

between a number of variables and the PDO crash rate. For instance, the PDO crash rate is positively 

correlated with the labor force, the median income, the population with a BS degree or more, DUI, 

school density, and primary and secondary road density. Additionally, a significant negative 

correlation exists between the PDO crash rate and the median travel time to work. 
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Figure 3.10 Scatter plot of the fatal crash rate (per 10,000 population) against covariates  
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Figure 3.11 Scatter plot of the injury crash rate (per 10,000 population) against covariates 
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Figure 3.12 Scatter plot of the PDO crash rate (per 10,000 population) against covariates 
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3.4. Summary  

In this section, various EDA techniques, such as histograms, boxplots, and 2D plots, have 

been utilized to identify high-risk locations in WV. The results of the analysis suggest that the 

distribution of traffic crashes at different severity levels is right skewed, suggesting that more 

counties have lower crash rates. Pendleton County has the highest fatal crash rates, whereas Raleigh 

and McDowell Counties have extreme (i.e., beyond the cut-off) injury crash rates. Moreover, 

counties located in eastern and southern WV tend to have higher fatal crash rates. However, injury 

and PDO crashes tend to be more randomly distributed across WV. From a temporal perspective, 

fatal and PDO crashes have had downward trends since 2012, whereas injury crashes have no clear 

pattern. The results of Moran’s I test demonstrated that the number of crashes in a county is not 

significantly correlated with the number of crashes in neighboring counties. However, the Pearson 

correlation indicated that crashes of different severities within each county are positively correlated.  

Investigation of a series of scatter plots showed that increases in median income, labor force, 

the population with a BS degree or more, secondary roadway density, school density, DUI rate, and 

population with ages between 20 and 24 will likely decrease the fatal crash rate. By contrast, 

increases in the average travel time to the hospital is positively correlated with the fatal crash rate. 

On the other hand, the median travel time and the population under 19 have a negative relationship 

with the injury crash rate, whereas the population with a BS or higher degree, the population between 

20 and 24 years of age, and primary roadway density are positively associated with the injury crash 

rate. Lastly, a positive correlation exists between the PDO crash rate and the labor force, the median 

income, the population with a BS or higher degree, DUI, school density, and primary and secondary 

road density, whereas the PDO crash rate is negatively correlated with the median travel time to 

work. 



 

49 
 

C H A P T E R  4 :  M E T H O D O L O G Y  

The goal of this research is to develop an integrated screening method to detect hazardous 

locations. This section presents the methods developed to accomplish the research tasks discussed 

in Chapter 1, Section 1.2. Specifically, in the first part of this research, different full Bayesian Poisson 

lognormal models are used to predict crash rates as a function of macro-level data, such as socio-

economic and transport-related factors. In the second part of this research, various crash 

severity/logit models are developed based on micro-level data and road characteristics to account for 

the hierarchical nature in the crash data using a Bayesian framework. The deviance information 

criterion (DIC) is used as the basis to select the models with the best fit, and the excess risk is defined 

as a measure to determine and prioritize the high-risk locations. Lastly, in the third part of this 

research, a GIS approach is used to combine the results from both the macro- and the micro-level 

data analyses in order to identify hazardous locations. Different random effect terms are explored in 

the models to improve their performance and prediction ability, which is critical in site 

ranking/prioritization. All models are illustrated for the case study of WV. Sections 4.1, 4.2, 4.3, 4.4, 

and 4.5 discuss the Bayesian framework, macro-level data analysis approaches, micro-level data 

analysis methods, model comparison, and the proposed integrated screening method, respectively.  

4.1. Bayesian Framework 

The Bayesian approach is extensively used in disease mapping and ecological analysis for 

developing spatial models because of its flexibility. Bayesian statistics consider parameters as 

random variables expressed in the form of probabilities. Based on this approach, a probability model 

of interest is fitted by incorporating prior information regarding the unknown parameters and the 

likelihood function of the observed data. To demonstrate this, let y represent a vector of n 

observations y1, y2, . . ., yn, and let ψ represent a vector of m parameters ψ 1, ψ 2,…, ψ n on which the 
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distribution of the observations depends. Then, Bayes’ theorem is based on the posterior distribution 

of the parameters given data p(ψ|y), on a combination of the likelihood of observing the data given 

ψ, P r[y|ψ] and our prior expectation/belief, expressed as the prior density P r[ψ]: 

P r[ψ |y] ∝ P r[y| ψ] . P r[ψ].                                                                                                        (4.1) 

The Bayesian approach shows numerous theoretical and practical advantages over classical 

likelihood-based inference methods, especially for hierarchical models and they will be the ones that 

will be estimated in this dissertation. For instance, the Bayesian approach accounts for sources of 

uncertainty/variability (individual- and group-level variation) and correlations among the response 

variables (e.g., severity levels). 

4.2. Macro-level Data Analysis 

4.2.1. Poisson Lognormal Model 

Many researchers (see for example, Tunaru 2002; Ma and Kockelman, 2006; Aguero-

Valverde and Jovanis, 2009) have shown that crash frequencies are correlated across different 

severity levels because of the common unobserved factors at each road segment. To address this 

problem, this dissertation proposes a multivariate model to relate various county-level socio-

economic and transport-related factors with crash occurrence while accounting for the possible 

temporal effects and spatial autocorrelations among adjacent counties. The proposed model is 

described below.  

Let Obsist denote the observed crash count by severity level s in county i in year t. In this 

study, the following three severity levels are considered: fatal (s=1), injury (s=2), and PDO (s=3). 

The model can be expressed as follows: 

Obsist ~ poisson (Cist),                                                                                                                   (4.2) 
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Cist= λist .Eit,                                                                                                                                  (4.3) 

where Cist and λist are, respectively, the expected number of crashes and crash rate by severity level 

(s=1, 2, 3) in county i in year t, and Eit refers to the exposure variable (population) in county i in 

year t. The first model to estimate the crash frequency for the three severity levels can be written 

as follows: 

log(Cist )=log(Eit) + β0s+ βs Xit ,                                                                                                    (4.4) 

where Xit denotes a vector of standardized covariates for county i at time t, β0s is the intercept, and 

βs is the vector of coefficients for the model of crash severity s. This model does not account for 

overdispersion, as well as for spatial and temporal effects. A set of models with random effects is 

developed to address these issues. Hence, the general random effects model is specified as follows: 

log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis+νts +δts +γits,                                                                 (4.5) 

where θis is the county-based unstructured random effects, which capture county-level heterogeneity 

or overdispersion, φis is the structured spatial random effect or spatial correlation term, νts is the 

unstructured temporal random term, δts is the structured temporal term that accounts for temporal 

correlation, and γits is the spatio–temporal interaction that captures unobserved heterogeneity over 

space and time. As other studies (Behnood and Mannering, 2015; Chiou and Chih-Wei, 2014) have 

established, unobserved effects are not spatially or temporally autocorrelated. Hence, the spatial and 

temporal correlation terms φis, and δts may be dropped from Equation 5, and the model can be 

reduced. Therefore, nine models are established for the selection of an optimal model, as the full 

models might not be stable. These models are outlined in Table 4.1. 

 

 



 

52 
 

TABLE 4.1 Summary of the frequency models proposed in this study 

No Model 

Basic (non-random effect model) 

1 log(Cist)=log(Eit) + β0s+ βs Xit  

Full Models 

2 log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis+νts +δts, MRW(1)  +γit           

3 log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis+νts +δts, MRW(2)  +γit                 

Spatial Models 

4 log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis 

5 log(Cist)=log(Eit) + β0s+ βs Xit +θis 

Temporal Models 

6 log(Cist)=log(Eit) + β0s+ βs Xit +νts +δts, MRW(1)   

7 log(Cist)=log(Eit) + β0s+ βs Xit +νts +δts, MRW(2)        

8 log(Cist)=log(Eit) + β0s+ βs Xit +νts  

Spatio–Temporal Modes (without structured spatial and structured temporal terms) 
9 log(Cist)=log(Eit) + β0s+ βs Xit +θis+νts +γit 

 

Spatial effects: Spatial random effects follow the MCAR. With the CAR specifications proposed by 

Besag (1974) extended, the MCAR prior is defined as follows: 
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where Фi=(φi1, φi2, φi3) is a 3D vector of spatial random effects; φis represents the spatial random 

effects in county i for the crash severity levels s=1,2,3; wij is an adjacency indicator (1 if counties i 

and j are adjacent and 0 otherwise); ΣФ is a covariance matrix with diagonal elements σ2
φs 

(4.6) 

(4.7) 

    (4.8) 

   (4.9) 
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representing conditional variances for the severity levels; and rφ12
 , rφ23 , and rφ13

 are the within-

area conditional correlations of random effects for fatal injury crashes, injury PDO crashes, and fatal 

PDO crashes, respectively. 

Unstructured spatial random effects follow a normal distribution, defined as follows: 

Θi ~ N(μ0,ΣΘ), Θi=(θi1, θi2, θi3),                                                                                              (4.10) 

where θis represents the unstructured spatial random effect at different severity levels, µ0 is a vector 

of zeroes µ0 = (0, 0, 0), and ΣΘ is a variance-covariance matrix: 
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 ,                                                                        (4.11) 

where σ2
θs represents the conditional variances for the severity levels, and r

θ
 represents the within-

area conditional correlation of random effects among the different severity levels. 

Temporal effects: For the structured temporal component δt,c, a multivariate random-walk prior of 

order 1 and 2, MRW(1) and MRW(2), are considered to account for the shared unmeasured risk 

factors across severities. As with the spatial severity model, the CAR prior is used to define the 

temporal neighboring points of t as t −1 and t +1. MRW(1) is defined as follows: 
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MRW(2) is commonly used in epidemiology; it allows for flexibility in fitting the nonlinear effects 

of time and is defined as follows:  

for t =2,…,5, 

          for t =6 

 (4.12) 

for t =1 
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where Δt=( δt1, δt2, δt3) is the 3D structured temporal effects, and ΣΔ is the variance covariance 

matrix: 
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 Unstructured temporal effects follow a multivariate normal distribution with a 3D variance 

covariance matrix Σv and is defined as follows: 

Vt ~ N(μ0,Σv), Vt=(νt1, νt2, νt3),                                                                                                     (4.15)                     
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Spatio–temporal effect: A spatio–temporal term is used to capture the unobserved factors over space 

and time across different crash severities, and it follows a multivariate normal distribution:  

Γit ~ N(μ0,ΣΓ), Γit=(γit1, γi2, γi3),                                                                                                 (4.17) 

where ΣΓ is the spatio–temporal variance-covariance matrix: 
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(4.13) 

for t = 1 

for t = 2 

for t = 3,4 , 

for t = 5 

for t = 6 

(4.14) 

(4.16) 

(4.18) 
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Hyperprior: A normal prior N(0, τ
β
) is assumed for β, where τ

β
 is the precision parameters that are 

the inverse of the variances and follow prior gamma (0.5, 0.0005) Wakefield et al. (2000). In case of 

multivariate updating, the variance-covariance matrix is defined as Σ-1~Wishart(R,d), where R and 

d are the scale matrix and the degree of freedom, respectively, and d is set to 3 for a weakly 

informative prior specification. As suggested by Gelman et al. (2014), R is defined as follows: 

0.1 0.005 0.005

0.005 0.1 0.005

0.005 0.005 0.1

R

 
 

  
 
 

 . 

4.2.1.1. Macro-level Weighted Excess Risk  

Safety is one of the five strategic goals identified by the  Strategic Plan for fiscal years 2014–

2018 (US Department of Transportation, 2014). In recent years, under the US Department of 

Transportation’s guidance, many state agencies have made significant efforts to incorporate traffic 

safety into transportation planning as a part of their long-term planning. Among other efforts, 

research and practice aim to find ways to identify and rank hotspot zones in terms of safety 

performance. In this study, the excess risk is defined as the ratio of the expected crash rate in one 

county to the average/expected crash rate in counties with similar characteristics (e.g., population, 

road density). The weighted average of the excess risk is chosen for the identification of areas with 

promise: 
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where macro

i is the weighted excess risk, erist and Obsist are, respectively, the excess risk and the 

observed crash risk for different severity levels, s, at time t; and C1, C2, and C3 are the costs/weights 
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associated with the fatal, injury, and PDO crashes. Counties with an weighted average excess risk 

higher than 1 are considered high-risk areas.                                                                       

4.3. Micro-level Data Analysis 

4.3.1. Bayesian Logit Model 

In contrast to crash frequency models, crash severity models have normally been used to 

examine the effects of age, gender, road condition, and other factors on a severity outcome, which 

can be captured in discrete categories. As crash consequence or injury outcome is of a discrete nature, 

logit or discrete choice models are suitable in estimating a crash severity model. 

 Most of the crash data used in road safety studies are of a hierarchical nature, that is, the 

occupants are nested in vehicles, vehicles are within crashes, and crashes are in roadways and 

regions. Therefore, unobserved factors exist at each level, and these could contribute to an occupant’s 

crash severity. Previous works attempted to model unobserved factors, but they did not account for 

all levels simultaneously.  

Hence, in this section, we aim to fit a Bayesian logit model with various random effects to 

discrete data. The purposes are to explain the relationship between crash severity levels and the 

contributing factors of individuals involved in fatal crashes and to identify the distribution of areas 

with a high relative risk in WV.  

Yksit is assumed to take two response values, 2 and 1, which refer to the fatal injury and non-

fatal injury for person k involved in crash s in census tract i in year t, to define the principle of the 

multilevel logit model. Similar to the Poisson lognormal model, the logit model is a multi-stage 

model and can be expressed as follows: 

Ykcit ~ Bernoulli (Pkcit),                                                                                                                    (4.21) 

Logit(Pkcit)=log[Pkcit/(1-Pkcit)]=β0+βXkcit+ρc+θi+φi+δt+νt+γit ,                                                                           (4.22) 
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where Pkcit is the probability that person k in crash c in census tract i is killed, Xkcit is the 

deterministic part of the model, β is the vector of coefficients, ρc  is a crash-level random effect term, 

and θi and φi stand for the uncorrelated and correlated heterogeneity, respectively. δt and νt represent 

unstructured and structured spatial correlation, respectively. Additionally, the spatio–temporal 

effect, γit , was included in the model, as interaction is crucial; the trend of spatial heterogeneity may 

change over time and vice versa. β is assumed to have a normal prior N(0,10000), and the structured 

spatial and temporal terms follow the CAR specifications proposed by Besag (1974): 
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where τφ =1/ σ2
φ  

controls the variability of φ, and its prior is Ga(0.5,0.0005) (Wakefield et al., 2000). 

The structured temporal component δt is defined using a univariate first-order random-walk prior, 

RW(1): 
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Normal priors N(0, σ2
ρ
) , N(0, σ2

θ
), N(0, σ2

ν), and N(0, σ2
γ
)  are assumed for ρ , θ , v, and γ, 

respectively, where τ
ρ
=1/ σ2

ρ 
, τ

θ
=1/ σ2

θ 
, τν = 1/ σ2

ν, and τ
γ
 =1/ σ2

γ  
are the precision parameters that 

are the inverse of the variances. They follow prior gamma (0.5,0.0005).  

          for t = 1 

for t =2,…,5. 

          for t =6 

, wij=1 if i,j are adjacent or 0 otherwise, 
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The crash severity outcome can also be considered ordinal in nature (from a less severe, i.e., 

PDO, to a more severe, i.e., fatal, outcome). Therefore, considering an ordered response model like 

ordered logit is reasonable, as it has the advantage of making full use of ranked data. The ordered 

logit model can be derived using an unobserved injury severity level or a latent variable model 

specified as follows: 

Ykcit*=β0+βXkcit+ρc+θi+φi+δt+νt+γit ,                                                                                                                                     (4.26) 

1
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kcitY




 



                            , 

where Ykcit * is a latent variable that measures the crash severity ranging from -∞ to +∞, and  

c is the threshold to be estimated. Hence, the odds of fatality for an occupant involved in a fatal crash 

can be estimated as follows: 
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4.3.1.1.  Micro-level Weighted Excess Risk 

In micro-level data analysis, the weighted excess risk can be formulated as a ratio of the 

expected odds of fatality (based on spatial and temporal components) to the average odds of fatality: 
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This measure, in fact, represents the contribution of spatial and temporal effects to an occupant’s 

odds of fatality. If the weighted excess risk is greater than 1, the occupant’s odds of fatality would 

be higher than the average.  

if     Ykcit *≤c 

if     c<Ykcit * 

 (4.27) 

(4.28) 
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4.4. Marginal Effects 

    Marginal effects (MEs) are also calculated to enable the interpretation of the results. In the 

case of the crash frequency model, the ME of a continuous covariate ( )n

itx  is the partial derivative of 

the expected value of the response variable E[Yist] with respect to ( )n

itx , and it refers to the expected 

change in the response variable as a function of the change in ( )n

itx , with the other explanatory 

variables being fixed. The MEs for this study were computed at the median of the explanatory 

variables with the following equation: 

( ) (0) (1) (1) ( ) ( )

( )

[ ]
. exp( . ... . )   
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Similarly, for the crash severity model, the ME of a continuous variable zkit would be 




ksit

kit

P

z

. All explanatory variables are held at their mean values to estimate the ME. Additionally, for the 

dummy variables, the ME is calculated as the discrete change of dummy variables from 0 to 1.                                                                                               

4.5. Model Comparison 

The deviance information criterion (DIC) will be used to compare the models. The final 

model, which has the smallest DIC among candidate models, is of our interest. The DIC is calculated 

using the following equation (Spiegelhalter et al., 2002): 

2DIC D D  ,                                                                                                                          (4.32) 
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(Miaou et al., 2003) proposed a pseudo-R2 measure that attempted to standardize the DIC as 

follows: 

Pseudo R2 mod

mod

1 el

null el

DIC

DIC
  .                                                                                                      (4.33) 

The mean absolute error (MAE) is used as a measure to compare the performance of Bayesian and 

NB models, and it is as follows: 

| |ist istC Obs
MAE

n


  .                                                                                                              (4.34) 

The unweighted mean of squares is utilized to assess the goodness of fit for both the Bayesian and 

classical logit models. It is defined as follows: 

| |kcit kcitY P
UMS

N


   .                                                                                                               (4.35) 

4.6. Integration of Macro- and Micro-level Data Analyses 

The goal of this part of the framework is to combine the results from both the macro- and 

micro-level data analyses to provide a comprehensive and effective measure for hotspot 

identification. The advantage of this approach is that it overcomes the limitations of the macroscopic 

(e.g., it ignores engineering issues on the roadway) and microscopic (e.g., it does not consider 

system-wide effects) safety analyses because it simultaneously considers the observed and 

unobserved effects affecting traffic crashes at the macro and micro levels.  

Figure 4.1 represents the schematic framework proposed to combine the macro- and micro-

level metrics for the development of the combined or integrated metric. This metric can be used to 

identify areas that can be considered hazardous based on the analysis of both the macro and micro 

levels. Specifically, the census tracts with high values in this integrated metric are tracts associated 
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with both higher expected crash costs because of the expected fatal, injury, and PDO crashes and 

with higher odds of a vehicle occupant involved in a fatal crash being killed (versus surviving). 

  

 

 

 

 

 

 

 

  

  

  

  

  

  

 

 Figure 4.1 Schematic framework for calculating the combined metrics 

The following steps are followed to construct the combined metrics: 

1. Store the two metrics/measures (the macro- and micro-level weighted excess risks 

discussed in Sections 4.2.1.2 and 4.3.1.1, respectively) in two separate Excel files in 

CSV format. Each Excel file has two columns. The first column contains the unique 

code for each county/census tract, and the second column contains the corresponding 

weighted excess risk value. 
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2. Import the excel files into ArcMap and join them to the corresponding shapefiles by 

using the unique codes associated with each zone.  

3. Assign the macro-level excess risk value (
1

macro ) for each county to all of its sub-census 

tracts, that is, all sub-census tracts in that county will have the same value (refer to Figure 

4.2).  

4. As the two metrics/measures have different distributions (i.e., their standard deviations 

follow inverse Wishart and Gamma distribution, as explained in Sections 4.2.1. and 4.3.1, 

respectively), scaling both the macro- and micro-level metrics between 0 and 1 by using 

a min–max normalization strategy is necessary. 

 

 

Figure 4.2 Example of assigning the county’s weighted excess risk value to its sub-census tracts. 

 

5.  Convert the shapefiles to two raster files to represent the normalized weighted excess 

risk at the macro and micro levels, N ( macro

i ) and N ( micro

i ). 

A county with an excess crash 

risk value of  
1

macro  
The sub-census tracts with a similar 

excess risk value of  
1

macro  
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Figure 4.3 Example of estimating the combined metrics for the census tracts in Braxton County. 

 

6.  Utilize the raster calculator tool to take the average of the normalized values for each 

census tract. These values correspond to the combined metrics and will be the basis for 

identifying and ranking the zones with promise (refer to Figure 4.3). The resulting 

values will then be classified using the natural break (Jenks) classification method, as it 

reduces the variances within each group and maximizes the variance between groups. 
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  .                                                                         (4.36) 

 

4.7. Summary 

This chapter provided a discussion of the methodology to be followed in this dissertation, 

including statistical methods for macro and micro level data analyses as well as random effect 

terms that address unobserved factors over space and time. Macro-level analysis aims to establish 

the relationship between county-level crash frequency and area-wide factors, such as socio-
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economic factors and environmental characteristics, whereas micro-level analysis, explores the 

relationship between crash severity and a range of factors at different levels (occupant-level, crash-

level and spatial level). This chapter has also explained various measures to compare Bayesian and 

classical methods for model validation purpose, including MAE and UMS.  

This chapter has also described a novel metric that identifies and prioritizes high-risk areas 

by capturing the effects of missing influential factors. The proposed metric/measure combines the 

results from both crash frequency and crash severity models; it has advantages over traditional 

ranking methods, such as the crash rate and EB methods, because it addresses both system-wide 

and engineering issues. Therefore, it can be used by transport policy makers to prioritize SWiPs 

and effectively allocate funding and resources. 
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C H A P T E R  5 :  R E S U L T S  

5.1. Macro-Level Data Analysis  
 

Transportation agencies are required to incorporate traffic safety into long-term transport 

planning, which is typically implemented at the aggregate level. Crash models developed at a similar 

level of aggregation, that is, zonal crash models, can be used to establish the association between 

observed crashes and a set of variables in each zone to inform such long-term plans and 

implementations. The aim of this section is to present the results of crash frequency models and 

examine the macro-level factors affecting county-level traffic crashes, on the basis of the research 

framework presented in Chapter 4, for the case study of WV. Specifically, this section presents the 

estimates of various Poisson lognormal models that include various random effect terms. The details 

of the development of the macro-level models proposed in this dissertation and the empirical results 

are discussed in this section. In addition, the reliability and the contributions of the proposed 

methodology are given.  

5.1.1. Model Development 

Nine models were estimated in this study using the WINBUGS software (Spiegelhalter et al. 

2003). The potential explanatory variables to be included in the Bayesian hierarchical models were 

screened by estimating the variance inflation factor (VIF) to avoid potential misspecification issues. 

The estimated VIF confirms the absence of multicollinearity in that the values were found to be 

smaller than 10 for all variables.  

As the full models were found to be unstable and some variables did not converge, 

identifying and eliminating random effect terms that did not significantly contribute to the model 

were necessary. Inclusion of spatial and temporal correlation terms in the model when they are not 

significant may deteriorate the precision of crash estimation, so these terms should be dropped from 
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the model. Different spatial and temporal models were therefore examined to evaluate the 

significance of spatial and temporal correlation terms by using structured and unstructured spatial 

and temporal effects.  

The first model developed (Model 1) is a non-spatial model that does not account for spatial 

or temporal effects. The second and third models developed (Models 2 and 3) are full models with 

structured and unstructured spatial and temporal random effects, as well as a spatio–temporal 

interaction term. The temporal correlation terms in Model 2 and 3 are assumed to follow MRW(1) 

and MRW(2) priors, respectively. 

Two spatial models (Model 4 and 5) were also considered to assess the significance of the 

spatial correlation terms. Model 4 contained both unstructured and structured spatial effects, whereas 

Model 5 included only an unstructured spatial effect term. 

Similarly, three temporal models (Model 6, Model 7 and 8) were defined to assess the 

presence of temporal correlation. Models 6 and 7 contain an unstructured term, along with a 

structured component with MRW(1) and MRW(2) priors, respectively. However, Model 8 included 

only an unstructured component. Finally, Model 9 was a spatio–temporal model with both 

unstructured spatial and temporal components, along with a spatio–temporal interaction term. Table 

5.1 summarizes the goodness of fit measures (DIC values and R2
DIC) for all models.  

For the models, the first 10,000 iterations were discarded as burn-in, and the 200,000 

iterations that followed were used to obtain the summary statistics of the posterior distribution of the 

parameters. All covariates in the models were standardized (centered around the mean and then 

divided by the standard deviation) to speed up the convergence. The convergence was evaluated by 

visual inspection of the Markov chains for the parameters in the history plots. The plots of the final 

model can be found in the Appendix, Figure 1. Furthermore, the Monte Carlo errors for the 
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parameters were found to be less than 5% of the posterior standard deviation, which indicates 

satisfactory convergence. Note that the Monte Carlo error is the standard deviation divided by the 

number of sampling iterations, and it generally corresponds to an indication of the increasing 

precision of the estimates as the number of sampling iterations increases.  

TABLE 5.1 DIC values associated with the models 

No

. 

Model DIC R2
DIC 

Basic (non-random effect model)   

1 log(Cist)=log(Eit) + β0s+ βs Xit  21,556 0.54 

Full Models   

2 log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis+νts +δts, MRW(1) +γit      9,838 0.80 

3 log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis+νts +δts, MRW(2) +γit         9,874 0.79 

Spatial Models   

4 log(Cist)=log(Eit) + β0s+ βs Xit +θis+ φis 12,119 0.74 

5 log(Cist)=log(Eit) + β0s+ βs Xit +θis 11,993 0.75 

Temporal Models   

6 log(Cist)=log(Eit) + β0s+ βs Xit +νts +δts, MRW(1)  20,543 0.57 

7 log(Cist)=log(Eit) + β0s+ βs Xit +νts +δts, MRW(2)     20,607 0.56 

8 log(Cist)=log(Eit) + β0s+ βs Xit +νts  18,094 0.61 

Spatio–Temporal Modes (without structured spatial and temporal terms)   
9 log(Cist)=log(Eit) + β0s+ βs Xit +θis+νts +γit 8,487 0.82 

 

From the spatial and temporal models, the models with only unstructured spatial or temporal 

terms (Model 5 and 8) performed better than their counterparts, suggesting that structured spatial 

and temporal correlation terms are negligible and can be eliminated from the models. This result 

confirms that the covariates are less likely to be spatially and temporally correlated, but unobserved 

heterogeneity resulting from unstructured components seems to be present. This finding further 

corroborated the preliminary findings from the EDA. Furthermore, the DIC for Model 9 is 

considerably smaller, which further confirms the existence of unstructured spatial and unstructured 

temporal effects, as well as their interaction.  
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In addition to DIC, another goodness of fit measure proposed by Miaou et al., (2003), R2
DIC, 

was estimated to assess the improvement offered by the fitted models over the intercept model. The 

results show that R2
DIC increased from 0.54 for Model 1 to 0.82 for Model 9. This result shows the 

necessity of accounting the random effects in crash analysis. The results of both estimated goodness 

of fit measures suggest that Model 9 best fits the data for the case study of WV. Figures 1 and 2 in 

the Appendix show the estimates for the posterior distribution, as well as the density curves, which 

confirm that the variables are converged for this model. The fixed effect parameters have normal 

curves, which is consistent with the prior assumption of the distribution of these parameters.  

The results of the models are presented in Tables 5.2 to 5.10. As the tables show, after the 

random effect terms are accounted for, some significant variables (e.g., median age and median 

travel time to work) in Model 1 are no longer significant in Model 9. An explanation for this is that 

such variables significantly varied across space and time in a systematic way. Therefore, the use of 

random effect terms in the model captured their variations used to estimate the fixed effect 

parameters in the basic model (Model 1). As a result, those variables became insignificant. This 

result indicates that the estimated parameters in non-random effects may not be efficient and reliable, 

as they are unable to capture the variability over space and/or time.  

Although a model that includes a smaller number of significant variables might seem less 

useful for planning and practice purposes, it is important to note that the insights that the inclusion 

of random effects provide are valuable. First, targeting factors for policy and planning interventions 

based on variables that appear to be significant because of misspecifications will likely not provide 

the expected results in crash reductions. Second, significant spatial and/or temporal components 

essentially capture unobserved characteristics that vary across space and time, so their existence 

highlights the need for the further identification of meaningful factors that can be used for planning 
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TABLE 5.2 Parameter estimates for Model 1 

Crash model Fatal Injury PDO 

Parameter  Mean 2.50% 97.50%  Mean 2.50% 97.50%  Mean 2.50% 97.50% 

Intercept −8.576 −8.654 −8.500 −5.312 −5.327 −5.297 −4.383 −4.393 −4.374 

Median travel time to work 0.114 0.026 0.201 −0.047 −0.063 −0.031 −0.094 −0.104 −0.085 

Mean travel time to the hospital 0.251 0.162 0.338 N/A N/A 

Primary road density 0.134 0.056 0.211 0.154 0.140 0.168 0.202 0.194 0.211 

Secondary road density 0.046 −0.037 0.127 0.104 0.090 0.118 0.051 0.043 0.060 

Intersection density −0.159 −0.250 −0.067 −0.153 −0.169 −0.136 −0.144 −0.155 −0.133 

Labor force −0.051 −0.146 0.045 −0.075 −0.093 −0.058 −0.147 −0.158 −0.136 

Median income −0.033 −0.125 0.058 0.072 0.054 0.089 0.148 0.137 0.159 

Median age −0.106 −0.207 −0.001 −0.022 −0.045 0.000 −0.019 −0.034 −0.003 

Population with a B.S. degree or higher (%) −0.084 −0.217 0.048 −0.043 −0.068 −0.018 0.058 0.043 0.074 

Population under poverty (%) −0.089 −0.232 0.055 0.076 0.048 0.103 0.094 0.076 0.111 

Male population (%) −0.156 −0.285 −0.027 −0.017 −0.041 0.007 −0.004 −0.020 0.011 

Population under 19 (%) −0.042 −0.148 0.067 −0.001 −0.022 0.019 0.059 0.047 0.072 

Population 20 to 24 (%) −0.042 −0.160 0.076 0.029 0.006 0.051 0.056 0.042 0.070 

Population over 65 (%) −0.083 −0.226 0.062 0.048 0.020 0.076 0.150 0.132 0.168 

DUI −0.034 −0.093 0.024 0.005 −0.005 0.015 0.058 0.053 0.064 

School density 0.065 −0.002 0.130 0.086 0.074 0.097 0.135 0.128 0.141 

Metro −0.307 −0.442 −0.172 −0.072 −0.097 −0.047 −0.097 −0.113 −0.082 

Mean ground elevation 0.046 −0.035 0.128 −0.004 −0.018 0.010 −0.067 −0.076 −0.058 

Number of days with any measurable 

precipitation 0.048 −0.024 0.121 −0.003 −0.016 0.011 0.023 0.014 0.031 

DIC 21556 

R2
DIC 0.54 

Note: Shaded cells indicate significant coefficients at α=5% level.  
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TABLE 5.3 Parameter estimates for Model 2 

Crash model Fatal Injury PDO 

Parameter Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50% 

Intercept −7.270 −9.947 −4.419 −5.173 -5.921 −4.557 −4.615 −4.995 −4.294 

Median travel time to work 0.035 −0.185 0.256 −0.106 −0.507 0.144 −0.011 −0.270 0.294 

Mean travel time to the hospital 0.274 −0.060 0.560 N/A N/A 

Primary road density 0.214 0.008 0.629 0.146 −0.213 0.377 0.332 0.163 0.710 

Secondary road density −0.012 −0.296 0.383 −0.074 −0.490 0.293 0.228 0.048 0.493 

Intersection density −0.161 −0.399 0.059 −0.099 −0.389 0.234 −0.173 −0.654 0.137 

Labor force (%) −0.008 −0.316 0.279 0.020 −0.204 0.259 −0.303 −0.577 −0.052 

Median income −0.013 −0.256 0.230 −0.013 −0.256 0.230 0.126 −0.218 0.340 

Median age −0.166 −0.441 0.073 −0.011 −0.323 0.257 0.015 −0.279 0.322 

Population with a B.S. degree or higher (%) −0.131 −0.439 0.161 −0.130 −0.457 0.195 −0.308 −0.543 −0.029 

Population under poverty (%) −0.049 −0.370 0.254 −0.004 −0.290 0.320 −0.295 −0.571 0.099 

Male population (%) −0.151 −0.422 0.183 0.065 −0.289 0.655 −0.159 −0.462 0.095 

Population under 19 (%) −0.013 −0.249 0.228 −0.025 −0.284 0.218 −0.060 −0.368 0.271 

Population 20 to 24 (%) −0.120 −0.484 0.169 0.158 −0.166 0.599 0.184 −0.048 0.459 

Population over 65 (%) −0.105 −0.511 0.250 0.104 −0.373 0.574 −0.113 −0.410 0.189 

DUI −0.019 −0.100 0.061 −0.007 −0.021 0.007 0.008 −0.001 0.016 

School density 0.066 −0.097 0.248 0.008 −0.304 0.186 0.200 0.012 0.397 

Metro −0.256 −0.784 0.257 −0.299 −1.075 0.229 0.044 −0.349 0.418 

Mean ground elevation 0.047 −0.227 0.268 0.009 −0.262 0.313 0.020 −0.247 0.301 

Number of days with any measurable 

precipitation 0.048 −0.121 0.224 −0.004 −0.103 0.093 −0.001 −0.138 0.140 

σν 2.8 1.8 0.28 

σδ 0.33 0.35 0.37 

σθ 0.33 0.52 0.46 

σφ 0.82 0.17 0.13 

σγ 0.2 1.73 0.29 

DIC 9,838 

  Note: Shaded cells indicate significant coefficients at α=5% level.  
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TABLE 5.4 Parameter estimates for Model 3 
 

 

 

 

 

 

 

 

 

 Note:  Shaded cells indicate significant coefficients at α=5% level.  

Cash model Fatal Injury PDO 

Parameter Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50% 

Intercept −8.028 −12.870 −4.817 −5.181 −5.864 −4.523 −4.370 −4.620 −4.035 

Median travel time to work 0.018 −0.260 0.220 −0.047 −0.408 0.225 −0.076 −0.263 0.121 

Mean travel time to the hospital 0.284 0.091 0.494 N/A N/A 

Primary road density 0.183 −0.018 0.445 0.276 0.080 0.471 0.331 0.153 0.522 

Secondary road density −0.042 −0.275 0.159 0.075 −0.273 0.328 0.105 −0.088 0.286 

Intersection density −0.154 −0.392 0.068 −0.160 −0.687 0.161 −0.129 −0.348 0.061 

Labor force (%) −0.022 −0.262 0.260 −0.108 −0.447 0.258 −0.276 −0.563 −0.090 

Median income 0.004 −0.210 0.218 0.004 −0.210 0.218 0.155 −0.012 0.331 

Median age −0.140 −0.397 0.105 −0.044 −0.427 0.227 −0.127 −0.428 0.066 

Population with a B.S. degree or higher (%) −0.136 −0.464 0.158 −0.338 −0.832 −0.070 −0.170 −0.390 0.066 

Population under poverty (%) −0.055 −0.353 0.248 −0.222 −0.615 0.141 −0.195 −0.441 0.038 

Male population (%) −0.127 −0.431 0.321 −0.075 −0.575 0.460 −0.173 −0.566 0.185 

Population under 19 (%) −0.018 −0.252 0.237 −0.082 −0.512 0.178 −0.080 −0.349 0.179 

Population 20 to 24 (%) −0.071 −0.337 0.199 0.108 −0.192 0.329 0.079 −0.164 0.293 

Population over 65 (%) −0.066 −0.396 0.322 −0.079 −0.541 0.422 −0.029 −0.225 0.183 

DUI −0.022 −0.102 0.056 −0.007 −0.021 0.007 0.008 −0.001 0.016 

School density 0.079 −0.085 0.336 0.089 −0.115 0.465 0.088 −0.140 0.230 

Metro −0.252 −0.600 0.099 −0.117 −0.552 0.545 −0.135 −0.533 0.178 

Mean ground elevation 0.071 −0.149 0.329 0.133 −0.111 0.510 −0.006 −0.233 0.207 

Number of days with any measurable 

precipitation 0.051 −0.113 0.232 0.002 −0.095 0.098 0.001 −0.130 0.145 

σν 2.95 1.74 0.61 

σδ 0.11 0.13 0.04 

σθ 0.25 0.26 0.27 

σφ 0.09 0.07 0.06 

σγ 0.21 0.29 0.23 

DIC 10 
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TABLE 5.5 Parameter estimates for Model 4 

Crash model Fatal Injury PDO 

Parameter  Mean 2.50% 97.50%  Mean 2.50% 97.50%  Mean 2.50% 97.50% 

Intercept −8.583 −8.718 −8.432 −5.173 −5.379 −4.966 −4.328 −4.478 −3.854 

Median travel time to work 0.078 −0.077 0.232 −0.027 −0.158 0.103 −0.032 −0.247 0.139 

Mean travel time to the hospital 0.282 0.130 0.429 N/A N/A 

Primary road density 0.170 0.029 0.319 0.160 0.030 0.289 0.262 0.078 0.447 

Secondary road density 0.009 −0.141 0.158 0.111 −0.005 0.228 0.100 −0.080 0.281 

Intersection density −0.155 −0.321 0.011 −0.095 −0.230 0.040 −0.086 −0.284 0.111 

Labor force −0.027 −0.201 0.148 −0.044 −0.183 0.095 −0.159 −0.354 0.036 

Median income 0.003 −0.156 0.161 0.014 −0.108 0.136 0.099 −0.064 0.262 

Median age −0.108 −0.287 0.071 0.002 −0.133 0.136 −0.043 −0.224 0.139 

Population with a B.S. degree or higher (%) −0.107 −0.336 0.122 −0.111 −0.356 0.135 −0.125 −0.490 0.240 

Population under poverty (%) −0.071 −0.314 0.172 −0.062 −0.296 0.171 −0.184 −0.512 0.145 

Male population (%) −0.151 −0.349 0.047 −0.050 −0.204 0.104 −0.061 −0.263 0.142 

Population under 19 (%) −0.025 −0.203 0.154 −0.019 −0.161 0.122 0.001 −0.188 0.189 

Population 20 to 24 (%) −0.063 −0.273 0.147 0.060 −0.113 0.233 0.121 −0.120 0.361 

Population over 65 (%) −0.079 −0.330 0.173 −0.081 −0.278 0.116 −0.013 −0.276 0.251 

DUI −0.004 −0.080 0.072 −0.041 −0.056 −0.026 0.025 0.015 0.035 

School density 0.072 −0.046 0.189 0.068 −0.027 0.164 0.128 0.001 0.254 

Metro −0.291 −0.540 −0.043 −0.121 −0.346 0.103 −0.222 −0.551 0.106 

Mean ground elevation 0.041 −0.119 0.201 0.058 −0.086 0.201 0.057 −0.130 0.244 

Number of days with any measurable 

precipitation 0.061 −0.062 0.183 −0.014 −0.111 0.084 −0.008 −0.146 0.129 

σθ 0.28 0.23 0.36 

σφ 0.17 0.19 0.19 

Fraction 0.62 0.55 0.65 

DIC 12417 

R2
DIC 0.67 

Notes: Shaded cells indicate significant coefficients at α=5% level. Bolded text indicates significant coefficients at α=10% level. 
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TABLE 5.6 Parameter estimates for Model 5 

Crash model Fatal Injury PDO 

Parameter  Mean 2.50% 97.50%  Mean 2.50% 97.50%  Mean 2.50% 97.50% 

Intercept −8.587 −8.724 −8.435 −5.272 −5.386 −4.974 −4.330 −4.488 −3.857 

Median travel time to work 0.076 −0.081 0.226 −0.020 −0.168 0.097 −0.036 −0.252 0.134 

Mean travel time to the hospital 0.272 0.121 0.426 N/A N/A 

Primary road density 0.166 0.021 0.313 0.163 0.029 0.284 0.264 0.072 0.445 

Secondary road density 0.005 −0.148 0.154 0.116 −0.003 0.241 0.086 −0.089 0.275 

Intersection density −0.162 −0.327 0.001 −0.100 −0.231 0.035 −0.090 −0.286 0.102 

Labor force −0.037 −0.210 0.142 −0.047 −0.184 0.094 −0.174 −0.363 0.030 

Median income 0.000 −0.158 0.160 0.013 −0.109 0.134 0.092 −0.068 0.259 

Median age −0.114 −0.294 0.064 0.001 −0.134 0.130 −0.045 −0.229 0.131 

Population with a B.S. degree or higher (%) −0.113 −0.345 0.119 −0.137 −0.323 0.142 −0.128 −0.393 0.250 

Population under poverty (%) −0.079 −0.319 0.165 −0.077 −0.270 0.161 −0.192 −0.450 0.157 

Male population (%) −0.157 −0.354 0.037 −0.068 −0.207 0.103 −0.074 −0.272 0.169 

Population under 19 (%) −0.028 −0.205 0.149 −0.029 −0.165 0.115 −0.010 −0.189 0.188 

Population 20 to 24 (%) −0.062 −0.276 0.145 0.070 −0.121 0.230 0.141 −0.124 0.351 

Population over 65 (%) −0.084 −0.340 0.168 −0.101 −0.281 0.111 −0.039 −0.280 0.247 

DUI −0.008 −0.082 0.065 −0.043 −0.057 −0.029 0.024 0.016 0.032 

School density 0.068 −0.049 0.183 0.067 −0.034 0.162 0.124 −0.016 0.253 

Metro −0.295 −0.547 −0.051 −0.115 −0.349 0.100 −0.199 −0.558 0.096 

Mean ground elevation 0.038 −0.124 0.197 0.064 −0.093 0.192 0.060 −0.179 0.238 

Number of days with any measurable 

precipitation 0.052 −0.071 0.174 −0.013 −0.118 0.080 −0.005 −0.154 0.119 

σθ 0.26 0.26 0.35 

DIC 11993 

R2
DIC 0.75 

Notes: Shaded cells indicate significant coefficients at α=5% level. Bolded text indicates significant coefficients at α=10% level. 
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TABLE 5.7 Parameter estimates for Model 6 

Crash model Fatal Injury PDO 

Parameter Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50% 

Intercept −8.663 −10.250 −7.524 −5.325 −5.614 −5.027 −4.284 −4.541 −4.006 

Median travel time to work 0.090 0.008 0.173 −0.048 −0.063 −0.033 −0.102 −0.112 −0.093 

Mean travel time to the hospital 0.238 0.151 0.325 N/A N/A 

Primary road density 0.127 0.050 0.205 0.153 0.139 0.166 0.201 0.192 0.209 

Secondary road density 0.032 −0.049 0.113 0.101 0.087 0.114 0.048 0.040 0.056 

Intersection density −0.144 −0.233 −0.055 −0.147 −0.163 −0.130 −0.142 −0.152 −0.131 

Labor force (%) −0.050 −0.147 0.046 −0.078 −0.095 −0.060 −0.148 −0.159 −0.138 

Median income −0.020 −0.110 0.069 −0.020 −0.110 0.069 0.154 0.143 0.164 

Median age −0.105 −0.206 −0.001 −0.025 −0.047 −0.003 −0.016 −0.031 −0.001 

Population with a B.S. degree or higher (%) −0.071 −0.201 0.061 −0.046 −0.071 −0.022 0.066 0.051 0.081 

Population under poverty (%) −0.054 −0.192 0.084 0.072 0.046 0.098 0.108 0.092 0.124 

Male population (%) −0.128 −0.247 −0.008 −0.012 −0.035 0.011 0.007 −0.007 0.022 

Population under 19 (%) −0.035 −0.142 0.072 0.006 −0.014 0.027 0.056 0.043 0.068 

Population 20 to 24 (%) −0.050 −0.168 0.068 0.031 0.008 0.053 0.051 0.036 0.065 

Population over 65 (%) −0.073 −0.211 0.068 0.063 0.035 0.090 0.148 0.132 0.165 

DUI −0.048 −0.107 0.011 0.026 0.016 0.036 0.050 0.044 0.056 

School density 0.055 −0.012 0.120 0.086 0.075 0.098 0.131 0.125 0.138 

Metro −0.289 −0.424 −0.156 −0.072 −0.097 −0.048 −0.095 −0.110 −0.080 

Mean ground elevation 0.049 −0.032 0.130 −0.008 −0.022 0.007 −0.066 −0.075 −0.058 

Number of days with any measurable 

precipitation 0.048 −0.115 0.233 −0.002 −0.098 0.095 0.004 −0.134 0.148 

σν 1.12 1.34 1.91 

σδ 0.16 0.12 0.33 

DIC 20,543 

Notes: Shaded cells indicate significant coefficients at α=5% level.  
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TABLE 5.8 Parameter estimates for Model 7 

Crash model Fatal Injury PDO 

Parameter Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50% 

Intercept −11.810 −17.320 −8.208 −5.267 −6.022 −4.520 −4.181 −4.623 −3.765 

Median travel time to work 0.091 0.009 0.172 −0.048 −0.063 −0.033 −0.102 −0.111 −0.093 

Mean travel time to the hospital 0.238 0.151 0.325 N/A N/A 

Primary road density 0.127 0.050 0.206 0.152 0.138 0.167 0.200 0.192 0.209 

Secondary road density 0.032 −0.047 0.113 0.101 0.087 0.114 0.048 0.040 0.056 

Intersection density −0.145 −0.235 −0.055 −0.147 −0.163 −0.130 −0.142 −0.152 −0.131 

Labor force (%) −0.051 −0.148 0.045 −0.078 −0.095 −0.060 −0.148 −0.159 −0.138 

Median income −0.021 −0.111 0.070 −0.021 −0.111 0.070 0.154 0.143 0.164 

Median age −0.105 −0.206 −0.002 −0.025 −0.048 −0.003 −0.016 −0.031 0.000 

Population with a B.S. degree or higher (%) −0.071 −0.202 0.060 −0.046 −0.071 −0.021 0.066 0.050 0.081 

Population under poverty (%) −0.054 −0.191 0.079 0.072 0.046 0.099 0.108 0.092 0.124 

Male population (%) −0.128 −0.249 −0.010 −0.012 −0.035 0.011 0.007 −0.007 0.022 

Population under 19 (%) −0.036 −0.143 0.072 0.006 −0.014 0.027 0.056 0.043 0.069 

Population 20 to 24 (%) −0.050 −0.169 0.066 0.030 0.008 0.054 0.051 0.036 0.065 

Population over 65 (%) −0.073 −0.216 0.070 0.063 0.036 0.090 0.148 0.132 0.166 

DUI −0.048 −0.107 0.010 0.026 0.016 0.036 0.050 0.044 0.056 

School density 0.055 −0.011 0.120 0.086 0.075 0.098 0.131 0.125 0.138 

Metro −0.290 −0.427 −0.155 −0.072 −0.097 −0.048 −0.095 −0.111 −0.080 

Mean ground elevation 0.049 −0.034 0.130 −0.008 −0.022 0.007 −0.066 −0.075 −0.058 

Number of days with any measurable 

precipitation 0.051 −0.111 0.233 −0.001 −0.098 0.096 0.006 −0.131 0.148 

σν 1.28 1.74 1.79 

σδ 0.22 0.24 0.12 

DIC 20607 

Notes: Shaded cells indicate significant coefficients at α=5% level.  

 

 



 

76 
 

TABLE 5.9 Parameter estimates for Model 8 

Crash model Fatal Injury PDO 

Parameter Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50% 

Intercept −8.703 −8.990 −8.403 −4.101 −5.010 −3.270 −3.484 −3.877 −3.044 

Median travel time to work 0.091 0.008 0.173 −0.048 −0.063 −0.033 −0.102 −0.112 −0.093 

Mean travel time to the hospital 0.239 0.151 0.327 N/A N/A 

Primary road density 0.127 0.049 0.206 0.153 0.139 0.166 0.201 0.192 0.209 

Secondary road density 0.032 −0.048 0.111 0.101 0.087 0.114 0.048 0.040 0.056 

Intersection density −0.144 −0.234 −0.056 −0.147 −0.164 −0.130 −0.142 −0.153 −0.132 

Labor force (%) −0.054 −0.151 0.043 −0.078 −0.095 −0.060 −0.148 −0.159 −0.138 

Median income −0.020 −0.110 0.070 −0.020 −0.110 0.070 0.154 0.143 0.165 

Median age −0.106 −0.209 −0.001 −0.025 −0.048 −0.002 −0.016 −0.031 0.000 

Population with a B.S. degree or higher (%) −0.072 −0.207 0.058 −0.046 −0.071 −0.022 0.066 0.050 0.080 

Population under poverty (%) −0.056 −0.196 0.083 0.072 0.046 0.098 0.108 0.092 0.124 

Male population (%) −0.128 −0.248 −0.006 −0.012 −0.035 0.010 0.007 −0.007 0.022 

Population under 19 (%) −0.035 −0.142 0.075 0.006 −0.015 0.027 0.056 0.043 0.069 

Population 20 to 24 (%) −0.050 −0.170 0.070 0.031 0.009 0.053 0.051 0.037 0.065 

Population over 65 (%) -0.070 -0.213 0.075 0.063 0.034 0.091 0.148 0.131 0.166 

DUI -0.041 -0.101 0.018 0.026 0.016 0.036 0.050 0.043 0.056 

School density 0.056 -0.012 0.120 0.086 0.075 0.098 0.131 0.125 0.138 

Metro -0.290 -0.428 -0.151 -0.073 -0.098 -0.048 -0.095 -0.111 -0.080 

Mean ground elevation 0.048 -0.035 0.129 -0.008 -0.022 0.007 -0.067 -0.076 -0.058 

Number of days with any measurable 

precipitation 0.044 -0.113 0.229 0.001 -0.093 0.101 0.008 -0.129 0.141 

σν 1.21 1.49 1.03 

DIC 18,094 

Notes: Shaded cells indicate significant coefficients at α=5% level.  
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TABLE 5.10 Parameter estimates for Model 9 

Crash model Fatal Injury PDO 

Parameter  Mean 2.50% 97.50% Mean 2.50% 97.50% Mean 2.50% 97.50% 

Intercept −8.639 −8.860 −8.419 −5.362 −5.640 −5.085 −4.395 −4.598 −4.199 

Median travel time to work 0.049 −0.113 0.206 −0.013 −0.131 0.100 −0.021 −0.170 0.133 

Mean travel time to the hospital 0.255 0.092 0.418 N/A N/A 

Primary road density 0.160 0.002 0.320 0.184 0.064 0.309 0.304 0.163 0.476 

Secondary road density −0.021 −0.183 0.139 0.075 −0.042 0.197 0.061 −0.097 0.233 

Intersection density −0.142 −0.311 0.028 −0.136 −0.257 −0.018 −0.126 −0.280 0.028 

Labor force −0.040 −0.231 0.150 −0.074 −0.215 0.068 −0.200 −0.378 −0.006 

Median income 0.017 −0.154 0.190 0.042 −0.082 0.164 0.108 −0.060 0.267 

Median age −0.111 −0.306 0.085 0.020 −0.119 0.167 −0.023 −0.204 0.162 

Population with a B.S. degree or higher (%) −0.113 −0.371 0.141 −0.148 −0.351 0.042 −0.160 −0.410 0.084 

Population under poverty (%) −0.049 −0.304 0.208 −0.073 −0.251 0.109 −0.212 −0.433 0.007 

Male population (%) −0.136 −0.334 0.062 −0.026 −0.152 0.093 −0.061 −0.225 0.086 

Population under 19(%) −0.013 −0.197 0.175 −0.001 −0.130 0.123 −0.003 −0.176 0.159 

Population 20 to 24 (%) −0.060 −0.290 0.169 0.099 −0.078 0.268 0.187 −0.045 0.408 

Population over 65 (%) −0.071 −0.348 0.205 −0.024 −0.213 0.161 −0.007 −0.244 0.221 

DUI −0.019 −0.095 0.057 −0.007 −0.021 0.007 0.008 −0.001 0.016 

School density 0.060 −0.066 0.186 0.056 −0.041 0.153 0.121 −0.011 0.253 

Metro −0.245 −0.510 0.025 −0.059 −0.251 0.135 −0.145 −0.388 0.115 

Mean ground elevation 0.054 −0.118 0.228 0.043 −0.081 0.170 0.055 −0.108 0.216 

Number of days with any measurable 

precipitation 
0.051 −0.079 0.178 −0.005 −0.103 0.092 −0.001 −0.14 0.136 

σθ 0.21 0.19 0.25 

σv 0.21 0.33 0.17 

σγ 0.21 0.20 0.28 

Fraction: σθ /( σθ + σv + σγ) 0.33 0.26 0.36 

DIC 8,487 

NOTES: Shaded cells with bold text indicate significant coefficients at α=5% level. Bolded text only indicates significant coefficients 

at α=10% level. 
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and policy purposes. To determine such potential factors, one can turn to the findings of previous 

literature and explore the factors that can, in principle, have a spatial and/or temporal component. 

For example, in previous works (Wang and Kockelman 2013; Lee et al. 2015), many spatial-related 

factors, such as land use, bus stop density, side walk density, and number of traffic signals, were 

found to contribute to traffic crashes. These factors are not routinely collected in WV. For the 

purpose of crash prediction, the random effect terms suggested in these models can be used to 

account for the effects of those omitted factors. However, for planning and policy purposes, the 

findings of the case study suggest a significant spatial random effect, so collecting and exploring the 

effects of similar factors in crashes in WV would be advisable.  

5.1.2. Model Validation 

Prior to the exploration of the model parameters, confirming that the model is an appropriate 

fit to the data is prudent. One possible model validation procedure is to examine how well the 

preferred Bayesian model (Model 9) fits the data compared with classical count models. In this 

section, a set of the most suitable classical count models is estimated for the fatal, injury, and PDO 

crashes, and they are compared with the preferred Bayesian model.  

Classical count methods, such as the NB, Poisson, and zero-inflated models, have been 

popular in crash frequency modeling. In general, the choice of the model depends on the nature of 

the crash data. For example, crash data tend to be overdispersed, that is, the variance exceeds the 

mean (Karlaftis and Golias, 2002). As the Poisson model assumes equality of the mean and variance, 

using a Poisson model when the data are overdispersed can underestimate the variance of the 

parameter estimates (Abdel-Aty and Radwan, 2000). Hence, many safety practitioners have used the 

negative binomial model in lieu of the Poisson model to account for the over-dispersion issue. An 

NB model can be reduced to a Poisson model when overdispersion is not present in the model.  
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It should be noted that in some cases, overdispersion might be caused by the presence of 

excess zeros in a dataset, which cannot be handled properly by neither a Poisson nor an NB model. 

In these cases, the zero-inflated model should be used to model count data. The zero-inflated model 

involves two zero-generating processes: one for the binary response model that generates structural 

zeros and one for the frequency model that generates counts and is conditioned on the binary 

response (Farewell et al. 2017). Mamun (2014) recommended the use of the zero-inflated model 

when more than 30% of the counts are zeros. The histograms of the dependent variables are first 

studied to explore the suitability of a Poisson, NB, or zero-inflated model (see Figure 5.1). 

In this case study, the distribution of fatal, injury, and PDO crash data displays signs of 

overdispersion, that is, the variances are higher than the means (see Figure 5.1). However, the injury 

and PDO crash data do not contain any zero values, and the fatal crash data contain a small portion 

of zeros (around 8%). Hence, three separate NB models for each crash severity outcome are 

independently estimated to compare the performance of the proposed full Bayesian model (Model 

9) and the classical model. The parameter estimates of the models can be found in Table 5.11. 

As Table 5.11 shows, the estimated log likelihood ratio test of alpha=0 for the fatal, injury, 

and PDO models is associated with a p-value of 0.018, a p-value smaller than 0.0001, and a p-value 

smaller than 0.0001, respectively, suggesting that for all cases, overdispersion is present and that NB 

models should be estimated. 
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Figure 5.1 Distribution of traffic crashes by severity 
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TABLE 5.11 Negative binomial models’ parameter estimates 
 

 Fatal  Injury  PDO  

 Coef. p-value Coef. p-value Coef. p-value 

Intercept −8.672 <0.0001 −2.440 <0.0001 −2.160 <0.0001 

Median travel time to 

work 0.059 0.082 −0.002 0.928 −0.055 0.021 

Mean travel time to the 

hospital 0.184 <0.0001 NA NA NA NA 

Primary road density 0.128 <0.0001 0.133 <0.0001 0.201 <0.0001 

Secondary road density 0.039 0.292 0.052 0.024 0.027 0.311 

Intersection density −0.159 <0.0001 −0.067 0.012 −0.044 0.143 

Labor force (%) −0.038 0.300 −0.043 0.058 −0.082 0.002 

Median income −0.017 0.660 −0.014 0.554 0.057 0.036 

Median age −0.049 0.135 −0.010 0.639 −0.016 0.503 

Population with a B.S. 

degree or higher −0.058 0.175 −0.039 0.166 0.009 0.775 

Population under poverty 

(%) −0.047 0.202 0.022 0.350 0.028 0.311 

Male population (%) −0.031 0.415 −0.016 0.486 0.014 0.556 

Population under 19 (%) −0.026 0.394 0.012 0.528 0.007 0.728 

Population 20 to 24 (%) −0.033 0.332 0.023 0.286 0.032 0.170 

Population over 65 (%) 0.007 0.832 0.003 0.892 0.032 0.208 

DUI −0.048 0.128 0.056 0.003 0.111 <0.0001 

School density 0.042 0.217 0.078 <0.0001 0.140 <0.0001 

Metro −0.237 0.001 −0.043 0.338 −0.119 0.022 

Mean ground elevation 0.0450 0.871 0.0480 0.061 −0.04 0.164 

Number of days with any 

measurable precipitation 0.370 0.212 −0.001 0.176 0.019 0.331 

Alpha 0.031 <0.0001 0.087 <0.0001 0.115 <0.0001 

Log likelihood ratio test 

of alpha=0 

χ2=4.370  

(p-value=0.018) 

χ2=4,402.900  

(p-value<0.0001)  

χ2=11,000.000  

(p-value<0.0001)  

Log likelihood −711 −1641 −1976 

 

With regard to the comparison of the Bayesian model with the classical models, the MAE is 

used as a measure to demonstrate how well the models fit the data. Table 5.12 shows that for the 

fatal model, the full Bayesian approach performs slightly better than the NB model. However, for 

the injury and the PDO models, the predictive ability of the Bayesian approach is markedly stronger 

than that of the NB model. This result illustrates the necessity of accounting for the variation caused 
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by random effects in crash severity estimation, in addition to the risk factors, especially for a 

predictive model. 

TABLE 5.12 Comparison of Bayesian and NB models 

Model MAE 

Bayesian fatal model (Model 9) 1.71 

NB fatal model 1.74 

Bayesian injury model (Model 9) 21.52 

NB injury model 43 

Bayesian PDO model (Model 9) 67.76 

NB PDO model 113 

  

Although the inclusion of random effect terms in the Bayesian model led to a more precise 

crash estimation compared with the NB model (as the MAE revealed), such an improvement could 

also be due to more precise parameter estimates in the Bayesian model (as it incorporates prior 

information with data) compared with the NB model. Thus, comparing the significance and 

magnitude of the parameters in both models is also critical. Additionally, for future directions in the 

transport planning field and to help researchers better decide between the Bayesian model’s high 

predictive power and the classical model’s low runtime, knowing to what extent the parameter 

estimates for low (fatal crashes) and high (injury and PDO crashes) frequency counts differ in both 

Bayesian and classical models is valuable.  

The parameter estimates for the Bayesian and classical fatal models show that the variables 

that are significant in the Bayesian models are also significant in the NB models and that the signs 

and magnitudes of the coefficients are consistent. However, in the injury model, the variables 

secondary roadway density, DUI, and school density were only significant in the NB model but not 

in the Bayesian model (Model 9). Finally, in the PDO model, the variables median travel time to 

work and median income were only significant in the NB model but not in the Bayesian model 

(Model 9). This result could be due to differences in the nature of the Bayesian and classical models. 
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Unlike the NB model, which that assumes that there is one true fixed parameter estimate within a 

confidence interval whose bounds are fixed, the Bayesian model provides a random parameter within 

a credible interval whose bounds are fixed and is based on prior distribution (Van de Schoot et al. 

2014). Because of this fact, the credible interval and confidence interval may not coincide; as a result, 

some variables that are found significant using one approach may not be found significant in the 

other.  

Along the same lines, the magnitude of parameter estimates for fatal models in both Bayesian 

and NB models is very close, but this does not apply for the injury and PDO models. This difference 

can be explained by the fact that compared with the NB model, the Bayesian model provides more 

precise parameter estimates for high-frequency crashes (e.g., injury and PDO). The fact that the 

results of the fatal model are closer is expected because the difference between MAEs associated 

with the Bayesian and NB fatal models is negligible, whereas for injury and PDO crashes, the 

difference is significant (see Table 5.11).  

5.1.3. Interpretation of Parameter Estimates  

As discussed earlier, previous studies that have utilized a full Bayesian framework similar to 

that proposed in this dissertation (see for example, Boulieri et al., 2016; Liu and Sharma, 2018) have 

explored few covariates. Furthermore, from the ones explored, few were found to be significant in 

their models. For example, in the work of  Liu and Sharma (2018), only vehicle miles traveled, which 

is essentially an exposure variable, was found to affect the number of fatal crashes. This dissertation 

examines several potential macro-level factors that may affect crash severities to address such a 

problem. The effects of some of these factors, such as road and intersection density (Aguero-

Valverde and Jovanis, 2006; Lee et al. 2015), as well as income and climate conditions (Liu and 

Sharma, 2018), have been evaluated in previous works but were found insignificant. Nevertheless, 
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it should be noted that their impacts on traffic crashes may vary from one state to another because of 

differences in road design criteria, travel and pedestrian behaviors, and other underlying factors. 

Hence, the use of such variables in this research is critical. In addition to the factors that emerged 

from previous studies, some important variables that have not been investigated before, such as 

access time to the hospital and urbanity/rurality, are considered in this study. 

With regard to the case study results, Table 5.10 shows that primary roadway density is 

positively correlated with all crash severities, which is consistent with the findings of previous 

studies (Aguero-Valverde and Jovanis, 2006a; Lee et al., 2015). This result might be due to the 

higher traffic speed and speed limit in primary roadways than in local roadways, thus increasing the 

risk of traffic crashes. Likewise, Wang and Kockelman (2013) reported that the freeway and arterial 

density are positively associated with severe and non-severe pedestrian crashes.  

 Intersection density is found to be negatively associated with injury crashes. This result 

means that an increase in intersection density will likely decrease the injury crashes in every county. 

This finding is not consistent with that of Guevara et al. (2004), who explored crashes in Tucson, 

Arizona. Two main reasons explain this contradiction. First, driver and pedestrian behaviors might 

vary from state to state. Second, intersection type and the portion of signalized and stopped control 

intersections in WV may be different from those in other states, such as Arizona. In principle, an 

increase in intersection density in WV could potentially be associated with fewer injury crashes; 

people may have to drive with caution and at a lower traffic speed near intersections, as WV is among 

top five states with strict penalties on reckless drivers (Comoreanu, 2018).  

Labor force was only significant in PDO models. Its negative sign indicates that areas with 

higher labor force participation rates may have fewer PDO crashes. With the assumption that areas 

with a higher labor force participation rate are likely to be more congested because of more 
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commuter trips, this finding is consistent with the literature suggesting that congested roads can be 

safer because drivers tend to drive with greater caution (Zhou and Sisiopiku, 1997). 

School density and DUI rates are the factors that were insignificant in the literature, but they 

are significant in the present study. School density is positively associated with PDO crashes, 

whereas it is not correlated with fatal and injury models. This result is possibly caused by the increase 

in traffic volumes and the lower speed limit near school zones. Furthermore, the positive sign of DUI 

suggests that an increase in DUI rates will likely increase PDO crashes. The reason is that alcohol 

and drug impairment can worsen a driver’s ability to control a vehicle, thus increasing the risk of 

PDO crashes in WV. 

Lastly, mean travel time to the hospital and urbanity/rurality are investigated in this study 

only. The mean travel time to the hospital was only evaluated in the fatal crash model because severe 

injuries may become fatal as the travel time to the hospital increases, and it was found to be 

significant. The positive coefficient of this variable implies that counties with lower accessibility to 

the hospital will likely have more fatal crashes. Furthermore, the negative coefficient of metro 

implies that counties in metro areas have a lower risk of fatal crashes, possibly caused by the 

reduction in traffic speed as a result of congestion. 

Generally, in the interpretation of a regression model, the MEs often provide more 

information than the coefficients do. Table 5.13 presents the MEs of significant variables on crash 

counts by severity on the basis of Model 9.  

As standardized covariates were used in the model, the interpretation of the ME results would 

be as follows. An increase in the mean travel time to the hospital by one standard deviation (which 

is 15.36 minutes, as shown in Table 3.1) will likely increase the number of fatal crashes in every 

county by 1.38. A one standard deviation increase in primary roadway density (s.d.=0.09 miles per 
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sq.) is associated with an increase of 0.85, 14.8, and 38.01, on average, in the number of fatal, injury, 

and PDO crashes, respectively. Furthermore, a one standard deviation increase in intersection 

density (s.d.=32.8 intersections/county area) and labor force participation rate (s.d.=6.6%) will likely 

reduce the number of injury and PDO crashes by 9.04 and 25.79, respectively. An increase in DUI 

rate (s.d.=29.30) and school density (s.d.=0.039) will likely change the number of PDO crashes by 

1.36 ad 17.65, respectively. Lastly, with respect to the estimated ME for metro, on average, the 

number of fatal crashes is 1.32 greater in rural counties than in urban counties. 

TABLE 5.13 Marginal effects of significant covariates in Model 9 

Parameter Fatal Injury PDO 

Mean travel time to hospital 1.38 - - 

Primary road density 0.85 14.8 38.01 

Intersection density - -9.04 - 

Labor force - - -25.79 

DUI - - 1.36 

School density - - 17.65 

Metro (1 if urban, 0 otherwise) -1.32 - - 

Note: For the calculation of MEs, explanatory variables are set equal to their medians 

in the dataset. 

 

The extent to which these factors can reduce or increase the number of traffic crashes could 

give some insights to policy makers into prioritizing engineering countermeasures or any corrective 

actions by performing cost-benefit analyses. For example, various medical clinics in WV do not have 

any trauma centers and thus cannot offer emergency services to crash victims. If setting up a level-

2 trauma center in a county reduces the average access time by 15 minutes, it will likely reduce the 

number of fatal crashes by 1.38. As a comparison, Ashley et al., (2017) stated that the average 

readiness cost of level-2 trauma centers in Georgia in 2010 was US$2,333,113, whereas that of a 

fatal injury in WV in 2012 was US$5,289,928 (Harmon et al., 2018). Readiness costs are associated 

with administrative, clinical medical staff, operating room, and education/outreach costs, which are 
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involved with maintaining the essential infrastructure that can facilitate emergent services on a 

continuous basis. 

5.1.4. Interpretation of Random Effect Terms 

Generally, the development of a model with random effect terms would be beneficial, as 

random effect terms can capture the impacts of unmeasured factors, such as economic condition and 

travel behavior, on traffic crashes. Additionally, they can represent some other factors (number of 

traffic signals, housing units per acre, number of workers who commute by walking) that were found 

to affect traffic crashes in previous work (Lee et al. 2015), whereas these factors cannot be measured 

or are not readily available in WV.  

This section aims to discuss the spatial and temporal random effect terms used in Model 9. 

As Table 5.10 shows, the fractions of random effects for fatal, injury, and PDO crashes obtained 

from Model 9 are 33%, 26%, and 36%, respectively. This result demonstrates that all three random 

effect terms have equally contributed to the fatal model, whereas in the injury model, temporal (σv) 

and spatio–temporal (σγ) terms explained more variation than the spatial (σθ) term did, and in the 

PDO model, spatio–temporal terms, followed by the spatial term, had the highest effect.  

With regard to the temporal component, it is structured across time, accounting for potential 

state-wide time effects. As Figure 5.2 shows, the temporal effects, which are on the exponential 

scale, exhibit a slight downward trend in posterior fatal and PDO crash rates from 2011 and 2012, 

respectively. However, for injury crashes, no clear pattern across the years can be observed. The 

sudden decrease and increase in 2012 and 2013 might be due to the hand-held cell phone/texting ban 

introduced in 2012 and the decrease in seatbelt use observed in 2013, respectively (for more 

information, please refer to the West Virginia Highway Safety Performance Plan FY 2017 and the 

West Virginia Observational Survey of Seat Belt Use 2013).  
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Figure 5.2 Temporal effects on the exponential scale by crash severity under Model 9 

 

Another aspect related to the random effects that the proposed model allows researchers to 

explore is the correlation among crash severity levels across space and time. It has been speculated 

that crash severities are not independent, that is, a change in the number of crashes in one crash 

severity may be associated with a change in the number of crashes in another crash severity. This 

assumption may pose a potential dilemma for decision makers. The benefit of reducing less severe 

crashes may be offset by more severe crashes. Hence, exploring the possible correlation between 

crash severities is critical before making any corrective actions. Variance-covariance matrices can 

be estimated to facilitate this exploration.  

For this case study, Table 5.13 demonstrates the variance-covariance matrices associated 

with the random effect terms for the preferred model. The results show that all off-diagonal elements 

of the variance-covariance matrix attributed to the spatial component are significant. This finding 

confirms that crash severities in WV are not independent. However, their signs are positive, 

suggesting that crash severities are positively correlated over space, that is, unobserved factors that 

increase the number of fatal crashes in one county will likely increase the number of injury and PDO 

crashes in the same county. Nevertheless, none of the off-diagonal elements of the temporal 
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variance-covariance matrix is significant, which suggests that little correlation exists across crash 

severities over the years. In other words, in an individual year, there is no state-wide unobserved 

factor that simultaneously affects the number of different crash severities.  

 

TABLE 5.14 Estimated variance-covariance matrices for Model 9  
Unstructured Spatial Effects 

  Fatal Injury PDO 

Fatal 0.047 (0.013, 0.096) 0.021 (0.008, 0.0493) 0.030 (0.012, 0.065)  

Injury 
 

0.037 (0.010, 0.07) 0.034 (0.003, 0.080) 

PDO 
  

0.065 (0.014, 0.151)  
Unstructured Temporal Effects 

  Fatal Injury PDO 

Fatal 0.043 (0.01, 0.13)  −0.017 (−0.109, 0.044) 0.005 (−0.030, 0.050) 

Injury 
 

0.110 (0.032, 0.34)  −0.017 (−0.092, 0.037) 

PDO 
  

0.031 (0.008, 0.100)  
Spatio–Temporal Effects 

  Fatal Injury PDO 

Fatal 0.046 (0.013, 0.109) 0.001 (−0.030, 0.035) −0.0005 (−0.045, 0.044) 

Injury 
 

0.039 (0.011, 0.087) 0.038 (0.003, 0.084) 

PDO 
  

0.071 (0.016, 0.151) 

 

Additionally, according to the spatio–temporal variance-covariance matrix, a significant 

positive correlation exists between injury and PDO crashes. This result implies that there might be 

unobserved factors in a county in an individual year that simultaneously increase both PDO and 

injury crashes.  

Lastly, the most important component in terms of implications is the spatial random effect 

term, which captures the variation across neighboring zones; insights from this component could be 

widely used by safety practitioners. Specifically, one of the major strengths of the model with a 

spatial random effect term is that it provides ranked areas based on the average (mean) crash rates. 

As the spatial random effect terms reflect the unique characteristics of each county, these terms can 

be used to identify the counties whose crash rate are higher than the average. In other words, they 
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can be used to estimate the excess crashes associated with each county for the purpose of identifying 

those counties with a high crash risk, providing decision makers with a high level of information to 

draw priority plans for actions.  

For the case study, the results of Model 9 were plugged into Equation 4.20 to rank and 

highlight WV counties using the weighted average excess risk. According to the information 

provided by (Harmon et al., 2018), the average costs per casualty related to fatal, injury (including 

incapacitating, non-incapacitating, and possible injury crashes), and PDO crashes in WV in 2012 

were US$5,289,928, US$149,505, and US$9,764, respectively. In view of these costs, the weighted 

average excess risk for all counties was estimated. The spatial distribution of the weighted excess 

risk from 2010 to 2015 for all WV counties is shown in Figure 5.3.  

The results show that the hotspots (high-risk counties) tend to be locally clustered across the 

study areas, whereas cold spots (low-risk counties) tend to be clustered in central and southwestern 

WV. Overall, Marion, Doddridge, and Raleigh Counties are associated with the lowest excess risks. 

On the other hand, Marshall, Braxton, Lewis and Jefferson Counties have the highest excess risk 

and, therefore, should be given more attention during the planning stage. 

 

. 
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Figure 5.3 Spatial distribution of the weighted excess risk for counties in 2010–2015 

 

5.2. Micro-level Data Analysis 

As explained in Section 4.3.1, most of the crash data used in road safety studies are of a 

hierarchical nature, that is, the occupants are nested in vehicles, the vehicles are within crashes, 

and the crashes are in roadways and regions. Additionally, because the crash consequence or injury 

outcome is of a discrete nature, logit or discrete choice models are suitable for estimating a crash 

severity model. Logit models include ordered or nominal (un-ordered) response models. Each of 

these models has its own advantages. For example, the ordered response model considers the 

ordinal nature of the crash severity levels, whereas the nominal response model is known to have 

consistent parameter estimates with under-reported data (Savolainen and Mannering, 2007) .  
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In this section, four models, including two ordered response models and two nominal 

response models, have been developed to examine the relationship between various factors, such as 

age, gender, and crash-level factors (e.g., road condition), and the odds of a vehicle occupant 

involved in a fatal crash being killed (as opposed to surviving). The first model is a basic (non-

random) nominal response model, and the second model is a full nominal response model with crash-

level, spatial, temporal, and spatio–temporal random effect terms. The third model is a basic ordered 

logit model, and the fourth model is a full ordered logit model with the same random effect terms 

utilized in Model 2. The injury severity of a vehicle occupant involved in a fatal crash is coded as 

follows: 2 for an occupant’s fatal injury and 1 for any other outcomes (non-fatal injury or no injury). 

The variance inflation factor (VIF) was estimated for all variables to measure potential 

multicollinearity; the VIF did not exceed 2.74, suggesting that no evidence of multicollinearity 

exists. Nominal and ordered response models are explained in Sections 5.2.1.1 and 5.2.1.2, 

respectively.  

5.2.1. Model Development 

5.2.1.1. Nominal Response Models 

 Two full Bayesian nominal response models are discussed in this section: one basic or 

non-random effect model and one full model with all random effect terms to account for the 

unobserved effects at the crash level over space and time. The models were computed with the 

MCMC technique using WINBUGS software. A 95% Bayesian credible interval was used to 

assess the significance of the covariates, and the DIC was used as a model diagnostic. The first 

1,000 iterations were removed as burn-ins to ensure the convergence of all parameters, and the 

next 100,000 were used to establish the model. MCMC chain and history plots were chosen to 

monitor the MCMC chains and the convergence of the parameters. Table 5.15 shows the DIC 
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values for both proposed models. The full model (Model 2) had a lower DIC compared with the 

basic model (Model 1). This implies that the inclusion of random effect terms explained the 

unobserved factors affecting the occupants’ injury severity and contributed to the model’s 

accuracy. The model estimation results are summarized in Tables 5.16 and 5.17. The estimation 

results of the two models are similar in terms of the set of statistically significant variables, as well 

as the magnitude of the coefficients and their signs.  

TABLE 5.15 DIC values for the nominal response models 

No Model DIC 

1 β0+βXksit 4,256 

2 β0+βXksit+ρs+θi+φi+δt+νt+γst 4,242 

 

 

TABLE 5.16 Parameter estimates for the basic nominal response model (Model 1) 

Parameters  Mean 

Odds 

Ratio SD 25% CI 97% CI 

Intercept −1.956 0.141 0.196 −2.353 −1.584 

Occupant-level factors 

Gender (male=1, female=0) −0.190 0.827 0.083 −0.350 −0.027 

Age 0.023 1.024 0.002 0.020 0.027 

Occupant type (driver=1, otherwise=0) 1.053 2.866 0.088 0.881 1.224 

Ejection (occupant is ejected fully or 

partially=1, otherwise=0) 2.128 8.398 0.133 1.871 2.396 

Vehicle-level factors 

Speeding (yes=1, no=0) 0.191 1.211 0.083 0.027 0.353 

Alcohol involvement (yes=1, no=0) 0.867 2.380 0.101 0.669 1.068 

Crash-level factors 

Surface condition (dry=1, otherwise=0) −0.142 0.867 0.115 −0.367 0.084 

Road alignment (straight=1, curve=0) −0.314 0.730 0.079 −0.471 −0.159 

Road type (divided=1, undivided=0) 0.039 1.040 0.095 −0.147 0.230 

Arterial −0.185 0.831 0.129 −0.435 0.068 

Collector 0.091 1.095 0.132 −0.166 0.350 

Weather (clear=1, otherwise=0) 0.119 1.127 0.101 −0.078 0.317 

Lighting (daylight=1, otherwise=0) 0.050 1.052 0.081 −0.107 0.212 

DIC 4,256 

Note: Shaded cells indicate significant coefficients at α=5% level.  
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TABLE 5.17 Parameter estimates for the full nominal response model (Model 2) 

Parameters  Mean 

Odds 

Ratio SD 25% CI 97% CI 

Intercept −1.966 0.140 0.207 −2.390 −1.560 

Occupant-level factors 

Gender (male=1, female=0) −0.193 0.825 0.086 −0.364 −0.026 

Age 0.024 1.024 0.002 0.020 0.028 

Occupant type (driver=1, otherwise=0) 1.053 2.866 0.089 0.878 1.227 

Ejection (occupant is ejected fully or 

partially=1, otherwise=0) 2.135 8.457 0.134 1.881 2.399 

Vehicle-level factors      

Speeding (yes=1, no=0) 0.203 1.224 0.083 0.041 0.367 

Alcohol involvement (yes=1, no=0) 0.873 2.393 0.103 0.671 1.073 

Crash-level factors 

Surface condition (dry=1, otherwise=0) −0.133 0.875 0.114 −0.359 0.097 

Road alignment (straight=1, curve=0) −0.315 0.730 0.078 −0.467 −0.165 

Road type (divided=1, undivided=0) 0.038 1.039 0.097 −0.152 0.226 

Arterial −0.181 0.834 0.130 −0.434 0.071 

Collector 0.085 1.088 0.132 −0.171 0.344 

Weather (clear=1, otherwise=0) 0.115 1.122 0.102 −0.084 0.317 

Lighting (daylight=1, otherwise=0) 0.045 1.046 0.084 −0.121 0.210 

Standard deviations of random effect terms 

σν 0.609 - 2.072 0.05927 4.919 

σδ 0.813 - 3.717 0.061 4.309 

σθ 0.252 - 0.182 0.060 0.754 

σϕ 0.138 - 0.049 0.101 0.304 

σγ 0.482 - 0.430 0.085 1.648 

σρ 0.319 - 0.274 0.083 1.065 

DIC 4,242 

Note: Shaded cells indicate significant coefficients at α=5% level.  

5.2.1.2. Ordered Response Model 

Because crash severities are ordinal in nature, two ordered logit models were also 

established to account for the full data hierarchy: a basic ordered model (Model 3) and a full 

ordered logit model with all random effect terms (Model 4). One chain was simulated with an 

initial 1,000 iterations discarded as burn-ins, and it was followed by 100,000 iterations to achieve 

convergence. Figure 3 in the Appendix shows the MCMC output for the parameters, indicating 

that the variables are converged. Additionally, as shown in Figure 4, the fixed effect parameters 

have normal curves, which is consistent with the prior assumption of the distribution of these 
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parameters.  According to the DIC values listed in Tables 5.17 and 5.18, the full ordered model 

(Model 4) fits the dataset the best among all the models; its DIC value is slightly lower than that 

of the full nominal response model. Therefore, the full ordered logit model is considered the 

preferred model to use for site ranking. The model estimation results are summarized in Tables 

5.19 to 5.20.  

TABLE 5.18 DIC values for the ordered response models 

No.  Model DIC 

3 β0+βXksit  4,255 

4 β0+βXksit+ρs+θi+φi+δt+νt+γst  4,240 

 

TABLE 5.19 Parameter estimates for the basic ordered logit model (Model 3) 

Parameters  Mean 

Odds 

Ratio SD 25% CI 97% CI 

Occupant-level factors 

Gender (male=1, female=0) −0.188 0.829 0.084 −0.351 −0.024 

Age 0.024 1.024 0.002 0.020 0.027 

Occupant type (driver=1, otherwise=0) 1.054 2.869 0.093 0.881 1.232 

Ejection (occupant is ejected fully or 

partially=1, otherwise=0) 2.127 8.390 0.133 1.868 2.394 

Vehicle-level factors 

Speeding (yes=1, no=0) 0.190 1.209 0.083 0.026 0.350 

Alcohol involvement (yes=1, no=0) 0.870 2.387 0.102 0.669 1.070 

Crash-level factors 

Surface condition (dry=1, otherwise=0) −0.142 0.867 0.114 −0.359 0.088 

Road alignment (straight=1, curve=0) −0.314 0.730 0.079 −0.472 −0.161 

Road type (divided=1, undivided=0) 0.037 1.037 0.096 −0.161 0.223 

Arterial −0.181 0.834 0.124 −0.431 0.062 

Collector 0.095 1.099 0.128 −0.160 0.342 

Weather (clear=1, otherwise=0) 0.122 1.129 0.100 −0.075 0.318 

Lighting (daylight=1, otherwise=0) 0.050 1.051 0.081 −0.107 0.209 

Threshold value 1.998  0.201 1.636 2.443 

DIC 4,255 

Note: Shaded cells indicate significant coefficients at α=5% level.  
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TABLE 5.20 Parameter estimates for the full ordered logit model (Model 4) 

Parameters  Mean 

Odds 

Ratio SD 25% CI 97% CI 

Occupant-level factors 

Gender (male=1, female=0) −0.204 0.815 0.085 −0.373 −0.042 

Age 0.024 1.024 0.002 0.020 0.028 

Occupant type (driver=1, otherwise=0) 1.050 2.858 0.089 0.868 1.230 

Ejection (occupant is ejected fully or 

partially=1, otherwise=0) 2.161 8.680 0.136 1.901 2.432 

Vehicle-level factors 

Speeding (yes=1, no=0) 0.212 1.236 0.087 0.043 0.381 

Alcohol involvement (yes=1, no=0) 0.890 2.434 0.106 0.686 1.095 

Crash-level factors 

Surface condition (dry=1, otherwise=0) −0.133 0.876 0.118 −0.372 0.089 

Road alignment (straight=1, curve=0) −0.308 0.735 0.083 −0.473 −0.144 

Road type (divided=1, undivided=0) 0.027 1.027 0.103 −0.177 0.226 

Arterial −0.194 0.823 0.137 −0.455 0.071 

Collector 0.067 1.069 0.138 −0.192 0.348 

Weather (clear=1, otherwise=0) 0.120 1.127 0.106 −0.081 0.335 

Lighting (daylight=1, otherwise=0) 0.041 1.042 0.086 −0.129 0.210 

Threshold value 1.967  0.240 1.514 2.426 

Standard deviations of random effect terms 

σν 0.160 - 0.114 0.055 0.467 

σδ 0.124 - 0.062 0.054 0.279 

σθ 0.172 - 0.032 0.117 0.241 

σϕ 0.205 - 0.046 0.129 0.307 

σγ 0.112 - 0.034 0.059 0.188 

σρ 0.170 - 0.030 0.120 0.236 

DIC 4,240 

Note: Shaded cells indicate significant coefficients at α=5% level.  

 

5.2.2. Model Validation 

As discussed before, the validation of a model is important before interpreting the 

parameter estimates. In the macro-level data analysis section, the validation of a Bayesian model 

was performed by comparing its goodness of fit with those of the corresponding classical models 

using MAE, which is the difference between the expected number of crashes estimated by the 

model and the observed number of crashes over the number of observations. Following the same 

line of thought, a simple ordered logit model was estimated (see Table 5.21) to compare the 
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accuracy of the full Bayesian ordered logit model (Model 4) and its classical counterpart. However, 

instead of MAE, which is only applicable for the count models, the unweighted mean of squares 

(UMS) is considered as a measure to understand how well the models fit the data. In this 

application, if the estimated probability of being killed for an individual is close to its observed 

crash severity outcome (1 if the outcome is fatal injury, 0 otherwise), then the UMS would be 

smaller, and the model better fits our data. Table 5.22 shows that the estimated UMS for the 

Bayesian approach is smaller than that for the classical model, suggesting that the Bayesian logit 

model provides a better fit to the data. As the parameter estimates in both models are similar, this 

difference in UMS is due to the use of the random effect terms in the Bayesian model, which 

captured the unobserved effects not explained in the classical model. 

Table 5.21 Classical ordered logit model parameter estimates 

Parameters  Mean SD  Z-value P>|Z| 

Gender (male=1, female=0) −0.189 0.083 −2.270 0.023 

Speeding (yes=1, no=0) 0.190 0.083 2.290 0.022 

Alcohol involvement (yes=1, no=0) 0.864 0.101 8.540 <0.0001 

Ejection (occupant is ejected fully or partially=1, 

otherwise=0) 2.116 0.132 16.040 <0.0001 

Surface condition (dry=1, otherwise=0) −0.142 0.118 −1.210 0.227 

Age 0.023 0.002 11.640 <0.0001 

Road alignment (straight=1, curve=0) −0.313 0.079 −3.970 <0.0001 

Road type (divided=1, undivided=0) 0.038 0.094 0.400 0.688 

Arterial −0.189 0.129 −1.470 0.142 

Collector 0.088 0.131 0.670 0.502 

Weather (clear=1, otherwise=0) 0.119 0.102 1.160 0.245 

Lighting (daylight=1, otherwise=0) 0.051 0.082 0.620 0.536 

Occupant type (driver=1, otherwise=0) 1.049 0.087 12.000 <0.0001 

Threshold value 1.945 0.203   

Log likelihood −2114 

 

 

TABLE 5.22 Comparison of Bayesian and classical ordered logit models 

Model UMS 

Bayesian ordered logit 0.38 

Classical ordered logit 0.61 
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5.2.3. Interpretation of Parameter Estimates 

The variables that were found to be significant in Model 4 are the same as the significant 

variables in Models 1 to 3. Additionally, the sign and magnitude of the parameters are consistent.  

In terms of occupant-level factors, the estimated odds ratios demonstrate that conditional 

on fatal crashes, a male occupant had 19% lower odds of fatality than a female one. This finding 

is in line with those of previous studies (see for example, Shaheed et al., 2016; Chen and Chen, 

2011; Romano et al., 2008) that reported a lower injury propensity for male occupants than for 

female ones. 

 In addition, an occupant who was ejected was nine times as likely to be killed compared 

with an occupant who was not ejected. This finding is consistent with those of previous research 

(Shaheed et al., 2016) reporting that occupants are likely to sustain more severe injury when they 

are ejected from a vehicle. Furthermore, older occupants had higher odds of fatality compared with 

younger occupants. Some other researchers (Eluru et al.,2010; Kahane, 2013) reported similar 

results. This finding can be justified by this fact that older occupants are more vulnerable to 

thoracic injuries, especially multiple rib fractures (Kahane, 2013). Lastly, a driver was 2.86 times 

more likely to be killed in a fatal crash than a passenger was. This result contradicts that of Shaheed 

et al. (2016) who found that driver is associated with lower odds of fatality, probably because of 

the less severe injuries sustained by passengers in back seats in the case of frontal impacts. 

With regard to vehicle-level factors, the odds ratio associated with speeding implies that 

speeding increased the odds of fatality by 24%. Other researchers used speed from different 

aspects, such as speed limit (Usman et al. 2016) and average vehicle speed (Meng et al., 2017). In 

both cases, an increase in speed was found to increase the odds of fatality or major injury. 

Furthermore, a vehicle occupant was found to be 2.43 times more likely to be killed when the 
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vehicle’s driver was alcohol impaired than when the driver was not. This finding is consistent with 

that reported in the literature (Eluru et al., 2010; Yuan et al., 2017).  

Driving in a straight alignment was found to reduce the odds of fatality by 27% compared 

with driving in a curved alignment. In other words, the presence of a curve on a road segment is 

associated with higher odds of fatality in a fatal crash, as the driver may not have a clear sight of 

the distance or may not be able to control the vehicle. However, Usman et al. (2016) found that 

the presence of a curve on a hilly road is only associated with an increase in the odds of minor 

injury. 

The MEs of the statistically significant variables on the probability of a fatal injury were 

calculated and are summarized in Table 5.23 to further assess the parameter estimates of the 

preferred model (Model 4). Here, ME gives instantaneous effect that a change in a particular 

explanatory variable has on an occupant likelihood of being killed in a fatal crash. 

 

TABLE 5.23 Marginal effects of significant variables in the full ordered logit model 
Variables  ME 

Gender (male=1, female=0) −0.036 

Occupant type (driver=1, otherwise=0) 0.184 

Age 0.006 

Speeding (yes=1, no=0) 0.018 

Alcohol involvement (yes=1, no=0) 0.052 

Ejection (occupant is ejected fully or partially=1, otherwise=0) 0.086 

Road alignment (straight=1, curve=0) −0.046 

 

As Table 5.23 shows, on average, being in the driver’s seat will likely increase the likelihood 

of being killed by 0.184. Similarly, being a male occupant will likely reduce the probability of being 

killed by 0.036. According to the parameter estimate for age, which is a continuous variable, an 

increase in occupant’s age by one year will likely increase the probability of being killed by 0.006. 

Additionally, alcohol impairment, speeding, and full or partial ejection will likely increase the 
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likelihood of fatal injury in a fatal crash by 0.018, 0.052, and 0.086, respectively. Lastly, driving in 

a straight road alignment decreases the probability of being killed by 0.046. 

5.2.4. Interpretation of Random Effect Terms 

As discussed before, in the macro-level data analysis, we dealt with crash counts that were 

aggregated at the county level. Therefore, they were modeled by only incorporating spatial and 

temporal components. However, at the micro level, we deal with multilevel data, which implies 

that there might be unobserved factors at each level that can affect crash severity. This section 

focuses on interpreting random effect terms, especially the spatial and temporal components used 

in the full Bayesian logit model (Model 4). As Table 5.17 shows, the standard deviations of the 

five random effect terms were found to be significant. The standard deviation associated with both 

structures (σϕ) was found to be slightly larger and explained more variation than the other random 

effect terms did.  

With regard to the crash-level random effect term (ρc), it captures the variation across traffic 

crashes. In other words, it accounts for crash-level unobserved factors, such as the impact speed 

between vehicles and road geometric features. As discussed by previous researchers (Shaheed et al., 

2016; Vanlaar, 2005), ignoring the crash-level variation is equivalent to ignoring the clustering 

nature of data, that is, all observations within a cluster are independent, which can result in 

underestimated standard errors.  

From the temporal aspect, the structured (δ) and unstructured (ν) temporal effects nearly 

played the same roles for the crash severity model. Hence, the findings suggest that there are both 

unobserved factors that were temporally correlated and unobserved factors that were present in 

individual years. Figure 5.4 plots the exponential of the sum of the posterior means of structured 
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and unstructured temporal effects from 2010 to 2015. Temporal effects have a decreasing trend in 

2010 and 2012, suggesting that the unobserved factors (e.g., decline in vehicle ownership or 

increased use of the public transport system) over these years tended to reduce the odds of fatality 

in WV. However, the trend line has been increasing since 2012, which may represent the decline 

in seatbelt use. In principle, not too many global unobserved factors have state-wide effects; 

examples could be changes in economic status, changes in transit ridership, and traffic safety laws. 

Therefore, exploring the evolution of temporal effects can provide authorities with some insights 

into large-scale and state-wide transportation and safety planning and can help design new policies 

(e.g., banning the use of wireless electronic devices, installation of an ignition interlock device on 

a vehicle for DUI offenders) that target the mitigation of injury severity. 

 

 

Figure 5.4 Exponential of the temporal effects derived from the Bayesian logit model (Model 4) 

The last components discussed in this section are the structured (ϕ) and unstructured (θ) 

spatial random effect terms, which capture spatial correlation and census-tract-level unobserved 

factors, respectively. Similar to those in macro-level data analysis, the spatial random effect terms 
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allow researchers to identify high-risk zones. Again, the findings from this analysis can help 

identify areas in need of interventions and/or provide insights into the prioritization of sites.  

However, the two applications have some major differences. First, the spatial random effect 

terms at the macro level aim to represent the areas with system-wide issues on the basis of the 

average crash rate, whereas the spatial random effect terms at the micro level tend to show the 

sites with engineering problems on the basis of the average occupants’ odds of fatality. Second, 

macro-level spatial random effect terms represent the factors that contribute to the occurrence of 

traffic crashes, whereas micro-level spatial random effect terms may only represent the factors that 

contribute to crash severity. Figure 5.5 represents the estimated weighted excess risk of a fatality, 

which is the exponential of the random effect terms across the census tracts on the basis of Model 

4.  

As Figure 5.5 shows, the majority of the census tracts have a value between 0.9 and 1.1. 

The census tracts in Braxton and Wood Counties were identified as SWiPs, whose odds of fatality 

are higher than the average. The remaining high-risk census tracts tend to be concentrated in the 

central part. However, the majority of low-risk areas are located in the northern and southwestern 

areas.  
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Figure 5.5 Spatial distribution of the weighted excess risk of fatality for the census tracts in 

2010–2015 

 

5.3. Integration of Macro- and Micro-Level Data Analyses 

This section presents an application of the crash prediction models discussed in this 

dissertation, which aims to identify SWiPs (i.e., areas with excess risk) for further investigation and 

safety treatment. It demonstrates the results from a GIS-based approach that combines both accident 

frequency and severity models for site ranking. As discussed previously, the combination of macro- 

and micro-level analyses has many advantages over classical models, as it incorporates both 

individual and area-wide factors that affect traffic crashes.  
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As discussed in Chapter 4, the weighted excess risk is defined as a metric in order to identify 

high-risk locations. For the macro-level analysis, the weighted excess risk was defined as the ratio 

of the expected number of crashes in a county to the average number of crashes in similar counties. 

For the micro-level analysis, the excess risk was defined as the ratio of the expected odds of fatality 

to the mean odds of fatality in similar census tracts. Both metrics highlight the increased risk 

resulting from unobserved spatial and temporal effects. 

As these two metrics follow different distributions, they were normalized using the min–max 

normalization strategy (the normalized values range from 0 to 1. The larger the value is, the more 

hazardous the area is) and were stored in separate files in CSV format. Later, the CSV files were 

added to the county and census tract shapefiles by using unique codes assigned to each county and 

census tract. Next, as shown in Figure 5.6, the Feature to Raster tool was utilized to convert the 

shapefiles to raster files representing the corresponding normalized weighted excess risk values. In 

Figure 5.6, county and Census tract shapefiles are selected from the “input features” dropdown 

menu. Then, “field” menu was set to “ratio,” which contains the normalized excess risk values. Once 

the two raster files were created, the raster calculator tool was used to combine the generated raster 

files. This tool allows the execution of algebra expressions (taking the average of two normalized 

excess risks from the macro- and micro-level parts) (see Figure 5.7). The produced map is shown in 

Figure 5.8.  

The results of the integrated metric can be used to identify areas that can be considered 

hazardous based on the analysis of both the macro and micro levels. As seen in Figure 5.8, these 

areas are randomly located throughout the study area. The Census tracts in Marshal County in 

northern WV, the majority of the Census tracts in Lewis County, and all Census tracts in Braxton 

County in central WV, one Census tract in Pendleton County in the eastern side, and one Census 
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tract in Wyoming and Mercer Counties have been identified as hazardous areas. In other word, these 

areas have two main characteristics: (1) they have higher expected crash costs because of expected 

fatal, injury, and PDO crashes, and (2) they are associated with a higher vehicle occupant’s odd of 

fatality. Hence, these areas require further safety examination and treatment. Additionally, the top-

ranked Census tracts should be given more attention and higher priorities for safety improvement 

when limited funds and resources are available. 

 

 

 

Figure 5.6 Conversion of county and census tract shapefiles to raster 
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Figure 5.7 Estimating the combined metrics through the raster calculator tool 

 

 
Figure 5.8 Final map from the combination of the macro- and micro-level results 
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5.4. Summary 

Generally, many Bayesian spatial models have been developed for crash analyses in the 

literature. However, most models ignored either temporal effects or correlations among crash 

severities, which may lead to biased parameter estimates.  

In this study, in the case of macro-level data analysis, various multivariate models were 

established to simultaneously analyze county-level fatal, injury, and PDO crashes, which was not 

done before. Various socio-economic, transport-related, and environmental factors were examined. 

The results demonstrated strong correlations among crash severities across WV counties, which 

cannot be ignored. However, little correlation exists among crash severities over time.  

As with other studies (Boulieri et al., 2016; Huang et al., 2010; Liu and Sharma, 2018), 

unstructured spatial and temporal components, as well as spatio–temporal effects, were found to play 

important roles in model performance. Nevertheless, in this study, the structured spatial and temporal 

random effect terms were found to be negligible. From temporal viewpoints, MRW(1) was also 

shown to perform better than MRW(2) for crashes at different severity levels.  

The variables found to be significant in the preferred model were reasonable and explainable. 

According to the parameter estimates of the final model, primary roadway density is the common 

significant variable that contributes to all crash severities, and it is positively associated with fatal, 

injury, and PDO crash risk. Some variables are solely significant for one severity type. Intersection 

density is only significant in the injury crash model. Moreover, the sign of the coefficient is negative, 

suggesting that an increase in intersection density will likely decrease injury crashes. The mean travel 

time to the hospital was only evaluated in the fatal crash model because severe injuries may become 

fatal as the travel time to the hospital increases, and it was found to be significant. The positive 

coefficient of this variable implies that people with severe injuries are less likely to survive in 
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counties with longer access times to hospitals. The metro and labor force variables were only found 

to be significant in the fatal and PDO models, respectively. Their negative coefficients indicate that 

urbanized areas and areas with higher labor force participation rates may have fewer fatal and PDO 

crashes. With the assumption that metropolitan areas and areas with higher labor force participation 

rates are likely to be more congested, this finding is consistent with the literature, suggesting that 

congested roads can be safer because drivers tend to drive with greater caution (Zhou and Sisiopiku, 

1997). The DUI and school density variables were positive and significant in the PDO crash model. 

This result implies that counties with more DUI arrests and a higher school density will likely have 

a higher number of PDO crashes.  

According to the weighted excess crash risk values, counties with a high crash risk are locally 

clustered across WV. Additionally, they are evenly distributed in metro and non-metro areas. All 

crashes, except injury crash, have downward trends from 2012 to 2015. 

In the case of micro-level data analysis, ordered and nominal response models were 

established by accounting for crash level, spatial, temporal, and spatio–temporal random effect 

terms. The results demonstrated that the ordered logit model with all random effect terms provided 

a better fit. 

With regard to the estimated odds ratios in the full ordered response model, conditional on 

fatal crashes, a male occupant had lower odds of fatality than a female one. The odds ratio associated 

with speeding implies that speeding increased the odds of fatality. Furthermore, an occupant was 

more likely to be killed when the vehicle’s driver was alcohol impaired than when the driver was 

not. Occupants who were ejected were more likely to be killed compared with those who were not 

ejected. Furthermore, older occupants had higher odds of fatality than their younger counterparts. 
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Driving in a straight alignment was also found to reduce the odds of fatality. Finally, a driver was 

more likely to be killed than a passenger. 
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C H A P T E R  6 :  C O N C L U S I O N  

6.1.  Summary 

This dissertation explored the relationship between traffic crashes and several factors that 

might affect the number and severity of traffic crashes both at the micro and macro levels. Various 

suitable Bayesian models were used for both crash frequency and severity analyses. Finally, a novel 

method was proposed to combine the macro- and micro-level results in order to identify and rank 

high-risk areas. This chapter aims to provide an overview of this dissertation and further discusses 

the conclusions of this study based on the analysis results from Chapter 5. The contributions and 

policy implications of this research will also be discussed.  

As discussed in the literature review (Chapter 2), many Bayesian models have been 

developed for crash analyses using both macroscopic and microscopic analyses. Macro-level 

analysis typically divides the study area into a number of smaller areas, such as counties or districts, 

and it aims to establish the relationship between crash frequency and area-wide factors, such as socio-

economic factors and environmental characteristics. Micro-level analysis, on the other hand, 

explores the relationship between crash frequency or crash severity and different factors, such as 

number of lanes, lane width, and individual factors (e.g., age, gender).  

However, the literature has some major limitations. First, most models that were proposed 

did not examine unobserved effects over space and time as well as correlations between crash 

severities, which may lead to biased parameter estimates. Second, the effects of important factors, 

such as urbanity/rurality and access time to the hospital, on crash severities were not explored. Third, 

little efforts were made to combine macro- and micro-level analyses for site ranking purposes. 
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6.2.  Research Contributions 

6.2.1.  Empirical Contributions and Policy and Planning Implications  

In the macro-level data analysis in this dissertation, nine Bayesian models with and without 

random effects were estimated and tested for the case study of WV. The results demonstrated that 

unstructured spatial random effects, as well as unstructured temporal effects, play important roles in 

the model performance, as the estimated goodness of fit measures (DIC and R2
DIC) suggest. 

Moreover, evidence of strong within-area correlations among crash severities was found. The 

comparison of the Poisson lognormal and negative binomial models also demonstrated that the 

parameter estimates for the fatal models are very close, whereas those for the injury and PDO models 

are slightly different. This finding implies that unobserved factors explained less variation in the fatal 

model than in the injury and PDO models. 

The variables that were found to be significant in the preferred model were reasonable and 

explainable. The variable primary roadway density was positively correlated with all crash severities, 

which is consistent with the findings of previous studies. However, some of the variables used in 

this study were not consistent with the results of other research. For example, intersection density 

was found to have a negative impact on injury crashes in this study, whereas in a previous work 

(such as that of Guevara et al. 2004), it was positively associated with injury crashes. School density 

and DUI rates, which were found to be insignificant in the literature, were established to be 

significant and positively associated with PDO crashes. Furthermore, some variables, such as the 

mean travel time to the hospital and urbanity/rurality, were only investigated in the present study, 

and they were found to have significant positive and negative impacts on fatal crashes, respectively.  

 In the micro-level data analysis, different nominal response and ordered logit models were 

established and tested for the case study of WV. In all models, age, gender, occupant type, occupant’s 
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ejection, speeding, alcohol involvement, and road alignment were significant. At the occupant level, 

older occupants, female occupants, and ejected occupants, respectively, had higher odds of fatality 

than young drivers, male occupants, and unejected occupants. These findings are in line with those 

of previous studies. On the other hand, drivers were more likely to be killed in a fatal crash than 

passengers were, which contradicts the finding of Shaheed et al. (2015). At the vehicle level, a 

driver’s alcohol involvement and speeding contributed to higher odds of fatality for the occupant, a 

finding that is consistent with those of previous works. Finally, at the crash level, a curved segment 

was associated with higher odds of fatality. This result is not consistent with those of previous 

research (see for example, Usman et al., 2016), which reported that the presence of curves was only 

associated with an increase in the odds of minor injury. The comparison of the ordered and nominal 

response models suggested that the full ordered logit model performed better than the other models. 

Additionally, the comparison of the preferred model and the classical logit model demonstrated that 

the former predicted the crash probabilities more accurately. Analysis of the model results showed 

that unobserved factors at the crash level and over space and time exist. Furthermore, the spatial 

correlation term explained more variations than the other components did.  

In terms of site ranking, the results from the two levels were normalized and combined using 

a GIS-based approach to provide more accurate information. Very high-risk census tracts were found 

in Marshal, Lewis, Braxton, Pendleton, Wyoming, and Mercer Counties. Furthermore, both very-

high-risk and high-risk areas were distributed throughout the study area. This finding can be used by 

state agencies and corresponding decision makers to effectively allocate resources and funds in order 

to mitigate safety issues. 

In addition to the identification of high-risk areas, exploring the potential of various policies 

and strategies that can reinforce traffic safety in the community based on the modeling results can 



 

113 
 

also be of value to policy makers. Several policy implementations can be proposed to improve road 

safety. The rest of this section discusses some of these approaches that can be effective for WV 

according to the research findings. 

Effective speed management countermeasures: As discussed in Chapter 5, WV counties 

with a higher primary road density will likely experience more crashes, potentially because of their 

higher traffic speed and speed limits in primary roadways. Furthermore, speeding has been identified 

as one of the key risk factors that influence the risk of fatality in WV. Considering these two factors 

together indicates that adopting effective speed management strategies in primary roadways can 

create a safer driving environment. Some examples of engineering speed management 

countermeasures (Federal Highway Administration, 2014a) that can be effective are the 

implementation of speed humps, reduction of the posted speed limit in expressways, use of 

transverse rumble strips, and enhancement of road delineation. Additionally, from the research 

findings in rural or non-metro areas, higher traffic crashes are expected on rural arterial roads and 

for vehicles traveling at higher speeds and substantial distances. Thus, speed limit signs should be 

placed at least every 5 km (3.11 miles) along rural roads, where the default limit does not apply and 

the conditions are reasonably consistent (World Health Organization, 2008). 

Establishment of hospitals with trauma centers in deprived counties: Travel time to the 

hospital is among the factors that were found to directly affect the risk of fatalities. Additionally, on 

the basis of the policies and treatment protocol developed by the West Virginia Department of Health 

and Human Resource, traffic crash victims who are injured seriously should be transported to the 

highest-level trauma center within 30 minutes (West Virginia Department of Health and Human 

Resources, 2018). According to the GIS analysis performed in this study, 10 counties in the eastern 

side have a more than 30-minute average travel time to hospitals with trauma centers. In light of 
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these findings, the establishment of trauma centers or air ambulance services in these counties is 

recommended.  

Roadway departure countermeasures: As found in this research, horizontal curves are 

associated with higher odds of fatality than straight roadways are. The majority of crashes (more 

than 80%) in horizontal curves are roadway departure crashes in which a vehicle crosses an edge 

line or leaves the traveled way (Federal Highway Administration, 2014b). The Federal Highway 

Administration suggests some effective countermeasures to mitigate injury severity as a result of 

roadway departure crashes on horizontal curves. Some examples are the use of longitudinal barriers 

in locations where a high potential for crossover crashes exists, the addition of clear zones and 

roadside terrains to allow a driver to stop safely or regain control of a vehicle, and the use of crash 

cushions and high-friction pavements on horizontal curves (Federal Highway Administration, 

2014b). 

 Deployment of in-vehicle safety technology: As the fatality risk increases with the age of 

vehicle occupants, including the drivers, the use of in-vehicle systems, such as collision warning 

systems by car manufacturers, can compensate for an old driver’s poor reaction time. Additionally, 

as a driver’s alcohol impairment is found to increase the odds of fatality, implementing an ignition 

interlock device would be helpful in reducing alcohol-impaired driving. Lastly, compared with other 

variables, the magnitude of odds ratios showed that an occupant’s ejection had a major influence on 

crash severities. Therefore, car manufacturers should place a high degree of emphasis on the 

development of advanced restraint systems to prevent occupants from being ejected. 
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6.2.2. Methodological Contributions  

  This dissertation has made a number of methodological contributions, which are discussed 

in this section.  

To improve crash estimation, this research proposed a Bayesian multivariate Poisson 

lognormal model that simultaneously analyzed three crash severities (fatal, injury, and PDO crashes) 

and accounted for spatial and temporal effects. This novel model has not been fully exploited in the 

transportation safety literature. Specifically, the proposed model estimates crash frequencies 

(especially injury and PDO crash frequencies) more precisely than do popular classical models, such 

as the NB model, as confirmed by the validation of the model. This finding implies that the proposed 

model has a better ability to identify true/actual high-risk areas. One of the main reasons why the 

proposed model provides more accurate estimates is its inclusion of spatial and temporal 

components. Additionally, the simultaneous analysis of crash severities demonstrated that crash 

severities are correlated. Accounting for this correlation among crash severities further improves the 

accuracy of the results.  

Aside from improved accuracy, the proposed macro-level model has additional capabilities 

that can make it more useful for planning and policy purposes compared with traditionally used 

models. For example, exploring the significance of the correlations across space and time can further 

provide insights into policy and planning implementations. As an illustration, the results of the case 

study implied that the unobserved factors increasing the number of fatal crashes in one county will 

likely increase the number of PDO and injury crashes in the same county. This finding underlies the 

assumption that traffic crashes are independent and can provide some insights to policy makers in 

targeting some of the potential shared unobserved factors (e.g., transit ridership) in order to 

effectively reduce fatal, injury, and PDO crashes simultaneously. In addition, one of the major 
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strengths of the proposed model with a spatial random effect term is that it can be used to rank areas 

based on the excess crash risk that can be estimated using the average/expected crash rates.  

At the micro level, this dissertation extended previous works in this research topic by 

establishing comprehensive Bayesian hierarchical logit models; it did so by simultaneously 

capturing unobserved factors at the crash level, as well as spatial, temporal, and spatio–temporal 

effects, to obtain robust parameter estimates. The major advantage of this method is that it reveals 

the covariates that can contribute to crash severity (e.g., occupant’s ejection, age, gender) and/or 

crash occurrence (e.g., presence of curves on the roadway, speeding, alcohol involvement). These 

findings can help authorities identify and prioritize engineering countermeasures. 

Finally, this research developed a novel metric that identifies high-risk areas requiring safety 

improvement. The proposed metric/measure combines the results from both crash frequency and 

crash severity models; it has advantages over traditional ranking methods, such as the crash rate and 

EB methods, because it addresses both system-wide and engineering issues. Therefore, it can be used 

by transport policy makers to prioritize SWiPs and effectively allocate funding and resources. It 

should be noted that in most State Departments of Transportation, the distribution of federal 

Highway Safety Improvement Program funding to each county is generally based on the number of 

county-level crashes. That is, counties with a higher number of fatal and serious crashes will receive 

a higher percentage of the funding available. This method may not be accurate or efficient because 

crash frequency does not account for exposure and, therefore, is not a good indicator of high-risk 

locations. Even when crash rates that can account for exposure based on VMT, population, and other 

factors are used instead of crash frequency, the proposed ranking method is still more suitable and 

has a better ability to identify true high-risk areas, as it measures safety within the area not only based 

on population but also with respect to additional factors (which may generally reflect the 
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characteristics of that area) that could affect crashes and/or risk of fatalities. The model can also 

identify and prioritize high-risk areas by capturing the effects of missing influential factors 

6.3. Generalizability and Transferability 

The spatial transferability of crash models for the identification of SWiPs is of safety 

practitioners’ interest, as it can help save time and costs associated with model development. 

However, as discussed by Sikder et al. (2013), from a practical point of view, models cannot be 

completely transferred with the same specification between states or regions. Nevertheless, the 

proposed methods and overall framework can be transferred with some modifications, and some 

states or regions may need to use the estimated models of other places because of data limitations. 

Sikder et al. (2013) discussed the theoretical considerations for the transferability of travel 

forecasting models, which was the basis for defining three aspects of crash models at which 

transferability should be assessed. These three aspects are model structure, model specification, and 

parameter estimates; each of these three aspects is discussed herein to provide insights into the 

potential transferability of the proposed models and the overall framework.  

Model structure: The needs of State organizations may vary across regions, depending on 

the regions’ priorities and problems; for example, depending on whether the goal is to allocate funds 

at the county level or to identify roadway segments that might be in need of interventions, the focus 

can be in different spatial units, such as county or traffic analysis zones. Therefore, the model 

structure proposed in this dissertation may not be suitable to use without modifications for any 

applications. With that said, given the flexibility of Bayesian methods, the basic Bayesian framework 

that accounts for spatial and temporal effects is scalable. For example, the methods (Poisson 

lognormal or NB) used to model crash frequency at the county level will likely not be suitable to 

model crash frequency at the traffic analysis zone level or census tract level, as many areas there 
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have zero crashes. Therefore, the choice of a more suitable model, such as the Bayesian zero-inflated 

model, should be explored. 

In addition, some States may only need to model winter-related crashes in order to identify 

a high-risk location during the winter season, or some other States may need to pay explicit attention 

to pedestrian crashes or crashes associated with different transport modes. Therefore, the distribution 

of traffic crashes in a different context may not be similar, as these might be overdispersed or might 

have excess zeros. Therefore, the transferability of the model structure should also be assessed when 

the base and application context are different.  

Model specification: Model specification refers to the explanatory variables included in the 

model. The transferability of the model specification to different regions may introduce additional 

approximations because of missing influential factors and unobserved effects. For example, the 

factors that affect traffic crashes in one State might not have been included in the model developed 

for WV either because of data limitations or because these data might be irrelevant in the case of 

WV and, therefore, would potentially introduce irrelevant variable bias. In classical models, ignoring 

such unobserved influential factors may introduce new errors that can deteriorate the estimation 

accuracy of the model. However, this concern has been resolved using the framework proposed in 

this study by accommodating random effect terms that can address unobserved factors at different 

levels. Therefore, although it is suggested that the proposed specification of the models be assessed 

for relevance and be enhanced to explore any additional factors that might be considered important 

in other states when transferred, the models are fully transferable in terms of model specification.  

Parameter estimates: Generally, parameter estimates may not be easily transformed to 

make them suitable for use in other regions because of differences in sampling errors, variable 

measurement errors, and resident and other relevant regional characteristics. However, in the case of 
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data limitations for a region, the parameters already estimated from another area may be used by 

applying various model enhancement techniques. For example, in the Bayesian updating approach 

Atherton and Ben-Akiva (1976), the prior distribution of parameters in the base region can be 

incorporated with the sample distribution of the parameter estimates from a small sample in the 

intended region in order to obtain the posterior estimates.  

In addition, states with similar empirical settings could benefit from the empirical results of 

this dissertation’s case study, including the parameter estimates. In other words, the results of the 

case study could be generalizable to states that are similar with WV in terms of topography, climate 

condition, and demography. Such states could be, for example, Pennsylvania, Virginia, and 

Kentucky. 

6.4. Limitations and Future Work 

This research has some limitations, mostly related to data, which should be noted. In the case 

of the crash frequency model, population estimates per county were utilized as an exposure variable 

because of the lack of alternative data. Similar research can be conducted using VMT to represent 

crash risk exposure more accurately. The intersection density variable used in this study was 

calculated from a road network shapefile that did not differentiate between signalized and stopped 

control intersections. Thus, the separate use of signalized and stopped control intersection density in 

a model, subject to data availability, would help better understand the effect of signalized 

intersections on traffic crashes. In the case of the crash severity model, the use of a comprehensive 

crash dataset that includes information pertaining to crashes of any severity (instead of a fatal crash 

dataset only) is recommended. Using such data, one could estimate the odds of a fatality, conditional 

on being involved in a crash, and, therefore, provide additional insights into the factors affecting 
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fatalities. Unfortunately, the West Virginia Department of Highways does have an accessible crash 

database, and even most crashes do not have GPS locations.  

Another extension of this research could be the development of a joint model that includes 

both micro- and macro-level data at the census tract level or traffic analysis zones to identify the 

SWiPs and compare the results with those of the present study in order to make valid inferences. 

This can be done by including additional factors, such as transit stop density, land use type, and trip 

production and attractions. Finally, additional data could be collected from states with similar 

empirical settings, and the results can then be compared so that the transferability of the parameter 

estimates can be explored.  
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FIGURE 1 MCMC output for parameters under Model 9, macro-level analysis 
 



 

131 
 

 
 

FIGURE 1 MCMC output for parameters under Model 9, macro-level analysis (continued) 
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FIGURE 1 MCMC output for parameters under Model 9, macro-level analysis (continued) 
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FIGURE 1 MCMC output for parameters under Model 9, macro-level analysis (continued) 
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FIGURE 1 MCMC output for parameters under Model 9, macro-level analysis (continued) 
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FIGURE 2 Posterior density curves of parameters under Model 9 macro-level analysis 
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FIGURE 2 Posterior density curves of parameters under Model 9 macro-level analysis (continued) 
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FIGURE 2 Posterior density curves of parameters under Model 9 macro-level analysis (continued) 
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FIGURE 2 Posterior density curves of parameters under Model 9 macro-level analysis (continued) 
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FIGURE 2 Posterior density curves of parameters under Model 9 macro-level analysis (continued) 
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Figure 3 MCMC output for parameters in full ordered logit model, micro-level analysis 
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Figure 3 MCMC output for parameters in full ordered logit model, micro-level analysis 

(continued) 
 

 
FIGURE 4 Posterior density curves of parameters under Model 4, micro-level analysis 
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FIGURE 4 Posterior density curves of parameters under Model 4, micro-level analysis (continued) 
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