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ABSTRACT 

West Virginia Coal Fly Ash Sorption of BTEX 

Jerome C. Wentz 

Sorption is a term used in the environmental field to describe how chemical contaminants 

in soil and groundwater adhere to solid particles such as: clay, peat and activated carbon 

for the purposes of remediation, fate and transport.  A potential surrogate for sorption of 

chemical contaminants in groundwater is coal fly ash.  Batch test experiments have 

demonstrated coal fly ash’s ability to remove hydrophobic, organic petroleum 

contaminants including: benzene, toluene, ethylbenzene and xylenes (BTEX) in 

groundwater through the processes of sorption.  Coal fly ash is a byproduct material of 

coal fired power plants that is often disposed of on-site or at landfills.  A beneficial use of 

coal fly ash is for the sorption of BTEX in groundwater. 
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Chapter 1: Introduction 

More than 2000 chemical contaminants have been found in wastewater, while 750 of 

these chemical contaminants have been identified in drinking water.  More than 600 of 

these drinking water contaminants are of organic origin (Singh, 1994).  Petroleum 

hydrocarbon products are found as contaminants in soils, ground water aquifers and 

surface waters.  This is the result of leaking underground gasoline and diesel storage 

tanks, surface and marine transportation spills (Krumholz et al., 1996).  In 1996, 

underground storage tanks were reported to Congress as the leading source of 

groundwater contamination in the nation according to the 1996 National Water Quality 

Inventory Report, section 305(b) (Anzzolin and Siedlecki, 2001).  In 1998, more than 

85,000 underground storage tanks (USTs) were reported from hydrogeologic settings in 

22 states with 57% of these USTs having had confirmed contaminant releases and 60% of 

these settings reported volatile organic chemicals (VOCs) and petroleum compounds as 

contaminants of concern (Anzzolin and Siedlecki, 2001).  The BTEX organic chemicals 

(benzene, toluene, ethylbenzene and xylene) are very common in the petroleum and 

chemical industry, which makes them ubiquitous and presents great risks to public health 

and the environment.  Benzene is a carcinogen.  Toluene is currently the most produced 

chemical in the United States (All American Environmental Services, 2002).  O-Xylene 

is included in the U.S. EPA’s Priority Pollutant List (Banaerjee et. al., 1997).  

Some groundwater remediation strategies for treatment of organic contaminants include: 

chemical oxidation, coagulation, froth flotation and adsorption.  Of these methods, 

adsorption appears to offer the best prospects for overall treatment (Singh et al., 1994).  
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When choosing an adsorbent to remove organic compounds, cost effectiveness, 

availability and adsorptive properties are the main criteria (Virargharan, 1998).  The use 

of Permeable Reactive Barriers (PRBs) is a proven remediation technique widely used for 

removal of metals and non-metals in aqueous solutions.  For attenuation, barrier materials 

should provide retardation through: adsorption, precipitation, filtration, micro-

biodegradation, or any combination of these (Nhan et al., 1996).  PRBs are inexpensive, 

low maintenance, in-situ, robust, passive remediation systems that are relatively easy to 

install.  The PRB shape may be custom designed to provide maximum efficiency 

(Woodward, 2001).  Adsorbents such as: activated carbon, polyurethane foam, olive 

shells, coconut shells, peanut hulls, montmorillonite, peat and red clay have proven 

effective, but are often costly.  A widely available, low-cost adsorbent for organic 

chemicals would be high carbon coal fly ash. 

High carbon coal fly ash meets all adsorbent and attenuation criteria especially when 

considering cost effectiveness compared to alternative sorbents. The relatively high loss 

on ignition content (LOI=7.9%) of high carbon coal fly ash is indicative of its sorption 

affinity for low molecular weight, non-polar organic compounds in aqueous solution 

(Nahn et al., 1996).  Fly ash has a significant capacity to absorb organic compounds in 

aqueous solution (Nelson and Guarino, 1969; Eye and Basu, 1970; Johnson et al., 1965; 

Deb et al., 1966; Grupta et al., 1988, 1990; Mott and Weber, 1992; Viraraghavan and 

Alfara, 1994).  Fly ash is an active adsorbent, which adsorbs polycyclic aromatic 

hydrocarbons (Rothenberg, et al.).  Fly ash has been demonstrated as capable of 

removing O-xylene from an aqueous solution (Banerjee et al, 1995).  Coal Fly ash is a 

by-product material of modern coal fired power plants.  It is collected via cyclonic and 
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electrostatic precipitators, from flue gas, before entering the stacks.  Collected fly ash is 

either disposed of in landfills or lagoons on site (Banerjee, 1995).  Because coal fly ash is 

of organic origin, it naturally has high carbon content.  The amount of carbon content 

with in coal fly ash is generally higher than most soils, but ranges depending upon the 

combustion facility.  Carbon content is important because it is responsible for the organic 

sorption behavior.  In the remediation industry, activated carbon is often used to adsorb 

aqueous and vapor phase organic contaminants.  Coal fly ash is a potential substitute for 

activated carbon as a low-cost PRB sorbent medium.    
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Chapter 2: Literature Review 

At least 88 million tons of coal fly ash by-product materials are generated annually in the 

United States and 60 million tons annually in Europe (Querol et al., 1998).  Over one 

billion tons of coal fly ash has been stockpiled in the United States.  On average only 

about 25% of the coal fly ash is utilized (Nhan et al., 1996).  Previous technologies 

involving the uses of fly ash have been as an ingredient in concrete and bricks, for the 

construction of roads, dams and bridges (Roy et al, 1981) (Figure1).  Fly ash has been 

used extensively as an alkaline amendment to reduce acid mine drainage (Daniels et al, 

1993; Skousen, 1998).  Fly ash has also been used in the plastics industry as a low-cost, 

high performance substitute polymeric material filler (Quattroni, 1993).  Coal fly ash is 

an effective chemical barrier for leachate of municipal solid waste landfills (Nhan et al., 

1996).   

Fly ash consists of an agglomeration of micro-spheres composed mostly of silica and 

aluminum, which are up to hundreds of micrometers in diameter. (Banerjee et al., 1995; 

Viraraghavan et al., 1998) (Figure2: Figure3).  The dominant mineral compounds are 

amorphous silica and aluminum oxides (Tables 1: Table 2). Crystalline-like minerals 

include: quartz (SiO2), hematite (Fe2O3), magnetite (Fe3O4), lime (CaO), anhydrite 

(CaSO4), mullite (Al6Si2O13) and feldspars (Querol et al., 1998).  The type of coal used 

and degree of combustion result in variable compositions of the above end members. 

There are four main classes of coal combustion products (CCPs): 1) Class F, 2) Class C,  
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Figure 1. Percentage of Leading Coal Fly Ash Uses, 1998 (Source: American 
Coal Ash Association; Taken From: Kalyoncu, 1998) 
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Figure 2. Microscopic Fly Ash Structure (From Western Fly Ash Company) 

 

Figure 3. Microscopic Fly Ash (Courtesy of U. of Québec) 



 

-7 - 

Table 1. Chemical Composition (% by weight) of ash from various coal power 
plants. 

 

 

Coal Ash1 Constituent 
 MnO K2O SiO2 Al2O3 SO3 Fe2O3 Na2O MgO TiO2 CaO P2O5 C H N 
 % 
SPC . . 50.7 21.8 0.53 4.5 . 4.3 0.8 11.5 . . . . 
WV . 1.5 45.7 26 2.6 17.1 0.6 1.2 1.2 3.8 0.3 . . . 
OHRD . . 42.3 23.2 0.9 14.7 0.7 1 1 2.8 0.5 . . . 
               
A-unknown . 2.3 62.5 24.6 0.4 1.2 0.2 0.3 0.6 0.3 . 9.2 0.2 0.3
A-Ulan . 0.6 58 27.2 0.1 2.7 . 0.1 1 0.2 . 3.5 0.1 0.2
A-Drayton I . . 50.5 26.3 0.5 8 . 0.3 1.7 2 . 4.6 0.1 0.2
A-Drayton II . . 47.9 25.9 1 4.9 . 0.3 1.7 4.5 . 6.3 0.2 0.3
A-Grose Valley . 0.6 53.7 30.4 0.2 1.6 . 0.1 1.1 0.4 . 5 0.1 0.2
A-Hazelwood . 0.6 20.5 10.1 11.5 5.9 7 12 0.7 15.1 . 2.8 0.1 0.2
A-Yallourn . 0.2 3.7 1.4 14.5 26.2 5.3 20.1 0.1 8.7 . 7.5 0.2 0.2
A-Loy Yang 0130 . 0.3 16.3 20.4 12 6.9 6.5 13.3 0.6 4.1 . 5.4 0.2 0.3
A-Loy Yang 2100 . 0.9 51.4 18.3 3.5 7.4 3.5 5.5 1.3 1.9 . 2.4 0.1 0.2
               
S-Escatron 0.02 0.6 19.6 5.1 23.2 2.7 0.5 0.7 0.2 44.5 0.08 . . . 
S-Teruel 0.04 1.6 47.2 25.6 0.6 16.6 0.2 1.2 0.8 5.6 0.2 . . . 
S-Escucha 0.03 2.3 49.5 26.7 0.4 14.3 0.3 1.1 1 2.3 0.3 . . . 
S-La Robla 0.1 2.6 40.1 23.3 0.4 14.3 0.3 2 0.9 8.9 0.8 . . . 
S-Compos 0.08 4.3 49.8 26.1 0.3 8.4 0.8 2.4 1 2.7 0.5 . . . 
S-Meirama 0.05 0.8 51.9 26.4 0.2 4.8 0.4 2.3 1.5 7.5 0.4 . . . 
S-Narcea 0.09 3.9 54.3 23 0.1 7 0.8 2.7 1.1 4.2 0.2 . . . 
S-Pontes 0.1 1.3 46.7 31 0.8 9.4 0.3 1.9 1.2 6.7 0.2 . . . 
S-Cercs 0.05 0.9 27.8 13.7 3.3 4.3 0.6 0.8 0.5 42.6 0.4 . . . 
S-Dou He 0 0.6 48.7 40.7 0.4 3.5 0.2 0.5 1.3 2.8 0.4 . . . 
S-Puerto 0.1 2.4 58.4 29.3 0.2 7.5 0.4 1 0.7 0.9 0.1 . . . 
S-Espiel 0.1 4.1 52 34.2 0.1 6.1 0.6 1.6 0.9 2.1 0.4 . . . 
S-Barrios 0.1 0.7 45.1 37.6 0.7 2.8 0.4 2.2 1.5 9 1.7 . . . 
S-Sribera 0 4.2 49.6 32.3 0.4 7.7 0.7 1.7 0.9 3.2 0.1 . . . 
               
Average 0.1 1.7 44.0 24.3 3.0 8.1 1.4 3.1 1.0 7.6 0.4 5.2 0.1 0.2
Maximum 0.1 4.3 62.5 40.7 23.2 26.2 7 20.1 1.7 44.5 0.5 9.2 0.2 0.3
Minimum 0 0.2 3.7 1.4 0.1 1.2 0.2 0.1 0.1 0.2 0.3 2.4 0.1 0.2
1. (A) Denotes Australian ash (modified from Low and Bately, 1988); (S) denotes Spanish ash (modified 
from Querol et al., 1999); (SPC) denotes Saskatchewan Power Corporation, Regina, Saskatchewan 
(modified from Viraraghavan and Alfaro, 1998); (OHRD) denotes Ontario Hydro Research Dept 
(modified from Nahn, et al., 1996); (WV) denotes average constituent percentages for West Virginia 
power plant fly ash produced by the electrical utility industry  (Modified from Skousen, 1998). 
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Table 2. Typical composition of Class F and C ashes as defined by ASTM (1997). 

 

Table 3. Comparative Surface Areas of Various Sorbents. 
 

 

Parameter Class F Class C 
SiO2 54.9 39.9 

Al2O3 25.8 16.7 
Fe2O3 6.9 5.8 
CaO 8.7 24.3 
SO3 0.6 3.3 

Loss on Ignition (LOI)(@750C) 2.8% 0.5% 
(modified from Ziemkiewicz and Skousen, 2000) 

Coal fly ash Surface Area Reference 
 m2g-1  
Karn 1.14 Mott and Webber, 1992 
Trenton 2.65 Mott and Webber, 1992 

Cobb 3.52 Mott and Webber, 1992 

SPC 1.5-1.7 Viraraghavan and Alfaro, 1998 

Montana rosebud, FBC 5.2 Rothenberg, et. al., 1991 

Colorado, stoker fed 37.2 Rothenberg, et. al., 1991 

Western, pulverized 5.2 Rothenberg, et. al., 1991 

Typical Kaolinite clay 12 Fetter, 1993 

Activated Carbon 1050-1250 CPL Carbon Link, 2000 
 



 

-9 - 

3) Fluidized Bed Combustion, and 4) Flue Gas Desulfurization.  C- and F- classes 

comprise the bulk of CCPs.  Fly ashes are characterized as C- or F- class based on the 

typical constituent chemical composition (Table 2).  In addition C-class fly ash typically 

contains greater than10% lime, whereas F-class contains less than10% lime 

(Ziemkiewicz and Skousen,2000). 

The percent weight loss on ignition (LOI) gives a crude measure of the organic content of 

the soil material or fly ash.  As a result of organic content, high LOI coal fly ashes tend to 

be more favorable for sorption of organics chemicals compared to other coal fly ashes.  

High LOI coal fly ash exhibits many properties similar to that of activated carbon, which 

is commonly used in the environmental industry for vapor and liquid phase adsorption 

systems.  Activated carbon is a generic term generally used to describe a variety of 

carbonaceous adsorbents with a highly crystalline form and extensively developed 

internal pore structure.  The finer the particle size of activated carbon, the better the 

access to the surface area and the faster rate of adsorption kinetics (CPL Carbon Link 

Corporation, 2001).   The sorption capacity is directly proportional to the total exposed 

surface (Banerjee et al., 1995).  Similarly, fly ash is characterized by its fineness, 

spherical particles, large surface area and its wide particle size distribution (Banerjee et 

al., 1995).  However, activated carbon surface areas tend to be much higher than that of 

coal fly ash (Table 3). 

The technique of steam activation, similar to coal combustion, is generally used for the 

activation of coal and coconut shell raw material.  In the presence of steam, temperatures 

are raised to 800-1100°C to generate activated carbon.  Coal combustion processes take 
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place at higher temperatures of 1300-1700°C to generate steam to turn turbines.    During 

steam activation, carbon monoxide and hydrogen gases are produced and further oxidized 

(burned).  The resultant activated carbon exhibits a fine pore structure composed of 

micropores (r<1nm), mesopores (r=1-25nm) and macropores (r>25nm), which are ideal 

for adsorption of both liquid and vapor phase (CPL Carbon Link Corporation, 2001). 

Adsorption to the surface of the granular activated carbon (GAC) is usually considered 

negligible because the granular surface area is so small compared to that of the 

micropores and submicropores (Metcalf and Eddy, 1972).  The macropores are used as 

the entrance to the activated carbon, mesopores for the transportation and micropores for 

adsorption (CPL Carbon Link Corporation, 2001).  Similarly Banerjee et al. speculate 

two modes of diffusion may be responsible for the coal fly ash adsorption process.  First, 

is the rapid external or surface diffusion of the sorbent on to the fly ash particles via 

molecular diffusion.  Second, is the slower internal diffusion of solute among the pores 

and capillaries of the carbon content present with in the fly ash.   

Sorption is the transformation processes by which soluble or vapor phase molecules 

(sorbate) transfer to the solid phase associated with the sorption medium (sorbent).  

Adsorption is a two-dimensional sorption surface process, whereas absorption refers to a 

three dimensional integrated sorption matrix process (Schwarzenbach et al, 1993) (Figure 

4).  The distinction between chemical and physical adsorption is difficult to differentiate, 

therefore the term sorption is referred to (Metcalf and Eddy, 1972).   Sorption is 

important because it may directly be responsible for the fate and impact of chemicals in 

the environment (Schwarzenbach et al, 1993).  Sorption is not always a single, simple  
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Figure 4. Schematic representation of sorption processes.  (Dan Ferrante, 
1996, Virginia Polytechnical Institute) 

 

 

 

Table 4. Average carbon content and Kf values of threeMichigan fly ashes (modified 
from Mott and Webber, 1992). 

 

 

Ash Source1 Carbon Kf1 Kf1 Kf1 
 % CTET2 TCE3 TTCE4 
Karn 4.69 0.348 0.658 1.37 

Trenton 6.14 0.387 0.920 2.39 

Cobb 6.52 1.53 1.71 4.88 
1. Freundlich Sorption Capacity.  Units of Kf correspond to mg/L and mg/g for aqueous- and solid-phase 
concentrations respectively. 
2. Carbon Tetrachloride 
3. Trichloroethene 
4. Tetrachloroethene 
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process.  A combination of interactions between sorbent and sorbate are involved in the 

sorption process (Westall, 1987; Schwarzenbach et al, 1993).  

Sorption of aromatic hydrocarbons has been shown to be proportional to residual carbon 

content of fly ash (Low and Bately, 1988; Mott and Webber, 1992).  The capacity for 

adsorption increases with increasing carbon content of fly ash (Banerjee et al., 1995). 

Penetration of neutral organic chemicals into any solid phase, natural organic matter 

offers a relatively non-polar environment into which hydrophobic organic chemicals tend 

to be attracted with out competition from surrounding water molecules (Schwarzenbach, 

1993; Fetter, 1993).  Adsorption of PAH (polycyclic aromatic hydrocarbons) molecules 

was found to increase with increasing residual carbon content of the fly ash sorbent (Low 

and Batley, 1988).   Mott and Weber, 1992, further demonstrate this aspect in Table 4.  

The Cobb fly ash, because of the larger percentage of carbon present and larger surface 

area (Table 3), had more sorption capacity compared to the Trenton and Karn fly ashes   

On average, carbon content in coal-burning fly ash is currently 6 percent (Hwang, et. al., 

2002). 

Ultimately, greater sorption by fly ash occurs with small particle size and higher 

temperatures (Singh et al., 1994).  Kinetics studies by Banerjee et al., 1997 and Singh et 

al., 1994 of batch test sorption of O-xylene and phenol onto flyash demonstrate that 

adsorption rate increased with increasing temperature.  Sorption by fly ash is an 

endothermic, kinetic process whereby the rate of removal or organics is proportional to 

temperature (Singh et al., 1994).   Singh suggested that the number of active surface 

centers available for sorption have increased with temperature and that increasing the 
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temperature may also enhance the rate of intraparticle diffusion.  At high temperatures, 

the high negative values of molar free energy (∆G) are indicative of high sorption (Singh 

et al., 1994). 

Some problems with the use of a high carbon ash as a sorbent, are that some coal fly 

ashes have potential to leach metals and non-metals inherent to the ash origin.  Studies of 

a fly ash landfill in southern Wisconsin have shown that ground water in contact with ash 

has been substantially modified primarily by sulfates, calcium and magnesium inherent to 

the ash.  However, toxic metals with in the ash are generally quite immobile in the 

ground water (Cherkauer, 1981).   Below are several leaching case studies of coal 

combustion products used for remediation purposes taken from Ziemkiewicz and 

Skousen (2000) presented in Table 5.  Also listed below in Table 6 are Pennsylvania and 

West Virginia leachate compliance standards for CCPs.  

The Chaplin Hill mine (Table 5) demonstrated substantial decreases in metals and 

sulfates concentrations. The Chaplin Hill case study has demonstrated that when the 

application of CCPs is considered for BTEX sorption, the overall remediation benefit 

may certainly outweigh the minimal, low concentration side effects associated with 

leaching. It is important to note that metals inherent to coal fly ash are more mobile in 

acidic soil and groundwater environments rather than more neutral pH environments.  In 

addition, the metals inherent to fly ash are not free metals, but rather bound as post 

incinerated, metal oxides, which makes these metals less available for leaching.  With 

regard to remediation, each application is site specific and there are advantages and 

disadvantages to each technique. 
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Table 5. Summary of pre- and post-CCP application water quality at the Chaplin 
Hill Mine, Morgantown WV. (The data are for samples taken and analyzed 
by Anker Energy Corporation and reported to the state of West Virginia. 
All values in mg/L). 

 

 

    EPA      
RCRA TCLP Drinking Pre-CCB Post-CCB 
Element Limit  Water     
Sb 1  0.006  0.94 0.40 
As 5  0.05  1.28 <0.1 
Ba 100  2  <0.1 <0.1 
Be 0.007  0.004  0.96 <0.1 
Cd 1  0.005  <0.1 <0.1 
Cr (6+) 5  0.1  0.0001 0.0001 
Pb 5  0.015  0.72 <0.1 
Hg 0.2  0.002  <0.0005 <0.0005 
Ni 70  0.01  1.16 <0.1  
Se 1  0.05  1.29 <0.1 
Ag 5    <0.1 <0.1 
Tl 7  0.002  2.68 1.21 
Al     36 <0.1 
Ca     450 750 
Fe     4 <0.1 
Mg     296 450 
Mn     47 0.2 
SO4     2022 1500 
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Table 6. Comparison of West Virginia and Pennsylvania standards for CCP 
leachate concentrations (taken from Ziemkiewicz and Skousen, 2000). 

 

 Maximum Acceptable Leachate Concentrations (mg/L) 
State Pennsylvania West Virginia 

Test Method TCLP SPLP 
Al  5.0 
Sb 1 0.15 
As 5 1.25 
Ba 100 50 
Be 0.007  
B  31.50 
Cd 1 0.13 
Cr 5 2.5 
Cu  32.5 
Fe  7.5 
Pb 5 1.25 
Mn  1.25 
Hg 0.2 0.05 
Mo  4.38 
Ni 70 2.5 
Se 1 1.00 
Ag 5  
Tl 7  
Zn  125 

SO4  2500 
Cl  2500 
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Batch tests are the preferred method for studying most geochemical reactions associated 

with sorption and leaching (Zachara and Steile, Electrical Power Research Institute, 

1991).  Batch experiments are inexpensive and relatively easier to perform compared to 

other sorption/leaching experiments methods, such as column tests and can readily 

generate data for empirical applications.  The batch reactor is the most direct way to 

obtain a distribution coefficient (Kd) for saturated, porous media.  Batch type sorption 

experiments are carried out by mixing aqueous phase organic chemicals at different 

concentrations and temperatures with coal fly ash (Singh et al., 1994).  Samples are 

placed on a gyrating lateral shaker or end over end tumbler.  Distilled, deionized water 

and coal fly ash are mixed with appropriate amounts of aqueous phase organic chemicals 

in 40ml amber vials with septum lined screw caps leaving no head space (Banerjee et. al., 

1997).  The aqueous phase organic chemicals are prepared form a stock solution based on 

the maximum solubility of the organic chemical at ambient temperature and are further 

diluted to achieve desired concentrations (Banerjee et. al., 1997).  Walton et. al., 1992, 

carried out sorption experiments at five different concentrations for each individual 

organic chemical.  To monitor vaporization losses and adsorption to glass, blank samples 

containing distilled, deionized water, added BTEX compounds and no ash are prepared 

with the same concentrations and in the same manner as those samples with ash (Jaynes 

and Vance, 1996; Viraraghavan, et. al. 1997).  Banerjee used three vials for each 

adsorption data point.  Two vials containing ash were used as reps. The vials with no ash 

were used as the control.  Aliquots were centrifuged and analyzed spectrophotmetrically 

using a Spectronic 20 D spectrophotmeter at wavelengths that correspond to the 

maximum absorbances for the organic chemicals of interest (Viraraghavan, et. al. 1997, 
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Singh et al., 1994).  

Sorption may experimentally be quantified by the use of a mass balance equation 

(Schwarzenbach, 1993): 

 
M

)VC()VC(
Q 00ff −−−

=  (1) 

where, 

 Q = sorbed concentration (mol/kg) 

 Cf = equilibrium concentration (mol/L) 

 Co = initial concentration (mol/L) 

 Vf = final volume (L) 

 Vo = initial volume (L) 

 M = mass of sorbent (kg) 

Data are initially plotted as constant temperature isotherms with Adsorption (mol/Kg) vs. 

Equilibrium concentration (mol/L): y vs. x (adsorbed vs equilibrium y vs x).   

Equilibrium sorption data are often fit using either the Freundlich and Langmuir 

isotherms (Evangelou, 1998).  The Langmuir approach suggests ion exchange 

mechanisms, which incorporate both organic and inorganic ion concentration charges, 

and total surface charge density (Schwarzenbach,1993).  Through competitive ion 

interactions, a maximum capacity sorption plateau is achieved with the Langmuir 

isotherm. The Freundlich approach is most often used for nonlinear isotherms with no 

apparent sorption maximum ion capacity plateau.  The Freundlich isotherm best describes 
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the interactions between hydrophobic sorbate and hydrophobic sorbent with no apparent 

sorption maximum (Evangelou, 1998).  The Freundlich adsorption isotherm is used to 

describe macroscopic data and no proof with regard to reaction mechanism should be 

inferred (Sparks, 1995). The use of an adsorption isotherm does not allow one to 

differentiate between adsorption and precipitation (Sparks, 1995).  Sparks describes the 

Freundlich Equation as: 

 n/1
efe )C(KQ =  (2) 

where,         

 Qe  = amount of adsorption(mol/kg) 

 Ce  = equilibrium concentration of the adsorptive(mol/L) 

 1/n = Freundlich fitting parameter 

 Kf  = Freundlich constant (L/kg) 

The linear form of the Freundlich adsorption isotherm is: 

 
efe Clog

n
1KlogQlog +=

 (3) 

If 1/n = 1, then Kf  = Kd,  the ratio of the substance’s equilibrium concentration in the 

sorbed phase to that of the solution phase (Table 7): 

 
e

e
d C

Q
K =  (4) 
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Table 7. BTEX Sorption Coefficients 

 

 

Table 8. Organic matter normalized sorption coefficients 

 

Table 9. Physical Characteristics of BTEX. 

 

 Sorbate 
Sorbent Benzene Toluene Ethylbenzene Total Xylenes Total BTEX 
 L kg-1 
Soil1 0.32     
Organo-clays2 98.64 231.64 528.73 581.31 378.91 

1. Schwarzenbach, 1993 
2. Jaynes & Vance, 1996 

 Sorbate 
Sorbent Benzene Toluene Ethylbenzene Total Xylenes Total BTEX 
 L kg-1 
Soil1 17     
Organo-clays2 2.5 2.83 3.18 3.22  

1. Schwarzenbach, 1993 
2. Jaynes & Vance, 1996 

 water solubility1 (25°C) density1 (25/4°C) Log Kow
1 formula weight2 

 mg/l g/cm3  g/mol 
benzene 1,780 0.874 2.13 78.11 
toluene 535 0.862 2.16 92.14 
ethyl benzene 152 0.867 3.13 106.17 
o-xylene 175 0.88 3.13 106.17 
m-xylene 130 0.868 3.13 106.17 
p-xylene 196    
total xylenes 167 0.857 3.18 106.17 

1. Modified from USEPA, Modeling Subsurface Transport of Petroleum Hydrocarbons, Effective Solubility  
calculation(2001). An online training course of EPA Region 9 and ERD, Athens, GA.  
2. Modified from Sax and Lewis, Hawley’s Condensed Chemical Dictionary  11th ed., (1997). 
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Partitioning of a solute onto a mineral or organic content of the soil is almost exclusively 

a function of the organic carbon fraction of the soil (fom) if it constitutes at least 1% 

(Fetter, 1993).  As a result, a partition coefficient (Kom; Table 8) with respect to carbon 

fraction of soil matter is expressed as: 

 
om

d
OM f

K
K =  (5) 

The octanol/water partition coefficient (Kow; Table 9) is used by researchers to simulate 

hydrophobic sorption by soil organic matter.  It is a measure of hydrophobicity.  The Kow 

represents the ratio of organic contaminant in octanol (Co) to that of water (Cw) 

(Evangelou, 1998).  

 
w

o
ow C

C
K =  (6) 

The BTEX class of aromatic, petroleum, hydrocarbon chemicals consist of: benzene, 

toluene, ethylbenzene and 3 xylene isomers (Figure 5: Table 9).  Benzene, the simplest 

aromatic hydrocarbon, is a carcinogen, highly toxic and flammable.  It is colorless to 

light yellow, mobile, non-polar liquid (Sax and Lewis, 1987).  Benzene has a water 

solubility of 1,780mg/L at 25 degrees C (USEPA, 2001), density of 0.87378 at 25/4 

degrees C (Kirchnerova and Cave, 1976), and an octanol/water partition coefficient, log 

Kow, of 2.13 (DeKock and Lord, 1987; Hansch and Fujita, 1964),  

Toluene is a colorless liquid with a benzene-like odor, flammable and toxic(Sax and 

Lewis, 1987).  Toluene has a water solubility of 535mg/L at 25 degrees C (Benerjee et 

al., 1984) density of 0.86233 at 25/4 degrees C (Huntress and Mulliken, 1941) and an  



 

-21 - 

 

 

 

 

Figure 5.  BTEX Molecular Organic Structures (taken from Sax and 
Lewis, Hawley’s Condensed Chemical Dictionary. 11th ed., 
1987). 
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octanol/water coefficient, Kow, of 2.61 (Sangster, 1989).  

Ethylbenzene is a flammable, colorless, toxic liquid with an aromatic odor (Sax and 

Lewis, 1987).  Methylbenzene has a water solubility of 152mg/L at 25 degrees C (Miller 

et al., 1985), a density of 0.867 at 25 degrees C (Hunterss and Mulliken, 1941), and an 

octanol/water coefficient, log Kow, of 3.13 (Wasik et al., 1981, 1983; Yalkowsky et al., 

1983).  

O-Xylene (1,2 dimethylbenzene) is also a clear, colorless liquid with an aromatic odor 

that is moderately flammable (Sax and Lewis, 1987).  O-Xylene has a water solubility of 

175mg/L at 25 degrees C(Andrews and Keefer, 1949), density of 0.8802 at 20 degrees C 

(Weast, 1986), octanol/water partition coefficient, log Kow, of 3.13(Tewari et al., 1982, 

Wasik et al., 1981, 1983). 

M-Xylene (1,3-dimethylbenzene) is a clear, colorless watery liquid with a sweet aromatic 

odor that is moderately flammable (Sax and Lewis, 1987).  M-Xylene has a water 

solubility of 130mg/L at 25 degrees C (Andrews and Keefer, 1949),  density of 0.8684 at 

25 degrees C (Hawley, 1981) and octanol/water partition coefficient, log Kow, of 3.13 

(Wasik et al., 1981, 1983).  

P-Xylene (1,4-dimethylbenzene) is also a colorless, watery liquid, with a sweet aromatic 

odor that is highly flammable (Sax and Lewis, 1987).  P-Xylene has a water solubility of 

196mg/L at 25 degrees C (Andrews and Keefer, 1949), density of 0.85665 at 25 degrees 

C (Kirchnerova and Cave, 1976) and octanol/water partition coefficient of 3.18 (Tewari 

et al., 1982; Wasik et al., 1981, 1983). 
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Chapter 3: Materials and Methods 

3.1 Chemical Composition: 

The constituent XRF chemical composition was determined through a Phillips 1480 XRF 

Wavelength Spectrometer courtesy of Dr. John Renton and Harry(Duke)Brown in the 

West Virginia University Department of Geology and Geography. 

3.2 Classification: 

Coal fly ash samples were analyzed in terms of chemical composition using XRF 

analysis and further classified as C or F class using the ASTM classification for coal fly 

ash. 

3.3 Percent Carbon: 

The percent carbon was determined with a LECO CNS-2000 courtesy of Dr. John 

Sencindiver and Brian Cooley from the College of Agriculture and Forestry and 

Consumer Sciences, division of Plant and Soil Sciences. 

3.4 Batch Test: 

After the method of Banerjee et al. (1995) and Mott et al. (1992), the fly ashes were 

mixed with Benzene, Toluene, Ethyl benzene, and Xylene samples separately at varying 

temperatures and concentrations of BTEX. 
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3.5 Sample Preparation: 

Day 1: A total of 15, 40ml amber glass vials with Teflon-lined screw caps were used for 

each batch test experiment.  Experimentally, 3, 4 and 5 gram masses of ash were taken, 

placed in 10 out of 15 of the amber vials.  The vials with out flyash were used as a 

control.  Two sets vials with fly ash yielded replicates. Subsequently all amber vials were 

filled with distilled, deionized water to the appropriate volume via pipet and 10ml 

volumetric cylinder.  All pipets and volumetric cylinders were calibrated daily to deliver 

distilled deionized water.   

All 15 vials were then vortexed and placed at the corresponding isotherm temperature for 

a period of 12hrs. 

The BTEX stock solution was prepared by adding distilled, deionized water and 

individual BTEX organic chemicals into a seperatory funnel, shaken vigorously and let 

stand overnite. Aqueous phase BTEX stock solutions were based on the maximum 

solubities of each individual species (Table 9).   

Day 2: The aqueous phase organic stock solution was withdrawn from the bottom of the 

seperatory funnel into a tallform beaker covered with a watch glass.  Aqueous phase 

BTEX solute stock solutions were immediately pipetted into the corresponding amber 

vials to appropriate diluted concentrations, sealed immediately, leaving no head space.  

Benzene and Toluene concentrations ranged from 400mg/L to 0mg/l.  Ethyl Benzene and 

Xylenes concentrations ranged from 100mg/L to 0mg/L.  Amber vial sample lids were 

further sealed with paraffin wrap to maintain seal and prevent breakage.  All pipets were 
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calibrated daily to deliver appropriate amounts of BTEX solution. 

All samples were further vortex and subsequently placed on either an end over end 

tumbler or a lateral shaker, and allowed to equilibrate at constant temperature for a period 

of 12hrs.   

Day 3: All samples were centrifuged for ½ hour at 2500rpm.  Solid coal fly ash settled to 

the bottom of the 40ml amber vials and aloquits of aqueous phase BTEX were extracted 

from the top of each vial.  Subsequently, all samples were analyzed via UV spectroscopy 

at corresponding wavelength values of maximum absorbance for each BTEX sample 

(Table 10) 

3.6 UV Analytical Procedure: 

The Spectronic 20, Genesys 5, single wavelength Spectrophotmeter (UV Spec 20), 

courtesy of Dr. Sven Verlinden in the WVU college of Agriculture, Forestry and 

Consumer Science, Division of Plant and Soil Science, was turned on at least ½ hr. 

before any samples were run to allow the machine to warm up.  Viraraghavan et. al. 1998 

and Singh and Rawat, 1994 also analyzed fly ash sorption of organic chemicals using UV 

Spec 20. 

Quartz cuvettes were initially rinsed with ethanol followed by distilled, deionized water.  

A new, dedicated, disposable pipette tip was used each time to withdraw aliquots from 

the amber sample vials into the quartz cuvette. The cuvette was then rinsed once with 

sample.  Then the cuvette was refilled with sample aliquot, wiped clean outside with a 

disposable Kimwipe and placed in the UV spectrophotometer chamber where  
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Table 10. Max UV Absorbance Peaks for BTEX 
 

 

 

 

 

 Substance  Formula Max UV Absorbance Peaks 
  Benzene   C6H6  254*+♦ 
 Toluene C7H8  261*+♦ 
 EthylBenzene C8H10  270♦ 

  Xylenes C8H10  264*+♦ 

 
 
 *Source:Colby College Dept.of Chemistry 
 www.colby.edu/chemistry/cmp/mole.cgi 
 +Source:Applied Analytics, Inc. 
 www.a-a-inc.com/BTX?BTX1.htm 
 ♦Sadtler UV Indexes (1960,1961,1963,1966) 

http://www.colby.edu/chemistry/cmp/mole.cgi
http://www.a-a-inc.com/BTX?BTX1.htm
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maximum absorbance was recorded.  First, a zero value absorbance baseline was 

established with sample containing only distilled, deionized water.  The UV analytical 

device was then calibrated from strongest concentration to weakest concentration with 

the 5 control samples which had no ash added. 

The 10 samples (2 reps) which had ash added were analyzed via UV spectrophotometry 

ranging from strongest concentration to weakest concentration.  Between trials, all 

cuvettes were rinsed and prepared in the same manner as the zero absorbance value. 

Lastly, the UV Spec 20 analytical device was recalibrated with blank sample from 

weakest concentration to strongest concentration.  The average of initial and final 

absorbance values of blank samples were used as calibration standard curves for each 

batch test experiment.  

Appendix II contains UV calibration curves for analytical work performed for this thesis. 

3.7  Glassware cleaning and Preparation: 

All glassware used during the batch test experiments were rinsed with distilled, deionized 

water, followed by ethanol.  All glassware were then soaked overnite with Liquinox soap, 

rinsed with tap water, followed by distilled, deionized water and set inverted to dry on 

drying racks. 

3.8 Particle Size Distribution: 

The particle size analysis was determined using the most widely accepted pipet extraction 

method (Indorante et. al., 1990). 
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Masses of 10 grams of ash were placed in a tared 500ml Fleaker.  One Fleaker contained 

no ash and was used as a blank control.  Organic matter in the samples was digested with 

30% hydrogen peroxide and heated on a hotplate to approximately 60°C prior to the 

particle size analysis.   

A volume of 10ml of 10%Na-Hexametaphosphate dispersion solution was then added to 

each Fleaker and the volume was brought to 150ml with distilled, deionized water. The 

blank control was used as the correction factor for Na-hexametaphosphate.  All Fleakers 

were stoppered and shaken overnite at a minimum of 120 oscillations per minute.  

Stoppers were next removed and fleakers were brought to an exact volume of 400ml with 

distilled deionized water at room temperature.  Then, samples were shaken vigorously to 

ensure no particle adherence to the bottom of the Fleaker.  Fleaker stoppers were left ajar 

and arranged for pipetting based on Stokes Law for corresponding temperatures for 

pipeting of fractions <2 micrometers at 5cm depth.  Aliquots were withdrawn and 

dispensed into a tared beaker, oven dried, cooled in a desicator and masses taken.  Mass 

of Na-hexametaphosphate was subtracted and percent clay size particles determined.  

Soils remaining in the Fleaker were wet sieved through a tared, 270 mesh size sieve.  

Sand fractions remaining were oven dried prior to mass taken as determined by the Soil 

Survey Staff (1984).  

 %sand = 100 x (total sand weight/total soil weight) 

 %clay = (clay weight) x (400/pipet volume)(100/total soil weight) 

 %silt = 100 – (%sand + %clay).   
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3.9 Surface Area: 

The surface areas of the three fly ash samples were determined by Multipoint BET 

Quantachrome Autosorb gas sorption system analysis courtesy of Bob Romanofski and 

Don Floyd, DOE, National Energy Technology Laboratories (NETL), Morgantown, WV. 

3.10 Experimental Focus: 

The focus of these batch test experiments was to test a broad range of BTEX sorption 

with respect to coal fly ash.  An assumption was made that if sorption occurred at higher 

concentrations, then it would certainly be reliable at more dilute concentrations of BTEX.   

When chemicals are released into the environment, the actual solubilities are far lower 

than the published solubilities.  This is because most chemicals, like petroleum 

hydrocarbon fuel exist as a mixture and their concentrations depend on the abundance of 

the individual chemical in the mixture, otherwise know as the effective solubility.  

Benzene has a published solubility in water of 1780mg/L.  Typical fuel mixture 

concentrations of Benzene at equilibrium in the aqueous phase are 20-40mg/L (U.S.EPA, 

2001).  The sorption isotherm line is inclusive of low concentrations when it is traced to 

zero X and Y axis values of the sorption isotherms.  In addition, the single wavelength 

UV Spec 20 analytical device used in these experiments was more reliable for organic 

chemicals at higher concentrations resulting in a stronger peak. 

3.11 Freundlich Model Rationale: 

The Freundlich model approach was used to fit isotherms where it applies.  The 

Freundlich isotherm best describes the interactions between hydrophobic sorbate and 
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hydrophobic sorbent (Evangelou, 1998).  The most significant sorption attributes of these 

batch test experiments were assumed to be the interactions of hydrophobic properties 

associated with the BTEXs and the high carbon content nature of coal fly ash.  The 

Langmuir approach was abandoned because organic and inorganic ion concentration 

charges and total surface charge density were not assumed significant interactions with 

respect to coal fly ash sorption of BTEX.  The Freundlich equilibrium sorption model 

was possible to fit in some cases where Log [Eqm] v. Log [Ads] fit a straight line with at 

least three valid data points.  The Freundlich sorption isotherm model is acquired by 

empirically fitting experimental data.  The Freundlich isotherm is fit by taking the Log of 

the X and Y axis of the sorption isotherm.  The purpose of fitting a Freundlich isotherm is 

to linearize sorption isotherms so that the Kf and 1/n terms may be extracted over a 

significant range.  The distribution coefficient, Kf value, is the y-intercept of the 

linearized Log (Eqm) v. Log (Ads) plot of the empirical sorption data.  1/n is the 

empirical linearization constant obtained from the slope of the Freundlich plot 

(Evangelou, 1998).  In some cases, whereby 1/n = 1, the linear isotherm is a special case 

and the Kf is equal to the slope of the line.  A disadvantage of the Freundlich isotherm is 

that it cannot predict an adsorption maximum (Sparks, 1995).  The linear isotherm 

equation should not be extrapolated beyond the limits of the experimental data 

(Fetter,1999).  Statistical analysis presented in Table 13 and Table 14 were performed 

using the GLM Procedure, with all factors as class variables and Mean Separations using 

Duncan’s Multiple Range Test. (SAS Inst., Cary, NC; version 8.01).  Full model analyses 

were performed with all possible interactions.  Non- Significant parameters were 

removed based on Type III Sum of Squares. The best model was chosen based on 



 

-31 - 

minimizing Mean Square Error.   

3.12 Statistical Analysis 

Statistical analysis presented in Table 13 and Table 14 were performed using the GLM 

Procedure, with all factors as class variables and Mean Separations using Duncan’s 

Multiple Range Test. (SAS Inst., Cary, NC; version 8.01).  Full model analyses were 

performed with all possible interactions.  Non- Significant parameters were removed 

based on Type III Sum of Squares. The best model was chosen based on minimizing 

Mean Square Error.   
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Chapter 4: Results  

4.1 Ash Characterization 

As discussed in Chapter 2, the dominant matrix components of coal fly ash are 

amorphous micro-spheres predominantly composed of silica and aluminum oxides.  The 

average of 26 coal fly ashes sampled from three continents (Table 1) contained over 60% 

silica and aluminum oxides.  In this study, XRF analysis from Table 11 demonstrates that 

both the Alb-D and Alb-L contained more than the average of the 26 samples, with over 

80% w/w silica and aluminum oxides.  The MEA-L ash contained over 50% w/w silica 

and aluminum oxides, which was more similar to the average of the 26 fly ashes sampled.  

According to the XRF analysis, Table 11, the MEA-L ash had greater than 10% CaO, 

while the Alb-D and Alb-L coal fly ashes contained less that 10% CaO.  On average, the 

26 fly ash samples from Table 1, contained less than 10% CaO.  The differences in CaO 

composition among the ashes are the result of combustion type influences.  The MEA 

power plant is a modern Fluidized Bed Combustion (FBC) facility, which requires the 

addition of lime (CaO) to aid in the reduction of sulfur emissions, by precipitating sulfur 

as gypsum (CaSO4) (Ziemkiewicz and Skousen, 2000).  The Albright Power Station is a 

pulverized coal combustion facility.  As a result, Alb-D and Alb-L ashes would be 

considered Class F, while the MEA-L ash would be considered Class C or FBC type ash, 

based on the XRF analysis and in accordance with the typical composition of Class F and 

C ashes defined by ASTM (1997; Table 11). 

From Table 12, it can be determined that the Alb-D had 26.94% carbon, which is 86.34%  
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Table 11. XRF Chemical Composition % by weight 

 

Table 12. Coal Flyash Physical Characteristics 
 

 

 

 Constituent 
Coal Ash MnO K2O SiO2 Al2O3 SO2 SO3 Fe2O3 Na2O MgO TiO2 CaO P2O5 
 ------------------------------------------------------ % (w/w) -------------------------------------------- 
Alb-D1 0.04 1.6 56.14 31.87 0.76 - 2.61 0.18 0.65 2.74 3 0.41 
Alb-L2 0.02 2.35 54.52 30.22 0.08 - 7.55 0.47 0.83 1.69 1.97 0.3 
MEA-L3 0.04 1.62 37.19 16.11 7.08 - 6.1 0.68 1.59 1.1 28.27 0.24 
             
Average 0.033 1.86 49.28 26.07 2.64 - 5.42 0.44 1.02 1.84 11.08 0.32 
Maximum 0.04 2.35 56.14 31.87 7.08 0 7.55 0.68 1.59 2.74 28.27 0.41 
Minimum 0.02 1.6 37.19 16.11 0.08 0 2.61 0.18 0.65 1.1 1.97 0.24 
1. Albright Dark fly ash, Albright Power Station, Albright, WV 
2. Albright Light fly ash, Albright Power Station, Albright, WV 
3. Morgantown Energy Assoc. Light fly ash, Morgantown Energy Assoc. Power Station, Morgantown, WV 

 

Coal Ash Surface Area Sand Silt Clay Carbon 
 m2 g-1 -------------------------------------------- % ---------------------------- 
Alb-D1 27.09 67.77 27.66 6.58 26.94 
Alb-L2 3.42 83.70 13.91 2.39 3.68 
MEA-L3 13.53 46.77 52.80 0.43 2.36 

1. Albright Dark fly ash, Albright Power Station, Albright, WV 
2. Albright Light fly ash, Albright Power Station, Albright, WV 
3. Morgantown Energy Associates Light fly ash, Morgantown Energy Associates Power Station, Morgantown, WV 
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more carbon content than the Alb-L and 91.24% more carbon content than the MEA-L.  

The carbon content of the Alb-D was well above the 2002 average of 6% carbon for coal-

burning fly ash (Hwang, et. al., 2002).  While the carbon content of the Alb-L and MEA-

L coal fly ashes fell below average at 3.68% and 2.36% respectively.   

Other important sorption attributes are surface area and particle size distribution.  As 

discussed in Chapter 2, the coal fly ashes with greater percentage of clay size particles 

and larger surface areas have potential to sorb more BTEX.  Table 12 list surface area 

measurements on the three coal fly ashes in this study, which were 3.42, 13.53 and 27.09 

m2/g for Alb-L, MEA-L and Alb-D respectively and the results of particle size analysis 

performed in the soils testing laboratory at the WVU college of Agriculture and Forestry 

and Consumer Sciences, Soil Science Division.  From Table 12, the percent clay size 

particles are 0.43, 2.39 and 6.58 for MEA-L, Alb-L and Alb-D respectively.  Table 13 

demonstrates that on average the Alb-D ash had a greater percentage of benzene sorption 

than either the Alb-L or MEA-L ashes.  However, the differences between percent 

benzene sorption of Alb-L and Alb-D were not as great as one would expect with respect 

to variability in surface area and particle size between the two ashes.  As discussed in 

Chapter 2, surface areas for activated carbon, on the order of 1,050 to 1,250 m2/g, are 

substantially higher than that of coal fly ash as a result of greater surface areas found in 

the micropores of the activated carbon particles.  Surface areas for seven coal fly ashes in 

Table 3, ranged from 1.14 to 37.5 m2/g.  Both coal fly ash and activated carbon sorption 

rely on high surface areas for greater access for adsorption.    
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Table 13. Effects of temperature and ash source on average (standard deviation) 

percent benzene sorption. 

 

 

 

Temperature Alb-Dark Alb-Light MEA avg 
 ----------------------------------%---------------------------------- 

25°C 41.9 
(0.31) 

45.3 
(1.73) 

6.1 
(0.17) 

31.1a 

45°C 67.2 
(0.01) 

46.7 
(2.18) 

-14.0 33.8a 

avg. 54.6a 46.8b -3.9c 32.5 
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4.2 Effect of Carbon on Benzene Sorption 

The overall model for the effect of ash type and temperature on percent benzene sorption 

was significant (Pr>F < 0.0001; R2 = 0.99) with significant effects due to ash type (Pr>F 

<0.001) and ash type * temperature interaction (Pr>F=0.0002).  The temperature effect 

was not significant (Pr>F = 0.1807).  The Albright-Dark ash had the highest average 

percent sorption and the MEA ash had the lowest (Table 13). There was no significant 

effect of temperature on percent benzene sorption to the Albright-Light ash.  Increasing 

temperature increased percent sorption to the Albright-Dark ash, but decreased percent 

sorption to the MEA ash (Table 13).  The relationship between percent sorption and 

percent carbon was not linear, which suggests there may be differences in the quality of 

the carbon on each ash and/or differences in mineral matrix, which may influence analyte 

sorption.  

The best fit isotherms among two trials for benzene sorption to three different coal ashes 

is demonstrated in Figure 6.  The Alb-D-45°C, Alb-L-5°C and Alb-L-45°C are Case I 

isotherms whereby at higher and higher concentrations it becomes more difficult to sorb 

additional molecules (Schwarzenbach, 1993).  Alb-D-25°C and Alb-L-25°C are Case II 

isotherms whereby the attractiveness of the solid for the sorbate remains constant for all 

levels of the sorbed state (Schwarzenbach, 1993).  MEA-L-5°C, MEA-L-25°C and MEA- 
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Figure 6.  Benzene sorption onto three different coal fly ashes: Alb-dark, 
Ald-light, and MEA-light 
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L-45°C are Class III isotherms in which previously sorbed molecules modify the surface 

which favors further sorption (Schwarzenbach, 1993). 

In general, at higher concentrations of benzene, analytes tend to reach a sorption peak and 

begin to desorb except in the Case III isotherms typical of the MEA-L ash.  This 

desorption effect may be attributed to overloading of sorbate at higher concentrations, 

which results in the analyte acting as a solvent for other UV-active components of the 

ash. 

For benzene sorption to coal fly ashes (Figure 6), the Albright dark ash at 25°C is the 

only ash for which the Freundlich model reasonably fits with an R2 value of 0.8421.  The 

calculated Freundlich parameters are Kf  =0.8943  and 1/n = 0.7295.  The R2 values for 

the Alb-L and MEA-L ash sorption of benzene are less than 0.5 at 25°C. 

4.3 Effects of analyte and temperature on two low carbon ashes 

The analyte*temperature and analyte*ash interactions are the main effects which 

influence BTEX sorption, and are compared below in Table 14.  From Table 14, the 

overall model is significant (Pr>F <0.0001; R2=0.99) 

4.3.1 Temperature effects 

For the analyte*temperature interaction, there is a general trend of increase in sorption 

with increase in temperature.  Maximum percent sorption occurred at 25°C for benzene 

and toluene, and 45°C for xylenes and ethyl benzene (Table 14).  
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Figure 7. Equilibrium concentration vs adsorbed concentration of benzene 
and toluene on ashes Alb-L and MEA-L  at 25°C. 
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Figure 8. Equilibrium concentration vs adsorbed concentration of 
ethylbenzene and xylene on ashes Alb-L and MEA-L at 
25°C. 
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Table 14.The SAS System, GLM Procedure: Duncan’s Multiple Range Test for 
Percent Sorption 

 

 

 

Ash Analyte Temperature°C Mean 
Albright Light   51.6a 

MEA   -3.8b 

 Xylenes  41.6a 

 Ethylbenzene  16.7b 

 Benzene  19.4b 

 Toluene  18.0b 

  5 20.0b 

  25 26.3a 

  45 25.5a 

Albright Light Xylene  73.6 
Albright Light Ethylbenzene  66.2 
Albright Light Benzene  38.3 
Albright Light Toluene  28.4 

MEA Xylene  9.5 
MEA Ethylbenzene  -32.7 
MEA Benzene  0.56 
MEA Toluene  7.6 

 Xylenes 5 41.0 
 Xylenes 25 36.5 
 Xylenes 45 47.1 
 Ethylbenzene 5 8.7 
 Ethylbenzene 25 20.2 
 Ethylbenzene 45 21.3 
 Benzene 5 15.4 
 Benzene 25 25.7 
 Benzene 45 17.1 
 Toluene 5 14.9 
 Toluene 25 22.8 
 Toluene 45 16.4 
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4.3.2 Analyte effects 

For the analyte*ash interaction, the percent sorption onto the MEA-L ash is low for all 

analytes as demonstrated in Table 14, Figure 7 and Figure 8.  The Albright light ash 

demonstrates much greater percent sorption compared to MEA-L in a preferred order 

(Xylenes>Ethylbenzene>Benzene>Toluene).  Ethylbenzene is 66.2% sorbed to Alb-L 

and desorbed by –32.7% from MEA-L    In the case of ethylbenzene sorption to MEA-L, 

more sorbate was found at the end of the batch test experiment than at the beginning.  

The increase in ethylbenzene at the end of the experiment may be attributed to an analyte 

solvent leaching effect of ethylbenzene inherent to the MEA-L ash or other chemical 

species inherent to the MEA-L ash which have broad overlap interferences of the same 

UV analytical absorbance wavelength peak. 

The individual BTEX sorbate chemical species also proved to have a significant effect on 

the sorption process.  Benzene is favorable to sorption compared to toluene, and xylenes 

are favorable to sorption compared to ethylbenzene.  Therefore, the effect of sorption 

may be related to the solubility of the chemical species.  Benzene (1780 mg/L) is more 

soluble than toluene (535 mg/L), and total xylenes (167 mg/L) are more soluble that 

ethylbenzene (152 mg/L). The low sorption effect of xylenes may be attributed to 

differences in solubility and interferences of the xylene isomers.  Therefore, it would be 

recommended that individual xylene isomers be tested separately in future experiments.   

The Albright light ash sorption of toluene at 45°C and sorption of xylenes at 5°C, 25°C 

and 45°C are isotherms which significantly fit the Freundlich model by taking the log of 

equilibrium (Cf) versus the log of sorption (Q) with R² values close to one.  The 
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calculated Freundlich parameters for the Albright light ash sorption of toluene at 45°C 

are Kf =0.1095 and 1/n = 1.1645, with an R² value of 0.8541.  The calculated Freundlich 

parameters for Albright light ash sorption of xylenes are: Kf =5.0119 and 1/n = 0.4449 

with an R² value of 0.9697 at 5°C, Kf =4.3102 and 1/n = 0.4929 with an R² value of .9085 

at 25°C and Kf =3.8851 and 1/n = 0.4640 with an R² value of 0.9692 at 45°C. 

When a sorption isotherm is not straight or cannot be fit to the Freundlich isotherm model 

it does not mean that sorption did not occur.  In fact in almost all cases, except batch tests 

with ethylbenzene, there was a reduction in benzene, toluene and xylenes attributed to 

percent sorption as demonstrated in Table 14.  
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Chapter 5: Conclusion and Discussion 

The temperatures at with the batch tests took place were varied to compare results for 

optimum sorption.  The statistical analysis presented in Table 13 and Table 14 

demonstrate a significant difference between benzene and toluene, and between 

ethylbenzene and xylenes with respect to mean percent sorption for the effect of 

temperature.  In general when considering sorption potential and temperature, it is true 

that sorption increased with increasing temperature.  However, in some cases, such as 

ethyl benzene sorption onto MEA-L ash, the effect was opposite (Figure 8).  In fact, there 

was a gain in the maximum UV analytical absorbance wavelength peak for average 

ethylbenzene sorbance to the MEA-L ash as temperature increased from 5°C to 45°C.  

The MEA-L ash is non-ideal for ethylbenzene sorption and poor for toluene and xylenes 

sorption.  There are no significant sorption increases of BTEX by the MEA-L ash when 

considering temperature.  

The types of ash used in these batch test experiments prove to have significant effects 

with respect to mean percent sorption (Figures 7: Figure 8: Tables 13: Table14).  The 

sorption effect has been attributed to the greater percentage of carbon content inherent to 

the ash (Low and Bately, 1988; Mott and Webber, 1992; Banerjee et al., 1995).  As 

discussed in Chapter 2, sorption capacity increases with increasing carbon content of the 

coal fly ash (Banerjee et al., 1995).  However, during these experiments the relationship 

between percent carbon and percent sorption was not linear.  The non-linear effect may 

be attributed to variation in carbon quality as a raw coal product combined with variable 
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combustion procedures.  Also, the complex mineral properties of coal, demonstrated in 

the XRF analysis in Table 11, may interfere with or modify the sorptive properties of 

carbon content of the coal fly ash product.  Additional work, perhaps with a scanning 

electron microscope, would be necessary to evaluate the carbon quality in relation to its 

structure in the context of soption potential.   

Both coal fly ash and activated carbon offer a relatively non-polar, natural, solid, organic 

substrate for the adherence and penetration of neutral, hydrophobic, organic chemicals.  

However, coal fly ash offers less of this non-polar, natural, solid organic substrate 

because it inherently contains less carbon, less surface area of carbon material and 

mineral components inherent to coal as compared to activated carbon. Freundlich models 

do not fit well to the MEA-L batch test trials with BTEX.  Therefore, the MEA-L ash is 

non-ideal for sorption of BTEX, but because of the higher ratio of calcium oxide 

compared to other ashes observed in this study, it may be more suitable for remedial 

applications which require the addition of lime.  

The Alb-D and Alb-L ashes tend to show more sorption potential for BTEX versus the 

MEA-L ash.  Greater sorption is mostly attributed to the higher percent carbon content, 

higher temperatures and larger percentage of clay size particles and surface area.  These 

observations are consistent with Sign’s 1994 study.  Based on previous studies by 

Banerjee, Schwarzenbach, Low and Bately and Mott and Webber, discussed in Chapter 2, 

one would expect the Alb-D ash to have a greater percent sorption of BTEX versus the 

Alb-L ash because it contains 86.34% more carbon content, a greater percentage of clay 

size particles and larger surface area compared to the Alb-L ash as presented in Table 12. 
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Instead the results of the batch test experiments in this study indicate that the percent 

sorption of benzene between the two ashes is not much different as presented in Table 13.  

Future experiments would be recommended at lower BTEX concentrations more typical 

of fuel mixture concentrations found in groundwater which may be less likely to desorb 

and with an analytical device that is more discrete to detect BTEX analytes with out 

interference or overlap of absorbance peaks. 

In conclusion, coal fly ash is not only a waste byproduct of the coal combustion process, 

but is a highly available, low maintenance and more cost effective for consideration of 

sorption in the aqueous setting even though it sorbs less BTEX as compare to activated 

carbon.   
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Appendix I.  Batch Test Experimental Data 
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Trial 30-Flayash Batch test with Benzene UV curve Rep2&3
1-Aug-01 Albright--Light y = 0.0007x + 0.0076 AvgC6H6

5.0g 5C Abs=0.0007[conc(mg/L)]+.0076 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 7.00E-04 7.60E-03 12.71
{(Cf - Ci) * V} / m = Q tumbler %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 397.71 397.71
D002 312.00 312.00
D003 239.14 239.14
D004 113.43 113.43
D005 0.00 0.00

Rep2
ash
D101 397.71 497.86 5.09E-03 6.37E-03 -1.28E-02 2.20 -25.18 44.76
D102 312.00 307.86 3.99E-03 3.94E-03 5.30E-04 2.40 3.28 1.33 7.42
D103 239.14 200.71 3.06E-03 2.57E-03 4.92E-03 2.59 2.31 16.07 0.00
D104 113.43 92.14 1.45E-03 1.18E-03 2.73E-03 2.93 2.56 18.77 6.20
D105 0.00 0.00 0.00

Rep3
ash
D201 397.71 275.00 5.09E-03 3.52E-03 1.57E-02 2.45 1.80 30.85
D202 312.00 285.00 3.99E-03 3.65E-03 3.46E-03 2.44 2.46 8.65
D203 239.14 200.71 3.06E-03 2.57E-03 4.92E-03 2.59 2.31 16.07
D204 113.43 86.43 1.45E-03 1.11E-03 3.46E-03 2.96 2.46 23.80
D205 0.00 0.00  

Trial 27-Flayash Batch test with Benzene UV curve Rep2&3
25-Jul-01 Albright--Light y = 0.0009x - 0.0032 AvgC6H6

25C 5.0g Abs=0.0009[conc(mg/L)]-.0032 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 9.00E-04 -3.20E-03 37.44
{(Cf - Ci) * V} / m = Q tumbler %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 445.78 445.78
D002 305.22 305.22
D003 191.33 191.33
D004 98.56 98.56
D005 0.00 0.00

Rep2
ash
D101 445.78 223.89 4.20E-03 2.11E-03 2.79E-02 2.68 1.55 49.78 22.65
D102 305.22 233.89 2.87E-03 2.20E-03 8.96E-03 2.66 2.05 23.37 3.22
D103 191.33 111.67 1.80E-03 1.05E-03 1.00E-02 2.98 2.00 41.64 17.28
D104 98.56 50.56 9.28E-04 4.76E-04 6.03E-03 3.32 2.22 48.70 11.65
D105 0.00 0.00 0.00

Rep3
ash
D201 445.78 289.44 4.20E-03 2.73E-03 1.96E-02 2.56 1.71 35.07
D202 305.22 241.67 2.87E-03 2.28E-03 7.98E-03 2.64 2.10 20.82
D203 191.33 135.00 1.80E-03 1.27E-03 7.07E-03 2.90 2.15 29.44
D204 98.56 57.22 9.28E-04 5.39E-04 5.19E-03 3.27 2.28 41.94
D205 0.00 0.00
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Trial 38-Flayash Batch test with Benzene UV curve Rep2&3
10-Aug-01 Albright Light y = 0.001x - 0.0008 AvgC6H6

45C Abs=0.001[conc(mg/L)]-.0008 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 1.00E-03 -8.00E-04 54.60
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 418.80 418.80
D002 296.80 296.80
D003 194.30 194.30
D004 115.30 115.30
D005 0.00 0.00

Rep2
ash
D101 418.80 322.20 5.36E-03 4.12E-03 1.65E-02 2.38 1.78 23.07 0.00
D102 296.80 220.20 3.80E-03 2.82E-03 1.31E-02 2.55 1.88 25.81 8.33
D103 194.30 110.20 2.49E-03 1.41E-03 1.44E-02 2.85 1.84 43.28 15.36
D104 115.30 55.20 1.48E-03 7.07E-04 1.03E-02 3.15 1.99 52.12 14.02
D105 0.00 0.00 0.00

Rep3
ash
D201 418.80 322.20 5.36E-03 4.12E-03 1.65E-02 2.38 1.78 23.07
D202 296.80 240.20 3.80E-03 3.08E-03 9.66E-03 2.51 2.01 19.07
D203 194.30 130.20 2.49E-03 1.67E-03 1.09E-02 2.78 1.96 32.99
D204 115.30 64.20 1.48E-03 8.22E-04 8.72E-03 3.09 2.06 44.32
D205 0.00 0.00  

Trial 5-Flayash Batch test with Benzene UV curve Rep2&3
4/20/01 Albright dark y = 0.0013x - 0.006 AvgC6H6

254nm 25C Abs=0.0013[conc(mg/L)]+.006 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 1.30E-03 6.00E-03 33.46
{(Cf - Ci) * V} / m = Q

         Actual %Reduct % Error
sample Concentration-mg/L Concentration mol/L adsorption negative negative Cf v. Ci Cf

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS init v final Reps 2&3
no ash
D001 347.69 347.69
D002 238.46 238.46
D003 161.54 161.54
D004 56.92 56.92
D005 0.00 0.00

Rep2
ash
D101 347.69 217.31 4.45E-03 2.78E-03 2.23E-02 2.56 1.65 37.50 14.00
D102 238.46 151.92 3.05E-03 1.94E-03 1.48E-02 2.71 1.83 36.29 14.69
D103 161.54 122.69 2.07E-03 1.57E-03 6.63E-03 2.80 2.18 24.05 12.54
D104 56.92 33.46 7.29E-04 4.28E-04 4.00E-03 3.37 2.40 41.22 2.30
D105 0.00 0.00 0.00

Rep3
ash
D201 347.69 252.69 4.45E-03 3.24E-03 1.62E-02 2.49 1.79 27.32
D202 238.46 178.08 3.05E-03 2.28E-03 1.03E-02 2.64 1.99 25.32
D203 161.54 107.31 2.07E-03 1.37E-03 9.26E-03 2.86 2.03 33.57
D204 56.92 32.69 7.29E-04 4.19E-04 4.14E-03 3.38 2.38 42.57
D205 0.00 0.00
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Trial 12-Flayash Batch test with Benzene UV curve Rep2&3
6/19/01 Albright dark 45C y = 0.0009x - 0.0011 AvgC6H6

Abs=0.0009[conc(mg/L)]-.0011 persent in 
254nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 9.00E-04 1.10E-03 4.89
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 406.56 406.56
D002 312.11 312.11
D003 202.11 202.11
D004 89.89 89.89
D005 0.00 0.00

Rep2
ash
D101 406.56 316.11 5.20E-03 4.05E-03 1.54E-02 2.39 1.81 22.25 1.05
D102 312.11 178.33 4.00E-03 2.28E-03 2.28E-02 2.64 1.64 42.86 1.25
D103 202.11 81.67 2.59E-03 1.05E-03 2.06E-02 2.98 1.69 59.59 7.55
D104 89.89 29.44 1.15E-03 3.77E-04 1.03E-02 3.42 1.99 67.24 0.00
D105 0.00 0.00

Rep3
ash
D201 406.56 312.78 5.20E-03 4.00E-03 1.60E-02 2.40 1.80 23.07
D202 312.11 176.11 4.00E-03 2.25E-03 2.32E-02 2.65 1.63 43.57
D203 202.11 88.33 2.59E-03 1.13E-03 1.94E-02 2.95 1.71 56.29
D204 89.89 29.44 1.15E-03 3.77E-04 1.03E-02 3.42 1.99 67.24
D205 0.00 0.00  

Trial 42-Flayash Batch test with Benzene UV curve Rep2&3
29-Aug-01 MEA, Light y = 0.0009x - 0.0012 AvgC6H6

5.0g 5C Abs=0.0009[conc(mg/L)]-.0012 persent in 
254nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption tumbler 9.00E-04 -1.20E-03 10.78
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS Cf
no ash
D001 447.44 447.44
D002 279.11 279.11
D003 214.67 214.67
D004 83.56 83.56
D005 0.00 0.00

Rep2
ash
D101 447.44 298.33 5.73E-03 3.82E-03 1.91E-02 2.42 1.72 33.33 22.06
D102 279.11 271.67 3.57E-03 3.48E-03 9.53E-04 2.46 3.02 2.67 0.00
D103 214.67 176.11 2.75E-03 2.25E-03 4.94E-03 2.65 2.31 17.96 9.69
D104 83.56 75.00 1.07E-03 9.60E-04 1.10E-03 3.02 2.96 10.24 1.46
D105 0.00 0.00 0.00

Rep3
ash
D201 447.44 382.78 5.73E-03 4.90E-03 8.28E-03 2.31 2.08 14.45
D202 279.11 271.67 3.57E-03 3.48E-03 9.53E-04 2.46 3.02 2.67
D203 214.67 195.00 2.75E-03 2.50E-03 2.52E-03 2.60 2.60 9.16
D204 83.56 76.11 1.07E-03 9.74E-04 9.53E-04 3.01 3.02 8.91
D205 0.00 0.00
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Trial 46-Flayash Batch test with Benzene UV curve Rep2&3
30-Aug-01 MEA, Light y = 0.0009x - 0.0012 AvgC6H6

5.0g 25C Abs=0.0009[conc(mg/L)]-.0012 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption tumbler 9.00E-04 -1.20E-03 9.11
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS Cf
no ash
D001 458.56 458.56
D002 289.67 289.67
D003 209.11 209.11
D004 104.11 104.11
D005 0.00 0.00

Rep2
ash
D101 458.56 441.11 5.87E-03 5.65E-03 2.23E-03 2.25 2.65 3.80 21.66
D102 289.67 284.44 3.71E-03 3.64E-03 6.69E-04 2.44 3.17 1.80 1.17
D103 209.11 208.89 2.68E-03 2.67E-03 2.84E-05 2.57 4.55 0.11 2.13
D104 104.11 98.89 1.33E-03 1.27E-03 6.69E-04 2.90 3.17 5.02 2.25
D105 0.00 0.00 0.00

Rep3
ash
D201 458.56 345.56 5.87E-03 4.42E-03 1.45E-02 2.35 1.84 24.64
D202 289.67 281.11 3.71E-03 3.60E-03 1.10E-03 2.44 2.96 2.95
D203 209.11 204.44 2.68E-03 2.62E-03 5.97E-04 2.58 3.22 2.23
D204 104.11 96.67 1.33E-03 1.24E-03 9.53E-04 2.91 3.02 7.15
D205 0.00 0.00  

Trial 50-Flayash Batch test with Benzene UV curve Rep2&3
31-Aug-01 MEA, Light 45C y = 0.0008x - 0.0007 AvgC6H6

5.0g Abs=0.0008[conc(mg/L)]-.0007 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption tumbler 8.00E-04 -7.00E-04 9.63
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 529.63 529.63
D002 299.63 299.63
D003 195.88 195.88
D004 65.25 65.25
D005 0.00 0.00

Rep2
ash
D101 529.63 426.25 6.78E-03 5.46E-03 1.32E-02 2.26 1.88 19.52 18.77
D102 299.63 275.00 3.84E-03 3.52E-03 3.15E-03 2.45 2.50 8.22 10.91
D103 195.88 173.75 2.51E-03 2.22E-03 2.83E-03 2.65 2.55 11.30 6.47
D104 65.25 73.75 8.35E-04 9.44E-04 -1.09E-03 3.02 -13.03 1.67
D105 0.00 0.00 0.00

Rep3
ash
D201 529.63 346.25 6.78E-03 4.43E-03 2.35E-02 2.35 1.63 34.62
D202 299.63 245.00 3.84E-03 3.14E-03 6.99E-03 2.50 2.16 18.23
D203 195.88 162.50 2.51E-03 2.08E-03 4.27E-03 2.68 2.37 17.04
D204 65.25 75.00 8.35E-04 9.60E-04 -1.25E-03 3.02 -14.94
D205 0.00 0.00  
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Trial 31-Flayash Batch test with Toluene UV curve Rep2&3
8/1/01 Albright, Light y = 0.0019x + 0.0113 AvgC7H8

5.0g Abs=0.0019[conc(mg/L)]+.0113 persent in 
m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 5C 1.90E-03 1.13E-02 2.74
{(Cf - Ci) * V} / m = Q 261nm %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 403.79 403.79
D002 296.42 296.42
D003 210.89 210.89
D004 105.37 105.37
D005 0.00 0.00

Rep2
ash
D101 403.79 356.58 4.38E-03 3.87E-03 6.83E-03 2.41 2.17 11.69 4.43
D102 296.42 267.63 3.22E-03 2.90E-03 4.17E-03 2.54 2.38 9.71 4.72
D103 210.89 170.26 2.29E-03 1.85E-03 5.88E-03 2.73 2.23 19.27 7.73
D104 105.37 69.21 1.14E-03 7.51E-04 5.23E-03 3.12 2.28 34.32 3.04
D105 0.00 0.00 0.00

Rep3
ash
D201 403.79 340.79 4.38E-03 3.70E-03 9.12E-03 2.43 2.04 15.60
D202 296.42 255.00 3.22E-03 2.77E-03 5.99E-03 2.56 2.22 13.97
D203 210.89 157.11 2.29E-03 1.71E-03 7.78E-03 2.77 2.11 25.51
D204 105.37 67.11 1.14E-03 7.28E-04 5.54E-03 3.14 2.26 36.31
D205 0.00 0.00  

Trial 28-Flayash Batch test with Toluene UV curve Rep2&3
25-Jul-01 Albright, Light y = 0.002x + 0.0053 AvgC7H8

5.0g 25C Abs=0.002[conc(mg/L)]+.0053 persent in 
261nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.00E-03 5.30E-03 5.10
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 402.60 402.60
D002 289.85 289.85
D003 206.85 206.85
D004 101.85 101.85
D005 0.00 0.00

Rep2
ash
D101 402.60 324.25 4.37E-03 3.52E-03 1.13E-02 2.45 1.95 19.461 6.488825
D102 289.85 248.75 3.15E-03 2.70E-03 5.95E-03 2.57 2.23 14.17975 10.45226
D103 206.85 157.75 2.24E-03 1.71E-03 7.11E-03 2.77 2.15 23.73701 5.071315
D104 101.85 60.75 1.11E-03 6.59E-04 5.95E-03 3.18 2.23 40.35346 4.705882
D105 0.00 0.00 0

Rep3
ash
D201 402.60 346.75 4.37E-03 3.76E-03 8.08E-03 2.42 2.09 13.87233
D202 289.85 222.75 3.15E-03 2.42E-03 9.71E-03 2.62 2.01 23.14991
D203 206.85 149.75 2.24E-03 1.63E-03 8.26E-03 2.79 2.08 27.60454
D204 101.85 63.75 1.11E-03 6.92E-04 5.51E-03 3.16 2.26 37.40795
D205 0.00 0.00
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Trial 39-Flayash Batch test with Toluene UV curve Rep2&3
10-Aug-01 Albright, Light y = 0.002x + 0.006 AvgC7H8

5.0g 45C Abs=0.002[conc(mg/L)]+.006 persent in 
261nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.00E-03 6.00E-03 9.50
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 407.00 407.00
D002 300.25 300.25
D003 213.25 213.25
D004 79.50 79.50
D005 0.00 0.00

Rep2
ash
D101 407.00 322.50 4.42E-03 3.50E-03 1.22E-02 2.46 1.91 20.76 8.37
D102 300.25 256.50 3.26E-03 2.78E-03 6.33E-03 2.56 2.20 14.57 8.58
D103 213.25 159.50 2.31E-03 1.73E-03 7.78E-03 2.76 2.11 25.21 3.33
D104 79.50 65.00 8.63E-04 7.05E-04 2.10E-03 3.15 2.68 18.24 5.11
D105 0.00 0.00 0.00

Rep3
ash
D201 407.00 295.50 4.42E-03 3.21E-03 1.61E-02 2.49 1.79 27.40
D202 300.25 234.50 3.26E-03 2.55E-03 9.51E-03 2.59 2.02 21.90
D203 213.25 165.00 2.31E-03 1.79E-03 6.98E-03 2.75 2.16 22.63
D204 79.50 68.50 8.63E-04 7.43E-04 1.59E-03 3.13 2.80 13.84
D205 0.00 0.00  

Trial 43-Flayash Batch test with Toluene UV curve Rep2&3
29-Aug-01 MEA ash--Light y = 0.0017x + 0.0054 AvgC7H8

5.0g 5C Abs=0.0017[conc(mg/L)]+.0054 persent in 
261nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 1.70E-03 5.40E-03 0.65
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 382.41 382.41
D002 332.12 332.12
D003 187.71 187.71
D004 102.12 102.12
D005 0.00 0.00

Rep2
ash
D101 382.41 423.24 4.15E-03 4.59E-03 -5.91E-03 2.34 -10.68 6.62
D102 332.12 285.00 3.60E-03 3.09E-03 6.82E-03 2.51 2.17 14.19 9.91
D103 187.71 215.00 2.04E-03 2.33E-03 -3.95E-03 2.63 -14.54 12.87
D104 102.12 111.47 1.11E-03 1.21E-03 -1.35E-03 2.92 -9.16 6.86
D105 0.00 0.00 0.00

Rep3
ash
D201 382.41 453.24 4.15E-03 4.92E-03 -1.02E-02 2.31 -18.52
D202 332.12 256.76 3.60E-03 2.79E-03 1.09E-02 2.55 1.96 22.69
D203 187.71 246.76 2.04E-03 2.68E-03 -8.55E-03 2.57 -31.46
D204 102.12 103.82 1.11E-03 1.13E-03 -2.47E-04 2.95 -1.67
D205 0.00 0.00
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Trial 47-Flayash Batch test with Toluene UV curve Rep2&3
30-Aug-01 MEA ash--Light y = 0.002x + 0.0018 AvgC7H8

5.0g 25C Abs=0.002[conc(mg/L)]+.0018 persent in 
261nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.00E-03 1.80E-03 3.35
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 403.10 403.10
D002 276.85 276.85
D003 205.10 205.10
D004 100.35 100.35
D005 0.00 0.00

Rep2
ash
D101 403.10 355.25 4.37E-03 3.86E-03 6.92E-03 2.41 2.16 11.87 9.09
D102 276.85 230.25 3.00E-03 2.50E-03 6.74E-03 2.60 2.17 16.83 15.58
D103 205.10 199.25 2.23E-03 2.16E-03 8.47E-04 2.67 3.07 2.85 3.26
D104 100.35 91.75 1.09E-03 9.96E-04 1.24E-03 3.00 2.91 8.57 6.54
D105 0.00 0.00 0.00

Rep3
ash
D201 403.10 390.75 4.37E-03 4.24E-03 1.79E-03 2.37 2.75 3.06
D202 276.85 272.75 3.00E-03 2.96E-03 5.93E-04 2.53 3.23 1.48
D203 205.10 192.75 2.23E-03 2.09E-03 1.79E-03 2.68 2.75 6.02
D204 100.35 85.75 1.09E-03 9.31E-04 2.11E-03 3.03 2.68 14.55
D205 0.00 0.00  

Trial 51-Flayash Batch test with Toluene UV curve Rep2&3
30-Aug-01 MEA ash--Light y = 0.0021x - 0.0081 AvgC7H8

5.0g 45C Abs=0.0021[conc(mg/L)]-.0081 persent in 
261nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.10E-03 -8.10E-03 8.14
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 412.90 412.90
D002 292.43 292.43
D003 195.52 195.52
D004 102.90 102.90
D005 0.00 0.00

Rep2
ash
D101 412.90 374.76 4.48E-03 4.07E-03 5.52E-03 2.39 2.26 9.24 0.89
D102 292.43 266.67 3.17E-03 2.89E-03 3.73E-03 2.54 2.43 8.81 1.93
D103 195.52 193.33 2.12E-03 2.10E-03 3.17E-04 2.68 3.50 1.12 0.73
D104 102.90 93.33 1.12E-03 1.01E-03 1.39E-03 2.99 2.86 9.30 16.33
D105 0.00 0.00 0.00

Rep3
ash
D201 412.90 371.43 4.48E-03 4.03E-03 6.00E-03 2.39 2.22 10.04
D202 292.43 271.90 3.17E-03 2.95E-03 2.97E-03 2.53 2.53 7.02
D203 195.52 194.76 2.12E-03 2.11E-03 1.10E-04 2.67 3.96 0.39
D204 102.90 78.10 1.12E-03 8.48E-04 3.59E-03 3.07 2.44 24.11
D205 0.00 0.00  
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Trial 37-Flayash Batch test with Et-Benzene UV curve Rep2&3
9-Aug-01 Albright Light y = 0.0023x - 0.0012 AvgC8H10

5.0g 5C Abs=0.0023[conc(mg/L)]-.0012 persent in 
270nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.30E-03 -1.20E-03 7.91
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 99.22 99.22
D002 72.70 72.70
D003 49.22 49.22
D004 24.22 24.22
D005 0.00 0.00

Rep2
ash
D101 99.22 110.00 9.35E-04 1.04E-03 -8.12E-04 2.98 -10.87 2.37
D102 72.70 75.65 6.85E-04 7.13E-04 -2.23E-04 3.15 -4.07 5.75
D103 49.22 34.35 4.64E-04 3.24E-04 1.12E-03 3.49 2.95 30.21 2.53
D104 24.22 10.87 2.28E-04 1.02E-04 1.01E-03 3.99 3.00 55.12 4.00
D105 0.00 0.00 0.00

Rep3
ash
D201 99.22 107.39 9.35E-04 1.01E-03 -6.16E-04 3.00 -8.24
D202 72.70 71.30 6.85E-04 6.72E-04 1.05E-04 3.17 3.98 1.91
D203 49.22 33.48 4.64E-04 3.15E-04 1.19E-03 3.50 2.93 31.98
D204 24.22 10.43 2.28E-04 9.83E-05 1.04E-03 4.01 2.98 56.91
D205 0.00 0.00  

Trial 34-Flayash Batch test with Et-Benzene UV curve Rep2&3
3-Aug-01 Albright Light y = 0.0021x - 0.0029 AvgC8H10

5.0g 25C Abs=0.0021[conc(mg/L)]-.0029 persent in 
270nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.10E-03 -2.90E-03 9.48
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 101.38 101.38
D002 75.67 75.67
D003 48.76 48.76
D004 24.24 24.24
D005 0.00 0.00

Rep2
ash
D101 101.38 123.33 9.55E-04 1.16E-03 -1.65E-03 2.93 -21.65 6.83
D102 75.67 81.90 7.13E-04 7.71E-04 -4.70E-04 3.11 -8.24 3.49
D103 48.76 33.33 4.59E-04 3.14E-04 1.16E-03 3.50 2.93 31.64 5.41
D104 24.24 6.67 2.28E-04 6.28E-05 1.32E-03 4.20 2.88 72.50 0.00
D105 0.00 0.00 0.00

Rep3
ash
D201 101.38 132.38 9.55E-04 1.25E-03 -2.34E-03 2.90 -30.58
D202 75.67 79.05 7.13E-04 7.45E-04 -2.55E-04 3.13 -4.47
D203 48.76 35.24 4.59E-04 3.32E-04 1.02E-03 3.48 2.99 27.73
D204 24.24 6.67 2.28E-04 6.28E-05 1.32E-03 4.20 2.88 72.50
D205 0.00 0.00
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Trial 40-Flayash Batch test with Et-Benzene UV curve Rep2&3
16-Aug-01 Albright Light y = 0.0021x - 0.0018 AvgC8H10

5.0g 45C Abs=0.0021[conc(mg/L)]-.0018 persent in 
270nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.10E-03 -1.80E-03 13.71
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 102.05 102.05
D002 75.86 75.86
D003 50.14 50.14
D004 24.67 24.67
D005 0.00 0.00

Rep2
ash
D101 102.05 112.38 9.61E-04 1.06E-03 -7.79E-04 2.98 -10.13 3.67
D102 75.86 76.19 7.14E-04 7.18E-04 -2.51E-05 3.14 -0.44 11.88
D103 50.14 34.76 4.72E-04 3.27E-04 1.16E-03 3.48 2.94 30.67 8.22
D104 24.67 6.67 2.32E-04 6.28E-05 1.36E-03 4.20 2.87 72.97 17.65
D105 0.00 0.00 0.00

Rep3
ash
D201 102.05 116.67 9.61E-04 1.10E-03 -1.10E-03 2.96 -14.33
D202 75.86 67.14 7.14E-04 6.32E-04 6.57E-04 3.20 3.18 11.49
D203 50.14 31.90 4.72E-04 3.01E-04 1.37E-03 3.52 2.86 36.37
D204 24.67 8.10 2.32E-04 7.62E-05 1.25E-03 4.12 2.90 67.18
D205 0.00 0.00  

Trial 44-Flayash Batch test with Et-Benzene UV curve Rep2&3
6-Sep-01 Morgantown,MEA--Light y = 0.0024x - 0.0033 AvgC8H10

5.0g 5C Abs=0.0024[conc(mg/L)]-.0033 persent in 
270nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.40E-03 -3.30E-03 4.08
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 98.46 98.46
D002 76.38 76.38
D003 48.67 48.67
D004 22.83 22.83
D005 0.00 0.00

Rep2
ash
D101 98.46 125.21 9.27E-04 1.18E-03 -2.02E-03 2.93 -27.17 4.33
D102 76.38 102.29 7.19E-04 9.63E-04 -1.95E-03 3.02 -33.93 6.52
D103 48.67 64.79 4.58E-04 6.10E-04 -1.22E-03 3.21 -33.13 3.22
D104 22.83 32.29 2.15E-04 3.04E-04 -7.13E-04 3.52 -41.42 3.87
D105 0.00 0.00 0.00

Rep3
ash
D201 98.46 119.79 9.27E-04 1.13E-03 -1.61E-03 2.95 -21.67
D202 76.38 95.63 7.19E-04 9.01E-04 -1.45E-03 3.05 -25.20
D203 48.67 62.71 4.58E-04 5.91E-04 -1.06E-03 3.23 -28.85
D204 22.83 31.04 2.15E-04 2.92E-04 -6.19E-04 3.53 -35.95
D205 0.00 0.00
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Trial 48-Flayash Batch test with Et-Benzene UV curve Rep2&3
7-Sep-01 Morgantown,MEA--Light y = 0.0022x + 0.0006 AvgC8H10

5.0g 25C Abs=0.0022[conc(mg/L)]+.0006 persent in 
270nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.20E-03 6.00E-04 3.14
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 99.50 99.50
D002 73.36 73.36
D003 50.41 50.41
D004 24.95 24.95
D005 0.00 0.00

Rep2
ash
D101 99.50 146.14 9.37E-04 1.38E-03 -3.51E-03 2.86 -46.87 9.02
D102 73.36 105.68 6.91E-04 9.95E-04 -2.44E-03 3.00 -44.05 5.30
D103 50.41 72.05 4.75E-04 6.79E-04 -1.63E-03 3.17 -42.92 7.57
D104 24.95 32.95 2.35E-04 3.10E-04 -6.03E-04 3.51 -32.06 0.00
D105 0.00 0.00 0.00

Rep3
ash
D201 99.50 132.95 9.37E-04 1.25E-03 -2.52E-03 2.90 -33.62
D202 73.36 111.59 6.91E-04 1.05E-03 -2.88E-03 2.98 -52.11
D203 50.41 66.59 4.75E-04 6.27E-04 -1.22E-03 3.20 -32.10
D204 24.95 32.95 2.35E-04 3.10E-04 -6.03E-04 3.51 -32.06
D205 0.00 0.00  

Trial 52-Flayash Batch test with Et-Benzene UV curve Rep2&3
12-Sep-01 Morgantown,MEA--Light y = 0.0024x - 0.0028 AvgC8H10

5.0g 45C Abs=0.0024[conc(mg/L)]-.0028 persent in 
270nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.40E-03 -2.80E-03 4.08
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 99.29 99.29
D002 77.42 77.42
D003 43.46 43.46
D004 26.17 26.17
D005 0.00 0.00

Rep2
ash
D101 99.29 156.25 9.35E-04 1.47E-03 -4.29E-03 2.83 -57.36 11.73
D102 77.42 111.25 7.29E-04 1.05E-03 -2.55E-03 2.98 -43.70 3.96
D103 43.46 72.08 4.09E-04 6.79E-04 -2.16E-03 3.17 -65.87 0.00
D104 26.17 34.17 2.46E-04 3.22E-04 -6.03E-04 3.49 -30.57 4.88
D105 0.00 0.00 0.00

Rep3
ash
D201 99.29 137.92 9.35E-04 1.30E-03 -2.91E-03 2.89 -38.90
D202 77.42 115.83 7.29E-04 1.09E-03 -2.89E-03 2.96 -49.62
D203 43.46 72.08 4.09E-04 6.79E-04 -2.16E-03 3.17 -65.87
D204 26.17 32.50 2.46E-04 3.06E-04 -4.77E-04 3.51 -24.20
D205 0.00 0.00  
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Trial 32-Flayash Batch test with Xylenes UV curve Rep2&3
26-Jul-01 Albright Light y = 0.0022x - 0.0011 AvgC8H10

5.0g 5C Abs=0.0022[conc(mg/L)]-.00011persent in 
264nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.20E-03 -1.10E-03 9.59
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 102.77 102.77
D002 75.50 75.50
D003 50.73 50.73
D004 25.27 25.27
D005 0.00 0.00

Rep2
ash
D101 102.77 50.45 9.68E-04 4.75E-04 6.57E-03 3.32 2.18 50.91 3.48
D102 75.50 29.09 7.11E-04 2.74E-04 5.83E-03 3.56 2.23 61.47 9.86
D103 50.73 17.73 4.78E-04 1.67E-04 4.14E-03 3.78 2.38 65.05 0.00
D104x 25.27 6.36 2.38E-04 5.99E-05 2.37E-03 4.22 2.62 74.82 21.43
D105 0.00 0.00 0.00

Rep3
ash
D201 102.77 52.27 9.68E-04 4.92E-04 6.34E-03 3.31 2.20 49.14
D202 75.50 32.27 7.11E-04 3.04E-04 5.43E-03 3.52 2.27 57.25
D203 50.73 17.73 4.78E-04 1.67E-04 4.14E-03 3.78 2.38 65.05
D204 25.27 5.00 2.38E-04 4.71E-05 2.55E-03 4.33 2.59 80.22
D205 0.00 0.00  

Trial 29-Flayash Batch test with Xylenes UV curve Rep2&3
26-Jul-01 Albright Light y = 0.0022x - 0.0003 AvgC6H6

25C Abs=0.0022[conc(mg/L)]-.0003 persent in 
264nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.20E-03 -3.00E-04 6.95
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 103.77 103.77
D002 77.18 77.18
D003 49.23 49.23
D004 26.05 26.05
D005 0.00 0.00

Rep2
ash
D101 103.77 63.64 9.77E-04 5.99E-04 5.04E-03 3.22 2.30 38.68 8.57
D102 77.18 37.73 7.27E-04 3.55E-04 4.95E-03 3.45 2.30 51.12 2.35
D103 49.23 18.18 4.64E-04 1.71E-04 3.90E-03 3.77 2.41 63.07 9.09
D104x 26.05 9.55 2.45E-04 8.99E-05 2.07E-03 4.05 2.68 63.35 4.76
D105 0.00 0.00 0.00

Rep3
ash
D201 103.77 58.18 9.77E-04 5.48E-04 5.73E-03 3.26 2.24 43.93
D202 77.18 38.64 7.27E-04 3.64E-04 4.84E-03 3.44 2.32 49.94
D203 49.23 20.00 4.64E-04 1.88E-04 3.67E-03 3.72 2.44 59.37
D204 26.05 9.09 2.45E-04 8.56E-05 2.13E-03 4.07 2.67 65.10
D205 0.00 0.00
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Trial 41-Flayash Batch test with Xylenes UV curve Rep2&3
16-Aug-01 Albright Light y = 0.0022x - 0.001 AvgC8H10

45C Abs=0.0022[conc(mg/L)]-.001 persent in 
264nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.20E-03 -1.00E-03 8.64
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 100.00 100.00
D002 75.23 75.23
D003 47.27 47.27
D004 25.00 25.00
D005 0.00 0.00

Rep2
ash
D101 100.00 49.09 9.42E-04 4.62E-04 6.39E-03 3.34 2.19 50.91 9.26
D102 75.23 26.82 7.09E-04 2.53E-04 6.08E-03 3.60 2.22 64.35 4.84
D103 47.27 14.09 4.45E-04 1.33E-04 4.17E-03 3.88 2.38 70.19 3.23
D104x 25.00 5.00 2.35E-04 4.71E-05 2.51E-03 4.33 2.60 80.00 8.33
D105 0.00 0.00 0.00

Rep3
ash
D201 100.00 44.55 9.42E-04 4.20E-04 6.96E-03 3.38 2.16 55.45
D202 75.23 28.18 7.09E-04 2.65E-04 5.91E-03 3.58 2.23 62.54
D203 47.27 13.64 4.45E-04 1.28E-04 4.22E-03 3.89 2.37 71.15
D204 25.00 5.45 2.35E-04 5.14E-05 2.45E-03 4.29 2.61 78.18
D205 0.00 0.00  

Trial 45-Flayash Batch test with Xylenes UV curve Rep2&3
26-Jul-01 Morgantown, MEA--Light y = 0.0022x - 0.0019 AvgC8H10

5.0g 5C Abs=0.0022[conc(mg/L)]-.00019persent in 
264nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.20E-03 -1.90E-03 3.59
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 100.64 100.64
D002 75.86 75.86
D003 49.95 49.95
D004 24.05 24.05
D005 0.00 0.00

Rep2
ash
D101 100.64 96.36 9.48E-04 9.08E-04 5.37E-04 3.04 3.27 4.25 7.08
D102 75.86 71.36 7.15E-04 6.72E-04 5.65E-04 3.17 3.25 5.93 1.91
D103 49.95 47.27 4.71E-04 4.45E-04 3.37E-04 3.35 3.47 5.37 5.77
D104 24.05 23.18 2.26E-04 2.18E-04 1.08E-04 3.66 3.96 3.59 1.96
D105 0.00 0.00 0.00

Rep3
ash
D201 100.64 89.55 9.48E-04 8.43E-04 1.39E-03 3.07 2.86 11.02
D202 75.86 70.00 7.15E-04 6.59E-04 7.36E-04 3.18 3.13 7.73
D203 49.95 44.55 4.71E-04 4.20E-04 6.79E-04 3.38 3.17 10.83
D204 24.05 22.73 2.26E-04 2.14E-04 1.66E-04 3.67 3.78 5.48
D205 0.00 0.00
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Trial 49-Flayash Batch test with Xylenes UV curve Rep2&3
7-Sep-01 Morgantown, MEA--Light y = 0.0021x + 0.0008 AvgC8H10

5.0g 25C Abs=0.0021[conc(mg/L)]+.0008 persent in 
264nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.10E-03 8.00E-04 2.95
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 98.67 98.67
D002 77.00 77.00
D003 48.67 48.67
D004 25.57 25.57
D005 0.00 0.00

Rep2
ash
D101 98.67 91.90 9.29E-04 8.66E-04 8.49E-04 3.06 3.07 6.85 4.66
D102 77.00 73.33 7.25E-04 6.91E-04 4.60E-04 3.16 3.34 4.76 4.55
D103 48.67 46.19 4.58E-04 4.35E-04 3.11E-04 3.36 3.51 5.09 5.15
D104 25.57 23.33 2.41E-04 2.20E-04 2.81E-04 3.66 3.55 8.75 0.00
D105 0.00 0.00 0.00

Rep3
ash
D201 98.67 87.62 9.29E-04 8.25E-04 1.39E-03 3.08 2.86 11.20
D202 77.00 70.00 7.25E-04 6.59E-04 8.79E-04 3.18 3.06 9.09
D203 48.67 43.81 4.58E-04 4.13E-04 6.10E-04 3.38 3.21 9.98
D204 25.57 23.33 2.41E-04 2.20E-04 2.81E-04 3.66 3.55 8.75
D205 0.00 0.00  

Trial 53-Flayash Batch test with Xylenes UV curve Rep2&3
13-Sep-01 Morgantown, MEA--Light y = 0.0022x + 0.0004 AvgC8H10

5.0g 45C Abs=0.0022[conc(mg/L)]+.0004 persent in 
264nm m yintercept ash(mg/l)

{(Cf*Vf) - (Ci*Vi)} / m = Q = Sorption 2.20E-03 4.00E-04 5.27
{(Cf - Ci) * V} / m = Q %Reduct % Error

         Actual Conc Amoung
sample Concentration-mg/L Concentration mol/L adsorption negative negative init v final Reps 2&3

initialCi final-Cf initial-Ci final-Cf Q(mol/Kg) Log EQ Log ADS
no ash
D001 102.77 102.77
D002 67.55 67.55
D003 51.86 51.86
D004 25.73 25.73
D005 0.00 0.00

Rep2
ash
D101 102.77 94.55 9.68E-04 8.91E-04 1.03E-03 3.05 2.99 8.01 0.48
D102 67.55 65.00 6.36E-04 6.12E-04 3.20E-04 3.21 3.50 3.77 5.30
D103 51.86 45.00 4.88E-04 4.24E-04 8.62E-04 3.37 3.06 13.23 2.94
D104 25.73 20.00 2.42E-04 1.88E-04 7.19E-04 3.72 3.14 22.26 15.38
D105 0.00 0.00 0.00

Rep3
ash
D201 102.77 95.00 9.68E-04 8.95E-04 9.76E-04 3.05 3.01 7.56
D202 67.55 68.64 6.36E-04 6.46E-04 -1.37E-04 3.19 -1.62
D203 51.86 46.36 4.88E-04 4.37E-04 6.91E-04 3.36 3.16 10.60
D204 25.73 23.64 2.42E-04 2.23E-04 2.63E-04 3.65 3.58 8.13
D205 0.00 0.00  
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Appendix II.  UV Analytical Curves 
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UV curve trail 30
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UV Curve Trial 30 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

400 0.286
300 0.226

100 0.087
0 0
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UV curve trail 27
Conc. V. Ads. y = 0.0009x - 0.0032

R2 = 0.9977
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UV Curve Trial 27 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

300 0.2715
200 0.169
100 0.0855

0 0  
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UV curve trail 38
Conc. V. Ads.

y = 0.001x - 0.0008
R2 = 0.9998
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UV Curve Trial 38 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

300 0.296
200 0.1935

0 0
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UV curve trail 5
Conc. V. Ads.
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UV Curve Trial 5 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

300 0.368
200 0.268
100 0.102

0 0  
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UV curve trail 12
Conc. V. Ads.

y = 0.0009x - 0.0011
R2 = 0.9996
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UV Curve Trial 12 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

300 0.282
200 0.183

0.082
0 0  
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UV curve trail 42
Conc. V. Ads.

y = 0.0009x - 0.0012
R2 = 0.9842
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UV Curve Trial 42 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

300 0.25
200 0.192
100 0.074

0 0  
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UV curve trail 46
Conc. V. Ads. y = 0.001x - 0.0079

R2 = 0.9849
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UV Curve Trial 46 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

400 0.4115
300 0.2595
200 0.187
100 0.0925

0 0
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UV curve trail 50
Conc. V. Ads.

y = 0.0008x - 0.0007
R2 = 0.9998
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UV Curve Trial 50 Wavelength=254nm
Conc. Abs. Max absorbance
ppm

300 0.239
200 0.156

0 0  
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UV curve trail 31
Conc. V. Ads.

y = 0.0019x + 0.0113
R2 = 0.9983
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UV Curve Trial 31 Wavelength=261nm
Conc. Abs. Max absorbance
ppm

400 0.7785
300 0.5745
200 0.412
100 0.2115

0 0  
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UV curve trail 28
Conc. V. Ads.

y = 0.002x + 0.0053
R2 = 0.9983
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UV Curve Trial 28 Wavelength=261nm
Conc. Abs. Max absorbance
ppm

400 0.8105
300 0.585
200 0.419
100 0.209

0 0  
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UV curve trail 39
Conc. V. Ads.

y = 0.002x + 0.006
R2 = 0.9974
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UV Curve Trial 39 Wavelength=261nm
Conc. Abs. Max absorbance
ppm

300 0.6065
200 0.4325

0 0  
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UV curve trail 43
Conc. V. Ads.

y = 0.0017x + 0.0054
R2 = 0.9852
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UV Curve Trial 43 Wavelength=261nm
Conc. Abs. Max absorbance
ppm

400 0.6555
300 0.57
200 0.3245
100 0.179

0 0  
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UV curve trail 47
Conc. V. Ads.

y = 0.002x + 0.0018
R2 = 0.9949
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UV Curve Trial 47 Wavelength=261nm
Conc. Abs. Max absorbance
ppm

400 0.808
300 0.5555
200 0.412
100 0.2025

0 0  
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UV curve trail 51
Conc. V. Ads.

y = 0.0021x - 0.0081
R2 = 0.9975
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UV Curve Trial 51 Wavelength=261nm
Conc. Abs. Max absorbance
ppm

400 0.859
300 0.606
200 0.4025
100 0.208

0 0  
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UV curve trail 37
Conc. V. Ads. y = 0.0023x - 0.0012

R2 = 0.9996
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UV Curve Trial 37 Wavelength=270nm
Conc. Abs. Max absorbance
ppm

100 0.227
75 0.166
50 0.112
25 0.0545
0 0  
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UV curve trail 34
Conc. V. Ads. y = 0.0021x - 0.0029

R2 = 0.9991
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UV Curve Trial 34 Wavelength=270nm
Conc. Abs. Max absorbance
ppm

100 0.21
75 0.156
50 0.0995
25 0.048
0 0  
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UV curve trail 40
Conc. V. Ads. y = 0.0021x - 0.0018

R2 = 0.9997
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UV Curve Trial 40 Wavelength=270nm
Conc. Abs. Max absorbance
ppm

100 0.2125
75 0.1575
50 0.1035
25 0.05
0 0  
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UV curve trail 44
Conc. V. Ads. y = 0.0024x - 0.0033

R2 = 0.9982
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UV Curve Trial 44 Wavelength=270nm
Conc. Abs. Max absorbance
ppm

100 0.233
75 0.18
50 0.1135
25 0.0515
0 0  



 

-86 - 

 

 

 

UV curve trail 48
Conc. V. Ads.

y = 0.0022x + 0.0006
R2 = 0.9997

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Concentration (mg/L)

U
V 

A
bs

or
ba

nc
e

 

UV Curve Trial 48 Wavelength=270nm
Conc. Abs. Max absorbance
ppm

100 0.2195
75 0.162
50 0.1115
25 0.0555
0 0  
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UV curve trail 52
Conc. V. Ads. y = 0.0024x - 0.0028

R2 = 0.9919
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UV Curve Trial 52 Wavelength=270nm
Conc. Abs. Max absorbance
ppm

100 0.2355
75 0.183
50 0.1015
25 0.06
0 0  
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UV curve trail 32
Conc. V. Ads. y = 0.0022x - 0.0011

R2 = 0.9997
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UV Curve Trial 32 Wavelength=264nm
Conc. Abs. Max absorbance
ppm

100 0.225
75 0.165
50 0.1105
25 0.0545
0 0  
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UV curve trail 29
Conc. V. Ads.

y = 0.0022x - 0.0003
R2 = 0.9988
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UV Curve Trial 29 Wavelength=264nm
Conc. Abs. Max absorbance
ppm

75 0.1695
50 0.108
25 0.057
0 0  
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UV curve trail 41
Conc. V. Ads.

y = 0.0022x - 0.001
R2 = 0.998
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UV Curve Trial 41 Wavelength=264nm
Conc. Abs. Max absorbance
ppm

75 0.1645
50 0.103
25 0.054
0 0  
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UV curve trail 45
Conc. V. Ads. y = 0.0022x - 0.0019

R2 = 0.9996

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

Concentration (mg/L)

U
V 

A
bs

or
ba

nc
e

 

UV Curve Trial 45 Wavelength=264nm
Conc. Abs. Max absorbance
ppm

100 0.2195
75 0.165
50 0.108
25 0.051
0 0  
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UV curve trail 49
Conc. V. Ads. y = 0.0021x + 0.0008

R2 = 0.9987
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UV Curve Trial 49 Wavelength=264nm
Conc. Abs. Max absorbance
ppm

100 0.208
75 0.1625
50 0.103
25 0.0545
0 0  
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UV curve trail 53
Conc. V. Ads.

y = 0.0022x + 0.0004
R2 = 0.9894
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UV Curve Trial 53 Wavelength=264nm
Conc. Abs. Max absorbance
ppm

100 0.2265
75 0.149
50 0.1145
25 0.057
0 0  
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