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ABSTRACT 
 

Evaluating the Approach of Using NOx Control Performance Tracking for 

On-Board Diagnostics of Heavy-Duty Diesel Vehicles 

 

Renata Castiglioni 
 

Regulatory agencies have taken several measures to ensure proper regulation of engine exhaust 

in response to a yearly rise in urban pollution levels. This is due in no small part to vehicular traffic 

and resulting air pollution from exhaust. 

This study evaluates the NOx Control Performance Tracking (NCPT) Onboard Diagnostic 

(OBD) parameter proposed by the California Air Resources Board (CARB) as a tool to assess in-

use heavy-duty vehicle performance.  It also assesses the various criteria prescribed in the NCPT 

approach for applicability to real-world vehicle data.  

In order to analyze the data, the study also investigated the effect of various filter constants 

values over the cumulative values binned into the various categories. The study also illustrates the 

differences in the bin statistics as a function of vehicle activity and it evaluates the applicability of 

the NCPT approach for evaluating Not-to-Exceed (NTE) operation. The collected data displayed 

abnormalities which could be attributed to sensor limitations. This project proposes two options to 

reduce the noise in the sensor’s data. In the first, it uses the NOx stable channel – if available – 

and the second is the exponentially weighted moving average (EWMA). Both reducing methods 

were then compared to the original raw dataset to ensure no over smoothing of the data occurred. 

Once these datasets were finalized, they went through the Moving-Average Window (MAW) 

method proposed by EURO VI regulations before they could be binned. 

The results indicate that despite applying different methods for NOx data reduction, the final 

binning product only displayed small change in value for certain bins while some remained intact. 

In addition, the vehicle displayed very few values inside the NTE zone, accounting at the most for 

17% of the engine’s operation.
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1. Introduction 

Air pollution as a result of vehicle exhaust, has been a concern to human health world over for 

decades. It’s well established that heavy-duty diesel (HDD) engines produce more oxides of 

nitrogen (NOx) than similar gasoline engines [1]. Several studies have been conducted to reduce 

emissions by studying the effects of different after treatment systems when added to the exhaust 

system. Despite continuous progress in emission technologies, overall emissions still continue to 

rise due to an increase in both number of vehicles and average yearly mileage traveled by vehicles 

within the United States [2]. In response, the United States government has committed to 

regulating emissions in conjunction with the engine manufacturers in order to minimize the 

emission profiles of these engines. However, as exhaust aftertreatment systems (EATS) become 

more complex there has been a growing need to determine appropriate means to ensure the proper 

working of the complex EATS. The current federal test procedure (FTP) cycle is not the most 

accurate representation of real-world vehicle activity [3]. There exists significant difference in 

real-world emissions rates and certification data [4]. In response, the California Air Resources 

Board (CARB) is in the process of introducing the window-averaging method to bin NOx data for 

standard evaluations of emission data regardless of route or driving cycle. This method is referred 

as the NOx Control Performance Tracking (NCPT) or Real Emissions Assessment Logging 

(REAL). This program has been recently implemented as part of the OBD regulations, which 

emphasize the use of current technology to analyze current onroad emission [5]. 

As part an effort to improve analysis of vehicular emissions profile and inform meaningful 

regulations, West Virginia University (WVU) was selected to conduct a study in California where 

researchers collected onroad data for multiple makes and models of heavy-duty vehicles. Sensors 

were attached to these vehicles before returning the vehicles to their usual schedule. Data was 

recorded for at least three months for each of the vehicles tested. The resulting datasets were then 

evaluated to better inform understanding of the emissions profile.  
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  Objective 

The goal of this study was to analyze real-world data using a binning approach to characterize 

vehicle activity and in-use emissions for the purposes of OBD. The specific objective of the study 

included the analysis of real-world telemetry data in accordance to a binning method proposed by 

CARB. The main objective was to investigate the on-road emission data for a better understanding 

of the engine operation condition beyond test cycles. To do so, data was analyzed daily, weekly, 

and monthly in order to create consistent frames of reference when analyzing data sets.  
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2. Literature Review 

  History 

The first petroleum-based automobile was invented in Germany in the late 1800s. By the end 

of the first half of the twentieth century, the United States had become a major manufacturer of 

automobiles due to the perfection of mass production techniques first developed by Henry Ford. 

With the exception of a short stall in vehicle sales in 1927, the automotive industry has continued 

to grow yearly and accounts for vehicles from vocational cars to heavy duty vehicles [6]. 

The increase in vehicles sales and supporting infrastructure via highway building projects has 

also led to an increase in air pollution across the United States. This problem is specifically 

pronounced in cities due to the high volumes of vehicle traffic confined to a smaller area. In 1943, 

Los Angeles reported the first ever smog cloud which resulted in multiple health problems for 

residents. This first ever smog cloud incident was so pronounced that some residents were led to 

believe it was the result of a Japanese chemical weapons attack. It wasn’t until 1948 that scientists 

discovered that smog was the result of vehicle exhaust and industrial pollution [7]. By 1955, in 

response to a growing concern for the health hazard caused by air pollution, the Department of 

Health, Education, and Welfare authorized the first air pollution program. This was the first 

instance of government’s attempt to legislate air pollution and conduct research on the sources of 

pollution through the Air Pollution Control Act [8]. As an improvement to prior legislation, the 

Clean Air Act (CAA) of 1963 was passed. The CAA was intended to reduce pollution by holding 

each state responsible for its own control activities. In turn, the Department of Health, Education, 

and Welfare would conduct research into air pollution using federal funds. In 1965, the CAA was 

improved when amendments were passed to create national standards for motor vehicle pollution. 

However, it wasn’t until 1967 when President Johnson asked Congress to pass new legislation that 

would enhance research and control efforts. As a result, Congress passed the Air Quality Act near 

the end of 1967. This new legislation aimed to expand funds for pollution research, air quality 

monitoring, and emissions control strategies [9]. 

By 1970, amendments were made to the 1963 CAA despite a decrease in air pollution across 

the United States. The 1970 amendments allowed both state and federal government to regulate 

emissions at both the industrial and individual level. It also established the National Emission 

Standards for Hazardous Air Pollutants (NESHAP), the National Ambient Air Quality Standards 
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(NAAQS), and required individual states to plan for a means of meeting these standards. It was 

during this same period that the Environmental Protection Agency (EPA) was established to 

implement the requirements of this new legislation. The EPA is still a major government agency 

responsible for pollution regulation in the United States. In 1977 and 1990, additional amendments 

were passed to the 1963 CAA to increase the authority of the federal government to regulate 

pollution and maintain air quality standards [8]. Throughout the years the regulations have gone 

from nonexistent in early 1950s to extremely strict. For instance, currently the NOx standard for 

HDD vehicles is 0.2 g/bhp-hr and California even offers an optional low NOx standard of 0.02 

g/bhp-hr [10]. 

  Background 

 NOx Formation 

In compression ignition (CI) engines – Diesel engines – fuel and air are not mixed until both 

are injected into the cylinder and the ignition process starts. In CI engines, combustion follows the 

diffusion combustion pattern, whereby the fuel and oxidizer mix during the combustion process. 

When comparing engines, engines utilizing the CI combustion process produce a higher 

compression ratio and therefore increased efficiency in relation to spark ignition (gasoline) 

engines. However, this increased efficiency comes at the cost of higher particulate matter and NOx 

emissions [11]. 

Nitrogen oxides (NOx) is a family composed of multiple compounds. Table 1 displays the list 

of compounds within the NOx family. However, the EPA only regulates nitrogen oxide (NO) and 

nitrogen dioxide (NO2), which are the most common NOx compounds present in engine exhaust 

gas. Therefore, for the purpose of this project, NO and NO2 are the only NOx family compounds 

referenced when the author uses the term NOx [12].  
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Table 1 - Nitrous Oxides Types and Properties [12] 

 

NO is a common compound formed in the atmosphere; however, a percentage of NO present 

is the result of fuel combustion. The governing equations that summarize the formation of NO can 

be described in the following manner, which is often referred to as the Zeldovich mechanism [1]. 

 

 O+N2→NO+N (1) 

 N+O2→NO+O (2) 

 N+OH→NO+H (3) 

 

The formation of NO can occur at both the flame front as well as the end of combustion gases. 

In fact, during normal engine function the majority of NO is formed at the end of the combustion 

cycle. The formation of NO is mostly dependent on temperature. Higher temperatures combined 

with high oxygen concentrations will result in the formation of more NO relative to lower 

temperatures. Additionally, at the flame zone, NO can convert into NO2 and NO2 can convert into 

NO by the following processes described by equations (4 and (5. The latter process won’t occur if 

the flame is mixed with a cooler fluid meaning that the highest NO2 to NO conversion occurs at 

light loads when the cylinders still contain cooler sections that could quench the flame [1]. The 

primary emitter from the engines is known to be NO [12]. 
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 NO+HO2→NO2+OH (4) 

 NO2+O→NO+O2 (5) 

 

NOx compounds may form nitric acid (HNO3) or nitrous acid (HNO2) when dissolved in water. 

Both compounds are well known to influence the rate of acid rain events. The NOx compounds 

are known to be naturally produced in nature and are commonly found in the air. Therefore, any 

addition of NOx from outside sources can result in an oversaturation of these compounds in the 

air. However, NO is mostly produced by human activities. The natural sources are assumed to 

account for less than 10% of its emissions. Both NO and carbon dioxide (CO2) are known to cause 

difficulties for the blood to absorb oxygen, which is a threat to human health. As for NO2 the main 

concern is its tendency to produce ozone (O3) which in excess is the main contributor for smog 

[12].  

NOx can also have profound impacts on aquatic life. A process called eutrophication can occur 

when there’s an excess of nitrates present in water. Eutrophication is the process by which 

phytoplankton produce a surplus of nutrients which in turn cause excessive growth of certain plants 

in freshwater and saltwater environments that deplete the area of oxygen resulting in the death of 

marine life and aquatic plants [12]. This highlights the multiple factors driving regulations for a 

reduction of these gases.  

 NOx Regulation 

According to the EPA, in 1997 the ozone pollution became an urgent matter regarding health 

hazards affecting millions of Americans. The areas designated as non-attainment were facing 

issues reaching the desired air quality and/or maintaining the quality. As a result, there was a need 

to regulate the emissions of NOx, hydrocarbons, and particulate matter for heave-duty engines. It 

was in 1997 that the EPA in association with the manufactures came together to create control 

strategies for NOx for onroad HDD vehicles [13]. This was the first attempt to reduce NOx 

emissions focused solely on HDD vehicles. Since 1997 multiple other regulations were passed in 

order to further decrease NOx emissions. As part of a study Figure 1 shows how the regulations 

have evolved from 1985 to the 2010 NOx regulation proposed by the CARB.  

According the U.S. EPA NOx main sources are automotive, power plants, and off-road 

equipment. This main method that this family of compounds gets in the air is from the burn of 
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fossil fuel [14]. In addition, NOx can also react with ozone and form acid rain [12]. As a result, 

there’s a continued effort from multiple agencies to regulate and decrease the amount of NOx 

emitted every year. The number one NOx emitter in the United States is the agriculture sector. 

However, agriculture is difficult to regulate due to NOx emissions resulting mainly from fertilizers 

and soil treatments which are necessary to maintaining growth rate of crops. Fuel combustion only 

accounts for about 5% of the total NOx emission, however it has displayed a 4% increase since 

1990 making it an easier target for reduction by regulation [13]. 

 

Diesel engines tend to produce more NOx than gasoline engines due to the method of fuel 

mixture. While gas engines rely on a premixed combustion method, diesel engines have a diffusion 

combustion method. Due to the diffusion combustion method, the fuel and air are mixed inside of 

the combustion chamber turning it into a heterogeneous mixture. The resulting variables of 

combination of the heterogeneous mixture, ignition delay, and fuel to air ratio influence the amount 

of NOx generated during combustion [15].  There have been multiple studies conducted in addition 

Figure 1 - NOx Emissions Standards for Heavy-Duty Diesel Vehicles Timeline [44] 
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to current studies in development to maximize the combustion efficiency of diesel engines and 

decrease NOx formation. However, due to the nature of combustion it’s impractical to assume that 

NOx formation can be completely eliminated during the diffusion combustion process. To mitigate 

the NOx formation, aftertreatment systems have been developed to assist the reduction of the 

emissions.  

For diesel engine emissions the main concern is NOx, therefore the vehicles are usually 

equipped with selective catalytic reduction (SCR) technology to reduce NOx. A SCR that is 

working properly can reduce NOx emissions by almost 90% [16]. Additional aftertreatment 

systems common in diesel engine vehicles include diesel exhaust fluid (DEF) which is added to 

the exhaust before it goes through the SCR, a diesel particulate filter (DPF), and a diesel oxidation 

catalyst (DOC). For the SCR to function as intended, first the DEF must be injected into the 

exhaust flow – which is usually composed of urea – and through a reduction reaction NOx breaks 

down into nitrogen gas and water [17]. However, the SCR system function is dependent on 

temperature. The chemical reaction doesn’t start until the system temperature reaches at least 

2000C. If the SCR system is operating below 2000C the SCR is highly inefficient. Temperature 

dependency causes fluctuation in diesel engine emissions due to the tendency of diesel engines 

operating at low speeds under low loads to not reach desired temperature resulting in higher than 

normal NOx emission. Therefore, even with multiple aftertreatment systems already in place, the 

United States EPA frequently passes regulations to incentivize the development of technologies to 

negate the need for a temperature dependent system. For instance, in Figure 1 the US EPA set a 

NOx limit of 0.2 g/bhp-hr in 2010 and as of 2013 the CARB has stablished a new optional ultra-

low NOx standard of 0.02 g/bhp-hr. However, there are still multiple studies being conducted in 

order to analyze the feasibility of this new ultra-low standard [10]. The table below summarizes 

the standards over the years for heavy-duty compression-ignition engines as of 2016. 
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In addition to the regulations described above, the EPA has also implemented the Not-To-

Exceed (NTE) mission limit to analyze the HDD engine’s emissions over a defined operation 

region under a set of rules that qualify to be an NTE operation. In theory, NTE operation method 

is to represent real-world long-haul truck operation [18]. 

 

Not-To-Exceed (NTE): 

This approach takes in consideration that every engine has a control area, in which its emission 

values must be compliant. This region contains the values which represent the engine’s expected 

engine speed and load under normal operation. In Figure 2, the blue area represents the NTE zone 

for the particular engine used for that map, which is bounded by the torque curve and the 30% 

peak torque, and the speed threshold (n15). For the emissions to be within this category they must 

be quantified over a period of 30 seconds before being compared to the NTE emissions standard 

[4].  

In addition to the boundary conditions provided in Figure 2, the NTE cycle also has a 

temperature conditions that must be met. For the temperature to be considered compliant (TNTE) it 

Table 2 - Heavy-Duty Highway Diesel Engines EPA Emissions Standards [47] 
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must lower than the ambient temperature which is also dependent on altitude [4]. The equations 

bellow (6-8) displays the relationship between those variables. 

 AltitudeNTE≤5,500 ft (6) 

 TNTE<TAmbient (7) 

 TAmbient=-0.00254×Altitude(ft)+100 (8) 

For engines that are equipped with an exhaust gas recirculation (EGR) system there are two 

more exclusions that should be included. These conditions remove NTE points if it’s under cold 

temperature conditions. It requires that the intake manifold temperature (IMTEGR) to above or 

equal to the NTE reference IMT, and that the engine coolant temperature to be larger than the NTE 

reference value (ECTEGR) [18].  

 IMTEGR(℃)=11.428×IMPabs(bar)+88.571 (9) 

 ECTEGR(℃)=12.853×IMPabs(bar)+127.11 (10) 

 

This approach however does have several limitations. For instance, the strict boundaries of the 

NTE zone as well as the minimum event duration limits the amount of data inside the control zone. 

Figure 2 - NTE Zone Representation for a Generic Engine Torque Curve [18] 
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Depending of the vehicle’s type of operation the driver may perform frequent gears change or have 

stop and go driving cycle. These driving operations may possibly exclude the data from the NTE 

zone. This indicates that this method may not be applicable to all vocations. In addition, the need 

for ambient condition and additional engine data results in a need for several more channels in the 

ECU which may not all be present for the required period (30 seconds) [4]. A more detailed 

explanation of the calculations used for this method can be found in the methodology section. 

 Measurement Techniques 

 Regulatory 

Besides the commonly used zirconia sensor, there are several technologies that have been 

developed to detect NOx in diesel engine exhaust. Some of these technologies are more accurate 

than the smaller zirconia sensor, however they all have unique drawbacks. The following are some 

of the NOx sensor data acquisition methods and technologies acknowledged by EPA. 

NOx Chemiluminescent Detector (CLD): 

The NOx CLD system can only detect NO, therefore requiring a catalyst to first convert NO2 

to NO prior to detection. When NO and O3 react, they produce NO2
+ (excited state), this reaction 

produces photons [19]. This light (photons) can be counted with a photon counter that uses a photo 

multiplier tube to detect the photons. The output voltage from this process can then be linearly 

correlated to the NO concentration [20]. Figure 3 is a representation of the device and how it works. 

The NOx CLD system requires zero air supply but is quite large and expensive, making it a less 

than desirable candidate for onroad emissions data collection [21]. 
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Electrochemical NO Sensor: 

Electrochemical NO sensors contain cells that only sense NO, which one more requires a 

catalyst for the conversion. This cell is known to be very small and relatively inexpensive 

compared to the other analyzers. However, this sensor is known to have a slower response time 

which impairs accuracy. Additionally, a high relative humidity can also affect the sensor’s 

performance which requires corrections for accurate function [21]. 

The electrochemical NO sensor is usually amperometric and it operates by producing an 

electrical signal when it reacts with the analyte. The desired compound goes through either 

oxidation or reduction in an electrode and the concentration can be estimated from the output 

current [22]. Figure 4 displays a simple representation of this sensor, where the sensor in this figure 

is detecting carbon monoxide instead of NOx. 

Figure 3 - Chemiluminescent Detector Working Principle [20] 
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Nondispersive Infra-Red (NDIR) NO Analyzer with Luft Detector: 

Similarly to the other analyzers the NDIR NO analyzer with Luft Detector can only detect NO, 

therefore it requires a catalyst to first convert NO2 to NO. The NDIR system is usually used for 

CO/CO2 data collection, however with the addition of the Luft detector it can be used for NO 

detection. A Luft detector uses a non-dispersive optical analyzer to select the gas to analyze, which 

makes it more sensitive to wavelengths of the desired chemical instead of the other compounds in 

the exhaust gas. The system consists of a diaphragm between two sealed cells that contains the 

desired gas that will be analyzed. In the diaphragm a deflection occurs when there’s a difference 

in pressure between the cells. By measuring the deflection with a capacitor, the NDIR NO analyzer 

can estimate the concentration of the desired gas. Because this system requires the Luft detector it 

is quite sensitive to vibrations which makes it unsuitable to onroad operations [21]. 

Nondispersive Ultraviolet Detector (NDUV): 

The NDUV detector is a commonly used device to measure NOx [23]. This analyzer guides 

the sample gas through a chamber where it measures the wavelength of the gas when it absorbs 

light. These wavelengths allow the detector to return information regarding the gas composition. 

This system even though has good performance and accuracy, it is relatively large and complex 

for onroad applications [24]. 

Figure 4- Electrochemical Sensor Representation [46] 
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Portable Emissions Measurement System (PEMS): 

The PEMS system, which uses either a chemiluminescent or NDUV detector, has the most 

reliable real-time measurement when compared to all the previously described systems. It provides 

continuous and accurate measurement of multiple gases (NOx, CO, CO2, and THC). The system 

is also capable of measuring accurate exhaust flow rate from the Engine Electronic Control Module 

(ECM) or the exhaust flow meter and GPS data [25]. The following figure represents the PEMS 

flow diagram according the CARB. 

A PEMS can measure concentration for each gas utilizing different methods. For instance, a 

PEMS unit can be equipped with a chemiluminescent section so it can measure NOx while using 

a NDIR for the other compounds. This ability to use multiple methods in one unit to measure the 

exhaust flow makes the unit extremely versatile and valuable for research. However, it may be 

impractical for onroad applications because unit is too large and expensive to be added to every 

vehicle [26]. 

 

Figure 5 - PEMS Flow Diagram [25] 
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 Onboard Zirconia Sensor 

The yttrium-stabilized ZrO2 (YSZ) is most commonly used for NOx emission onroad data due 

to its size and cost effectiveness in comparison to the PEMS system. This type of sensor contains 

two chambers usually coated with platinum [3]. The first cell removes O2 so it won’t interfere with 

the sample while the other cell dissociates NO into N2 and O2. The O2 removed from the second 

cell allows the sensor to calculate the NOx concentration by determining the voltage required to 

remove the O2 caused by the dissociation [21]. For optimal results, the NO2 should be first 

converted into NO using a catalyst, such as the SCR [27]. Figure 6 displays YSZ sensor operation. 

The data is then broadcasted publicly through the J1939 CAN communication protocol.  

 

 

 

In 2002 WVU conducted a study where it compared the ZrO2 sensor to well established 

analyzers, such as the NDIR. Despite indications that the zirconia sensor displays errors between 

6-12% for lower NOx concentrations in the 5-175 ppm range, the study concluded that the ZrO2 

sensor was found to be the best device for onboard measurements when comparing accuracy and 

Figure 6 - Zirconia Based NOx Sensor Representation [3] 
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cost effectiveness [21]. Later in the study performed by Thiruvengadam et al. [28] the data from 

OBD-NOx was compared to the data from the control volume system (CVS) as well as PEMS in 

order to analyze the limitations of these sensors. At high concentrations the OBD sensor displayed 

readings within 10% of the PEMS and CVS, while at lower concentrations were the SCR 

functioned properly the values between the OBD sensor and the other two systems had a much 

larger difference. Overall, the sensor displayed acceptable results when compared to PEMS and 

FTIR measurements. However, the authors suggest that for a more accurate dataset a predictive 

algorithm or filtering algorithm could be used in the sensor data. The authors note that the large 

errors could be attributed to the original equipment manufacturers’ (OEM) method to 

correct/predict the data. Figure 7 displays the results from the study. 

 

 

Some of the limitations of this sensor includes being affected by multiple engine subsystems 

such as the SCR catalyst deterioration, urea dosing control and EGR control. In addition, the sensor 

may be turned off during the vehicle operation for the safety of the device [29]. Also, the sensor 

can’t differentiate the components of the exhaust gas. Therefore, it has a high cross-sensitivity 

with certain compounds such as ammonia, isocyanic acid (HNCO), and hydrogen cyanide (HCN).  

HCN is usually found in ethanol systems. Most of these compounds are a result from the urea 

dosing control system defects [30]. Note that this sensor required a temperature of 700 oC to work 

Figure 7 - FTIR vs PEMS vs NOx Sensor [28] 
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properly, therefore during cold start operation the sensor doesn’t record reliable data [3]. Because 

of the high temperature water droplets may affect the sensor by causing rapid cooling [21]. 

 Onboard Diagnostic (OBD) System 

Over the years CARB and the EPA have implemented several regulations for the types of 

technologies and systems used in the acquisition and monitoring of data, and emissions standards 

for the vehicles, some of the regulations cover onboard diagnostic (OBD) systems. The system can 

be referred as either OBD or OBD II, where the later describes the last generation of the technology 

[31]. These regulations can be found in the California Code of Regulations (CCR) or in the Code 

of Federal Regulations (CFR). While most states only must comply with the CFR the vehicles used 

in California must be in compliance with both regulations. The OBD has the purpose of monitoring 

the engine’s emissions and detecting any possible malfunction in the emissions system based on 

the current emissions standards.  While the Clean Air Act Amendments (CAAA) only required the 

monitoring of the catalyst and oxygen sensor, the OBD regulation now requires the monitoring of 

several system for emission control such as the EGR, misfire, oxygen sensor heater, and others 

[32]. These malfunctions should be displayed to the vehicle operator and also recorded in the 

onboard computer system [31].  

According to the CFR, all vehicles MY 2017 or later must be equipped with an OBD system 

and the system must comply with CCR’s OBD II requirements. Note that all light-duty trucks and 

complete heavy-duty vehicles weighing 14,000 pounds of gross vehicle weight rating (GVWR) or 

less must have OBD system [33]. The system must be able to monitor the engine system and 

emissions throughout the useful life [32]. The regulation is reviewed and regulated every year. 

According to title 13 section 1971 of the CCR [32], the OBD system should be able to operate 

without any type of maintenance. The system is also not allowed to be programed. 

 Moving-Average Windows (MAW) 

There are multiple studies that have aimed to understand and better analyze the emission data 

recorded by the onboard sensors. For instance, in 2008 WVU Center of Alternative Fuels Engines 

and Emissions (CAFEE) proposed the use of WBW method to calculate break-specific NOx 

(bsNOx) for HDD engine. Shade et al. [34] describes that as long as the Engine Control Unit 
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(ECU) broadcasts all channels that are needed to calculate NOx and work – which are later 

described in detail – this method can be easily used. In order to perform this method, first the 

instantaneous work (bhp-hr) and NOx rate (g/s) must be calculated using the ECU channels. The 

following equations describes how the bsNOx can be calculated, where N is the engine speed, T 

is engine Torque, and t is time, and Δt is the window duration in seconds.  

 WorkWindow(bhp-hr)=∑
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The WBW method has some limitations, such as the data becomes invalid if the pressure is 

less than 82.5 kPa, the ambient temperature is less than -7 oC, engine coolant temperature is less 

than 70oC, and altitudes above 1600 m [3]. This method follows a similar approach to the MAW.  

In order to bin the data, first it must go through MAW. This method is acknowledged by the 

Euro VI Regulation [35]. The moving average can function as a way to smooth the data by 

replacing a segment of data points with their average. These averages are stored into windows 

which are later compiled into one vector [36]. Like the WBW, this method could be used to analyze 

the exhaust temperature, distance, and power. Where for each of these parameters the dataset is 

compiled in segments (windows) for a specific amount of time, also known as the data sampling 

period (Δt). According to CARB the sampling period should be set for 15 seconds [37]. The 

following equations were used to generate the window for the other parameters. Similar to equation 

(13, where ‘i’ indicates the window number (individual variables, e.g. Window1, Window2, etc.). 

The final continuous vector can be created by concatenating the windows as shown in equation 

(14, Wparameter is the new vector for a specific parameter after it goes through the averaging window 

method and count is just a variable used to keep track of the windows created by the this procedure 

(e.g. Wparameter(1,1), Wparameter(2,1), Wparameter(3,1), etc.). 

 Window(i,1)=mean(Parameter(t:t+∆t-1))  (13) 

 WParameter(count,1)=Window('count') (14) 
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3. Methodology 

  Vehicle Selection 

In order to properly analyze the data, first the manufacturers must provide enough parameters 

that are streamed by the ECU. The availability of the channels dictates which vehicles are suitable 

to be used for the analysis and which ones aren’t. Certain channels can’t be easily estimated, such 

as the exhaust mass flow which requires refined algorithms to be estimated. This parameter could 

alone remove a vehicle from the list of suitable vehicles. Alongside the exhaust mass flow channel, 

the raw NOx channel must be present as well. The data from this channel should come from a 

sensor located downstream the aftertreatment section of the exhaust pipe. There are several other 

channels that are desired for this type of study; however, they are more commonly found than the 

previous ones stated.  

Based on the needs described above a simple program can be generated to analyze each 

individual vehicle available and generate a spreadsheet for each one of them describing the quality 

of each file and availability of each channel. By using MATLAB, a code was generated to analyze 

each trip of each vehicle and return an excel spreadsheet with the channels’ availability and quality 

to ensure that the channels weren’t filled with Not-a-Numbers (NaNs) or zeros. The program 

returned either a 1 if the channel was available or a 0 if it wasn’t. Then it investigates the data to 

see if it was composed of NaNs or zero. For this project the following channels were to be 

analyzed: exhaust flow temperature, exhaust flow mass, engine speed, vehicle speed, NOx 

downstream from SCR, NOx stable, and torque (nominal, actual, and reference).  Certain vehicles 

can display entire trips filled with NaNs, making them not suitable options. Finally, once the 

spreadsheet is done a vehicle can be selected.  

  Data Setup 

 Filtering Raw NOx Data 

In order to implement the tracking concept first one needs to analyze the quality of the NOx 

data. That can be done by using the NOx stable channel or if it’s not present an exponentially 

weighted moving average (EWMA).  
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 NOx Stable 

As part of the vehicle’s ECU channels list is the NOx stable channel. This parameter works as 

a control channel to the NOx raw channel. This channel indicates the stability of the NOx sensor 

throughout the vehicle’s activity. For the vehicle chosen, the sections in which the value of the 

NOx Stable channel was wither 1 or 3 the NOx raw channel displayed instability. Therefore, the 

values in those parts were replaced with NaNs.  

When calculating the bsNOx bin for this method, the position in which the NOx values were 

replaced with NaNs were also applied to the work vector. Therefore, when the total NOx (g) for a 

bin were divided by the total work (bhp-hr) in that same bin the amount of NaNs in each vector 

were at the same position. This ensures that the total emission in the bin are not underestimating 

the value in the bsNOx bin. 

 Exponentially Weighted Moving Average (EWMA) 

Before one can explain what EWMA is, one needs to understand what a moving average is and 

how it works. A simple moving average (SMA) calculates the average of n values where n 

represents the number of values of which the average is taken [38]. Equation (15 below 

demonstrates how it functions. 

 Simple Moving Average (SMA)=
x1+x2+x3+…+xn

n
 (15) 

As for the EWMA it has the same roots as the SMA method, however there’s a weigh assigned 

to each point. Meaning, the early data points will have a smaller impact on the later data points 

[39]. The equations below represent this method. The coefficient alpha, which is the exponential 

weighting factor (EWF) is calculated based on the amount of points back in the data (n) that it 

should influence the current point being calculated. This method allows the current data point 

being analyzed to have more weight than the previous one when it goes through a moving average 

[40]. This indicates that the method takes into consideration the vehicle’s operation history when 

smoothing the set. The equation bellow represents the method. Where Pt is the original data value 

at point t. 

 EWMAt=EWMAt-1+α(Pt-EWMAt-1) [40]  (16) 

 α=
2

n+1
 [40] (17) 
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There is a function already built in MATLAB that performs the EWMA. In order to use it, first 

one must select which kind of moving average it wants to perform. For this project the method 

selected was the “exponential weighting”. This method requires the user to input a value for the 

exponential weighting factor (EWF) which can range from 0 to 1, where 0 would have no filtering 

done and 1 has the most. Because this method can cause over smoothing of the data several 

coefficients were tested. A more precise coefficient could be selected if data from PEMS was 

available, but because this project did not have such data the filtered data was compared to the 

original [29].  According to the 2017 HD OBD program update, CARB suggests using 0.1 for the 

exponential weight coefficient value [37]. 

 NOx Conversion 

Next one must estimate the NOx mass per second using the tailpipe NOx sensor output and the 

exhaust flow mass. The NOx channel output provides the concentration in parts-per-million (ppm) 

while the exhaust follow channel is in kilogram-per-hour (kg/hr). Those two channels should be 

available throughout the whole dataset in order to avoid time alignment issues. By using the ideal 

gas law equation, and assuming the density of the fuel to be 1.2 kg/L, and standard temperature 

(250C) and pressure (1 atm), the NOx rate (g/sec) can be calculated. The equations 18-21 bellow 

were used to perform such calculation [41]. Note that this method does not take into account 

humidity corrections, and it does use the molar mass of air for the exhaust gas. 

 Ideal Gas Law: PV̇=ṅRT (18) 

 Volumetric Flow Rate: V̇ (
L

s
)=Exhaust Flow (

kg

hr
)×

1hr

3600s
×
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ρ
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kg
) (19) 

 Molar Rate: ṅ (
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(20) 

 NOx Mass Rate: NOx (
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 Torque, Work, and Power 

To properly segregate the data according to the CARB regulations, work and power fraction 

must be present before the window averaging can take place. Both work and power are a function 

of torque, therefore if one can calculate the engine torque from the channels provided then the 

other parameters can be easily calculated. From the actual percent torque, nominal frictional 

torque, and reference torque, the engine break torque can be calculated using equation (22. 

 Torque(lb-ft)=
(TorqueActual-TorqueFrictional)×TorqueReference

100
×0.73756 (22) 

From the value calculated above one can now calculate the power, power fraction, as well as 

work for the engine [1]. Note that the max power varies by engine and can be acquired from the 

manufacturer. 

 Power(bhp)=
Engine Speed(rpm)×Torque(lb-ft)

5252
 (23) 

 Power Fraction=
Power(bhp)

Max Power (bhp)
 (24) 

 Work(bhp-hr)=
Power(bhp)

3600
 (25) 

  NTE Method 

In order to analyze onroad data, the NTE method can be used to evaluate emission for in-use 

compliance based on the engine operation along specific bounds in the control area. Points which 

fall in the control area are considered to be part of the engine’s normal operation. According to 40 

CFR Part 86.1370, subpart C – Not-to-Exceed Test Procedures, the control area must be bounded 

by the lug curve, the 30% max power, and engine speed limits (nhigh and nlow). One of the criteria 

requires the engine speed (nNTE) to be higher than the variable n15 which can be calculated using 

equation (27. Where nhigh represents the highest engine speed at 70% maximum power and nlow 

represents the lowest engine speed at 50% maximum power [4]. 

 nNTE>n15 (26) 

 n15=0.15(nhigh-nlow)+nlow (27) 

If the engine speed is compliant with the specification above then the brake torque must be 

equal or greater than 30% of the maximum engine torque. Finally, the instantaneous power must 
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also be greater or above 30% of the engine’s maximum power. The torque curve, also known as 

the lug curve, can be generated using the values recorded by the ECU for each of the positions of 

the curve. The peak torque corresponds to the highest torque value in the lug curve. The rated 

power at a specific engine speed is provided, therefore the torque corresponding to 30% of peak 

power for a particular engine speed can be calculated using the equations bellow [4].  

 TorqueNTE=5252×
Powermax (bhp)×0.3

Engine SpeedNTE (rpm)
 (28) 

 TorqueNTE≥0.3×Torquemax (29) 

 PowerNTE≥0.3×Powermax (30) 

 

  Binning  

In addition to the MAW method, one must implement binning to perform the NOx tracking 

approach by collecting data from a vehicle over time – after the data has gone through MAW - and 

segregating each parameter in an array and finally binning each one of those parameters according 

to specific boundaries.  

In the 2017 CARB workshop [37] a proposal was made for a method to analyze real-world 

NOx data. The workshop proposed to use 68 trucks with at least one-month worth of data with the 

MY’s between 2010 and 2018. The trucks were from several different manufactures and vocations. 

On all the data was collected for the trucks the NOx emission in g/bhp-hr was measured for each 

vehicle. Only a few of the trucks were compliant with the current NOx regulation (0.2 g/bhp-hr). 

The workshop then used the data accumulated from the trucks to analyze the SCR efficiency using 

SCR inlet temperature. Finally, the proposal moves towards a comparison between the OBD data 

and PEMS data. In order to have a better understanding of the different between the OBD and 

PEMS data the workshop proposes the use of bins [41]. During the OBD program update they 

proposed the schematics in Figure 8 for the procedure for the NOx tracking approach. While the 

proposal only asked for 100 hours of operation, this project used the data of approximately three 

months-worth of operation.  
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The method of binning has been used in data analysis for many years. Before the data can 

be fragmented into sections for binning, first something similar to MAW must be done. For the 

purpose of this thesis the sampling period used is the same suggested by CARB of 15 seconds, 

depending on the time of data the set in the window is either summed or averaged. After all the 

data is properly segregated into windows containing a single value, it can be reestablished into a 

single vector representing the continuous data. This process must be done for all the parameters 

that one wishes to analyze [29]. 

These parameters that were binned can then be broken down into sections [42]. For OBD 

data, the workshop proposed the data to be segregated based on vehicle speed and power fraction. 

For vehicle speed, this project segregated the data into idle, 1-10, 10-25, 25-40, and +40 mph. 

Meanwhile for power fraction this project broke it into 0-25%, 25-50%, and 50%+ segments. Like 

stated previously one could pick theoretically any set of parameters that they may need, the set 

used in this project follows the proposal by CARB. Once the data has gone through the MAW and 

the segregation based on the parameters chosen each parameter that has been binned can be 

analyzed. By analyzing the binning dataset one can see trends fort different type of vehicle speed 

operations. By using this method one can better associate parameters that otherwise would be hard 

to compare. Table 3 represents the schematics of the bin structure as determined by CARB. 

 

 

Figure 8 - NOx Tracking Binning Proposal [45] 
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Table 3 - Proposed Bin Structure According to CARB as of 2018 

% 

Power 

Fraction 

Vehicle Speed (mph) 

Idle 0-10 10-25 25-40 >40 

<25 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

25-50 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10 

>50 Bin 11 Bin 12 Bin 13 Bin 14 Bin 15 

 

 

In addition to binning NOx, this project also investigated several other parameters. Table 4 

summarizes how the data of each one of the parameters analyzed was segregated using the window 

method and binned. For instance, for the engine work the windows that fell inside a specific bin 

were summed and returned a single value for that particular bin. As for the bsNOx bin, the value 

was calculated by dividing the result in the NOx bin by their respective bin values in the engine 

work bin. This procedure follows the equations (11 and (12 described in the Background section. 

As for the count and NTE bins, they show how the data set is distributed over the two desired 

specifications: vehicle speed and power fraction. In addition, the count bin can be used to calculate 

the time that each bin contains, since each count point represents a 15 seconds segment of the 

original data. 

Table 4 - WBW and Binning Analysis Method 

Parameter Analysis Method 

Engine Work Summation 

Exhaust Temperature Average 

NOx Summation 

Distance Summation 

Count Summation 

NTE Summation 
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4. Results and Discussion 

From the method described in the Vehicle Selection Section of the Methodology, the data set 

selected for this project came from a goods movement truck (GMT) 2013 Freightliner M2. This 

vehicle contained all the channels required for the month analyzed.  

  Lug Curve and NTE Zone 

With the ECU providing the torque and engine speed channels for each of the points for the 

lug curve, and using the equations (26)-(30 in Section 3.3 the following graph was generated. 

Where each point that’s binned must fall in the shaded area to be considered part of the NTE 

control zone. 

 

Figure 9 - Lug Curve and NTE Zone for the Desired Vehicle 
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The table below summarizes the boundary conditions of the NTE zone which was used to 

calculate the NTE points of the dataset. For the purposes of this thesis, only the load conditions 

were used for the NTE zone. 

Table 5 - Boundary Conditions for NTE Zone 

Boundary Parameter Value 

Max Toque 1580 ft-lb 

30% Max Torque 474 ft-lb 

Max Power 500 hp 

nhigh 1199.2 rpm 

nlow 1111.9 rpm 

n15 1199.2 rpm 

 

  NOx Data Reduction 

A section of the data was selected so a comparison between the reduction methods could be 

analyzed. The data displayed next is the data collected from one working day, April 10th, 2018, 

which went through both data reduction methods described in the methodology section.  

 NOx Stable Method 

As described in the methodology section the NOx stable channel can be used to filter the data 

and remove the points in which the deviates from the pattern. Figure 10 and Figure 11 show the 

overall results from this data segment. As one can see the peaks in the original dataset were 

removed and replaced with NaNs. The rest of the data that did not display noise remained intact. 

This method could potentially cause the data to deviate when it goes through the binning stage 

since it assumes that all these peaks were caused by errors in the sensor. In order to confirm if this 

method is an acceptable representation or not one would need to compare the new data set to a 

more accurate set, this could only be done with more robust analyzers instead of just the zirconia 

sensor. 
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 EWMA Method 

The other possible filtering method is the EWMA. Although CARB suggests an EWF of 0.1, 

this project analyzes different EWFs in order to analyze the effect of these factors. These different 

values could also potentially suit the data set better than what was suggested. The data that went 

through the 0.1 filtering process was plotted versus the original data as shown in Figure 12. As one 

can see the data only display a slight difference from the original in the points in which the sensor 

Figure 10 – Amplified NOx data filtered with NOx Stable vs Original Data 

Figure 11 - NOx data filtered with NOx Stable vs Original Data 
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has extremely high NOx concentration. While in the lower NOx concentration areas, as shown in 

Figure 13, the filtered data has values much closer to the original NOx data set.  

 

After comparing several options for EWF the original data was compared to the filtered data 

using a EWF of 0.25 and 0.35. In Figure 14 a large segment of the dataset is displayed, and as one 

can see the values between the raw data and the filtered data are quite similar. Upon closer 

inspection in Figure 15, the filtered data seems to start ever so slightly sifting the data to the right 

as well as lessening the peaks. However, the data reduction method did reduce the main relevant 

Figure 13 - Amplified Filtered NOx EWF=0.1 vs Original data 

Figure 12 - Filtered NOx EWF=0.1 vs Original data 
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peaks where the sensor didn’t work properly. The higher the EWF selected was, the more the peak 

points were reduced. As for possible time alignment issues, these EWFs didn’t seem to affect the 

data enough to actually shift the data enough. In fact, looking at Figure 16 one can see that the 

main noise peaks happen at the same position in time as the original data. 

 

 

Figure 15 - Amplified Point 1: Filtered NOx Data vs Original 

Figure 14 - Filtered NOx Data vs Original 

2 

 

1 
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  Binned Data 

In this section the data for each time frame was binned based on the methods described in the 

methodology section. Since the only parameter that had to be smoothed was the NOx dataset, the 

exhaust temperature, engine work, distance, NTE, and count bins remained the same for all the 

methods applied. These bins can be used to analyze the results in the NOx bins and further describe 

the engine operation. Considering the speed ranges selected for the bin’s schematics, one could 

infer what kind of activity falls inside each range. For bins 2, 7, 8, 12, and 13 one can expect urban 

activity. Bins 4, 9, and 14 should represent regional activity. Bins 5, 10, and 15 should represent 

highway activity. In addition. Most the vehicle’s activity should be expected to be populated in 

bins 1 to 5, where the power fraction is 25% or less. In addition, the NOx raw data displayed no 

NaN values prior to any filtering approach was used. 

 

 Monthly 

For the monthly binning set, the data shown next is the data collected in the month of April, 

2018. The following results are from the original raw dataset, before any filtering method was 

applied.  

Figure 16 - Amplified Point 2: Filtered NOx Data Peaks vs Original Data 
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The bsNOx bin follows the pattern that one would expect for a dataset such as the one used in 

this project. Under normal operation the higher emissions are expected to be in the earlier bins (1-

4) while the lower emissions should be at higher speed and power fraction. Figure 18 and Table 6 

summarize how the overall data was distributed over the NTE zone and its total duration.  

 

Table 6 - Total Duration Summary - Monthly 

Monthly Data 

Total Duration (sec) 554655 

Total NTE Duration (sec) 95505 

NTE Time % 17.22 

Total NOx (g) 306.27 

Total Distance (miles) 4830.21 

 

Figure 17 - Original Data NOx (g/bhp-hr) Bin - Monthly 
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Figure 19 - Original Data Bin Count - Monthly 

Figure 18 - Original Data NTE Bin - Monthly 
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By comparing Figure 18 to Figure 19 it’s possible to infer that the majority of the dataset 

wasn’t inside the NTE zone (<25% power fraction). In fact, according to Table 6 only 17.22% of 

its monthly operation was inside the control zone. Even though the majority of the data didn’t fall 

inside of the NTE zone, there were still a noticeable amount of the points that did. Bin 10 contained 

the largest amount of NTE points (~62% of the points inside this bin) as well as the lowest bsNOx 

emission compared to the other bins that were inside the NTE zone.  

 

 

 

If one looks at Figure 20 the temperature follows the expected trend – higher temperatures at 

higher vehicle speeds and power fraction. However, the dataset does have its highest value located 

at bin 12 (0-10mph and power fraction>50%) which also represents the lowest value for NOx rate 

(g/bhp-hr). According to Figure 19, this is the same bin that only contains one window. This 

indicates that the lack of data in that bin category may not be representative of the actual operation 

condition. This point even though it’s supposedly compliant to the regulation didn’t even fall inside 

of the NTE zone. 

Figure 20 - Original Data Post-SCR Exhaust Temperature (oC) Bin - Monthly 
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Figure 22 - Original Data NOx (g) Bin - Monthly 

Figure 21 - Original Data Power (bhp) Bin - Monthly 
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Figures 22 to 24 display the other binned parameters. These bins help solidify and confirm 

what the previous bins stated. These bins provide a further insight on the engine operation. Figure 

23 shows that not only most of the windows fall into bin 1 to 5 but also that it covered the most 

distance in these bins. This solidifies that the majority of this engine’s operation falls outside of 

the NTE control zone. 

 

Figure 23 - Original Data Distance (miles) Bin - Monthly 
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 NOx Stable 

 

The data replaced with NaNs account for 3.48% of the sensor’s operation. The NOx stable data 

display similar results to the original dataset. Its values are almost the same values as the original 

at bins at medium to high speed (>25mph). Due to the reduction, the values where the vehicle 

speed is less than 25mph the bins start diverting from the original dataset. Those bins probably 

contained the majority of the noise that was removed and replaced with NaNs. However, according 

to Figure 18 the majority of these bins that display a difference are not in NTE region. In addition, 

the low NOx value found in bin 12 was removed thus it can be attributed to the issues described 

in the original data section.  

 

 

 

 

Figure 24 - Stable Reduction Method NOx Data (g/bhp-hr) Bin - Monthly 
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 EWMA 

 

 

 

Figure 25 - EWMA Method (EWF=0.1) NOx Data (g/bhp-hr) Bin - Monthly 

Figure 26 - EWMA Method (EWF=0.25) NOx Data (g/bhp-hr) Bin - Monthly 
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When applying the EWMA method three different EWF values were used to see how it affects 

the overall dataset. These binning only displays a noticeable difference between each other at the 

lower power fraction and lower vehicle speeds. It is to be expected that at the lower bins (<25% 

and <25mph) the NOx rate to be higher, since it the aftertreatment system at those bins usually 

haven’t met the desired temperature yet. In Figure 19 it shows that bin 12 only had one value in it, 

and this value for NOx mass, as shown in Figure 22, is the lowest non-zero value in the bin set. 

Therefore the lack of data in that bin and the very low value in the only data in that set is probably 

the reason why the data in that bin doesn’t follow the trend of the rest of the data. In fact, this point 

could be the result from errors in the system making that point not relevant to the overall engine’s 

operation. Overall, all the bsNOx bins that went through reduction displayed higher values at the 

lower speed/lower power fraction and lower values at higher speed/higher power fraction. 

 Weekly 

For the weekly binning set, the data shown next is the data collected between April 8th and 

April 14th of 2018. The data for the week timeframe displayed similar results to the data from the 

month analysis. Therefore, most of the bin graphs for this section can be found in Appendix A. 

Figure 27 - EWMA Method (EWF=0.35) NOx Data (g/bhp-hr) Bin - Monthly 
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Figure 28 - Original Data NOx (g/bhp-hr) Bin - Weekly 

Figure 29 - Original Data NTE Bin - Weekly 
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Table 7 – Total Duration Summary - Weekly 

Weekly Data 

Total Duration (sec) 160455 

Total NTE Duration (sec) 24540 

NTE Time % 15.29 

Total NOx (g) 87.31 

Total Distance (miles) 1332.68 

 

By reducing the time frame the bin that displayed issues in the monthly dataset (bin 12) was 

removed. The bsNOx bin follows a similar trend to the monthly dataset, however the weekly set 

displayed less values in the NTE zone (less than 16% of its weekly operation has fallen in the NTE 

zone). The highest NTE count, similarly to the monthly dataset, is located on bin 10, which in this 

dataset also displays the lowest bsNOx value. The value in this bin is very close to the regulation 

which could indicate compliance, considering that only 31% of the values in that bin fell inside 

the NTE zone. In addition, the higher bsNOx value in bin 2 could be attributed to the larger amount 

of windows in that category when compared to the other adjacent bins. This dataset shows that by 

reducing the dataset to almost a quarter of the original set the bins still display reasonable patterns. 

However, the overall bsNOx values are higher than the monthly dataset. This could be attributed 

to this particular week that was selected, meaning that in different weeks the vehicle could have 

higher operation weeks than others. 
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 NOx Stable 

 

 

The data replaced with NaNs accounts for 3.00% of the sensor’s operation, almost the same 

amount as the monthly result. Similar to the previous results, the bsNOx data diverted from the 

original the most at lower speed/power bins. This indicates that the data that was removed has 

definitely affected the overall results. Considering that the original dataset contained several spots 

in which the NOx (ppm) values were negative by removing them a difference in the data should 

be expected, just as Figure 30 shows. This set actually displayed less of a shift than the monthly 

dataset. 

Figure 30 - Stable Reduction Method NOx Data (g/bhp-hr) Bin - Weekly 
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  EWMA 

 

Figure 31 - EWMA Method (EWF=0.1) NOx Data (g/bhp-hr) Bin - Weekly 

Figure 32 - EWMA Method (EWF=0.25) NOx Data (g/bhp-hr) Bin - Weekly 
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For the weekly dataset, once more the increase in EWF caused an increase of bsNOx in the 

overall dataset which is concentrated on the lower power fraction (<25%). When comparing this 

method to the NOx stable method, all the EWFs displayed lower values in the bsNOx bin than the 

other method. In fact, the EWF of 0.1 showed the closest values to the original dataset.  

 Daily 

For the daily binning set, the data shown next is the data collected on April 10th 2018. The 

following results are from the original raw dataset, before any data reduction was applied. 

Similarly to the weekly data the daily data displayed similar results to the data from the monthly 

analysis. Therefore, most of the bin graphs for this section can be found in Appendix B. 

Table 8 - Total Duration Summary - Daily 

Daily Data 

Total Duration (sec) 22320 

Total NTE Duration (sec) 3120 

NTE Time % 13.98 

Total NOx (g) 9.83 

Total Distance (miles) 153.60 

Figure 33 - EWMA Method (EWF=0.35) NOx Data (g/bhp-hr) Bin - Weekly 
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Figure 34 - Original Data NOx (g/bhp-hr) Bin - Daily 

Figure 35 - Original Data NTE Bin - Daily 
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Once more the daily dataset displayed a similar distribution to the previous time frames. This 

indicates that this method could be used to analyze an engine’s operation. The main difference in 

this dataset relies on the fact that the majority of its operation happened at idle. The bins that fall 

into this category are outside the NTE control zone. In addition, the NTE zone has even less points 

than the previous methods (~14% of the total operation) which is a result of the majority of its 

operation happening outside the NTE boundary and this being the shortest dataset among all sets 

analyzed. 

 NOx Stable 

 

The data replaced with NaNs account for 3.11% of the sensor’s operation, only slightly less 

than the monthly operation. Compared to the previous sets, in this one the bsNOx had the largest 

difference between the original values and reduced values that went through the Stable NOx 

method. Several of the bins were greatly reduced, but none of the bins reached NOx regulation 

value. This is most likely due to the amount of data available for this time segment, making it more 

susceptible to cold start effects. The dataset probably had more transient values than the previous 

datasets analyzed. 

Figure 36 - Stable Reduction Method NOx Data (g/bhp-hr) Bin - Daily 
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  EWMA  

 

 

Figure 37 - EWMA Method (EWF=0.1) NOx Data (g/bhp-hr) Bin - Daily 

Figure 38 - EWMA Method (EWF=0.25) NOx Data (g/bhp-hr) Bin - Daily 
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The daily dataset follows the same trend for the EWF as the previous timeframes. The 

reduction didn’t affect the data enough to cause the points to become compliant or to increase 

enough to the point in which it exceeds regulation.  

  Limitations 

From the results described above, the binning method displays certain limitations. For 

instance, regardless of the time frame selected for analysis the method does indicate a certain type 

of vehicle vocation. From the binned set one could say that this vehicle does mostly long transit 

operation. This indicates that this is most likely not a stop and go driving cycle vehicle. However, 

the data doesn’t indicate anything more specific about its vocation. Only that the majority of its 

operation happen at >25mph bins. In addition, during cold start periods the sensor doesn’t record 

data. This indicates that the NCPT method may not be the most representative method for vehicles 

that have mostly stop and go driving operation.  

Figure 39 - EWMA Method (EWF=0.35) NOx Data (g/bhp-hr) Bin - Daily 
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5. Conclusions and Recommendations 

  Conclusion 

When implementing the NTE in this project not all the boundary conditions for the control 

zone were included. This means that several of the points that did fall inside of the zone may be 

removed once all the restrictions are applied. In addition, the protocol for NTE control zone 

requires the points to be continuously compliant with the boundary conditions for a period of 30 

seconds. Both of these considerations most likely will reduce the number of points in the NTE 

zone, which more than likely will affect the emission in those bins. In addition, by only using the 

load parameters in the NTE zone the majority of the data was already excluded from the zone. 

This is due to the 30% peak torque and rated power restriction. Most of this engine’s operation fell 

inside the <25% power fraction bins. Therefore, the binning method without the NTE zone 

restrictions provide a much better insight of the engine’s operation. 

Another option would be to reduce the number of bins by removing the power fraction 

parameter and only use vehicle speed activity for binning – broken into urban, regional, and 

highway. However, this could cause an unbalanced shift in the emission’s profile. For urban 

activity the high emission in the lower power fraction bins would be distributed across the bins 

where it displays much lower emissions. In the other hand, for the highway bins the data wouldn’t 

have such an impactful outcome compared to keeping it into separate bins. This is because the 

values in those bins are much closer than the bins in the urban activity. As for the idle bins, the 

only bin that is populated is the <25% rated power bin. These bins’ differences become more 

apparent when the data is reduced to a shorter time period, such as the daily data analysis. In those 

cases the data in the bins differ from each other to their respective vehicle activity range. This 

indicates that if all bins in the idle section were combined the value would be representative of the 

idle operation emissions where not the same can be said for the urban operation. The bins 

schematics could be potentially reduced in certain sections but not all without changing the data 

distribution. In addition, the NCPT binning method shows the most suitable representation for all 

vehicle’s vocation. In cases in which a vehicle displays stop and go operation, the NOx data would 

become more transient and therefore more unstable. Due to cold start sensor limitation, in these 

cases the binning wouldn’t best represent the vehicles emission profile.  
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Regarding the data reduction method, the results show that by modifying the raw dataset the 

bsNOx bins do display changes. This indicates a need to properly reduce the data in order to 

remove the points in which there’s noise. When studying emissions one should expect positive 

values under 1000 ppm [43] and low non-negative concentration values. This is because when the 

true concentration is near zero the sensor may display negative values. However, the results in this 

study display several values above 1000 ppm as well as several values in the negative zone (<-

100ppm). These values if not addressed can affect the emission results and considering how low 

the regulation is for bsNOx (0.2 g/bhp-hr) the difference in the values could be extremely 

impactful. The NOx stable reduction did method removed all the points that exceeded reasonable 

expectation. However, replacing them with interpolated value may not be the most representative 

option. Meanwhile, the EWMA method provides the option to smooth the original data without 

the removal of any data points. The key issue with this method is selecting the best EWF. All the 

reducing methods analyzed only affected the data significantly at locations were the emissions 

exceed the regulation by more than double. Therefore, when binning the data, even for a short 

duration, the reduction method does not impact the overall engine’s emission significantly if it’s 

to be compared to the emissions regulations. 

  Recommendations 

With the development of better EATS technology and more strict regulations there’s a need to 

find a way to ensure that these engines are following regulations. In addition, the current methods 

to analyze the engine operation are outdated and are not representative of the current vehicles’ 

driving cycles. Therefore, a further analysis of this method should be performed. Some of the 

recommendations for the future projects related to this topic include: 

1. Perform NTE calculations including all the boundary parameters as well as increase the 

time averaging to 30 seconds increment. 

2. Perform the NTE NOx emissions calculations for the points that do fall inside the control 

zone.  

3. Investigate the possibility of changing the NTE boundaries, such as reducing minimum 

torque/power or minimum NTE event duration, in order to decrease the amount of excluded 

data. 
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4. Study how the noise and error from other parameters, such as the exhaust flow, affect the 

bsNOx emission. 

5. Investigate the impact of the duration of the windows (Δt) on the emission’s profile and 

NTE. 

6. Investigate data by comparing the onboard sensors to PEMS when applying the NOx 

control approach. 

7. Further analyze more possibilities of combing certain bin categories. 

8. Study other possible parameters that could assist the analysis of the engine’s operation, 

such as fuel consumption.   
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Appendix A: Bin Plots for Week Dataset 
 

 

 

 

 

 

 

Figure 40 - Original Data Post-SCR Exhaust Temperature (oC) Bin - Weekly 

Figure 41 - Original Data Power (bhp) Bin - Weekly 
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Figure 43 - Original Data NOx (g) Bin - Weekly 

Figure 42 - Original Data Distance (miles) Bin - Weekly 
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Figure 44 - Original Data Bin Count - Weekly 
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Appendix B: Bin Plots for Daily Dataset 
 

 

 

 

 

Figure 45 - Original Data Post-SCR Exhaust Temperature (oC) Bin - Daily 

Figure 46 - Original Data Power (bhp) Bin - Daily 
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Figure 47 - Original Data NOx (g) Bin - Daily 

Figure 48 - Original Data Distance (miles) Bin - Daily 
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Figure 49 - Original Data Bin Count - Daily 
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