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Abstract 
 

Levels of Lateral Flange Bending in Straight, Skewed and Curved 
Steel I-girder Bridges during Deck Placement 

 
by Nohemy Y. Galindez 

 

Exterior steel I-girders are required to withstand deck overhang loads during 
construction.  This is partially accomplished by checking the flexural limit states for 
constructibility given by AASHTO.  These limit states ensure that the maximum flange 
bending stresses produced during construction do not exceed the section flexural capacity 
of the girder. 

For constructibility design, both the bending stresses and the flexural capacity of 
the flanges are affected by the loads corresponding to the deck placement sequence.  
Therefore, stiffness changes need to be considered during the various casting stages to 
compute the corresponding flange bending stresses and capacities.  The specifications 
take into account this effect by defining separate limit states for discretely and 
continuously braced flanges. The limit states for discretely braced flanges involve not 
only the major-axis bending stresses produced by vertical loads but also the lateral flange 
bending (LFB) due to torsional responses or direct horizontal forces such as those 
produced by wind. 

During construction, torsional effects are principally generated on exterior girders 
by deck overhang loads.  In curved girders, it is also required to consider the significant 
torsional stresses introduced by the curvature, where the loads are eccentric with respect 
to the supports.  Additionally, direct LFB may be induced in skewed bridges at cross-
frame locations caused by differential displacements or out-of-plane rotations. 

Some simplified models have been proposed to estimate the LFB in exterior 
girders during deck placement conditions in straight bridges.  However, the use of 
comprehensive models decreases the uncertainty in the lateral stiffness offered by 
structural elements such as the cross frames, the interior girders and the deck forms.  In 
addition, the curvature and the skew angle effects have not been directly addressed in 
these simplified works. 

AASHTO Specifications recommend approximate equations to estimate the 
torsional effects due to both deck overhang loads and curvature.  For skewed bridges, the 
provisions recommend using 10Ksi as a conservative estimation of the unfactored LFB in 
bridges with discontinuous cross-frame lines and skew angles exceeding 20°.  However, 
more precise approximations may be defined for each source of LFB if effects such as the 
continuity over the intermediate supports and the deck casting sequence are considered.   

In this work, a comprehensive suite of finite element analyses is conducted on 
hypothetical three-span straight, skewed and curved bridges to assess the levels of flange 
bending during deck placement.  The parameters varied include the span lengths, the 
cross-frame spacing, the skew angle and the radius of curvature.  In addition, 
concentrated and distributed loading cases are considered to approximate the torsional 
effects due to eccentric overhang loading.  A comprehensive formulation of the LFB 



 

effects due to curvature is also included for both loading cases.  Numerical results were 
compared to current AASHTO Specifications and new approximations were proposed for 
predicting the LFB stresses. The flexural limit states for constructibility were also 
evaluated using the numerical stresses.   

It was concluded that the curvature is the variable that most affects the limit 
states.  Conversely, for the parameters exercised in this study, no significant effects were 
observed by varying the skew angle.  The governing limit state of the casting sequence 
considered in this study corresponds to the ultimate strength for discretely braced flanges 
in compression.  The yielding limit state controls in short span lengths while the web 
bend-buckling limit state becomes significant in the pier regions for long span lengths. 

AASHTO does not include a specific recommendation for the spacing of cross 
frames in steel bridges.  Therefore, the designer needs to either evaluate different 
configurations to select the most optimum spacing, or follow traditional practice that 
assures safe results.  For that reason, a reliability analysis was proposed in this work to 
develop a practical method to select the cross-frame spacing for deck placement 
conditions considering the flexural limit states for constructibility that are affected by the 
cross-frame spacing.  A Monte Carlo Simulation is performed for straight, skewed and 
curved steel I-girder bridges generating some fragility curves that allow identifying the 
maximum cross-frame spacing for deck-placement conditions according to the maximum 
tolerated level of risk. 
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Chapter 1:  Introduction 

1.1 Problem, goals and general objective 

Horizontally curved and skewed steel I-girder bridges are frequently chosen as a 

practical solution for infrastructure projects that involve complicated interchanges or 

river crossings with specific site restrictions.  In addition, these bridge configurations 

offer significant advantages related to economic and aesthetic aspects such as longer 

spans, which reduces the number of piers, and smooth transitions for urban environments 

with more uniform construction details.  However, some inherent problems are exhibited 

during design and construction.  In particular, the presence of curvature, skew angles or 

overhang construction loads produce additional bending effects which are counteracted 

by internal forces developed primarily in the flanges.  The additional bending, known as 

lateral flange bending (LFB) is added to the major-axis bending produced by vertical 

loads, leading in some cases to premature strength and stability problems.   

This dissertation is focused on the LFB exhibited by continuous straight, skewed 

and curved steel I-girder bridges during deck placement.  AASHTO Load and Resistance 

Factor Design (LRFD) Specifications (2007) recommend some simplified equations to 

consider the LFB produced by curvature and overhang loads during construction. No 

specific equations are given to include the skew effect.  The existing approximations 

included in the specifications are based on simplified models of the girder flanges that 

neglect effects such as the continuity over the supports, the deck-casting sequence and the 

interaction of the whole bridge superstructure.  The inclusion of these effects by 

comprehensive models allows estimating the LFB more accurately.  Therefore, the 

primary objective of this work is to develop improved equations to estimate the LFB of 

continuous steel I-girder bridges during deck placement.  A parametric study based on 

finite element analyses (FEA) is employed to accomplish this objective.   

Furthermore, the numerical bending results from the parametric study are used to 

evaluate the flexural limit states for constructibility.  This evaluation allows the 

parametric variables that most affect the limit states, the governing limit states, and the 
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critical stages during the deck-placement sequence considered in this study to be 

identified.  In addition, the numerical major-axis bending stresses together with the 

improved LFB equations are used to define the maximum permissible skew angles and 

curvatures to meet the flexural limits for constructibility of bridges designed originally as 

straight.  The definition of these limits will simplify the design process for 

constructibility of more complex bridges based on their straight girder counterparts. 

Lastly, AASHTO (2007) does not include a specific recommendation for the 

spacing between cross frames.  Consequently, the designer needs to evaluate different 

cross-frame configurations to select the most appropriate spacing that assures safe 

conditions especially during construction when the girders act in a non-composite state.  

For that reason, the final aim of this study is to optimize the cross-frame spacing during 

deck placement conditions.  This is achieved by conducting reliability analyses of the 

flexural limit states for constructibility that are directly affected by the cross-frame 

spacing.   

Therefore, the contribution of this research work to practice is to improve the 

estimation of the LFB in continuous steel I-girder bridges during deck placement.  In 

addition, practical simplified checking procedures for constructibility are derived from 

the achievement of the primary goal combined with the corresponding flexural limit 

states: the definition of the maximum permitted skew angle and curvature for a bridge 

designed as straight and the selection of the optimum cross-frame spacing.  As a result of 

these efforts, both the design and rating processes of steel I-girder bridges for 

constructibility will be improved.   

 

Section  1.2 includes the definition of the LFB and its causes in steel I-girder 

bridges followed by the corresponding AASHTO simplified approximations. The flexural 

limit states for constructibility are also presented, since they constitute the criteria used in 

this project to evaluate the structural performance of the steel I-girder bridges.   
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1.2 Lateral Flange Bending in Steel I-girder Bridges 

An overview of the mechanical behavior of I-shaped girders is initially presented 

for a better understanding of the physical concept of LFB, along with a description of the 

principal sources of these additional bending effects in steel I-girder bridges. 

1.2.1 Lateral Flange Bending Fundamentals 

General cross sections resist torsion in the form of pure torsion and restrained 

warping (Seaburg & Carter, 1997).  The pure torsion resistance is obtained by means of 

shear stresses and if the warping is restrained, additional shear and normal stresses are 

incorporated to the original state of stresses.  Warping becomes the primary mean to 

resist torsion in I-shaped girders since the St. Venant torsional stiffness for open cross 

sections is low.  Therefore, the additional torsional effects are added to the initial axial 

and bending stresses produced by the gravity loads, as shown in Figure  1-1.   

 
Figure 1-1. General state of stresses in an I-girder section (Coletti & Yadlosky, 2005) 
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Figure  1-1. General state of stresses in an I-girder section (Cont.) 

 

The warping normal stresses are basically carried by the girder flanges in the form 

of bending stresses and represent one of the factors introducing LFB.  The curvature of 

the girders and the overhang load brackets in exterior girders during construction are 

some examples of structural configurations where the LFB is caused by torsional effects.  

Another source of LFB is given in skewed bridges where the cross frames induce 

additional lateral forces in the girder flanges.  Further details about the mechanisms of 

these LFB sources are given in subsequent sections. 

1.2.1.1 Curvature 

The bending stresses in the girders of horizontally curved steel I-girder bridges 

are affected considerably by the geometry.  The curvature introduces significant torsional 

stresses due to the eccentricity of the supports with respect to the loads, as shown in 

Figure  1-2.  This curvature effect leads to a combined state of bending and torsional 

stresses that may cause potential strength or stability related problems.  Cross frames are 

used to reduce these adverse effects since they increase the torsional stiffness of the 
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bridge and offer lateral flange support, becoming part of the primary structural system of 

the bridge. 

 
Figure  1-2. Torsional effects produced by curvature (Coletti & Yadlosky, 2005) 

 

1.2.1.2 Skew 

Skewed bridges also exhibit significant levels of LFB at intermediate and end 

cross-frame locations.  For example, Figure  1-3 shows intermediate cross frames oriented 

perpendicular to the bridge centerline.  The cross frames connect adjacent girders with 

different levels of displacement at the connection points.  As a consequence of this 

differential displacement, internal forces are generated in the cross frames that induce 

LFB in the girders (Coletti & Yadlosky, 2005).   

 
Figure  1-3. Cross frames oriented perpendicular to the girders (Coletti & Yadlosky, 2005) 
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Figure  1-4. Cross frames oriented parallel to the skew (Coletti & Yadlosky, 2005) 

 

Cross frames oriented parallel to the skew angle also produce LFB since the 

girders at the cross-frame locations tend to rotate about an axis parallel to the skew 

(Beckmann & Medlock, 2005).  This rotation and additional deflection produce a lateral 

displacement between the flanges that distorts the original shape of the cross frames 

generating additional LFB as shown in Figure  1-4. 

1.2.1.3 Overhang loads 

Exterior girders are most affected during deck placement by overhang brackets 

loads.  These loads are applied along the girders by deck forming brackets placed every 

three to four feet, as indicated in Figure  1-5.  The overhang loads include the weight of 

the concrete over the deck overhang length, the overhang deck forms, the concrete 

finishing machine and its corresponding railing accessories, and a live load component 

representing the construction workers.  Therefore, the exterior girders are subjected to 

torsional loading effects that produce LFB and web deformations that need to be 

considered during the design process. 
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Figure  1-5. Deck forming brackets on exterior girders  

 

1.2.2 AASHTO approximate formulations for the LFB 

This section includes a description of the simplified approximations given by 

AASHTO (2007) to estimate the LFB due to the curvature, the overhang loads and the 

skew in the design of steel I-girder bridges.   

1.2.2.1 Curvature 

AASHTO (2007) states that curved girders meeting the following requirements 

can be analyzed as straight girders with the span length equal to the arc span length.  The 

effects of curvature can also be ignored for major-axis bending moments and bending 

shears in these cases: 

• Concentric girders 

• Maximum skew angle of bearing lines is 10° 

• Similar stiffness of the girders 

• The angle subtended by any span is less than 0.06 radians  
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However, the effect of curvature must always be considered on the torsional 

behavior of the girders regardless of the amount of curvature.   Therefore, an approximate 

equation for the lateral flange bending moment due to curvature is recommended in lieu 

of a refined analysis: 
2

lat
MlM
NRD

=           1-1 

where M is the major-axis moment, l is the unbraced length, R is the girder radius, D is 

the web depth and N is a constant taken as either 10 or 12 depending on the desired level 

of conservatism. 

1.2.2.2 Overhang loads 

The code provisions require considering the torsional effects due to construction 

loads on the strength and the stability of girders and cross frames.  The corresponding 

commentary includes some approximate equations to compute the lateral flange moments 

due to eccentric loads applied on the overhang deck as follows: 
2

12
l b

lat
F LM =           1-2 

8
l b

lat
PLM =           1-3 

where Fl is the statically equivalent uniformly distributed lateral force from the brackets 

due to the factored loads, Lb is the unbraced arc length, and Pl is the statically equivalent 

concentrated lateral bracket force at the middle of the unbraced length. 

1.2.2.3 Skew 

AASHTO (2007) does not include an approximate equation to account for the 

skew effect.  However, the code provisions recommend using 10Ksi as a conservative 

estimation of the total unfactored LFB in bridges with discontinuous cross-frame lines 

and skew angles exceeding 20° in lieu of a refined analysis.  The total unfactored LFB is 

distributed between the load types in the same proportion as the unfactored major-axis 

stresses. 
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1.2.3 AASHTO Flexural Limit States for Constructibility 

After the sources of LFB during the deck-placement sequence are identified, the 

combined effect of the resulting LFB and the major-axis bending stresses, fl and fbu, are 

evaluated using the flexural limit states for constructibility.  These limit states are 

classified according to the state of stress at the flange and its bracing condition, as 

follows: 

1.2.3.1 Discretely braced flanges in compression 

During some phases of the deck placement, the girders work in a non-composite 

state.  Moreover, the most critical condition is exhibited by the top flanges of the positive 

moment regions which are laterally supported by the cross frames.  These compression 

flanges are usually smaller than the bottom flanges since they are designed for the service 

loads as composite sections continuously braced by the deck.  

The bottom flanges in the negative moment regions are also compression flanges 

discretely braced by the cross frames.  However, this condition is exhibited not only 

during construction but also during the service life of the bridge.  Consequently, an 

adequate flange size is provided during design.    

The limit states that govern the behavior of discretely braced flanges in 

compression are yielding, ultimate strength and web-bend buckling: 

• Yielding limit state: This limit state shall not be checked for sections with slender 

webs and LFB equal to zero. 

bu l f h ycf f R Fφ+ ≤           1-4 

• Ultimate strength: considering lateral torsional buckling (LTB) and flange local 

buckling (FLB) based limit states. 

1
3bu l f ncf f Fφ+ ≤           1-5 

• Web bend-buckling limit state: This limit state shall not be checked for sections with 

compact or noncompact webs. 

bu f crwf Fφ≤           1-6 

where fbu is the flange stress calculated without consideration of LFB, fl is the LFB stress, 

φf is the resistance factor for flexure, Rh is the hybrid factor that accounts for the reduced 
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contribution of the web to the nominal flexural resistance in sections with a higher-

strength steel in the flanges, Fyc is the specified minimum yield strength of a compression 

flange, Fnc is the nominal flexural resistance of a compression flange, and Fcrw is the 

nominal bend-buckling resistance for webs. 

1.2.3.2 Discretely braced flanges in tension 

During construction, the bottom flanges in the positive moment regions and the 

top flanges in the negative moment regions are examples of tension flanges discretely 

braced by the cross frames.  In the positive moment regions, this bracing condition 

remains during the service life of the bridge, but it changes in the negative moment 

regions when the girder starts to act as a composite section.  

In tension flanges, only the yielding limit state is considered since stability is not 

an issue. 

• Yielding limit state: 

bu l f h ytf f R Fφ+ ≤           1-7 

where Fyt is the specified minimum yield strength of a tension flange. 

1.2.3.3 Continuously braced flanges in tension or compression 

This situation corresponds to the final phase of the deck placement when the 

girders are composite sections.  The continuously braced condition is provided by the 

deck to the top flanges in compression and tension of the positive and negative moment 

regions, respectively.   

This bracing condition prevents the presence of LFB in the flange.  Therefore, the 

only limit state that needs to be checked is yielding. 

• Yielding limit state: 

bu f h yff R Fφ≤           1-8 

where Fyf is the specified minimum yield strength of the flange. 

1.2.3.4 Maximum allowable LFB 

In addition to the limit states that govern the interaction between fbu and fl, the 

specifications define a limit for LFB up to where the limit states are satisfactorily valid.  
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According to AASHTO (2007), fl corresponds to the largest value of stress due to 

lateral bending throughout the unbraced length in the flange under consideration.  These 

stresses are calculated based on factored loads and should be taken as positive values in 

all resistance equations.  All flanges are required to meet the following restriction to 

control the maximum levels of LFB:  

0.6l yff F≤           1-9 

Furthermore, amplifications factors for fl are specified in cases where second-

order effects are required to be considered. 

 

Section  1.3 describes the specific goals of the present work along with their 

motivation and the methods employed to carry them out. 

1.3 Research objectives, motivations and methods 

The general purpose of this research project is to evaluate the levels of LFB in 

steel I-girder bridges during deck placement in order to state practical, accurate and 

reliable design recommendations for constructibility.  Consequently, this effort comprises 

basically three primary goals to be accomplished considering only the loading conditions 

exhibited during the deck placement, as follows: 

 

1. Develop improved equations to estimate the LFB of continuous steel I-girder bridges. 

Rationale:  As discussed in Section 1.2, skewed and curved steel I-girder bridges 

exhibit significant levels of LFB due to their geometrical configurations that may cause 

potential strength and stability problems in both flanges and webs.  Particularly, the 

structure is more susceptible to these problems during the deck placement when the 

girders act in a non-composite state.   

AASHTO Specifications recommend some approximate equations to estimate the 

torsional effects due to deck-overhang loads and curvature that produce LFB.  These 

approximations are based on simplified models where the unbraced segment of the flange 

is taken as a fixed-end beam.  For skewed bridges, the provisions recommend using 

10Ksi as a conservative estimation of the unfactored LFB in bridges with discontinuous 
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cross-frame lines and skew angles exceeding 20°.  However, more precise 

approximations may be defined for each source of LFB if effects such as the continuity 

over the intermediate supports, the deck-casting sequence and the participation of the 

whole superstructure are considered in the response.   

Previous research efforts (Grubb 1991 & Roddis et. al. 1999) have been 

conducted to approximate the LFB in exterior girders during deck placement conditions 

in straight bridges.  Although these works add more complexities to the models, the 

approximations are still conservative compared to the results obtained in more 

comprehensive models.  In addition, the curvature and the skew effects were not directly 

addressed in these simplified approximations. 

Methods: A parametric study based on the FEA of continuous three-span steel I-

girder bridges is employed to accomplish this objective.  The varying parameters include 

the middle span length, the cross-frame spacing, the skew angle, and the angle subtended 

by the middle span in curved bridges.  Additionally, the loading conditions and stiffness 

vary in the structural analyses according to the deck-placement sequence, since it is 

assumed that all preceding deck casts are composite for the casts that follow.   

 

2. Identify the parametric variables that most affect the flexural limit states for 

constructibility, and define the maximum permissible skew angles and curvatures for 

bridges designed originally as straight. 

Rationale:  The identification of aspects such as the effect of the curvature and 

skew in the limit states, the critical stages during the deck-placement sequence, the 

critical girder sections and the governing limit states allow the designer to gain insight 

into how the bridge responds structurally to the conditions imposed during the deck 

placement.  Moreover, this information may be also used for preliminary calculations in 

the planning phase of projects to define the most important design checks to be 

considered and the sections where they are most critical.   

On the other hand, the definition of the maximum permitted skew angles and 

curvatures for bridges designed originally as straight is intended to simplify the 

constructibility design process in certain situations.  The definition of these limits will 

allow the engineer to design for constructibility curved or skewed bridges based on their 
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straight girder counterparts.  Furthermore, no additional constructibility designs or checks 

would be necessary in case that a bridge designed as straight requires a geometrical 

modification within the limits established.   

Methods: The numerical bending results from the parametric study are used to 

evaluate the demand-to-capacity ratios of the flexural limit states for constructibility.  

The variation of these ratios is presented as a function of the girder length to identify the 

critical sections along the bridge.  In addition, the maximum ratios of the positive and 

negative moment regions are presented in terms of the cross-frame spacing, the deck-

casting stage and the governing limit state to facilitate the identification of the 

relationships among the variables.   

To define the skew and curvature limits for a straight bridge, the flexural limit 

states for constructibility are initially stated using: i. the maximum numerical major-axis 

bending stresses obtained during the parametric study, and ii. the proposed LFB 

equations that depend directly on the variables required.  Then, the maximum skew and 

curvatures are solved from the governing limit state equation for different cross-frame 

distances.   

 

3. Optimize the distance between cross frames. 

Rationale:  During construction, the lateral support of the flanges is only provided 

by the cross frames, where their spacing represents the unbraced length (Lb) used to 

compute the bending capacity of the compression flanges.  In addition, the LFB depends 

directly on Lb since the flanges act as continuous beams supported by the cross frames.  

Therefore, the selection of the appropriate cross-frame spacing will assure that the 

structure meets satisfactorily the performance limit states during deck placement using an 

optimum number of cross frames.   However, AASHTO (2007) does not include a 

specific recommendation for the spacing between cross frames.  Consequently, the 

designer needs to evaluate different cross-frame configurations to select the most 

appropriate spacing that assures safe conditions especially during construction when the 

girders act in a non-composite state.  Therefore, the achievement of this objective by 

defining the maximum allowable cross-frame spacing that meets satisfactorily the 

flexural limit states for constructibility will simplify considerably the design process. 
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Methods: This goal is accomplished by conducting reliability analyses of the 

flexural limit states for constructibility that are directly affected by the cross-frame 

spacing.  This structural reliability problem was solved using a Monte Carlo Simulation 

which is a simulation technique that numerically simulates the behavior of the random 

variables and limit states involved in the problem.  The probabilistic characteristics of the 

random variables were adopted from the research works carried out to calibrate the 

current AASHTO Specifications.  The cross-frame spacing is presented in an appropriate 

format based on the maximum tolerated probability of failure of the considered limit 

states. 

1.4 Scope of research 

The focus of this research is to evaluate the levels of LFB in steel I-girder bridges 

during deck placement and the scope of this project consists of four major components: 

definition of the parametric study, approximation of the LFB effects, evaluation of the 

flexural limit states for constructibility and optimization of the cross-frame spacing. 

A comprehensive parametric study is conducted using finite element (FE) models 

of steel I-girder bridges.  Some characteristics are set as fixed such as the number of 

girders, the number of spans, the girder spacing, the overhang length, the concrete deck 

thickness, the material specifications and the ratio of the end-span to the middle-span 

lengths.  The varying parameters include the middle span length, the cross-frame spacing, 

the skew angle, and the angle subtended by the middle span in curved bridges.  A deck-

placement sequence is defined for all models and the corresponding changes in the 

structural stiffness during the various stages are considered.  For that reason, it is 

assumed in the analyses that all preceding deck casts are composite for the casts that 

follow.   The LFB effects due to overhang loads, skew and curvature are approximated 

based on the numerical bending stresses obtained from this parametric study.  

Comparisons with the approximations recommended by AASHTO are also established.   

The flexural limit states for constructibility constitute the criteria used to evaluate 

the structural performance of the bridges considered in this work.  These limit states are 

computed using the numerical bending results obtained from the parametric study to 
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identify the impact of the parametric variables in the design.  The limit states and the 

proposed LFB equations are also used to determine the maximum available skew and 

curvatures of bridges originally designed using a straight girder formulation.   

The final component of this work is the optimization of the distance between 

cross frames which simplifies the design process of steel I-girder bridges.  A reliability 

analysis is performed using a Monte Carlo Simulation to generate the probabilistic 

distribution of the random variables and to evaluate the reliability of the flexural limit 

states for constructibility.  The parameters required to define the load and resistance 

structural models that describe this reliability problem were adopted from previous 

research efforts intended to calibrate the AASHTO Specifications.   The optimum cross-

frame spacing is selected from a curve in terms of the probability of failure or reliability 

index of the considered limit states. 

1.5 Dissertation Organization 

The body of this dissertation consists of eight chapters.  This first chapter, 

Introduction, provides general background information of the research work, discusses 

the need for this project, highlights the main research objectives and describes the 

methods employed to accomplish them.  

A literature review of the research efforts related to the present work is included 

in Chapter 2.  This chapter is organized into five sections as follows: (1) a description of 

the studies considering LFB, constructibility issues and code specifications in curved 

steel I-girder bridges; (2) an overview of work addressing the behavior of skewed steel I-

girder bridges; (3) a presentation of the most important works carried out to develop 

design guides for LFB in exterior girders due to deck overhang loads during construction; 

(4) an overview of the development of the bridge specifications regarding the LFB effects 

and constructibility issues; and (5) a description of some relevant studies related to 

structural reliability and code development procedures.   

Chapter 3 discusses the principal modeling procedures employed to conduct FEA 

in this project.  A description of the material models for steel and concrete and their 

corresponding stress-strain relationships is initially presented.  Then, the finite elements 
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and techniques required to model the bridge behavior during deck placement conditions 

are described.  Benchmarking of these techniques is also presented.  Finally, a description 

of the analysis methodology employed in the FE models is given. 

The parametric study used to investigate the effects of the deck-placement process 

on the LFB of steel I-girder bridges is described in Chapter 4.  The parametric study is 

defined by initially selecting the parameters considered to be most significant; describing 

the loads that represent the conditions during the casting sequence; performing the 

structural design of the bridge configurations obtained from the parametric evaluation, 

and finally defining the FE models and the corresponding analyses for each parametric 

configuration that represent properly the deck casting sequence in the bridges.  

Chapter 5 presents the methods used to approximate the LFB in straight, skewed 

and curved steel I-girder bridges due to construction loads during deck placement based 

on the results obtained from the parametric study described in Chapter 4.  The major-axis 

bending stresses are also analyzed, where the principal contribution is made for curved 

bridges since it is shown that the torsional effects do not affect the vertical bending 

response in straight and skewed bridges.   

In Chapter 6, the flexural limit states for constructibility are evaluated according 

to AASHTO Specifications for the parametric bridges analyzed in this work.  First, the 

major-axis bending and the LFB stresses obtained from FEA are used to evaluate the 

demand-to-capacity ratios of the flexural limit states for constructibility.  This evaluation 

allows identifying the critical sections along the bridge and the effects of the cross-frame 

spacing and the deck-placement sequence in the governing limit states.  Second, the 

maximum allowable skews and curvatures are computed for bridges designed originally 

as straight.  The flexural limit states for constructibility constitute the criteria used to 

achieve this goal.  The major-axis bending stresses are taken directly from FEA and the 

LFB stresses are estimated using the approximate equations proposed in Chapter 5.   

A reliability analysis was proposed in this work and performed in Chapter 7 to 

develop a practical method to select the cross-frame spacing for deck placement 

conditions considering the flexural limit states for constructibility that are affected by the 

cross-frame spacing.  Initially, a general description of a structural reliability study is 

given along with the limit states considered.  Then, the adopted structural loading and 



 17

resistance models are described and their corresponding probabilistic characteristics are 

presented.  Finally, a Monte Carlo Simulation is performed for straight, skewed and 

curved steel I-girder bridges generating fragility curves that allow identification of the 

maximum cross-frame spacing for deck-placement conditions according to the maximum 

tolerated level of risk. 

Chapter 8, Summary, Conclusions, and Recommendations, summarizes the results 

of this work and provides recommendations for future research in this area.  

Finally, a list of cited references is included along with six Appendices of figures.   
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Chapter 2:  Literature Review 

As discussed in Chapter 1, the primary objective of the present research work is to 

study the levels of LFB in steel I-girder bridges during deck placement.  Therefore, a 

literature review of the research efforts related to this objective is included in this chapter.  

The literature review is organized into five sections:  Section  2.1, Curved Steel I-girder 

Bridges, describes the studies considering LFB, constructibility issues and code 

specifications; Section  2.2, Skewed Steel I-girder Bridges, reviews the works studying 

the effect of the skew on the bridge response; Section  2.3, Overhang Load Design, 

presents the most important works carried out to develop design guides for the LFB in 

exterior girders subjected to deck overhang loads during construction; Section  2.4, 

Lateral Flange Bending Design, describes the LFB and constructibility approaches 

according to the design specifications; and Section  2.5, Reliability Analysis, cites some 

relevant studies related to structural reliability and code development procedures. 

2.1 Curved Steel I-girder Bridges 

Since the 1960s, several studies have been conducted to investigate different 

typical aspects of the structural behavior on curved girders such as:  the strength capacity 

under vertical loads (Jung et. al., 2005; Davidson, Balance & Yoo, 2000; Thevendran et. 

al., 2000; Thevendran et. al., 1999; Shanmugan, 1995); modeling strategies (Chang et. 

al., 2005); analysis methods (Nevling, Laman & Linzell, 2006; Zureick & Naqib, 1999); 

load distribution (Samaan, Sennah & Kennedy, 2005; Zhang, Huang & Wang, 2005; 

DePolo & Linzell, 2005; McElwain & Laman, 2000; Brokenbrough, 1986; Heins & Jin, 

1984); dynamic response (Tilley, Barton & Gomez, 2006; Maneetes & Linzell, 2003); 

stability (Davidson, Balance & Yoo, 1999; Davidson & Yoo, 1999); etc.  However, the 

present work deals directly with the LFB and constructibility issues, in particular during 

deck placement.  Therefore, the studies closely related to the objectives of this work will 

be presented in more detail in the subsequent sections: Section  2.1.1 contains the research 

work related to the LFB on curved girders, Section  2.1.2 describes studies addressing 
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constructibility issues, and Section  2.1.3 includes an overview of the specifications for 

curved girders since detailed design aspects are considered in Section  2.4. 

2.1.1 Lateral Flange Bending  

The New York State Department of Transportation published a series of research 

reports (Beal, 1978; Kissane and Beal, 1972; Beal and Kissane, 1971) based on a 

research study started in 1967 to evaluate the behavior of horizontally curved girder 

bridges and to establish appropriate design procedures.  The project involved field testing 

of four existing bridges and theoretical analyses using planar grid models based on the 

stiffness method.  In particular, Kissane (1978) published a report where experimental 

and analytical results from two small scale models were used to establish an empirical 

formulation of the LFB moments in simply supported and uniformly loaded curved 

girders.  As a result of this effort, an empirical equation for the LFB moment on curved 

girders was proposed: 
2

12
d

lat
wlM =           2-1 

nbMw
Rd

=           2-2 

where ld is the diaphragm spacing, w is the equivalent distributed lateral load, Mnb is the 

maximum normal bending moment, R is the radius of curvature, and d is the distance 

between flange centroids. 

The factor 1/12 in Equation 2-1 was taken as 1/10 in the specifications valid at the 

time of the research project.  This value was selected as a compromise between the 

extreme factors given for fixed (1/12) and simply-supported beams (1/8).  However, the 

research results showed that the LFB behavior is similar to the main bending stresses 

exhibited by continuous girders.  Currently, the specifications still recommend this 

approximation to take into account the curvature but using a divisor factor between 10 

and 12, depending on the desired level of conservatism. 

Schilling (1996) presented a series of yield-interaction relationships for compact, 

compact-flange, and noncompact sections under combined vertical and lateral moments 

to define the bending capacity of curved girders.  The sections had to satisfy web 
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slenderness and compression-flange bracing limits.  The proposed interaction equations 

allow defining the vertical bending capacity based on a steel section with reduced 

flanges, where the reduced flange widths depend on the lateral moment.  This philosophy 

is the basis of the “one-third rule” equations which are the format of the flexural state 

limits in current design specifications, as described later in Section  2.4.5. 

Davidson and Yoo (1996) numerically studied the effect of curvature on the local 

buckling of curved girder compression flanges and proposed a practical reduction factor 

of the buckling strength in straight girders as a function of the warping-to-bending stress 

ratio.  Additionally, based on the numerical results, a design equation was derived for the 

maximum width-thickness ratio of compression flanges.  

Davidson, Keller and Yoo (1996) carried out a parametric study using detailed FE 

models of curved steel bridges connected by cross frames.  The results were compared to 

straight girder systems concluding that parameters such as curvature level, span length 

and flange width were the most significant factors affecting the structural behavior of 

curved girders.  Approximate equations to estimate the adequate cross-frame spacing and 

predict the warping-to-bending stress ratio were developed based on a nonlinear 

statistical regression.  Davidson and Yoo (2000 & 2003) verified the accuracy of these 

approximations using detailed finite-element models of the curved three-girder test frame 

which was constructed under the Curved Steel Bridge Research Project experimental 

phase (Zureick et. al., 2000; Duwadi et. al., 2000) to evaluate the curvature effects on the 

bending strength of curved I-girders.  

Yoo and Davidson (1997) presented a complement of the work of Schilling 

(1996) developing yield-interaction equations for singly symmetric noncomposite and 

composite sections in both positive and negative bending regions.  Complete 

plastification for compact sections, partial yield penetration for compact-flange sections 

and initial yield at the flange tip for noncompact sections were considered as the limit 

states for the study.  Analysis of the results indicated that the denominator of the lateral 

moment equation (see Eq. 2-1) should be taken as 14 instead of 12 or 10.   

White, Zureick and Jung (2001) developed a unified approach for the flexural 

design of both straight and curved I-girder bridges that was implemented in AASHTO 

(2004) Specifications.  The flexural design equations, also called the “one-third rule” 
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equations, exhibit a favorable characteristic with respect to past approximations, since 

they handle in a practical manner combined vertical and lateral bending from any load 

source regardless of the girder type: curved or straight (see Section  2.4.5).   

2.1.2 Constructibility 

Grubb, Yadlosky and Duwadi (1996) described different issues that arise during 

the construction of horizontally curved steel bridges.  In fact, according to the authors, 

most of the problems exhibited by curved girders are related to the fabrication and 

assembly procedures, since the designer does not account for the deformations presented 

during construction which are more complex than those experienced by straight girders.  

In particular, during deck placement, the non-composite girders are subjected to 

significant demands from dead loads that include:  member self weight, weight of the wet 

concrete slab, miscellaneous steel, and construction equipment.  In this state, it is 

common to have more than one-half of the web depth in compression since the top 

flanges are usually smaller than the bottom flanges in positive-moment regions 

generating potential stability problems.  The deck-casting sequence is also described as 

an important aspect to consider during construction since stiffness changes affect the 

deflection profile during and after the deck casting.  It is recommended to cast the deck in 

positive-moment zones first to minimize the slab cracking and maintain the casting 

sequence as symmetrical as possible to avoid unbalanced loading and differential 

deflections.   

Galambos et. al. (2000) studied the behavior of the steel superstructure of a 

curved steel I-girder bridge during all phases of construction.  Comparisons of the field-

measured and elastic numerical stresses yielded good correlation for the main bending 

stresses and deflections.  However, the warping and minor-axis bending effects exhibited 

less predictable behavior.  During deck placement, the stress correlation improved as the 

casting progressed since local fit-up stresses dissipated under additional loading.  Finally, 

the authors recognized the importance of considering the composite behavior on 

negative-moment regions to simulate the live load stresses.  

Linzell, Leon and Zureick (2004) assessed the ability of numerical procedures for 

predicting response during erection.  The work is based on experimental results of a full-
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scale curved steel bridge structure that was part of the Federal Highway Administration 

project intended to develop rational design guidelines.  The comparisons showed good 

predictions by the finite-element models, where the main differences were attributed to 

construction effects.  The test results indicated that providing minimal radial restraint for 

curved girders during construction has beneficial effects on the structural behavior. 

Domalik, Shura and Linzell (2005) presented the issues raised during the design 

and construction of a two-span curved steel I-girder bridge.  A global twisting of the 

superstructure was produced due to the unbalanced distribution load of the unequal spans.  

Additionally, the authors recommend a technique to include into the girder design the 

additional lateral bending moments produced by the out-of-plumb effects.  This technique 

computes the rotation of the girder based on the girder depth and deflection; then, the 

vertical bending moment is resolved into a lateral and an aligned bending component 

with respect to the out-of-plumb web.  Shura and Linzell (2006) published additional 

results about the field measurements during the superstructure erection and the deck 

placement. These results indicated that two-dimensional grillage models were not able to 

reproduce flange stresses and warping of the girders during erection.  The authors 

proposed an exterior-to-interior single girder erection sequence to reduce dead load 

stresses and deflections.   

Chavel and Earls (2006a & 2006b) evaluated the erection problems encountered 

in a curved steel I-girder bridge using finite-element analyses.  Most of the erection 

difficulties were attributed to an inconsistency in the detailing and fabrication of the 

structure, since the girders and cross frames were detailed for a no-load condition 

different than the one exhibited by the bridge during construction.  As a consequence, 

elements like the cross frames may be too short or too long which generates additional 

stresses and deformations into the girders and increases the costs.  The authors 

recommend the use of an appropriate temporary support system to resemble the no-load 

condition assumed in the design process.   

Bell and Linzell (2007) studied a curved six-span steel I-girder bridge which was 

monitored during corrective procedures intended to counteract some erection problems.   

The results indicated that the erection of paired girders reduces radial and vertical 

deformations.  Additionally, providing shoring towers at span quarters and the use of 
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lateral bracing in exterior girder spaces were proven to be effective means of reducing 

levels of deflection.   

Howell and Earls (2007) evaluated the effect of the web plumbness during the 

erection of the steel superstructure.  Finite-element models were used to study the effect 

that the web out-of-plumbness has on flange tip stresses, vertical and lateral deflections, 

cross-sectional distortion and cross-frame demands.  The results showed that the flange 

tip stresses are significantly influenced by the web plumbness exhibiting stress changes 

up to 20% with respect to calculations that ignore this effect.  The vertical deflections 

were not altered by the web plumbness effects.  However, the lateral deflections show 

increases as much as 250% at the midspan of the outer girder. Finally, the cross-frame 

forces were also sensitive to increasing out of plumbness where a proportional effect is 

typically exhibited. 

2.1.3 Specifications – background  

The CURT project (Consortium of University Research Teams) in 1969 was the 

first major work led to create some design provisions for curved girder bridges based on 

experimental and analytical research (Linzell et. al., 2004).  As a result of this effort, 

specifications based on the allowable-stress-design format (ASD) were proposed in 1976.  

However, the load factor design (LFD) was adopted by AASHTO in 1980 and added to 

the previous ASD provisions, becoming the first version of the AASHTO Guide 

Specifications for Horizontally Curved Highway Bridges.  A second edition was issued in 

1993.  However, the 1980-original provisions were generally kept unchanged in its 

primary content.  Therefore, as a result of the National Cooperative Highway Research 

Program (NCHRP) 12-38 Project, an updated version was published in 2003 using the 

LFD format (AASHTO, 2003).  These specifications made significant improvements to 

the design guidelines of the 1993 Guide Specs, since they identified the need to correlate 

the LFB with the vertical bending (see Section  2.4.4).   

Finally, AASHTO issued the LRFD Bridge Design Specifications in 2004 (see 

Section  2.4.5) as part of the work done during the NCHRP 12-52 project, intended to 

develop provisions for curved bridges in the AASHTO load and resistance factor design 

format (LRFD).  The primary objective of this work was to incorporate the design 
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provisions for curved bridges into the then-existing specifications for straight bridges 

(White & Grubb, 2004).  These provisions were initially published in 2004 using 

statistically calibrated data for straight girders (AASHTO, 2004).  However, the 

provisions corresponding to curved girders were published in the 2006 interim to the 

AASHTO LRFD specifications.  The NCHRP 12-52 project concluded from the 

statistical calibration of the load and resistance factors, that the LRFD factors for straight 

girders were still valid for curved girders (NCHRP, 2006b).  The important achievement 

of these specifications lays on the fact of handling a combined solicitation of LFB and 

major-axis bending, independent of the load source and the type of girder (curved or 

straight). 

2.2 Skewed Steel I-girder Bridges 

It is a common practice to ignore the skew effect in the structural behavior of 

skewed bridges which are designed mostly as general tangent structures.  As a 

consequence, there are far less studies addressing the skew effect than works focused on 

the curvature effect.  Some of these research efforts deal with both effects simultaneously 

(Ozgur & White, 2007; Coletti & Yadlosky, 2005), and some others evaluate specific 

aspects of skewed bridges such as load distribution (Huang, Shenton & Chajes, 2004; 

Khaloo & Mirzabozorg, 2003), cross-frame systems (Herman et. al., 2005), etc.  

Construction issues are addressed in some specific works described below. 

Norton, Linzell and Laman (2003) compared the field response of a skewed 

bridge during deck placement to analytical model predictions.  Specifically, the study 

evaluated the effect of pouring the concrete both perpendicular to the centerline of the 

bridge and parallel to the abutments.  The authors concluded that the first deck placement 

procedure exhibits high support reactions and displacements during intermediate 

construction stages, while the second technique presents a more homogeneous response. 

Beckmann and Medlock (2005) described rotation and deflection issues that may 

affect the structural behavior of highly skewed steel bridges.  In particular, they mention 

the rotation normal to the skewed supports that the girders exhibit when the non-

composite loads are applied, which increases the demand on the cross frames.  This 
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rotation displaces the top flange transversely from the bottom flange and causes the out-

of-plumb effect on the web.  On the other hand, the principal issue for intermediate cross 

frames oriented perpendicular to the girders is related to the differential deflections.  

These problems require an accurate detailing work of the cross frames to meet the no-

load fit, steel dead-load fit or the full dead-load fit, and avoid over demands of stresses 

and deformations.   

Choo et. al. (2005) investigated the response of a continuous skewed bridge with 

High Performance Steel (HPS) under the effects of the deck placement during 

construction.  Finite-element models were calibrated using field measurements that were 

highly sensitive to the temperature changes.  The authors also evaluated the effects of 

placing the concrete both perpendicular to the girders and parallel to the skew.  The 

results indicated that placing the concrete parallel to the supports reduces the differential 

deflections and stresses across the bridge superstructure. This beneficial effect is more 

evident in simply supported girders than in girders under continuous support conditions.   

2.3 Overhang Load Design 

Some simplified procedures have been suggested to design exterior girders for the 

effects caused by the concrete deck overhang loads:  LFB and web distortion.  The most 

significant design guides were developed by the American Institute of the Steel 

Construction (AISC) (Grubb, 1991) and the Kansas Department of Transportation 

(KDoT) (Roddis, Kriesten & Liu, 1999). 

2.3.1 AISC Approach 

In this procedure, it is assumed that the cross frames act as torsionally rigid 

supports that prevent out-of-plane warping.  Therefore, exterior-girder flanges, which are 

the resister elements of the torsion imposed by the overhang loads, are taken as a laterally 

loaded fixed-end beam with a span length equal to the distance between the cross frames, 

as shown in Figure  2-1 for the bottom flange.  

The design guide includes a simplified analysis where tabulated coefficients in 

terms of the overhang length and the girder height are multiplied by the square of the 
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cross-frame spacing to obtain the maximum fixed-end moment at the cross-frame 

locations (Mfw).  The maximum moment in-between the cross-frame spacing (M+) is 

calculated multiplying the corresponding Mfw by 0.53 and 0.60 for the uniform overhang 

loads (slab, overhang form and walkway live load) and the finishing machine loads, 

respectively. 

For the top flanges on exterior girders, the guide recommends to use rebar ties 

attached to the stud shear connectors at the third points of the cross-frame spacing.  This 

configuration reduces the lateral moment and increases the buckling strength of the top 

flange.  Therefore, top flanges that meet this requirement and are part of cross frames 

where their distances do not exceed 25 feet, are assumed to control permanent 

deformations caused by yielding and ensure adequate ultimate strength without requiring 

an explicit checking procedure. 

 

 
Figure  2-1. Plan view of bottom flange: a. Original b. Equivalent approximation. 
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On the other hand, the following limit states are defined for the bottom flanges: 

• Strength: 

1. Yielding Limit State:  To control permanent deformations of tension and 

compression flanges at and between cross frames. 

bu l yf f F+ ≤          2-3 

where fbu is the maximum factored normal bending stresses, fl is the LFB 

stresses, and Fy is the flange yield stress. 

2. Ultimate strength: Interaction equation of axial and bending effects for 

compression flanges in between the cross frames. 
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where Pu is the factored applied axial force in the flange, As is the flange 

cross-sectional area, Fcr is the flange critical buckling stress, Ml is the applied 

lateral flange moment, Cm is the equivalent moment factor to account for the 

shape of the applied moment diagram, Mu is the maximum moment capacity 

of the flange, and Fe is the Euler buckling stress of the flange in the plane of 

bending. 

• Stability: 

1. Web distortion:  To control potential web instabilities the guide suggests that 

the cantilever brackets should be supported within a maximum of six inches 

from the bottom flange.  This requirement is intended to prevent a direct 

contact of the brackets and the web in a compression zone. 

2.3.2 KDoT Approach 

The University of Kansas and the KDoT developed a software program called 

“Torsional Analysis for Exterior Girders – TAEG” based on a research project including 

field tests and numerical analyses.  This approximation overcomes some inaccurate 

assumptions of the AISC approach such as the totally fixed-support condition given by 

the cross frames and the worst case midspan-to-fixed-end-moment ratios (0.53 for 

distributed loads and 0.60 for screed loads).   
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The program has a step-by-step procedure to design overhang and cross-frame 

dimensions, cross-frame distances and to check falsework schemes.  The following basic 

assumptions were adopted in the KDoT approach according to the results obtained in the 

research work: 

• The flange flexure analogy is valid to represent the torsional effects. 

• A simplified flange model with three continuous spans with fixed ends is sufficient to 

achieve good accuracy compared to the AISC simple-span assumption. 

• The lateral support in the bottom flange needs to be considered and varies with the 

type of support:  cross frames or diaphragms. 

• The effect of temporary supports needs to be considered. 

• The dynamic effects due to the movement of the motor carriage are negligible. 

• Impact loads during the deck placement are also considered insignificant. 

Three basic load schemes are considered along the three-span beam to define the 

maximum demands:  i. dead load, live construction load and concrete for the initial span 

of the beam; ii. dead load, live construction load, concrete and the finishing machine for 

the middle span; and iii. dead load and live construction load for the remaining span.  The 

position of the wheel loads in ii is varied within the second span of the continuous girder 

to identify the critical location that generates the maximum effects.  All the loads are 

simulated as distributed including the wheel loads applied over the width of the finishing 

machine stand.  The cross frames and diaphragms are modeled as pinned supports for the 

top flange.  For the bottom flange, the cross frames are also considered as pinned 

supports while the diaphragms as well as the temporary supports are modeled with 

equivalent springs.   

The principal calculations that the program performs based on the three-span 

continuous beam model and the stiffness method are: 

• Maximum stresses in the flanges 

• Ultimate strength check for the top flange 

• Deflection of the flanges 

• Rotation and deflection of the girder at the screed rail 

• Internal forces of the overhang brackets 

• Support reactions 
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• Stresses in the diaphragms 

• The bolt load and critical bolt load in case of bolted connections between the girder 

and diaphragms 

In comparison to the AISC approach, the stress results obtained with the KDoT 

program are approximately 20% higher for the positive moment regions and 20% lower 

for the negative moment zones.  Thus, an economical benefit is obtained using the 

program since usually the negative moments govern the design. 

2.4 Lateral Flange Bending Design  

Section 1.2, Lateral Flange Bending in Steel I-girder Bridges, described the 

physical conditions that produce LFB in curved and skewed bridges and the interaction of 

these stresses with the normal bending effects produced by vertical loads.  Given that the 

LFB behavior has been defined, it is necessary to establish how the design specifications 

have addressed this particular issue for steel I-girder sections.   

2.4.1 Standard Specifications for Highway Bridges - 15th Ed., AASHTO 

(1992): 

These specifications consider lateral bending effects due to wind loading in order 

to only evaluate the maximum forces generated in diaphragms and cross frames.  The 

maximum induced stress (F) in the bottom flange of the girder when the top flanges are 

continuously supported is defined as follows: 

cbF RF=            2-5 
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where R is the factor to account for the effect of the bottom lateral bracing (BLB), Fcb is 

the flange bending stress produced by wind loading, W is the wind loading along the 
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exterior flange (lb/ft), Sd is the diaphragm spacing (ft),  L is the span length (ft), tf is 

the flange thickness (in), and bf is the flange width (in). 

In cases when the top flanges are not continuously supported, the code 

recommends performing an explicit analysis of the structural elements to identify the 

lateral bending stresses. 

2.4.2 LRFD Bridge Design Specifications, SI Units – 1st Ed., AASHTO 

(1994) 

Wind effects on girder flanges are considered in these specifications for 

composite sections classified either as compact or non-compact.  For compact sections, 

these lateral effects are assumed to be carried by a reduced width at each edge of the 

bottom flange (Schilling, 1996), defined as: 
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where bf is the bottom flange width (mm), tf is the bottom flange thickness (mm), Fyb is 

the specified minimum yield strength of the bottom flange (MPa), and Mw is the 

maximum lateral moment in the bottom flange due to factored wind loading (N-mm).  

The remaining flange width is used to compute the composite girder capacity for the 

vertical loads involved in the corresponding load combination. 

In the case of non-compact sections, an interaction of stresses has to be checked 

for the bottom flange as follows: 
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=           2-10 

where Fu is the flexural stress in the bottom flange due to the factored loads other than 

wind (MPa), Fw is the flexural stress at the edges of the bottom flange due to the factored 

wind loading (MPa), Fr is the factored flexural resistance according to the these 

specifications (MPa), and Mw is the maximum lateral moment in the bottom flange due to 

factored wind loading (N-mm). 
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The construction issues are addressed by selecting the appropriate construction 

loads to compute the strength and the stability during construction.  In particular, it is 

recommended to consider changes in loads, stiffness and bracing during the deck pouring 

sequence.  The corresponding commentary gives particular attention to the strength and 

stability problems produced by the cantilever forming brackets.  The nominal flexural 

resistance is defined by the yield moment capacity of the non-composite section, when it 

meets certain slenderness requirements.  Otherwise, the lateral-torsional buckling 

capacity for non-composite and non-compact sections is applied.  However, there is a 

lack of explicit bending limit states during construction that permit the addition of the 

LFB effects in a practical approach, such as that required for a design code format. 

2.4.3 LRFD Bridge Design Specifications, Customary U.S. Units – 2nd Ed., 

AASHTO (1998) 

In these specifications, the design guidelines given for wind loading conditions 

remain similar as those described in Section  2.4.2.  The constructibility incorporates a 

new requirement to limit the maximum compressive flexural stress in the web, resulting 

from the various stages of the deck placement sequence, to the theoretical elastic bend-

buckling stress of the web.  Nevertheless, as explained in Section  2.4.2, there is still not 

an explicit definition of the flexural limit states with specific restrictions on the LFB 

effects. 

2.4.4 Horizontally Curved Steel Girder Highway Bridges, AASHTO (2003) 

AASHTO (2003) introduces formally the definition and the notation of the LFB 

as follows: 

• Lateral Flange Bending (LFB)  – Flexural action in the plane of the flange with 

respect to the vertical axis through the flange.  LFB may be due to lateral loads 

applied to the flange and/or nonuniform torsion in the member.  In these provisions 

LFB moments refer to those at brace points.  

• fl: calculated total factored LFB stress at the section under consideration. 

• Mlat: LFB moment. 
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The code allows the use of a simplified line girder analysis, when the plan 

configuration of the bridge meets certain geometrical restrictions.  In that case, the lateral 

bending moment in I-girder flanges due to curvature is defined as: 
26

5lat
MlM
RD

=           2-11 

where M is the vertical bending moment (K-ft), l is the unbraced arc length (ft), R is the 

girder radius (ft), and D is the web depth (in). 

Additionally, these specifications limit the maximum values of fl, recognizing the 

adverse impact that these stresses may have on the general flange bending behavior of 

curved girders, according to the following equations: 

0.5l yf F≤           2-12 

/ 0.5l bf f ≤           2-13 

where Fy is the specified minimum yield stress (Ksi) and fb is the calculated factored 

average flange stress at the section under consideration (Ksi).  Equation 2-13 is valid 

when fb is greater than or equal to the smaller of 0.33Fy or 17ksi.  

The critical average flange stress for partially braced flanges, Fcr, is taken as the 

smaller of Fcr1 and Fcr2: 

1cr bs b wF F ρ ρ=           2-14 

2
l

cr y

f
F F

K
= −          2-15 

where Fbs is the critical average flange stress of an equivalent straight girder flange (Ksi); 

ρb and ρw are the strength reduction factors due to curvature effects expressed in terms of 

the l/R ratio, ρw is also function of the stress ratio fl/ fbu; K is a constant taken as 3 for 

compact flanges in compression and flanges in tension, and 1 for non-compact flanges in 

compression; l is the unbraced arc length; and R is the girder radius. 

These flange strength definitions include directly the reduction in the flexural 

capacity of the flange due to the lateral stress effects, contrary to previous code versions, 

where the LFB is not explicitly taken into account in either the strength formulations or 

limit states equations.  This format allows the engineer to evaluate the effects produced 

by any type of load combination and limit state. 
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Finally, a complete section of the specifications is dedicated to the 

constructibility, giving practical recommendations for deck placement and overhang 

brackets.  The corresponding commentary includes some approximate equations (similar 

to those presented in AASHTO 2007) to compute lateral flange moments depending on 

how the lateral load is assumed applied to the top flange: 
2

;    
12 8lat lat
Fl PlM M= =         2-16 

where F is the factored uniform lateral force (K/ft), l is the unbraced arc length (ft), and P 

is the concentrated lateral force at mid-panel (Kip). 

2.4.5 LRFD Bridge Design Specifications, Customary U.S. Units – 4th Ed., 

AASHTO (2007) 

AASHTO (2007) corresponds to the present time specifications which were 

described in detail at Sections  1.2.2, AASHTO approximate formulations for the LFB, 

and  1.2.3, AASHTO Flexural Limit States for Constructibility.  Approximate equations 

for considering curvature and overhang loading were explained along with the flexural 

limit states that govern the construction stage.  In particular, the second limit state 

equation for discretely braced compression flanges (see Eq. 1-5), called the “one-third 

rule equation” (White & Grubb, 2005; White, Zureick & Jung, 2001), is intended to 

assure that the member has sufficient capacity for the lateral torsional and flange local 

buckling limit states.  This equation is basically an interaction expression similar to those 

given for beam-column elements, where fbu represents the axial load and fl the bending 

moment.  The one-third factor corresponds to a linear approximation of the equivalent 

beam-column resistance for levels of LFB below the 60% of the nominal flange yield 

strength.  The theoretical derivation of the one-third rule equation according to White et. 

al. (2001) is presented below: 

• Derivation of the “one-third rule” equation: 

Consider an I-girder flange subjected to combined vertical and lateral bending 

effects.  The flange lateral moment produced by an elastically behaved lateral bending 

stress, fl, is defined by Equation 2-17.  However, if the flange is compact, a fully plastic 

stress distribution can be developed as shown in Figure  2-2, where the flange tips of 
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width c correspond to the flange force related to the lateral moment, given by Equation 2-

18.  Therefore, the remaining width of the flange is required to take the flange force 

associated with the vertical bending (see Eq. 2-19), which corresponds to a uniform stress 

distribution, fbu, over the complete flange width, bf, in absence of the lateral effects.    
2

6
l f f

l

f b t
M =           2-17 

( )l y f fM F ct b c= −          2-18 

2f
bu y

f

b c
f F

b
−

=          2-19 

where tf is the flange thickness and Fy is the yield strength of the flange. 

The width c can be obtained by equating Equations 2-17 and 2-18, and then 

placed in Equation 2-19 to obtain fbu as a function of fl and the flange fully plastic 

strength, Fy, as indicated below:  

21
3

l
bu y

y

ff F
F

= −          2-20 

For practical purposes where fl is below 60% of Fy, Equation 2-20 is 

approximated accurately by the following linear relationship, as shown in Figure  2-3: 

1
3bu y lf F f= −           2-21 

 
Figure  2-2. Idealized flange plastic stress distribution due to vertical and lateral bending. 
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Figure  2-3. Comparison of the complete and the approximate strength of a compact 

flange 

 

Equation 2-21 does not account for the reduction in the flexural capacity due to 

local flange or lateral-torsional buckling in compression flanges.  Therefore, in this case, 

the yield strength of the flange is replaced by the design flexural resistance of the flange, 

φfFnc, computed according to the specifications. 

The one-third rule equation has the advantage of being valid either for straight or 

curved girders, since it does not depend directly on the radius of curvature as the ρ 

factors in Equation 2-14.  Therefore, the equation does not exhibit any anomaly when the 

radius of curvature goes to infinity.  Additionally, this formulation allows computing 

independently the load demands from the strength capacities of the flanges, which 

improves the practical application of the provisions.  Finally, the one-third rule applies 

not only for the constructibility condition but also for the strength limit state including 

compact and non-compact sections, and flanges in either tension or compression states. 
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2.5 Reliability Analysis 

The prediction of the structural performance of any system is based on the 

combination of approximate analysis methodologies to determine loading effects and 

experimental tests to establish material properties or member behaviors.  However, there 

are always inherent uncertainties related to these processes that distort the subsequent 

predicted results.  Variables such as the material properties, approximations in the 

analyses, simplification of the models, randomness of the loads, etc., affect the demand 

and capacity estimations of the members in the structural system.  Therefore, the 

reliability analyses are intended to account for these uncertainties to estimate the level of 

confidence exhibited by the structure to achieve the desired structural performance. 

An overview of research efforts conducted in reliability is presented as follows:  

first, a description of the reliability analysis for code development, where a synopsis of 

the most important performance-based codes and specifications based on structural 

reliability is presented; and, a presentation of some reliability methodologies, including 

specific research works on the methods and procedures to compute the reliability of a 

structural member or system. 

2.5.1 Reliability Analysis for Code Development 

In the 1960s, the philosophy of the code specifications was based on the allowable 

stress principles (ASD, Allowable Stress Design).  The structure was supposed to behave 

elastically, and the uncertainties were taken into account by a safety factor which divided 

the maximum stress according to the limit state considered.  However, since these safety 

factors were selected subjectively, the risk of failure associated with that decision was 

unknown.  Therefore, this practice has become impractical from the economical and 

safety point of view. 

During the 1960s and 1970s, different natural disasters took place around the 

world causing extensive loss of human lives and economical damage.  The evidence of 

deficiencies in design specifications revealed the need for the elaboration of codes based 

in a different design philosophy.  More rational code definitions were defined identifying 

the basic limit states that any structure should achieve: safety under high load scenarios 
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and comfort during normal load conditions.  This approach became the basis of most of 

the structural design specifications even for current codes.    

In 1978, Ellingwood, Galambos, MacGregor and Cornell developed a set of 

design specifications using advanced reliability analysis methods and statistical data 

(Ellingwood, 1985).  The fundamental concept of this design procedure is the basis of the 

Partial Factor Method, which is considered a “Simplified Probabilistic Design” method 

(Vrounwenvelder, 2001).  In this method, a structural failure occurs if the load effects are 

larger than the resistance capacity of the element or system, and since both of these 

variables are considered random, a probability-based criterion may be applied.  The issue 

consisted in defining the target probabilities considered as “safe” for design, in order to 

find the appropriate threshold between safety and economy.  Several current structural 

design standards such as the AISC’s LRFD Specifications for Steel Structures, ASCE 

Standard 16 on LRFD for Engineered Wood Construction, American Concrete Institute 

Standard 318, and the International Building Code 2000, are based on these principles.   

Initially, the partial factors that account for uncertainties in loads and resistances 

were defined based only on past experiences and the observed behavior of the structures.  

However, current systems demand more accurate methods to determine these factors, 

since high uncertainties may carry catastrophic consequences which are unacceptable in 

today’s practice.  The probabilistic analyses satisfy this requirement and enhance the 

confidence level of the structures.   

Some new code specifications address the structural design problem from the 

performance-based point of view, which is the final target of the evolution of the design 

codes.  Vision 2000, FEMA 356 (FEMA, 2000a), FEMA 350 (FEMA, 2000b), ATC-40 

(ATC, 1996) and NEHRP (FEMA, 2003) are some examples of this new trend in the 

code developments, principally for seismic design.  The designer needs to define a 

structural performance objective which consists of different intensity load scenarios that 

control the design of structural and no-structural members.  The definition of the loads 

and the capacities are based on probabilistic analyses according to real conditions.    

Specific research works on the calibration of code specifications for steel bridges 

have been done by several authors (Nowak, 1995; Nowak, 2004; Barker & Zacher, 1997; 

Czarnecki & Nowak, 2006).  In these studies, the probabilistic definitions of loads and 
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capacities have been addressed during the service stage of the bridge. In particular, 

Nowak et. al. (2006) calibrated the resistance factors for steel curved bridges including 

construction stages using three representative structures.  The authors concluded that the 

resistance factors used for straight bridges are valid for curved bridges and that the 

construction stage is very important for curved bridges because of the significant 

variation of stresses during this phase.   

Eamon et. al. (2000) presented a reliability-based criterion for wood bridges in the 

Load and Resistance Factor Design (LRFD) format.  Load and resistance models were 

developed based on statistical analyses of test results.  The limit state considered was the 

flexural capacity where the failure is limited by the moment of rupture.  A wide range of 

reliability indexes was exhibited principally due to significant differences between code-

predicted stresses and analytical results.  The authors concluded that more accurate 

design approximations based on experimental and analytical results are required to 

improve the reliability for a wood bridge code. 

Galambos (2004) determined the theoretical reliability of steel beams, columns 

and beam-columns designed according to the projected 2005 AISC specifications.  The 

reliability indices were evaluated based on contemporary material properties and recent 

experimental strength data.  It was concluded that the notional reliability of the proposed 

specification is identical to the one exhibited by the LRFD Specifications of 1986. 

White and Jung (2008) evaluated the lateral-torsional and flange local buckling 

(LTB & FLB) predictions from 2004 AASHTO and 2005 AISC provisions versus 

uniform bending experimental test results.  The reliability indices were estimated where 

the corresponding values for FLB were shown to be larger than those for LTB.  These 

specifications were also evaluated using the results obtained from moment gradient 

experimental tests (White & Kim, 2008).  In this work, the estimated reliability indices 

for FLB of end-loaded segments were found to be similar to those determined by White 

and Jung (2008) in most cases.  For LTB, the reliability indices for end-loaded segments 

with moderate to large unbraced lengths were slightly larger than the values estimated 

from the uniform bending tests. 
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2.5.2 Reliability Methodologies 

Some specific research works are presented below to describe the importance of 

the selection of the reliability methods according to the available resources and intended 

goals. 

Gayton et. al. (2004) described the advantages and disadvantages of the existing 

calibration methods for the partial factors of reliability-based design codes, in order to 

evaluate their validity and improve their efficiency.  The global optimization methods are 

highly accurate but time consuming; hence, the approximate methods become more 

popular and practical with a consequent accuracy cost.  Four numerical examples are 

presented to illustrate the application and the differences of the global and approximate 

methods.  The authors give recommendations to select the appropriate method according 

to result quality and computation time. 

Zhao and Ono (2001) studied five methods to approximate the probability of 

failure of a structural system based on the higher order moments of a random variable.  

Compared to the most popular first-order reliability methods (FORM), these procedures 

are simpler and do not require iterations or derivative computations, which makes them 

attractive for structural reliability analysis.   

Foschi, Li and Zhang (2002) described an approach to integrate structural 

response calculations with procedures for the calculation of reliability (forward problem) 

or calculate design parameters for specified target reliabilities (inverse problem).  The 

inverse problem is usually more time consuming since it requires an iterative 

optimization process of the design parameters.  However, the efficiency is improved if a 

reliability database is constructed in terms of the design parameters, where interpolation 

algorithms are applied to obtain the appropriate factor values.  These performance-based 

procedures allow designing structures with specific demands or particular characteristics 

that are out of the standard-specifications scope.  

Li and Li (2004) performed a reliability-based integrated design (RID) of steel 

portal frames with tapered members.  The authors address the reliability concept of the 

structural system rather than their individual components, thus the structural redundancy 

and ductility are involved in the limit states.  The authors employ a nonlinear integrated 

analysis model to reduce the uncertainty of the results.  The final design using this 
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procedure consumes less steel than the LRFD method and produces a satisfactory 

reliability index. Cheng, Xu and Jiang (2006) also presented a method to compute the 

approximate reliability using a linear Taylor approximation of the accurate reliability that 

reduces computational effort.  The method comprises a reliability analysis and 

optimization of design variables.   
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Chapter 3:  Overview of finite element modeling 
procedures 

This chapter discusses the principal modeling procedures employed to conduct 

FEA in this research.  First, the material models for steel and concrete and their 

corresponding stress-strain relationships are described.  Then, the finite elements and 

techniques required to model the bridge behavior during deck placement conditions are 

presented.  A validation of the modeling procedures is also included using the results 

from experimental tests with different levels of complexity, starting from one steel I-

shaped girder and finishing with the Federal Highway Administration’s full-scale curved 

bridge structure.  Finally, a description of the analysis methodology employed in the FE 

models is given. 

3.1 Materials 

This section includes a description of the material models and the experimental 

data from where the stress-strain relationships were derived. 

3.1.1 Steel 

3.1.1.1 Material Model 

A plasticity metal model with Mises yield surfaces, associate plastic flow and 

isotropic hardening was used in this study.  This model is considered appropriate to 

simulate rate-independent behavior of a metal under a relatively monotonic loading 

where creep effects may be neglected (Righman, 2005).    

The Mises yield criterion is a rate-independent plasticity model for isotropic 

materials, i.e. isotropic yielding.  This criterion states that yielding begins when the strain 

energy of distortion reaches a critical value in terms of the uniaxial yield strength of the 

material (σy).  The associated plastic flow considers that the inelastic deformation rate is 

in the direction of the normal yield surface; consequently, the plastic deformation is 

volume invariant. Finally, the isotropic hardening defines the change of the yield-surface 
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size which is uniform in all directions and varies according to the plastic strain (Abaqus, 

2002).   

3.1.1.2 Stress-strain relationship 

The engineering stress-strain relationship used in this study consists of a multi-

linear approximation (Hartmann, 2005), which is summarized in Table  3-1.  This 

approximation is based on the average properties of selected plates (see Table  3-2) of a 

full-scale curved bridge structure that is part of the Federal Highway Administration’s 

Curved Steel Bridge Research Project.  As a result, the curve indicated in Figure  3-1 was 

used to characterize the mechanical behavior of the Grade-50 steel.  A representative 

value for the modulus of elasticity (E=29600 Ksi) was specified to construct the curve.  

Finally, the engineering stress-strain relationship is converted to the true stress-strain 

curve, as required for input into Abaqus®.   
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Figure  3-1.  Engineering and true stress-strain relationships for the Grade-50 steel 
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Table  3-1. Approximations for a typical steel stress-strain behavior (Hartmann, 2005) 
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Table  3-2. Average steel plate properties (Hartmann, 2005) 
Property Average Value 

Static yield strength, σsy (Ksi) 57.65 

Offset yield strength, σ0.2% (Ksi) 59.42 

Strain at the onset of strain hardening, εst (%) 1.71 

Strain hardening modulus, Est (Ksi) 537.37 

Tensile strength, σu (Ksi) 81.88 

Strain at the tensile strength, εu (%) 16.18 
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3.1.2 Concrete 

3.1.2.1 Material Model 

The concrete damaged plasticity model proposed by Lee and Fenves (1998) is 

selected as the constitutive model to represent the concrete behavior in the FEA.  In this 

model, it is assumed that the main two failure mechanisms are tensile cracking and 

compressive crushing of the concrete. This is a plastic-damage model based on the 

concepts of fracture-energy damage and stiffness degradation from the continuum 

damage mechanics.   

The concrete damaged plasticity model assumes non-associated potential plastic 

flow.  This flow potential, which is continuous and smooth, ensures that the flow 

direction is always uniquely defined.   The model makes use of the modified yield 

function proposed by Lee and Fenves (1998) to account for different evolution of 

strength under tension and compression.  The evolution of the yield (or failure) surface is 

controlled by two hardening variables, the tensile (εt
pl) and the compressive (εc

pl) 

equivalent plastic strains, which are associated to their corresponding failure 

mechanisms.  Figure  3-2 illustrates the initial shape of the yield surface, in the principal 

stress space for plane stress.  

 
Figure  3-2. Yield surface in plane stress (Abaqus, 2002) 
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• Uniaxial tension behavior: 

Under uniaxial tension the stress-strain response follows a linear elastic 

relationship, as shown in Figure  3-3, until the value of the failure stress (σto) is reached. 

The failure stress is related to the onset of micro-cracking in the concrete material. Then, 

the formation of micro-cracks is represented macroscopically with a softening stress-

strain response, which induces strain localization in the concrete structure (Abaqus, 

2002). 

 
Figure  3-3. Concrete model response to uniaxial tension loading (Abaqus, 2002) 

 

 
Figure  3-4. Concrete model response to uniaxial compression loading (Abaqus, 2002) 
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• Uniaxial compression behavior: 

Under uniaxial compression the response is linear until the value of initial yield 

(σco), as shown in Figure  3-4. The plastic response is typically characterized by stress 

hardening followed by strain softening beyond the ultimate stress (σcu). This simplified 

representation satisfactorily reproduces the main features of the response of concrete in 

compression (Abaqus, 2002). 

According to Figure  3-3 and Figure  3-4, when the concrete is unloaded from any 

point on the strain softening branch, the unloading response is weakened, i.e. the elastic 

stiffness of the material is degraded. The degradation of the elastic stiffness is 

characterized by two damage variables, dt and dc, which are assumed to be functions of 

the equivalent plastic strains.  These damage variables can take values from zero, 

representing the undamaged material, to one, which represents total loss of strength.  If 

E0 is the initial elastic stiffness of the material, the stress-strain relationships under 

uniaxial tension and compression loading are defined by:  
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The effect of some recovery of the elastic stiffness when the load changes sign is 

also considered for the uniaxial cyclic behavior of this concrete model.  The concrete 

damaged plasticity model assumes that the general reduction of the elastic modulus 

depends on a scalar degradation variable d, as follows: 
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where d is a function of the stress state and the uniaxial damage variables, dt and dc.  In 

particular, Abaqus uses the following expression for the uniaxial cyclic conditions: 
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where wt and wc are the weight factors that control the recovery of the tensile and 

compressive stiffness upon load reversal as shown in Figure  3-5. 

 
Figure  3-5. Effect of the compression stiffness recovery parameter wc (Abaqus, 2002) 

 

3.1.2.2 Stress-strain relationship 

The stress-strain curves used in this work to represent the concrete behavior are 

also based on the experimental data obtained from the Federal Highway Administration’s 

Curved Steel Bridge Research Project.  These results were reported in detail by Jung 

(2006).    

• Compressive strength: 

The approximate compressive stress-strain relationship is based on measured 

stress-strain curves of six 298-day cylinder tests, where the average compressive stress-

strain response is presented in Figure  3-6.   

The average maximum strength was 4.87ksi (f’c), which was used to compute the 

approximate initial yield strength of the curve as 0.45f’c = 2.19ksi (ACI-318, 2002).  

Then a multi-linear approximation consisting of eight additional points is followed as 

shown in Figure  3-7.   
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Figure  3-6. Average compressive response of concrete (Jung, 2006) 
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Figure  3-7. Stress-strain relationship for the compressive behavior of concrete 
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• Tensile strength: 

The tensile stress-strain curve is based on the average maximum tensile splitting 

strength (0.50ksi) of six 298-day concrete cylinders.  The descending branch of the curve 

is computed based on the elastic stiffness degradation (damage value) obtained from 

cyclic tension tests.    
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Figure  3-8. Engineering stress-strain relationship for the tensile behavior of concrete 

 

The interaction between the reinforcement and the concrete tends to reduce the 

mesh sensitivity of the numerical solution, provided that a reasonable amount of tension 

stiffening is introduced in the concrete model to simulate this interaction (Abaqus, 2002).  

Therefore, higher tensile strengths were considered for some FE models that exhibited 

convergence problems, based on the assumption that the steel reinforcement increases the 

tension capacity of the concrete. 

• Elastic stiffness degradation: 

The measured elastic stiffness degradations for compression and tension ( tc dd ~,~ ) 

reported by Jung (2006) were used in this study.  These values were computed following 
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the procedure described by Lee and Fenves (1998) for the corresponding stress-strain 

relationships described previously. 

3.2 Finite elements 

In this section, a description of the finite elements used to model the different 

members of the bridges is included.  Additionally, modeling procedures performed to 

define the effects of the residual stresses and the mesh density are also presented. 

3.2.1 Plate girders and concrete slab 

Four-node (or linear) shell elements with reduced integration and enhanced 

hourglass control (S4R) were used to model the plate girders and the concrete slab.  The 

“reduced integration” accounts for the ability of the S4R element to use one integration 

point instead of four, as in the case of the fully integrated and general-purpose shell 

element (S4). Therefore, S4R is computationally more efficient for comprehensive 

analyses since it significantly reduces running times.  The reduced elements also address 

the typical shear locking effect produced by fully integrated linear elements.  For 

example, under pure bending conditions, the linear elements are not able to bend to 

curves causing an artificial shear stress, as shown in Figure  3-9b.  Then, the linear fully 

integrated element becomes locked or overly stiff under bending moment producing an 

incorrect response.  However, this problem is avoided using reduced integration elements 

which permit shape distortions. 

Nevertheless, the reduced first order elements exhibit a numerical problem called 

hourglassing due to their excessive flexibility.  Figure  3-10 shows that the lines 

corresponding to the integration point do not deform under bending moment.  Therefore, 

the stresses are zero and no strain energy is generated at the integration point.  This is a 

non-physical response that may produce meaningless results.  Therefore, an appropriate 

hourglassing control command is introduced in the definition of the S4R element in 

Abaqus to overcome this problem.  
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a. 

b. 

Figure  3-9. Change of shape of a fully integrated a. higher order b. linear element (Sun, 

2006) 

 

 
Figure  3-10. Change of shape of a reduced integration element (Sun, 2006) 

 

The hourglassing control effect was analyzed using a simply supported beam 

subjected to a uniform load of 0.1kip/in.  The beam is 20ft long with a rectangular cross 

section of 1in x 12in.  The FE model uses three shell elements throughout the height of 

the web. Therefore, a minimum stress value of -20Ksi is expected at the integration point 

of the upper elements.  According to Figure  3-11, only the models using fully integrated 

linear elements (S4) and reduced first order elements (S4R HC) with hourglassing control 

exhibit a stress level close to the theoretical value.   
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Figure  3-11.  Effect of hourglassing control 

 

3.2.2 Modeling of composite action 

Jung (2006) used two modeling approaches to consider the composite action 

between the concrete slab and the steel I girders.  The first approach employs discrete 

nonlinear spring elements to represent the shear connector response as a function of the 

relative slip that occurs at the concrete-steel interface.  In the second modeling approach, 

it is assumed that there is no relative slip in the concrete-steel interface region and a rigid 

beam-type multi-point constraint (MPC) is used to connect the top flange nodes of the 

steel girders to the bridge slab nodes.  Load-deflection responses of two models using 

these approaches were compared as shown Figure  3-12, from where it is observed that 

both modeling techniques produce similar results. Consequently, the modeling approach 

using beam MPC was adopted in this work to simulate the deck composite action. 



 53

 
Figure  3-12. Effect of composite-action modeling (Jung, 2006) 

3.2.3 Cross frames and stiffeners 

The cross frames and the stiffeners were modeled using slender beam elements 

(B33) based on the Euler-Bernoulli formulation.  The Euler-Bernoulli formulation uses 

cubic interpolation functions to increase their accuracy in case of distributed loads.  

These elements are intended for small strain and large rotation analyses.  Additionally, 

beam elements do not allow for transverse shear deformation, i.e. plane sections initially 

normal to the beam’s axis remain plane (if there is no warping) and normal to the beam 

axis.  B33 elements should only be used to model slender beams, which are characterized 

by having small cross-sectional dimensions compared to typical distances along its axis. 

For beams made of uniform material and typical dimensions in the cross-section less than 

about 1/15 of typical axial distances, the transverse shear flexibility may be negligible.  It 

was considered a linear section behavior assuming that the internal forces remain in the 

elastic range (Abaqus, 2002).  
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3.2.4 Effect of residual stresses 

The effect of the residual stresses was ignored in the modeling process of this 

work based on some FE model evaluations performed by Jung (2006).  The evaluations 

comprised three FE models of the Federal Highway Administration’s curved bridge 

employing different elements to represent the girder flanges.  Two models use shell 

elements for the girder flanges (Model B), but only one of them includes the residual 

stresses, while the third model (Model A) utilizes beam elements for the girder flanges 

without considering the residual stresses.  The load-deflection response indicated in 

Figure  3-13 of one of the girders suggests that this effect may be ignored for the global 

structural response independent of the modeling complexity of the flanges.   

 
Figure  3-13. Effect of residual stresses in the models (Jung, 2006) 

 

3.2.5 Mesh density 

The simply supported beam model used to investigate the effect of the 

hourglassing control was also employed to determine the appropriate mesh density of the 



 55

plate girders for this study.  Two cases were considered to analyze the mesh density 

effect: i. when the length (L) of the FEs is varied and their width (w) is fixed; and ii. the 

opposite situation when w is varied and L is fixed.  The length of the FEs is always 

measured along the longitudinal direction of the beam as indicated in Figure  3-14.   

 
Figure  3-14. Orientation of the finite elements in the simple supported beam model 

 

• Case 1: Varying L and fixed w 

Several FE models were constructed assuming six different aspect ratios (L/w).  A 

fixed w of 4in is considered for this particular case, hence the number of transversal 

divisions (NW=3) remains constant.  The length of the elements and the number of finite 

divisions obtained longitudinally (NL) are indicated in Table  3-3.  

 

Table  3-3. Mesh characteristics for Case 1 of the mesh density study  
L/w L (in) NL 

1 4 60 

1.2 4.8 50 

1.5 6 40 

2 8 30 

3 12 20 

5 20 12 
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A theoretical stress value of -30ksi is expected on the superior fiber at the cross 

section corresponding to the maximum moment.  However, Figure  3-15 shows that the 

models exhibit a minimum stress close to -20ksi due to the low number of elements used 

throughout the depth of the beam.  It is also observed that the fact of increasing NL (i.e., 

low L/w values) does not improve the accuracy of the response, since the stresses are 

computed at the integration point of the elements and the position of the integration point 

depends on NW.  Therefore, the accuracy of the bending stresses in a long structure is 

affected by the number of elements used transversally rather than the number of elements 

used longitudinally.   
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Figure  3-15.  Stress results for Case 1 of the mesh density study 

 

• Case 2: Varying w and fixed L  

In this case, the FE models were constructed assuming a fixed L of 6in for the 

elements.  Therefore, a total of 40 longitudinal divisions (NL) were generated.  The 

values for w, NW and L/w are presented in Table  3-4. 
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Figure  3-16  shows that high aspect ratios may be used in order to improve the 

accuracy of the results and decrease the number of elements.  However, the selection of 

the appropriate NW depends on the stress gradient throughout beam depth, which is 

defined as the bending moment over the moment of inertia (M/I).  For example, the use 

of 16 elements across the beam height would produce a reasonable level of accuracy for 

this particular example according to Figure  3-16.    

 

Table  3-4. Mesh characteristics for Case 2 of the mesh density study  
L/w w (in) NW 

1 6 2 

1.5 4 3 

2 3 4 

3 2 6 

4 1.5 8 

8 0.75 16 

16 0.375 32 
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Figure  3-16.  Stress results for Case 2 of the mesh density study 
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Conversely, the stress gradient produced by LFB is much lower than the one 

corresponding to a major-axis bending, as in the previous example.  Therefore, a lower 

NW may be required for the LFB in order to achieve a reasonable level of accuracy.  For 

that reason, a curved bridge model from the parametric study explained in Chapter 4 was 

analyzed using different NWs as shown in Figure  3-17, where FEL=NW and AR= (L/w).  

From the figure, a mesh configuration using six elements across the flange width with 

aspect ratios close to four was selected as the appropriate to produce significant results.  
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Figure  3-17.  Maximum LFB for a bridge configuration model with Lm=150ft 

 

All shell elements in the girders of straight and skewed bridges are 12-inch long, 

while for curved bridges this length corresponds to the central radius of the bridge, i.e. 

the outer-girder elements are longer than those corresponding to the inner girder.  On the 

other hand, the number of elements used throughout the web depth depends on its height, 

since an aspect ratio close to one was selected for all web elements.  Finally, the shell 

elements of the concrete slab were set as squares with side lengths equal to 24-in for 
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straight bridge configurations, with some slight modifications in the shape for skewed 

and curved bridge models.   

3.3 Model Validation 

This section is focused on the correlation of FEA predictions using the modeling 

procedures described previously with results from representative experimental tests.  The 

tests described below exhibit different levels of complexity, starting from one steel I-

shaped girder and finishing with the Federal Highway Administration’s full-scale curved 

bridge structure. 

3.3.1 Non-composite steel I girder 

Three steel I-girder specimens, labeled as “S” (Shallow), “M” (Medium) and “D” 

(Deep) were reported by Schilling and Morcos (1988).  The girders were designed with 

ultra-compact flanges and the slenderness of the webs was varied from a value that was 

nearly compact for specimen “S” to a value that was at the upper limit for classification 

as non-compact for specimen “D”.  Specimen “M” had an intermediate web slenderness 

between those corresponding to specimens “S” and “D”.  However, only specimen “D” 

was selected for the verification process since its web slenderness is more representative 

of the girders assessed in this study (see Figure  3-18). 

 
Figure  3-18. “D” girder specimen (Schilling & Morcos, 1988) 
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All three girders were fabricated using ASTM A572 Grade 50 steel.  Each 

specimen was tested as a simply supported beam with a single load at midspan to 

simulate the conditions of an interior support in a continuous-span bridge.  However, the 

specimen was inverted with respect to the normal bridge position to simplify the testing 

setup.  Therefore, the center load in the test simulated the reaction at the interior support 

of the bridge, while the simply supports in the test simulated the adjacent inflection 

points in the bridge.  Figure  3-19 shows a comparison between the numerical and 

experimental load-displacement responses.  A good agreement is observed for the elastic 

range but the model fails to reach the maximum load obtained during the test.  This is 

probably due to the geometrical imperfections added to the model that are intended to 

account for physical misalignments of the specimen.  The presence of geometrical 

imperfections in the model forces some degree of buckling to occur before the critical 

load is reached. 
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Figure  3-19. Load-displacement response for a single steel I-shaped girder  
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3.3.2 Composite I girder 

Mans, Yakel and Azizinamini (2001) investigated experimentally the applicability 

of the positive bending ductility requirements to composite girders constructed of HPS-

70W.  The first specimen, POS1, was designed to reach the plastic moment capacity and 

achieve a high level of ductility.  Intermediate stiffeners were placed to give a very 

conservative shear strength controlled by elastic buckling.  The flanges and the web were 

made of HPS-70W steel and the stiffeners were fabricated from steel with the minimum 

specified yield strength of 50Ksi.  The slab is 60in in width and 7.25in in depth.  

 
Figure  3-20. Geometry of Specimen POS1 (Mans, Yakel & Azizinamini, 2001) 
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Figure  3-21. Load-displacement response for a single composite steel I-shaped girder 
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Figure  3-20 shows the overall dimensions and locations of intermediate and 

bearing stiffeners for the specimen.  Good agreement is observed between the 

experimental and numerical global response of the specimen according to Figure  3-21.   

3.3.3 Composite straight steel I-girder bridge 

Tiedeman, Albrecht and Cayes (1993) compared the measured reactions, stresses, 

moments, displacements and rotations of a bridge tested in the Federal Highway 

Administration’s laboratory.  The bridge was a 0.4-scale model of a prototype bridge.  

The prototype bridge was designed by the autostress design method for the AASHTO 

HS20 truck loading and alternate military loading specified for bridges on the interstate 

system.  The test bridge consisted of two symmetrical 56ft spans and three girders spaced 

6.8ft on centers as shown in Figure  3-22. The modular deck was composed of 35 precast 

concrete panels.  Diaphragms were located over each pier, and every 10ft from the end 

piers per AASHTO requirements. The diaphragms consisted of rolled members (WT 2 x 

6.5) arranged in a V-type cross bracing as shown in Figure  3-23.   

 

 
Figure  3-22. Plan view of test bridge (Tiedeman, Albrecht & Cayes, 1993) 
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Figure  3-23. Cross section of test bridge (Tiedeman, Albrecht & Cayes, 1993) 

 

A single axle of an AASHTO HS20 truck was simulated with a pair of 

concentrated loads that were applied by a hydraulic jacking system. The two 7Kip loads 

of each axle were applied transversely on the west span only.  The spacing of the loads 

corresponds to the scaled spacing of the wheels of the truck in a single lane or in multiple 

lanes.  The loads are placed longitudinally at 0.44L and 0.65L to produce the largest 

approximate positive and negative moment at 0.4L and 1.0L (the interior support), 

respectively. In both cases, the loads were applied on one span only.   
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Figure  3-24. Comparison of measured and calculated bottom-flange stresses 
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Figure  3-24 shows a comparison of the measured and the FEA bottom-flange 

stresses when the axles of a single line are placed as close as possible to Girder 1 to 

maximize the moments on that exterior girder at 0.44L.  The numerical results predict 

satisfactorily the experimental measurements, principally for those girders closer to the 

loads (G1 and G2).  

3.3.4 Composite curved steel I-girder bridge 

In 1992, the Federal Highway Administration developed the Curved Steel Bridge 

Research Project to investigate the behavior of curved steel bridges and their components 

in order to establish more rational design specifications.  The study comprised three 

phases:  an erection study, a component strength study (see Figure  3-25) and a composite 

bridge study.  Jung et. al. (2005) reported some experimental results from the third phase, 

which are used in this work for the validation process.   

 

 
Figure  3-25. Bridge test during the component strength study (Jung, 2006) 
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Figure  3-26 illustrates the cross section and plan view of the test bridge.  The 

cross section of the bridge consists of three prismatic I-girders spaced at 8.75ft and the 

bridge span is 90ft measured along its centerline.  The radii of curvature are 191.25ft, 

200ft and 208.75 ft for the inside (G1), middle (G2) and outside (G3) girders, 

respectively.  All of the steel plates used A709 Gr.50 steel with the exception of the 

bottom flange of G3 which used HPS 70W.  The cast-in-place concrete slab is 8in thick 

with 3in haunches and 3ft overhangs.  The composite action between the slab and the 

plate girders is given by studs (6in x ¾in) spaced at 6in both longitudinally and 

transversely.  The bridge has five equally spaced K-shaped cross frames, which are 

strong enough to develop the ultimate capacity of the composite bridge system without 

any cross-frame member failure.   

 
a. Cross section of the test bridge 

 
b. Plan view of the test bridge 

Figure  3-26. Geometrical characterization of the bridge test (Jung, 2006) 
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The experimental results shown in Figure  3-27, Figure  3-28 and Figure  3-29 

correspond to a testing loading that simulates the effects of two design trucks aligned 

side-by-side at the middle of the bridge plus two lanes.  This loading condition governs 

the flexural design of G3.  In general, a satisfactory agreement is observed between the 

numerical and experimental results for the global response of the test bridge.  Although 

the model fails to predict the maximum positive LFB stresses, the maximum negative 

LFB stresses (which are larger than the positive ones) seem to be adequately calculated.  
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Figure  3-27. Applied load vs. G3-mid-span deflection 
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Figure  3-28. Applied load vs. vertical reactions 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-10

0

10

20

30

40

Normalized length

S
tre

ss
, σ

 (K
si

)

MAB - FEA NG
LFB - FEA NG
MAB - Exp.
LFB - Exp.

 
Figure  3-29. G3 bottom flange stresses at a load level of 570Kips (MAB: Major-axis 

bending, LFB: lateral flange bending) 
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3.4 Analyses 

A user-defined sub-routine in Matlab® was used to create the input file for each 

FE model that was analyzed by ABAQUS® Version 6.7.1, a commercially available 

FEA software program.  The initial loads such as the steel weight and the distributed 

construction loads were applied using linear static stress analyses, since the structure 

behaves within the elastic ranges without the presence of instabilities at this load level.  

However, the concrete deck placement was simulated using a nonlinear static analysis to 

consider probable material nonlinearity or geometrically nonlinear behavior causing 

buckling or local instabilities. 

The nonlinear analysis is based on the modified Riks algorithm available in 

Abaqus®.  This method has the ability to pass beyond the limit point and trace the 

unloading portion of the nonlinear equilibrium path, as shown in Figure  3-30.  The Riks 

method uses the load magnitude as an additional unknown; it solves simultaneously for 

loads and displacements. Therefore, another quantity must be used to measure the 

progress of the solution.  ABAQUS/Standard uses the “arc length,” l, along the static 

equilibrium path in load-displacement space. This approach provides solutions regardless 

of whether the response is stable or unstable (Abaqus, 2002). 

 
Figure  3-30. Load-displacement response of an unstable system (Abaqus, 2002) 
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This method basically finds the solution of a single equilibrium path in a space 

that is defined by the nodal variables and the loading parameter. The solution during each 

increment is found by moving a given distance along the tangent line to the current 

solution point and then searching for equilibrium in the plane that not only passes through 

the point thus obtained, but also is orthogonal to the same tangent line. Once this plane is 

determined, the Newton’s method is used to solve the equilibrium equations. It is 

assumed that the response is reasonably smooth, i.e. sudden bifurcations do not occur. 

The algorithm of the modified Riks method is shown in Figure  3-31, (Righman, 2005). 

 
Figure  3-31. Modified Riks algorithm (Righman, 2005) 
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Chapter 4:  Parametric study of the lateral flange bending 
during construction 

A parametric study is used to investigate the effects of the deck-placement 

process on the LFB of straight, skewed and curved steel I-girder bridges.  The parametric 

study is defined by: i. the parameters considered as significant in the response of the 

structure; ii. the loads that represent the real conditions during the deck casting sequence; 

iii. the design according to the code provisions of the parametric configurations; iv. the 

models used to represent the physical behavior of the bridges; and v. the analyses defined 

for each bridge configuration to represent the deck casting sequence.  

4.1 Parameters 

The selection of the variables in this work is intended to cover a wide range of 

variation in the parameters that govern the practical design of skewed and curved steel 

bridges.  All bridge configurations have three spans arranged such that the end spans (Le) 

are 80% of the middle span (Lm).  This span configuration helps to assure an optimum 

and homogeneous depth of the girders in all spans (NSBA, 2002).  The cross sections 

consist of four girders spaced at 12ft centers with 3.6ft deck overhangs.  Structural steel 

having a specified minimum yield stress of 50Ksi is used throughout. The deck is 

conventional cast-in-place concrete with a specified minimum 28-day compressive 

strength of 4Ksi.  The total deck thickness is 9.5in, including a one-half inch integral 

wearing surface.  The concrete deck haunch is assumed to be 3.5in deep measured from 

the top of the web to the bottom of the concrete deck.  A future wearing surface of 25psf 

is specified for design. Permanent steel deck forms of 15psf are also assumed to be used 

between girders. 

Table  4-1 presents the varying parameters considered in this project and their 

corresponding values.  Straight, skewed and curved bridge configurations (ST, SK and 

CV) were generated for each middle span length (Lm) considered in the study, resulting in 

a total of 21 hypothetical bridges without including the additional configurations 
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generated for each cross-frame spacing.  Curved bridges with skewed supports were not 

considered in this work.  

Table  4-1. Varying parameters 
Parameter Value 

Middle span length (Lm) 150ft – 240ft – 300ft 

Ratio of Lm to radius of curvature (Lm/R) 0.30 – 0.45 – 0.60 

Skew angle (θ) 0° - 30° - 45° - 60° 

Range of cross-frame spacing (Lb) 22ft – 42ft 

 

Bridge configurations using different cross-frame distances (Lb) were constructed 

as indicated in Table  4-2 and Table  4-3 to analyze the variation of the LFB effects which 

depend directly on this parameter.   

 

Table  4-2. Cross-frame spacing for positive moment regions 
  Lb (ft) 

Bridge type End span, Le (ft) 120 192 240 

ST, SK, CV Model Lb1 25 25 22 

ST, SK, CV Model Lb2 27 28 27 

ST, SK, CV Model Lb3 32 33 35 

ST, SK, CV Model Lb4 37 39 37 

ST Model Lb5 42 42 42 

 Middle span, Lm (ft) 150 240 300 

ST, SK, CV Model Lb1 22 25 22 

ST, SK, CV Model Lb2 27 27 28 

ST, SK, CV Model Lb3 32 35 34 

ST, SK, CV Model Lb4 40 37 38 

ST Model Lb5 42 42 44 

 

Table  4-3. Cross-frame spacing for negative moment regions 
  Lb (ft) 

Bridge type Middle span, Lm (ft) 150 240 300 

ST, SK, CV Model Lb1 20 20 20 

ST, SK, CV Model Lb2 21 26 24 

ST, SK, CV Model Lb3 27 33 31 

ST, SK, CV Model Lb4 35 36 36 

ST Model Lb5 36 36 40 
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4.2 Loads 

The loading condition corresponds to the loads acting during the deck casting 

process: permanent dead loads and construction loads.  Permanent dead loads include the 

self weight of the structural members and construction loads comprise the following 

elements (NSBA, 2002; KDoT, 2005):  

• Overhang form brackets: 50 lb each, spaced every 3ft 

• Formworks: 10 lb/ft2 

• Screed rail: 85 lb/ft 

• Railing: 25 lb/ft 

• Walkway: 50 lb/ft2 

• Finishing machine: 813 lb/wheel for a total of 4 wheels per exterior girder (see Figure 

 4-1 and Figure  4-2) 

The factored loads correspond to the Strength Load Combination I of the 

Specifications, which recommend that the load factors shall not be taken less than 1.25 

and 1.5 for the dead and the construction loads, respectively (AASHTO, 2007).  

Therefore, these recommended factors were used for the ultimate loads presented in this 

work. 

 
Figure  4-1.  Visualization of the finishing machine on the exterior girder (KDT, 2005) 
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Figure  4-2.  General view of a finishing machine (Bid-Well 4800) 

 

4.2.1 Deck placement sequence 

A symmetric deck placement sequence composed of three basic consecutive 

stages was considered as shown in Figure  4-3, where the concrete is poured first in the 

positive moment region of the end spans followed by that corresponding to the middle 

span (NSBA, 2002).  The sequence is completed by placing the concrete in the negative 

moment regions over the pier zones.  This sequence scheme is intended to minimize 

cracking of the concrete slab primarily in the negative moment regions.  Additional 

intermediate stages are incorporated into the basic three-step sequence to consider the 

effect of the finishing-machine wheels in the positive moment regions as shown in Figure 

 4-4.   

 
Figure  4-3. Basic deck placement sequence 
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The LFB effects due to distributed (wu) and concentrated (Pu) loads were 

evaluated separately in the positive moment regions.  First, the effects of the distributed 

loads are assessed from the casting stages that consider only the weight of the fresh 

concrete, i.e. Castings 2 and 4 in Figure  4-4 for the end and middle spans, respectively. 

Then, the concentrated load effects are analyzed from the casting stages that include the 

finishing-machine wheels combined with the fresh concrete, i.e. Castings 1 and 3.  

The negative moment regions are mostly controlled by the final stage from the 

sequence shown in Figure  4-4. However, the maximum bending results in these regions 

may be obtained at intermediate phases. Therefore, the complete casting sequence is 

considered for the pier regions independent of the casting stage.  

 
Figure  4-4. Detailed deck casting sequence  
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For skewed bridges, the deck placement was considered parallel to the supports. 

The construction joints for curved and skewed bridges are radial and parallel to the skew 

angle, respectively.   

4.3 Structural design 

Girders, cross frames and stiffeners of the straight bridge configurations were 

sized according to 2007 AASHTO Specifications, based on the parameters and loads 

defined previously.  Changes of section that coincide with the construction joints are 

assumed in regions close to the piers, as shown in Figure  4-3.  Table  4-4 includes the 

girder plate sizes for the different cross sections employed at the straight bridges.  The 

same sections were used for the skewed and curved bridges analyzed in this work to 

achieve one of the research objectives consisting of finding the maximum available skew 

angle and curvature for bridges originally designed as straight.   

 

Table  4-4. Girder plate sizes 

Lm (ft) 
End Span 

S1 

Pier Zone 

S2 

Middle Span 

S3 

150 

TF: 20”x1” 

BF: 20”x1” 

W: 60”x ½” 

LS: 96ft 

TF: 18”x2” 

BF: 20”x2” 

W: 60”x ½” 

LS: 54ft 

TF: 16”x7/8” 

BF: 18”x1” 

W: : 60”x ½” 

LS: 90ft 

240 

TF: 24”x1½” 

BF: 24”x1¼” 

W: 80”x5/8” 

LS: 154ft 

TF: 28”x2¾” 

BF: 28”x2¾” 

W: 80”x5/8” 

LS: 86ft 

TF: 20”x1¼” 

BF: 24”x1¼” 

W: 80”x5/8” 

LS: 144ft 

300 

TF: 28”x1¼” 

BF: 28”x1¼” 

W: 105”x¾” 

LS: 192ft 

TF: 32”x2¾” 

BF: 32”x2¾” 

W: 105”x¾” 

LS: 108ft 

TF: 26”x1¼”  

BF: 26”x1¼” 

W: 105”x¾” 

LS: 180ft 

  TF: Top Flange; BF: Bottom Flange; W: Web; LS: Length of the section  

 

For design purposes, the cross frames of each straight bridge were arranged such 

that their maximum spacing (Lb) in the positive-moment regions was close to the 
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traditional spacing used in practice, 25ft.  However, in the pier regions the cross frames 

were set at shorter distances (17ft – 20ft), as indicated in Table  4-5.  

 

Table  4-5. Cross-frame spacing, Lb (ft) 
 End Span Middle Span 

Lm (ft) M+ M- M- M+ 

150 25 20 20 22 

240 25 17 20 25 

300 22 20 18 22 

4.4 Models 

A FE model was developed for each straight, skewed and curved bridge 

configuration using a MATLAB® code that generates the input files which are 

subsequently processed by Abaqus®.  Figure  4-5 shows a typical FE model of a curved 

bridge configuration at the end of Casting 2.   

 

 
Figure  4-5. Finite element model of a typical curved bridge configuration 
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As discussed in Chapter 3, four-node shell elements with reduced integration and 

enhanced hourglass control were used to model the plate girders and the concrete slab.    

The deck composite action was simulated using rigid elements that connect the top 

flanges of the girders to the slab. The cross frames and the stiffeners were modeled using 

slender beam elements based on the Euler-Bernoulli formulation, assuming a linear 

section behavior.  The mesh configuration in the flanges employs six elements across the 

flange width with aspect ratios close to four.  An aspect ratio close to one was selected 

for the webs.  All shell elements in the girders are approximately 12-inch long.   

In addition, the stay-in-place (SIP) forms were included in the modeling process 

of the bridges when the girders act in a non-composite state.  This inclusion was required 

to identify the position of the shell elements that represent the concrete deck after the 

non-composite girders have deformed during the placement of the fresh concrete.  The 

deck formwork was modeled by shell elements with the same coordinates as those 

elements used to model the concrete deck, but with a lower stiffness represented by the 

thickness (t=2in) and the material (E=33.2ksi).  Figure  4-6 shows the bending stresses in 

the top flange of a curved bridge model with and without including the stay-in-place 

forms.  It is observed that the fbu is practically not affected by the inclusion of the forms, 

while the LFB decreases up to 20% in regions of maximum moment in a curved bridge 

model.  In addition, the forms provide stability to the inner girder of curved bridges, since 

the LFB varies regularly about the zero stress instead of exhibiting a global buckling 

mode.  The decreasing effect on the LFB due to the inclusion of the deck formwork is 

also exhibited by the skewed and straight bridges, but to a much lesser degree. 

The continuity over the intermediate supports also contributes to reduce the levels 

of LFB due to the increase of the structural stiffness.  In addition, the LFB of a non-

composite segment due to fresh concrete is relieved when previous casts are considered 

as composite in the analyses.     

The vertical loads other than the self weight of the steel members are considered 

in the models using concentrated forces applied directly on the girder nodes.  The self 

weight of steel was included as an element-based body load due to gravity.  On the other 

hand, the torsional effects produced by the overhang loads are represented on the exterior 

girders by horizontal forces as shown in Figure  4-7.  A maximum depth of 70in is used 
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for the overhang brackets.  However, this distance varies for each bridge configuration 

according to the web depth and the FE dimensions. 
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Figure  4-6.  Effect of the stay-in-place forms in the bending stresses of a curved bridge 
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Figure  4-7. Torsional effects on exterior girders produced by overhang loads 

4.5 Analyses 

Five static stress analyses are required for each bridge configuration to simulate 

the deck placement, as shown in Figure  4-8.  The arrows in the figure point to the 

previous analysis from where the initial conditions are taken.  As mentioned before, the 

weight of the wet concrete slab is considered in the corresponding cast as explicit 

concentrated loads applied directly on the non-composite girders.  However, in the 

analyses, earlier concrete casts are made composite for each subsequent cast. 

 

End spans Middle Span Pier regions 

Casting 1:Pu and wu   

 
  

Casting 2: wu Casting 3: Pu and wu  

  
 

 Casting 4: wu Casting 5: Pu and wu 

 

  

Figure  4-8. Sequence of analysis for each bridge configuration 
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A detailed explanation of each one of the casting stages and the corresponding 

models from Figure  4-8 is given below: 

• End spans: 

Casting 1:  The initial conditions are zero for this cast.  The loads applied 

sequentially consist of: i. the weight of the steel superstructure, ii. the construction loads 

without considering the finishing machine, and iii. the weight of the fresh concrete 

corresponding to one-half of the positive moment regions at the end spans along with the 

finishing machine. 

Casting 2:  In this cast, the initial conditions are also assumed as zero since the 

fresh concrete of the positive moment regions at the end spans is applied at once.  

Therefore, the load sequence is similar to the one described for Casting 1.  However, in 

this case, the fresh concrete is applied over the complete positive moment regions of the 

end spans without including the finishing machine effects. 

• Middle span:  

Casting 3:  The initial conditions correspond to the final stresses and deformations 

obtained in Casting 2.  In this stage, the shell elements of the concrete deck 

corresponding to Casting 1 need to be initially activated.  Then, the weight of the fresh 

concrete is applied over one-half of the positive moment region of the middle span, 

including the finishing machine. 

Casting 4:  The difference between Castings 3 and 4 consists in that the weight of 

the fresh concrete in Casting 4 is applied over the complete positive moment region of 

the middle span, and the finishing machine effects are neglected. 

• Pier regions: 

Casting 5:  The initial conditions are taken from the final response of Casting 4.  

The shell elements corresponding to the concrete slab placed in Casting 2 are activated to 

simulate the composite action in this zone. In this cast, the weight of the fresh concrete is 

extended from the beginning of the negative moment regions at the end spans to the 

midpoint between the pier and the end of the negative moment regions at the middle 

span.  The finishing machine effects are included as well. 
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Chapter 5:  Approximation of the lateral flange bending in 
steel I-girder bridges 

This chapter presents the methods used to approximate the LFB in straight, 

skewed and curved steel I-girder bridges due to construction loads during deck placement 

based on the results obtained from the parametric study described in Chapter 4.  The 

major-axis bending stresses are analyzed as well.  However, the principal contribution to 

estimate fbu is made for curved bridges since it is shown that the torsional effects do not 

affect the vertical bending response in straight and skewed bridges.   

5.1 Definition of the bending stresses from FEA 

The approximations proposed in this work to estimate the bending effects in steel 

I-girder bridges during deck placement are based on the results obtained from the FEA of 

the parametric bridge configurations.  However, the direct response obtained from the 

Abaqus® output corresponds to the total bending stresses at each flange tip (f1 and f2), as 

shown in Figure  5-1.  Therefore, a Matlab® code was developed to compute the major-

axis bending (fbu) and LFB (fl) stresses from f1  and f2 assuming a linear response, as 

follows: 

1 2

2bu
f ff +

=           5-1 

l total buf f f= −           5-2 

 
Figure  5-1.  Identification of fl and fbu from the total flange bending response 
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For example, the resulting bending stresses computed in Matlab® for the top and 

bottom flanges of the exterior girder in a curved bridge model are shown in Figure  5-2.  
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Figure  5-2. Bending stresses on the exterior girder of a curved bridge model 

 

5.1.1 Parametric Notation 

The effects on fl and fbu of the deck placement loads are evaluated in this project 

using the following parametric notation: 

• Span lengths:  The span lengths of the bridge models are identified by referencing 

their middle span length (Lm=150ft, 240ft or 300ft) only, since the end span lengths 

depend on Lm (Le=80%Lm).   

• Flange position: Top flange (TF) or bottom flange (BF). 

• Girder section:  S1 for the section corresponding to the positive moment regions of 

Le, S2 for the negative moment regions over the piers, and S3 for the positive moment 

region of Lm. 

• Casting sequence and load type:  These variables are related to each other since the 

effects of the distributed loads (wu) are evaluated from Castings 2 and 4 for S1 and 

S3, respectively.  The concentrated load effects (Pu) are analyzed from Castings 1 

and 3 for S1 and S3, since these casts include the finishing-machine wheels combined 

with the fresh concrete.  For S2, the complete casting sequence is considered. 
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• Girder position: This parameter is particularly important for curved bridges to 

indicate the position of the girder with respect to the curvature (outside G4 and inside 

G1). 

• Skew angle (θ): 30°, 45° or 60°. 

• Curvature angle (Lm/R): 0.30, 0.45 or 0.60 

• Bridge type:  Straight bridges (ST-0), skewed bridges with θ=30°, 45° or 60° (SK30, 

SK45 or SK60), and curved bridges with L/R=0.30, 0.45 or 0.60 (CV30, CV45 or 

CV60). 

• Cross-frame orientation in skewed bridges:  Perpendicular to the girders (xf1) and 

parallel to the abutments (xf2). 

5.1.2 Normalization of the LFB 

The LFB stresses obtained from FEA are normalized in order to establish fitting 

models independent of the cross section properties.  Therefore, the numerical stresses, fl, 

are multiplied by the flange section modulus, Sf, to obtain the lateral flange moment, Mlat.  

Then, the lateral moment is divided by the corresponding lateral load which depends 

directly on the overhang bracket depth for construction loads, or the web depth for 

curvature effects.  Consequently, the following expressions were used to present the LFB 

effects in this work: 

l f lat

l l

f S M
F F

=           5-3 

l f lat

l l

f S M
P P

=           5-4 

where Fl and Pl are the lateral distributed and concentrated loads that represent the 

torsional effects.   

5.2 Overhang loads in straight bridges 

The LFB effects produced by distributed and concentrated loads are studied 

initially from the straight bridge configurations where the curvature and skew effects do 

not take place.  
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5.2.1 Major-axis bending, fbu 

Figure  5-3 shows that the major-axis bending exhibited by the exterior girders of 

straight bridges is independent of the cross-frame spacing.  Therefore, fbu may be taken 

directly from FEA using any cross-frame distance. 
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Figure  5-3. Effect of the cross-frame spacing in the major-axis bending 

 

5.2.2 Positive Moment Regions 

5.2.2.1 Lateral distributed load effect 

For distributed loads in the positive moment regions, the LFB stresses were 

approximated using the following fitting model:   
a

lat b

l

M L
wu A

=           5-5 

where wul is the lateral distributed load due to fresh concrete and Lb is the cross-frame 

spacing.  The variables a and A are defined in Table  5-1 for both top and bottom flanges.  

Figure  5-4 compares the results obtained using the proposed equation (Eq. 5-5) with the 

effects given by FEA and the code approximate equation (Eq. 1-2).  It is observed that the 

code equation is highly conservative in all cases, principally for large cross-frame 

distances.  However, the proposed equation predicts satisfactorily the LFB at the exterior 
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girders of the end span over the entire range of cross-frame distances.  Although the LFB 

exhibited in the middle span is slightly lower, the same equations are proposed for Lm to 

simplify the recommended approximations for straight bridges.   

 

Table  5-1.  Fitting parameters for distributed loads in straight bridges (Positive Moment). 

 a 
A 

(fta-2) 

TF 1.22 2.46 

BF 1.92 29.24 
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Figure  5-4. LFB due to distributed loads in the positive moment regions of straight 

bridges 

 



 86

5.2.2.2 Lateral concentrated load effect 

The evaluation of the concentrated load effects on LFB is more complex than for 

distributed loads due to several reasons: 

• Both distributed and concentrated loads act simultaneously in Castings 1 and 3. 

• The position of concentrated loads at the corresponding cross-frame spacing depends 

on the cross-frame distribution, i.e. the wheel loads may be located over one cross-

frame location or anywhere within two consecutive cross frames.  For example, a 

simply supported straight bridge was analyzed separately to identify the effect of the 

concentrated load position on the LFB.  Figure  5-5 shows that a linear trend parallel 

to the code equation is followed by models where the load is placed at the middle of a 

cross-frame spacing, being the critical location.  However, other intermediate 

positions decrease the LFB effect.   
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Figure  5-5.  Effect of the concentrated load position in the LFB 

 

• A similar situation occurs for distributed loads which extend up to the position of the 

leading wheel in the finishing machine. 

• The finishing machine effect on an exterior girder consists of four wheels acting 

within a distance of 8ft.  However, in the approximated equations, it is conservatively 

assumed that the forces are all applied at the same point. 
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Figure  5-6. LFB due to concentrated loads in straight bridges (Positive Moment). 

 

Consequently, a linear model similar to the code equation was adopted in this 

work to describe the combined effect of the lateral concentrated load, Pul, representing a 

single wheel with the distributed load due to fresh concrete.  However, the model only 

considers explicitly the concentrated loads while the concrete effect is considered by the 

combination of the variables B and C, as follows: 

4
lat b

l

M L C
Pu B

= +          5-6 

The results of the models are shown in Table  5-2 and Figure  5-6.  It is observed 

that the linear regression considers the most external points from the critical curves, since 

these points correspond to models where the concentrated loads are placed at the middle 
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of a cross-frame spacing.  It is also noticed that the proposed equation for the bottom 

flange governs over the code equation for cross-frame distances larger than 26ft. 

However, both the code and the proposed approximations coincide for the top flange. 
 

Table  5-2.  Fitting parameters for concentrated loads in straight bridges (Pos. Moment). 

 B 
C 

(ft) 

TF 8 0 

BF 3.5 -4.2 

5.2.3 Negative Moment Regions 

The LFB effect on the negative moment regions was approximated considering 

only the distributed loading case since the contribution from the concentrated loads is 

negligible.  Therefore, Equation 5-5 is taken as a valid model with the corresponding 

fitting parameters contained in Table  5-3.  Figure  5-7 shows that the proposed equation 

satisfactorily predicts the LFB in both flanges.   
 

Table  5-3.  Fitting parameters for distributed loads in straight bridges (Neg. Moment) 

 a 
A 

(fta-2) 

TF 1.37 4.42 

BF 2.02 22.45 
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Figure  5-7. LFB effects due to concentrated loads in straight bridges (Neg. Moment). 
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5.3 Overhang loads in skewed bridges 

In all skewed bridges, the concrete is placed parallel to the skew.  An evaluation 

of the cross-frame orientation was initially performed using bridge configurations with 

Lm=150ft.  Then, the bending effects in skewed bridges are analyzed employing models 

with the recommended cross-frame orientation.   

5.3.1 Cross-frame orientation 

Figure  5-8 compares the bending results exhibited by the top flange of an exterior 

girder in a straight and skewed bridge subjected to vertical loads, e.g. steel weight.  The 

results indicate that skewed bridges exhibit LFB even when torsional loads are not 

applied.  However, in the presence of torsional effects, the LFB effect is slightly more 

pronounced when the cross frames are oriented parallel to the supports as shown in 

Figure  5-9.  Therefore, a perpendicular orientation of the cross frames is recommended 

for general skewed bridges to increase the lateral stiffness of the structure, hence it is 

used in the models described next to evaluate the bending effects.   
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Figure  5-8.  Effect of the skew angle in the LFB exhibited by the top flange 
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Figure  5-9.  Effect of the cross-frame orientation in the LFB of skewed bridges 

 

5.3.2 Major-axis bending, fbu 

Figure  5-10 shows that the major-axis bending in skewed bridges is not only 

independent of the cross-frame spacing but also of the skew angle.  Therefore, fbu may be 

taken from FEA performed for skewed bridges with any cross-frame spacing and skew 

angle, including their straight counterpart.   

5.3.3 Positive Moment Regions 

An approach analogous to the procedure described for straight bridges was 

followed to approximate the LFB due to distributed and concentrated loads in the positive 

moment regions of skewed bridges.   
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Figure  5-10.  Effect of the skew angle in the major-axis bending 

 

5.3.3.1 Distributed load 

The corresponding fitting parameters are indicated in Table  5-4.  Figure  5-11 

shows the normalized LFB for bridges with θ=30° (see Appendix A for θ=45° and 60°).  

It is observed that the code recommended equation (Eq. 1-2) significantly overestimates 

the LFB principally for long cross-frame distances.  However, the code fails to predict the 

LFB exhibited by the bottom flange of bridges with low Lb values, especially for high 

skew angles.  For that reason, a lower limit equal to 30, 45 and 70ft2 for θ=30°, 45° and 

60°, respectively, was introduced in the proposed equation for the normalized LFB at the 

bottom flange. 
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Table  5-4.  Fitting parameters for distributed loads in skewed bridges (Pos. Moment). 

 a 
A 

(fta-2) 

θ 30° 45° 60° 30° 45° 60° 

TF 1.44 1.26 1.41 3.59 1.73 2.31 

BF 1.29 1.13 1.26 2.19 1.00 1.42 
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Figure  5-11. LFB due to distributed loads in skewed bridges (Positive Moment). 

 

5.3.3.2 Concentrated loads 

Table  5-5 contains the definition of the variables B and C from the fitting model 

for concentrated loads according to the numerical stresses obtained in the parametric 
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study.  Figure  5-12 (including the figures from Appendix A) shows that the code equation 

fails to predict satisfactorily the LFB in most of the cases, principally for the bottom 

flange.   

 

Table  5-5.  Fitting parameters for concentrated loads in skewed bridges (Pos. Moment). 
 B C (ft) 

θ 30° 45° 60° 30° 45° 60° 

TF 8 7.4 7.4 0 0 1.5 

BF 4.5 5.0 14 -2.0 0 6.0 

 

20 25 30 35 40 45
0

1

2

3

4

5

6

7

8
G1 SK-sk30xf1-S1 for Pu, TF

M
la

t/4
P

ul
 (f

t)

120ft-FEA
192ft-FEA
240ft-FEA
Code Eq.
Proposed Eq.

20 25 30 35 40 45

G4 SK-sk30xf1-S1 for Pu, BF

120ft-FEA
192ft-FEA
240ft-FEA
Code Eq.
Proposed Eq.

20 25 30 35 40 45
0

1

2

3

4

5

6

7

8
G1 SK-sk30xf1-S3 for Pu, TF

M
la

t/4
P

ul
 (f

t)

Lb (ft)

150ft-FEA
240ft-FEA
300ft-FEA
Code Eq.
Proposed Eq.

20 25 30 35 40 45

G1 SK-sk30xf1-S3 for Pu, BF

Lb (ft)

150ft-FEA
240ft-FEA
300ft-FEA
Code Eq.
Proposed Eq.

Figure  5-12. LFB due to concentrated loads in skewed bridges (Positive Moment) 
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5.3.4 Negative Moment Regions 

The LFB in negative moment regions was approximated by a constant term that 

depends on the skew angle.  This term was defined according to the numerical results as 

4, 6 and 8Ksi for θ=30°, 45° and 60°, respectively.  The constant approximation is 

proposed to conservatively estimate the stresses which do not exhibit a consistent trend.  

Figure  5-13 presents the LFB stresses for bridge configurations with θ=30°, the 

remaining figures corresponding to θ=45° and 60° are contained in Appendix A.  The 

results indicate that the code recommendation of using 10Ksi for the unfactored LFB 

stresses in skewed bridges is conservative even compared to factored stresses.     

 

10 15 20 25 30 35 40
0

2

4

6

8

10

12
G4 SK-sk30xf1-S2 for wu, TF

fl 
(K

si
)

Lb (ft)

150ft-FEA
240ft-FEA
300ft-FEA
Code Eq.
Proposed Eq.

0 15 20 25 30 35 40

G1 SK-sk30xf1-S2 for wu, BF

Lb (ft)

150ft-FEA
240ft-FEA
300ft-FEA
Code Eq.
Proposed Eq.

 

Figure  5-13. LFB effects due to distributed loads in skewed bridges (Neg. Moment). 

 

5.4 Overhang loads in curved bridges 

The evaluation of the bending stresses in curved bridges indicates that fbu and fl 

are deeply affected by the curvature.  In addition, the results showed that the participation 

of the overhang loading term in the LFB effects is low compared to the curvature effects.    
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5.4.1 Major-axis bending, fbu 

Figure  5-14 shows that the fbu in curved bridges is independent of Lb but is 

affected by the curvature and the girder position.  These relationships will be described in 

detail below. 
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Figure  5-14.  Effect of curvature in the major-axis bending 

5.4.2 Positive Moment Regions 

5.4.2.1 Distributed loading effect 

5.4.2.1.1 Major-axis bending, fbu 

The proposed linear model intended to estimate fbu in curved bridges during 

construction is given by:   

( ) ( )max

max

1 2bu

buo

f Lsign b sign c
f R

⎛ ⎞= +⎜ ⎟
⎝ ⎠

       5-7 

where fbu max is the maximum major-axis bending stress and fbuo max is the maximum 

major-axis bending stress of the straight counterpart (L/R=0). Table  5-6 and Table  5-7 

contain the variables b and c, and the sign combinations (sign1, sign2) for the bridge 

models evaluated in this project.  Figure  5-15 and Figure  5-16 show that the major-

bending stresses increase linearly with the curvature at the end spans.  Conversely, a 
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constant term is proposed for the middle span since fbu is not significantly affected by the 

curvature over this zone. 

 

Table  5-6. Fitting parameters for fbu due to distributed loads curved bridges (Pos. 

Moment) 
 Lm=150ft Lm =240ft Lm =300ft 

 b c b c b c 

Outer Girder, G4: End span, Le 0.95 1 1.3 1 1.5 1 

Outer Girder, G4: Middle span, Lm 0 1 0 1 0 1.1 

Inner Girder, G1: End span, Le 0.85 1 1.06 1 1.2 1 

Inner Girder,  G1: Middle span, Lm 0 1 0 1 0 1.1 
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Figure  5-15.  Normalized fbu due to distributed loads in outer girders (Positive Moment) 
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Table  5-7. Sign combination used to estimate fbu (Sign1, Sign2) (Pos. Moment) 
 Top flange, TF Bottom Flange, BF 

G4 - , - + , + 

G1 + , - - , + 
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Figure  5-16.  Normalized fbu due to distributed loads in inner girders (Pos. Moment) 

 

5.4.2.1.2 Lateral flange bending, fl 

The LFB stresses were approximated considering a hypothetical curved I girder 

subjected to a uniform vertical distributed load, wu.  The girder has a radius of curvature, 

R, and a span length, L, that subtends an angle θ, as shown in Figure  5-17.  The 
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eccentricity, d, between the vertical load and the straight line that connects the end 

supports is a function of the longitudinal position.  The maximum eccentricity, dmax, is at 

the middle of the span length (Eq. 5-8).  As a result of this eccentricity, a distributed 

torsional moment, T, is generated along the girder which is equivalent to a couple of 

horizontal distributed forces acting on the flanges, wul, as shown in Figure  5-18.  The 

magnitude of wul varies from zero at the end supports to the maximum value at the 

middle of the span, wulmax (Eq. 5-9), as indicated by Figure  5-19.  Therefore, the 

maximum LFB stress, fl, will correspond to the cross-frame spacing, Lb, closer to the span 

midpoint.  The variation of wul along the central cross-frame spacing is assumed to be 

small and consequently may be considered uniformly distributed.  Finally, fl is 

approximated by Equation 5-10 where a curve fitting process is required to define the 

order of the approximation, d, and the denominator, D.   

 

 
Figure  5-17.  Hypothetical curved girder to approximate the curvature effects 
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Figure  5-18.  Visualization of the torsional effects due to curvature 

 

 
Figure  5-19.  Horizontal distributed force on the top flange 

 

max 1 cos
2

d R θ⎛ ⎞= −⎜ ⎟
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The LFB for curved girders is caused by two different sources:  the curvature and 

the overhang loads during construction.  The curvature and the overhang torsional effects 

have the same direction in the outer girder while they counteract at the inner girder, as 

follows:   

( ) ( )
( ) ( )

. .

. .

max

 for G4

 for G1
lat lat latcurv ov

lat lat latcurv ov
d a

ul b l b
lat

M M M

M M M

w L wu LM
D A

= +

= −

= ±

       5-11 

However, the participation of the overhang loading in the LFB is low compared to 

the curvature effects as shown in Figure  5-20.  In fact, the overhang-to-curvature effect 

ratio reduces as the length of the span and the curvature increase.  Therefore, the total 

LFB is estimated using the curvature term only.  However, the torsional effects due to 

overhang loads are implicitly considered since the curve fitting process to estimate the 

parameters d and D in Equation 5-10 is applied to the total LFB obtained from the 

parametric study.   

The critical case between the top and bottom flanges was selected to define the 

proposed equations for curved bridges.   The corresponding variables from the curve 

fitting process are contained in Table  5-8 and Table  5-9.  It is observed from Figure  5-21 

that the LFB effects of the end spans are practically unaffected by the variation of the 

curvature, while a slight effect is observed in the middle spans.  The proposed equation 

(Eq. 5-10) works adequately in both exterior girders.  Significant reductions were found 

in most of the cases compared to the estimations given by the AASHTO approximation 

(Eq. 1-1).  The major-axis bending moment, M, in the code equation was computed using 

both the numerical and the estimated (Eq. 5-7) major-axis bending stresses, obtaining 

similar results.  This is a practical observation since the LFB in a curved bridge can be 

approximated using the code equation (Eq. 1-1) together with the fbu computed from the 

information of the straight counterpart.  However, the figures contained in Appendix B 

for Lm=240ft and 300ft indicate that the code equation fails to predict the LFB at the inner 

girder of highly curved bridges with long spans.  Therefore, it is recommended to use the 

equation proposed in this work which predicts satisfactorily the LFB in all cases. 
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Figure  5-20.  Comparison of the overhang and curvature effects in the LFB  
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Table  5-8.  Fitting parameters for distributed loads in the outer girders (Pos. Moment) 
Section 150ft 240ft 300ft 

 d 
D 

(ftd-2) 
d 

D 

(ftd-2) 
d 

D 

(ftd-2) 

S1 1.99 31.14 1.32 2.49 1.72 9.55 

S3 1.99 89.42 1.81 55.6 - - 
 

Table  5-9.  Fitting parameters for distributed loads in inner girders (Pos. Moment) 
Section 150ft 240ft 300ft 

 d 
D 

(ftd-2) 
d 

D 

(ftd-2) 
d 

D 

(ftd-2) 

S1 2.52 396.4 2.36 262.4 0.81 1.06 

S3 2.31 443.2 2.51 839.7 - - 
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Figure  5-21. LFB in the outer girder due to distributed loads (Lm=150ft, Pos. Moment) 
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Figure  5-22. LFB in the inner girder due to distributed loads (Lm=150ft, Pos. Moment) 

 

5.4.2.2 Concentrated loading effect 

An approximation similar to the one described in the previous section is proposed 

to estimate the bending effects in curved bridges due to concentrated loads.   

5.4.2.2.1 Major-axis bending, fbu 

The proposed model to estimate fbu given by Equation 5-7 is still valid in this 

case.  The difference lies on the specific values of b and c contained in Table  5-10.  

Figure  5-23 and Figure  5-24 compares the numerical stresses with those estimated using 

Equation 5-7. 
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Table  5-10. Fitting parameters for fbu due to concentrated loads (Pos. Moment) 
 Lm=150ft Lm =240ft Lm =300ft 

 b c b c b c 

Outer Girder, G4: End length, Le 0.8 1 1.1 1 1.25 1 

Outer Girder, G4: Middle length, Lm 0 1 0 1 0 1 

Inner Girder, G1: End length, Le 0.75 1 0.9 1 1 1 

Inner Girder,  G1: Middle length, Lm 0 1 0.45 1 0.45 1 
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Figure  5-23.  Normalized fbu due to concentrated loads in outer girders (Pos. Moment) 
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Figure  5-24.  Normalized fbu due to concentrated loads in inner girders (Pos. Moment) 

 

5.4.2.2.2 Lateral flange bending, fl 

In this case, the definition of fl is modified to allow the inclusion of the lateral 

concentrated load, Pl, as follows: 

maxu
l

P dP
h

=           5-12 

f
l b

l
f

PLf
FS

=           5-13 

where f and F are the exponent and denominator, respectively, that define the 

corresponding lateral flange moment. 
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Equation 5-14 shows the proposed equation to estimate the LFB due to 

concentrated loads considering both the curvature and overhang torsional effects.  

However, the participation of the overhang terms is also shown to be low compared to the 

curvature effects (Figure  5-25).  Therefore, the overhang loading effects are neglected in 

this case as well. 

( ) ( )
( ) ( ) ( )

. .

max

 

4 4
4

lat lat latcurv ov

fd a
l b l bul b l b

lat l

M M M

P L Pu Lw L wu LM Pu C
D F A B

= ±

⎡ ⎤ ⎡ ⎤
= + ± + +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

   5-14 

Table  5-11 and Table  5-12 contain the values of the fitting variables d, D, f and F 

for the outer and inner girders, respectively.  Figure  5-26 and Figure  5-27 (including the 

figures contained in Appendix B) show that the proposed equations satisfactorily predict 

the numerical results and reductions compared to AASHTO estimations in most of the 

cases.  It is also observed that the bottom flange exhibits the most critical LFB effects 

compared to the top flange, especially for short span lengths.  A variation in the curvature 

is also considered negligible in the LFB, especially for the end spans. 

 

Table  5-11.  Fitting parameters for concentrated loads in the outer girders (Pos. Moment) 
 150ft 240ft 300ft 

 d 
D 

(ftd-2) 
d 

D 

(ftd-2) 
d 

D 

(ftd-2) 

Positive moment region:  End span 2.05 41.59 2.04 42.06 1.79 23.02 

Positive moment region:  Middle span 0 0 0 0 - - 

 f 
F 

(ftf-1) 
f 

F 

(ftf-1) 
f 

F 

(ftf-1) 

Positive moment region:  End span 0 0 0 0 1.35 14.38 

Positive moment region:  Middle span 1.68 57.0 1.96 167.39 - - 
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Figure  5-25.  Overhang and curvature effects in the LFB due to concentrated loads 
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Table  5-12.  Fitting parameters for concentrated loads in the inner girders (Pos. Moment) 
 150ft 240ft 300ft 

 d 
D 

(ftd-2) 
d 

D 

(ftd-2) 
d 

D 

(ftd-2) 

Positive moment region:  End span 2.88 1855.8 2.40 443.73 
(2.36, 

1.57)* 

(359.0, 

58.44)* 

Positive moment region:  Middle span 0 0 0 0 - - 

 f 
F 

(ftf-1) 
f 

F 

(ftf-1) 
f 

F 

(ftf-1) 

Positive moment region:  End span 0 0 0.77 20.80 
(0.99, 

0.82)* 

(42.45, 

3.48)* 

Positive moment region:  Middle span 2.45 1557.1 3.06 9744.3 - - 

*(TF, BF) 
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Figure  5-26. LFB in the outer girder due to concentrated loads (Lm=150ft, Pos. Moment) 
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Figure  5-27. LFB in the inner girder due to concentrated loads (Lm=150ft, Pos. Moment) 

 

5.4.3 Negative Moment Regions 

Although the curvature does not directly affect the pier zones since there is no 

eccentricity between the loads and the supports, the results show that the torsional 

restriction offered by the pier regions affects the bending stresses in these zones.   

5.4.3.1 Major-axis bending, fbu 

The major-bending stresses exhibit a linear trend independent of the span length 

as shown in Figure  5-28.  As a result, the definition of b in Equation 5-7 reduces to 0.43 

and 0.30 for the outer and inner girders, respectively.  The variable c is always taken as 
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one.  Additionally, the sign combinations indicated by Table 4 are reversed to account for 

the change in the stress state.   
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Figure  5-28.  Normalized major-axis bending stresses in the negative moment regions 

 

5.4.3.2 Lateral flange bending, fl 

The LFB is satisfactorily predicted using Equation 5-10 with the parameters 

contained in Table  5-13.  However, the variable wulmax is computed as the average of the 

values corresponding to the end and middle spans, since the maximum eccentricity (dmax) 

depends on the span length. 
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Table  5-13.  Fitting parameters for the negative moment regions 
 150ft 240ft 300ft 

 d 
D 

(ftd-2) 
d 

D 

(ftd-2) 
d 

D 

(ftd-2) 

G4 1.84 21.52 1.63 10.17 1.52 5.73 

G1 1.72 12.93 1.69 12.18 1.36 3.76 

 

Figure  5-29 (including the Figures in Appendix B) shows that the proposed 

equations predict satisfactorily the bending effects in both exterior girders, while the code 

equations are over conservative for most cases.  It is also observed that the LFB in these 

regions is practically unaffected by the curvature. 
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Figure  5-29. LFB in the negative moment regions (Lm=150ft) 
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5.5 Concluding remarks 

The bending stresses during the deck placement in straight, skewed and curved 

steel I-girder bridges were evaluated using the results obtained from the parametric study 

described in Chapter 4.  The LFB stresses caused by distributed and concentrated 

overhang loads were estimated finding the curves that have the best fit to the critical 

stresses obtained from the parametric study.  According to this evaluation, the following 

major observations were made. 

5.5.1 Straight structures 

The major-axis bending stresses exhibited by the exterior girders of straight 

bridges are independent of the cross-frame spacing.  Therefore, these stresses may be 

obtained from the structural analysis of either a simplified model that does not consider 

explicitly the cross frames or a more detailed model involving any cross-frame distance. 

For the positive moment regions, the LFB due to distributed loads was 

satisfactorily predicted by the equation proposed in this work over the entire range of 

cross-frame distances, principally at the end spans.   Although the LFB obtained in the 

middle span is lower, the same equations were proposed to simplify the approximations.  

Comparisons with the code estimations showed that the Specifications are highly 

conservative in all cases, especially for large cross-frame distances.   

For concentrated loads, a linear regression considering the most external points 

from the critical curves was performed to adjust the numerical stresses.  These external 

points correspond to models where the concentrated loads are placed at the middle of a 

cross-frame spacing which is the critical location.  The proposed equation for the bottom 

flange governs over the code equation for cross-frame distances larger than 26ft. 

However, both the code and the proposed approximations coincide for the top flange. 

The LFB effect on the negative moment regions was approximated considering 

only the distributed loading case since the contribution from the concentrated loads is 

negligible.  The results showed that the proposed equation satisfactorily predicts the LFB 

in both flanges.   



 113

5.5.2 Skewed structures 

The results showed that skewed bridges exhibit LFB even when torsional loads 

are not applied.  However, in the presence of torsional effects, the LFB effect is slightly 

more pronounced when the cross frames are oriented parallel to the supports.  Therefore, 

a perpendicular orientation of the cross frames is recommended for general skewed 

bridges to increase the lateral stiffness of the structure.  This perpendicular configuration 

was adopted in this work to evaluate the LFB effects.   

The results indicated that the major-axis bending in skewed bridges is not only 

independent of the cross-frame spacing but also of the skew angle.  Therefore, these 

stresses may be taken from structural analyses performed for skewed bridges with any 

cross-frame spacing and skew angle, including their simplified straight counterpart.   

The LFB in the positive moment regions was approximated using curve fitting 

models similar to the ones used for straight bridges.  For distributed loads, a lower limit 

was introduced in the proposed equation for the bottom flange since this flange exhibits 

LFB even for closely spaced cross frames.  The minimum LFB stress considered in the 

bottom flange is proportional to the skew angle.  The results were compared to the code 

equation for overhang loads and significant overestimates of the LFB were found 

principally for long cross-frame distances. 

On the other hand, for concentrated loads, the results showed that the code 

equation for overhang loads fails to predict satisfactorily the LFB in most of the cases, 

principally in the bottom flange. 

The LFB in the negative moment regions was approximated in this work by a 

constant term that depends on the skew angle.  This approximation was adopted to 

conservatively estimate the stresses which do not exhibit a consistent trend in these 

regions.  The results also indicated that the code recommendation of using 10Ksi for the 

unfactored LFB stresses in skewed bridges is conservative even compared to factored 

stresses.     



 114

5.5.3 Curved structures 

The evaluation of the bending stresses in curved bridges indicated that fbu and fl 

are deeply affected by the curvature and the position of the girder, i.e. outer or inner 

girder.   

The analyses showed that the major-bending stresses in curved bridges are 

independent of the cross-frame spacing.  However, they increase linearly with the 

curvature in the positive moment regions of the end spans.  Conversely, these stresses at 

the middle span of the outer girder are not significantly affected by the curvature.  

Therefore, a linear model was proposed to estimate the major-bending effects in the 

positive moment regions of both exterior girders.  This model computes the major-axis 

bending in curved bridges based on the major-axis bending stresses exhibited by their 

straight counterpart.  Therefore, the proposed equation allows estimating fbu in curved 

bridges from structural analyses of simplified straight bridges.  In the negative moment 

regions, the major-bending stresses also exhibit a linear trend but it is independent of the 

span length.   

The assumption of computing fbu based on a simplified model with the real arc 

length of the curved girder does not help to represent the curvature effects on fbu.  In fact, 

the AASHTO recommendation of ignoring the curvature effects for fbu when L/R is lower 

than 0.06 introduces an error of approximately 10% in long span bridges.     

The LFB in curved girders is caused by both the curvature and the overhang 

loads.  However, it was shown that the participation of the overhang loads in the LFB is 

low compared to the curvature effects.  In fact, the overhang-to-curvature effect ratio 

reduces as the length of the span and the curvature increase.  Therefore, the overhang 

term was dropped from the final expression proposed for the LFB which simplifies to the 

curvature term only.  However, the torsional effects due to overhang loads are implicitly 

considered since the curve fitting process is applied to the total LFB obtained from the 

parametric study.  A comprehensive formulation to estimate the LFB effects due to 

curvature was developed for distributed and concentrated loads, respectively.  The critical 

case between the top and bottom flanges was selected to define the equations proposed in 

this work to estimate the LFB in curved bridges.   
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The results indicated that the LFB is practically unaffected by the variation of the 

curvature, a slight effect was only observed in the positive moment regions of the middle 

span.  This observation indicates that these effects need to be considered even in bridges 

with large curvature radii.   

The equations proposed in this project to estimate the LFB in curved bridges work 

adequately in both exterior girders.  Significant reductions were found in most of the 

cases compared to the estimations given by the AASHTO Specifications.   

The major-axis bending effects in the AASHTO equation were computed using 

both the numerical and the estimated major-axis bending stresses, obtaining similar 

results.  The estimated major-axis bending stresses correspond to the stresses computed 

using the equation proposed in this work to estimate fbu in curved bridges from the results 

obtained in their straight counterpart.  Therefore, the LFB in a curved bridge can be 

conservatively approximated using the code equation together with the major-axis 

bending from the corresponding straight bridge.  The advantage of the proposed 

equations over the code approximation is that it is not required to know in advance the 

major-bending effects to compute the LFB.  However, the principal disadvantage is that 

different expressions are required to define the effects of distributed and concentrated 

loads, while the code approximation consists of one single equation that applies for all 

load cases independent of the girder location and flange position.    

However, the results from the parametric study indicated that the code equation 

fails to predict the LFB due to distributed loads at the inner girder of highly curved 

bridges with long spans.  Therefore, it is recommended to use the equation proposed in 

this work which predicts satisfactorily the LFB in all cases.  It was also observed that the 

bottom flange under concentrated loads exhibits the most critical LFB effects compared 

to the top flange, especially for short span lengths.   

The results indicated that the outer girder exhibits the most critical combined 

bending effects.  On the contrary, the curvature decreases the magnitude of the major-

bending stresses in the inner girder resulting in a combined bending action much lower 

than that corresponding to the outer girder.  Therefore, the design of both exterior girders 

shall be based on the evaluation of the outer girder, unless an optimization of the inner 
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girder is pursued.  In that case, the effects of the girder stiffness in the behavior of the 

whole cross section of the deck shall be investigated. 

 

In general, it is recommended to distribute the cross frames such that a cross 

frame is placed at the maximum vertical bending moment to decrease the combined 

effect of fl and fbu during construction. 
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Chapter 6:  Evaluation of the flexural limit states for 
constructibility 

In this chapter, the flexural limit states for constructibility are evaluated according 

to AASHTO Specifications for the parametric bridges analyzed in this work.   

First, the major-axis bending and the LFB stresses obtained from FEA are used to 

evaluate the demand-to-capacity ratios of the flexural limit states for constructibility.  

This evaluation allows identifying the critical sections along the bridge and the effects of 

the cross-frame spacing and the deck-placement sequence in the governing limit states.   

Second, the maximum allowable skews and curvatures are computed for bridges 

designed originally as straight.  The flexural limit states for constructibility constitute the 

criteria used to achieve this goal.  The major-axis bending stresses are taken directly from 

FEA and the LFB stresses are estimated using the approximate equations proposed in 

Chapter 5.   

6.1 General observations 

The bending results from FEA were evaluated using the flexural limit state 

equations for constructibility.  These limit states are applied in a normalized form 

(demand-over-capacity) as follows: 

• Discretely braced flanges in compression: 

Yielding:    1bu l

f h yc

f f
R Fφ

+
≤        6-1 

Ultimate strength:  

1
3 1

bu l

f nc

f f

Fφ

+
≤        6-2 

Web bend-buckling: 1bu

f crw

f
Fφ

≤        6-3 

• Discretely braced flanges in tension: 

Yielding:   1bu l

f h yt

f f
R Fφ

+
≤        6-4 
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• Continuously braced flanges in tension or compression: 

Yielding:   1bu

f h yf

f
R Fφ

≤        6-5 

Limit for LFB:  1
0.6

l

yf

f
F

≤        6-6 

In the following sections, the limit state ratios of the skewed and the curved 

bridges are compared to the results obtained from their straight counterparts.   

6.1.1 Skewed bridges 

For the skewed bridge configurations analyzed in this work, it is observed that the 

effect on the limit state ratios of the girder position, the cross-frame orientation and the 

skew angle is almost negligible as shown in Figure  6-1.  However, the cross-frame 

spacing has a significant effect on the limit state ratios of discretely braced flanges in 

compression in the positive moment regions, since the LFB depends on Lb and the 

capacity of the flange is reduced as Lb increases.   

Although the limit state ratios are not visibly affected by the skew, the proposed 

equations for the LFB presented in Chapter 5 are intended to represent the maximum 

possible variations on fl caused by the skewed geometry of the structure.   

Figure  6-2 (see other figures in Appendix C) also shows that sections S1 and S3 

are controlled by the second and fourth castings, respectively.  The corresponding flanges 

in compression in both sections are governed by the ultimate strength limit state.   

The negative moment regions are controlled by the fifth casting stage.  The 

flanges in compression are governed by the yielding limit state when the span lengths are 

short. However, the web bend-buckling limit state governs the compression flanges for 

long span lengths. 
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Figure  6-1. Variation of the limit state ratios along the length of skewed bridges 

 

 

TF:                     ST            L/R=0.30                           L/R=0.45                     L/R=0.60 

BF:                     ST            L/R=0.30                           L/R=0.45                     L/R=0.60 
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Figure 6-2. Effect of parametric variables in the limit states of skewed bridges 
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Figure  6-2. Effect of parametric variables in the limit states of skewed bridges (Cont.)  

 

6.1.2 Curved bridges 

Figure  6-3 illustrates that both the curvature and the cross-frame spacing highly 

affect the limit state ratios in the outer girder principally in the positive moment regions, 

while a stress relief is observed in the inner girder.  This is caused by the length 

adjustments due to curvature since interior girders shorten as the curvature increases 

generating lower major-axis bending stresses.  The opposite situation occurs in the outer 

girders where the vertical stresses increase.  Additionally, the LFB exhibited by the inner 

girder is relieved since its eccentricity with respect to the supports is smaller. 

In fact, the LFB undergoes a reversal effect in the inner girder compared to its 

straight counterpart, as shown in Figure  6-4.  This is due to the curvature and overhang 

loading torsional effects counteracting each other in the inner girder.  However, the 

curvature effects govern over the torsion produced by the overhang loads.    
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Figure  6-3. Variation of the limit state ratios along the length of curved bridges 

 

TF:                     ST            L/R=0.30                           L/R=0.45                     L/R=0.60 

BF:                     ST          L/R=0.30                          L/R=0.45                    L/R=0.60



 123

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

G4 Lm=150ft, C2, TF

Normalized distance (xi/Lt)

fl 
/ F

yf

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

G1 Lm=150ft, C2, TF

Normalized distance (xi/Lt)

Figure  6-4. Variation of the LFB along the length of curved bridges 

 

Figure  6-5, Figure  6-6 and Figure  6-7 show that the cross-frame spacing affects 

the limit state ratios in the outer girders as well.  It is also observed that second and fourth 

castings from the deck-placement sequence control sections S1 and S3, respectively.  

Compression flanges in these sections are governed by the ultimate strength limit state.  

However, the yielding limit state may control in short span lengths with high curvatures.   

As for skewed bridges, the negative moment regions are controlled by the fifth 

casting stage.  The yielding limit state governs the compression flanges of bridges with 

short spans and the web bend-buckling limit state becomes significant in the pier regions 

for long span bridges (see Figures in Appendix D). 

  

ST  

L/R=0.30 

L/R=0.45 

L/R=0.60
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Figure  6-5. Effect of parametric variables in the limit state ratios of Section S1  
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Figure  6-6. Effect of parametric variables in the limit state ratios of Section S2 
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Figure  6-7. Effect of parametric variables in the limit state ratios of Section S3  
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6.2 Maximum allowable skew angle and curvature for straight bridges 

during construction 

In this section, the straight bridge models are evaluated using the flexural limit 

states for constructibility in order to define the maximum allowable skew angles and 

curvatures for the loading conditions given during deck placement.  This evaluation will 

provide the engineer with design information for curved and skewed bridges based on 

their straight girder counterparts.  Furthermore, no additional constructibility designs or 

checks would be necessary in case that a bridge designed as straight requires a 

geometrical modification within the limits established.   

To achieve this goal, the maximum cross-frame spacing (Lb max) was computed for 

each straight bridge considered in this work from the limit state equations for 

constructibility that directly depend on Lb (Eqns. 6-1, 6-2, 6-4 and 6-6).  In the limit state 

equations, the major-axis bending effects were taken from FEA and the LFB stresses 

were expressed in terms of Lb using the approximate equations recommended in Chapter 

5 for straight bridges.  After finding Lb max by solving the critical limit state equation, the 

maximum skew angle and curvature are computed for different Lb values based on the 

limit state equations for constructibility as well.   

6.2.1 Skew angle 

The maximum skew was computed by solving the limit state equations for each 

Lb value.  However, the LFB in these equations are expressed in terms of Lb
a/A or Lb/B+C 

for distributed and concentrated loads in the positive moment regions, respectively.  

Therefore, these terms are solved from the limit state equations and then are compared to 

the corresponding values defined in Chapter 5 for θ=30°, 45° and 60° as shown in Figure 

 6-8, Figure  6-9 and Figure  6-10 for Lm=150ft, 240ft and 300ft, respectively.  For the 

negative moment regions, the comparisons are established in terms of stresses. 

It is observed that the maximum cross-frame spacing in skewed bridges is 

controlled by the ultimate strength limit state in the compression flange (Eq. 6-2).  

Conversely, the tension flange seems to be unaffected by the skew angle. 
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Figure  6-8. Identification of maximum skew angles for straight bridges with Lm=150ft 
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Figure  6-9. Identification of maximum skew angles for straight bridges with Lm=240ft 
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Figure  6-10. Identification of maximum skew angles for straight bridges with Lm=300ft 
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6.2.2 Curvature 

For curved bridges, both fbu and fl depend on the curvature as indicated by the 

approximate equations proposed in Chapter 5.  The maximum curvature L/R is solved 

from the limit state equations for different Lb values as shown in Figure  6-11, Figure  6-12 

and Figure  6-13 for Lm=150ft, 240ft and 300ft, respectively.  It is noticed that the 

maximum curvature is controlled by the end-span cross section in the outer girder.  In 

addition, it is also shown that the ultimate strength limit state of the compression flange 

controls the maximum allowable curvature for high Lb values. 

The code specifies a maximum cross frame spacing for curved bridges as follows: 

( )

max

max

0.1 0.1
/

/ 0.1

b

b

LL R
L R
LL R
L

= =

∴ =
        6-7 

where R is the radius of curvature.  Comparisons with the numerical results show that the 

code recommendation of L/R is adequate in short span bridges (150ft) when Lb is less 

than 40ft approximately.  However, long span bridges present an allowable curvature 

lower than the one recommended in the code when the cross sections are designed from a 

straight girder formulation. 
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Figure  6-11. Identification of maximum curvatures for straight bridges with Lm=150ft 
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Figure  6-12. Identification of maximum curvatures for straight bridges with Lm =240ft 
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Figure  6-13. Identification of maximum curvatures for straight bridges with Lm =300ft 

 

6.3 Concluding remarks 

In the first part of this chapter, the behavior of the limit states for constructibility 

were evaluated based on the FEA results obtained from the parametric study.  The 

following major conclusions were made. 

For the skewed bridges analyzed in this work, it was observed that the effect on 

the limit states of the girder position, the cross-frame orientation and the skew angle is 

almost negligible.  However, the cross-frame spacing has a significant effect on the limit 

state of discretely braced flanges in compression principally in the positive moment 
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regions, since the LFB depends on the cross-frame distance and the capacity of the flange 

reduces as this parameter increases.   

It was also observed that the cross sections at the positive moment regions of the 

end and middle spans are controlled by the second and fourth castings, respectively.  The 

corresponding flanges in compression in both sections are governed by the ultimate 

strength limit state.  The negative moment regions are controlled by the fifth casting 

stage.  The flanges in compression are governed by the yielding limit state for short span 

lengths bridges.  However, the web bend-buckling limit state governs the compression 

flanges for longer spans. 

In curved bridges, the results showed that both the curvature and the cross-frame 

spacing highly affect the limit state ratios in the positive moment regions of the outer 

girder.  However, a stress relief was observed in the inner girder caused by the length 

adjustments due to curvature.  Additionally, the LFB exhibited by the inner girder is 

relieved since its eccentricity with respect to the supports is smaller.  In fact, the LFB 

undergoes a reversing effect in the inner girder compared to its straight counterpart.  This 

is caused from the torsional effects that are controlled by the curvature counteracting the 

overhang load effects in the inner girder.   

It was observed that the variables that most affect the limit states are the curvature 

followed by the cross-frame spacing.  The second and fourth castings from the deck-

placement sequence control the sections at the positive moment regions of the end and 

middle spans, respectively.  The ultimate strength is the limit state that principally 

governs the compression flanges in these sections.  However, the yielding limit state may 

control in short span lengths with high curvatures.   

As for skewed bridges, the negative moment regions are controlled by the fifth 

casting stage.  The yielding limit state governs the compression flanges of bridges with 

short spans and the web bend-buckling limit state becomes significant in the pier regions 

for long span bridges. 

None of the critical limit state values resulted from a casting stage where the 

finishing machine is considered.   
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In the second part of Chapter 6, the maximum allowed skews and curvatures were 

computed for straight bridges based on the limit states for constructibility and the LFB 

equations proposed in Chapter 5.   The following principal observations were established. 

For skewed bridges, it was observed that the maximum cross-frame spacing in 

skewed bridges is controlled by the ultimate strength limit state in the compression 

flange.  Conversely, the tension flange seems to be unaffected by the skew angle. 

On the other hand, the maximum allowed curvature is controlled in most of the 

cases by the end-span cross section in the outer girder.  It was also shown that the 

ultimate strength limit state of the compression flange controls the maximum allowable 

curvature for large cross-frame distances.  Comparisons with the code recommendation 

about the maximum cross-frame spacing in curved bridges showed that this specification 

is adequate in short span bridges when the distance between cross frames is less than 

approximately 40ft.  However, long span bridges present an allowable curvature lower 

than the one recommended in the code when the cross sections are designed from a 

straight girder formulation. 
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Chapter 7:  Cross-frame spacing optimization  

AASHTO (2007) does not include a specific recommendation for the spacing of 

cross frames in steel bridges.  Therefore, the designer needs to either evaluate different 

configurations to select the optimum spacing, or follow traditional practice that assures 

safe results.  For that reason, a reliability analysis was proposed in this work and 

performed in Chapter 7 to develop a practical method to select the cross-frame spacing 

for deck placement conditions considering the flexural limit states for constructibility that 

are affected by the cross-frame spacing.  Initially, a general description of a structural 

reliability study is given along with the limit states considered in this work.  Then, the 

adopted structural loading and resistance models are described and their corresponding 

probabilistic characteristics are presented.  Finally, a Monte Carlo Simulation is 

performed for straight, skewed and curved steel I-girder bridges generating some fragility 

curves that allow the maximum cross-frame spacing for deck-placement conditions 

according to the maximum tolerated level of risk to be identified. 

7.1 Limit States 

According to Nowak and Collins (2000), a limit state is the boundary between the 

desired and undesired performance of a structure.  The definition of a limit state is based 

on the identification of a potential structural failure that makes the structure unable to 

perform as intended originally in the design, e.g. excessive deflections, exceeding the 

moment capacity, buckling.  The structural limit states are generally classified as 

ultimate, serviceability or fatigue limit states depending on the failure type prevented.  

Thus, ultimate limit states correspond to the loss of load-carrying capacity, the 

serviceability limit states are related with the user’s comfort and the fatigue limit states 

control the loss of strength due to cyclic loads.   

Mathematically, the limit states are represented by a performance function, 

defined as: 

( ),g R Q R Q= −          7-1 
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where, R represents the “capacity or resistance” and Q the “demand”.  The limit state is 

obtained specifically when g = 0, which is the border between the safe and unsafe zones 

as shown in Figure  7-1.  If g ≥ 0, the structure is safe, otherwise, an undesired structural 

performance is exhibited.  The basic variables R and Q are functions of other specific 

variables such as load components, influence factors, resistance parameters, material 

properties, dimensions, etc.  Some of these variables may be of random nature.  

Therefore, the failure of the system needs to be addressed probabilistically.   

 
Figure  7-1. Limit State function (Nowak & Collins, 2000)  

 

Random variables are characterized by their probability density function (PDF), 

as shown in Figure  7-2 for R and Q.  Moreover, R-Q is also a random quantity in which 

the probability of failure is represented by the shaded area where the demand exceeds the 

capacity.  The analytical expression of the probability of failure is given by (Nowak & 

Collins, 2000): 

( ) ( ) ( ) ( )1f Q i R i i R i Q i iP F r f r dr F q f q dq
+∞ +∞

−∞ −∞

= − =∫ ∫      7-2 

where FQ and FR are the Cumulative Distribution Functions (CDF) of Q and R, fQ and fR 

are the Probability Density Functions (PDF) of Q and R, and qi and ri are specific values 

of Q and R.  Since Eq. 7-2 is difficult to evaluate analytically, alternative procedures are 

used to indirectly compute the probability of failure based on the concept of the reliability 

index.   
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Figure  7-2. Probability functions of load and resistance (Nowak & Collins, 2000) 

 

The reliability index, also known as the safety index, is the ratio of the mean 

value of the limit state to its standard deviation, as shown in Figure  7-3.  However, a 

more common definition is given when the limit state is expressed in terms of the 

reduced variables, which are a nondimensional form of the original random variables R 

and Q as follows: 

R
R

R

Q
Q

Q

RZ

Q
Z

μ
σ

μ
σ

−
=

−
=

          7-3 

where Z, μ and σ are the reduced variable, the mean value and the standard 

deviation, respectively.  If R and Q are represented graphically in a space of reduced 

variables as shown in Figure  7-4, the reliability index corresponds to the shortest distance 

from the origin to the line representing the limit state (g=0).  Using equation 7-3 and 

geometry, the reliability index is defined as: 

22
QR

QR

σσ

μμ
β

+

−
=          7-4 

Additionally, if R and Q are normally distributed random variables, the reliability 

index is related to the probability of failure by: 

( ) ( )ββ −Φ=Φ−= −
ff PP or         1        7-5 

where  Φ is the CDF of a standard normal variable.  For random variables 

different than normally distributed and uncorrelated variables, equation 7-5 only gives an 

approximate definition of β. 
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a. b.

Figure  7-3. Reliability index in: a. general, and b. reduced coordinates (Melchers, 1999) 

 
Figure  7-4. Graphical representation of the Reliability Index (Nowak & Collins, 2000)  

 

The present work evaluates the reliability of the flexural limit states for 

constructibility that are directly affected by the cross-frame spacing, i.e. limit states that 

consider LFB, as follows: 

• Discretely braced flanges in compression: 

Yielding:    bu l f h ycf f R Fφ+ ≤       7-6 

Ultimate strength:  1
3bu l f ncf f Fφ+ ≤       7-7 

• Discretely braced flanges in tension: 

Yielding:   bu l f h ytf f R Fφ+ ≤       7-8 

Limit for LFB:  0.6l yff F≤        7-9 

In order to evaluate the reliability of the limit state equations, it is necessary to 

define the probabilistic characteristics of the loading and capacity variables that are 
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involved in the equations.  These definitions are called structural loading and resistance 

models and are described next. 

7.2 Structural loading model 

In this work, the demand (fbu, fl) comes from factored loads corresponding to the 

Strength-I load combination for construction, where the load factors are taken as 1.25 and 

1.5 for the dead and the construction loads, respectively (AASHTO, 2007).   

All loading variables are treated as normal random variables.  The probabilistic 

properties of the dead and construction loads are taken from the work developed by 

Nowak et. al. (2006) for the calibration of the LRFD design specifications for steel 

curved girder bridges.  The bias factors (λ) and coefficients of variation (V) indicated in 

Table  7-1 are based on field measurements made by the University of Minnesota. 

 

Table  7-1. General probabilistic characteristics of loads 

 
Bias Factor 

(λ) 

Coefficient of Variation  

(V) 

Dead Loads (D) 1.0 0.150 

Construction Loads (C) 1.1 0.215 

 

7.2.1 Vertical effects, fbu 

7.2.1.1 Definition 

Direct vertical loads produce the major-axis bending stress, fbu, in the girder 

flanges.  In this study, fbu corresponds to the maximum values obtained in the FEA of the 

parametric study described in Chapter 4.  Because the influence of the cross-frame 

spacing in fbu is almost negligible as shown in Chapter 5, fbu is taken only from the FE 

models with Lb=25ft. 
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7.2.1.2 Probabilistic characteristics 

Because fbu is a total factored stress resulting from the considered load 

combination, it is necessary to define λ and V for the total vertical load (TL), as follows: 

fbu
n

TL
TL

λ =           7-10 

( ) ( )2 2
n D D n C C

fbu

D V C V
V

TL
λ λ+

=        7-11 

D n C nTL D Cλ λ= +          7-12 

1.25 1.5n n nTL D C= +          7-13 

where Xn is the nominal or design value recommended in the specifications for the X load 

and X  is the corresponding mean value.  Table  7-2 contains the values computed for the 

exterior girders subjected to distributed vertical loads.  The same properties are 

considered for concentrated loads, since in this case the construction-to-dead load ratios 

are smaller. 

 

Table  7-2. Probabilistic characteristics of distributed vertical loads in exterior girders 

Lm (ft) Dn (Kip/ft) Cn(Kip/ft) TLn TL  λ fbu V fbu 

150 1.45 0.64 2.77 2.16 0.777 0.123 

240 1.67 0.64 3.06 2.38 0.779 0.123 

300 1.81 0.64 3.23 2.52 0.780 0.123 

 

7.2.2 Torsional effects, fl 

7.2.2.1 Definition 

Torsional effects generate indirect LFB.  In this work, the LFB effects are 

computed according to the approximated equations recommended in Chapter 5.  

Although these stresses depend directly on the cross-frame spacing, Lb is considered as a 

deterministic variable in the reliability analyses and is varied from 15ft to 100ft using 5ft 

increments.   
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7.2.2.2 Probabilistic characteristics 

An approach similar to the one described for vertical loads is followed to define 

the probabilistic characteristics of the lateral factored loads due to eccentric overhang 

loading, as shown in Table  7-3.  However, the same values contained in Table  7-2 are 

used for the curvature effects since the proposed LFB equations for curvature depend on 

the vertical loads only. 

 

Table  7-3. Probabilistic characteristics of distributed lateral loads in exterior girders 

Lm (ft) Dn (Kip/ft) Cn(Kip/ft) TLn TL  λ fl V fl 

150 0.17 0.20 0.52 0.40 0.761 0.137 

240 0.13 0.15 0.38 0.29 0.761 0.137 

300 0.12 0.14 0.37 0.28 0.761 0.137 

 

7.3 Structural resistance model 

7.3.1 Definition 

In the limit states described in Section  7.1, the resistance R corresponds to the 

right side of the inequalities given by Equations 7-3, 7-4, 7-5 and 7-6.  The resistance 

factor, φf, is taken as 1.0 for flexure and Rh is 1.0 for homogenous girders (AASHTO, 

2007). The resistances Fyc, Fyt and Fyf correspond to the specified minimum yield strength 

of a compression, tension or any-stress-state flange, respectively.  According to the 

material properties, these resistances are equal to 50ksi.   

On the other hand, Fnc is the nominal flexural resistance of a compression flange.  

This resistance is governed by the most critical failure mode between the lateral torsional 

buckling (LTB) and the flange local buckling (FLB).  The definition of these resistances 

is given below according to AASHTO (2007). 

7.3.1.1 Lateral Torsional Buckling Resistance: 

The lateral torsional buckling resistance of the compression flange is defined as: 

• If Lb ≤ Lp, then: 
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nc b h yc ycF R R F F= =          7-14 

since the web load-shedding factor, Rb, is taken as 1.0 for constructibility (AASHTO, 

2007).  

• If Lp < Lb ≤ Lr, then: 

1 1 yr b p
nc b b h yc b h yc

h yc r p

F L L
F C R R F R R F

R F L L

⎡ ⎤⎛ ⎞⎛ ⎞−
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         7-17 

r t
yr

EL r
F

π=           7-18 

where Cb is the moment gradient modifier, conservatively taken as 1.0; Lb is the unbraced 

length; Lp is limiting unbraced length to achieve the nominal flexural resistance under 

uniform bending; Lr is limiting unbraced length to achieve the onset of nominal yielding 

in either flange under uniform bending with consideration of compression flange residual 

stress effects; Fyr is the smaller of 0.7Fyc and Fyw, but not less than 0.5Fyc; Dc is the depth 

of the web in compression; bfc and tfc are the width and thickness of the flange in 

compression; tw is the web thickness; and E is the steel modulus of elasticity taken as 

29000Ksi. 

 

• If Lb > Lr, then: 

nc cr b h ycF F R R F= ≤          7-19 

2

2
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L
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π
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⎛ ⎞
⎜ ⎟
⎝ ⎠

          7-20 

where Fcr is the elastic lateral torsional buckling stress. 
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7.3.1.2 Flange Local Buckling Resistance: 

The local buckling resistance of a compression flange is taken as: 

• If λ f ≤ λ pf, then: 

nc b h yc ycF R R F F= =          7-21 

• Otherwise: 

1 1 yr f pf
nc b b h yc b h yc

h yc rf pf

F
F C R R F R R F

R F
λ λ
λ λ
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= − − ≤⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

     7-22 

2
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λ =            7-23 

0.38pf
yc

E
F

λ =           7-24 

0.56rf
yr

E
F

λ =           7-25 

where λf is the slenderness ratio for the compression flange, λpf is the limiting 

slenderness ratio for a compact flange, and λrf is the limiting slenderness ratio for a 

noncompact flange.  

7.3.2 Probabilistic characteristics 

In reliability analysis, the resistance R is taken as the product of the nominal 

resistance (Rn) used in design and three factors that account for the uncertainties due to 

material properties, fabrication and analysis (Nowak & Collins, 2000): 

nR R MFP=           7-26 

where M is the ratio of the actual to nominal material properties, F corresponds to the 

ratio of the actual to nominal cross-sectional properties and P is the professional factor 

defined as the ratio of the test to predicted capacity.  The mean value of the resistance 

model presented in Equation 7-24 and its corresponding λR and VR are defined as: 

nR R M F P=           7-27 
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2 2 2

R

R M F P

M F P

V V V V

λ =

= + +
         7-28 

In this study, the resistance is taken as a lognormal variable. Table  7-4 contains 

the probabilistic characteristics of the resistance parameters (Nowak et. al. 2006; 

Galambos, 2004; White et. al. 2008): 

 

Table  7-4. Probabilistic characteristics of resistance variables 
Variable λ V 

Material (M) 1.06 0.06 

Fabrication (F) 1.00 0.05 

Professional factor (P) 1.10 0.05 

Resistance (R) 1.166 0.093 

7.4 Monte Carlo Simulation 

In this work, the reliability analysis is applied to the factored loads and resistances 

instead of the corresponding nominal values.  This is because the load and resistance 

factors have already been calibrated in the Specifications to meet a target reliability 

index, βT=3.5.  However, the reliability analysis is performed to study the effect of the 

cross-frame spacing on the reliability of the flexural limit states for construction using a 

Monte Carlo Simulation.  This reliability evaluation is carried out for different Lb values.  

As a result of this effort, fragility curves are developed in terms of the unbraced lengths 

(Lb), which are useful to define maximum distance between the cross frames based on the 

desired reliability level.   

7.4.1 MCS for each cross-frame spacing 

The following procedure is followed for each cross-frame distance to evaluate the 

reliability of the limit state equations using the Monte Carlo Simulation: 

1. Definition of the limit state equations in terms of the random variables: 

The limit states described in Section  7.1 are restated in the Resistance – Demand 

format to define zero ( 0LS = ) as the failure boundary for the reliability analysis, as 

follows: 
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( )1 f yc bu lLS F f fφ= − +         7-29 

2
1
3f nc bu lLS F f fφ ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
        7-30 

( )4 f yt bu lLS F f fφ= − +         7-31 

6 0.6 yf lLS F f= −          7-32 

 

2. Generate N specific random values for each random variable. 

The Monte Carlo Simulation requires the generation of random numbers 

according to the specific probabilistic distribution of the random variable considered.   

Initially, the random numbers are generated distributed uniformly between 0 and 

1.  Common computer generators use a seed value to produce the required number of 

random numbers, where a different seed value will produce a different set of random 

numbers.  Next, the normalized and uniform random numbers are transformed to random 

numbers with the probabilistic characteristics given by the corresponding random 

variable.  This process is known as the Inverse Transformation Technique Method, where 

the CDF of the random variable, Fx(xi), is equated to the generated uniformly random 

number, ui, as indicated by Equation 7-30 and Figure  7-5: 

( ) ( )1    X i i i X iF x u x F u−= ∴ =         7-33 

 
Figure  7-5. Inverse Transformation Technique Method (Haldar & Mahadevan, 2000) 
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Therefore, to generate a set of standard normal random numbers, zi, the following 

transformation is used: 

( )1
i iz u−= Φ           7-34 

where Φ-1 is the inverse of the standard normal CDF.  A standard normal distribution is 

characterized by having a mean and a variance equal to 0 and 1, respectively.  However, 

a general normal random variable, xi, with mean and standard deviation (μx and σx) 

different than 0 and 1, is related to zi as follows: 

i x i xx zμ σ= +           7-35 

Therefore, the normal random values for the load variables, fbu and fl, are 

generated using Equation 7-32.  For the resistance variables, Rn, a set of lognormal 

random values are generated using the corresponding transformation, as follows: 

( )ln lnexpi x i xx zμ σ= +         7-36 

where ( ) 2
ln ln

1ln
2x x xμ μ σ= −  and ( )2 2

ln ln 1x xVσ = + . 

In this work, the random numbers of the variables are generated using the design 

or factored value instead of the mean, since the load and resistance factors have already 

been calibrated in the Specifications as mentioned previously.   

A total of 1,000,000 random values were generated for each random variable (Rn, 

fbu, fl), according to the probabilistic characteristics described previously.  For example, 

Figure  7-6 shows the generated values of fbu with μ=13.66Ksi and σ=1.68Ksi for the top 

flange at the positive moment region of the end spans.  
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Figure  7-6.  Histogram of the simulated values of fbu with μ=13.66Ksi and σ=1.68Ksi 

 

3. Evaluation of the limit state equations for the N realization sets and determination of  

their probabilistic characteristics: 

The limit state equations are evaluated for 1,000,000 (N) of realization sets of the 

random variables defined in the previous step, as shown in Figure  7-7 for the ultimate 

strength limit state of a compression flange.  The means and the standard deviations of 

these limit states were computed based on the evaluated N-set values using the 

corresponding equations for discrete test data, as follows: 

( )

1

22

1

1

1

n

i
i

n

i
i

x

x x
n

x n x
s

n

=

=

=

⎛ ⎞
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⎝ ⎠=
−

∑

∑
        7-37 

where x  is the sample mean, sx is the sample standard deviation, n is the total number of 

observations and xi is a single observation. 
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Figure  7-7. Histogram of the simulated limit state LS2 with μ=35.18Ksi and σ=4.88Ksi 

 

4. Probability of failure: 

The estimation of the probability of failure for a specific limit state equation 

improves as N increases.  If the evaluation of the limit state is less than zero, it means a 

failure state.  Therefore, an estimate of the probability of failure is defined as: 

f
f

N
P

N
=           7-38 

where Nf is the number of simulation cycles that did not satisfy the limit state equation.   

5. Evaluation of the accuracy and efficiency of the simulation:  

The accuracy of the simulation is estimated assuming a theoretically correct 

probability of failure close to zero (P= 10-4) corresponding to a reliability index (β) of 

3.71, since a zero probability of failure cannot be achieved.   Then, the error is computed 

based on the 95% confidence interval of the estimated probability of failure (Haldar & 

Mahadevan, 2000), as indicated by Equation 7-36.   

1(%) 200% 20%
 
P x

N P
ε −

= =         7-39 
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Therefore, it can be affirmed that there is a 95% probability that the true 

probability of failure will be in the range of 0.0001 ± 0.00002 (0.01% ± 0.002%) when 

the simulation employs 1,000,000 realizations, for the assumed characteristics of the 

random variables. 

7.4.2 Fragility curves 

Figure  7-8 shows an example of the CDFs generated for different Lb values of the 

first two limit states for the top flange at the positive moment region of the end spans.  It 

is evident that the CDFs become more critical (i.e., moving toward zero) as Lb increases. 

This effect is more pronounced in the ultimate strength limit state of the compression 

flanges.   
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Figure  7-8.  Simulated CDFs of LS1 and LS2 for different Lb values in a straight bridge 

 

The simulated probability of failure (Pf) and reliability indices (β) of each CDF 

was plotted against the corresponding Lb to obtain the fragility curves for the limit states, 

as shown in Figure  7-9.  These curves represent a practical method to select the 

maximum cross-frame spacing based on the maximum tolerated probability of failure or 

reliability index.   

 

Lb=15ft 

Lb=100ft 

  Lb=15ft 

Lb=100ft 
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Figure  7-9. Fragility curves of LS2 using Monte Carlo Simulation  

 

7.4.2.1 Straight Bridges 

Figure  7-10, Figure  7-11 and Figure  7-12 show that the ultimate strength in the 

compression flange is the governing limit state in the reliability analysis.  It is also 

observed that the reliability of the system is lower for short span bridges since the LFB 

effects decrease as the length of the bridge increases.  Table  7-5 shows the values of the 

cross-frame spacing required to meet the code reliability index of 3.5. 

 

Table  7-5.  Maximum Lb (ft) corresponding to a code reliability level in straight bridges  

 
End span 

S1 

Middle span  

S3 

Pier 

S2 

Lm=150ft 51 43 53 

Lm =240ft 58 54 69 

Lm =300ft 60 69 75 

 



 154

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S1 - TF - P

P
f

Lm=150ft, LS1
Lm=150ft, LS2
Lm=150ft, LS6
Lm=240ft, LS1
Lm=240ft, LS2
Lm=240ft, LS6
Lm=300ft, LS1
Lm=300ft, LS2
Lm=300ft, LS6

10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
S1 - TF - P

β

Lm=150ft, LS1
Lm=150ft, LS2
Lm=150ft, LS6
Lm=240ft, LS1
Lm=240ft, LS2
Lm=240ft, LS6
Lm=300ft, LS1
Lm=300ft, LS2
Lm=300ft, LS6
Code

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S1 - TF - w

Lb (ft)

P
f

Lm=150ft, LS1
Lm=150ft, LS2
Lm=150ft, LS6
Lm=240ft, LS1
Lm=240ft, LS2
Lm=240ft, LS6
Lm=300ft, LS1
Lm=300ft, LS2
Lm=300ft, LS6

10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
S1 - TF - w

Lb (ft)

β

Lm=150ft, LS1
Lm=150ft, LS2
Lm=150ft, LS6
Lm=240ft, LS1
Lm=240ft, LS2
Lm=240ft, LS6
Lm=300ft, LS1
Lm=300ft, LS2
Lm=300ft, LS6
Code

Figure  7-10. Fragility curves for the end-span sections in straight bridges with Lm=150ft 
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Figure  7-11. Fragility curves for the Lm sections in straight bridges with Lm =150ft 
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Figure  7-12. Fragility curves for the pier sections in straight bridges with Lm =150ft 

 

7.4.2.2 Skewed Bridges 

From Figure  7-13, Figure  7-14, Figure  7-15 and Table  7-6, it is observed that the 

skew angle does not affect the reliability of the bridges and the same results obtained for 

straight bridges apply in this case.  Appendix E contains the remaining figures 

corresponding to θ=45° and 60°. 
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Table  7-6.  Maximum Lb (ft) corresponding to a code reliability level in skewed bridges  

 θ=30° θ=45° θ=60° 

 S1 S3  S2 S1 S3  S2 S1 S3  S2 

150ft 50 43 54 50 42 54 50 42 53 

240ft 58 54 70 58 53 70 57 52 69 

300ft 60 69 76 60 69 75 59 67 74 
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Figure  7-13. Fragility curves for Section S1 in skewed bridges with Lm =150ft and θ=30° 
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Figure  7-14. Fragility curves for Section S3 in skewed bridges with Lm =150ft and θ=30° 
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Figure  7-15. Fragility curves for Section S2 in skewed bridges with Lm =150ft and θ=30° 
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7.4.2.3 Curved Bridges 

Figure  7-16 - Figure  7-21, Table  7-7 and Table  7-8 show that the critical cross-

frame spacing is obtained at the end span of the exterior girder.  The ultimate strength of 

the compression flange is the limit state that governs in most cases.  The reliability in the 

exterior girder decreases for highly curved and long-span bridges.  This is principally due 

to the effect of fbu which is largely increased by the curvature and the span length.    

The critical cross-frame distances in the middle span and the pier regions 

corresponding to a code reliability level are not unfavorably affected by the span length 

as shown in Table  7-7.  However, these distances slightly decrease as the curvature is 

higher.   

In general, it is recommended to use temporary vertical supports at the end spans 

during construction for highly curved and long bridges that do not meet the minimum 

levels of tolerated reliability.  Appendix F contains the additional fragility curves 

corresponding to L/R=0.45 and 0.60. 

 

Table  7-7.  Maximum Lb (ft) corresponding to a code reliability level in G4  
 L/R=0.30 L/R=0.45 L/R=0.60 

 S1 S3  S2 S1 S3  S2 S1 S3  S2 

150ft 37 40 46 25 37 42 <10 34 38 

240ft 15 50 61 <10 48 57 <10 46 54 

300ft <10 63 65 <10 62 62 <10 68 65 

 

Table  7-8.  Maximum Lb (ft) corresponding to a code reliability level in G1  
 L/R=0.30 L/R=0.45 L/R=0.60 

 S1 S3  S2 S1 S3  S2 S1 S3  S2 

150ft 53 43 53 48 42 52 43 41 47 

240ft 68 51 72 58 49 72 52 47 72 

300ft 78 64 79 75 62 81 66 59 88 
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Figure  7-16. Fragility curves for section S1 in G4 with Lm =150ft -L/R=0.30 
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Figure  7-17. Fragility curves for Section S3 G4 with Lm =150ft -L/R=0.30 
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Figure  7-18. Fragility curves for Section S2 in G4 with Lm =150ft -L/R=0.30 
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Figure  7-19. Fragility curves for Section S1 in G1 with Lm =150ft -L/R=0.30 
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Figure  7-20. Fragility curves for Section S3 in G1 with Lm =150ft -L/R=0.30 
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Figure  7-21. Fragility curves for Section S2 in G1 with Lm =150ft -L/R=0.30 

7.5 Concluding remarks 

A reliability analysis was performed to develop fragility curves that allow the 

designer to select the cross-frame spacing for deck placement conditions considering the 

flexural limit states for constructibility that are directly affected by the cross-frame 

spacing.  The adopted structural loading and resistance models were described along with 

their corresponding probabilistic characteristics.  A Monte Carlo Simulation was 

conducted for straight, skewed and curved steel I-girder bridges to obtain the fragility 

curves that allow identifying the maximum cross-frame according to the maximum 

tolerated level of risk.  The following observations were established from this effort. 
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For all bridge types, the ultimate strength in the compression flange is the 

governing limit state in the reliability analysis.  Therefore, the fragility curves obtained in 

this work may be valid for service conditions since the compression flange in these cases 

act as a composite section.   

For straight and skewed bridges, it was observed that the reliability of the system 

is lower for short span bridges since the LFB effects decrease as the length of the bridge 

increases.  The results showed that the skew angle does not affect the reliability of the 

skewed bridges and the same results obtained for straight bridges apply in this case.    

For curved bridges, it was observed that the critical cross-frame spacing is 

obtained at the end span of the exterior girder.  The reliability in the exterior girder 

decreases for highly curved and long-span bridges due to the effect of fbu, which is deeply 

increased by the curvature and the span length.  The critical cross-frame distances in the 

middle span and the pier regions corresponding to a code reliability level are not 

unfavorably affected by the span length.  However, these distances slightly decrease as 

the curvature is higher.   

In general, it is recommended to use temporary vertical supports at the end spans 

during construction for highly curved and long bridges that do not meet the minimum 

levels of tolerated reliability.   
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Chapter 8:  Summary, conclusions and recommendations 

8.1 Summary 

This work has resulted in the development of approximated equations that predict 

the LFB in steel I-girder bridges during concrete deck placement.  The effects on the 

flexural limit state equations for constructibility of variables such as skew, curvature, 

cross-frame spacing, girder cross section and casting sequence were evaluated as well.  In 

addition, the maximum allowed skews and curvatures were computed for straight bridges 

based on the limit states for constructibility and the proposed LFB equations.  Finally, 

fragility curves were developed for steel I-girder bridges during construction that allow 

selecting the maximum cross-frame according to the maximum tolerated level of risk. 

Introductory material was presented in Chapter 1 including general information of 

the research topic, the need for this project, the main research objectives and the research 

methods.  Chapter 2 presented the literature review of topics related to this research 

project such as LFB, overhang loads, curved and skewed steel I-girder bridges, 

specifications and structural reliability.   

Chapter 3 discussed the principal modeling procedures employed to conduct FEA 

in this project.  A description of the material models, the finite elements and analyses 

required to model the bridge behavior during deck placement conditions is included.  A 

validation of the modeling procedures was also presented based on the results from 

different experimental tests.   

The parametric study used to investigate the effects of the deck-placement process 

on the LFB of steel I-girder bridges was described in Chapter 4.  The description covered 

the parametric variables, the loads, the structural design and the analyses for each 

parametric configuration that properly represent the deck casting sequence.  

Chapter 5 presented the results from the parametric study that allow formulating 

approximate equations to predict the LFB in straight, skewed and curved steel I-girder 

bridges during deck placement.  The major-axis bending stresses were also analyzed, 

where the principal contribution was made for curved.   
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In Chapter 6, the AASHTO flexural limit states for constructibility were evaluated 

using the results from the parametric study along with the equations proposed in Chapter 

5 to estimate the LFB.  Initially, the critical sections along the bridge were identified and 

the effects of the cross-frame spacing and the deck-placement sequence in the governing 

limit states were evaluated as well.  Finally, the maximum allowable skews and 

curvatures for deck placement conditions were computed for bridges designed originally 

as straight.   

Chapter 7 described the reliability analysis performed to develop the fragility 

curves.  A general description of a structural reliability study is given initially, followed 

by the definition of the structural loading and resistance models employed in this work.  

Then, the Monte Carlo Simulations were performed for straight, skewed and curved steel 

I-girder bridges resulting in the fragility curves that allow identifying the maximum 

cross-frame spacing for deck-placement conditions according to the maximum tolerated 

level of risk. 

8.2 Conclusions 

The bending stresses obtained during deck placement conditions in three-span 

straight, skewed and curved steel I-girder bridges were evaluated in Chapter 5 using the 

results obtained from a FEA parametric study.  A symmetric deck casting sequence was 

considered where the positive moment regions are poured first.  The LFB stresses caused 

by different sources were estimated by the curves that have the best fit to the numerical 

critical stresses.  The following major conclusions were established from this evaluation.   

• Straight structures: 

The major-axis bending stresses exhibited by the exterior girders of straight 

bridges are independent of the cross-frame spacing.  Therefore, these stresses may be 

obtained from the structural analysis of either a simplified model that does not consider 

explicitly the cross frames or a more detailed model involving any cross-frame distance. 

For the positive moment regions, the LFB due to distributed loads was 

satisfactorily predicted by the equation proposed in this work over the entire range of 

cross-frame distances, principally at the end spans.  Although the LFB obtained in the 
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middle span is lower, the same equations were proposed to simplify the approximations.  

Comparisons with the code estimations showed that the Specifications are highly 

conservative in all cases, especially for large cross-frame distances.   

For concentrated loads, a linear regression considering the most external points 

from the critical curves was performed to adjust the numerical stresses.  These external 

points correspond to models where the concentrated loads are placed at the middle of a 

cross-frame spacing which is the critical location.  The proposed equation for the bottom 

flange governs over the code equation for cross-frame distances larger than 26ft.  

However, both the code and the proposed approximations coincide for the top flange. 

The LFB effect on the negative moment regions was approximated considering 

only the distributed loading case since the contribution from the concentrated loads is 

negligible.  The results showed that the proposed equation satisfactorily predicts the LFB 

in both flanges.   

• Skewed structures 

The results showed that skewed bridges exhibit LFB even when torsional loads 

are not applied.  However, in the presence of torsional effects, the LFB effect is slightly 

more pronounced when the cross frames are oriented parallel to the supports.  Therefore, 

a perpendicular orientation of the cross frames is recommended for general skewed 

bridges to increase the lateral stiffness of the structure.  This perpendicular configuration 

was adopted in this work to evaluate the LFB effects.   

The results indicated that the major-axis bending in skewed bridges is not only 

independent of the cross-frame spacing but also of the skew angle.  Therefore, these 

stresses may be taken from structural analyses performed for skewed bridges with any 

cross-frame spacing and skew angle, including their simplified straight counterpart.   

The LFB in the positive moment regions was approximated using curve fitting 

models similar to the ones used for straight bridges.  For distributed loads, a lower limit 

was introduced in the proposed equation for the bottom flange since this flange exhibits 

LFB even for closely spaced cross frames.  The minimum LFB stress considered in the 

bottom flange is proportional to the skew angle.  The results were compared to the code 

equation for overhang loads and significant overestimations of the LFB principally for 

long cross-frame distances were found.  For concentrated loads, the results showed that 
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the code equation for overhang loads fails to satisfactorily predict the LFB in most of the 

cases, principally in the bottom flange. 

The LFB in the negative moment regions was approximated in this work by a 

constant term that depends on the skew angle.  This approximation was adopted to 

conservatively estimate the stresses which do not exhibit a consistent trend in these 

regions.  The results also indicated that the code recommendation of using 10Ksi for the 

unfactored LFB stresses in skewed bridges is conservative even compared to factored 

stresses.     

• Curved structures 

The evaluation of the bending stresses in curved bridges indicated that the major-

axis bending and the LFB are deeply affected by the curvature and the position of the 

girder, i.e. outer or inner girder.   

The analyses showed that the major-bending stresses in curved bridges are 

independent of the cross-frame spacing.  However, they increase linearly with the 

curvature at the positive moment regions of the end spans.  Conversely, these stresses at 

the middle span of the outer girder are not significantly affected by the curvature.  A 

linear model was proposed to estimate the major-bending effects in the positive moment 

regions of both exterior girders.  This model computes the major-axis bending in curved 

bridges based on the major-axis bending stresses exhibited by their straight counterpart.  

Therefore, the proposed equation allows estimating the major-axis bending in curved 

bridges from structural analyses of simplified straight bridges.  In the negative moment 

regions, the major-bending stresses also exhibit a linear trend but it is independent of the 

span length.   

The assumption of computing the major-axis bending based on a simplified 

straight model with the real arc length of the curved girder does not help to represent the 

curvature effects on these stresses.  In fact, the AASHTO recommendation of ignoring 

the curvature effects for fbu when L/R is lower than 0.06 introduces an error of 

approximately 10% in long span bridges.     

The LFB in curved girders is caused by both the curvature and the overhang 

loads.  However, it was shown that the participation of the overhang loads in the LFB is 

low compared to the curvature effects.  In fact, the overhang-to-curvature effect ratio 
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reduces as the length of the span and the curvature increase.  Therefore, the overhang 

term was dropped from the final expression proposed for the LFB which simplifies to the 

curvature term only.  However, the torsional effects due to overhang loads are implicitly 

considered since the curve fitting process is applied to the total LFB obtained from the 

parametric study.  A comprehensive formulation to estimate the LFB effects due to 

curvature was developed for distributed and concentrated loads, respectively.  The critical 

case between the top and bottom flanges was selected to define the equations proposed in 

this work to estimate the LFB in curved bridges.   

The results indicated that the LFB is practically unaffected by the variation of the 

curvature, a slight effect was only observed in the positive moment regions of the middle 

span.  This observation indicates that these effects need to be considered even in bridges 

with large curvature radii.   

The equations proposed in this project to estimate the LFB in curved bridges work 

adequately in both exterior girders.  Significant reductions were found in most of the 

cases compared to the estimations given by the AASHTO.   

The major-axis bending effects in the AASHTO equation were computed using 

both the numerical and the estimated major-axis bending stresses, obtaining similar 

results.  The estimated major-axis bending stresses correspond to the stresses computed 

using the equation proposed in this work to estimate fbu in curved bridges from the results 

obtained in their straight counterpart.  Therefore, the LFB in a curved bridge can be 

conservatively approximated using the code equation together with the major-axis 

bending from a corresponding straight bridge.  The advantage of the proposed equations 

over the code approximation is that it is not required to know in advance the major-

bending effects to compute the LFB.  However, the principal disadvantage is that 

different expressions are required to define the effects of distributed and concentrated 

loads, while the code approximation consists of one single equation that applies for all 

load cases independent of the girder location and flange position.    

However, the results from the parametric study indicated that the code equation 

fails to predict the LFB due to distributed loads at the inner girder of highly curved 

bridges with long spans.  Therefore, it is recommended to use the equation proposed in 

this work which predicts satisfactorily the LFB in all cases.  It was also observed that the 
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bottom flange under concentrated loads exhibits the most critical LFB effects compared 

to the top flange, especially for short span lengths.   

The results indicated that the outer girder exhibits the most critical combined 

bending effects.  On the contrary, the curvature decreases the magnitude of the major-

bending stresses in the inner girder resulting in a combined bending action much lower 

than that corresponding to the outer girder.  Therefore, the design of both exterior girders 

shall be based on the evaluation of the outer girder, unless an optimization of the inner 

girder is pursued.  In that case, the effects of the girder stiffness in the behavior of the 

whole cross section of the deck shall be investigated. 

 

The first part of Chapter 6 was intended to evaluate the behavior of the limit states 

for constructibility based on the FEA results obtained from the parametric study.  The 

following major results were obtained. 

For the skewed bridges analyzed in this work, it was observed that the effect on 

the limit states of the girder position, the cross-frame orientation and the skew angle is 

almost negligible.  However, the cross-frame spacing has a significant effect on the limit 

state of discretely braced flanges in compression principally in the positive moment 

regions, since the LFB depends on the cross-frame distance and the capacity of the flange 

reduces as this parameter increases.   

It was also observed that the cross sections of the end and middle spans are 

controlled by the casts where the concrete is placed over the complete positive moment 

region.  The compression flanges in both spans are governed by the ultimate strength 

limit state.  The negative moment regions are controlled by the last casting stage.  The 

flanges in compression are governed by the yielding limit state for short span length 

bridges. However, the web bend-buckling limit state governs the compression flanges for 

longer spans. 

In curved bridges, the results showed that both the curvature and the cross-frame 

spacing highly affect the limit state ratios in the positive moment regions of the outer 

girder.  However, a stress relief was observed in the inner girder caused by the length 

adjustments due to curvature.  Additionally, the LFB exhibited by the inner girder is 

relieved since its eccentricity with respect to the supports is smaller.  In fact, the LFB 
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undergoes a reversing effect in the inner girder compared to its straight counterpart.  This 

is caused from the torsional effects that are controlled by the curvature being 

counteracted by the overhang load effects in the inner girder.   

It was observed that the variables that most affect the limit states are the curvature 

followed by the cross-frame spacing.  The sections of the end and middle spans are 

controlled by the casts that consider the concrete over the total positive moment regions.  

The ultimate strength is the limit state that principally governs the compression flanges in 

these sections.  However, the yielding limit state may control in short span lengths with 

high curvatures.   

As for skewed bridges, the negative moment regions are controlled by the last 

casting stage.  The yielding limit state governs the compression flanges of bridges with 

short spans and the web bend-buckling limit state becomes significant in the pier regions 

for long span bridges. 

None of the critical limit state values resulted from a casting stage where the 

finishing machine is considered.   

In the second part of Chapter 6, the maximum allowed skews and curvatures were 

computed for straight bridges based on the limit states for constructibility and the LFB 

equations proposed in Chapter 5.   For skewed bridges, it was observed that the 

maximum cross-frame spacing in skewed bridges is controlled by the ultimate strength 

limit state in the compression flange.  Conversely, the tension flange seems to be 

unaffected by the skew angle. 

On the other hand, the maximum allowed curvature is controlled in most of the 

cases by the end-span cross section in the outer girder.  It was also shown that the 

ultimate strength limit state of the compression flange controls the maximum allowable 

curvature for large cross-frame distances.  Comparisons with the code recommendation 

about the maximum cross-frame spacing in curved bridges showed that this specification 

is adequate in short span bridges when the distance between cross frames is less than 

approximately 40ft.  However, long span bridges present an allowable curvature lower 

than the one recommended in the code when the cross sections are designed from a 

straight girder formulation. 
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A reliability analysis employing a Monte Carlo Simulation was performed in 

Chapter 7 to develop fragility curves that allow the designer to select the cross-frame 

spacing for deck placement conditions.  The following observations were established 

from this effort. 

For all bridge types, the ultimate strength in the compression flange is the 

governing limit state in the reliability analysis.  Therefore, the fragility curves obtained 

may be valid for service conditions since the compression flange in these cases acts as a 

composite section.   

For straight and skewed bridges, it was observed that the reliability of the system 

is lower for short span bridges, since the LFB effects decrease as the length of the bridge 

increases.  The results showed that the skew angle does not affect the reliability of the 

skewed bridges and the same results obtained for straight bridges apply in this case.    

For curved bridges, it was observed that the critical cross-frame spacing is 

obtained at the end span of the exterior girder.  The reliability in the exterior girder 

decreases for highly curved and long-span bridges due to the effect of fbu, which is deeply 

increased by the curvature and the span length.  The critical cross-frame distances in the 

middle span and the pier regions corresponding to a code reliability level are not 

unfavorably affected by the span length.  However, these distances slightly decrease as 

the curvature is higher.   

In general, it is recommended to use temporary vertical supports at the end spans 

during construction for highly curved and long bridges that do not meet the minimum 

levels of tolerated reliability.   

8.3 Recommendations 

The results presented in this work correspond to steel I-girder bridges with the 

specific characteristics described in the parametric study.   Additional parametric 

variables such as overhang length, girder spacing, number of girders, number of spans, 

yielding strength, etc., should be incorporated in future research efforts to complement 

the existing conclusions.  In particular, the parametric study is based on the loads factored 

according to the Strength I load combination of the Specifications.  Additional load 
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combinations may be considered where the LFB effects due to wind are analyzed.  In 

addition, in this study, a symmetric deck casting sequence was considered.  The 

evaluation of critical conditions exhibited during unsymmetrical sequences would be a 

beneficial supplement to the existing work. 

The present work is focused on the evaluation of the flexural bending stresses 

exhibited by the girder flanges.  Future work incorporating shear stresses, deflections and 

distortions will provide the engineer with the criteria required to evaluate the complete 

structural behavior of steel I-girder bridges during construction.  Moreover, the 

evaluation of the internal forces in the members of the lateral bracing system will 

contribute to improve the corresponding design specifications.   

It is suggested that some of the results obtained in this work be validated by 

conducting experimental tests.   
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Appendix A:  LFB in Skewed Bridges 
• Positive moment region under distributed loads:  θ=45° 
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• Positive moment region under distributed loads:  θ=60° 
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• Positive moment region under concentrated loads:  θ=45° 
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• Positive moment region under concentrated loads:  θ=60° 
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• Negative moment regions: 

The figures corresponding to θ = 45° and 60° show some returns on the curves 

due to the reduction of the cross-frames distances close to the pier zones. 
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Appendix B:  LFB in Curved Bridges 
The figures corresponding to the middle spans (Lm) of 240ft and 300ft show some 

missing points due to computational instabilities that arose during the analyses before the 

total load was applied.   

 

• Positive moment regions under distributed loads: Lm=240ft – Outer Girder 
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• Positive moment regions under distributed loads: Lm=240ft – Inner Girder 
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• Positive moment regions under distributed loads: Lm=300ft – Outer Girder 
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• Positive moment regions under distributed loads: Lm=300ft – Inner Girder 
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• Positive moment regions under concentrated loads: Lm=240ft – Outer Girder 
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• Positive moment regions under concentrated loads: Lm=240ft – Inner Girder 
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• Positive moment regions under concentrated loads: Lm=300ft – Outer Girder 
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• Positive moment regions under concentrated loads: Lm=300ft – Inner Girder 
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• Negative moment regions: Lm=240ft 
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• Negative moment regions: Lm=300ft 
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Appendix C:  Limit States for constructibility in Skewed 

Bridges 
• Skewed bridges:  Lb=25ft – Cross frames oriented perpendicular to the girders 
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• Skewed bridges:  Lb=40ft – Cross frames oriented perpendicular to the girders 
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• Skewed bridges:  Lb=40ft – Cross frames oriented parallel to the supports 
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• Skewed bridges:  Lb=25ft – Cross frames oriented perpendicular to the girders 
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• Skewed bridges:  Lb=40ft – Cross frames oriented perpendicular to the girders 
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• Skewed bridges:  Lb=40ft – Cross frames oriented parallel to the supports 
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• Skewed bridges:  Lm=150ft – Section 1 
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• Skewed bridges:  Lm=150ft – Section 2 
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• Skewed bridges:  Lm=150ft – Section 3 
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Appendix D:  Limit States for constructibility in Curved 

Bridges 
• Curved bridges:  Lb=25ft  

G4 G1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G4 Lm=150ft, C1

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G1 Lm=150ft, C1

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G4 Lm=150ft, C2

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G1 Lm=150ft, C2

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G4 Lm=150ft, C3

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G1 Lm=150ft, C3

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 



 213

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G4 Lm=150ft, C4

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G1 Lm=150ft, C4

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G4 Lm=150ft, C5

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-1

-0.5

0

0.5

1

G1 Lm=150ft, C5

Normalized distance (xi/Lt)

D
em

an
d/

C
ap

ac
ity

 

 

 

 

TF:                     ST            L/R=0.30                           L/R=0.45                     L/R=0.60 

BF:                     ST            L/R=0.30                           L/R=0.45                     L/R=0.60 



 214

• Curved bridges:  Lb=25ft  
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• Curved bridges:  Lb=40ft  
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• Curved bridges:  Lb=40ft  
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• Curved bridges:  Lm=150ft – Section 1  
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• Curved bridges:  Lm=150ft – Section 2 
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• Curved bridges:  Lm=150ft – Section 3  

22 27 32 40
0

0.2

0.4

0.6

0.8

1

1.2

G4 Lm=150ft, TF S3
D

/C
 m

ax

22 27 32 40
0

1

2

3

4

5

C
as

tin
g 

#

22 27 32 40
0

1

2

3

4

5

Lb (ft)

Li
m

it 
S

ta
te

ST CV30 CV45 CV60  

22 27 32 40
0

0.2

0.4

0.6

0.8

1

1.2

G4 Lm=150ft, BF S3

D
/C

 m
ax

22 27 32 40
0

1

2

3

4

5

C
as

tin
g 

#

22 27 32 40
0

1

2

3

4

5

Lb (ft)

Li
m

it 
S

ta
te

ST CV30 CV45 CV60  

22 27 32 40
0

0.2

0.4

0.6

0.8

1

1.2

G1 Lm=150ft, TF S3

D
/C

 m
ax

22 27 32 40
0

1

2

3

4

5

C
as

tin
g 

#

22 27 32 40
0

1

2

3

4

5

Lb (ft)

Li
m

it 
S

ta
te

ST CV30 CV45 CV60  

22 27 32 40
0

0.2

0.4

0.6

0.8

1

1.2

G1 Lm=150ft, BF S3
D

/C
 m

ax

22 27 32 40
0

1

2

3

4

5

C
as

tin
g 

#

22 27 32 40
0

1

2

3

4

5

Lb (ft)

Li
m

it 
S

ta
te

ST CV30 CV45 CV60  

 

 

 



 221

Appendix E:  Fragility Curves in Skewed Bridges 
• Skewed bridges: θ=45° - S1 
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• Skewed bridges: θ=45° - S3 
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• Skewed bridges: θ=45° - S2 
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• Skewed bridges: θ=60° - S1 
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• Skewed bridges: θ=45° - S3 
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• Skewed bridges: θ=45° - S2 
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Appendix F:  Fragility Curves in Curved Bridges 
• Curved bridges: Lm=150ft – Outer Girder – S1 
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• Curved bridges: Lm=150ft – Outer Girder – S3 
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• Curved bridges: Lm=150ft – Outer Girder – S2 
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• Curved bridges: Lm=240ft – Outer Girder – S1 
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• Curved bridges: Lm=240ft – Outer Girder – S3 
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• Curved bridges: Lm=240ft – Outer Girder – S2 
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• Curved bridges: Lm=300ft – Outer Girder – S1 
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• Curved bridges: Lm=300ft – Outer Girder – S3 
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• Curved bridges: Lm=300ft – Outer Girder – S2 
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• Curved bridges: Lm=150ft – Inner Girder – S1 
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• Curved bridges: Lm=150ft – Inner Girder – S3 
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• Curved bridges: Lm=150ft – Inner Girder – S2 
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• Curved bridges: Lm=240ft – Inner Girder – S1 
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• Curved bridges: Lm=240ft – Inner Girder – S3 
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• Curved bridges: Lm=240ft – Inner Girder – S2 
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• Curved bridges: Lm=300ft – Inner Girder – S1 
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• Curved bridges: Lm=300ft – Inner Girder – S3 
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• Curved bridges: Lm=300ft – Inner Girder – S2 
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	This dissertation is focused on the LFB exhibited by continuous straight, skewed and curved steel I-girder bridges during deck placement.  AASHTO Load and Resistance Factor Design (LRFD) Specifications (2007) recommend some simplified equations to consider the LFB produced by curvature and overhang loads during construction. No specific equations are given to include the skew effect.  The existing approximations included in the specifications are based on simplified models of the girder flanges that neglect effects such as the continuity over the supports, the deck-casting sequence and the interaction of the whole bridge superstructure.  The inclusion of these effects by comprehensive models allows estimating the LFB more accurately.  Therefore, the primary objective of this work is to develop improved equations to estimate the LFB of continuous steel I-girder bridges during deck placement.  A parametric study based on finite element analyses (FEA) is employed to accomplish this objective.  
	Furthermore, the numerical bending results from the parametric study are used to evaluate the flexural limit states for constructibility.  This evaluation allows the parametric variables that most affect the limit states, the governing limit states, and the critical stages during the deck-placement sequence considered in this study to be identified.  In addition, the numerical major-axis bending stresses together with the improved LFB equations are used to define the maximum permissible skew angles and curvatures to meet the flexural limits for constructibility of bridges designed originally as straight.  The definition of these limits will simplify the design process for constructibility of more complex bridges based on their straight girder counterparts.
	Lastly, AASHTO (2007) does not include a specific recommendation for the spacing between cross frames.  Consequently, the designer needs to evaluate different cross-frame configurations to select the most appropriate spacing that assures safe conditions especially during construction when the girders act in a non-composite state.  For that reason, the final aim of this study is to optimize the cross-frame spacing during deck placement conditions.  This is achieved by conducting reliability analyses of the flexural limit states for constructibility that are directly affected by the cross-frame spacing.  
	Therefore, the contribution of this research work to practice is to improve the estimation of the LFB in continuous steel I-girder bridges during deck placement.  In addition, practical simplified checking procedures for constructibility are derived from the achievement of the primary goal combined with the corresponding flexural limit states: the definition of the maximum permitted skew angle and curvature for a bridge designed as straight and the selection of the optimum cross-frame spacing.  As a result of these efforts, both the design and rating processes of steel I-girder bridges for constructibility will be improved.  
	Section 1.2 includes the definition of the LFB and its causes in steel I-girder bridges followed by the corresponding AASHTO simplified approximations. The flexural limit states for constructibility are also presented, since they constitute the criteria used in this project to evaluate the structural performance of the steel I-girder bridges.  
	1.2 Lateral Flange Bending in Steel I-girder Bridges

	An overview of the mechanical behavior of I-shaped girders is initially presented for a better understanding of the physical concept of LFB, along with a description of the principal sources of these additional bending effects in steel I-girder bridges.
	1.2.1 Lateral Flange Bending Fundamentals

	General cross sections resist torsion in the form of pure torsion and restrained warping (Seaburg & Carter, 1997).  The pure torsion resistance is obtained by means of shear stresses and if the warping is restrained, additional shear and normal stresses are incorporated to the original state of stresses.  Warping becomes the primary mean to resist torsion in I-shaped girders since the St. Venant torsional stiffness for open cross sections is low.  Therefore, the additional torsional effects are added to the initial axial and bending stresses produced by the gravity loads, as shown in Figure 11.  
	Figure 1-1. General state of stresses in an I-girder section (Coletti & Yadlosky, 2005)
	Figure 11. General state of stresses in an I-girder section (Cont.)
	The warping normal stresses are basically carried by the girder flanges in the form of bending stresses and represent one of the factors introducing LFB.  The curvature of the girders and the overhang load brackets in exterior girders during construction are some examples of structural configurations where the LFB is caused by torsional effects.  Another source of LFB is given in skewed bridges where the cross frames induce additional lateral forces in the girder flanges.  Further details about the mechanisms of these LFB sources are given in subsequent sections.
	1.2.1.1 Curvature

	The bending stresses in the girders of horizontally curved steel I-girder bridges are affected considerably by the geometry.  The curvature introduces significant torsional stresses due to the eccentricity of the supports with respect to the loads, as shown in Figure 12.  This curvature effect leads to a combined state of bending and torsional stresses that may cause potential strength or stability related problems.  Cross frames are used to reduce these adverse effects since they increase the torsional stiffness of the bridge and offer lateral flange support, becoming part of the primary structural system of the bridge.
	Figure 12. Torsional effects produced by curvature (Coletti & Yadlosky, 2005)
	1.2.1.2 Skew

	Skewed bridges also exhibit significant levels of LFB at intermediate and end cross-frame locations.  For example, Figure 13 shows intermediate cross frames oriented perpendicular to the bridge centerline.  The cross frames connect adjacent girders with different levels of displacement at the connection points.  As a consequence of this differential displacement, internal forces are generated in the cross frames that induce LFB in the girders (Coletti & Yadlosky, 2005).  
	Figure 13. Cross frames oriented perpendicular to the girders (Coletti & Yadlosky, 2005)
	Figure 14. Cross frames oriented parallel to the skew (Coletti & Yadlosky, 2005)
	Cross frames oriented parallel to the skew angle also produce LFB since the girders at the cross-frame locations tend to rotate about an axis parallel to the skew (Beckmann & Medlock, 2005).  This rotation and additional deflection produce a lateral displacement between the flanges that distorts the original shape of the cross frames generating additional LFB as shown in Figure 14.
	1.2.1.3 Overhang loads

	Exterior girders are most affected during deck placement by overhang brackets loads.  These loads are applied along the girders by deck forming brackets placed every three to four feet, as indicated in Figure 15.  The overhang loads include the weight of the concrete over the deck overhang length, the overhang deck forms, the concrete finishing machine and its corresponding railing accessories, and a live load component representing the construction workers.  Therefore, the exterior girders are subjected to torsional loading effects that produce LFB and web deformations that need to be considered during the design process.
	Figure 15. Deck forming brackets on exterior girders 
	1.2.2 AASHTO approximate formulations for the LFB

	This section includes a description of the simplified approximations given by AASHTO (2007) to estimate the LFB due to the curvature, the overhang loads and the skew in the design of steel I-girder bridges.  
	1.2.2.1 Curvature

	AASHTO (2007) states that curved girders meeting the following requirements can be analyzed as straight girders with the span length equal to the arc span length.  The effects of curvature can also be ignored for major-axis bending moments and bending shears in these cases:
	 Concentric girders
	 Maximum skew angle of bearing lines is 10(
	 Similar stiffness of the girders
	 The angle subtended by any span is less than 0.06 radians 
	However, the effect of curvature must always be considered on the torsional behavior of the girders regardless of the amount of curvature.   Therefore, an approximate equation for the lateral flange bending moment due to curvature is recommended in lieu of a refined analysis:
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	where M is the major-axis moment, l is the unbraced length, R is the girder radius, D is the web depth and N is a constant taken as either 10 or 12 depending on the desired level of conservatism.
	1.2.2.2 Overhang loads

	The code provisions require considering the torsional effects due to construction loads on the strength and the stability of girders and cross frames.  The corresponding commentary includes some approximate equations to compute the lateral flange moments due to eccentric loads applied on the overhang deck as follows:
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	where Fl is the statically equivalent uniformly distributed lateral force from the brackets due to the factored loads, Lb is the unbraced arc length, and Pl is the statically equivalent concentrated lateral bracket force at the middle of the unbraced length.
	1.2.2.3 Skew

	AASHTO (2007) does not include an approximate equation to account for the skew effect.  However, the code provisions recommend using 10Ksi as a conservative estimation of the total unfactored LFB in bridges with discontinuous cross-frame lines and skew angles exceeding 20( in lieu of a refined analysis.  The total unfactored LFB is distributed between the load types in the same proportion as the unfactored major-axis stresses.
	1.2.3 AASHTO Flexural Limit States for Constructibility

	After the sources of LFB during the deck-placement sequence are identified, the combined effect of the resulting LFB and the major-axis bending stresses, fl and fbu, are evaluated using the flexural limit states for constructibility.  These limit states are classified according to the state of stress at the flange and its bracing condition, as follows:
	1.2.3.1 Discretely braced flanges in compression

	During some phases of the deck placement, the girders work in a non-composite state.  Moreover, the most critical condition is exhibited by the top flanges of the positive moment regions which are laterally supported by the cross frames.  These compression flanges are usually smaller than the bottom flanges since they are designed for the service loads as composite sections continuously braced by the deck. 
	The bottom flanges in the negative moment regions are also compression flanges discretely braced by the cross frames.  However, this condition is exhibited not only during construction but also during the service life of the bridge.  Consequently, an adequate flange size is provided during design.   
	The limit states that govern the behavior of discretely braced flanges in compression are yielding, ultimate strength and web-bend buckling:
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	where fbu is the flange stress calculated without consideration of LFB, fl is the LFB stress, (f is the resistance factor for flexure, Rh is the hybrid factor that accounts for the reduced contribution of the web to the nominal flexural resistance in sections with a higher-strength steel in the flanges, Fyc is the specified minimum yield strength of a compression flange, Fnc is the nominal flexural resistance of a compression flange, and Fcrw is the nominal bend-buckling resistance for webs.
	1.2.3.2 Discretely braced flanges in tension

	During construction, the bottom flanges in the positive moment regions and the top flanges in the negative moment regions are examples of tension flanges discretely braced by the cross frames.  In the positive moment regions, this bracing condition remains during the service life of the bridge, but it changes in the negative moment regions when the girder starts to act as a composite section. 
	In tension flanges, only the yielding limit state is considered since stability is not an issue.
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	where Fyt is the specified minimum yield strength of a tension flange.
	1.2.3.3 Continuously braced flanges in tension or compression

	This situation corresponds to the final phase of the deck placement when the girders are composite sections.  The continuously braced condition is provided by the deck to the top flanges in compression and tension of the positive and negative moment regions, respectively.  
	This bracing condition prevents the presence of LFB in the flange.  Therefore, the only limit state that needs to be checked is yielding.
	 Yielding limit state:
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	where Fyf is the specified minimum yield strength of the flange.
	1.2.3.4 Maximum allowable LFB

	In addition to the limit states that govern the interaction between fbu and fl, the specifications define a limit for LFB up to where the limit states are satisfactorily valid. 
	According to AASHTO (2007), fl corresponds to the largest value of stress due to lateral bending throughout the unbraced length in the flange under consideration.  These stresses are calculated based on factored loads and should be taken as positive values in all resistance equations.  All flanges are required to meet the following restriction to control the maximum levels of LFB: 
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	Furthermore, amplifications factors for fl are specified in cases where second-order effects are required to be considered.
	Section 1.3 describes the specific goals of the present work along with their motivation and the methods employed to carry them out.
	1.3 Research objectives, motivations and methods

	The general purpose of this research project is to evaluate the levels of LFB in steel I-girder bridges during deck placement in order to state practical, accurate and reliable design recommendations for constructibility.  Consequently, this effort comprises basically three primary goals to be accomplished considering only the loading conditions exhibited during the deck placement, as follows:
	1. Develop improved equations to estimate the LFB of continuous steel I-girder bridges.
	Rationale:  As discussed in Section 1.2, skewed and curved steel I-girder bridges exhibit significant levels of LFB due to their geometrical configurations that may cause potential strength and stability problems in both flanges and webs.  Particularly, the structure is more susceptible to these problems during the deck placement when the girders act in a non-composite state.  
	AASHTO Specifications recommend some approximate equations to estimate the torsional effects due to deck-overhang loads and curvature that produce LFB.  These approximations are based on simplified models where the unbraced segment of the flange is taken as a fixed-end beam.  For skewed bridges, the provisions recommend using 10Ksi as a conservative estimation of the unfactored LFB in bridges with discontinuous cross-frame lines and skew angles exceeding 20(.  However, more precise approximations may be defined for each source of LFB if effects such as the continuity over the intermediate supports, the deck-casting sequence and the participation of the whole superstructure are considered in the response.  
	Previous research efforts (Grubb 1991 & Roddis et. al. 1999) have been conducted to approximate the LFB in exterior girders during deck placement conditions in straight bridges.  Although these works add more complexities to the models, the approximations are still conservative compared to the results obtained in more comprehensive models.  In addition, the curvature and the skew effects were not directly addressed in these simplified approximations.
	Methods: A parametric study based on the FEA of continuous three-span steel I-girder bridges is employed to accomplish this objective.  The varying parameters include the middle span length, the cross-frame spacing, the skew angle, and the angle subtended by the middle span in curved bridges.  Additionally, the loading conditions and stiffness vary in the structural analyses according to the deck-placement sequence, since it is assumed that all preceding deck casts are composite for the casts that follow.  
	2. Identify the parametric variables that most affect the flexural limit states for constructibility, and define the maximum permissible skew angles and curvatures for bridges designed originally as straight.
	Rationale:  The identification of aspects such as the effect of the curvature and skew in the limit states, the critical stages during the deck-placement sequence, the critical girder sections and the governing limit states allow the designer to gain insight into how the bridge responds structurally to the conditions imposed during the deck placement.  Moreover, this information may be also used for preliminary calculations in the planning phase of projects to define the most important design checks to be considered and the sections where they are most critical.  
	On the other hand, the definition of the maximum permitted skew angles and curvatures for bridges designed originally as straight is intended to simplify the constructibility design process in certain situations.  The definition of these limits will allow the engineer to design for constructibility curved or skewed bridges based on their straight girder counterparts.  Furthermore, no additional constructibility designs or checks would be necessary in case that a bridge designed as straight requires a geometrical modification within the limits established.  
	Methods: The numerical bending results from the parametric study are used to evaluate the demand-to-capacity ratios of the flexural limit states for constructibility.  The variation of these ratios is presented as a function of the girder length to identify the critical sections along the bridge.  In addition, the maximum ratios of the positive and negative moment regions are presented in terms of the cross-frame spacing, the deck-casting stage and the governing limit state to facilitate the identification of the relationships among the variables.  
	To define the skew and curvature limits for a straight bridge, the flexural limit states for constructibility are initially stated using: i. the maximum numerical major-axis bending stresses obtained during the parametric study, and ii. the proposed LFB equations that depend directly on the variables required.  Then, the maximum skew and curvatures are solved from the governing limit state equation for different cross-frame distances.  
	3. Optimize the distance between cross frames.
	Rationale:  During construction, the lateral support of the flanges is only provided by the cross frames, where their spacing represents the unbraced length (Lb) used to compute the bending capacity of the compression flanges.  In addition, the LFB depends directly on Lb since the flanges act as continuous beams supported by the cross frames.  Therefore, the selection of the appropriate cross-frame spacing will assure that the structure meets satisfactorily the performance limit states during deck placement using an optimum number of cross frames.   However, AASHTO (2007) does not include a specific recommendation for the spacing between cross frames.  Consequently, the designer needs to evaluate different cross-frame configurations to select the most appropriate spacing that assures safe conditions especially during construction when the girders act in a non-composite state.  Therefore, the achievement of this objective by defining the maximum allowable cross-frame spacing that meets satisfactorily the flexural limit states for constructibility will simplify considerably the design process.
	Methods: This goal is accomplished by conducting reliability analyses of the flexural limit states for constructibility that are directly affected by the cross-frame spacing.  This structural reliability problem was solved using a Monte Carlo Simulation which is a simulation technique that numerically simulates the behavior of the random variables and limit states involved in the problem.  The probabilistic characteristics of the random variables were adopted from the research works carried out to calibrate the current AASHTO Specifications.  The cross-frame spacing is presented in an appropriate format based on the maximum tolerated probability of failure of the considered limit states.
	1.4 Scope of research

	The focus of this research is to evaluate the levels of LFB in steel I-girder bridges during deck placement and the scope of this project consists of four major components: definition of the parametric study, approximation of the LFB effects, evaluation of the flexural limit states for constructibility and optimization of the cross-frame spacing.
	A comprehensive parametric study is conducted using finite element (FE) models of steel I-girder bridges.  Some characteristics are set as fixed such as the number of girders, the number of spans, the girder spacing, the overhang length, the concrete deck thickness, the material specifications and the ratio of the end-span to the middle-span lengths.  The varying parameters include the middle span length, the cross-frame spacing, the skew angle, and the angle subtended by the middle span in curved bridges.  A deck-placement sequence is defined for all models and the corresponding changes in the structural stiffness during the various stages are considered.  For that reason, it is assumed in the analyses that all preceding deck casts are composite for the casts that follow.   The LFB effects due to overhang loads, skew and curvature are approximated based on the numerical bending stresses obtained from this parametric study.  Comparisons with the approximations recommended by AASHTO are also established.  
	The flexural limit states for constructibility constitute the criteria used to evaluate the structural performance of the bridges considered in this work.  These limit states are computed using the numerical bending results obtained from the parametric study to identify the impact of the parametric variables in the design.  The limit states and the proposed LFB equations are also used to determine the maximum available skew and curvatures of bridges originally designed using a straight girder formulation.  
	The final component of this work is the optimization of the distance between cross frames which simplifies the design process of steel I-girder bridges.  A reliability analysis is performed using a Monte Carlo Simulation to generate the probabilistic distribution of the random variables and to evaluate the reliability of the flexural limit states for constructibility.  The parameters required to define the load and resistance structural models that describe this reliability problem were adopted from previous research efforts intended to calibrate the AASHTO Specifications.   The optimum cross-frame spacing is selected from a curve in terms of the probability of failure or reliability index of the considered limit states.
	1.5 Dissertation Organization

	The body of this dissertation consists of eight chapters.  This first chapter, Introduction, provides general background information of the research work, discusses the need for this project, highlights the main research objectives and describes the methods employed to accomplish them. 
	A literature review of the research efforts related to the present work is included in Chapter 2.  This chapter is organized into five sections as follows: (1) a description of the studies considering LFB, constructibility issues and code specifications in curved steel I-girder bridges; (2) an overview of work addressing the behavior of skewed steel I-girder bridges; (3) a presentation of the most important works carried out to develop design guides for LFB in exterior girders due to deck overhang loads during construction; (4) an overview of the development of the bridge specifications regarding the LFB effects and constructibility issues; and (5) a description of some relevant studies related to structural reliability and code development procedures.  
	Chapter 3 discusses the principal modeling procedures employed to conduct FEA in this project.  A description of the material models for steel and concrete and their corresponding stress-strain relationships is initially presented.  Then, the finite elements and techniques required to model the bridge behavior during deck placement conditions are described.  Benchmarking of these techniques is also presented.  Finally, a description of the analysis methodology employed in the FE models is given.
	The parametric study used to investigate the effects of the deck-placement process on the LFB of steel I-girder bridges is described in Chapter 4.  The parametric study is defined by initially selecting the parameters considered to be most significant; describing the loads that represent the conditions during the casting sequence; performing the structural design of the bridge configurations obtained from the parametric evaluation, and finally defining the FE models and the corresponding analyses for each parametric configuration that represent properly the deck casting sequence in the bridges. 
	Chapter 5 presents the methods used to approximate the LFB in straight, skewed and curved steel I-girder bridges due to construction loads during deck placement based on the results obtained from the parametric study described in Chapter 4.  The major-axis bending stresses are also analyzed, where the principal contribution is made for curved bridges since it is shown that the torsional effects do not affect the vertical bending response in straight and skewed bridges.  
	In Chapter 6, the flexural limit states for constructibility are evaluated according to AASHTO Specifications for the parametric bridges analyzed in this work.  First, the major-axis bending and the LFB stresses obtained from FEA are used to evaluate the demand-to-capacity ratios of the flexural limit states for constructibility.  This evaluation allows identifying the critical sections along the bridge and the effects of the cross-frame spacing and the deck-placement sequence in the governing limit states.  Second, the maximum allowable skews and curvatures are computed for bridges designed originally as straight.  The flexural limit states for constructibility constitute the criteria used to achieve this goal.  The major-axis bending stresses are taken directly from FEA and the LFB stresses are estimated using the approximate equations proposed in Chapter 5.  
	A reliability analysis was proposed in this work and performed in Chapter 7 to develop a practical method to select the cross-frame spacing for deck placement conditions considering the flexural limit states for constructibility that are affected by the cross-frame spacing.  Initially, a general description of a structural reliability study is given along with the limit states considered.  Then, the adopted structural loading and resistance models are described and their corresponding probabilistic characteristics are presented.  Finally, a Monte Carlo Simulation is performed for straight, skewed and curved steel I-girder bridges generating fragility curves that allow identification of the maximum cross-frame spacing for deck-placement conditions according to the maximum tolerated level of risk.
	Chapter 8, Summary, Conclusions, and Recommendations, summarizes the results of this work and provides recommendations for future research in this area. 
	Finally, a list of cited references is included along with six Appendices of figures.  
	Chapter 2:  Literature Review
	As discussed in Chapter 1, the primary objective of the present research work is to study the levels of LFB in steel I-girder bridges during deck placement.  Therefore, a literature review of the research efforts related to this objective is included in this chapter.  The literature review is organized into five sections:  Section 2.1, Curved Steel I-girder Bridges, describes the studies considering LFB, constructibility issues and code specifications; Section 2.2, Skewed Steel I-girder Bridges, reviews the works studying the effect of the skew on the bridge response; Section 2.3, Overhang Load Design, presents the most important works carried out to develop design guides for the LFB in exterior girders subjected to deck overhang loads during construction; Section 2.4, Lateral Flange Bending Design, describes the LFB and constructibility approaches according to the design specifications; and Section 2.5, Reliability Analysis, cites some relevant studies related to structural reliability and code development procedures.
	2.1 Curved Steel I-girder Bridges

	Since the 1960s, several studies have been conducted to investigate different typical aspects of the structural behavior on curved girders such as:  the strength capacity under vertical loads (Jung et. al., 2005; Davidson, Balance & Yoo, 2000; Thevendran et. al., 2000; Thevendran et. al., 1999; Shanmugan, 1995); modeling strategies (Chang et. al., 2005); analysis methods (Nevling, Laman & Linzell, 2006; Zureick & Naqib, 1999); load distribution (Samaan, Sennah & Kennedy, 2005; Zhang, Huang & Wang, 2005; DePolo & Linzell, 2005; McElwain & Laman, 2000; Brokenbrough, 1986; Heins & Jin, 1984); dynamic response (Tilley, Barton & Gomez, 2006; Maneetes & Linzell, 2003); stability (Davidson, Balance & Yoo, 1999; Davidson & Yoo, 1999); etc.  However, the present work deals directly with the LFB and constructibility issues, in particular during deck placement.  Therefore, the studies closely related to the objectives of this work will be presented in more detail in the subsequent sections: Section 2.1.1 contains the research work related to the LFB on curved girders, Section 2.1.2 describes studies addressing constructibility issues, and Section 2.1.3 includes an overview of the specifications for curved girders since detailed design aspects are considered in Section 2.4.
	2.1.1 Lateral Flange Bending 

	The New York State Department of Transportation published a series of research reports (Beal, 1978; Kissane and Beal, 1972; Beal and Kissane, 1971) based on a research study started in 1967 to evaluate the behavior of horizontally curved girder bridges and to establish appropriate design procedures.  The project involved field testing of four existing bridges and theoretical analyses using planar grid models based on the stiffness method.  In particular, Kissane (1978) published a report where experimental and analytical results from two small scale models were used to establish an empirical formulation of the LFB moments in simply supported and uniformly loaded curved girders.  As a result of this effort, an empirical equation for the LFB moment on curved girders was proposed:
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	where ld is the diaphragm spacing, w is the equivalent distributed lateral load, Mnb is the maximum normal bending moment, R is the radius of curvature, and d is the distance between flange centroids.
	The factor 1/12 in Equation 2-1 was taken as 1/10 in the specifications valid at the time of the research project.  This value was selected as a compromise between the extreme factors given for fixed (1/12) and simply-supported beams (1/8).  However, the research results showed that the LFB behavior is similar to the main bending stresses exhibited by continuous girders.  Currently, the specifications still recommend this approximation to take into account the curvature but using a divisor factor between 10 and 12, depending on the desired level of conservatism.
	Schilling (1996) presented a series of yield-interaction relationships for compact, compact-flange, and noncompact sections under combined vertical and lateral moments to define the bending capacity of curved girders.  The sections had to satisfy web slenderness and compression-flange bracing limits.  The proposed interaction equations allow defining the vertical bending capacity based on a steel section with reduced flanges, where the reduced flange widths depend on the lateral moment.  This philosophy is the basis of the “one-third rule” equations which are the format of the flexural state limits in current design specifications, as described later in Section 2.4.5.
	Davidson and Yoo (1996) numerically studied the effect of curvature on the local buckling of curved girder compression flanges and proposed a practical reduction factor of the buckling strength in straight girders as a function of the warping-to-bending stress ratio.  Additionally, based on the numerical results, a design equation was derived for the maximum width-thickness ratio of compression flanges. 
	Davidson, Keller and Yoo (1996) carried out a parametric study using detailed FE models of curved steel bridges connected by cross frames.  The results were compared to straight girder systems concluding that parameters such as curvature level, span length and flange width were the most significant factors affecting the structural behavior of curved girders.  Approximate equations to estimate the adequate cross-frame spacing and predict the warping-to-bending stress ratio were developed based on a nonlinear statistical regression.  Davidson and Yoo (2000 & 2003) verified the accuracy of these approximations using detailed finite-element models of the curved three-girder test frame which was constructed under the Curved Steel Bridge Research Project experimental phase (Zureick et. al., 2000; Duwadi et. al., 2000) to evaluate the curvature effects on the bending strength of curved I-girders. 
	Yoo and Davidson (1997) presented a complement of the work of Schilling (1996) developing yield-interaction equations for singly symmetric noncomposite and composite sections in both positive and negative bending regions.  Complete plastification for compact sections, partial yield penetration for compact-flange sections and initial yield at the flange tip for noncompact sections were considered as the limit states for the study.  Analysis of the results indicated that the denominator of the lateral moment equation (see Eq. 2-1) should be taken as 14 instead of 12 or 10.  
	White, Zureick and Jung (2001) developed a unified approach for the flexural design of both straight and curved I-girder bridges that was implemented in AASHTO (2004) Specifications.  The flexural design equations, also called the “one-third rule” equations, exhibit a favorable characteristic with respect to past approximations, since they handle in a practical manner combined vertical and lateral bending from any load source regardless of the girder type: curved or straight (see Section 2.4.5).  
	2.1.2 Constructibility

	Grubb, Yadlosky and Duwadi (1996) described different issues that arise during the construction of horizontally curved steel bridges.  In fact, according to the authors, most of the problems exhibited by curved girders are related to the fabrication and assembly procedures, since the designer does not account for the deformations presented during construction which are more complex than those experienced by straight girders.  In particular, during deck placement, the non-composite girders are subjected to significant demands from dead loads that include:  member self weight, weight of the wet concrete slab, miscellaneous steel, and construction equipment.  In this state, it is common to have more than one-half of the web depth in compression since the top flanges are usually smaller than the bottom flanges in positive-moment regions generating potential stability problems.  The deck-casting sequence is also described as an important aspect to consider during construction since stiffness changes affect the deflection profile during and after the deck casting.  It is recommended to cast the deck in positive-moment zones first to minimize the slab cracking and maintain the casting sequence as symmetrical as possible to avoid unbalanced loading and differential deflections.  
	Galambos et. al. (2000) studied the behavior of the steel superstructure of a curved steel I-girder bridge during all phases of construction.  Comparisons of the field-measured and elastic numerical stresses yielded good correlation for the main bending stresses and deflections.  However, the warping and minor-axis bending effects exhibited less predictable behavior.  During deck placement, the stress correlation improved as the casting progressed since local fit-up stresses dissipated under additional loading.  Finally, the authors recognized the importance of considering the composite behavior on negative-moment regions to simulate the live load stresses. 
	Linzell, Leon and Zureick (2004) assessed the ability of numerical procedures for predicting response during erection.  The work is based on experimental results of a full-scale curved steel bridge structure that was part of the Federal Highway Administration project intended to develop rational design guidelines.  The comparisons showed good predictions by the finite-element models, where the main differences were attributed to construction effects.  The test results indicated that providing minimal radial restraint for curved girders during construction has beneficial effects on the structural behavior.
	Domalik, Shura and Linzell (2005) presented the issues raised during the design and construction of a two-span curved steel I-girder bridge.  A global twisting of the superstructure was produced due to the unbalanced distribution load of the unequal spans.  Additionally, the authors recommend a technique to include into the girder design the additional lateral bending moments produced by the out-of-plumb effects.  This technique computes the rotation of the girder based on the girder depth and deflection; then, the vertical bending moment is resolved into a lateral and an aligned bending component with respect to the out-of-plumb web.  Shura and Linzell (2006) published additional results about the field measurements during the superstructure erection and the deck placement. These results indicated that two-dimensional grillage models were not able to reproduce flange stresses and warping of the girders during erection.  The authors proposed an exterior-to-interior single girder erection sequence to reduce dead load stresses and deflections.  
	Chavel and Earls (2006a & 2006b) evaluated the erection problems encountered in a curved steel I-girder bridge using finite-element analyses.  Most of the erection difficulties were attributed to an inconsistency in the detailing and fabrication of the structure, since the girders and cross frames were detailed for a no-load condition different than the one exhibited by the bridge during construction.  As a consequence, elements like the cross frames may be too short or too long which generates additional stresses and deformations into the girders and increases the costs.  The authors recommend the use of an appropriate temporary support system to resemble the no-load condition assumed in the design process.  
	Bell and Linzell (2007) studied a curved six-span steel I-girder bridge which was monitored during corrective procedures intended to counteract some erection problems.   The results indicated that the erection of paired girders reduces radial and vertical deformations.  Additionally, providing shoring towers at span quarters and the use of lateral bracing in exterior girder spaces were proven to be effective means of reducing levels of deflection.  
	Howell and Earls (2007) evaluated the effect of the web plumbness during the erection of the steel superstructure.  Finite-element models were used to study the effect that the web out-of-plumbness has on flange tip stresses, vertical and lateral deflections, cross-sectional distortion and cross-frame demands.  The results showed that the flange tip stresses are significantly influenced by the web plumbness exhibiting stress changes up to 20% with respect to calculations that ignore this effect.  The vertical deflections were not altered by the web plumbness effects.  However, the lateral deflections show increases as much as 250% at the midspan of the outer girder. Finally, the cross-frame forces were also sensitive to increasing out of plumbness where a proportional effect is typically exhibited.
	2.1.3 Specifications – background 

	The CURT project (Consortium of University Research Teams) in 1969 was the first major work led to create some design provisions for curved girder bridges based on experimental and analytical research (Linzell et. al., 2004).  As a result of this effort, specifications based on the allowable-stress-design format (ASD) were proposed in 1976.  However, the load factor design (LFD) was adopted by AASHTO in 1980 and added to the previous ASD provisions, becoming the first version of the AASHTO Guide Specifications for Horizontally Curved Highway Bridges.  A second edition was issued in 1993.  However, the 1980-original provisions were generally kept unchanged in its primary content.  Therefore, as a result of the National Cooperative Highway Research Program (NCHRP) 12-38 Project, an updated version was published in 2003 using the LFD format (AASHTO, 2003).  These specifications made significant improvements to the design guidelines of the 1993 Guide Specs, since they identified the need to correlate the LFB with the vertical bending (see Section 2.4.4).  
	Finally, AASHTO issued the LRFD Bridge Design Specifications in 2004 (see Section 2.4.5) as part of the work done during the NCHRP 12-52 project, intended to develop provisions for curved bridges in the AASHTO load and resistance factor design format (LRFD).  The primary objective of this work was to incorporate the design provisions for curved bridges into the then-existing specifications for straight bridges (White & Grubb, 2004).  These provisions were initially published in 2004 using statistically calibrated data for straight girders (AASHTO, 2004).  However, the provisions corresponding to curved girders were published in the 2006 interim to the AASHTO LRFD specifications.  The NCHRP 12-52 project concluded from the statistical calibration of the load and resistance factors, that the LRFD factors for straight girders were still valid for curved girders (NCHRP, 2006b).  The important achievement of these specifications lays on the fact of handling a combined solicitation of LFB and major-axis bending, independent of the load source and the type of girder (curved or straight).
	2.2 Skewed Steel I-girder Bridges

	It is a common practice to ignore the skew effect in the structural behavior of skewed bridges which are designed mostly as general tangent structures.  As a consequence, there are far less studies addressing the skew effect than works focused on the curvature effect.  Some of these research efforts deal with both effects simultaneously (Ozgur & White, 2007; Coletti & Yadlosky, 2005), and some others evaluate specific aspects of skewed bridges such as load distribution (Huang, Shenton & Chajes, 2004; Khaloo & Mirzabozorg, 2003), cross-frame systems (Herman et. al., 2005), etc.  Construction issues are addressed in some specific works described below.
	Norton, Linzell and Laman (2003) compared the field response of a skewed bridge during deck placement to analytical model predictions.  Specifically, the study evaluated the effect of pouring the concrete both perpendicular to the centerline of the bridge and parallel to the abutments.  The authors concluded that the first deck placement procedure exhibits high support reactions and displacements during intermediate construction stages, while the second technique presents a more homogeneous response.
	Beckmann and Medlock (2005) described rotation and deflection issues that may affect the structural behavior of highly skewed steel bridges.  In particular, they mention the rotation normal to the skewed supports that the girders exhibit when the non-composite loads are applied, which increases the demand on the cross frames.  This rotation displaces the top flange transversely from the bottom flange and causes the out-of-plumb effect on the web.  On the other hand, the principal issue for intermediate cross frames oriented perpendicular to the girders is related to the differential deflections.  These problems require an accurate detailing work of the cross frames to meet the no-load fit, steel dead-load fit or the full dead-load fit, and avoid over demands of stresses and deformations.  
	Choo et. al. (2005) investigated the response of a continuous skewed bridge with High Performance Steel (HPS) under the effects of the deck placement during construction.  Finite-element models were calibrated using field measurements that were highly sensitive to the temperature changes.  The authors also evaluated the effects of placing the concrete both perpendicular to the girders and parallel to the skew.  The results indicated that placing the concrete parallel to the supports reduces the differential deflections and stresses across the bridge superstructure. This beneficial effect is more evident in simply supported girders than in girders under continuous support conditions.  
	2.3 Overhang Load Design

	Some simplified procedures have been suggested to design exterior girders for the effects caused by the concrete deck overhang loads:  LFB and web distortion.  The most significant design guides were developed by the American Institute of the Steel Construction (AISC) (Grubb, 1991) and the Kansas Department of Transportation (KDoT) (Roddis, Kriesten & Liu, 1999).
	2.3.1 AISC Approach

	In this procedure, it is assumed that the cross frames act as torsionally rigid supports that prevent out-of-plane warping.  Therefore, exterior-girder flanges, which are the resister elements of the torsion imposed by the overhang loads, are taken as a laterally loaded fixed-end beam with a span length equal to the distance between the cross frames, as shown in Figure 21 for the bottom flange. 
	The design guide includes a simplified analysis where tabulated coefficients in terms of the overhang length and the girder height are multiplied by the square of the cross-frame spacing to obtain the maximum fixed-end moment at the cross-frame locations (Mfw).  The maximum moment in-between the cross-frame spacing (M+) is calculated multiplying the corresponding Mfw by 0.53 and 0.60 for the uniform overhang loads (slab, overhang form and walkway live load) and the finishing machine loads, respectively.
	For the top flanges on exterior girders, the guide recommends to use rebar ties attached to the stud shear connectors at the third points of the cross-frame spacing.  This configuration reduces the lateral moment and increases the buckling strength of the top flange.  Therefore, top flanges that meet this requirement and are part of cross frames where their distances do not exceed 25 feet, are assumed to control permanent deformations caused by yielding and ensure adequate ultimate strength without requiring an explicit checking procedure.
	Figure 21. Plan view of bottom flange: a. Original b. Equivalent approximation.
	On the other hand, the following limit states are defined for the bottom flanges:
	 Strength:
	1. Yielding Limit State:  To control permanent deformations of tension and compression flanges at and between cross frames.
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	where fbu is the maximum factored normal bending stresses, fl is the LFB stresses, and Fy is the flange yield stress.
	2. Ultimate strength: Interaction equation of axial and bending effects for compression flanges in between the cross frames.
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	where Pu is the factored applied axial force in the flange, As is the flange cross-sectional area, Fcr is the flange critical buckling stress, Ml is the applied lateral flange moment, Cm is the equivalent moment factor to account for the shape of the applied moment diagram, Mu is the maximum moment capacity of the flange, and Fe is the Euler buckling stress of the flange in the plane of bending.
	 Stability:
	1. Web distortion:  To control potential web instabilities the guide suggests that the cantilever brackets should be supported within a maximum of six inches from the bottom flange.  This requirement is intended to prevent a direct contact of the brackets and the web in a compression zone.
	2.3.2 KDoT Approach

	The University of Kansas and the KDoT developed a software program called “Torsional Analysis for Exterior Girders – TAEG” based on a research project including field tests and numerical analyses.  This approximation overcomes some inaccurate assumptions of the AISC approach such as the totally fixed-support condition given by the cross frames and the worst case midspan-to-fixed-end-moment ratios (0.53 for distributed loads and 0.60 for screed loads).  
	The program has a step-by-step procedure to design overhang and cross-frame dimensions, cross-frame distances and to check falsework schemes.  The following basic assumptions were adopted in the KDoT approach according to the results obtained in the research work:
	 The flange flexure analogy is valid to represent the torsional effects.
	 A simplified flange model with three continuous spans with fixed ends is sufficient to achieve good accuracy compared to the AISC simple-span assumption.
	 The lateral support in the bottom flange needs to be considered and varies with the type of support:  cross frames or diaphragms.
	 The effect of temporary supports needs to be considered.
	 The dynamic effects due to the movement of the motor carriage are negligible.
	 Impact loads during the deck placement are also considered insignificant.
	Three basic load schemes are considered along the three-span beam to define the maximum demands:  i. dead load, live construction load and concrete for the initial span of the beam; ii. dead load, live construction load, concrete and the finishing machine for the middle span; and iii. dead load and live construction load for the remaining span.  The position of the wheel loads in ii is varied within the second span of the continuous girder to identify the critical location that generates the maximum effects.  All the loads are simulated as distributed including the wheel loads applied over the width of the finishing machine stand.  The cross frames and diaphragms are modeled as pinned supports for the top flange.  For the bottom flange, the cross frames are also considered as pinned supports while the diaphragms as well as the temporary supports are modeled with equivalent springs.  
	The principal calculations that the program performs based on the three-span continuous beam model and the stiffness method are:
	 Maximum stresses in the flanges
	 Ultimate strength check for the top flange
	 Deflection of the flanges
	 Rotation and deflection of the girder at the screed rail
	 Internal forces of the overhang brackets
	 Support reactions
	 Stresses in the diaphragms
	 The bolt load and critical bolt load in case of bolted connections between the girder and diaphragms
	In comparison to the AISC approach, the stress results obtained with the KDoT program are approximately 20% higher for the positive moment regions and 20% lower for the negative moment zones.  Thus, an economical benefit is obtained using the program since usually the negative moments govern the design.
	2.4 Lateral Flange Bending Design 

	Section 1.2, Lateral Flange Bending in Steel I-girder Bridges, described the physical conditions that produce LFB in curved and skewed bridges and the interaction of these stresses with the normal bending effects produced by vertical loads.  Given that the LFB behavior has been defined, it is necessary to establish how the design specifications have addressed this particular issue for steel I-girder sections.  
	2.4.1 Standard Specifications for Highway Bridges - 15th Ed., AASHTO (1992):

	These specifications consider lateral bending effects due to wind loading in order to only evaluate the maximum forces generated in diaphragms and cross frames.  The maximum induced stress (F) in the bottom flange of the girder when the top flanges are continuously supported is defined as follows:
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	where R is the factor to account for the effect of the bottom lateral bracing (BLB), Fcb is the flange bending stress produced by wind loading, W is the wind loading along the exterior flange (lb/ft), Sd is the diaphragm spacing (ft),  L is the span length (ft), tf is the flange thickness (in), and bf is the flange width (in).
	In cases when the top flanges are not continuously supported, the code recommends performing an explicit analysis of the structural elements to identify the lateral bending stresses.
	2.4.2 LRFD Bridge Design Specifications, SI Units – 1st Ed., AASHTO (1994)

	Wind effects on girder flanges are considered in these specifications for composite sections classified either as compact or non-compact.  For compact sections, these lateral effects are assumed to be carried by a reduced width at each edge of the bottom flange (Schilling, 1996), defined as:
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	where bf is the bottom flange width (mm), tf is the bottom flange thickness (mm), Fyb is the specified minimum yield strength of the bottom flange (MPa), and Mw is the maximum lateral moment in the bottom flange due to factored wind loading (N-mm).  The remaining flange width is used to compute the composite girder capacity for the vertical loads involved in the corresponding load combination.
	In the case of non-compact sections, an interaction of stresses has to be checked for the bottom flange as follows:
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	where Fu is the flexural stress in the bottom flange due to the factored loads other than wind (MPa), Fw is the flexural stress at the edges of the bottom flange due to the factored wind loading (MPa), Fr is the factored flexural resistance according to the these specifications (MPa), and Mw is the maximum lateral moment in the bottom flange due to factored wind loading (N-mm).
	The construction issues are addressed by selecting the appropriate construction loads to compute the strength and the stability during construction.  In particular, it is recommended to consider changes in loads, stiffness and bracing during the deck pouring sequence.  The corresponding commentary gives particular attention to the strength and stability problems produced by the cantilever forming brackets.  The nominal flexural resistance is defined by the yield moment capacity of the non-composite section, when it meets certain slenderness requirements.  Otherwise, the lateral-torsional buckling capacity for non-composite and non-compact sections is applied.  However, there is a lack of explicit bending limit states during construction that permit the addition of the LFB effects in a practical approach, such as that required for a design code format.
	2.4.3 LRFD Bridge Design Specifications, Customary U.S. Units – 2nd Ed., AASHTO (1998)

	In these specifications, the design guidelines given for wind loading conditions remain similar as those described in Section 2.4.2.  The constructibility incorporates a new requirement to limit the maximum compressive flexural stress in the web, resulting from the various stages of the deck placement sequence, to the theoretical elastic bend-buckling stress of the web.  Nevertheless, as explained in Section 2.4.2, there is still not an explicit definition of the flexural limit states with specific restrictions on the LFB effects.
	2.4.4 Horizontally Curved Steel Girder Highway Bridges, AASHTO (2003)

	AASHTO (2003) introduces formally the definition and the notation of the LFB as follows:
	 Lateral Flange Bending (LFB) – Flexural action in the plane of the flange with respect to the vertical axis through the flange.  LFB may be due to lateral loads applied to the flange and/or nonuniform torsion in the member.  In these provisions LFB moments refer to those at brace points. 
	 fl: calculated total factored LFB stress at the section under consideration.
	 Mlat: LFB moment.
	The code allows the use of a simplified line girder analysis, when the plan configuration of the bridge meets certain geometrical restrictions.  In that case, the lateral bending moment in I-girder flanges due to curvature is defined as:
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	where M is the vertical bending moment (K-ft), l is the unbraced arc length (ft), R is the girder radius (ft), and D is the web depth (in).
	Additionally, these specifications limit the maximum values of fl, recognizing the adverse impact that these stresses may have on the general flange bending behavior of curved girders, according to the following equations:
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	where Fy is the specified minimum yield stress (Ksi) and fb is the calculated factored average flange stress at the section under consideration (Ksi).  Equation 2-13 is valid when fb is greater than or equal to the smaller of 0.33Fy or 17ksi. 
	The critical average flange stress for partially braced flanges, Fcr, is taken as the smaller of Fcr1 and Fcr2:
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	where Fbs is the critical average flange stress of an equivalent straight girder flange (Ksi); (b and (w are the strength reduction factors due to curvature effects expressed in terms of the l/R ratio, (w is also function of the stress ratio fl/ fbu; K is a constant taken as 3 for compact flanges in compression and flanges in tension, and 1 for non-compact flanges in compression; l is the unbraced arc length; and R is the girder radius.
	These flange strength definitions include directly the reduction in the flexural capacity of the flange due to the lateral stress effects, contrary to previous code versions, where the LFB is not explicitly taken into account in either the strength formulations or limit states equations.  This format allows the engineer to evaluate the effects produced by any type of load combination and limit state.
	Finally, a complete section of the specifications is dedicated to the constructibility, giving practical recommendations for deck placement and overhang brackets.  The corresponding commentary includes some approximate equations (similar to those presented in AASHTO 2007) to compute lateral flange moments depending on how the lateral load is assumed applied to the top flange:
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	where F is the factored uniform lateral force (K/ft), l is the unbraced arc length (ft), and P is the concentrated lateral force at mid-panel (Kip).
	2.4.5 LRFD Bridge Design Specifications, Customary U.S. Units – 4th Ed., AASHTO (2007)

	AASHTO (2007) corresponds to the present time specifications which were described in detail at Sections 1.2.2, AASHTO approximate formulations for the LFB, and 1.2.3, AASHTO Flexural Limit States for Constructibility.  Approximate equations for considering curvature and overhang loading were explained along with the flexural limit states that govern the construction stage.  In particular, the second limit state equation for discretely braced compression flanges (see Eq. 1-5), called the “one-third rule equation” (White & Grubb, 2005; White, Zureick & Jung, 2001), is intended to assure that the member has sufficient capacity for the lateral torsional and flange local buckling limit states.  This equation is basically an interaction expression similar to those given for beam-column elements, where fbu represents the axial load and fl the bending moment.  The one-third factor corresponds to a linear approximation of the equivalent beam-column resistance for levels of LFB below the 60% of the nominal flange yield strength.  The theoretical derivation of the one-third rule equation according to White et. al. (2001) is presented below:
	 Derivation of the “one-third rule” equation:
	Consider an I-girder flange subjected to combined vertical and lateral bending effects.  The flange lateral moment produced by an elastically behaved lateral bending stress, fl, is defined by Equation 2-17.  However, if the flange is compact, a fully plastic stress distribution can be developed as shown in Figure 22, where the flange tips of width c correspond to the flange force related to the lateral moment, given by Equation 2-18.  Therefore, the remaining width of the flange is required to take the flange force associated with the vertical bending (see Eq. 2-19), which corresponds to a uniform stress distribution, fbu, over the complete flange width, bf, in absence of the lateral effects.   
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	where tf is the flange thickness and Fy is the yield strength of the flange.
	The width c can be obtained by equating Equations 2-17 and 2-18, and then placed in Equation 2-19 to obtain fbu as a function of fl and the flange fully plastic strength, Fy, as indicated below: 
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	For practical purposes where fl is below 60% of Fy, Equation 2-20 is approximated accurately by the following linear relationship, as shown in Figure 23:
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	Figure 22. Idealized flange plastic stress distribution due to vertical and lateral bending.
	Figure 23. Comparison of the complete and the approximate strength of a compact flange
	Equation 2-21 does not account for the reduction in the flexural capacity due to local flange or lateral-torsional buckling in compression flanges.  Therefore, in this case, the yield strength of the flange is replaced by the design flexural resistance of the flange, (fFnc, computed according to the specifications.
	The one-third rule equation has the advantage of being valid either for straight or curved girders, since it does not depend directly on the radius of curvature as the ( factors in Equation 2-14.  Therefore, the equation does not exhibit any anomaly when the radius of curvature goes to infinity.  Additionally, this formulation allows computing independently the load demands from the strength capacities of the flanges, which improves the practical application of the provisions.  Finally, the one-third rule applies not only for the constructibility condition but also for the strength limit state including compact and non-compact sections, and flanges in either tension or compression states.
	2.5 Reliability Analysis

	The prediction of the structural performance of any system is based on the combination of approximate analysis methodologies to determine loading effects and experimental tests to establish material properties or member behaviors.  However, there are always inherent uncertainties related to these processes that distort the subsequent predicted results.  Variables such as the material properties, approximations in the analyses, simplification of the models, randomness of the loads, etc., affect the demand and capacity estimations of the members in the structural system.  Therefore, the reliability analyses are intended to account for these uncertainties to estimate the level of confidence exhibited by the structure to achieve the desired structural performance.
	An overview of research efforts conducted in reliability is presented as follows:  first, a description of the reliability analysis for code development, where a synopsis of the most important performance-based codes and specifications based on structural reliability is presented; and, a presentation of some reliability methodologies, including specific research works on the methods and procedures to compute the reliability of a structural member or system.
	2.5.1 Reliability Analysis for Code Development

	In the 1960s, the philosophy of the code specifications was based on the allowable stress principles (ASD, Allowable Stress Design).  The structure was supposed to behave elastically, and the uncertainties were taken into account by a safety factor which divided the maximum stress according to the limit state considered.  However, since these safety factors were selected subjectively, the risk of failure associated with that decision was unknown.  Therefore, this practice has become impractical from the economical and safety point of view.
	During the 1960s and 1970s, different natural disasters took place around the world causing extensive loss of human lives and economical damage.  The evidence of deficiencies in design specifications revealed the need for the elaboration of codes based in a different design philosophy.  More rational code definitions were defined identifying the basic limit states that any structure should achieve: safety under high load scenarios and comfort during normal load conditions.  This approach became the basis of most of the structural design specifications even for current codes.   
	In 1978, Ellingwood, Galambos, MacGregor and Cornell developed a set of design specifications using advanced reliability analysis methods and statistical data (Ellingwood, 1985).  The fundamental concept of this design procedure is the basis of the Partial Factor Method, which is considered a “Simplified Probabilistic Design” method (Vrounwenvelder, 2001).  In this method, a structural failure occurs if the load effects are larger than the resistance capacity of the element or system, and since both of these variables are considered random, a probability-based criterion may be applied.  The issue consisted in defining the target probabilities considered as “safe” for design, in order to find the appropriate threshold between safety and economy.  Several current structural design standards such as the AISC’s LRFD Specifications for Steel Structures, ASCE Standard 16 on LRFD for Engineered Wood Construction, American Concrete Institute Standard 318, and the International Building Code 2000, are based on these principles.  
	Initially, the partial factors that account for uncertainties in loads and resistances were defined based only on past experiences and the observed behavior of the structures.  However, current systems demand more accurate methods to determine these factors, since high uncertainties may carry catastrophic consequences which are unacceptable in today’s practice.  The probabilistic analyses satisfy this requirement and enhance the confidence level of the structures.  
	Some new code specifications address the structural design problem from the performance-based point of view, which is the final target of the evolution of the design codes.  Vision 2000, FEMA 356 (FEMA, 2000a), FEMA 350 (FEMA, 2000b), ATC-40 (ATC, 1996) and NEHRP (FEMA, 2003) are some examples of this new trend in the code developments, principally for seismic design.  The designer needs to define a structural performance objective which consists of different intensity load scenarios that control the design of structural and no-structural members.  The definition of the loads and the capacities are based on probabilistic analyses according to real conditions.   
	Specific research works on the calibration of code specifications for steel bridges have been done by several authors (Nowak, 1995; Nowak, 2004; Barker & Zacher, 1997; Czarnecki & Nowak, 2006).  In these studies, the probabilistic definitions of loads and capacities have been addressed during the service stage of the bridge. In particular, Nowak et. al. (2006) calibrated the resistance factors for steel curved bridges including construction stages using three representative structures.  The authors concluded that the resistance factors used for straight bridges are valid for curved bridges and that the construction stage is very important for curved bridges because of the significant variation of stresses during this phase.  
	Eamon et. al. (2000) presented a reliability-based criterion for wood bridges in the Load and Resistance Factor Design (LRFD) format.  Load and resistance models were developed based on statistical analyses of test results.  The limit state considered was the flexural capacity where the failure is limited by the moment of rupture.  A wide range of reliability indexes was exhibited principally due to significant differences between code-predicted stresses and analytical results.  The authors concluded that more accurate design approximations based on experimental and analytical results are required to improve the reliability for a wood bridge code.
	Galambos (2004) determined the theoretical reliability of steel beams, columns and beam-columns designed according to the projected 2005 AISC specifications.  The reliability indices were evaluated based on contemporary material properties and recent experimental strength data.  It was concluded that the notional reliability of the proposed specification is identical to the one exhibited by the LRFD Specifications of 1986.
	White and Jung (2008) evaluated the lateral-torsional and flange local buckling (LTB & FLB) predictions from 2004 AASHTO and 2005 AISC provisions versus uniform bending experimental test results.  The reliability indices were estimated where the corresponding values for FLB were shown to be larger than those for LTB.  These specifications were also evaluated using the results obtained from moment gradient experimental tests (White & Kim, 2008).  In this work, the estimated reliability indices for FLB of end-loaded segments were found to be similar to those determined by White and Jung (2008) in most cases.  For LTB, the reliability indices for end-loaded segments with moderate to large unbraced lengths were slightly larger than the values estimated from the uniform bending tests.
	2.5.2 Reliability Methodologies

	Some specific research works are presented below to describe the importance of the selection of the reliability methods according to the available resources and intended goals.
	Gayton et. al. (2004) described the advantages and disadvantages of the existing calibration methods for the partial factors of reliability-based design codes, in order to evaluate their validity and improve their efficiency.  The global optimization methods are highly accurate but time consuming; hence, the approximate methods become more popular and practical with a consequent accuracy cost.  Four numerical examples are presented to illustrate the application and the differences of the global and approximate methods.  The authors give recommendations to select the appropriate method according to result quality and computation time.
	Zhao and Ono (2001) studied five methods to approximate the probability of failure of a structural system based on the higher order moments of a random variable.  Compared to the most popular first-order reliability methods (FORM), these procedures are simpler and do not require iterations or derivative computations, which makes them attractive for structural reliability analysis.  
	Foschi, Li and Zhang (2002) described an approach to integrate structural response calculations with procedures for the calculation of reliability (forward problem) or calculate design parameters for specified target reliabilities (inverse problem).  The inverse problem is usually more time consuming since it requires an iterative optimization process of the design parameters.  However, the efficiency is improved if a reliability database is constructed in terms of the design parameters, where interpolation algorithms are applied to obtain the appropriate factor values.  These performance-based procedures allow designing structures with specific demands or particular characteristics that are out of the standard-specifications scope. 
	Li and Li (2004) performed a reliability-based integrated design (RID) of steel portal frames with tapered members.  The authors address the reliability concept of the structural system rather than their individual components, thus the structural redundancy and ductility are involved in the limit states.  The authors employ a nonlinear integrated analysis model to reduce the uncertainty of the results.  The final design using this procedure consumes less steel than the LRFD method and produces a satisfactory reliability index. Cheng, Xu and Jiang (2006) also presented a method to compute the approximate reliability using a linear Taylor approximation of the accurate reliability that reduces computational effort.  The method comprises a reliability analysis and optimization of design variables.  
	Chapter 3:  Overview of finite element modeling procedures
	This chapter discusses the principal modeling procedures employed to conduct FEA in this research.  First, the material models for steel and concrete and their corresponding stress-strain relationships are described.  Then, the finite elements and techniques required to model the bridge behavior during deck placement conditions are presented.  A validation of the modeling procedures is also included using the results from experimental tests with different levels of complexity, starting from one steel I-shaped girder and finishing with the Federal Highway Administration’s full-scale curved bridge structure.  Finally, a description of the analysis methodology employed in the FE models is given.
	3.1 Materials

	This section includes a description of the material models and the experimental data from where the stress-strain relationships were derived.
	3.1.1 Steel
	3.1.1.1 Material Model


	A plasticity metal model with Mises yield surfaces, associate plastic flow and isotropic hardening was used in this study.  This model is considered appropriate to simulate rate-independent behavior of a metal under a relatively monotonic loading where creep effects may be neglected (Righman, 2005).   
	The Mises yield criterion is a rate-independent plasticity model for isotropic materials, i.e. isotropic yielding.  This criterion states that yielding begins when the strain energy of distortion reaches a critical value in terms of the uniaxial yield strength of the material ((y).  The associated plastic flow considers that the inelastic deformation rate is in the direction of the normal yield surface; consequently, the plastic deformation is volume invariant. Finally, the isotropic hardening defines the change of the yield-surface size which is uniform in all directions and varies according to the plastic strain (Abaqus, 2002).  
	3.1.1.2 Stress-strain relationship

	The engineering stress-strain relationship used in this study consists of a multi-linear approximation (Hartmann, 2005), which is summarized in Table 31.  This approximation is based on the average properties of selected plates (see Table 32) of a full-scale curved bridge structure that is part of the Federal Highway Administration’s Curved Steel Bridge Research Project.  As a result, the curve indicated in Figure 31 was used to characterize the mechanical behavior of the Grade-50 steel.  A representative value for the modulus of elasticity (E=29600 Ksi) was specified to construct the curve.  Finally, the engineering stress-strain relationship is converted to the true stress-strain curve, as required for input into Abaqus®.  
	Figure 31.  Engineering and true stress-strain relationships for the Grade-50 steel
	Table 31. Approximations for a typical steel stress-strain behavior (Hartmann, 2005)
	Table 32. Average steel plate properties (Hartmann, 2005)
	3.1.2 Concrete
	3.1.2.1 Material Model


	The concrete damaged plasticity model proposed by Lee and Fenves (1998) is selected as the constitutive model to represent the concrete behavior in the FEA.  In this model, it is assumed that the main two failure mechanisms are tensile cracking and compressive crushing of the concrete. This is a plastic-damage model based on the concepts of fracture-energy damage and stiffness degradation from the continuum damage mechanics.  
	The concrete damaged plasticity model assumes non-associated potential plastic flow.  This flow potential, which is continuous and smooth, ensures that the flow direction is always uniquely defined.   The model makes use of the modified yield function proposed by Lee and Fenves (1998) to account for different evolution of strength under tension and compression.  The evolution of the yield (or failure) surface is controlled by two hardening variables, the tensile ((tpl) and the compressive ((cpl) equivalent plastic strains, which are associated to their corresponding failure mechanisms.  Figure 32 illustrates the initial shape of the yield surface, in the principal stress space for plane stress. 
	Figure 32. Yield surface in plane stress (Abaqus, 2002)
	 Uniaxial tension behavior:
	Under uniaxial tension the stress-strain response follows a linear elastic relationship, as shown in Figure 33, until the value of the failure stress ((to) is reached. The failure stress is related to the onset of micro-cracking in the concrete material. Then, the formation of micro-cracks is represented macroscopically with a softening stress-strain response, which induces strain localization in the concrete structure (Abaqus, 2002).
	Figure 33. Concrete model response to uniaxial tension loading (Abaqus, 2002)
	Figure 34. Concrete model response to uniaxial compression loading (Abaqus, 2002)
	 Uniaxial compression behavior:
	Under uniaxial compression the response is linear until the value of initial yield ((co), as shown in Figure 34. The plastic response is typically characterized by stress hardening followed by strain softening beyond the ultimate stress ((cu). This simplified representation satisfactorily reproduces the main features of the response of concrete in compression (Abaqus, 2002).
	According to Figure 33 and Figure 34, when the concrete is unloaded from any point on the strain softening branch, the unloading response is weakened, i.e. the elastic stiffness of the material is degraded. The degradation of the elastic stiffness is characterized by two damage variables, dt and dc, which are assumed to be functions of the equivalent plastic strains.  These damage variables can take values from zero, representing the undamaged material, to one, which represents total loss of strength.  If E0 is the initial elastic stiffness of the material, the stress-strain relationships under uniaxial tension and compression loading are defined by: 
	       31
	The effect of some recovery of the elastic stiffness when the load changes sign is also considered for the uniaxial cyclic behavior of this concrete model.  The concrete damaged plasticity model assumes that the general reduction of the elastic modulus depends on a scalar degradation variable d, as follows:
	         32
	where d is a function of the stress state and the uniaxial damage variables, dt and dc.  In particular, Abaqus uses the following expression for the uniaxial cyclic conditions:
	       33
	where st and sc are functions of the stress state, which are intended to model stiffness recovery effects associated with stress reversals: 
	      34
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	where wt and wc are the weight factors that control the recovery of the tensile and compressive stiffness upon load reversal as shown in Figure 35.
	Figure 35. Effect of the compression stiffness recovery parameter wc (Abaqus, 2002)
	3.1.2.2 Stress-strain relationship

	The stress-strain curves used in this work to represent the concrete behavior are also based on the experimental data obtained from the Federal Highway Administration’s Curved Steel Bridge Research Project.  These results were reported in detail by Jung (2006).   
	 Compressive strength:
	The approximate compressive stress-strain relationship is based on measured stress-strain curves of six 298-day cylinder tests, where the average compressive stress-strain response is presented in Figure 36.  
	The average maximum strength was 4.87ksi (f’c), which was used to compute the approximate initial yield strength of the curve as 0.45f’c = 2.19ksi (ACI-318, 2002).  Then a multi-linear approximation consisting of eight additional points is followed as shown in Figure 37.  
	Figure 36. Average compressive response of concrete (Jung, 2006)
	Figure 37. Stress-strain relationship for the compressive behavior of concrete
	 Tensile strength:
	The tensile stress-strain curve is based on the average maximum tensile splitting strength (0.50ksi) of six 298-day concrete cylinders.  The descending branch of the curve is computed based on the elastic stiffness degradation (damage value) obtained from cyclic tension tests.   
	Figure 38. Engineering stress-strain relationship for the tensile behavior of concrete
	The interaction between the reinforcement and the concrete tends to reduce the mesh sensitivity of the numerical solution, provided that a reasonable amount of tension stiffening is introduced in the concrete model to simulate this interaction (Abaqus, 2002).  Therefore, higher tensile strengths were considered for some FE models that exhibited convergence problems, based on the assumption that the steel reinforcement increases the tension capacity of the concrete.
	 Elastic stiffness degradation:
	The measured elastic stiffness degradations for compression and tension () reported by Jung (2006) were used in this study.  These values were computed following the procedure described by Lee and Fenves (1998) for the corresponding stress-strain relationships described previously.
	3.2 Finite elements

	In this section, a description of the finite elements used to model the different members of the bridges is included.  Additionally, modeling procedures performed to define the effects of the residual stresses and the mesh density are also presented.
	3.2.1 Plate girders and concrete slab

	Four-node (or linear) shell elements with reduced integration and enhanced hourglass control (S4R) were used to model the plate girders and the concrete slab.  The “reduced integration” accounts for the ability of the S4R element to use one integration point instead of four, as in the case of the fully integrated and general-purpose shell element (S4). Therefore, S4R is computationally more efficient for comprehensive analyses since it significantly reduces running times.  The reduced elements also address the typical shear locking effect produced by fully integrated linear elements.  For example, under pure bending conditions, the linear elements are not able to bend to curves causing an artificial shear stress, as shown in Figure 39b.  Then, the linear fully integrated element becomes locked or overly stiff under bending moment producing an incorrect response.  However, this problem is avoided using reduced integration elements which permit shape distortions.
	Nevertheless, the reduced first order elements exhibit a numerical problem called hourglassing due to their excessive flexibility.  Figure 310 shows that the lines corresponding to the integration point do not deform under bending moment.  Therefore, the stresses are zero and no strain energy is generated at the integration point.  This is a non-physical response that may produce meaningless results.  Therefore, an appropriate hourglassing control command is introduced in the definition of the S4R element in Abaqus to overcome this problem. 
	a.
	b.
	Figure 39. Change of shape of a fully integrated a. higher order b. linear element (Sun, 2006)
	Figure 310. Change of shape of a reduced integration element (Sun, 2006)
	The hourglassing control effect was analyzed using a simply supported beam subjected to a uniform load of 0.1kip/in.  The beam is 20ft long with a rectangular cross section of 1in x 12in.  The FE model uses three shell elements throughout the height of the web. Therefore, a minimum stress value of -20Ksi is expected at the integration point of the upper elements.  According to Figure 311, only the models using fully integrated linear elements (S4) and reduced first order elements (S4R HC) with hourglassing control exhibit a stress level close to the theoretical value.  
	Figure 311.  Effect of hourglassing control
	3.2.2 Modeling of composite action

	Jung (2006) used two modeling approaches to consider the composite action between the concrete slab and the steel I girders.  The first approach employs discrete nonlinear spring elements to represent the shear connector response as a function of the relative slip that occurs at the concrete-steel interface.  In the second modeling approach, it is assumed that there is no relative slip in the concrete-steel interface region and a rigid beam-type multi-point constraint (MPC) is used to connect the top flange nodes of the steel girders to the bridge slab nodes.  Load-deflection responses of two models using these approaches were compared as shown Figure 312, from where it is observed that both modeling techniques produce similar results. Consequently, the modeling approach using beam MPC was adopted in this work to simulate the deck composite action.
	Figure 312. Effect of composite-action modeling (Jung, 2006)
	3.2.3 Cross frames and stiffeners

	The cross frames and the stiffeners were modeled using slender beam elements (B33) based on the Euler-Bernoulli formulation.  The Euler-Bernoulli formulation uses cubic interpolation functions to increase their accuracy in case of distributed loads.  These elements are intended for small strain and large rotation analyses.  Additionally, beam elements do not allow for transverse shear deformation, i.e. plane sections initially normal to the beam’s axis remain plane (if there is no warping) and normal to the beam axis.  B33 elements should only be used to model slender beams, which are characterized by having small cross-sectional dimensions compared to typical distances along its axis. For beams made of uniform material and typical dimensions in the cross-section less than about 1/15 of typical axial distances, the transverse shear flexibility may be negligible.  It was considered a linear section behavior assuming that the internal forces remain in the elastic range (Abaqus, 2002). 
	3.2.4 Effect of residual stresses

	The effect of the residual stresses was ignored in the modeling process of this work based on some FE model evaluations performed by Jung (2006).  The evaluations comprised three FE models of the Federal Highway Administration’s curved bridge employing different elements to represent the girder flanges.  Two models use shell elements for the girder flanges (Model B), but only one of them includes the residual stresses, while the third model (Model A) utilizes beam elements for the girder flanges without considering the residual stresses.  The load-deflection response indicated in Figure 313 of one of the girders suggests that this effect may be ignored for the global structural response independent of the modeling complexity of the flanges.  
	Figure 313. Effect of residual stresses in the models (Jung, 2006)
	3.2.5 Mesh density

	The simply supported beam model used to investigate the effect of the hourglassing control was also employed to determine the appropriate mesh density of the plate girders for this study.  Two cases were considered to analyze the mesh density effect: i. when the length (L) of the FEs is varied and their width (w) is fixed; and ii. the opposite situation when w is varied and L is fixed.  The length of the FEs is always measured along the longitudinal direction of the beam as indicated in Figure 314.  
	Figure 314. Orientation of the finite elements in the simple supported beam model
	 Case 1: Varying L and fixed w
	Several FE models were constructed assuming six different aspect ratios (L/w).  A fixed w of 4in is considered for this particular case, hence the number of transversal divisions (NW=3) remains constant.  The length of the elements and the number of finite divisions obtained longitudinally (NL) are indicated in Table 33. 
	Table 33. Mesh characteristics for Case 1 of the mesh density study 
	A theoretical stress value of -30ksi is expected on the superior fiber at the cross section corresponding to the maximum moment.  However, Figure 315 shows that the models exhibit a minimum stress close to -20ksi due to the low number of elements used throughout the depth of the beam.  It is also observed that the fact of increasing NL (i.e., low L/w values) does not improve the accuracy of the response, since the stresses are computed at the integration point of the elements and the position of the integration point depends on NW.  Therefore, the accuracy of the bending stresses in a long structure is affected by the number of elements used transversally rather than the number of elements used longitudinally.  
	Figure 315.  Stress results for Case 1 of the mesh density study
	 Case 2: Varying w and fixed L 
	In this case, the FE models were constructed assuming a fixed L of 6in for the elements.  Therefore, a total of 40 longitudinal divisions (NL) were generated.  The values for w, NW and L/w are presented in Table 34.
	Figure 316  shows that high aspect ratios may be used in order to improve the accuracy of the results and decrease the number of elements.  However, the selection of the appropriate NW depends on the stress gradient throughout beam depth, which is defined as the bending moment over the moment of inertia (M/I).  For example, the use of 16 elements across the beam height would produce a reasonable level of accuracy for this particular example according to Figure 316.   
	Table 34. Mesh characteristics for Case 2 of the mesh density study 
	Figure 316.  Stress results for Case 2 of the mesh density study
	Conversely, the stress gradient produced by LFB is much lower than the one corresponding to a major-axis bending, as in the previous example.  Therefore, a lower NW may be required for the LFB in order to achieve a reasonable level of accuracy.  For that reason, a curved bridge model from the parametric study explained in Chapter 4 was analyzed using different NWs as shown in Figure 317, where FEL=NW and AR= (L/w).  From the figure, a mesh configuration using six elements across the flange width with aspect ratios close to four was selected as the appropriate to produce significant results. 
	Figure 317.  Maximum LFB for a bridge configuration model with Lm=150ft
	All shell elements in the girders of straight and skewed bridges are 12-inch long, while for curved bridges this length corresponds to the central radius of the bridge, i.e. the outer-girder elements are longer than those corresponding to the inner girder.  On the other hand, the number of elements used throughout the web depth depends on its height, since an aspect ratio close to one was selected for all web elements.  Finally, the shell elements of the concrete slab were set as squares with side lengths equal to 24-in for straight bridge configurations, with some slight modifications in the shape for skewed and curved bridge models.  
	3.3 Model Validation

	This section is focused on the correlation of FEA predictions using the modeling procedures described previously with results from representative experimental tests.  The tests described below exhibit different levels of complexity, starting from one steel I-shaped girder and finishing with the Federal Highway Administration’s full-scale curved bridge structure.
	3.3.1 Non-composite steel I girder

	Three steel I-girder specimens, labeled as “S” (Shallow), “M” (Medium) and “D” (Deep) were reported by Schilling and Morcos (1988).  The girders were designed with ultra-compact flanges and the slenderness of the webs was varied from a value that was nearly compact for specimen “S” to a value that was at the upper limit for classification as non-compact for specimen “D”.  Specimen “M” had an intermediate web slenderness between those corresponding to specimens “S” and “D”.  However, only specimen “D” was selected for the verification process since its web slenderness is more representative of the girders assessed in this study (see Figure 318).
	Figure 318. “D” girder specimen (Schilling & Morcos, 1988)
	All three girders were fabricated using ASTM A572 Grade 50 steel.  Each specimen was tested as a simply supported beam with a single load at midspan to simulate the conditions of an interior support in a continuous-span bridge.  However, the specimen was inverted with respect to the normal bridge position to simplify the testing setup.  Therefore, the center load in the test simulated the reaction at the interior support of the bridge, while the simply supports in the test simulated the adjacent inflection points in the bridge.  Figure 319 shows a comparison between the numerical and experimental load-displacement responses.  A good agreement is observed for the elastic range but the model fails to reach the maximum load obtained during the test.  This is probably due to the geometrical imperfections added to the model that are intended to account for physical misalignments of the specimen.  The presence of geometrical imperfections in the model forces some degree of buckling to occur before the critical load is reached.
	Figure 319. Load-displacement response for a single steel I-shaped girder 
	3.3.2 Composite I girder

	Mans, Yakel and Azizinamini (2001) investigated experimentally the applicability of the positive bending ductility requirements to composite girders constructed of HPS-70W.  The first specimen, POS1, was designed to reach the plastic moment capacity and achieve a high level of ductility.  Intermediate stiffeners were placed to give a very conservative shear strength controlled by elastic buckling.  The flanges and the web were made of HPS-70W steel and the stiffeners were fabricated from steel with the minimum specified yield strength of 50Ksi.  The slab is 60in in width and 7.25in in depth. 
	Figure 320. Geometry of Specimen POS1 (Mans, Yakel & Azizinamini, 2001)
	Figure 321. Load-displacement response for a single composite steel I-shaped girder
	Figure 320 shows the overall dimensions and locations of intermediate and bearing stiffeners for the specimen.  Good agreement is observed between the experimental and numerical global response of the specimen according to Figure 321.  
	3.3.3 Composite straight steel I-girder bridge

	Tiedeman, Albrecht and Cayes (1993) compared the measured reactions, stresses, moments, displacements and rotations of a bridge tested in the Federal Highway Administration’s laboratory.  The bridge was a 0.4-scale model of a prototype bridge.  The prototype bridge was designed by the autostress design method for the AASHTO HS20 truck loading and alternate military loading specified for bridges on the interstate system.  The test bridge consisted of two symmetrical 56ft spans and three girders spaced 6.8ft on centers as shown in Figure 322. The modular deck was composed of 35 precast concrete panels.  Diaphragms were located over each pier, and every 10ft from the end piers per AASHTO requirements. The diaphragms consisted of rolled members (WT 2 x 6.5) arranged in a V-type cross bracing as shown in Figure 323.  
	Figure 322. Plan view of test bridge (Tiedeman, Albrecht & Cayes, 1993)
	Figure 323. Cross section of test bridge (Tiedeman, Albrecht & Cayes, 1993)
	A single axle of an AASHTO HS20 truck was simulated with a pair of concentrated loads that were applied by a hydraulic jacking system. The two 7Kip loads of each axle were applied transversely on the west span only.  The spacing of the loads corresponds to the scaled spacing of the wheels of the truck in a single lane or in multiple lanes.  The loads are placed longitudinally at 0.44L and 0.65L to produce the largest approximate positive and negative moment at 0.4L and 1.0L (the interior support), respectively. In both cases, the loads were applied on one span only.  
	Figure 324. Comparison of measured and calculated bottom-flange stresses
	Figure 324 shows a comparison of the measured and the FEA bottom-flange stresses when the axles of a single line are placed as close as possible to Girder 1 to maximize the moments on that exterior girder at 0.44L.  The numerical results predict satisfactorily the experimental measurements, principally for those girders closer to the loads (G1 and G2). 
	3.3.4 Composite curved steel I-girder bridge

	In 1992, the Federal Highway Administration developed the Curved Steel Bridge Research Project to investigate the behavior of curved steel bridges and their components in order to establish more rational design specifications.  The study comprised three phases:  an erection study, a component strength study (see Figure 325) and a composite bridge study.  Jung et. al. (2005) reported some experimental results from the third phase, which are used in this work for the validation process.  
	Figure 325. Bridge test during the component strength study (Jung, 2006)
	Figure 326 illustrates the cross section and plan view of the test bridge.  The cross section of the bridge consists of three prismatic I-girders spaced at 8.75ft and the bridge span is 90ft measured along its centerline.  The radii of curvature are 191.25ft, 200ft and 208.75 ft for the inside (G1), middle (G2) and outside (G3) girders, respectively.  All of the steel plates used A709 Gr.50 steel with the exception of the bottom flange of G3 which used HPS 70W.  The cast-in-place concrete slab is 8in thick with 3in haunches and 3ft overhangs.  The composite action between the slab and the plate girders is given by studs (6in x ¾in) spaced at 6in both longitudinally and transversely.  The bridge has five equally spaced K-shaped cross frames, which are strong enough to develop the ultimate capacity of the composite bridge system without any cross-frame member failure.  
	a. Cross section of the test bridge
	b. Plan view of the test bridge
	Figure 326. Geometrical characterization of the bridge test (Jung, 2006)
	The experimental results shown in Figure 327, Figure 328 and Figure 329 correspond to a testing loading that simulates the effects of two design trucks aligned side-by-side at the middle of the bridge plus two lanes.  This loading condition governs the flexural design of G3.  In general, a satisfactory agreement is observed between the numerical and experimental results for the global response of the test bridge.  Although the model fails to predict the maximum positive LFB stresses, the maximum negative LFB stresses (which are larger than the positive ones) seem to be adequately calculated. 
	Figure 327. Applied load vs. G3-mid-span deflection
	Figure 328. Applied load vs. vertical reactions
	Figure 329. G3 bottom flange stresses at a load level of 570Kips (MAB: Major-axis bending, LFB: lateral flange bending)
	3.4 Analyses

	A user-defined sub-routine in Matlab® was used to create the input file for each FE model that was analyzed by ABAQUS® Version 6.7.1, a commercially available FEA software program.  The initial loads such as the steel weight and the distributed construction loads were applied using linear static stress analyses, since the structure behaves within the elastic ranges without the presence of instabilities at this load level.  However, the concrete deck placement was simulated using a nonlinear static analysis to consider probable material nonlinearity or geometrically nonlinear behavior causing buckling or local instabilities.
	The nonlinear analysis is based on the modified Riks algorithm available in Abaqus®.  This method has the ability to pass beyond the limit point and trace the unloading portion of the nonlinear equilibrium path, as shown in Figure 330.  The Riks method uses the load magnitude as an additional unknown; it solves simultaneously for loads and displacements. Therefore, another quantity must be used to measure the progress of the solution.  ABAQUS/Standard uses the “arc length,” l, along the static equilibrium path in load-displacement space. This approach provides solutions regardless of whether the response is stable or unstable (Abaqus, 2002).
	Figure 330. Load-displacement response of an unstable system (Abaqus, 2002)
	This method basically finds the solution of a single equilibrium path in a space that is defined by the nodal variables and the loading parameter. The solution during each increment is found by moving a given distance along the tangent line to the current solution point and then searching for equilibrium in the plane that not only passes through the point thus obtained, but also is orthogonal to the same tangent line. Once this plane is determined, the Newton’s method is used to solve the equilibrium equations. It is assumed that the response is reasonably smooth, i.e. sudden bifurcations do not occur. The algorithm of the modified Riks method is shown in Figure 331, (Righman, 2005).
	Figure 331. Modified Riks algorithm (Righman, 2005)
	Chapter 4:  Parametric study of the lateral flange bending during construction
	A parametric study is used to investigate the effects of the deck-placement process on the LFB of straight, skewed and curved steel I-girder bridges.  The parametric study is defined by: i. the parameters considered as significant in the response of the structure; ii. the loads that represent the real conditions during the deck casting sequence; iii. the design according to the code provisions of the parametric configurations; iv. the models used to represent the physical behavior of the bridges; and v. the analyses defined for each bridge configuration to represent the deck casting sequence. 
	4.1 Parameters

	The selection of the variables in this work is intended to cover a wide range of variation in the parameters that govern the practical design of skewed and curved steel bridges.  All bridge configurations have three spans arranged such that the end spans (Le) are 80% of the middle span (Lm).  This span configuration helps to assure an optimum and homogeneous depth of the girders in all spans (NSBA, 2002).  The cross sections consist of four girders spaced at 12ft centers with 3.6ft deck overhangs.  Structural steel having a specified minimum yield stress of 50Ksi is used throughout. The deck is conventional cast-in-place concrete with a specified minimum 28-day compressive strength of 4Ksi.  The total deck thickness is 9.5in, including a one-half inch integral wearing surface.  The concrete deck haunch is assumed to be 3.5in deep measured from the top of the web to the bottom of the concrete deck.  A future wearing surface of 25psf is specified for design. Permanent steel deck forms of 15psf are also assumed to be used between girders.
	Table 41 presents the varying parameters considered in this project and their corresponding values.  Straight, skewed and curved bridge configurations (ST, SK and CV) were generated for each middle span length (Lm) considered in the study, resulting in a total of 21 hypothetical bridges without including the additional configurations generated for each cross-frame spacing.  Curved bridges with skewed supports were not considered in this work. 
	Table 41. Varying parameters
	Bridge configurations using different cross-frame distances (Lb) were constructed as indicated in Table 42 and Table 43 to analyze the variation of the LFB effects which depend directly on this parameter.  
	Table 42. Cross-frame spacing for positive moment regions
	Table 43. Cross-frame spacing for negative moment regions
	4.2 Loads

	The loading condition corresponds to the loads acting during the deck casting process: permanent dead loads and construction loads.  Permanent dead loads include the self weight of the structural members and construction loads comprise the following elements (NSBA, 2002; KDoT, 2005): 
	 Overhang form brackets: 50 lb each, spaced every 3ft
	 Formworks: 10 lb/ft2
	 Screed rail: 85 lb/ft
	 Railing: 25 lb/ft
	 Walkway: 50 lb/ft2
	 Finishing machine: 813 lb/wheel for a total of 4 wheels per exterior girder (see Figure 41 and Figure 42)
	The factored loads correspond to the Strength Load Combination I of the Specifications, which recommend that the load factors shall not be taken less than 1.25 and 1.5 for the dead and the construction loads, respectively (AASHTO, 2007).  Therefore, these recommended factors were used for the ultimate loads presented in this work.
	Figure 41.  Visualization of the finishing machine on the exterior girder (KDT, 2005)
	Figure 42.  General view of a finishing machine (Bid-Well 4800)
	4.2.1 Deck placement sequence

	A symmetric deck placement sequence composed of three basic consecutive stages was considered as shown in Figure 43, where the concrete is poured first in the positive moment region of the end spans followed by that corresponding to the middle span (NSBA, 2002).  The sequence is completed by placing the concrete in the negative moment regions over the pier zones.  This sequence scheme is intended to minimize cracking of the concrete slab primarily in the negative moment regions.  Additional intermediate stages are incorporated into the basic three-step sequence to consider the effect of the finishing-machine wheels in the positive moment regions as shown in Figure 44.  
	Figure 43. Basic deck placement sequence
	The LFB effects due to distributed (wu) and concentrated (Pu) loads were evaluated separately in the positive moment regions.  First, the effects of the distributed loads are assessed from the casting stages that consider only the weight of the fresh concrete, i.e. Castings 2 and 4 in Figure 44 for the end and middle spans, respectively. Then, the concentrated load effects are analyzed from the casting stages that include the finishing-machine wheels combined with the fresh concrete, i.e. Castings 1 and 3. 
	The negative moment regions are mostly controlled by the final stage from the sequence shown in Figure 44. However, the maximum bending results in these regions may be obtained at intermediate phases. Therefore, the complete casting sequence is considered for the pier regions independent of the casting stage. 
	Figure 44. Detailed deck casting sequence 
	For skewed bridges, the deck placement was considered parallel to the supports. The construction joints for curved and skewed bridges are radial and parallel to the skew angle, respectively.  
	4.3 Structural design

	Girders, cross frames and stiffeners of the straight bridge configurations were sized according to 2007 AASHTO Specifications, based on the parameters and loads defined previously.  Changes of section that coincide with the construction joints are assumed in regions close to the piers, as shown in Figure 43.  Table 44 includes the girder plate sizes for the different cross sections employed at the straight bridges.  The same sections were used for the skewed and curved bridges analyzed in this work to achieve one of the research objectives consisting of finding the maximum available skew angle and curvature for bridges originally designed as straight.  
	Table 44. Girder plate sizes
	  TF: Top Flange; BF: Bottom Flange; W: Web; LS: Length of the section 
	For design purposes, the cross frames of each straight bridge were arranged such that their maximum spacing (Lb) in the positive-moment regions was close to the traditional spacing used in practice, 25ft.  However, in the pier regions the cross frames were set at shorter distances (17ft – 20ft), as indicated in Table 45. 
	Table 45. Cross-frame spacing, Lb (ft)
	4.4 Models

	A FE model was developed for each straight, skewed and curved bridge configuration using a MATLAB® code that generates the input files which are subsequently processed by Abaqus®.  Figure 45 shows a typical FE model of a curved bridge configuration at the end of Casting 2.  
	Figure 45. Finite element model of a typical curved bridge configuration
	As discussed in Chapter 3, four-node shell elements with reduced integration and enhanced hourglass control were used to model the plate girders and the concrete slab.    The deck composite action was simulated using rigid elements that connect the top flanges of the girders to the slab. The cross frames and the stiffeners were modeled using slender beam elements based on the Euler-Bernoulli formulation, assuming a linear section behavior.  The mesh configuration in the flanges employs six elements across the flange width with aspect ratios close to four.  An aspect ratio close to one was selected for the webs.  All shell elements in the girders are approximately 12-inch long.  
	In addition, the stay-in-place (SIP) forms were included in the modeling process of the bridges when the girders act in a non-composite state.  This inclusion was required to identify the position of the shell elements that represent the concrete deck after the non-composite girders have deformed during the placement of the fresh concrete.  The deck formwork was modeled by shell elements with the same coordinates as those elements used to model the concrete deck, but with a lower stiffness represented by the thickness (t=2in) and the material (E=33.2ksi).  Figure 46 shows the bending stresses in the top flange of a curved bridge model with and without including the stay-in-place forms.  It is observed that the fbu is practically not affected by the inclusion of the forms, while the LFB decreases up to 20% in regions of maximum moment in a curved bridge model.  In addition, the forms provide stability to the inner girder of curved bridges, since the LFB varies regularly about the zero stress instead of exhibiting a global buckling mode.  The decreasing effect on the LFB due to the inclusion of the deck formwork is also exhibited by the skewed and straight bridges, but to a much lesser degree.
	The continuity over the intermediate supports also contributes to reduce the levels of LFB due to the increase of the structural stiffness.  In addition, the LFB of a non-composite segment due to fresh concrete is relieved when previous casts are considered as composite in the analyses.    
	The vertical loads other than the self weight of the steel members are considered in the models using concentrated forces applied directly on the girder nodes.  The self weight of steel was included as an element-based body load due to gravity.  On the other hand, the torsional effects produced by the overhang loads are represented on the exterior girders by horizontal forces as shown in Figure 47.  A maximum depth of 70in is used for the overhang brackets.  However, this distance varies for each bridge configuration according to the web depth and the FE dimensions.
	Figure 46.  Effect of the stay-in-place forms in the bending stresses of a curved bridge
	Figure 47. Torsional effects on exterior girders produced by overhang loads
	4.5 Analyses

	Five static stress analyses are required for each bridge configuration to simulate the deck placement, as shown in Figure 48.  The arrows in the figure point to the previous analysis from where the initial conditions are taken.  As mentioned before, the weight of the wet concrete slab is considered in the corresponding cast as explicit concentrated loads applied directly on the non-composite girders.  However, in the analyses, earlier concrete casts are made composite for each subsequent cast.
	Figure 48. Sequence of analysis for each bridge configuration
	A detailed explanation of each one of the casting stages and the corresponding models from Figure 48 is given below:
	 End spans:
	Casting 1:  The initial conditions are zero for this cast.  The loads applied sequentially consist of: i. the weight of the steel superstructure, ii. the construction loads without considering the finishing machine, and iii. the weight of the fresh concrete corresponding to one-half of the positive moment regions at the end spans along with the finishing machine.
	Casting 2:  In this cast, the initial conditions are also assumed as zero since the fresh concrete of the positive moment regions at the end spans is applied at once.  Therefore, the load sequence is similar to the one described for Casting 1.  However, in this case, the fresh concrete is applied over the complete positive moment regions of the end spans without including the finishing machine effects.
	 Middle span: 
	Casting 3:  The initial conditions correspond to the final stresses and deformations obtained in Casting 2.  In this stage, the shell elements of the concrete deck corresponding to Casting 1 need to be initially activated.  Then, the weight of the fresh concrete is applied over one-half of the positive moment region of the middle span, including the finishing machine.
	Casting 4:  The difference between Castings 3 and 4 consists in that the weight of the fresh concrete in Casting 4 is applied over the complete positive moment region of the middle span, and the finishing machine effects are neglected.
	 Pier regions:
	Casting 5:  The initial conditions are taken from the final response of Casting 4.  The shell elements corresponding to the concrete slab placed in Casting 2 are activated to simulate the composite action in this zone. In this cast, the weight of the fresh concrete is extended from the beginning of the negative moment regions at the end spans to the midpoint between the pier and the end of the negative moment regions at the middle span.  The finishing machine effects are included as well.
	Chapter 5:  Approximation of the lateral flange bending in steel I-girder bridges
	This chapter presents the methods used to approximate the LFB in straight, skewed and curved steel I-girder bridges due to construction loads during deck placement based on the results obtained from the parametric study described in Chapter 4.  The major-axis bending stresses are analyzed as well.  However, the principal contribution to estimate fbu is made for curved bridges since it is shown that the torsional effects do not affect the vertical bending response in straight and skewed bridges.  
	5.1 Definition of the bending stresses from FEA

	The approximations proposed in this work to estimate the bending effects in steel I-girder bridges during deck placement are based on the results obtained from the FEA of the parametric bridge configurations.  However, the direct response obtained from the Abaqus® output corresponds to the total bending stresses at each flange tip (f1 and f2), as shown in Figure 51.  Therefore, a Matlab® code was developed to compute the major-axis bending (fbu) and LFB (fl) stresses from f1  and f2 assuming a linear response, as follows:
	         51
	         52
	Figure 51.  Identification of fl and fbu from the total flange bending response
	For example, the resulting bending stresses computed in Matlab® for the top and bottom flanges of the exterior girder in a curved bridge model are shown in Figure 52. 
	Figure 52. Bending stresses on the exterior girder of a curved bridge model
	5.1.1 Parametric Notation

	The effects on fl and fbu of the deck placement loads are evaluated in this project using the following parametric notation:
	 Span lengths:  The span lengths of the bridge models are identified by referencing their middle span length (Lm=150ft, 240ft or 300ft) only, since the end span lengths depend on Lm (Le=80%Lm).  
	 Flange position: Top flange (TF) or bottom flange (BF).
	 Girder section:  S1 for the section corresponding to the positive moment regions of Le, S2 for the negative moment regions over the piers, and S3 for the positive moment region of Lm.
	 Casting sequence and load type:  These variables are related to each other since the effects of the distributed loads (wu) are evaluated from Castings 2 and 4 for S1 and S3, respectively.  The concentrated load effects (Pu) are analyzed from Castings 1 and 3 for S1 and S3, since these casts include the finishing-machine wheels combined with the fresh concrete.  For S2, the complete casting sequence is considered.
	 Girder position: This parameter is particularly important for curved bridges to indicate the position of the girder with respect to the curvature (outside G4 and inside G1).
	 Skew angle ((): 30°, 45° or 60°.
	 Curvature angle (Lm/R): 0.30, 0.45 or 0.60
	 Bridge type:  Straight bridges (ST-0), skewed bridges with (=30°, 45° or 60° (SK30, SK45 or SK60), and curved bridges with L/R=0.30, 0.45 or 0.60 (CV30, CV45 or CV60).
	 Cross-frame orientation in skewed bridges:  Perpendicular to the girders (xf1) and parallel to the abutments (xf2).
	5.1.2 Normalization of the LFB

	The LFB stresses obtained from FEA are normalized in order to establish fitting models independent of the cross section properties.  Therefore, the numerical stresses, fl, are multiplied by the flange section modulus, Sf, to obtain the lateral flange moment, Mlat.  Then, the lateral moment is divided by the corresponding lateral load which depends directly on the overhang bracket depth for construction loads, or the web depth for curvature effects.  Consequently, the following expressions were used to present the LFB effects in this work:
	         53
	         54
	where Fl and Pl are the lateral distributed and concentrated loads that represent the torsional effects.  
	5.2 Overhang loads in straight bridges

	The LFB effects produced by distributed and concentrated loads are studied initially from the straight bridge configurations where the curvature and skew effects do not take place. 
	5.2.1 Major-axis bending, fbu

	Figure 53 shows that the major-axis bending exhibited by the exterior girders of straight bridges is independent of the cross-frame spacing.  Therefore, fbu may be taken directly from FEA using any cross-frame distance.
	Figure 53. Effect of the cross-frame spacing in the major-axis bending
	5.2.2 Positive Moment Regions
	5.2.2.1 Lateral distributed load effect


	For distributed loads in the positive moment regions, the LFB stresses were approximated using the following fitting model:  
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	where wul is the lateral distributed load due to fresh concrete and Lb is the cross-frame spacing.  The variables a and A are defined in Table 51 for both top and bottom flanges.  Figure 54 compares the results obtained using the proposed equation (Eq. 5-5) with the effects given by FEA and the code approximate equation (Eq. 1-2).  It is observed that the code equation is highly conservative in all cases, principally for large cross-frame distances.  However, the proposed equation predicts satisfactorily the LFB at the exterior girders of the end span over the entire range of cross-frame distances.  Although the LFB exhibited in the middle span is slightly lower, the same equations are proposed for Lm to simplify the recommended approximations for straight bridges.  
	Table 51.  Fitting parameters for distributed loads in straight bridges (Positive Moment).
	Figure 54. LFB due to distributed loads in the positive moment regions of straight bridges
	5.2.2.2 Lateral concentrated load effect

	The evaluation of the concentrated load effects on LFB is more complex than for distributed loads due to several reasons:
	 Both distributed and concentrated loads act simultaneously in Castings 1 and 3.
	 The position of concentrated loads at the corresponding cross-frame spacing depends on the cross-frame distribution, i.e. the wheel loads may be located over one cross-frame location or anywhere within two consecutive cross frames.  For example, a simply supported straight bridge was analyzed separately to identify the effect of the concentrated load position on the LFB.  Figure 55 shows that a linear trend parallel to the code equation is followed by models where the load is placed at the middle of a cross-frame spacing, being the critical location.  However, other intermediate positions decrease the LFB effect.  
	Figure 55.  Effect of the concentrated load position in the LFB
	 A similar situation occurs for distributed loads which extend up to the position of the leading wheel in the finishing machine.
	 The finishing machine effect on an exterior girder consists of four wheels acting within a distance of 8ft.  However, in the approximated equations, it is conservatively assumed that the forces are all applied at the same point.
	Figure 56. LFB due to concentrated loads in straight bridges (Positive Moment).
	Consequently, a linear model similar to the code equation was adopted in this work to describe the combined effect of the lateral concentrated load, Pul, representing a single wheel with the distributed load due to fresh concrete.  However, the model only considers explicitly the concentrated loads while the concrete effect is considered by the combination of the variables B and C, as follows:
	        56
	The results of the models are shown in Table 52 and Figure 56.  It is observed that the linear regression considers the most external points from the critical curves, since these points correspond to models where the concentrated loads are placed at the middle of a cross-frame spacing.  It is also noticed that the proposed equation for the bottom flange governs over the code equation for cross-frame distances larger than 26ft. However, both the code and the proposed approximations coincide for the top flange.
	Table 52.  Fitting parameters for concentrated loads in straight bridges (Pos. Moment).
	5.2.3 Negative Moment Regions

	The LFB effect on the negative moment regions was approximated considering only the distributed loading case since the contribution from the concentrated loads is negligible.  Therefore, Equation 5-5 is taken as a valid model with the corresponding fitting parameters contained in Table 53.  Figure 57 shows that the proposed equation satisfactorily predicts the LFB in both flanges.  
	Table 53.  Fitting parameters for distributed loads in straight bridges (Neg. Moment)
	Figure 57. LFB effects due to concentrated loads in straight bridges (Neg. Moment).
	5.3 Overhang loads in skewed bridges

	In all skewed bridges, the concrete is placed parallel to the skew.  An evaluation of the cross-frame orientation was initially performed using bridge configurations with Lm=150ft.  Then, the bending effects in skewed bridges are analyzed employing models with the recommended cross-frame orientation.  
	5.3.1 Cross-frame orientation

	Figure 58 compares the bending results exhibited by the top flange of an exterior girder in a straight and skewed bridge subjected to vertical loads, e.g. steel weight.  The results indicate that skewed bridges exhibit LFB even when torsional loads are not applied.  However, in the presence of torsional effects, the LFB effect is slightly more pronounced when the cross frames are oriented parallel to the supports as shown in Figure 59.  Therefore, a perpendicular orientation of the cross frames is recommended for general skewed bridges to increase the lateral stiffness of the structure, hence it is used in the models described next to evaluate the bending effects.  
	Figure 58.  Effect of the skew angle in the LFB exhibited by the top flange
	Figure 59.  Effect of the cross-frame orientation in the LFB of skewed bridges
	5.3.2 Major-axis bending, fbu

	Figure 510 shows that the major-axis bending in skewed bridges is not only independent of the cross-frame spacing but also of the skew angle.  Therefore, fbu may be taken from FEA performed for skewed bridges with any cross-frame spacing and skew angle, including their straight counterpart.  
	5.3.3 Positive Moment Regions

	An approach analogous to the procedure described for straight bridges was followed to approximate the LFB due to distributed and concentrated loads in the positive moment regions of skewed bridges.  
	Figure 510.  Effect of the skew angle in the major-axis bending
	5.3.3.1 Distributed load

	The corresponding fitting parameters are indicated in Table 54.  Figure 511 shows the normalized LFB for bridges with (=30° (see Appendix A for (=45° and 60°).  It is observed that the code recommended equation (Eq. 1-2) significantly overestimates the LFB principally for long cross-frame distances.  However, the code fails to predict the LFB exhibited by the bottom flange of bridges with low Lb values, especially for high skew angles.  For that reason, a lower limit equal to 30, 45 and 70ft2 for (=30°, 45° and 60°, respectively, was introduced in the proposed equation for the normalized LFB at the bottom flange.
	Table 54.  Fitting parameters for distributed loads in skewed bridges (Pos. Moment).
	Figure 511. LFB due to distributed loads in skewed bridges (Positive Moment).
	5.3.3.2 Concentrated loads

	Table 55 contains the definition of the variables B and C from the fitting model for concentrated loads according to the numerical stresses obtained in the parametric study.  Figure 512 (including the figures from Appendix A) shows that the code equation fails to predict satisfactorily the LFB in most of the cases, principally for the bottom flange.  
	Table 55.  Fitting parameters for concentrated loads in skewed bridges (Pos. Moment).
	Figure 512. LFB due to concentrated loads in skewed bridges (Positive Moment)
	5.3.4 Negative Moment Regions

	The LFB in negative moment regions was approximated by a constant term that depends on the skew angle.  This term was defined according to the numerical results as 4, 6 and 8Ksi for (=30°, 45° and 60°, respectively.  The constant approximation is proposed to conservatively estimate the stresses which do not exhibit a consistent trend.  Figure 513 presents the LFB stresses for bridge configurations with (=30°, the remaining figures corresponding to (=45° and 60° are contained in Appendix A.  The results indicate that the code recommendation of using 10Ksi for the unfactored LFB stresses in skewed bridges is conservative even compared to factored stresses.    
	Figure 513. LFB effects due to distributed loads in skewed bridges (Neg. Moment).
	5.4 Overhang loads in curved bridges

	The evaluation of the bending stresses in curved bridges indicates that fbu and fl are deeply affected by the curvature.  In addition, the results showed that the participation of the overhang loading term in the LFB effects is low compared to the curvature effects.   
	5.4.1 Major-axis bending, fbu

	Figure 514 shows that the fbu in curved bridges is independent of Lb but is affected by the curvature and the girder position.  These relationships will be described in detail below.
	Figure 514.  Effect of curvature in the major-axis bending
	5.4.2 Positive Moment Regions
	5.4.2.1 Distributed loading effect
	5.4.2.1.1 Major-axis bending, fbu



	The proposed linear model intended to estimate fbu in curved bridges during construction is given by:  
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	where fbu max is the maximum major-axis bending stress and fbuo max is the maximum major-axis bending stress of the straight counterpart (L/R=0). Table 56 and Table 57 contain the variables b and c, and the sign combinations (sign1, sign2) for the bridge models evaluated in this project.  Figure 515 and Figure 516 show that the major-bending stresses increase linearly with the curvature at the end spans.  Conversely, a constant term is proposed for the middle span since fbu is not significantly affected by the curvature over this zone.
	Table 56. Fitting parameters for fbu due to distributed loads curved bridges (Pos. Moment)
	Figure 515.  Normalized fbu due to distributed loads in outer girders (Positive Moment)
	Table 57. Sign combination used to estimate fbu (Sign1, Sign2) (Pos. Moment)
	Figure 516.  Normalized fbu due to distributed loads in inner girders (Pos. Moment)
	5.4.2.1.2 Lateral flange bending, fl

	The LFB stresses were approximated considering a hypothetical curved I girder subjected to a uniform vertical distributed load, wu.  The girder has a radius of curvature, R, and a span length, L, that subtends an angle (, as shown in Figure 517.  The eccentricity, d, between the vertical load and the straight line that connects the end supports is a function of the longitudinal position.  The maximum eccentricity, dmax, is at the middle of the span length (Eq. 5-8).  As a result of this eccentricity, a distributed torsional moment, T, is generated along the girder which is equivalent to a couple of horizontal distributed forces acting on the flanges, wul, as shown in Figure 518.  The magnitude of wul varies from zero at the end supports to the maximum value at the middle of the span, wulmax (Eq. 5-9), as indicated by Figure 519.  Therefore, the maximum LFB stress, fl, will correspond to the cross-frame spacing, Lb, closer to the span midpoint.  The variation of wul along the central cross-frame spacing is assumed to be small and consequently may be considered uniformly distributed.  Finally, fl is approximated by Equation 5-10 where a curve fitting process is required to define the order of the approximation, d, and the denominator, D.  
	Figure 517.  Hypothetical curved girder to approximate the curvature effects
	Figure 518.  Visualization of the torsional effects due to curvature
	Figure 519.  Horizontal distributed force on the top flange
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	The LFB for curved girders is caused by two different sources:  the curvature and the overhang loads during construction.  The curvature and the overhang torsional effects have the same direction in the outer girder while they counteract at the inner girder, as follows:  
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	However, the participation of the overhang loading in the LFB is low compared to the curvature effects as shown in Figure 520.  In fact, the overhang-to-curvature effect ratio reduces as the length of the span and the curvature increase.  Therefore, the total LFB is estimated using the curvature term only.  However, the torsional effects due to overhang loads are implicitly considered since the curve fitting process to estimate the parameters d and D in Equation 5-10 is applied to the total LFB obtained from the parametric study.  
	The critical case between the top and bottom flanges was selected to define the proposed equations for curved bridges.   The corresponding variables from the curve fitting process are contained in Table 58 and Table 59.  It is observed from Figure 521 that the LFB effects of the end spans are practically unaffected by the variation of the curvature, while a slight effect is observed in the middle spans.  The proposed equation (Eq. 5-10) works adequately in both exterior girders.  Significant reductions were found in most of the cases compared to the estimations given by the AASHTO approximation (Eq. 1-1).  The major-axis bending moment, M, in the code equation was computed using both the numerical and the estimated (Eq. 5-7) major-axis bending stresses, obtaining similar results.  This is a practical observation since the LFB in a curved bridge can be approximated using the code equation (Eq. 1-1) together with the fbu computed from the information of the straight counterpart.  However, the figures contained in Appendix B for Lm=240ft and 300ft indicate that the code equation fails to predict the LFB at the inner girder of highly curved bridges with long spans.  Therefore, it is recommended to use the equation proposed in this work which predicts satisfactorily the LFB in all cases.
	Figure 520.  Comparison of the overhang and curvature effects in the LFB 
	Table 58.  Fitting parameters for distributed loads in the outer girders (Pos. Moment)
	Table 59.  Fitting parameters for distributed loads in inner girders (Pos. Moment)
	Figure 521. LFB in the outer girder due to distributed loads (Lm=150ft, Pos. Moment)
	Figure 522. LFB in the inner girder due to distributed loads (Lm=150ft, Pos. Moment)
	5.4.2.2 Concentrated loading effect

	An approximation similar to the one described in the previous section is proposed to estimate the bending effects in curved bridges due to concentrated loads.  
	5.4.2.2.1 Major-axis bending, fbu

	The proposed model to estimate fbu given by Equation 5-7 is still valid in this case.  The difference lies on the specific values of b and c contained in Table 510.  Figure 523 and Figure 524 compares the numerical stresses with those estimated using Equation 5-7.
	Table 510. Fitting parameters for fbu due to concentrated loads (Pos. Moment)
	Figure 523.  Normalized fbu due to concentrated loads in outer girders (Pos. Moment)
	Figure 524.  Normalized fbu due to concentrated loads in inner girders (Pos. Moment)
	5.4.2.2.2 Lateral flange bending, fl

	In this case, the definition of fl is modified to allow the inclusion of the lateral concentrated load, Pl, as follows:
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	where f and F are the exponent and denominator, respectively, that define the corresponding lateral flange moment.
	Equation 5-14 shows the proposed equation to estimate the LFB due to concentrated loads considering both the curvature and overhang torsional effects.  However, the participation of the overhang terms is also shown to be low compared to the curvature effects (Figure 525).  Therefore, the overhang loading effects are neglected in this case as well.
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	Table 511 and Table 512 contain the values of the fitting variables d, D, f and F for the outer and inner girders, respectively.  Figure 526 and Figure 527 (including the figures contained in Appendix B) show that the proposed equations satisfactorily predict the numerical results and reductions compared to AASHTO estimations in most of the cases.  It is also observed that the bottom flange exhibits the most critical LFB effects compared to the top flange, especially for short span lengths.  A variation in the curvature is also considered negligible in the LFB, especially for the end spans.
	Table 511.  Fitting parameters for concentrated loads in the outer girders (Pos. Moment)
	Figure 525.  Overhang and curvature effects in the LFB due to concentrated loads
	Table 512.  Fitting parameters for concentrated loads in the inner girders (Pos. Moment)
	*(TF, BF)
	Figure 526. LFB in the outer girder due to concentrated loads (Lm=150ft, Pos. Moment)
	Figure 527. LFB in the inner girder due to concentrated loads (Lm=150ft, Pos. Moment)
	5.4.3 Negative Moment Regions

	Although the curvature does not directly affect the pier zones since there is no eccentricity between the loads and the supports, the results show that the torsional restriction offered by the pier regions affects the bending stresses in these zones.  
	5.4.3.1 Major-axis bending, fbu

	The major-bending stresses exhibit a linear trend independent of the span length as shown in Figure 528.  As a result, the definition of b in Equation 5-7 reduces to 0.43 and 0.30 for the outer and inner girders, respectively.  The variable c is always taken as one.  Additionally, the sign combinations indicated by Table 4 are reversed to account for the change in the stress state.  
	Figure 528.  Normalized major-axis bending stresses in the negative moment regions
	5.4.3.2 Lateral flange bending, fl

	The LFB is satisfactorily predicted using Equation 5-10 with the parameters contained in Table 513.  However, the variable wulmax is computed as the average of the values corresponding to the end and middle spans, since the maximum eccentricity (dmax) depends on the span length.
	Table 513.  Fitting parameters for the negative moment regions
	Figure 529 (including the Figures in Appendix B) shows that the proposed equations predict satisfactorily the bending effects in both exterior girders, while the code equations are over conservative for most cases.  It is also observed that the LFB in these regions is practically unaffected by the curvature.
	Figure 529. LFB in the negative moment regions (Lm=150ft)
	5.5 Concluding remarks

	The bending stresses during the deck placement in straight, skewed and curved steel I-girder bridges were evaluated using the results obtained from the parametric study described in Chapter 4.  The LFB stresses caused by distributed and concentrated overhang loads were estimated finding the curves that have the best fit to the critical stresses obtained from the parametric study.  According to this evaluation, the following major observations were made.
	5.5.1 Straight structures

	The major-axis bending stresses exhibited by the exterior girders of straight bridges are independent of the cross-frame spacing.  Therefore, these stresses may be obtained from the structural analysis of either a simplified model that does not consider explicitly the cross frames or a more detailed model involving any cross-frame distance.
	For the positive moment regions, the LFB due to distributed loads was satisfactorily predicted by the equation proposed in this work over the entire range of cross-frame distances, principally at the end spans.   Although the LFB obtained in the middle span is lower, the same equations were proposed to simplify the approximations.  Comparisons with the code estimations showed that the Specifications are highly conservative in all cases, especially for large cross-frame distances.  
	For concentrated loads, a linear regression considering the most external points from the critical curves was performed to adjust the numerical stresses.  These external points correspond to models where the concentrated loads are placed at the middle of a cross-frame spacing which is the critical location.  The proposed equation for the bottom flange governs over the code equation for cross-frame distances larger than 26ft. However, both the code and the proposed approximations coincide for the top flange.
	The LFB effect on the negative moment regions was approximated considering only the distributed loading case since the contribution from the concentrated loads is negligible.  The results showed that the proposed equation satisfactorily predicts the LFB in both flanges.  
	5.5.2 Skewed structures

	The results showed that skewed bridges exhibit LFB even when torsional loads are not applied.  However, in the presence of torsional effects, the LFB effect is slightly more pronounced when the cross frames are oriented parallel to the supports.  Therefore, a perpendicular orientation of the cross frames is recommended for general skewed bridges to increase the lateral stiffness of the structure.  This perpendicular configuration was adopted in this work to evaluate the LFB effects.  
	The results indicated that the major-axis bending in skewed bridges is not only independent of the cross-frame spacing but also of the skew angle.  Therefore, these stresses may be taken from structural analyses performed for skewed bridges with any cross-frame spacing and skew angle, including their simplified straight counterpart.  
	The LFB in the positive moment regions was approximated using curve fitting models similar to the ones used for straight bridges.  For distributed loads, a lower limit was introduced in the proposed equation for the bottom flange since this flange exhibits LFB even for closely spaced cross frames.  The minimum LFB stress considered in the bottom flange is proportional to the skew angle.  The results were compared to the code equation for overhang loads and significant overestimates of the LFB were found principally for long cross-frame distances.
	On the other hand, for concentrated loads, the results showed that the code equation for overhang loads fails to predict satisfactorily the LFB in most of the cases, principally in the bottom flange.
	The LFB in the negative moment regions was approximated in this work by a constant term that depends on the skew angle.  This approximation was adopted to conservatively estimate the stresses which do not exhibit a consistent trend in these regions.  The results also indicated that the code recommendation of using 10Ksi for the unfactored LFB stresses in skewed bridges is conservative even compared to factored stresses.    
	5.5.3 Curved structures

	The evaluation of the bending stresses in curved bridges indicated that fbu and fl are deeply affected by the curvature and the position of the girder, i.e. outer or inner girder.  
	The analyses showed that the major-bending stresses in curved bridges are independent of the cross-frame spacing.  However, they increase linearly with the curvature in the positive moment regions of the end spans.  Conversely, these stresses at the middle span of the outer girder are not significantly affected by the curvature.  Therefore, a linear model was proposed to estimate the major-bending effects in the positive moment regions of both exterior girders.  This model computes the major-axis bending in curved bridges based on the major-axis bending stresses exhibited by their straight counterpart.  Therefore, the proposed equation allows estimating fbu in curved bridges from structural analyses of simplified straight bridges.  In the negative moment regions, the major-bending stresses also exhibit a linear trend but it is independent of the span length.  
	The assumption of computing fbu based on a simplified model with the real arc length of the curved girder does not help to represent the curvature effects on fbu.  In fact, the AASHTO recommendation of ignoring the curvature effects for fbu when L/R is lower than 0.06 introduces an error of approximately 10% in long span bridges.    
	The LFB in curved girders is caused by both the curvature and the overhang loads.  However, it was shown that the participation of the overhang loads in the LFB is low compared to the curvature effects.  In fact, the overhang-to-curvature effect ratio reduces as the length of the span and the curvature increase.  Therefore, the overhang term was dropped from the final expression proposed for the LFB which simplifies to the curvature term only.  However, the torsional effects due to overhang loads are implicitly considered since the curve fitting process is applied to the total LFB obtained from the parametric study.  A comprehensive formulation to estimate the LFB effects due to curvature was developed for distributed and concentrated loads, respectively.  The critical case between the top and bottom flanges was selected to define the equations proposed in this work to estimate the LFB in curved bridges.  
	The results indicated that the LFB is practically unaffected by the variation of the curvature, a slight effect was only observed in the positive moment regions of the middle span.  This observation indicates that these effects need to be considered even in bridges with large curvature radii.  
	The equations proposed in this project to estimate the LFB in curved bridges work adequately in both exterior girders.  Significant reductions were found in most of the cases compared to the estimations given by the AASHTO Specifications.  
	The major-axis bending effects in the AASHTO equation were computed using both the numerical and the estimated major-axis bending stresses, obtaining similar results.  The estimated major-axis bending stresses correspond to the stresses computed using the equation proposed in this work to estimate fbu in curved bridges from the results obtained in their straight counterpart.  Therefore, the LFB in a curved bridge can be conservatively approximated using the code equation together with the major-axis bending from the corresponding straight bridge.  The advantage of the proposed equations over the code approximation is that it is not required to know in advance the major-bending effects to compute the LFB.  However, the principal disadvantage is that different expressions are required to define the effects of distributed and concentrated loads, while the code approximation consists of one single equation that applies for all load cases independent of the girder location and flange position.   
	However, the results from the parametric study indicated that the code equation fails to predict the LFB due to distributed loads at the inner girder of highly curved bridges with long spans.  Therefore, it is recommended to use the equation proposed in this work which predicts satisfactorily the LFB in all cases.  It was also observed that the bottom flange under concentrated loads exhibits the most critical LFB effects compared to the top flange, especially for short span lengths.  
	The results indicated that the outer girder exhibits the most critical combined bending effects.  On the contrary, the curvature decreases the magnitude of the major-bending stresses in the inner girder resulting in a combined bending action much lower than that corresponding to the outer girder.  Therefore, the design of both exterior girders shall be based on the evaluation of the outer girder, unless an optimization of the inner girder is pursued.  In that case, the effects of the girder stiffness in the behavior of the whole cross section of the deck shall be investigated.
	In general, it is recommended to distribute the cross frames such that a cross frame is placed at the maximum vertical bending moment to decrease the combined effect of fl and fbu during construction.
	Chapter 6:  Evaluation of the flexural limit states for constructibility
	In this chapter, the flexural limit states for constructibility are evaluated according to AASHTO Specifications for the parametric bridges analyzed in this work.  
	First, the major-axis bending and the LFB stresses obtained from FEA are used to evaluate the demand-to-capacity ratios of the flexural limit states for constructibility.  This evaluation allows identifying the critical sections along the bridge and the effects of the cross-frame spacing and the deck-placement sequence in the governing limit states.  
	Second, the maximum allowable skews and curvatures are computed for bridges designed originally as straight.  The flexural limit states for constructibility constitute the criteria used to achieve this goal.  The major-axis bending stresses are taken directly from FEA and the LFB stresses are estimated using the approximate equations proposed in Chapter 5.  
	6.1 General observations

	The bending results from FEA were evaluated using the flexural limit state equations for constructibility.  These limit states are applied in a normalized form (demand-over-capacity) as follows:
	 Discretely braced flanges in compression:
	Yielding:          61
	Ultimate strength:        62
	Web bend-buckling:       63
	 Discretely braced flanges in tension:
	Yielding:         64
	 Continuously braced flanges in tension or compression:
	Yielding:         65
	Limit for LFB:        66
	In the following sections, the limit state ratios of the skewed and the curved bridges are compared to the results obtained from their straight counterparts.  
	6.1.1 Skewed bridges

	For the skewed bridge configurations analyzed in this work, it is observed that the effect on the limit state ratios of the girder position, the cross-frame orientation and the skew angle is almost negligible as shown in Figure 61.  However, the cross-frame spacing has a significant effect on the limit state ratios of discretely braced flanges in compression in the positive moment regions, since the LFB depends on Lb and the capacity of the flange is reduced as Lb increases.  
	Although the limit state ratios are not visibly affected by the skew, the proposed equations for the LFB presented in Chapter 5 are intended to represent the maximum possible variations on fl caused by the skewed geometry of the structure.  
	Figure 62 (see other figures in Appendix C) also shows that sections S1 and S3 are controlled by the second and fourth castings, respectively.  The corresponding flanges in compression in both sections are governed by the ultimate strength limit state.  
	The negative moment regions are controlled by the fifth casting stage.  The flanges in compression are governed by the yielding limit state when the span lengths are short. However, the web bend-buckling limit state governs the compression flanges for long span lengths.
	Figure 61. Variation of the limit state ratios along the length of skewed bridges
	Figure 62. Effect of parametric variables in the limit states of skewed bridges (Cont.) 
	6.1.2 Curved bridges

	Figure 63 illustrates that both the curvature and the cross-frame spacing highly affect the limit state ratios in the outer girder principally in the positive moment regions, while a stress relief is observed in the inner girder.  This is caused by the length adjustments due to curvature since interior girders shorten as the curvature increases generating lower major-axis bending stresses.  The opposite situation occurs in the outer girders where the vertical stresses increase.  Additionally, the LFB exhibited by the inner girder is relieved since its eccentricity with respect to the supports is smaller.
	In fact, the LFB undergoes a reversal effect in the inner girder compared to its straight counterpart, as shown in Figure 64.  This is due to the curvature and overhang loading torsional effects counteracting each other in the inner girder.  However, the curvature effects govern over the torsion produced by the overhang loads.   
	Figure 63. Variation of the limit state ratios along the length of curved bridges
	Figure 64. Variation of the LFB along the length of curved bridges
	Figure 65, Figure 66 and Figure 67 show that the cross-frame spacing affects the limit state ratios in the outer girders as well.  It is also observed that second and fourth castings from the deck-placement sequence control sections S1 and S3, respectively.  Compression flanges in these sections are governed by the ultimate strength limit state.  However, the yielding limit state may control in short span lengths with high curvatures.  
	As for skewed bridges, the negative moment regions are controlled by the fifth casting stage.  The yielding limit state governs the compression flanges of bridges with short spans and the web bend-buckling limit state becomes significant in the pier regions for long span bridges (see Figures in Appendix D).
	Figure 65. Effect of parametric variables in the limit state ratios of Section S1 
	Figure 66. Effect of parametric variables in the limit state ratios of Section S2
	Figure 67. Effect of parametric variables in the limit state ratios of Section S3 
	6.2 Maximum allowable skew angle and curvature for straight bridges during construction

	In this section, the straight bridge models are evaluated using the flexural limit states for constructibility in order to define the maximum allowable skew angles and curvatures for the loading conditions given during deck placement.  This evaluation will provide the engineer with design information for curved and skewed bridges based on their straight girder counterparts.  Furthermore, no additional constructibility designs or checks would be necessary in case that a bridge designed as straight requires a geometrical modification within the limits established.  
	To achieve this goal, the maximum cross-frame spacing (Lb max) was computed for each straight bridge considered in this work from the limit state equations for constructibility that directly depend on Lb (Eqns. 6-1, 6-2, 6-4 and 6-6).  In the limit state equations, the major-axis bending effects were taken from FEA and the LFB stresses were expressed in terms of Lb using the approximate equations recommended in Chapter 5 for straight bridges.  After finding Lb max by solving the critical limit state equation, the maximum skew angle and curvature are computed for different Lb values based on the limit state equations for constructibility as well.  
	6.2.1 Skew angle

	The maximum skew was computed by solving the limit state equations for each Lb value.  However, the LFB in these equations are expressed in terms of Lba/A or Lb/B+C for distributed and concentrated loads in the positive moment regions, respectively.  Therefore, these terms are solved from the limit state equations and then are compared to the corresponding values defined in Chapter 5 for (=30°, 45° and 60° as shown in Figure 68, Figure 69 and Figure 610 for Lm=150ft, 240ft and 300ft, respectively.  For the negative moment regions, the comparisons are established in terms of stresses.
	It is observed that the maximum cross-frame spacing in skewed bridges is controlled by the ultimate strength limit state in the compression flange (Eq. 6-2).  Conversely, the tension flange seems to be unaffected by the skew angle.
	Figure 68. Identification of maximum skew angles for straight bridges with Lm=150ft
	Figure 69. Identification of maximum skew angles for straight bridges with Lm=240ft
	Figure 610. Identification of maximum skew angles for straight bridges with Lm=300ft
	6.2.2 Curvature

	For curved bridges, both fbu and fl depend on the curvature as indicated by the approximate equations proposed in Chapter 5.  The maximum curvature L/R is solved from the limit state equations for different Lb values as shown in Figure 611, Figure 612 and Figure 613 for Lm=150ft, 240ft and 300ft, respectively.  It is noticed that the maximum curvature is controlled by the end-span cross section in the outer girder.  In addition, it is also shown that the ultimate strength limit state of the compression flange controls the maximum allowable curvature for high Lb values.
	The code specifies a maximum cross frame spacing for curved bridges as follows:
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	where R is the radius of curvature.  Comparisons with the numerical results show that the code recommendation of L/R is adequate in short span bridges (150ft) when Lb is less than 40ft approximately.  However, long span bridges present an allowable curvature lower than the one recommended in the code when the cross sections are designed from a straight girder formulation.
	Figure 611. Identification of maximum curvatures for straight bridges with Lm=150ft
	Figure 612. Identification of maximum curvatures for straight bridges with Lm =240ft
	Figure 613. Identification of maximum curvatures for straight bridges with Lm =300ft
	6.3 Concluding remarks

	In the first part of this chapter, the behavior of the limit states for constructibility were evaluated based on the FEA results obtained from the parametric study.  The following major conclusions were made.
	For the skewed bridges analyzed in this work, it was observed that the effect on the limit states of the girder position, the cross-frame orientation and the skew angle is almost negligible.  However, the cross-frame spacing has a significant effect on the limit state of discretely braced flanges in compression principally in the positive moment regions, since the LFB depends on the cross-frame distance and the capacity of the flange reduces as this parameter increases.  
	It was also observed that the cross sections at the positive moment regions of the end and middle spans are controlled by the second and fourth castings, respectively.  The corresponding flanges in compression in both sections are governed by the ultimate strength limit state.  The negative moment regions are controlled by the fifth casting stage.  The flanges in compression are governed by the yielding limit state for short span lengths bridges.  However, the web bend-buckling limit state governs the compression flanges for longer spans.
	In curved bridges, the results showed that both the curvature and the cross-frame spacing highly affect the limit state ratios in the positive moment regions of the outer girder.  However, a stress relief was observed in the inner girder caused by the length adjustments due to curvature.  Additionally, the LFB exhibited by the inner girder is relieved since its eccentricity with respect to the supports is smaller.  In fact, the LFB undergoes a reversing effect in the inner girder compared to its straight counterpart.  This is caused from the torsional effects that are controlled by the curvature counteracting the overhang load effects in the inner girder.  
	It was observed that the variables that most affect the limit states are the curvature followed by the cross-frame spacing.  The second and fourth castings from the deck-placement sequence control the sections at the positive moment regions of the end and middle spans, respectively.  The ultimate strength is the limit state that principally governs the compression flanges in these sections.  However, the yielding limit state may control in short span lengths with high curvatures.  
	As for skewed bridges, the negative moment regions are controlled by the fifth casting stage.  The yielding limit state governs the compression flanges of bridges with short spans and the web bend-buckling limit state becomes significant in the pier regions for long span bridges.
	None of the critical limit state values resulted from a casting stage where the finishing machine is considered.  
	In the second part of Chapter 6, the maximum allowed skews and curvatures were computed for straight bridges based on the limit states for constructibility and the LFB equations proposed in Chapter 5.   The following principal observations were established.
	For skewed bridges, it was observed that the maximum cross-frame spacing in skewed bridges is controlled by the ultimate strength limit state in the compression flange.  Conversely, the tension flange seems to be unaffected by the skew angle.
	On the other hand, the maximum allowed curvature is controlled in most of the cases by the end-span cross section in the outer girder.  It was also shown that the ultimate strength limit state of the compression flange controls the maximum allowable curvature for large cross-frame distances.  Comparisons with the code recommendation about the maximum cross-frame spacing in curved bridges showed that this specification is adequate in short span bridges when the distance between cross frames is less than approximately 40ft.  However, long span bridges present an allowable curvature lower than the one recommended in the code when the cross sections are designed from a straight girder formulation.
	Chapter 7:  Cross-frame spacing optimization 
	AASHTO (2007) does not include a specific recommendation for the spacing of cross frames in steel bridges.  Therefore, the designer needs to either evaluate different configurations to select the optimum spacing, or follow traditional practice that assures safe results.  For that reason, a reliability analysis was proposed in this work and performed in Chapter 7 to develop a practical method to select the cross-frame spacing for deck placement conditions considering the flexural limit states for constructibility that are affected by the cross-frame spacing.  Initially, a general description of a structural reliability study is given along with the limit states considered in this work.  Then, the adopted structural loading and resistance models are described and their corresponding probabilistic characteristics are presented.  Finally, a Monte Carlo Simulation is performed for straight, skewed and curved steel I-girder bridges generating some fragility curves that allow the maximum cross-frame spacing for deck-placement conditions according to the maximum tolerated level of risk to be identified.
	7.1 Limit States

	According to Nowak and Collins (2000), a limit state is the boundary between the desired and undesired performance of a structure.  The definition of a limit state is based on the identification of a potential structural failure that makes the structure unable to perform as intended originally in the design, e.g. excessive deflections, exceeding the moment capacity, buckling.  The structural limit states are generally classified as ultimate, serviceability or fatigue limit states depending on the failure type prevented.  Thus, ultimate limit states correspond to the loss of load-carrying capacity, the serviceability limit states are related with the user’s comfort and the fatigue limit states control the loss of strength due to cyclic loads.  
	Mathematically, the limit states are represented by a performance function, defined as:
	        71
	where, R represents the “capacity or resistance” and Q the “demand”.  The limit state is obtained specifically when g = 0, which is the border between the safe and unsafe zones as shown in Figure 71.  If g(( 0, the structure is safe, otherwise, an undesired structural performance is exhibited.  The basic variables R and Q are functions of other specific variables such as load components, influence factors, resistance parameters, material properties, dimensions, etc.  Some of these variables may be of random nature.  Therefore, the failure of the system needs to be addressed probabilistically.  
	Figure 71. Limit State function (Nowak & Collins, 2000) 
	Random variables are characterized by their probability density function (PDF), as shown in Figure 72 for R and Q.  Moreover, R-Q is also a random quantity in which the probability of failure is represented by the shaded area where the demand exceeds the capacity.  The analytical expression of the probability of failure is given by (Nowak & Collins, 2000):
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	where FQ and FR are the Cumulative Distribution Functions (CDF) of Q and R, fQ and fR are the Probability Density Functions (PDF) of Q and R, and qi and ri are specific values of Q and R.  Since Eq. 7-2 is difficult to evaluate analytically, alternative procedures are used to indirectly compute the probability of failure based on the concept of the reliability index.  
	Figure 72. Probability functions of load and resistance (Nowak & Collins, 2000)
	The reliability index, also known as the safety index, is the ratio of the mean value of the limit state to its standard deviation, as shown in Figure 73.  However, a more common definition is given when the limit state is expressed in terms of the reduced variables, which are a nondimensional form of the original random variables R and Q as follows:
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	where Z, ( and ( are the reduced variable, the mean value and the standard deviation, respectively.  If R and Q are represented graphically in a space of reduced variables as shown in Figure 74, the reliability index corresponds to the shortest distance from the origin to the line representing the limit state (g=0).  Using equation 7-3 and geometry, the reliability index is defined as:
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	Additionally, if R and Q are normally distributed random variables, the reliability index is related to the probability of failure by:
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	where (( is the CDF of a standard normal variable.  For random variables different than normally distributed and uncorrelated variables, equation 7-5 only gives an approximate definition of (.
	Figure 73. Reliability index in: a. general, and b. reduced coordinates (Melchers, 1999)
	Figure 74. Graphical representation of the Reliability Index (Nowak & Collins, 2000) 
	The present work evaluates the reliability of the flexural limit states for constructibility that are directly affected by the cross-frame spacing, i.e. limit states that consider LFB, as follows:
	 Discretely braced flanges in compression:
	Yielding:         76
	Ultimate strength:       77
	 Discretely braced flanges in tension:
	Yielding:        78
	Limit for LFB:        79
	In order to evaluate the reliability of the limit state equations, it is necessary to define the probabilistic characteristics of the loading and capacity variables that are involved in the equations.  These definitions are called structural loading and resistance models and are described next.
	7.2 Structural loading model

	In this work, the demand (fbu, fl) comes from factored loads corresponding to the Strength-I load combination for construction, where the load factors are taken as 1.25 and 1.5 for the dead and the construction loads, respectively (AASHTO, 2007).  
	All loading variables are treated as normal random variables.  The probabilistic properties of the dead and construction loads are taken from the work developed by Nowak et. al. (2006) for the calibration of the LRFD design specifications for steel curved girder bridges.  The bias factors (λ) and coefficients of variation (V) indicated in Table 71 are based on field measurements made by the University of Minnesota.
	Table 71. General probabilistic characteristics of loads
	7.2.1 Vertical effects, fbu
	7.2.1.1 Definition


	Direct vertical loads produce the major-axis bending stress, fbu, in the girder flanges.  In this study, fbu corresponds to the maximum values obtained in the FEA of the parametric study described in Chapter 4.  Because the influence of the cross-frame spacing in fbu is almost negligible as shown in Chapter 5, fbu is taken only from the FE models with Lb=25ft.
	7.2.1.2 Probabilistic characteristics

	Because fbu is a total factored stress resulting from the considered load combination, it is necessary to define ( and V for the total vertical load (TL), as follows:
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	where Xn is the nominal or design value recommended in the specifications for the X load and  is the corresponding mean value.  Table 72 contains the values computed for the exterior girders subjected to distributed vertical loads.  The same properties are considered for concentrated loads, since in this case the construction-to-dead load ratios are smaller.
	Table 72. Probabilistic characteristics of distributed vertical loads in exterior girders
	7.2.2 Torsional effects, fl
	7.2.2.1 Definition


	Torsional effects generate indirect LFB.  In this work, the LFB effects are computed according to the approximated equations recommended in Chapter 5.  Although these stresses depend directly on the cross-frame spacing, Lb is considered as a deterministic variable in the reliability analyses and is varied from 15ft to 100ft using 5ft increments.  
	7.2.2.2 Probabilistic characteristics

	An approach similar to the one described for vertical loads is followed to define the probabilistic characteristics of the lateral factored loads due to eccentric overhang loading, as shown in Table 73.  However, the same values contained in Table 72 are used for the curvature effects since the proposed LFB equations for curvature depend on the vertical loads only.
	Table 73. Probabilistic characteristics of distributed lateral loads in exterior girders
	7.3 Structural resistance model
	7.3.1 Definition


	In the limit states described in Section 7.1, the resistance R corresponds to the right side of the inequalities given by Equations 7-3, 7-4, 7-5 and 7-6.  The resistance factor, (f, is taken as 1.0 for flexure and Rh is 1.0 for homogenous girders (AASHTO, 2007). The resistances Fyc, Fyt and Fyf correspond to the specified minimum yield strength of a compression, tension or any-stress-state flange, respectively.  According to the material properties, these resistances are equal to 50ksi.  
	On the other hand, Fnc is the nominal flexural resistance of a compression flange.  This resistance is governed by the most critical failure mode between the lateral torsional buckling (LTB) and the flange local buckling (FLB).  The definition of these resistances is given below according to AASHTO (2007).
	7.3.1.1 Lateral Torsional Buckling Resistance:

	The lateral torsional buckling resistance of the compression flange is defined as:
	 If Lb ( Lp, then:
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	since the web load-shedding factor, Rb, is taken as 1.0 for constructibility (AASHTO, 2007). 
	 If Lp ( Lb ( Lr, then:
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	where Cb is the moment gradient modifier, conservatively taken as 1.0; Lb is the unbraced length; Lp is limiting unbraced length to achieve the nominal flexural resistance under uniform bending; Lr is limiting unbraced length to achieve the onset of nominal yielding in either flange under uniform bending with consideration of compression flange residual stress effects; Fyr is the smaller of 0.7Fyc and Fyw, but not less than 0.5Fyc; Dc is the depth of the web in compression; bfc and tfc are the width and thickness of the flange in compression; tw is the web thickness; and E is the steel modulus of elasticity taken as 29000Ksi.
	 If Lb ( Lr, then:
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	where Fcr is the elastic lateral torsional buckling stress.
	7.3.1.2 Flange Local Buckling Resistance:

	The local buckling resistance of a compression flange is taken as:
	 If ( f ( ( pf, then:
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	 Otherwise:
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	where (f is the slenderness ratio for the compression flange, (pf is the limiting slenderness ratio for a compact flange, and (rf is the limiting slenderness ratio for a noncompact flange. 
	7.3.2 Probabilistic characteristics

	In reliability analysis, the resistance R is taken as the product of the nominal resistance (Rn) used in design and three factors that account for the uncertainties due to material properties, fabrication and analysis (Nowak & Collins, 2000):
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	where M is the ratio of the actual to nominal material properties, F corresponds to the ratio of the actual to nominal cross-sectional properties and P is the professional factor defined as the ratio of the test to predicted capacity.  The mean value of the resistance model presented in Equation 7-24 and its corresponding (R and VR are defined as:
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	In this study, the resistance is taken as a lognormal variable. Table 74 contains the probabilistic characteristics of the resistance parameters (Nowak et. al. 2006; Galambos, 2004; White et. al. 2008):
	Table 74. Probabilistic characteristics of resistance variables
	7.4 Monte Carlo Simulation

	In this work, the reliability analysis is applied to the factored loads and resistances instead of the corresponding nominal values.  This is because the load and resistance factors have already been calibrated in the Specifications to meet a target reliability index, (T=3.5.  However, the reliability analysis is performed to study the effect of the cross-frame spacing on the reliability of the flexural limit states for construction using a Monte Carlo Simulation.  This reliability evaluation is carried out for different Lb values.  As a result of this effort, fragility curves are developed in terms of the unbraced lengths (Lb), which are useful to define maximum distance between the cross frames based on the desired reliability level.  
	7.4.1 MCS for each cross-frame spacing

	The following procedure is followed for each cross-frame distance to evaluate the reliability of the limit state equations using the Monte Carlo Simulation:
	1. Definition of the limit state equations in terms of the random variables:
	The limit states described in Section 7.1 are restated in the Resistance – Demand format to define zero () as the failure boundary for the reliability analysis, as follows:
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	2. Generate N specific random values for each random variable.
	The Monte Carlo Simulation requires the generation of random numbers according to the specific probabilistic distribution of the random variable considered.  
	Initially, the random numbers are generated distributed uniformly between 0 and 1.  Common computer generators use a seed value to produce the required number of random numbers, where a different seed value will produce a different set of random numbers.  Next, the normalized and uniform random numbers are transformed to random numbers with the probabilistic characteristics given by the corresponding random variable.  This process is known as the Inverse Transformation Technique Method, where the CDF of the random variable, Fx(xi), is equated to the generated uniformly random number, ui, as indicated by Equation 7-30 and Figure 75:
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	Figure 75. Inverse Transformation Technique Method (Haldar & Mahadevan, 2000)
	Therefore, to generate a set of standard normal random numbers, zi, the following transformation is used:
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	where (-1 is the inverse of the standard normal CDF.  A standard normal distribution is characterized by having a mean and a variance equal to 0 and 1, respectively.  However, a general normal random variable, xi, with mean and standard deviation ((x and (x) different than 0 and 1, is related to zi as follows:
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	Therefore, the normal random values for the load variables, fbu and fl, are generated using Equation 7-32.  For the resistance variables, Rn, a set of lognormal random values are generated using the corresponding transformation, as follows:
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	where  and .
	In this work, the random numbers of the variables are generated using the design or factored value instead of the mean, since the load and resistance factors have already been calibrated in the Specifications as mentioned previously.  
	A total of 1,000,000 random values were generated for each random variable (Rn, fbu, fl), according to the probabilistic characteristics described previously.  For example, Figure 76 shows the generated values of fbu with (=13.66Ksi and (=1.68Ksi for the top flange at the positive moment region of the end spans. 
	Figure 76.  Histogram of the simulated values of fbu with (=13.66Ksi and (=1.68Ksi
	3. Evaluation of the limit state equations for the N realization sets and determination of  their probabilistic characteristics:
	The limit state equations are evaluated for 1,000,000 (N) of realization sets of the random variables defined in the previous step, as shown in Figure 77 for the ultimate strength limit state of a compression flange.  The means and the standard deviations of these limit states were computed based on the evaluated N-set values using the corresponding equations for discrete test data, as follows:
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	where  is the sample mean, sx is the sample standard deviation, n is the total number of observations and xi is a single observation.
	Figure 77. Histogram of the simulated limit state LS2 with (=35.18Ksi and (=4.88Ksi
	4. Probability of failure:
	The estimation of the probability of failure for a specific limit state equation improves as N increases.  If the evaluation of the limit state is less than zero, it means a failure state.  Therefore, an estimate of the probability of failure is defined as:
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	where Nf is the number of simulation cycles that did not satisfy the limit state equation.  
	5. Evaluation of the accuracy and efficiency of the simulation: 
	The accuracy of the simulation is estimated assuming a theoretically correct probability of failure close to zero (P= 10-4) corresponding to a reliability index (() of 3.71, since a zero probability of failure cannot be achieved.   Then, the error is computed based on the 95% confidence interval of the estimated probability of failure (Haldar & Mahadevan, 2000), as indicated by Equation 7-36.  
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	Therefore, it can be affirmed that there is a 95% probability that the true probability of failure will be in the range of 0.0001 ( 0.00002 (0.01% ( 0.002%) when the simulation employs 1,000,000 realizations, for the assumed characteristics of the random variables.
	7.4.2 Fragility curves

	Figure 78 shows an example of the CDFs generated for different Lb values of the first two limit states for the top flange at the positive moment region of the end spans.  It is evident that the CDFs become more critical (i.e., moving toward zero) as Lb increases. This effect is more pronounced in the ultimate strength limit state of the compression flanges.  
	Figure 78.  Simulated CDFs of LS1 and LS2 for different Lb values in a straight bridge
	The simulated probability of failure (Pf) and reliability indices (() of each CDF was plotted against the corresponding Lb to obtain the fragility curves for the limit states, as shown in Figure 79.  These curves represent a practical method to select the maximum cross-frame spacing based on the maximum tolerated probability of failure or reliability index.  
	Figure 79. Fragility curves of LS2 using Monte Carlo Simulation 
	7.4.2.1 Straight Bridges

	Figure 710, Figure 711 and Figure 712 show that the ultimate strength in the compression flange is the governing limit state in the reliability analysis.  It is also observed that the reliability of the system is lower for short span bridges since the LFB effects decrease as the length of the bridge increases.  Table 75 shows the values of the cross-frame spacing required to meet the code reliability index of 3.5.
	Table 75.  Maximum Lb (ft) corresponding to a code reliability level in straight bridges 
	Figure 710. Fragility curves for the end-span sections in straight bridges with Lm=150ft
	Figure 711. Fragility curves for the Lm sections in straight bridges with Lm =150ft
	Figure 712. Fragility curves for the pier sections in straight bridges with Lm =150ft
	7.4.2.2 Skewed Bridges

	From Figure 713, Figure 714, Figure 715 and Table 76, it is observed that the skew angle does not affect the reliability of the bridges and the same results obtained for straight bridges apply in this case.  Appendix E contains the remaining figures corresponding to (=45° and 60°.
	Table 76.  Maximum Lb (ft) corresponding to a code reliability level in skewed bridges 
	Figure 713. Fragility curves for Section S1 in skewed bridges with Lm =150ft and (=30°
	Figure 714. Fragility curves for Section S3 in skewed bridges with Lm =150ft and (=30°
	Figure 715. Fragility curves for Section S2 in skewed bridges with Lm =150ft and (=30°
	7.4.2.3 Curved Bridges

	Figure 716 - Figure 721, Table 77 and Table 78 show that the critical cross-frame spacing is obtained at the end span of the exterior girder.  The ultimate strength of the compression flange is the limit state that governs in most cases.  The reliability in the exterior girder decreases for highly curved and long-span bridges.  This is principally due to the effect of fbu which is largely increased by the curvature and the span length.   
	The critical cross-frame distances in the middle span and the pier regions corresponding to a code reliability level are not unfavorably affected by the span length as shown in Table 77.  However, these distances slightly decrease as the curvature is higher.  
	In general, it is recommended to use temporary vertical supports at the end spans during construction for highly curved and long bridges that do not meet the minimum levels of tolerated reliability.  Appendix F contains the additional fragility curves corresponding to L/R=0.45 and 0.60.
	Table 77.  Maximum Lb (ft) corresponding to a code reliability level in G4 
	Table 78.  Maximum Lb (ft) corresponding to a code reliability level in G1 
	Figure 716. Fragility curves for section S1 in G4 with Lm =150ft -L/R=0.30
	Figure 717. Fragility curves for Section S3 G4 with Lm =150ft -L/R=0.30
	Figure 718. Fragility curves for Section S2 in G4 with Lm =150ft -L/R=0.30
	Figure 719. Fragility curves for Section S1 in G1 with Lm =150ft -L/R=0.30
	Figure 720. Fragility curves for Section S3 in G1 with Lm =150ft -L/R=0.30
	Figure 721. Fragility curves for Section S2 in G1 with Lm =150ft -L/R=0.30
	7.5 Concluding remarks

	A reliability analysis was performed to develop fragility curves that allow the designer to select the cross-frame spacing for deck placement conditions considering the flexural limit states for constructibility that are directly affected by the cross-frame spacing.  The adopted structural loading and resistance models were described along with their corresponding probabilistic characteristics.  A Monte Carlo Simulation was conducted for straight, skewed and curved steel I-girder bridges to obtain the fragility curves that allow identifying the maximum cross-frame according to the maximum tolerated level of risk.  The following observations were established from this effort.
	For all bridge types, the ultimate strength in the compression flange is the governing limit state in the reliability analysis.  Therefore, the fragility curves obtained in this work may be valid for service conditions since the compression flange in these cases act as a composite section.  
	For straight and skewed bridges, it was observed that the reliability of the system is lower for short span bridges since the LFB effects decrease as the length of the bridge increases.  The results showed that the skew angle does not affect the reliability of the skewed bridges and the same results obtained for straight bridges apply in this case.   
	For curved bridges, it was observed that the critical cross-frame spacing is obtained at the end span of the exterior girder.  The reliability in the exterior girder decreases for highly curved and long-span bridges due to the effect of fbu, which is deeply increased by the curvature and the span length.  The critical cross-frame distances in the middle span and the pier regions corresponding to a code reliability level are not unfavorably affected by the span length.  However, these distances slightly decrease as the curvature is higher.  
	In general, it is recommended to use temporary vertical supports at the end spans during construction for highly curved and long bridges that do not meet the minimum levels of tolerated reliability.  
	Chapter 8:  Summary, conclusions and recommendations
	8.1 Summary

	This work has resulted in the development of approximated equations that predict the LFB in steel I-girder bridges during concrete deck placement.  The effects on the flexural limit state equations for constructibility of variables such as skew, curvature, cross-frame spacing, girder cross section and casting sequence were evaluated as well.  In addition, the maximum allowed skews and curvatures were computed for straight bridges based on the limit states for constructibility and the proposed LFB equations.  Finally, fragility curves were developed for steel I-girder bridges during construction that allow selecting the maximum cross-frame according to the maximum tolerated level of risk.
	Introductory material was presented in Chapter 1 including general information of the research topic, the need for this project, the main research objectives and the research methods.  Chapter 2 presented the literature review of topics related to this research project such as LFB, overhang loads, curved and skewed steel I-girder bridges, specifications and structural reliability.  
	Chapter 3 discussed the principal modeling procedures employed to conduct FEA in this project.  A description of the material models, the finite elements and analyses required to model the bridge behavior during deck placement conditions is included.  A validation of the modeling procedures was also presented based on the results from different experimental tests.  
	The parametric study used to investigate the effects of the deck-placement process on the LFB of steel I-girder bridges was described in Chapter 4.  The description covered the parametric variables, the loads, the structural design and the analyses for each parametric configuration that properly represent the deck casting sequence. 
	Chapter 5 presented the results from the parametric study that allow formulating approximate equations to predict the LFB in straight, skewed and curved steel I-girder bridges during deck placement.  The major-axis bending stresses were also analyzed, where the principal contribution was made for curved.  
	In Chapter 6, the AASHTO flexural limit states for constructibility were evaluated using the results from the parametric study along with the equations proposed in Chapter 5 to estimate the LFB.  Initially, the critical sections along the bridge were identified and the effects of the cross-frame spacing and the deck-placement sequence in the governing limit states were evaluated as well.  Finally, the maximum allowable skews and curvatures for deck placement conditions were computed for bridges designed originally as straight.  
	Chapter 7 described the reliability analysis performed to develop the fragility curves.  A general description of a structural reliability study is given initially, followed by the definition of the structural loading and resistance models employed in this work.  Then, the Monte Carlo Simulations were performed for straight, skewed and curved steel I-girder bridges resulting in the fragility curves that allow identifying the maximum cross-frame spacing for deck-placement conditions according to the maximum tolerated level of risk.
	8.2 Conclusions

	The bending stresses obtained during deck placement conditions in three-span straight, skewed and curved steel I-girder bridges were evaluated in Chapter 5 using the results obtained from a FEA parametric study.  A symmetric deck casting sequence was considered where the positive moment regions are poured first.  The LFB stresses caused by different sources were estimated by the curves that have the best fit to the numerical critical stresses.  The following major conclusions were established from this evaluation.  
	 Straight structures:
	The major-axis bending stresses exhibited by the exterior girders of straight bridges are independent of the cross-frame spacing.  Therefore, these stresses may be obtained from the structural analysis of either a simplified model that does not consider explicitly the cross frames or a more detailed model involving any cross-frame distance.
	For the positive moment regions, the LFB due to distributed loads was satisfactorily predicted by the equation proposed in this work over the entire range of cross-frame distances, principally at the end spans.  Although the LFB obtained in the middle span is lower, the same equations were proposed to simplify the approximations.  Comparisons with the code estimations showed that the Specifications are highly conservative in all cases, especially for large cross-frame distances.  
	For concentrated loads, a linear regression considering the most external points from the critical curves was performed to adjust the numerical stresses.  These external points correspond to models where the concentrated loads are placed at the middle of a cross-frame spacing which is the critical location.  The proposed equation for the bottom flange governs over the code equation for cross-frame distances larger than 26ft.  However, both the code and the proposed approximations coincide for the top flange.
	The LFB effect on the negative moment regions was approximated considering only the distributed loading case since the contribution from the concentrated loads is negligible.  The results showed that the proposed equation satisfactorily predicts the LFB in both flanges.  
	 Skewed structures
	The results showed that skewed bridges exhibit LFB even when torsional loads are not applied.  However, in the presence of torsional effects, the LFB effect is slightly more pronounced when the cross frames are oriented parallel to the supports.  Therefore, a perpendicular orientation of the cross frames is recommended for general skewed bridges to increase the lateral stiffness of the structure.  This perpendicular configuration was adopted in this work to evaluate the LFB effects.  
	The results indicated that the major-axis bending in skewed bridges is not only independent of the cross-frame spacing but also of the skew angle.  Therefore, these stresses may be taken from structural analyses performed for skewed bridges with any cross-frame spacing and skew angle, including their simplified straight counterpart.  
	The LFB in the positive moment regions was approximated using curve fitting models similar to the ones used for straight bridges.  For distributed loads, a lower limit was introduced in the proposed equation for the bottom flange since this flange exhibits LFB even for closely spaced cross frames.  The minimum LFB stress considered in the bottom flange is proportional to the skew angle.  The results were compared to the code equation for overhang loads and significant overestimations of the LFB principally for long cross-frame distances were found.  For concentrated loads, the results showed that the code equation for overhang loads fails to satisfactorily predict the LFB in most of the cases, principally in the bottom flange.
	The LFB in the negative moment regions was approximated in this work by a constant term that depends on the skew angle.  This approximation was adopted to conservatively estimate the stresses which do not exhibit a consistent trend in these regions.  The results also indicated that the code recommendation of using 10Ksi for the unfactored LFB stresses in skewed bridges is conservative even compared to factored stresses.    
	 Curved structures
	The evaluation of the bending stresses in curved bridges indicated that the major-axis bending and the LFB are deeply affected by the curvature and the position of the girder, i.e. outer or inner girder.  
	The analyses showed that the major-bending stresses in curved bridges are independent of the cross-frame spacing.  However, they increase linearly with the curvature at the positive moment regions of the end spans.  Conversely, these stresses at the middle span of the outer girder are not significantly affected by the curvature.  A linear model was proposed to estimate the major-bending effects in the positive moment regions of both exterior girders.  This model computes the major-axis bending in curved bridges based on the major-axis bending stresses exhibited by their straight counterpart.  Therefore, the proposed equation allows estimating the major-axis bending in curved bridges from structural analyses of simplified straight bridges.  In the negative moment regions, the major-bending stresses also exhibit a linear trend but it is independent of the span length.  
	The assumption of computing the major-axis bending based on a simplified straight model with the real arc length of the curved girder does not help to represent the curvature effects on these stresses.  In fact, the AASHTO recommendation of ignoring the curvature effects for fbu when L/R is lower than 0.06 introduces an error of approximately 10% in long span bridges.    
	The LFB in curved girders is caused by both the curvature and the overhang loads.  However, it was shown that the participation of the overhang loads in the LFB is low compared to the curvature effects.  In fact, the overhang-to-curvature effect ratio reduces as the length of the span and the curvature increase.  Therefore, the overhang term was dropped from the final expression proposed for the LFB which simplifies to the curvature term only.  However, the torsional effects due to overhang loads are implicitly considered since the curve fitting process is applied to the total LFB obtained from the parametric study.  A comprehensive formulation to estimate the LFB effects due to curvature was developed for distributed and concentrated loads, respectively.  The critical case between the top and bottom flanges was selected to define the equations proposed in this work to estimate the LFB in curved bridges.  
	The results indicated that the LFB is practically unaffected by the variation of the curvature, a slight effect was only observed in the positive moment regions of the middle span.  This observation indicates that these effects need to be considered even in bridges with large curvature radii.  
	The equations proposed in this project to estimate the LFB in curved bridges work adequately in both exterior girders.  Significant reductions were found in most of the cases compared to the estimations given by the AASHTO.  
	The major-axis bending effects in the AASHTO equation were computed using both the numerical and the estimated major-axis bending stresses, obtaining similar results.  The estimated major-axis bending stresses correspond to the stresses computed using the equation proposed in this work to estimate fbu in curved bridges from the results obtained in their straight counterpart.  Therefore, the LFB in a curved bridge can be conservatively approximated using the code equation together with the major-axis bending from a corresponding straight bridge.  The advantage of the proposed equations over the code approximation is that it is not required to know in advance the major-bending effects to compute the LFB.  However, the principal disadvantage is that different expressions are required to define the effects of distributed and concentrated loads, while the code approximation consists of one single equation that applies for all load cases independent of the girder location and flange position.   
	However, the results from the parametric study indicated that the code equation fails to predict the LFB due to distributed loads at the inner girder of highly curved bridges with long spans.  Therefore, it is recommended to use the equation proposed in this work which predicts satisfactorily the LFB in all cases.  It was also observed that the bottom flange under concentrated loads exhibits the most critical LFB effects compared to the top flange, especially for short span lengths.  
	The results indicated that the outer girder exhibits the most critical combined bending effects.  On the contrary, the curvature decreases the magnitude of the major-bending stresses in the inner girder resulting in a combined bending action much lower than that corresponding to the outer girder.  Therefore, the design of both exterior girders shall be based on the evaluation of the outer girder, unless an optimization of the inner girder is pursued.  In that case, the effects of the girder stiffness in the behavior of the whole cross section of the deck shall be investigated.
	The first part of Chapter 6 was intended to evaluate the behavior of the limit states for constructibility based on the FEA results obtained from the parametric study.  The following major results were obtained.
	For the skewed bridges analyzed in this work, it was observed that the effect on the limit states of the girder position, the cross-frame orientation and the skew angle is almost negligible.  However, the cross-frame spacing has a significant effect on the limit state of discretely braced flanges in compression principally in the positive moment regions, since the LFB depends on the cross-frame distance and the capacity of the flange reduces as this parameter increases.  
	It was also observed that the cross sections of the end and middle spans are controlled by the casts where the concrete is placed over the complete positive moment region.  The compression flanges in both spans are governed by the ultimate strength limit state.  The negative moment regions are controlled by the last casting stage.  The flanges in compression are governed by the yielding limit state for short span length bridges. However, the web bend-buckling limit state governs the compression flanges for longer spans.
	In curved bridges, the results showed that both the curvature and the cross-frame spacing highly affect the limit state ratios in the positive moment regions of the outer girder.  However, a stress relief was observed in the inner girder caused by the length adjustments due to curvature.  Additionally, the LFB exhibited by the inner girder is relieved since its eccentricity with respect to the supports is smaller.  In fact, the LFB undergoes a reversing effect in the inner girder compared to its straight counterpart.  This is caused from the torsional effects that are controlled by the curvature being counteracted by the overhang load effects in the inner girder.  
	It was observed that the variables that most affect the limit states are the curvature followed by the cross-frame spacing.  The sections of the end and middle spans are controlled by the casts that consider the concrete over the total positive moment regions.  The ultimate strength is the limit state that principally governs the compression flanges in these sections.  However, the yielding limit state may control in short span lengths with high curvatures.  
	As for skewed bridges, the negative moment regions are controlled by the last casting stage.  The yielding limit state governs the compression flanges of bridges with short spans and the web bend-buckling limit state becomes significant in the pier regions for long span bridges.
	None of the critical limit state values resulted from a casting stage where the finishing machine is considered.  
	In the second part of Chapter 6, the maximum allowed skews and curvatures were computed for straight bridges based on the limit states for constructibility and the LFB equations proposed in Chapter 5.   For skewed bridges, it was observed that the maximum cross-frame spacing in skewed bridges is controlled by the ultimate strength limit state in the compression flange.  Conversely, the tension flange seems to be unaffected by the skew angle.
	On the other hand, the maximum allowed curvature is controlled in most of the cases by the end-span cross section in the outer girder.  It was also shown that the ultimate strength limit state of the compression flange controls the maximum allowable curvature for large cross-frame distances.  Comparisons with the code recommendation about the maximum cross-frame spacing in curved bridges showed that this specification is adequate in short span bridges when the distance between cross frames is less than approximately 40ft.  However, long span bridges present an allowable curvature lower than the one recommended in the code when the cross sections are designed from a straight girder formulation.
	A reliability analysis employing a Monte Carlo Simulation was performed in Chapter 7 to develop fragility curves that allow the designer to select the cross-frame spacing for deck placement conditions.  The following observations were established from this effort.
	For all bridge types, the ultimate strength in the compression flange is the governing limit state in the reliability analysis.  Therefore, the fragility curves obtained may be valid for service conditions since the compression flange in these cases acts as a composite section.  
	For straight and skewed bridges, it was observed that the reliability of the system is lower for short span bridges, since the LFB effects decrease as the length of the bridge increases.  The results showed that the skew angle does not affect the reliability of the skewed bridges and the same results obtained for straight bridges apply in this case.   
	For curved bridges, it was observed that the critical cross-frame spacing is obtained at the end span of the exterior girder.  The reliability in the exterior girder decreases for highly curved and long-span bridges due to the effect of fbu, which is deeply increased by the curvature and the span length.  The critical cross-frame distances in the middle span and the pier regions corresponding to a code reliability level are not unfavorably affected by the span length.  However, these distances slightly decrease as the curvature is higher.  
	In general, it is recommended to use temporary vertical supports at the end spans during construction for highly curved and long bridges that do not meet the minimum levels of tolerated reliability.  
	8.3 Recommendations

	The results presented in this work correspond to steel I-girder bridges with the specific characteristics described in the parametric study.   Additional parametric variables such as overhang length, girder spacing, number of girders, number of spans, yielding strength, etc., should be incorporated in future research efforts to complement the existing conclusions.  In particular, the parametric study is based on the loads factored according to the Strength I load combination of the Specifications.  Additional load combinations may be considered where the LFB effects due to wind are analyzed.  In addition, in this study, a symmetric deck casting sequence was considered.  The evaluation of critical conditions exhibited during unsymmetrical sequences would be a beneficial supplement to the existing work.
	The present work is focused on the evaluation of the flexural bending stresses exhibited by the girder flanges.  Future work incorporating shear stresses, deflections and distortions will provide the engineer with the criteria required to evaluate the complete structural behavior of steel I-girder bridges during construction.  Moreover, the evaluation of the internal forces in the members of the lateral bracing system will contribute to improve the corresponding design specifications.  
	It is suggested that some of the results obtained in this work be validated by conducting experimental tests.  
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