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Abstract

Modeling and Analysis of GaN/InGaN Light Emitting Diodes

by

Srinitya Musunuru
Master of Science in Electrical Engineering

West Virginia University

Lawrence A. Hornak, Ph.D., Chair

GaN based optoelectronic devices have had significant impact in solid state lighting. De-
veloping efficient light emitting diodes has been of great research interest in recent years.
Electrical modeling of light emitting diodes is now gaining its importance with the develop-
ment of TCAD tools to have a better understanding of the device structure and to have cost
reduction associated with the material and labor.

In this thesis a TCAD model for our device has been developed with the finite element
analysis TCAD tool sentaurus from synopsys. The developed model has been validated to
the experimental results. The electrical characteristics of the device have been analyzed with
the use of band diagrams, current distribution, radiative recombination rate and IV plots.

Different layers of the device have been studied and analyzed and certain design changes
to achieve an enhancement in the efficiencies are proposed. The problem of current crowding
in LEDs has been widely reported in the literature. In this study passive modeling of the LED
structure with PSPICE has been carried out to understand the impact of the conductivities
of different layers on the problem of current crowding. With the feedback from the PSPICE
model an analytical relation has been determined between the p-GaN layer and n-GaN layer
to have uniform current spreading. However, establishing the analytical relation between
these layers is experimentally challenging. An alternate design change utilizing transparent
conducting AZO contact to p-GaN has been designed and analyzed.
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Notation

We use the following notation and symbols throughout this thesis.

LED : Light emitting diode
MQW : Multi quantum well
(ρ) : Resistivity
(ν) : Mobility
(χ) : Electron Affinity
DUT ; Device under test
(ε) : Epsilon
EBL : Electron blocking layer
AZO : Aluminium alloyed Zinc Oxide



1

Chapter 1

Introduction

1.1 Introduction

Since, the invention of the incandescent bulb by Thomas Edison in 1979, there has been

great thirst to create less expensive, more reliable and brighter light sources. Massive in-

dustries have been created to produce filament and fluorescent lamps for interior decoration,

sodium discharge lamps for street lighting etc. Given, the drawbacks associated with the

efficiency and life time of these sources, solid state lighting, based on semiconductor light

emitting diodes had made a revolutionary change with their applications in a wide variety

of fields. WARP 75 consisting of a number of LEDs is device developed by NASA that is

being used as source of light for plants grown on space station and the biologists have found

that cells exposed to near infrared light have grown 150 to 200 times faster than those not

simulated by any such light [11]. This device is now being used in medical applications and

is believed to improve the bone marrow transplant patient’s quality of life[12]. LEDs are

now being used in automobile applications and the introduction of LED headlights by Audi

is expected to revolutionize the automotive industry. The key for all these applications is

developing efficient LEDs.

Light emitting diodes are specially designed semiconductor p-n junctions that act as

transducers converting electrical energy to light energy, with the process known as electro-

luminescence. The color of light emitted mainly depends on the band gap of the designed
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p-n junction, given the relation:

Energy of the emitted photon, E = hc
Λ

(1.1)

The history of LED technology dates back to the 1920’s with the introduction of SiC

based LED’s. However, the efficiency of these devices was less than 0.005 % thus, raising

the need for alternating materials [9] . The growth of III-V light emitting diodes started in

1954. The III-V compounds serve as promising materials for the growth of LED’s because

of their wide band gap property. GaAs based infrared light emitting diodes were reported in

1962 by groups from RCA, GE, IBM and MIT. The maximum efficiencies achievable with

these materials was around 0.2-0.35 % [9]. Visible LEDs were realized by alloying GaAs and

GaP [13]. The limiting efficiency of these alloy devices was 0.2% for GaAs and a droop to a

value less than 0.005 % with increase in phosphorous to 44 % [14].

AlInGaP has gained in importance for light emitting diode applications. The perfor-

mance of AlInGaP based LEDs is characterized by a green emission wavelength peaking

around 570nm with an efficiency of around 1%[15]. Efforts to move the emission peak to-

wards greenish light resulted in the reduction in the external quantum efficiency as the band

structure of AlInGaP approaches indirect transition band structure.

In 1960 the director of the Radio Corporation of America , James Tietjen and his group

started exploring GaN to realize visible LEDs. In 1969 the successful growth of single crystal

GaN on sapphire has been reported by Maruska and Tietjen of RCA laboratories [16]. The

GaN powder was prepared by reacting ammonia with liquid gallium metal, as indicated in

the following reaction :

2Ga+ 2NH3 → 2GaN + 3H2 (1.2)

GaN samples obtained were found to be unintentionally doped n-type. Achieving p-type

GaN then became an area of intense research interest to obtain a GaN based p-n junction.

Zinc was first explored to be used as a p-type dopant to GaN, however the GaN sample

turned insulating with zinc dopants. The first GaN LED was still fabricated by Pankove et

al that consisted of an undoped n-type region, an insulating Zn doped layer and an Indium



Srinitya Musunuru Chapter 1. Introduction 3

surface contact [17]. The realized LED emitted red, blue, green or yellow light depending on

the Zinc concentration.

Later in 1972, Maruska et al proposed the use of magnesium dopants over zinc dopants

[18]. GaN LEDs having emission wavelength of around 430nm were obtained with magnesium

dopants. Since then, magnesium dopants have since become the basis for all commercially

available LEDs. However, obtaining good conducting GaN films with magnesium dopants

was still a challenge, and the research virtually ceased because of the difficulties invloved.

Later, in 1989 Amano et al eventually was able to obtain good p-type GaN, and reported

that low energy beam radiation could help to obtain a two order increase in the photo

luminescence [19]. Van Vechten et al attributed this increase in p-type conducting nature

to the formation of an Mg:H complex that passivates the acceptor and prohibits p-type

conduction. When irradiated with a low energy electron beam the complex and enables

Magnesium to settle as a shallow acceptor at approximately 0.16eV above the valence band

[20].

GaN having a band gap of 3.4eV, is alloyed with other III-Nitride materials to form a large

range of direct band gap materials, making it a promising material for applications in various

optoelectronic devices [15]. GaN based LED’s employ band gap engineering techniques,

wherein the elemental composition of semiconductor alloys is varied in a controlled way to

achieve a desired band gap that can emit in the desired range of wavelengths.

In 1995, Shuji Nakamura from Nichia Industries Corporation, Japan demonstrated the

development of first blue and green InGaN based double heterostructure LEDs with efficien-

cies of around 10 % by band gap engineering of InN and GaN percent composition [21]. In

this study, InGaN quantum wells used were obtained by alloying InN with GaN, with which

an emission range of 1.0eV to 3.4eV could be obtained.

x(GaN) + 1− x(InN) → In1−xGaxN (1.3)

Since then, the ternary III-Ntiride semiconductor compound InGaN, has become the can-

didate for use as the active layer in Quantum wells. Thus GaN based optical device struc-
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Figure 1.1: Band gap engineering of the III-Nitride materials to achieve the desired wave-
length of devices [1].

tures take advantage of GaN/AlGaN, GaN/InGaN Quantum Wells. The InGaN films were

grown by two-flow MOCVD method. Trimethylgallium (TMG), trimethylaluminum(TMAl),

trimethylindium (TMI), monosilane (SiH4), bis-cyclopentadienyl magnesium (CpzMgj, di-

ethylzinc (DEZ), and ammonia (NH,) were used as Ga, Al, In, Si, Mg, Zn, and N sources,

respectively [2].

In the first double heterostructure LED as shown in fig 1.2, all the layers as reported by

Nakamura et’al were grown by MOCVD. Ni/Au layer was directly evaporated on to p-GaN

to obtain the p-contact while, the Ti/Al contact has been evaporated to n-GaN upon etching

the p-GaN and the quantum wells [2].). An external efficiency of 2.7% has been obtained

using this LED.

Several investigations have then been made on use of InGaN/GaN Multi Quantum Well

structures as opposed to bulk InGaN, and an enhanced optical efficiency of nearly 2 orders

of magnitude greater was obtained [22]. The external quantum efficiencies of blue and green

MQW LEDs was increased to 10 % and 7% respectively.

The major challenge in the research and development of designing the LEDs includes

developing structures to minimize the input electrical power, and generate more light output
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Sapphire 

GaN buffer layer 

n-AlGaN 

Zn doped InGaN 

p-AlGaN 

p-GaN 

n-GaN 

p-electrode 

n-electrode 

Figure 1.2: Single Quantum Well heterostructure LED [2].

with minimal heat dissipation i.e increase the internal efficiency or the electroluminescence

and the extraction efficiencies [9].

The improvement of internal quantum efficiency of the device greatly depends on the

design of the LED and specifically on the layer characteristics and the quality of the material

growth. The dependence of the internal quantum efficiency on the layer characteristics of

the LED will be covered as a part of this thesis.

It has been observed that, an LED with a high internal efficiency still had a lower external

efficiency, given the problem of total internal reflection in LEDs [9]. There have been various

design changes proposed to enhance the external quantum efficiency some of which are now

discussed.

Wierer et’al reported flip chip LEDs with 1.6 times more external extraction efficiency

than a conventional top emitting LED. The major disadvantage of the conventional LEDs is

the absorption of photons by the metal contacts, bond pads and wire bonds to the package.

In the proposed flip-chip design, the light emitting chip is inverted compared to the conven-

tional LEDs, thus avoiding absorption from the contact pads, as the extraction is through

the transparent Sapphire substrate [3].
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Figure 1.3: Proposed Flip chip LED by Wierer et’al [3]

Another major advancement in improving the extraction efficiency of LEDs has been

introduced by Boroditsky et’al, with the use of a two dimensional photonic crystal on LEDs.

A thin slab of photonic crystal can be used to tailor the emission direction so as to have

increased emission in the useful directions and reduce the need for noisy loss reflectors.

Efficiencies of 1.5-2 times higher than conventional LEDs have been reported [23].

Figure 1.4: The top view of the Photonic crystal embedded on the LED as illustrated by
Barton et’al [4]

Nakada et’al in 2000 reported that, a DBR introduced before the fabrication of LED

could improve the extraction efficiency of the device, given the fact that the transparency

of Sapphire substrate could cause loss of light. A 30% increase in the external quantum

efficiency has been observed with the use of 15 period GaN/AlGaN DBR structures [5].

Also, to have better performance characteristics it is quite important to get a very good

contact system to the materials, to minimize the voltage drop at the metal-semiconductor
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Figure 1.5: 15 period GaN/Al0.27Ga0.73N DBR on Sapphire substrate for InGaN/GaN multi
quantum well LED as illustrated by Nakada et’al [5].

junction. Ohmic contact system to n-GaN can be easily formed by using a metal with work

function less than that of GaN. Ti-Al based contact schemes have been widely used for

n-GaN [20].

Achieving less resistive ohmic contacts to the p-GaN has been a great challenge for the

fabrication of LEDs, given the large work function of p-GaN due to its high electron affinity

and large band gap. The formation of ohmic contacts thus needs either a low schottky barrier

or a heavily doped p-GaN through which the carriers could tunnel. Knowing the difficulties

in incorporating magnesium dopants in p-GaN it is easier to achieve a low schottky barrier

by proper annealing of the metal contacts. Annealed Ni/Au contacts have been used since

several years to form a good contact system to p-GaN . Koide (et al) described the ohmic

characteristics of the annealed Ni/Au contacts to the formation of semiconductor layer with

high carrier concentration formed due to the removal of hydrogen bonded with Magnesium or

Nitrogen in GaN [24]. Several studies later reported the key for formation of ohmic contacts

to p-GaN is some interfacial reactions resulting in interfacial compounds of Gallium with

Nickel and Gold.These metal contacts were however, only partially transparent, and most of

the light generated cannot be extracted from the top of devices, despite of the fact that GaN

based LEDs are optically transparent. Kim et’al thus proposed that, the use of transparent

conducting ITO as ohmic contacts to p-GaN , would increase the light emitting area, thereby
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increasing the intensity of the light extracted and hence the external quantum efficiency [25].

Since, then several transparent conducting oxides such as Cadmium Tin Oxide, Zinc Oxide

have been studied and reported [6].

Figure 1.6: ITO as transparent conducting layer to InGaN/GaN LED Lim et’al [6].

1.1.1 Scope of this Thesis

Designing light emitting diodes to have better efficiency is a great challenge to researchers

in this area. This thesis deals with the study of the impact of various layers in the structure

and discusses the impact of various design changes to the carrier confinement in LED. Apart

from the experimental methods, computational methods for design and evaluating of the

light emitting diodes play a vital role in research and development. Once tuned to experi-

mental results from a particular device these tools, enable prediction of the impact of device

design changes on performance resulting in cost savings. The various TCAD tools APSYS

from Crosslight, Sentaurus from Synopsys, Silvaco etc. available in the market have made

computational modeling of the semiconductor devices like LEDs, LASERs, FETs, MOSFETs

easier.

In this thesis, the finite element analysis tool Sentaurus from Synopsys has been used

to study the physics and the important design aspects of LEDs. The models used for

the device modeling are the basic electromagnetic wave equations based on the poisson’s
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equation, the continuity equations for the carrier transport, to solve the electrical problems

and gain equations based on schrodinger’s equation are used to couple the electrical and

optical problems and some recombination models, that will studied in detail in the coming

chapters.

In this study, MOCVD grown GaN and InGaN layers with, etched circular mesa struc-

tures is employed.The material physical parameters are first tuned to match the simulated

results more closely with the experimental results. These results were tested and validated

by comparing the IV’s, band structure’s, current density distributions and optical power

measurements, and will be discussed and explained in detail to get a better understanding

of the LED physics.

The impact of AlGaN electron blocking layer on the carrier confinement of electron-hole

pairs to the multi quantum well has been studied in detail and the influence of design changes

to this layer on the device characteristics has been studied and presented in this thesis.

The problem of current crowding with Ni/Au contact on LEDs has been studied. An

analytical model has been developed using SPICE tools to understand the dependence of

current crowding on conductivities of each of the layers, and design changes to p-GaN have

been proposed. Alternatively aluminium alloyed zinc oxide has been designed for use as a

transparent conducting contact to p-GaN and techniques to achieve uniform current spread-

ing with such a contact is discussed.
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Chapter 2

Theory

2.1 Semiconductor Physics

This chapter deals with the basic material properties particularly the semiconductors,the

basics of semiconductor devices, p-n junction diodes and optoelectronic devices specifically

the light emitting diodes. Materials are broadly classified into three different classes; con-

ductors, insulators and semiconductors [26].

Conductors: A conductor is a material, in which the outer electrons of the atom are

loosely bound and are free to move through the material. Such materials usually have a

overlapped conduction and valence bands. Metals are the best examples of conductors.

Insulators: An insulator is a material in which the atoms hold the outer electrons tightly.

Such materials have considerable a large energy gap between the conduction and the valence

bands. Some examples of the insulators include glass, plastic, rubber etc.

Semiconductors: A semiconductor is a material whose conductivity lies between conduc-

tors and insulators. Semiconductors could be either elemental or compound semiconductors.

Elemental semiconductors include silicon, germanium etc; while, GaN, GaAs etc; are the

examples of compound semiconductors. The electronic properties of a semiconductor could

be controlled by the addition of external impurities called dopants. Pure semiconductors

are called intrinsic semiconductors, while semiconductors with external impurities are called

extrinsic semiconductors. The extrinsic semiconductors are usually classified as p or n-type

semiconductors, depending on if the kind of dopants is acceptors, carrier creating a fixed
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Figure 2.1: Band diagrams of 1)Insulators 2)Semiconductors 3)Metals.

negative charge at the dopant site and a mobile hole in the lattice, or donates an electron

creating abundance of holes or a fixed positive charge and a mobile electrons respectively,

respectively. Extrinsic semiconductors and their dopant control in quality and location forms

the basis of many semiconductor device applications.

The E-K diagram or energy-momentum diagrams play a very important role in deter-

mining the electrical properties of a given material. The band gap energy, fermi level and

the electron affinity are the characteristic of each material and are the basis of the band

diagrams. The band gap energy is the minimum energy difference between the valence band

and the conduction band and is nearly zero for conductors, reasonably high for insulators

such that there are no free carriers at room temperature and intermediate for semiconduc-

tors. The fermi level denotes the highest occupied level by an electron in the valence band

and the electron affinity dictates the amount of energy required to remove an electron from

the conduction band of the solid into vacuum.

Semiconductor materials are further classified as direct and indirect band gap materials,

depending on the position of the conduction band maxima and the valence band minima.
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Figure 2.2: E-K diagram illustrating direct and indirect band gap semiconductors[7]

A material is said to be direct band gap material, if the conduction band minima and the

valence band maxima of the semiconductor have the same k-vector and an indirect band gap

semiconductor if there is a displacement in the k-vectors of the conduction band minima and

the valence band maxima. In the case of a direct band gap semiconductor an electron in the

conduction band minima can directly recombine with a hole in the valence band maxima

without the need for an intermediate transition, while an indirect band gap semiconductor

involves an intermediate transition to preserve the law of conservation of momentum. The E-

K diagrams examples of direct and indirect band gap materials are shown in the Figure2.2[7].

2.2 Conduction and emission mechanisms in semicon-

ductors

In a semiconductor at 0K, the conduction band is empty and the valence band is com-

pletely filled with electrons, thus conducting no electricity. As temperature increases, elec-

trons may overcome the forbidden energy or the band gap energy and reach the conduction
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band, leaving behind holes near the top of the valence band, with the process known as

an intrinsic generation process. Under the influence of an external electric field, both the

carriers tend to move, in opposite direction and start conducting.

The electrons and holes are distributed into the conduction band and valence band and,

are governed by the Fermi-Dirac statistics assuming that no two two particles can occupy

the same state.The Fermi-Dirac distribution function, indicates the probability that a state

of energy E could be filled with an electron and is denoted by [26]

f(E) = 1
1+exp[(E−Ef )/kt]

(2.1)

If g(E) denotes the number of states available for occupancy, f(E) denoting the probability

of occupying a state, the distribution of electrons in an energy interval dE is given by,

dn(E) = ρc(E) · fn(E) · d(E) (2.2)

dp(E) = ρv(E) · fp(E) · d(E) (2.3)

The basis of operation of any semiconductor device is the creation or annihilation of

electron-hole pairs that involves, exciting an electron from valence band to conduction band.

In principle any energetic particle, incident on the semiconductor which could impart energy

equal to the band gap energy could results in excitation of electrons from the valence band

to the conduction band causing, current to flow, making the system thermodynamically

unstable, np=n2
i , deviating from the equilibrium state. To attain the stability, the excited

electrons tends to fall back to a lower energy band say the valence band, releasing the excess

energy, which usually is the band gap energy in the form of a photon or phonon the process

being either radiative or non-radiative recombination. The characteristics of the photon are

governed by the equation:

Energy of the emitted Photon,4E = hc/Λ (2.4)

where, 4 E is the energy difference between the two states.

This emission mechanism of an unstable system could be either spontaneous emission

or stimulated emission. In stimulated emission, an incoming photon, stimulates the whole
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.

Figure 2.3: Illustration of band diagram, available states, probability of occupancy of a state,
distribution of carriers [8].

emission, by inducing the electron at E2 to transit down to E1. On the other hand, in

spontaneous emission, an electron at a higher energy state E2, falls back to a lower energy

state E1, with the emission of excess energy as a photon. The difference between the two

states is equal to the energy of the photon and determines the wavelength of the emitted

photon. Also, in stimulated emission due to the coupling of the electric fields of the photon,

and the electron, the emitted photon is in phase with the incoming photon, and has the

same polarization and energy as the incoming photon. For stimulated emission, no electron

in the E1 state, should absorb the photon. For this to happen, the number of electron

in the excited state E2, should be greater than the number of electrons in E1 state, also

known as population inversion, while there is no such requirement for spontaneous emission.

Spontaneous emission forms the principle of operation of LEDs, while the stimulated emission

forms the basis of Laser diodes. Figure2.4 [7] illustrates the difference between stimulated

and spontaneous emission mechanisms
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Figure 2.4: Stimulated and Spontaneous Emission Mechanisms [7].

2.3 Principles of p-n junction diode

The p-n junction diode forms the elemental building block of various solid state devices

like, Bipolar Junction Transistors (BJT’s), Field Effect Transistors FETs, LEDs, solar cells

etc, and are formed by bringing p-type and n-type semiconductors having large concentration

gradient of free holes and electrons respectively in contact with each other, creating a large

concentration gradient of holes from the p to n side across the junction and vice-versa. As

the carriers try to diffuse through from the regions of high concentration to the low concen-

tration, they leave behind uncompensated oppositely charged mobile ions. The separation

of the positive and negative charges creates an electric field that opposes further diffusion of

carriers. This electric field generates drift currents of electrons and holes, exactly matching

the diffusion current, that results in the equilibrium condition having the net electric current

be zero [27].

A potential gradient Vbi , developed by the virtue of this electric filed is the built-in
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potential and determines the band bending in the depletion region [28].

Vbi = kB ·T
q

NA·ND

n2
i

(2.5)

In equilibrium the diffusion of holes and electrons from p to n-side causes accumulation of

electrons and holes on the either sides respectively.This region consisting of positive and

negative charges on the opposite side of the junction is the depletion or the space charge

region, and is calculated using the equation [28]:

W =
√
|−Vbi|2·εo·εsd·ND

(2.6)

This depletion layer of the p-n junction can be treated a parallel plate capacitor, and on

applying a bias voltage Va can be calculated using [28];

C =
√
q·εo·εs·ND·A√
Vbi−Va

(2.7)

2.3.1 Bias conditions for p-n junction

It has been studied that, under the equilibrium conditions the formation of a potential

barrier restricts the flow of any majority carriers and has no conduction current. For, the

p-n junction device to start conducting, the barrier height at the junction is to be reduced

so that carriers could flow through. This forms the basis of the forward and the reverse bias

operation of the p-n junction diode. Let us consider a p-n junction diode connected to a

voltage source as shown in Figure 1.5. [26]

The device is said to be forward biased when the p-side of the junction goes to the positive

terminal of the source and n to the negative terminal of the source, and reverse biased when

the p goes to the negative terminal and n to the positive terminal.Under any bias conditions

voltage Va applied across the junction, is expected to appear across the depletion or the space

charge region, as the resistivity of the neutral region is small and one expects a minimal drop

in these regions. An applied forward bias Voltage Va, raises the electrostatic potential on the

p-side relative to the n-side and lowers the potential barrier from Vbi, to a value equivalent

to Vbi − Va, while the reverse bias voltage (V= -Va), depresses the electrostatic potential of

p-side relative to the n-side thus increasing the potential barrier from Vbi to Vbi + Va. [26]
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Figure 2.5: P-N junction under bias conditions.
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Figure 2.6: Band diagram of p-n junction diode under forward bias conditions.

Thus with the reduction of the potential barrier in the forward biased condition, the drift

and diffusion currents are no longer balanced resulting in a net electric current flow. The

diffusion current which is due to the majority carrier electrons on the n side surmounting

the potential barrier to diffuse to the p side and, holes from p to n tends to dominate in

the forward bias condition due to the reduction of the barrier potential, while in the reverse

bias with the increase of the barrier potential electron in the n-side nor holes in the p-side

have enough energy to surmount the potential barrier resulting in a very less or no diffusion

current. While the drift current which is due to the minority carriers is small due to the

number of the minority electrons and holes present.

The Figure below [9] summarizes the forward and the reverse bias condition of a p-n

junction device. The two important characteristics of the I-Vs of a p-n junction device are
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Figure 2.7: I-V characteristics of an ideal p-n junction diode[9].

the threshold voltage Vth and the reverse leakage current. The threshold voltage is the

voltage at which significant conduction from p- side to the n-side of the junction starts to

occur, above which the diode tends to behave as a short circuit with ideally no voltage

drop. Under the reverse biased conditions, although the electrons in the n-side and the holes

in the p-side of the junction see a huge barrier to cross through for the conduction, the

electrons in the p-side see a huge drop in energy to move to the n-side. In other words,

when a negative voltage is applied to the p-side of the junction and positive voltage to the

n-side of the junction, electrons in the n-type semiconductor see a huge barrier while the

electron in the p-type semiconductor can energetically fall down to the n-side, giving rise to

a small amount of current called the reverse leakage current and is found to be negative in

the I-V characteristics. As the applied reverse voltage increases, the depletion width further

increases, causing a further increase in the reverse current that could results in a junction

breakdown at higher reverse biases.

The current Io and the forward currents are related by the Shockley equations. Solving

the Shockley equation for the diode, the total net current in p-n junction devices is given by

the equation [9]:

I = Io(exp
q·Va
kB ·T
− 1) (2.8)

Where Io is the reverse saturation current, q is the electronic charge, Va is the applied

potential , kB is the Boltzmann constant and T is the temperature of the junction. The
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total resistance of the diode can be calculated using the equation [9]:

Rt = Va
I

=
Va

Io · exp q·VakB ·T
+Rs (2.9)

where Rs, is the series resistance. In understanding the I-V of the p-n junction device it is

useful to divide the forward region into two parts, the first part where the exponential term

dominates and the second part where the series resistance dominates.

2.3.2 Non-Idealities in a p-n junction

The Schokley equation described for the IV characteristics of the p-n junction diode

indicates the ideal condition for a p-n junction diode. However, experimental p-n junction

diodes are characterized by ideality faction η, that denoted the deviation from the ideal

condition and the I-V relation is governed by, [9]

I = Io · exp eV
ηkT

(2.10)

For ideal diodes η is expected to be 1, however more generally for experimental diodes it

has values between 1.0 and 2.0. Also, in more reality, a diode may have parasitic resistance

like the series resistance and the parallel resistance that should be take into account. A

series resistance could be a result of contact resistance, while a parallel resistance could be

a result of a bypassing junction to a p-n junction diode. The I-V characteristics of the p-n

junction diode can then be modified as [9],

Itot = I − V−IRs

Rp
(2.11)

The series resistance of the diode is usually calculated, by fitting a line equation in the

linear part of the IV, from which the slope dI/dV is extracted.

2.4 Metal-Semiconductor Junctions

The metal-semiconductor junctions serve as regions through which connections are made

to an external power supply and play an important role in determining the electrical and
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Figure 2.8: I-V characteristics of a p-n junction diode considering the impact of series and
parallel resistances[9].

optical characteristics of any solid state device. The metal semiconductor junction or the

contacts are classified into different classes the Schottky or the rectifying contacts and the

Ohmic contacts depending on the work function difference between the metal and the semi-

conductor, the work function of a material being the amount of energy required to remove

an electron from the fermi level to the vacuum outside the material. Ideally for device ap-

plications like LEDs, it is desirable to have ohmic contacts, to have minimum or no voltage

drop across the contact.[26]

2.4.1 Schottky Contacts

Negative charges brought close to the metal surfaces induce positive charges or image

forces, which when acted on by an electric field reduces the work function of the metal to

some extent, also called the schottky effect. This forms the basis of schottky contacts. When

a metal with work function Φm is brought in contact with a semiconductor having a work

function Φs, charge transfer takes place until the fermi levels align at equilibrium. Similar
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Figure 2.9: Band diagrams of Schottky contacts on p and n-type semiconductors[10].

to the operation of a p-n junction diode, an equilibrium contact potential or barrier height

Vbi, preventing further diffusion from the semiconductor conduction band into the metal

develops at the interface and equals the difference in the work functions of the metal and

semiconductor i.e Φm - Φs.

For an electron to get injected from the metal into the semiconductor thus has to overcome

the schottky barrier height ΦB, given by Φm - χ, where qχ, the electron affinity is the

amount of energy required to remove an electron from semiconductor conduction band edge

to vacuum. The band diagram in Figure 1.7 gives a representation of a schottky contact to p

and n-semiconductors. The condition for forming a schottky contact on n-type semiconductor

is Φm > Φs, and the vice-versa for a p-type semiconductor. The I-V characteristics of a

schottky contact are expected to be similar that of a p-n junction, with the fact that it still

has a potential barrier [28].
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2.4.2 Tunneling contacts

An alternative contact to the semiconductor devices is the tunneling contact. As, with

the case of schottky contacts, tunneling contacts also have a positive barrier, at the metal -

semiconductor interface however, the semiconductor has a reasonably high doping that the

barrier between the metal semiconductor is very thin, thus causing the carriers to tunnel

through easily. Tunneling contacts are more common in degenerately doped semiconductors.

2.4.3 Ohmic Contacts

Ideal semiconductor contacts are ohmic when the charge induced in the semiconductor

in aligning the fermi levels is provided by the majority carriers. The general condition for

a metal to form an ohmic contact to an n-type semiconductor is Φm > Φs, for a n-type

semiconductor and vice-versa for a p-type semiconductors. The absence of depletion region

in these contacts, the potential drop across these junctions is negligible at any bias and

therefore, these devices have a linear I-V characteristic in both the bias conditions [28].

Figure 2.10: Band diagrams of Ohmic contacts on p and n-type semiconductors [10].
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2.4.4 Surface effects on metal-semiconductor contacts

In reality, there could be certain extra allowed states for electrons at the surface of the

semiconductor when compared to the bulk [26]. Possible reasons for this could be foreign

atoms bonded at the surface, crystal defects, hydroxyl ions etc. The net effect of all these

surface states is a density of available electronic states that is not zero. The presence of

these surface states could have a significant impact on the contact theory.

2.5 Quantum Well

A quantum well is a layered hetereostructure semiconductor device synthesized from

two different semiconductors, in which the one thin layer of smaller band gap called well is

surrounded by two barriers, layers of wider band gap and the quantum mechanical effects

can be controlled. The electrons and holes are both confined to the thin well layer. In LEDs

with quantum wells, the carriers are confined to the well region by the two barriers on the

either side of the well. As a result, the thickness of the quantum well governs the region

of recombination rather than the diffusion length, as is in the case of a p-n junction diode.

Diffusion length could be in the range of 1 to 20microns while, quantum well are usually

designed to be in the range of 0.1 to 1micron. As a result, a large concentration of carriers

is going to exist in the well layers of the LED, which would result in an increased radiative

recombination rate [9].

A bulk semiconductor material assumes a continuum of energy states in the valence band

and conduction bands. In the case of a quantum well with reduced thickness, the theory

of continuum states no longer holds as the difference between the energy levels is too high.

Quantum wells thus have sub bands of energy levels or discrete energy levels.

The discrete energy levels of the quantum well are calculated using the Schrodingers

equations:

−(h2)d2Φ · n
2 ·m · dz2

+ V (Z) · Φn = En · Φn (2.12)

The solution to this equation can be obtained either using the infinite well, wherein

the barriers on either side of the well are assumed to be infinitely high or the finite well
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conditions. In the case of infinite well method, the energy levels are quadratically spaced,

and the wave functions are sine waves, while for the finite well methods, the wave functions

are still sine waves inside the well and exponentially decay into the barriers.

A multi quantum well structure (MQW) with a significant penetration of wave function

between the quantum wells is called a super lattice. This penetration of wave functions gives

rise to mini bands in the structure. In quantum well transition between the conduction and

the valence band are allowed only between the states with the same quantum numbers.

2.6 Light Emitting Diode

A light emitting diode is an optoelectronic semiconductor p-n junction device that emits

light on passing electric current through it. The principle components of Light emitting

diodes include a back to back sandwich of p and n-type semiconductor materials forming a

p-n junction, characterized by the band gap of the material.

V 

p-type semiconductor n-type semiconductor 

Ec 

Ev 

Figure 2.11: Basic light emitting diode.

An LED is a device that converts electrical into optical energy in a two stage process.
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Firstly, the input electrical energy is used to rise the carriers in the semiconductor above their

equilibrium state and then these carriers after living their mean life time in the higher energy,

tend to fall down giving up their energy as spontaneous emission of photons with, an energy

equal to the band gap of the semiconductor. Also, a small fraction of the minority carriers

present in the either side of the junction could combine with these majority carriers, and give

away their excess energy as phonons.The frequency or the wavelength of the photon emitted

depends on the energy difference between the two transition states of the semiconductor and

is given by the Plancks relation [28]:

4E = h · ν =
hc

Λ
(2.13)

2.6.1 Choice of Materials

Different materials have different band gap energies, emitting light from the ultraviolet

(GaN, 3.4eV) to the infrared (InSb, 0.18eV). With the use of ternary and quaternary com-

pounds, the number of available energies could be increased. For example using InGaN as

the active layer in LED, photon energies ranging from 1eV to 3.4eV could be obtained.

The choice of materials mainly lies between indirect and direct band gap materials.

Indirect band gap materials usually have less or relatively no radiative recombinations, as

the electrons in the conduction band have different momentum from holes in the valence band

causing intermediate recombinations that emit phonons and reduce the internal efficiency

of the LED. The peak density of distributions of electrons in the conduction band occurs

at an energy slightly above the conduction band minimum. Therefore the band to band

transitions emit photons with energy slight greater than their band gap energy, as a result of

which some the photons emitted are reabsorbed. However in the case of indirect band gap

semiconductors these photons are not reabsorbed due to the involvement of phonons, thus

having less radiative efficiency. Another important factor in the choice of material systems

is the ability to heavily dope the semiconductor material to achieve p and n-type materials

[28].
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2.6.2 Recombination Mechanisms in a LED

As discussed, a light emitting diode is a device that converts electrical energy into optical

energy. The supplied electrical energy is used to excite electrons from the valence band to

conduction, which upon living for their mean life time tend to fall back and recombine with

holes in the valence band to emit the energy. The recombination mechanisms are usually

classified as radiative and non-radiative recombinations and are discussed in detail: Radiative

recombination and rate equation: In radiative recombination, an electron in the valence band

excites into the conduction band on applying an external field, and after living its mean life

time falls back to the valence band giving its excess energy as photon.

Any semiconductor has two types of carriers, electrons and holes. Under equilibrium

conditions, without any external field, the products of electrons and holes always remain

constant [28].

no · po = n2
i (2.14)

where, no and po represent the equilibrium carrier concentrations. Upon applying an

external electrical field, and forward biasing the junction; excess carriers are produced in the

semiconductor. The electrons in the conduction band now combine with the holes in valence

band. The probability that an electron combines with a hole is proportional to the hole

concentration, ∝po . The number of recombinations will also be proportional to the number

of electrons. The total recombination rate is thus proportional to the products of electrons

and holes no po . Replacing the proportionality constant with Bimolecular recombination

coefficient B, gives the biomolecular recombination rate equation [9]:

Requ = B · no · po (2.15)

Upon applying an external electric field, there are excess carriers induced and the rate

equation becomes [9],

Rnet = B · (n+ (4no)) · (p+ (4po)) (2.16)
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Figure 2.12: Radiative recombination with the emission of a photon and non-radiative re-
combination creating vibrations in the lattice [9].

Non Radiative Recombination: In non radiative recombinations, the electron energy is

converted into vibrational energy of lattice and is thus emitted as phonons.

Some of the causes of the non-radiative recombinations include the quality of the material

grown and the fabrication issues, which may give rise to defects, foreign atoms or dislocations.

In compound semiconductors these defects could be interstitial levels, vacancies and antisite

defects. These defects give rise to intermediate levels that could act as recombination centers,

which lie between the forbidden energy band gap of the semiconductor. These centers are

therefore called killers [9].

Auger recombination is another kind of non-radiative recombination which becomes im-

portant in heavily doped semiconductors. The auger process is a three carrier non-radiative

recombination process in which the excess energy released by the formation of an electron-

hole pair is transferred as kinetic energy to the third free carrier which is raised in energy

deep in the respective band. This carrier thermalizes back into bottom of the band [9].

The net recombinations in the LED can thus be represented as,

Rnet = A · n+B · n2 + C · n3 (2.17)

The first term represents the Shockley-Read-Hall recombination, second the spontaneous

recombination and the last term Auger recombination.
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For light emitting diode applications, it is desirable to have a high ratio of the radiative

to non-radiative recombinations. For such high rations, it is necessary to optimize the LED

structure to have better carrier confinements and improve the material quality to minimize

the defect levels.

2.6.3 Efficiency

The different processes involved in the working of a LED are usually classified into three

stages, the supply of electrical energy to cause carrier injection into the active layers, known

as injection process, the recombination process, in which the carriers excited with the supply

of electrical energy tend to transit back, the extraction process associated with the extrac-

tion of photons emitted due to the different in the energy levels associated with transition.

The overall efficiency of the device is governed by the efficiency of each of these individual

processes and is given by [28],

η0 = ηin · ηr · ηe (2.18)

where, ηo denotes the device efficiency, with ηin denoting the efficiency of the injection

process, ηr, the efficiency of recombination mechanism, which is usually governed by the

ratio of number of radiative recombination to the total number of recombinations, and ηe

denoting the extraction efficiency. The efficiency of the LED is usually characterized by the

internal and the external quantum efficiencies. The internal quantum efficiency is governed

by the injection and the recombination process and the external quantum efficiency by the

extraction process. To have good internal quantum efficiencies, it is necessary to design

structures to have better carrier confinement, and material to have less defect, and to have

good external quantum efficiencies, it is necessary to have design structures and materials

that donot absorb the light emitted and are transparent enough to allow light to be extracted.
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Chapter 3

Physics and Simulation of Light

Emitting Diodes

Optoelectronic devices like light emitting diodes,lasers etc; brings together electronics

and optics into a single device. As discussed in Chapter 2, only some electrons that are

loosely bound to the atom are free to move and take part in the conduction process. The

conduction process includes, supply of enough energy either in the electrical or the optical

form to excite the electron from the valence band to the conduction band, leaving behind a

hole which in turn could move in the valence band and cause conduction current to flow to

make the net charge zero. The amount of optical or electrical energy required by the valence

band electrons to become conduction band electrons is nearly equal to the band gap energy

Eg of the characteristic material. After excitation, the conduction band electron falls back

to the valence band to attain the stability of the system releasing almost the same energy

as photon or phonons. The energy of the emitted photon is related to the wavelength of the

emitted light from the relation:

Λg = h·c
Eg

=
1240nm

Eg(eV )
(3.1)

As discussed in Chapter 2; fermi level dictates the highest energy level occupied by an

electron in the valence band. The probability of finding an electron with an energy E, is

given by the equation
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f(E) = 1

1+exp
E−Ef
kB ·T

(3.2)

where EF is the fermi energy,kB is the Boltzmann’s constant. In pure or intrinsic semi-

conductors the fermi level is exactly at the mid band gap energy Eg / 2. With the increase

of p-type doping the fermi levels gets close to the valence band and on the other hand it

gets close to the conduction band with the increase of n-type doping. Also, with increase in

temperature or on supply of external energy to the system, electrons are transferred from

the valence band to the conduction band, giving rise to the electron and the hole fermi levels

which move accordingly.

The actual concentration of the electrons and holes in the conduction or the valence band

depends on the density of electron states D(e) in both the bands. The density of states can

be calculated from the equation:

Dc(e) = 1
π2 · (2·mc

h2
)
3
2 ·
√
E − Ec;whereE > Ec (3.3)

Dv(e) = 1
π2 · (2·mv

h2
)
3
2 ·
√
Ev − E;whereE < Ev (3.4)

where, mc and mv are the effective masses of electrons and holes. The carrier density can

be calculated as a function of energy using;

n(E) = Dc(E) · f(E) (3.5)

p(E) = Dv(E) · [1− f(E)] (3.6)

Assuming the Boltzmanns’s distribution holds good, with the assumptuion
mod [Ec−Ef ]

kT

the above equations as a function of energy bands, gives the total carrier concentration given

by;

n = Nc · exp( (EF−Ec)
KB ·T

) (3.7)
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p = Nv · exp( (Ev−EF )
KB ·T

) (3.8)

f(E) = fB(E) = exp[−E − Ef
kB · T

] (3.9)

The intrinsic carrier concentration ni can be calculated using the equations:

ni =
√
np =

√
Nc ·Nv · exp(−

Eg
2KBT

) (3.10)

where Nc and Nv are the effective density of states of the conduction band and the valence

band. The above set of equations i.e Boltzmann’s distributions hold good only for low carrier

concentration i.e n << Nc, p << Nv).

However, physically more correct are the fermi statistics which hold good for higher

carrier concentrations. For fermi statistics the carrier concentration is given by:

n ≈ Nc · F 1
2
· exp( (EF−Ec)

KB ·T
) (3.11)

p ≈ Nv · F 1
2
· exp( (Ev−EF )

KB ·T
) (3.12)

where F 1
2

is the fermi integral of one-half. The above equations can alternatively be

written as

n = γn ·Nc · F 1
2
· exp( (EF−Ec)

KB ·T
) (3.13)

p = γp ·Nv · F 1
2
· exp( (Ev−EF )

KB ·T
) (3.14)

where γn and γp are;

γn = n
Nc
exp(Ec−EF

KBT
) (3.15)

γp = n
Nv
exp(EF−Ev

KBT
) (3.16)
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3.1 Carrier Transport

As discussed in chapter 2; the drift and diffusion of electrons and holes mainly contribute

for the current flow in semiconductors.In this section a brief overview of how the drift and

diffusion currents calculations are handled by the simulators will be discussed[28].

3.1.1 Carrier transport models:Drift and Diffusion

In general,as discussed in Chapter 2; the drift current is generated by an electric field

and is proportional to the conductivity of electrons and holes while, the diffusion current is

driven by the concentration gradient of electron and holes [29]. For uniform semiconductors,

the total current density of electrons and holes can be written as;

−→
Jn = qνnn

−→
E + qDn∇n (3.17)

−→
Jp = qνpp

−→
E + qDp∇p (3.18)

q denoting the charge
−→
E denoting the generated electric field. Now, as an external bias

voltage is applied, this equation should be accompanied with a spatial change in current

flow and the generation rate (G) or the recombination rate (R) of electron-hole pairs. This

relation is known as the continuity equation expressed as:

q
∂n

∂t
= O ·

−→
Jn − q(R−G) (3.19)

q
∂p

∂t
= O ·

−→
Jp − q(R−G) (3.20)

For all the above equations to be solved, the electric field itself depends on the charge

distribution that include the mobile charge (n,p) and dopants (nA,pD), and are related by

the poisson equation as:

O · (εoεr ~E) = q(p− n+ pD − nA) (3.21)
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Sentaurus Device[30] also includes thermodynamic and hydrodynamic models of transport

which are out of the scope of this thesis. To solve for the current densities, the Sentaurus

Device uses the conservation law,

O · ~J = 0 (3.22)

The current density vector
−→
J , can be return as the curl of current vector potential

−→
W as

~J = Ox ~W (3.23)

The current vector potential ~W has two important properties, the contour lines of W are

the current line of ~J and the difference between the values of W at any two points is equal

to the current flowing between them.

3.1.2 Boundary conditions for solving continuity equations

Metals: Metal-semiconductor junctions are usually characterized by the work function

difference:

φMS = φM − φS (3.24)

At contacts, for metal semiconductor junction the dirchlets condition is applied i.e the

Fermi potential φM is made equal to the applied voltage. Also, Sentaurus Device [30] assumes

a metal-semiconductor junction to be ohmic unless otherwise defined as schottky, and at

ohmic contacts applies the boundary conditions:

~JM · n̂ = ~J · n̂ (3.25)

φ = φM + φo (3.26)

n = n0 (3.27)
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p = p0 (3.28)

where φo is the equilibrium electrostatic potential i.e built in potential and no,po are the

equilibrium concentrations. For n-type semiconductors to have ohmic contacts the metal-

semiconductor work function difference φMS < 0 and for schottky contacts, φMS > 0. For

schottky contacts, a schottky barrier is formed between metal and semiconductor with a

barrier height,

φB = φM − χo (3.29)

Schottky contacts apart from the drift and diffusion mechanism of transport, involve

the thermionic emission and the tunneling mechanisms. The thermionic emission being the

thermal heat induced flow of charge carriers and the tunneling being a quantum mechan-

ical phenomenon causes by the wave nature of electron. Electrons arriving at the energy

barrier, could either be reflected or penetrated through the barrier, with the penetration

depth depending on the barrier height. If the barrier height is thin enough, part of electron

penetrated on the other side. The tunneling probability greatly depends on the energy of

the electron and barrier height[30]. The schottky contacts are thus modeled using:

φ = φF − φB + kt
q
ln( NC

ni,eff
) (3.30)

~Jn · n̂ = q · vn(n− nBo ) (3.31)

~Jp · n̂ = q · vp(p− pBo ) (3.32)

nBo = NCexp(
−qφB
KT

) (3.33)

pBo = NV exp(
−Eg,eff+qφB

KT
) (3.34)

where, φF is the fermi potential at the contact that is equal to the applied voltage, φB the

work function difference between the metal and the electron affinity of the semiconductor,

vn and vp are the thermionic emission velocities and no
B and po

B are the equilibrium carrier

densities.
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3.2 Generation-Recombination Mechanisms in LEDs

As carriers are exchanged between the conduction and the valence band generation-

recombination mechanism processes dominate.The recombination rate R, as studied in the

continuity equations included several different mechanisms. The electrons could drop from

the conduction band to valence band whereby the electrons need to transfer their excess

energy to other particles either as radiative recombination or non-radiative recombination.

3.2.1 Radiative Recombination

Radiative recombination is a mechanism in which the electrons in the conduction band

fall back to the valence band generating photons.As discussed in Chapter 2; the generation

of photons by radiative recombination could be either spontaneous or stimulated. The spon-

taneous emission rate of photons is characterized by the material coefficient B, and can be

written as[30]

Rspon = B(n · p− no · po) (3.35)

3.2.2 Auger Recombination

In Auger recombination, the excess energy associated with the fall of an electron from

the conduction band to valence band is transferred to another electron in the valence band

or conduction band.The Auger recombination rate is thus written as shown in equation 3.36

to include the density of electrons or holes which could receive the released energy from

electron-hole annihilation [28]

Rnet
A = (Cn · n+ Cp · p)(np− n2

i,eff ) (3.36)

Auger recombinations become more important in devices with high carrier densities,as

the probability of these collisions increase.
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3.2.3 Shockley-Hall Recombination

The shockley-hall recombination, takes place due to the deep level traps associated with

the device.As electrons from the conduction band tend to fall back to the valence band,

there exists some deep level traps with which the electrons could recombine resulting in the

emission of a phonon. In Sentaurus Device, the SRH recombination is implemented using:

RSRH
net =

np−n2
i,eff

τp(n+n1)+τn(p+p1)
(3.37)

where τ is the life time of either electrons or holes and could be modeled as doping or field

dependent and ni,eff is the intrinsic carrier concentration.

3.3 Ray Tracing

As photons are generated in the device by the electron-hole recombination process, not

all the light is extracted from the device because of the optical properties of the devices.A

ray of light on a plane surface or materials interface could be reflected, transmitted and

absorbed.The ray tracer in Sentaurus Device used a recursive algorithm to trace the light

emitted in the device. The sentaurus device starts up with a source ray and maintains a

binary tree for the transmission and the reflection of the rays.The transmission or reflection

processes occur at interfaces with different refractive indices. The optical output power is

then given by summing up the powers of all the transmitted rays that are extracted in a

certain window range defined[30].

The simulation of LED devices includes both the electrical and the optical problems As

discussed above, the electrical problem involving the Poisson equation, carrier continuity

equation and the optical problem involving the generation of photons and extraction of light

must be included in the LED simulation.

The solution of the electrical problem yields active region carrier densities. The recom-

bination models studied above are used to compute the spontaneous emission rate, included

in the carrier continuity equation to ensure the conservation of particles.
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The spontaneous emission rate is then used to compute the spontaneous emission power

which is used by the raytracer to compute the optical intensity.
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Chapter 4

Modeling the LED

4.1 Structure and device parameters used for this study

4.1.1 LED structure used for this study

The basic LED structure used in this study is a planar LED as shown in Figure 4.1 below.

The device has been etched through the p-GaN layer and the active layers into the n-GaN

to form the n-contact.

Figure 4.1: LED structure employed for modeling.
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4.1.2 Material parameters used for this study

The material parameters have been either experimentally extracted from our MOVPE

grown samples or obtained from the literature. The carrier concentrations of different ma-

terials have been determined from the Hall effect and CV measurements. The material

parameters used in this study are as indicated in the table below:

Table 4.1: Experimentally extracted material parameters

Material Doping(cm−3) Mobility (cm2/V.s) Thickness (nm)

p-GaN 3x1017 10 70
p-AlGaN 3x1017 10 10

GaN barrier 8.8
InGaN active layer 4.8

n-GaN 1x1018 200 1500
un-doped GaN buffer layer 500

sapphire 1000

Table 4.2: Material parameters from literature

Material Electron Affinity (eV) Band Gap (eV)

p-GaN 3.4 3.4
GaN barrier 3.4 3.4

InxGa1−xN active layer; x=0.16 3.956 2.787
n-GaN 3.4 3.4

un-doped GaN buffer layer 3.4 3.4
sapphire 0.5 6.1

Electron affinity of GaN has been reported over the range of 3.2 +/− 0.2eV, 3.5 +/−

0.1eV, 4.1 +/− 0.1eV, in the literature with 4.1eV being the upper limit [31][32][33]. It has

been indicated that an electron affinity of 3.4eV obtained from the vacuum referred binding

energy model matches well with the experimental results, and is thus used in the development

of the TCAD model. The material parameters of InGaN have been interpolated from the

parameters of InN considering the band gap of InN to be 1.0eV and electron affinity to be

5.1eV. The developed model takes into account only the radiative recombinations and the

non radiative recombinations have not been included due to the difficulties associated with

the extraction of the deep level traps present in the material.

The band gap of InxGa1−xN has been calculated using;
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Eg(InxGa1−xN) = x ∗ Eg(InN) + (1− x) ∗ Eg(GaN)− b ∗ x ∗ (1− x) (4.1)

where Eg(InN) = 1.0 eV; b is the bowing factor and is equal to 1.7.

The electron affinity of InxGa1−xN has been calculated using

χ(InxGa1−xN) = x ∗ χ(InN) + (1− x) ∗ χ(GaN) (4.2)

The effective masses of electrons and holes have been considered from the literature to

be 0.2 and 1.1. The radiative recombination coefficient of the active layer has been taken to

be 2∗1017 cm−3.

4.2 Preliminary Modeling Results

TCAD model utilizing the drift diffusion model has been developed for the structure

discussed. The model couples the poisson’s equation and the continuity equation using

newton’s iteration method.

4.2.1 Band Structure

Figure 4.2: Band diagram of the LED device plotted along the vertical direction of the LED.
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The band diagram of such a structure is as indicated in the Figure 4.2. Light emitting

diodes fabricated with this kind of a structure couldn’t light up or were emitting relatively

less optical power. Possible reason for this could be the fact that,the electrons having higher

mobility than that of holes, are likely overflowing into the p-GaN layer due to insufficient

holes in the active layers, and the number of possible radiative recombinations in quantum

wells are as a result relatively less. To overcome this problem, light emitting diodes with

p-AlGaN layer as an electron blocking layers (EBL) have been proposed and are compared

to the structure with out an EBL. The device structure is now as indicated in the Figure

4.3:

Figure 4.3: Structure and band diagram of the LED device without the p-AlGaN layer
plotted along the lateral direction of LED.
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The electron affinity and the band gap of AlGaN have been interpolated in the manner

similar to that of InGaN and the molefraction of Al is taken to be 0.1 and a thickness of

10nm.The band diagram of such a structure is as indicated in the Figure 4.3.

It is evident from the band diagram of this structure that, a p-AlGaN EBL layer would

have a bump in the conduction band acting as the barrier for the electrons flowing from the

active layer to the p-GaN. Thus there could relatively be more electrons and holes confined in

such a structure and is evident from the carrier distribution plots and radiative recombination

rate plots of both the structures as shown below in Figures 4.4 and 4.5.
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Figure 4.4: Electron and hole distribution along the LED from p-GaN to n-GaN.

Figure 4.5: Radiative recombination along the LED from p-GaN to n-GaN.

The plots plotted on a log scale indicate that there is an improvement in the confinement

of electrons and holes to the quantum wells thus resulting in an increase in the radiative
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recombination rate in the quantum wells.

4.3 Validation of the developed model

The developed model has been validated by simulating different devices. The Figure

below indicates the mask used to fabricate LEDs:

P-contact size (µm) 
              300                            100                              75                           50 
                  

  Spacing 
    (µm) 
 
               
       200 
 
 
      150 
 
 
       100 
 
       
          75 
 
          50 
 
 
          25                  

Figure 4.6: Mask used to fabricate the LEDs.

The bright gold color spot, at the center of each device on the mask indicates p-contact,

surrounded by a thin grey line indicating the p-mesa, further surrounded by a black color

border indicating the n-contact. The mask has in total 48 devices, left to right indicating

devices that having different p-contact sizes and top to bottom indicating devices with differ-

ent spacings between p-mesa and n-contact. The legend p on the top of the mask indicates

p-contact size and the legend gap to the left of the mask indicating spacing between the

p-mesa and n-contact.

These different devices have been simulated keeping the material parameters constant,

same and varying the spacing between the contacts. The current-voltage (IV) characteristics
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of the different devices simulated are plotted with the experimental data and are as indicated

in the plots in Figure 4.7

Figure 4.7: Simulated and experimental IV plots for different LEDs (a) varying the p-contact
size with the spacing between p-mesa and n-contact being 25microns (b) varying the spacing
between p-mesa and n-contact with the p-contact size 100microns.

The series resistance for different devices are indicated in the Figure 4.8.

Figure 4.8: Resistance plots comparison for different devices with a p-contact size of 100mi-
crons, varying the space between p-mesa and n-contacts.

The results from the model developed, had certain deviations from the experimental
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model which could be attributed to the fact that the polarization charges between the

GaN/InGaN interface have not been considered, and that the electron affinity and the

band gap have been taken from the literature and are not experimentally extracted from

our MOVPE grown sample due to certain resource limitations. Series resistance for these

devices have been extracted from the IV plots, by calculating dI/dV, and extracting the

maximum values and the resistance to be the inverse of this value [9]. Another possible

reason, could be that there could be some experimental error associated with the extraction

of parameters from the MOVPE grown samples.

4.4 Analysis of effectiveness of AlGaN layer for carrier

confinement

The effectiveness of AlGaN was studied varying the composition and thickness to have

the optimal set of values for better confinements.

4.4.1 Composition Variation

The composition of AlN in AlGaN was varied from 0.05,0.1 to 0.2 and the band diagrams

are as indicated in the Figures below:

Figure 4.9: Band diagram for x=0.2 in AlxGa1−xN.
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Figure 4.10: Band diagram for x=0.2 x=0.1 and x=0.05 in AlxGa1−xN.

The p-AlGaN layer indicates spikes and notches in the conduction band and valence band

that vary with the Al composition. The spike indicated in the valence band could help in

confining the electrons to the active layer by acting as a barrier. However, in the conduction

band it could be observed that, holes could get accumulated at p-GaN/AlGaN interface and

could see a barrier at the p-AlGaN/GaN barrier interface influencing the flow of holes into

the quantum well.
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Figure 4.11: Electron distribution, hole distribution and radiative recombination rates in the
LED with varying Al composition.
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The carrier distribution for these three different devices are as indicated in the Figure

4.11. It is evident from the distribution plots that, the electron distribution is relatively the

same in the quantum wells, while the hole concentration, changes with the composition of

AlGaN. Results indicate that for x=0.05, hole distribution is relatively non uniform which

possibly could be due to the barrier height between the p-AlGaN and GaN barrier while

x=0.1 and 0.2 have relatively uniform distribution of holes and radiative recombination rate

while x=0.1 is one order of magnitude more than x=0.2. The quasi fermi potentials of the

band diagram also indicate that there are more number of electron - hole confinements in

the active layer in the case of x=0.1 over x=0.05 or x=0.2.

4.5 Influence of thickness

From, the results shown above the composition of Al in AlGaN was taken to be 0.1 and

simulations were carried out varying the thickness of the electron blocking layer. The band

diagrams of the simulated structure for thickness of 10nm, 20nm and 40nm are as indicated

in the Figures below:
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Figure 4.12: Band diagram for the LED structure varying the thickness of the EBL to be
10nm, 20nm and 40nm.
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The carrier distribution and radiative recombination plots are as shown in Figure 4.13

below. From the Figure, it is conclusive that all the quantum wells have relatively the same

distribution of electrons but non-uniformly distributed holes. This could be explained by the

fact that conduction band and the valence band of all the three structures have the same kind

of spikes and notches, however, the hole crowding that could occur at the p-GaN/AlGaN

interface could potentially easily tunnel through or thermionically into the thin p-AlGaN

layer of 10nm while would take relatively more time for higher thicknesses. The radiative

recombination plots, as expected are governed by the hole distribution. From this study, a

p-AlGaN electron blocking layer of x=0.1 and thickness=10nm is used for our devices.
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Figure 4.13: Electron, hole and radiative recombination rate distributions in the quantum
wells.
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Chapter 5

Design analysis

5.1 Drawbacks of the previous structure

The planar LEDs with the structure discussed in chapter 4 has certain limitations. One

such limitation is the current crowding problem. Having known that the n-GaN is approx-

imately two order of magnitude more than the p-GaN, the current from the p-contact tries

to flow in to the n-contact through path just under the contact edge rather than spreading

through the entire mesa. This could better understood by the graphs indicated below in

Figure 5.1.

Figure 5.1: Current density distribution plot (a) along the lateral direction of the LED in
the first quantum well for the structure shown (b).
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The graph in the Figure 5.1 shows current current crowding at the edge of a 50 microns

contact on a 200 mesa. This current crowding could result in associated unwanted heating

effects and a reduction of the extraction efficiency of the device given the fact that the

Ni/Au contact is semi-transparent in nature. Proper analysis of the design parameters is

thus necessary to study the impact of different layers and bring up design changes in the

structure to have a more uniform current spreading. If the current density across the contact

edge could be taken as Jo, the current distribution J(x) in the mesa can be represented as

J(x) = Jo · exp(−α · x) (5.1)

5.1.1 Analysis of the structure

In this study PSPICE has been used to study the impact of the resistance of each layer on

the current spreading. A resistance based analytical model has been developed for each layer

of the LED, however the series resistances in the LEDs have not been taken into account. The

model has been validated in PSPICE by applying a current I across the p and n materials,

and studying if the distribution of the current is following the same path as expected from

the analytical model . The series resistance of each individual layer is calculated from the

conductivity and thickness of the layer using the equations:

Conductivity = (carrier concentration) ∗ (mobility) ∗ (charge of an electron) (5.2)

Having known the conductivity, the resistivity could be written as:

resistivity, ρ = 1
conductivity

(5.3)

The series resistance of each layer could then be extracted using the relation:

Resistance, R = ρ
t

(5.4)
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where t denotes the ρ and t denote the resistivity and thickness of the corresponding layer.

The quantum wells could each be modeled as a p-n junction diode. The ideality factor

of these diodes could be extracted from the I versus V plot of the LED.

The simplified resistance model used for this study is as indicated in the Figure 5.2.

Rp Rp Rp Rp 

Rpal Rpal Rpal Rpal Rpal 

Ral Ral Ral Ral Ral 

Rn Rn Rn Rn Rn Rn 

dx dx 

Figure 5.2: Resistance model representation of the LED.

The notation in this plot indicates, Rp to be the sheet resistance of p-GaN Rpal to be the

resistance at the p-GaN, p-AlGaN interface, Ral to be the sheet resistance of p-AlGaN and

Rn be the sheet resistance of n-GaN. The active layers of the LED are represented using the

diodes.

To make the analysis simpler, a simple resistance model as shown in Figure 5.3 is con-

sidered

Let up suppose that a current I, is entering the structure at the contact edge. In such

a structure the current entering into the junction could take either path 1 or path 2. The

current flowing through path 1 and path 2 is given by,

Ipath1 = I·(Rv+Rn)
2Rv+Rn+Rp

(5.5)
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Rp 

Ral Ral 

Rn 

Path 1 

Path 2 

Figure 5.3: Simplified resistance model representation of the LED.

The current flowing through path 2 is given by,

Ipath2 = I·(Rv+Rp)

2Rv+Rn+Rp
(5.6)

where Rv denotes the resistance of the p-AlGaN and the diode. To have a uniform current

through the active layers, the current flowing through path 1 should be same as the current

flowing through path 2, which can be written as

Rp = Rn (5.7)

To have a uniform current spreading in such a device it is necessary to have equal current

flowing through the active layer. Three different conditions have been taken to study the

impact of p-GaN an n-GaN on the current distribution. The conditions include Rp >> Rn,

Rp << Rn, Rp ≈ Rn.
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Figure 5.4: PSPICE modeling of the resistance model for the condition Rp > Rn, Rn > Rp,
Rn ≈ Rp, Rn = Rp.



Srinitya Musunuru Chapter 5.Design analysis 55

Thus the ratio of the resistance between p-GaN and n-GaN thus act as a deciding factor

for current crowding.

• If Rp < Rn, current crowds at the edge of the p-mesa.

• If Rn < Rp, current crowds at the edge of the p-contact.

• If Rn ≈ Rp, current approaches to be uniform.

• If Rn = Rp, current is uniform in the active layers.

5.2 Design changes to p-GaN

From the PSPICE model, it is indicated that to have a better spreading the resistance

of p-GaN is to be comparable to the resistance of n-GaN which is similar to

ρp
tp

= ρn
tn

(5.8)

It is well known that the conductivity of n-GaN is approximately three orders of magnitude

more than the conductivity of p-GaN, and the thickness of n-GaN is approx two times that

of n-GaN, thus causing the current to crowd at the mesa edge. An increase in the thickness

of p-GaN could thus result in an increase in both the internal and the external extraction

efficiencies, due to the fact that it would have more number of holes and a minute increase

in the thickness would result in a better current spreading.

Figure 5.5: Illustration of increase in the efficiency of 140nm thick p-GaN over 70nm thick
p-GaN.
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It is evident that when both the resistance are made comparable a uniform current

spreading could be achieved. However, it is experimentally challenging to grow such highly

conductive p-GaN layer and alternative changes such as use of transparent conducting oxides

have to be studied, and is dealt in the next chapter.
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Chapter 6

Potential of AZO as transparent

conducting contact to p-GaN

6.1 Design of AZO as transparent contact to p-GaN

As discussed in chapter 5, the regular Ni/Au contacts on LEDs showed current crowding

at the contact edge, thus motivating the need for study of alternative transparent contacts.

Ni/Au contacts being semitransparent in nature with transparency around 60-75% in visible

and lower than 60% in UV region[34], have the probability of blocking the light emitted at

the contact edge. Having known these drawbacks associated with the regular Ni/Au contact

design of transparent conducting oxide contact to p-GaN is gaining its research interest.

Transparent conducting oxides like indium tin oxide (ITO) aluminium alloyed zinc oxide

(AZO) etc are synthesized from semiconductor materials indium oxide (I2O3) and zinc oxide

(ZnO) via chemical doping of tin (Sn4+) ions for indium (In3+) and aluminium (Al3+) for

zinc (Zn2+) ions, respectively. Degenerate doping of these semiconductor materials with

their respective dopants creates a transition from semiconducting state to metallic state, thus

making the material highly conducting yet sustaining its fundamental band gap property,

and remaining optically transparent[35].

Indium tin oxide (ITO) has been widely investigated by several groups as a challenging

material for transparent contacts for optoelectronic device applications and transmittance

reports of nearly 85% and resistivity’s of the order of 10-4 Ω cm have been demonstrated
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[36][37][38]. ITO’s insufficient thermal stability for use as transparent contacts in high power

LEDs, its toxicity and the high cost involved in its manufacture has generated interest in

the use of alternative materials for transparent contacts.[39][40]

ZnO has been studied as an alternative material for transparent contacts and several

reports have been published of gallium doped zinc oxide and aluminium doped zinc oxide

with electrical and optical properties similar to ITO[41][42]. Although AZO could be used

as a promising material for its application as a transparent contact to LEDs, little research

has been carried out given that AZO is expected to have a work-function less than 4.1eV[43]

and is expected to form a Schottky contact with p-GaN[44] which has a work-function of

around 6.6eV[21].

In this study, the AZO/Ni interface has been studied. The carrier concentration of AZO

was take to be 5x1020cm3. Simulation results indicate that with such high doping of AZO

an increase in the carrier concentration of p-GaN from 1017 cm3 to 1018 cm3 for p-GAN the

AZO/p-GaN junction formed had a depletion width of around 65nm as depicted in figure

6.1 below.

Figure 6.1: Calculated AZO/p-GaN junction depletion widths for varying hole concentration
in the p-GaN layer.
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Given the challenges in incorporating p-type dopants into p-GaN, an alternative design

approach has been studied. Earlier reports state that an ohmic could be achieved between

AZO and p-GaN with the use of a nickel insertion layer. Having known that, Ni has a work-

function of around 4.1eV for 2percent Al and band gap of around 3.43eV. Simulation results

indicate that a tunneling contact can be formed at Ni/AZO that varies with the thickness

of Ni. IV and band diagrams resulting from a series of simulations at Ni/AZO are as shown

below:

Figure 6.2: Band diagram indicating Ni/AZO junction.

Results indicate that, a tunneling contact can be achieved, and as the thickness of Ni

on AZO varies from 2nm to higher thickness the contact changes from ohmic to schottky

contact. A tunneling barrier exists between Ni and AZO and the thickness of this barrier

increases with increase in Ni thickness making the tunneling probability of carriers difficult.

6.2 Analysis of AZO contact o p-GaN

The AZO contact was then integrated via simulation on the LED structure. Initially the

carrier concentration of AZO was take to be 5x1020cm−3 and the thickness was taken to be

250nm. Such a structure had a current distribution as shown in fig 6.2.

Such a structure indicates current crowding at the mesa edge and could be explained by

the fact that,
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Figure 6.3: IV plots indicating Ni/AZO junction with varying Ni thickness.
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Resistivity of AZO = 6.25 ∗ 10−4Ωcm (6.1)

Resistivityofn−GaN = 3 ∗ 10−2Ωcm (6.2)

ρt
tt

= 25Ω (6.3)

ρn
tn

= 200Ω (6.4)

From equations 6.3 and 6.4 it is evident that the path along the TCO is least resistive

and explains Figure 6.4 for current crowding at the mesa edge. From the analysis described

in Chapter 5, to achieve a uniform current spreading it is desired that,

ρt
tt

= ρn
tn

(6.5)

Now to have this condition satisfied, at any point of time if the conductivity of the

material is fixed say in the order of 6.125∗10−4 Ωcm, the thickness of the AZO to have

uniform current spreading should be equal to,

t =
(6.125 ∗ 10−4) ∗ 1500 ∗ 10−9

3.125 ∗ 10−2
m (6.6)

Thus for a given resistivity the thickness of AZO to have uniform current spreading is

approximately 30nm. The current distribution of such a structure is as indicated in the

figure 6.3 below.

The Figure:6.5 above depicts the current density distribution in the LED mesa with

varying AZO thickness for a fixed resistivity. Thus for a given structure, if the conductivity

of AZO is given, the thickness of the transparent conducting oxide needed to achieve an

uniform current spreading can be calculated from the developed model.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

In this study, finite element analysis TCAD tool has been used to develop a model for

GaN/InGaN based light emitting diodes. A TCAD model has been developed with the

experimental parameters extracted from the MOVPE grown samples using Hall effect for

carrier concenration, hall mobility and XRD from Indium and Aluminium concentration in

InGaN, AlGaN, and the parameters like band gap, electron affinity, radiative recombination

rate and effective masses taken from the literature.

The developed model has been validated by modeling different devices shown in the mask

in Chapter 4, and comparing the simulated results with experimental results. The turn on

voltage and series resistance have been extracted from the simulated IV’s and the results

were +/- 5% away from the experimental results.

On the developed model, the effectiveness of the electron blocking layer(EBL) has been

studied by varying the thickness and composition and the results have been presented. The

results indicate that for this this given LED structure Al0.1Ga0.9N with a thickness of 10nm

had better confinement of electron-hole pairs to the active layers of the LED.

Given, that the electron affinity of p-GaN is around 6.0eV, achieving less resistive ohmic

contacts has been a great challenge for researchers. Annealed Ni/Au contacts have been

widely reported in the literature for use as ohmic contact to p-GaN. Upon, integration of

Ni/Au contact having known the fact that n-GaN is more conductive than p-GaN, the
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current tries to shoot down at the edge of the p-contact and flows through the n-GaN to the

n-contact. This current crowding results in heating effects and reduction in the extraction

efficiency of the device due to the semitransparent nature associated with Ni/Au contacts.

The GaN/InGaN LED has been analyzed using distributed resistance PSPICE modeling.

An analytical model has been developed and indicates that depending on the resistance of

p-GaN and n-GaN current crowding could occur either at the edge of the p-contact or p-mesa

under the following conditions:

• If ρp/tp > ρn/tn, current crowds at the edge of the p-contact.

• If ρn/tn > ρp/tp, current crowds at the edge of the p-mesa.

• If ρp/tp = ρn/tn, a uniform current spreading in the mesa could be achieved.

Thus to have a uniform conducting a highly doped p-GaN with its thickness comparable

to n-GaN has to be grown. Given, the challenges associated with growing such highly con-

ductive p-GaN researchers have started exploring the use of transparent conducting contact

to p-GaN. Indium tin oxide (ITO) based contact to p-GaN has been widely reported in the

literature. Having known the toxicity and the high cost involved in the growth of ITO films

use of AZO as an alternated material to ITO has gained research interest[39][40].

AZO having an electron affinity of 4.1eV is expected to form a schottky contact with

p-GaN [44] having a work function of 6.0eV. In this study, an alternated method to achieve

a tunneling contact between AZO and p-GaN by the use of an intermediate nickel layer has

been studied as a function of thickness of the nickel. Results, indicated that as the thickness

of the nickel increases the contact changes from ohmic contact to schottky contact.

This Ni/AZO contact has been integrated on the LED structure and the analytical model

developed has been used to achieve a uniform current spreading in the thickness. Thus, for

a given conductivity of AZO, the thickness required could be determined using this model.

7.2 Future Work

Advancement to the model can be made by using sentaurus process that could take into

account each of the individual steps involved in the fabrication of LEDs, including side wall
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angles and striations. The doping profile in this simulation has been considered to be a

constant doping profile and the model can be modified to have a gaussian profile as is in

the experimental materials. Development to the PSPICE based modeling should be done by

taking into account the series resistance of the device. The model developed in this study

had certain deviations from the experimental results. Possible reasons for this could be that,

the polarization charges at the GaN/InGaN interface and the trap centers in the materials

have not been activated due to lack of sufficient resources. Deep level transient spectroscopy

(DLTS) could be used to obtain these charges and the non radiative recombination mecha-

nism can be switched on to have a more closer match to the experimental results. Further

development of the model could be made to integrate the optical modeling with the electrical

modeling to have a more detailed understanding of the impact of various parameters on the

internal and the external efficiencies.
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