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 ABSTRACT 
 

Theoretical and Experimental Analysis of FRP Bridge Decks 
under Thermal Loads 

 
Krit Laosiriphong 

 
The temperature difference between the top and bottom of a fiber reinforced polymer 

(FRP) composite deck (120° F) is nearly three times that of conventional concrete decks 
(40 ° F). The large temperature difference is attributed to low thermal conductivity of FRP 
material and low thermal mass due to hollow core. Thermal response studies have been 
conducted for FRP bridge decks under thermal fluctuations and temperature difference across 
the deck depth.  

 
In this study, thermal tests were conducted on two FRP bridge deck modules ( 4” and 

8” deep decks) in the laboratory by heating or cooling at the top surface of FRP deck (i.e., 
room temperature at bottom surface). The FRP deck boundaries were either four free 
boundaries (FFFF) or two opposites boundaries being free while the remaining two were 
simply supported (SSFF). Deflections and strains were recorded at different location under 
thermal loads. Closed form solutions with first term approximation were derived using the 
plate bending theory using Macro Approach and Navier-Levy method for SSFF boundary 
conditions. Theoretical results (using Macro Approach, Navier-Levy, and FEM) were 
compared with experimental results. In addition, thermal responses of two FRP deck bridges 
(i.e., Market Street Bridge and Wickwire Run Bridge) under thermal difference between the 
deck top and bottom were evaluated after establishing coefficients of thermal expansion 
(CTE) of both FRP decks. The laboratory test data indicated that the FRP deck exhibits a 
hogging effect (upward convexity) when it was subjected to positive temperature difference 
(i.e., top bottomT T> , heating test) and a sagging effect when it was subjected to negative 
temperature difference (i.e., top bottomT T< , cooling test). Deflections increased with increasing 
magnitude of temperature difference. The positive strain (expansion) and compressive stress 
were induced in the FRP deck when temperature of FRP decks was increased by direct 
exposure to Sun light. Partial deck restraint, provided by steel stringer, resulted in partially 
induced stresses. The transient thermal stresses could be as high as 45% of the allowable 
stress of FRP decks and the transient thermal strain could be as high as 86% of allowable 
strain of the FRP bridge deck modules. 
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Chapter 1 

Introduction 

1.1 Composite Materials  

A composite material consists of two or more constituent materials such as fibers and 

resins. The fiber-reinforced polymer (FRP) composite materials, consisting of glass and/or 

carbon fibers, polymeric resins, additives, pigments, and other constituents, have been used 

in many applications. For example, FRPs are used to build aircraft, space structures, 

helicopters, space, automobiles, sporting goods, bridge decks, and others because of their 

superior thermo-mechanical properties over conventional materials. FRP composites possess 

high stiffness and strength to weight, high specific energy absorption and excellent fatigue 

performance and corrosion resistance (Mallick, 1946). Depending on the matrix (cured resin) 

used, composite materials are classified as polymer matrix composites (PMCs), metal matrix 

composites (MMCs), or ceramic matrix composites (CMCs). The majority of the commercial 

composites are manufactured of polymer matrices (Mallick, 1997). The fiber materials play 

an important role in composites. Many researchers have investigated the effects of fiber 

forms, fiber type, fiber volume fraction, and orientation of fiber. In general, the higher the 

fiber volume fraction results in a higher modulus and a higher strength. In structural 

applications, the fiber volume fraction ranges from 30%-70%. The most common types of 

fibers used in advanced composites for structural applications are glass, aramid and carbon 

fibers (or roving and fabrics). The glass fiber is the least expensive fiber while carbon has 

been named the most expensive.  Glass fibers are divided into three classes, which are: E-

glass, S-glass, and C-glass. The E-glass fiber is the most common type of the three types of 

glass fibers which are used in civil applications. The glass fiber is treated as an isotropic 
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material and has a lower thermal expansion coefficient than steel. The aramid fibers have 

excellent fatigue and creep resistance. The two most common types of aramid fibers that are 

used in structural applications are Kevlar 29 and Kevlar 49. The aramid fiber is regarded as 

an anisotropic material. Carbon fibers generally have the higher modulus than aramid or 

glass fibers. Carbon fibers have lower thermal expansion coefficients than aramid and glass 

fibers. Also, carbon fibers have a very high fatigue and creep resistance. Carbon fibers are 

divided into three types, such as high strength, high modulus, and ultra-high modulus fibers. 

The density, Young’s modulus and tensile strength of all three types of fibers can be obtained 

from Mallick (1997). 

The matrix materials (or resin) that are combined with fibers can be made of 

polymers, metals, or ceramics. The most common resins used in load bearing (structure) 

composites are polyester, epoxies, and vinyl esters. 

 

1.2 Fiber Reinforced Polymer (FRP) Bridge Deck 

As described in the section above, composites can be made of different combinations 

of fibers and matrix materials and are used in many different applications. One of the 

applications in civil structures is the FRP bridge deck. Market Street Bridge (GangaRao and 

Laosiriphong 2001) is one of FRP deck bridges in West Virginia with steel stringers, as 

shown in Figure 1.1. In Figure 1.1, portions of the deck were installed on steel stringer using 

nylon straps to lift (Figure 1.2). The cross section of FRP deck, manufactured by Creative 

Pultrusion Inc., is shown in Figure 1.3. The FRP modules are inter-connected by an adhesive 

bonding (Pliogrip) (Figure 1.4). The predrilled FRP deck modules were connected to steel 

stringers using threaded Nelson studs and non-shrink cement grout. The threaded Nelson 
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studs (0.5 inch diameter) were welded to steel stringers in the field. After FRP deck modules 

were completely installed, a 1/8 inch thick of polymer concrete wearing surface was applied 

over top surface of the FRP deck.. Market Street Bridge after completion is shown in Figure 

1.5.  

 

Figure 1.1: Installing FRP Deck on steel stringer. 

 

 

Figure 1.2: Using Nylon Strap to Lift FRP Deck. 
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Figure 1.3: Cross-Section of FRP deck. 

 

 

Figure 1.4: Applying Pliogrip Adhesive to a FRP Deck Module. 

 

 

Figure 1.5: Market Street Bridge – Open to Traffic. 

The use of the fiber reinforced polymer (FRP) deck has become an alternative method 

for improving the life of a bridge deck in relation to using concrete decks. The stiffness and 

strength of a conventionally reinforced concrete bridge deck reduces because of various 

environmental effects and the various chemicals used for deicing snow in the winter. The 

deicing salts used in winter (only considered in some states) increase the corrosion rate of 

steel reinforced concrete bridge decks, which results in the bridge deck replacement ranging 
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on an average from 15 to 25 years, depending on location, traffic intensity, and construction 

quality. Since FRP bridge decks have excellent corrosion resistance, they can lengthen the 

deck service life compared to conventional concrete decks. Also, FRP decks are much lighter 

than conventional concrete bridge decks (about 70-80 % lighter), reducing the self weight 

and increasing the live load capacity without significantly altering the in-service substructure. 

Installation of FRP decks is rapid because of their modular construction approach and use of 

lighter erection equipment. One of the recent concerns with FRP decks is the wearing surface 

delamination after a short in service duration. The wearing surface problem can be solved by 

following the proper installation procedures and using the proper materials (Shekar, Petro, 

and GangaRao 2002). Several technical and quality control issues may be the cause of the 

wearing surface problems. The wearing surface could be installed while the FRP deck is 

subjected to high gradient temperature through the depth. Such a gradient temperature can 

create residual stress in the wearing surface during cooling of the deck in the night hours. 

Another potential delamination problem can occur when the FRP deck surface is not properly 

cleaned before installing the wearing surface. Also, field joints in each panel of the FRP deck 

should be reinforced by layers of composite fabric, as well as sanded for a clean surface  

(without FRP gel coat) (Shekar, Petro, and GangaRao, 2002) before installing wearing 

surface.  

The gradient temperature (the temperature difference between the deck top and 

bottom) of the FRP bridge deck is high compared to conventional concrete deck because of 

the hollow section and relatively low thermal conductivity (Thermal conductivity of concrete 

is around 0.8 to 1.2 W/m ° K while that of FRP deck is about 0.375 W/m ° K). Typically, the 

maximum temperature gradient of a FRP bridge deck is 80 °  to 90 ° F during hot sunny day 
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while that of a conventional concrete deck is around 20°  to 40 ° F.  During winter, the 

temperature gradient is not as high as in summer. When the temperature of the top surface is 

higher than that of the bottom surface, the deck will have a tendency to heave in the upward 

direction.  

Thermal responses in fiber reinforced polymer (FRP) decks due to temperature 

fluctuation have become a very critical issue (based on field observations) and several bridge 

decks have been monitored in the field and simulated in a laboratory setting. 

 

1.3 Objective and Scope 

 The objectives of this study are to determine thermal strain and deflection of a FRP 

deck subjected to temperature difference in the laboratory and the field and to develop 

theoretical and design procedures for FRP decks under thermal loads. A detailed procedure to 

accomplish the above objectives is given below: 

Chapter 2:  Review the existing literature in terms of thermal effects in the composites. 

Chapter 3:  Determine the coefficients of thermal expansion of FRP deck specimens  

supplied by Bedford Reinforce Plastic Inc.  

Chapter 4:  Present the laboratory test data (i.e. heating test and cooling test) for FRP deck 

specimens under temperature gradient. Simply supported boundary and free 

boundary conditions are simulated in the laboratory tests.  

Chapter 5:  Correlate laboratory thermal data with theory. 

Chapter 6:  Obtain the data from field and compare filed data to theoretical results. 

Chapter 7: Conclusions and Recommendations. 

Appendix A:  Basic thermal analysis of isotropic beam and orthotropic plate 
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Appendix B:  Derivation of Coefficients ( )xxT
nM x  and  ( )yyT

nM x  for thermal load moment 

Appendix C:  Laboratory test results for 8 in. FRP bridge deck 

Appendix D:  Laboratory test results for 4 in. FRP bridge deck 

Appendix E:  Theoretical results from Navier-Levy and Macro Approach 

Appendix F:  Theoretical results using FEM (ANSYS Version 7.1) 

Appendix G:  Develop analytical solutions for FRP decks under temperature changes using 

Navier-Levy method and Macro Approach.   
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Chapter 2 

Literature Reviews 

2.1 Introduction 

 All practical structures are subjected to varying structural responses under thermal 

changes as in cases of mechanical loads. Therefore it is necessary to understand and include 

the thermal effects in the structural design (Vinson, 1999). Bridge structures are subjected to 

high temperature difference on deck slab. Generally, temperature difference along the depth 

of FRP deck bridge is higher than that of traditional concrete deck bridge by about 2 or 3 

times since hollow cross-section of FRR deck reduces the amount of heat dissipating from 

the top surface to bottom surface of a deck slab. Typically, FRP deck bridges experience 

higher temperature difference than traditional concrete deck bridges. In this chapter, 

temperature differences in the field and thermal analysis of beams and FRP plates are 

presented based on available literatures. 

 

2.2 Temperature difference and Basic Concepts of Thermal Effect 

Emanuel and Taylor (1985) studied the effects of different span length as a function of 

thermal stresses in bridges. They concluded that thermal stress was independent of span 

length for prismatic (constant) sections. Also, they concluded that thermal stresses were not 

directly dependent on the size of cross section, but may be indirectly dependent on the cross 

section. However, thermal stresses were dependent on the temperature difference, which in 

turn was dependent on the cross-sectional properties. They also explained some of the 

concepts of thermal stresses by dividing non-uniform temperature to three different 

components such as; uniform, linear and nonlinear component. The uniform component 
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(uniform temperature change) produces axial displacement without stress if the movement 

was unrestrained. Total restraint of axial movements would induce stress without strain, and 

partial restraint would produce some combination of stress and strain. The gradient 

temperature change (Figure 2.1) was a curvature-inducing strain which produces vertical 

deflections without stress if the vertical movement was unrestrained. Total restraint of 

vertical movement would induce stress without strain, and partial restraint would produce 

some combination of stress and strain. The nonlinear component was a stress-inducing strain 

with stresses resulting from continuity of cross section and the assumption that plane sections 

remain plane. Thermal stresses induced from a nonlinear component were produced by the 

nonlinear strain component. It was noted that an important factor affecting thermal stresses in 

a composite section (concrete deck and steel beam) was the difference in coefficient of 

thermal expansion of the component members (such as the deck and beam) and temperature 

distribution along the depth of a bridge deck and stiffening beams. Thermal strain induces 

movement without stress for unstained boundaries, while stress without strain is induced if 

movements were to be fully restrained. Similarly, a combination of stress and strain was 

induced under thermal gradients along the depth, if movements were partially restrained. 

Magnitude of temperature difference on a deck slab is an important factor in thermal 

analysis. For example, for higher temperature difference along the depth of deck slabs, 

applied forces or moments due to temperature can be increased. McClure (1984) investigated 

temperature distribution in a bridge structure and found that there was no significant 

longitudinal temperature variation. McClure concluded that thermal analysis can be reduced 

from a three-dimensional problem to a one-dimensional problem comprising of a vertical 

temperature variation through the section depth of composite bridges. Naruoka (1957) carried 
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out thermal tests on the Shigita Bridge in Japan. It was observed that the temperature 

distribution was almost constant in a steel girder and fairly linear in the concrete deck slab. 

The maximum temperature difference between top and bottom of a concrete deck slab was 

around 40 ° F and thermal stresses were found to be comparable to dead load and live load 

stresses in composite bridges.  

Zuk (1965) investigated six simply-supported composite bridges (concrete deck slab 

supported by steel beams). The temperature difference between top and bottom of concrete 

deck slab can be as high as 40° F (22 ° C) during summer seasons and as low as -10 ° F  

(-6° C) in winter season. He also obtained field data on the vertical temperature distribution 

in a concrete deck-steel stringer bridge over the Hardware River near Charlottesville, North 

Carolina. The results revealed that the temperature difference of concrete deck slab ranged 

from 20 ° F to 35 ° F (11 ° C to 19 ° C) during the day and -3° F to -7° F (-2 ° C to -4 ° C) 

during the night. Emanuel (1978) used a finite element model to predict the vertical 

temperature distribution in concrete deck bridges from a computerized reduction of 20 years 

of weather data recorded by National Weather Service at a station in Columbia, Missouri. It 

showed that the maximum temperature difference between top and bottom of concrete deck 

slab occurs at approximately 2.00 p.m. in July which was about 39° F (22° C) while the 

minimum temperature difference occurred at 4.00 a.m. which was about -3° F (-2 ° C). 

Kennedy and Soliman (1987) proposed a realistic and simple vertical temperature 

distribution through the depth of a concrete deck slab and steel beams as shown in Figure 2.1. 

Steel beams had a very small temperature variation through the depth, which can be 

considered as a constant. Based on field data in Middle Atlantic States and Southern Ontario, 

the maximum temperature differentials (positive gradient) occurred when the concrete deck 
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slab was exposed to the Sun’s radiation during summer or winter seasons. The minimum 

temperature difference (negative gradient) occurred when the concrete deck slab was 

suddenly drenched with cold rain or snow. They also recommended that the maximum and 

minimum temperature differences in summer season were about 40° F and -7.5 ° F, 

respectively and about 20 ° F and -7.5 ° F in winter season. It was noted the positive 

temperature difference represented higher temperature on top surface than bottom surface 

while negative temperature difference represented lower temperature on top surface than 

bottom surface. The temperature distribution from Kennedy and Soliman (1987) appeared to 

be the most realistic and simple to accept. This was confirmed by field test measurements. 

Furthermore, the calculation of thermal stresses based on a linear-uniform variation became 

much simpler for a bridge structure. 

 

Figure 2.1: Linear-Uniform Vertical Temperature Distribution; T∆ =Temperature 

Differential (John B. Kennedy, 1987). 

 

Hussein, Fazio, and Ha (1992) studied the effects of bonding stiffness in sandwich 

panels subjected to temperature changes. Sandwich panels made of thin skins and a 

lightweight core, which have different coefficient of thermal expansion. Sandwich panels are 

considered as a three-layer sandwich (top skin, core skin, and bottom skin). The temperature 
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change in a sandwich panel was divided into uniform temperature change and gradient 

temperature change, as shown in Figure 2.2. Airy’s stress function was used to solve for 

solutions. Numerical results were compared to experimental values from a sandwich panel 

made of an aluminum skin and a wood core. Experimental results are in good agreement with 

theory. It was found that thermal stresses are a function of material properties of sandwich 

skin and core, and also the rigidity between skin and core. A sandwich panel with a flexible 

core may not produce significant thermal stresses. If the core had some rigidity then 

temperature change will induce thermal stresses. Also difference in coefficient of thermal 

expansion (CTE) of skin and core play an important role in thermal stresses. 

 

Figure 2.2: Sandwich Panel Subjected to Thermal Gradient (R. Hussein, 1992). 

It can be concluded that the maximum and minimum of temperature differences on 

concrete deck slab are 40 ° F and –7.5 ° F (Note : Positive temperature difference = top 

temperature higher than bottom temperature, Negative temperature difference = top 
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temperature lower than bottom temperature). The Federal Highway Administration 

recommended the designer to consider a temperature difference that can be as high as 100 ° F 

in fiber reinforced polymer (FRP) deck slabs. 

Dutta, Kwon and Lopez-Anido (2003) evaluated the fatigue performance of FRP 

bridge decks under high and low temperatures. FRP bridge decks was subjected to four 

million simulated wheel load cycles at low temperature, -30 ° C (–22 ° F), and another four 

million cycles at high temperature, 50 ° C (122 ° F). It was concluded that progressive 

degradation in stiffness with load cycling was observed under two extreme temperatures,  

-30° C (–22° F) and 50° C (122 ° F) and the stiffness of FRP bridge decks under simulated 

wheel loads was more susceptible to two extreme temperature changes than to ten million 

cumulative load cycles. 

Dutta (2004) performed outdoor tests with Sun exposure on FRP bridge decks to 

monitor temperature rise and fall of FRP bridge decks on both top and bottom surfaces 

during the summer months of New Hampshire. It was concluded that the temperature on top 

and bottom surfaces can be as high as 150 ° F and 77 ° F, respectively which resulted in the 

temperature difference of 73 ° F. 

 

2.3 Thermal Analysis of Composite Beams and Plates  

Timoshenko and Krieger (1959) studied thermal stress in isotropic plates with 

clamped edges. The variation of temperature was assumed to be linear along the thickness 

and did not vary in planes parallel to surfaces of plate. Bending, due to temperature 

difference, did not produce any stress if the edges were free. The maximum thermal stress 

was found for the case that the middle plane of the plate was free to expand, but edges of the 
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plate were clamped so that they cannot rotate. The maximum thermal stress was equal to the 

formula 
2(1 )

tEα
ν−

. Stress was proportional to coefficient of thermal expansion (α ), to 

temperature difference (t) between top and bottom surface, and to modulus of elasticity (E). 

Since the temperature difference increases in proportion to the thickness of plate, it can be 

concluded that greater thermal stresses were to be expected in thick plates than in thin plates. 

Also, if temperature of the upper surface of a plate was higher than that of bottom surface, 

the plates bended convexly upward. 

Wu and Tauchert (1980) analyzed deformations and stress resultants for symmetric 

orthotropic laminates subjected to a temperature variation, which varies along the thickness 

but not in horizontal plan of the laminates. The Levy method and the Classical Plate theory 

were used in their analysis. Two cases of boundary conditions were analyzed, such as four 

simply supported edges, and two parallel edges being simply supported while the other two 

were clamped. The following are the governing equations for symmetric laminates in this 

analysis (Stavsky, 1963) 

 11 , 66 , 12 66 , ,( ) 0T
xx yy xy x xA u A u A A v N+ + + − =  (2.1) 

 ( )12 66 , 66 , 22 , , 0T
xy xx yy y yA A u A v A v N+ + + − =  (2.2) 

 
11 , 12 66 , 22 , , ,2( 2 ) T T

xxxx xxyy yyyy x xx y yyD w D D w D w M M q+ + + + + =  (2.3) 

 
As a consequence of the assumed symmetry in boundaries, the governing equations 

of vertical deformation (w) and in-plane deformations (u and v) are assumed to be 

independently. Generally, force and moment resultants in laminates can be written as 
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M B D k M

ε       = −      
      

, where [ ]A , [ ]B  and [ ]D were extensional, coupling and 

bending stiffness coefficients, respectively. { }TN  and { }TM  were thermal forces and 

moments, respectively. Since laminates in this case study were symmetric, the coupling 

stiffness coefficient, [B], becomes zero. Therefore, force and moment resultants for 

symmetric laminates can be reduced as { } [ ]{ } { }0 TN A Nε= − and{ } { } { }[ ] TM D k M= − . 

The thermal forces, thermal moments, transverse load, and deflection were expressed in the 

form of the Fourier Series. Deformations (u, v and w) were also expanded in the Fourier 

Series, which satisfy boundary conditions and governing equations. An illustrative example 

of unidirectionally reinforced polymer composite plates subjected to a linear temperature 

difference was computed. The results from this example were compared to the results 

obtained from finite-element and the Rayleigh-Ritz techniques wherein the agreement was 

very satisfactory. Wu and Tauchert (1980) also analyzed the deformations and stress 

resultants for antisymmetric cross-ply and angle-ply orthotropic laminates. In the case of 

antisymmetric laminates, the coupling coefficient, [ ]B , was not zero. The analysis was the 

same as symmetric laminates but the coupling coefficient, [ ]B , was included in governing 

equations, thermal forces, and thermal moments make the problem more complicated than 

symmetric laminates cases. The following are  governing equations for antisymmetric 

laminates; 

 
11 , 16 , 66 , 16 , 12 66 , 26 , 11 , 16 ,

12 26 , 26 , , ,

2 ( ) 3

( 2 ) 0
xx xy yy xx xy yy xxx xxy

T T
xyy yyy x x xy y

A u A u A u A v A A v A v B w B w

B B w B w N N

+ + + + + + − −

− + − − − =  (2.4) 

 
16 , 12 66 , 26 , 66 , 26 , 22 , 16 , 12 26 ,

26 , 22 , , ,

( ) 2 ( 2 )

3 0
xx xy yy xx xy yy xxx xxy

T T
xyy yyy y y xy x

A u A A u A u A v A v A v B w B B w

B w B w N N

+ + + + + + − − +

− − − − =  (2.5) 
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11 , 16 , 12 26 , 26 , 22 , 11 , 16 , 12 66 ,

26 , 16 , 12 66 , 26 , 22 , , ,

4 2( 2 ) 4 3 ( 2 )

( 2 ) 3 , 2
xxxx xxxy xxyy xyyy yyyy xxx xxy xyy

T T T
yyy xxx xxy xyy yyy x xx xy xy y yy

D w D w D D w D w D w B u B u B B u

B u B v B B v B v B v M M M q

+ + + + + − − − +

− − − + − − + + + =
  (2.6) 

 

Thermal forces and moments can be expressed as 
0 T

T

A BN N
M B D k M

ε       = −      
      

. It 

was found that the coupling stiffness coefficients, [ ]B , have a significant effect upon the 

thermal deformations of the two-ply laminate. The coupling is relatively unimportant for 

plates having a large number of plies ( N ≥  8 layers). 

 

Classical (Kirchhoff) lamination theory (CLT) has been used for a number of years 

and was still valid for thin plates. Mindlin (1951) proposed a first-order shear-deformation 

theory that includes the effects of transverse shear deformation but required the use of shear 

correction factors. Shear deformation assumes a greater significance for fiber-reinforced 

laminates, as compared to homogenous plates, due to a large ratio of longitudinal elastic 

modulus to the transverse shear modulus. In order to eliminate the use of shear correction 

factors, Jonnalagadda (1993) proposed higher order of displacement functions to cubic 

functions called the Cubic Theory. The plate theory can simply be developed by assuming 

displacement functions correctly. If displacement functions were assumed differently then 

the innovative plate theories can be used. The following were six different displacement 

functions which lead to six different plate theories.  

 
2 3

1 2( , , ) ( , ) ( , ) ( , ) ( , )o
x x xu x y z u x y z x y C z x y C z x yψ ξ φ= + + +  (2.7) 

 
2 3

3 4( , , ) ( , ) ( , ) ( , ) ( , )o
y y yv x y z v x y z x y C z x y C z x yψ ξ φ= + + +  (2.8) 
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2 3

5 6 7( , , ) ( , ) ( , ) ( , ) ( , )o
z z zw x y z w x y C z x y C z x y C z x yψ ξ φ= + + +  (2.9) 

Cubic Plate Theory : No constants was equal to 0 

Quadratic Plate Theory : C7 = 0, the remaining constants = 1 

Linear Plate Theory : C6 = C7 = 0, the remaining constants =1 

Reddy Plate Theory : C5 = C6 = C7 = 0, the remaining constants = 1 

Chang Plate Theory : C1 = C3 = C5 = C7 = 0 

Mindlin-Reissner Plate Theory : All constants were equal to 0 

According to the displacement functions above, Jonnalagadda (1993) used  the cubic 

displacement function (Cubic theory) to study the effect of the inclusion of “thickening” or 

the transverse normal strain on the thermal deflection of plates and compared the results to 

the Kirchoff (Classical Plate Theory), Reddy and Chang theories. The principle of virtual 

displacement as shown below was used to obtain equilibrium equations for plate. 

 
2

2
( ) 0

h

x x y y z z xy xy yz yz xz xzh A
dAdzσ δε σ δε σ δε σ δγ σ δγ σ δγ

−
+ + + + + =∫ ∫  (2.10) 

 
It was noted that different displacement functions resulted in different theories (for 

example, the Plate Theory, Quadratic Plate Theory, Linear Plate Theory, Reddy Plate 

Theory, Chang Plate Theory, and Mindlin-Reissner Plate Theory). After the relations of 

force/moment resultants and stress and the relations of strain and displacement were 

established, stress and strain in principle of virtual displacement were substituted by these 

relations and integrated by parts.  For the Cubic Theory, eight equations of equilibrium were 

obtained after integrating by parts. The displacement function can be solved by satisfying the 

equations of equilibrium and boundary conditions. The forces, stresses, and strains of a plate 

can be calculated based on displacement functions, which were obtained after satisfying 
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equations of equilibrium and boundary conditions. Jonnalagadda (1993) obtained numerical 

results (for the Cubic Theory) for center deflection of a symmetric eight-layer graphite/epoxy 

square laminate plate subjected to a linear temperature along the depth and compared with 

various theories based on different  displacement functions. It was concluded that Reddy’s 

theory neglected the transverse normal strain effects, and Chang’s theory was only accurate 

when the composite plate was subjected to an antisymmetric thermal load. It was shown in 

Figure 2.3 that a quadratic deflection variation in the thickness direction yielded results equal 

to those obtained using a cubic variation when the in-plane displacements were assumed to 

vary cubically with the thickness coordinate in both formulations. It was recommended that 

FRP composite plates subjected to a through-thickness temperature field of order higher than 

linear may require the use of a cubic function through-thickness displacement representation. 

 

Figure 2.3: Depth-Deflection Relationships for a Thick Plate (a/h = 4) for Various Theories. 

 

 



 20

References 

• Dutta, Piyush K., Kwon, Soon-Chul and Lopez-Anido, Roberto (2003), “Fatigue 
Performance Evaluation of FRP Composite Bridge Deck Prototypes under High and Low 
Temperatures”, Transportation Research Board, 82nd Annual Meeting, Washington, D.C. 

 
• Emanuel, Jack H. and Taylor, Charles M. (1985), “Length-Thermal Stress Relations for 

Composite Bridges”, Journal of Structural Engineering, Vol. 111, No. 4, April, 1985. 
 
• Emanuel, Jack H. and Hulsey, J.L. (1978), “Temperature Distributions in Composite 

Bridges”, Journal of the Structural Division, ASCE. 104(1), 65-78. 
 
• Hussein, R., Fazio, P. and Ha, K. (1992), “ Effects of Bonding Stiffness on Thermal 

Stresses in Sandwich Panels.”, Journal of Aerospace Engineering, Vol. 5, No. 4, October 
1992. 

 
• Jonnalagadda, Krishna D., Tauchert, Theodore R., and Blandford, George E. , “High-

Order Thermalelastic Composite Plate Theories : An Analytic Comparison” , J. Thermal 
Stresses, Vol 16, P265-284, 1993. 

 
• Kennedy, John B. and Soliman, Mohamed H. (1987), “Temperature Distribution in 

Composite Bridges”, Journal of Structural Engineering, Vol. 113 No. 3, March, 1987. 
 
• McClure, R.M., West, H. H. and Hoffman, P.C. (1984), “Observations from Tests on a 

Segmental Bridge.” 2nd Bridge Engineering Conference, Transportion Research Record, 
950. 2, National Research Council, Minneapolis, Minn. 

 
• Mindlin, R.D., “Influence of Rotary and Shear on Flexural Motions of Isotropic, Plates”, 

ASME J. Appl. Mech., vol.18, pp 31-39, 1951. 
 
• Naruoka, M. H. and Yamaguti, T. (1957). “ The Measurement of the Temperature of the 

Interior of the Reinforce Concrete Slab of the Shigita Bridge and Presumption of Thermal 
Stress.” Proceedings. Symposium on the Stress Measurements for Bridge and Structure, 
Japanese Society for Promotion of Science, Tokyo, Japan, 109-115. 

 
• Stavsky, Y., “ Thermoelasticity of Heterogeneous Aeolotropic Plates.”, J. Eng. Mech. 

Div., Proc. ASCE, vol. 89, pp. 89-109, 1963. 
 
• Timoshenko, Stephen P. and Woinowsky-Krieger, S. (1959), Theory of Plates and 

Shells.,  Edition #2, McGrawHill, 1959. 
 
• Vinson, Jack R. (1999), “ Behavior of Sanwich Structures.” Publisher : CRC Press, 

March, 1999. 
 



 21

• Wu, C. H. and Tauchert, T. R. , “Thermoelastic Analysis of Laminated Plates. 1: 
Symmetric Specially Orthotropic Lamenates,”, J. Thermal Stresses, Vol. 3, P247-259, 
1980. 

• Wu, C. H. and Tauchert, T. R., “Thermoelastic Analysis of Laminated Plates. 2: 
Antisymmetric Cross-Ply and Angle-Ply Laminates”, J.Thermal Stresses, Vol. 3, P365-
378, 1980. 

 
• Zuk, W. (1965), “Simplified Design Check of Thermal Stresses in Composite Highway 

Bridges.” Highway Research Record. 103. 



 22

Chapter 3 

Coefficient of Thermal Expansion (CTE) Measurements in Laboratory  

 

3.1 Introduction 

The coefficient of thermal expansion (CTE) is a basic physical property which can be 

an important factor to design a structure under thermal fluctuations. The coefficients of 

thermal expansion (CTE) were defined as the strain increment per degree temperature 

variation in the material. The higher CTE implies a larger expansion or contraction. In 

Appendix G, the first term approximation for rectangular plates was derived. The required 

elastic properties in the analysis were E1, E2, G12, 12ν , 21ν , 1α  and 2α . The definitions of 

each notation can be found in Appendix G.  All elastic properties except CTE (i.e. 1α  and 

2α ) of both 4 inch and 8 inch deep fiber reinforced polymer (FRP) decks (see Figure 3.1(a) 

and 3.2(a) for cross section) can be found in the reports written by Punyamurthula (2004) and 

Howard (2002), respectively. Therefore, the CTE ( 1α  and 2α ) of both FRP decks  were 

determined in this chapter experimentally. 

 

3.2 Objective 

The objective of this chapter is to measure the CTE of two types of FRP decks (4 

inches and 8 inches in depth ). 

 

3.3 Test Specimens 

The 4 inch and 8 inch FRP deck specimens were shown in Figure 3.1(a) and 3.2(a), 

respectively. The specimens were manufactured by Bedford Reinforced Plastic Inc.. The size 
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of test specimens were divided into two categories such as component and coupon levels 

which were described in section 3.3.1 and 3.3.2. 

 

3.3.1 Component Level Specimens  

Specimen #1 : A module of 4 in. FRP deck with 29 inches in length (i.e. Dimension 

of 29 in. x 29 in. x  4in. depth, See Figures 3.1(a) and (b)) 

Specimen #2 : A module of 8 in. FRP deck with 24 inches in length (i.e. Dimension 

of 24 in. x 24 in. x 8 in. depth, See Figures 3.2 (a) and (b)) 

Specimen #3 : Four modules of 4 in. FRP deck (Dimension of 6.83 ft. x 3 ft. x 4 in. 

depth, See Figures 3.3 (a) and (b)) 

Specimen #4 : Three modules of 8 in. FRP deck (Dimension of 4.5 ft. x 3 ft. x 8 in. 

depth, See Figures 3.4 (a) and (b)) 

Specimen #5 : A module of 4 in. FRP deck with 1 inches in length (i.e. Dimension of 

1 in. x 29 in. x 4 in. depth, See Figure 3.5) 

Specimen #6 : A module of 8 in. FRP deck with 1 inches in length (i.e. Dimension of 

1 in. x 24 in. x 8 in. depth, See Figure 3.6) 
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Figure 3.1(a): Specimen #1 ( A Module of 4 in. FRP Deck with 29 inches in Length). 

 

Figure 3.1(b): Specimen #1 : Locations and Number of Strain Gages.  



 25

 

Figure 3.2(a): Specimen #2 (A Module of 8 in. FRP Deck with 24 inches in Length). 

 

Figure 3.2(b): Specimen #2: Locations and Number of Strain Gages. 
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Figure 3.3(a): Specimen #3 (Four Modules of 4 in. FRP Deck with 3 ft. in Length). 

 

 

 

 

Figure 3.3(b): Specimen #3: Locations and Number of Strain Gages. 
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Figure 3.4(a): Specimen # 4 (Three Modules of 8 in. FRP Deck with 3 ft. in Length).  

 

 

 

Figure 3.4(b): Specimen #4: Location and Number of Strain Gages.  
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Figure 3.5: Specimen # 5: Locations and Number of Strain Gages.  

 

 

Figure 3.6: Specimen # 6: Locations and Number of Strain Gages. 

 

3.3.2 Coupon Level Specimens (Dimension of 1 in. x 12 in.) 

Four coupon level specimens were cut from top surface of 4 inch and 8 inch FRP 

deck in both strong and weak directions of the FRP deck. Strong direction of the FRP deck is 

the cell direction while the weak direction is perpendicular to the strong direction. Dimension 

of a coupon level specimen was 1 inch x 12 inch. Strain gages were attached to the coupon 

specimens at the center in both direction (Strong and Weak Directions) as shown in Figures 
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4.7 and 4.8. The following were four coupon specimens for both the 4 inch and 8 inch FRP 

deck : 

Specimens #7 and #8 : Cut in Strong and Weak directions of 4 in. FRP deck, respectively, as 

shown in Figure 3.7. 

Specimens #9 and #10 : Cut in Strong and Weak directions of 8 in. FRP deck, respectively, as 

shown in Figure 3.8. 

 

 

Figure 3.7: Specimens #7 and #8 : Locations and Number of Strain Gages. 
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Figure 3.8: Specimens #9 and #10 : Locations and Number of Strain Gages. 

 

3.4 Instrumentations 

3.4.1 Strain Measurement  

The type of strain gage for the test was CEA-06-250-UW-350. Refer to 

Vishay Measurements Group for more details. 

3.4.2  Reference Materials ( ULE Tilnium Silicate Code 7971 ), See Figure 3.9  
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3.5 Test Procedure 

The strain gage was used to determine either the expansion or contraction of materials 

under temperature change. Generally, the strain gage also expands or contracts when 

temperature is changed. Therefore, compensation for this effect was required to obtain true 

expansion or contraction of materials alone. Micro-Measurement Inc., a strain gage supplier, 

recommended a technique to compensate for this effect.  The technique for measuring a 

thermal expansion coefficient was based on the technical note, tn513 from Micro-

Measurement Inc. The technique used two well-matched strain gages, with one bonded to a 

reference material, and the second to a specimen. In principle, the reference material could be 

any substance for which the expansion properties were accurately known over the 

temperature range of interest. In practice, it is often advantageous to select a material with 

expansion properties as close to zero as possible. This provided an output signal that closely 

corresponds to the “absolute” expansion coefficient of the test material, and permitted a more 

straightforward testing procedure (Technical Note 513). An excellent reference material to 

use was ULE Tilanium Silicate Code 7971, as shown in Figure 3.9. This special glass has an 

extremely low thermal expansion coefficient, particularly over the temperature range from 

about –50° F to +350° F (-45 ° C to +175 ° C). When a strain gage was installed on a stress-

free specimen of any testing material, and the temperature of the materials were changed, the 

output of the gage changed correspondingly. This effect was defined as thermal output (strain 

reading from reference material) and was caused by two factors. One of the factors was that 

the resistivity of the grid alloy changed with temperature. The other factor was that the 

resistance changed because of a difference of thermal expansion of gages and test materials. 

The CTE of specimens was the ratio of strain increment to temperature increment (i.e. 
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T
εα =

∆
). As described previously, temperature change has an effect on strain gages. 

Therefore, the raw strain reading needed to be compensated in order to obtain the true strain 

(true expansion or contraction of specimens) by the following formula. 

 specimen reference materialε ε ε= −  (3.1) 

where ε  is true strain increment of specimens under temperature change. 

specimenε  is  strain reading on strain gage installed to a specimen. 

reference materialε  is strain reading on strain gage installed to a reference material. 

 

 

Figure 3.9: Reference Material ( ULE Tilanium Silicate Code 7971 ) with  
          Strain Gage. 

 

 

 



 33

The following is the test procedure: 

1. Installing strain gages on test specimens and on a reference material (Refer to 

section 3.3 for locations of strain gages).  

2. For specimens #1 and #2 : Suspending specimens #1 and #2 at an end of a test 

specimen with rope in order to allow the specimens expand or contract freely. The 

direction of strong axis (cell direction ) of a test specimen is aligned into the 

gravity direction. This helps in reducing the expansion and bending moment 

effect from self-weight of specimen compared to weak direction aligned into the 

gravity direction.  

Specimens #3 to #10 were placed on a roller at the ends with free expansion. 

3. Keeping specimens in a Thermotron walk-in environmental test chamber. 

Temperature in Thermotron walk-in environmental chamber was programmed as 

shown in Table 3.1. 

4. Recording strain reading for several repeated cycles until strain reading was 

consistent. 
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Interval Interval Time   
(hrs.) 

Temperature 
(°F) 

1 1 72 to 110 
2 23 110 
3 1 110 to 121 
4 23 121 
5 1 121 to 72 
6 23 72 
7 8 72 to –20 
8 8 -20 
9 8 -20 to 110 
10 24 110 
11 7 110 
12 2 110 to 72 

 
Table 3.1: Temperature in Test Chamber. 
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3.6 Test Results 

Test results were shown in table 3.2 

Specimen #1               
(4 in. FRP Deck, 29" x 29 ") 

Specimen #2               
(8 in. FRP Deck, 24" x 24") 

Reference 
Material  

( )specimenε µε  (Refer to  Eq. 3.1) 

Top Surface Web Top Surface Web 
Strong  Weak Strong Weak Strong Weak Strong Weak 

C
yc

le
 

Te
m

pe
ra

tu
re

 (°
F)

 

#1 #2 #3 #4 #5 #6 #7 #8 

( )
reference materialsε

µε

72 0 0 0 0 0 0 0 0 0 
110 -10 89 10 281 -59 299 -38 229 -244 
121 -46 152 -9 320 -82 375 -64 276 -322 

1 

-20 -114 -427 -207 -687 -54 -698 -129 -593 401 
72 0 0 0 0 0 0 0 0 0 
110 -25 118 4 260 -61 290 -42 221 -246 
121 -52 148 -9 308 -83 374 -66 275 -323 

2 

-20 -113 -378 -207 -687 -56 -695 -132 -593 400 
72 0 0 0 0 0 0 0 0 0 
110 -27 128 5 254 -58 288 -41 222 -245 
121 -44 151 -7 321 -83 375 -65 275 -322 

3 

-20 -112 -360 -209 -684 -59 -696 -133 -589 402 
72 0 0 0 0 0 0 0 0 0 
110 -27 130 1 253 -63 285 -44 220 -244 
121 -48 148 -14 318 -90 372 -70 269 -321 

4 

-20 -113 -361 -206 -688 -60 -694 -133 -588 402 
 

Note : Strain on Reference Material in the last column represents reference materialε  in Eq. 3.1 

Table 3.2: Raw Strain data ( specimenε ) for Specimens #1 and #2 and Strain Data ( reference materialε )  
      for Reference Material. 
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Specimen # 3               
(4 in. FRP Deck, Full Scale) 

Specimen # 4                
(8 in. FRP Deck, Full Scale) 

Reference 
Material 

( )specimenε µε  (Refer to Eq. 3.1) 

Center of a Module Connection Joint Center of a Module Connection Joint 

Temperature 

#9 #10 #11 #12 #13 #14 #15 #16 

C
yc

le
 

C F Strong  Weak Strong Weak Strong Weak Strong Weak 

( )
reference materialsε

µε

22 71.60 0 0 0 0 0 0 0 0 0
43 109.40 27 134 -8 137 -26 258 -31 298 -238
49 120.20 28 163 -10 162 -47 331 -41 354 -314

1 

-29 -20.20 -284 -465 -236 -507 -173 -720 -201 -792 322
22 71.60 0 0 0 0 0 0 0 0 0
43 109.40 28 122 -1 122 -25 248 -31 284 -238
49 120.20 29 161 -11 154 -49 327 -41 354 -315

2 

-29 -20.20 -284 -466 -234 -494 -177 -722 -203 -793 322
22 71.60 0 0 0 0 0 0 0 0 0
43 109.40 27 121 -9 119 -30 251 -33 281 -238
49 120.20 28 161 -10 153 -49 327 -41 353 -315

3 

-29 -20.20 -285 -467 -234 -494 -176 -721 -203 -792 321
 

Note : Strain on Reference Material in the last column represents reference materialε  in Eq. 3.1 

Table 3.3: Raw Strain Data ( specimenε ) for Specimens #3 and #4 and Strain Data ( reference materialε )  
       for Reference Material. 
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4 in FRP Deck 8 in. FRP Deck 

( )specimenε µε  (Refer to Eq. 3.1) 

Specimen #5 Specimen #7 Specimen #8 Specimen #6 Specimen #9 Specimen #10 

Cross Section   
(1" in length) 

Coupon        
(Cut in Strong 

Direction) 

Coupon        
(Cut in Weak 

Direction) 

Cross Section   
(1" in length) 

Coupon        
(Cut in Strong 

Direction) 

Coupon        
(Cut in Weak 

Direction) 
Te

m
pe

ra
tu

re
 

Strong  Weak Strong Weak Strong Weak Strong Weak Strong Weak Strong Weak

C
yc

le
 

Ti
m

e 
Le

ft 
(h

rs
.) 

In
te

rv
al

  

°C °F  #17 #18 #21 #22 #23 #24 #19 #20 #25 #26 #27 #28 

St
ra

in
 o

n 
R

ef
er

en
ce

 M
at

er
ia

l 

7.08 6 22 71.60 0 0 0 0 0 0 0 0 0 0 0 0 0 

6.55 10 43 109.40 -43 91 -44 99 -52 70 -55 360 -73 313 -53 392 -236 

5.11 4 49 120.20 -75 122 -63 138 -85 103 -91 467 -107 386 -86 485 -313 
1 

0.46 8 -29 -20.20 -99 -369 -107 -352 -96 -329 -152 -904 -130 -837 -157 -972 324 

8.57 6 22 71.60 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.01 2 43 109.40 -48 95 -42 99 -58 67 -56 375 -74 322 -52 400 -238 

0.17 4 49 120.20 -74 107 -63 120 -74 79 -88 469 -108 394 -91 495 -315 
2 

2.34 8 -29 -20.20 -98 -369 -102 -342 -93 -329 -148 -901 -131 -834 -155 -970 320 

0.45 6 22 71.60 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.3 10 43 109.40 -48 87 -51 85 -52 56 -54 370 -75 317 -54 399 -238 

9.55 4 49 120.20 -64 102 -67 117 -78 65 -88 476 -108 398 -83 498 -316 
3 

2.28 8 -29 -20.20 -105 -373 -107 -351 -88 -331 -151 -897 -130 -831 -157 -964 321 

 
Note : Strain on Reference Material in the last column represents reference materialε  in Eq. 3.1 

Table 3.4 Raw Strain Data ( specimenε ) for Specimens #5  to #10 and Strain Data ( reference materialε )  
     for Reference Material. 
 

The test data was recorded up to three or four cycles until consistent results were 

noted. One cycle represented twelve intervals (refer to Table 4.1). Based on the test data in 

Tables 3.2 to 3.4, strain data of all strain gages were consistent for all cycles. This leaded the 

author to discontinue the test.  
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The raw strain data from tables 3.2 to 3.4 were calculated based on Eq. (3.1) to obtain the 

true strain as shown in Tables 3.5 to 3.7, respectively. 

 

Specimen #1                   
(4 in. FRP Deck, 29" x 29 ") 

Specimen #2                 
(8 in. FRP Deck, 24" x 24") 

( )specimen reference materialε ε ε µε= −  

Top Surface Web Top Surface Web 
Strong  Weak Strong Weak Strong Weak Strong  Weak

C
yc

le
 

Te
m

pe
ra

tu
re

 (°
F)

 

#1 #2 #3 #4 #5 #6 #7 #8 

72 0 0 0 0 0 0 0 0
110 234 333 254 525 185 543 206 473
121 276 474 313 642 240 697 258 598

1 

-20 -515 -828 -608 -1088 -455 -1099 -530 -994
72 0 0 0 0 0 0 0 0

110 221 364 250 506 185 536 204 467
121 271 471 314 631 240 697 257 598

2 

-20 -513 -778 -607 -1087 -456 -1095 -532 -993
72 0 0 0 0 0 0 0 0

110 218 373 250 499 187 533 204 467
121 278 473 315 643 239 697 257 597

3 

-20 -514 -762 -611 -1086 -461 -1098 -535 -991
72 0 0 0 0 0 0 0 0

110 217 374 245 497 181 529 200 464
121 273 469 307 639 231 693 251 590

4 

-20 -515 -763 -608 -1090 -462 -1096 -535 -990
 

       Note : specimen reference materialε ε ε= −  ( specimenε  and reference materialε  are obtained from Table 3.2) 

Table 3.5: True Strain Data (ε ) for Specimens # 1 and # 2. 
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Specimen # 3                
(4 in. FRP Deck, Full Scale) 

Specimen # 4                
(8 in. FRP Deck, Full Scale) 

( )specimen reference materialε ε ε µε= −  

Center of a Module Connection Joint Center of a Module Connection Joint 

Temperature 

#9 #10 #11 #12 #13 #14 #15 #16 

C
yc

le
 

C F Strong  Weak Strong Weak Strong Weak Strong Weak 
22 71.60 0 0 0 0 0 0 0 0 
43 109.40 265 372 230 375 212 496 207 536 
49 120.20 342 477 304 476 267 645 273 668 

1 

-29 -20.20 -606 -787 -558 -829 -495 -1042 -523 -1114 
22 71.60 0 0 0 0 0 0 0 0 
43 109.40 266 360 237 360 213 486 207 522 
49 120.20 344 476 304 469 266 642 274 669 

2 

-29 -20.20 -606 -788 -556 -816 -499 -1044 -525 -1115 
22 71.60 0 0 0 0 0 0 0 0 
43 109.40 265 359 229 357 208 489 205 519 
49 120.20 343 476 305 468 266 642 274 668 

3 

-29 -20.20 -606 -788 -555 -815 -497 -1042 -524 -1113 
 

Note : specimen reference materialε ε ε= −  ( specimenε  and reference materialε  are obtained from Table 3.3) 
 

Table 3.6: True Strain Data (ε ) for Specimens # 3 and # 4. 
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4 in FRP Deck 8 in. FRP Deck 

( )specimen reference materialε ε ε µε= −  

Specimen #5 Specimen #7 Specimen #8 Specimen #6 Specimen #9 Specimen #10 

Cross Section   
(1" in length) 

Coupon        
(Cut in Strong 

Dir.) 

Coupon        
(Cut in Weak 

Dir.) 

Cross Section   
(1" in length) 

Coupon        
(Cut in Strong 

Dir.) 

Coupon        
(Cut in Weak 

Dir.) 

Te
m

pe
ra

tu
re

 

Strong  Weak Strong Weak Strong Weak Strong Weak Strong Weak Strong Weak

C
yc

le
 

Ti
m

e 
Le

ft 
(h

rs
.) 

In
te

rv
al

  

C F #17 #18 #21 #22 #23 #24 #19 #20 #25 #26 #27 #28 

7.08 6 22 71.60 0 0 0 0 0 0 0 0 0 0 0 0 

6.55 10 43 109.40 193 327 192 335 184 306 181 596 163 549 183 628 

5.11 4 49 120.20 238 435 250 451 228 416 222 780 206 699 227 798 
1 

0.46 8 -29 -20.20 -423 -693 -431 -676 -420 -653 -476 -1228 -454 -1161 -481 -1296

8.57 6 22 71.60 0 0 0 0 0 0 0 0 0 0 0 0 

1.01 2 43 109.40 190 333 196 337 180 305 182 613 164 560 186 638 

0.17 4 49 120.20 241 422 252 435 241 394 227 784 207 709 224 810 
2 

2.34 8 -29 -20.20 -418 -689 -422 -662 -413 -649 -468 -1221 -451 -1154 -475 -1290

0.45 6 22 71.60 0 0 0 0 0 0 0 0 0 0 0 0 

0.3 10 43 109.40 190 325 187 323 186 294 184 608 163 555 184 637 

9.55 4 49 120.20 252 418 249 433 238 381 228 792 208 714 233 814 
3 

2.28 8 -29 -20.20 -426 -694 -428 -672 -409 -652 -472 -1218 -451 -1152 -478 -1285

 
Note : specimen reference materialε ε ε= −  ( specimenε  and reference materialε  are obtained from Table 3.4) 

Table 3.7: True Strain Data (ε ) for Specimens # 5 and # 10. 

 

The true strain data from Tables 3.5 to 3.7 was averaged and calculated for the CTE. 

The CTE was calculated by the following formula, 
T

εα =
∆

 with two ranges of temperature, 

such as –20° to 72 °F and 72° to 121 °F with the reference base temperature being equal to 

the room temperature (72 °F). The CTE for all of the specimens are shown in Tables 3.8 and 

3.9 for 4 inch and 8 inch FRP deck.  
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CTE of 4 in. FRP Deck (µε/°F) 

Temperature Range (°F) 

72 <T<120 -20<T<72 Specimen # 
(Dimension) Descriptions 

1α  2α  1α  2α  

Flange (Suspended Specimen) 5.73 9.56 5.59 8.51 
#1 (29"x29") 

Web (Suspended Specimen) 6.47 13.19 6.61 11.82

Full Scale @ Center of a module 7.04 9.71 6.60 8.58 
#3 (6.83'x3') 

Full Scale @ Connection Joint 6.20 9.66 6.06 8.93 

#5 (1"x12") Cross Section with 1 " in length 5.03 8.72 4.60 7.54 

#7 (1"x12") Coupon (Cut in Strong Direction) 5.11 8.91 4.65 7.30 

#8 (1"x12") Coupon (Cut in Weak Direction) 4.85 8.07 4.51 7.10 
 

Note : 1α  and 2α represent CTE in the strong and weak direction of FRP deck, respectively 
Table 3.8: CTE of 4 in. FRP Deck. 

 
 

CTE of 8 in. FRP Deck (µε/°F) 

Temperature Range (°F) 

72 <T<120 -20<T<72    Specimen #  
  (Dimension) Descriptions 

1α  2α  1α  2α  

Flange (Suspended Specimen) 4.85 14.14 4.98 11.92
#2 (24"x24") 

Web (Suspended Specimen) 5.29 12.23 5.79 10.78

Full Scale @ Center of a module 5.53 13.10 5.41 11.36
#4 (4.5'x3') 

Full Scale @ Connection Joint 5.54 13.83 5.71 12.14

#6 (1"x12") Cross Section with 1 "  in length 4.73 16.09 5.14 13.32

#9 (1"x12") Coupon (Cut in Strong Direction) 4.29 14.61 4.92 12.59

#10 (1"x12") Coupon (Cut in Weak Direction) 4.78 16.70 5.21 14.06
 

Note : 1α  and 2α represent CTE in the strong and weak direction of FRP deck, respectively 
Table 3.9: CTE of 8 in. FRP Deck. 
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3.7 Calculation of CTE (using a micromechanics approach) 

           The CTE of composite material can be determined using a micro mechanics approach. 

The following equations were used to calculate the CTE. 

 1
f f f m m m

f f m m

E V E V
E V E V
α α

α
+

=
+  (3.2) 

 2 1 12(1 ) (1 )m m m f f fV Vα ν α ν α α ν= + + + −  (3.3) 

where  fE and mE  are modulus of fiber and matrix, respectively. 

 fα and mα  are CTE of fiber and matrix, respectively. 

 fV and mV  are fiber volume fraction and matrix volume fraction, respectively. 

 fν and mν  are Poisson’s ratio of fiber and matrix, respectively. 

 12ν  is the major Poisson’s ratio. 

Substituting the fiber (E-glass) and matrix (Vinyl ester) properties for 4” and 8” FRP decks 

into Eqs. (3.2) and (3.3) we obtain 

1

7 6 5 6

7 5

6

(1.2x10 )(3x10 )(0.52) (7.5x10 )(17x10 )(0.42)
(1.2x10 )(0.52) (7.5x10 )(0.42)

3.76 10 / F

f f f m m m

f f m m

E V E V
E V E V

x

α α
α

µε

− −

−

+
=

+

+
=

+

= °

 

2 1 12

6 6 6

(1 ) (1 )

(1 0.55)(17 10 )(0.48) (1 0.26)(3 10 )(0.52) (3.76 10 )(0.25)

13.67 / F

m m m f f fV V

x x x

α ν α ν α α ν

µε

− − −

= + + + −

= + + + −

= °
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3.8 Conclusions 

The coefficient of thermal expansion (CTE) in the weak direction of the FRP deck 

was higher than that in the strong direction. The average CTE of 4 inch and 8 inch FRP decks 

at the top deck surface, bottom deck surface and deck web are shown in Tables 3.10 and 

3.11, respectively. In addition, the CTE of Super Deck was added in this section and shown 

in Table 3.12. 

CTE at Top/Bottom Surface of FRP Deck (4” and 8” decks) 

4 in. FRP Deck 8 in. FRP Deck Temperature Range 
( F° ) 

1α  ( / Fµε ° ) 2α ( / Fµε ° ) 1α  ( / Fµε ° ) 2α ( / Fµε ° ) 

72<T<120 5.18 8.82 4.66 15.39 

-20<T<72 4.84 7.61 5.06 12.97 
 
Notes : The average CTE of 4 in. deck was based on specimens #1, 5, 7, and 8 
  The average CTE of 8 in. deck was based on specimens #2, 6, 9, and 10 

Table 3.10: Average CTE of 4 inch and 8 inch FRP Deck at Top/Bottom Surfaces. 

CTE at Web of FRP Deck (4” and 8” decks) 

4 in. FRP Deck 8 in. FRP Deck Temperature Range 
( F° ) 

1α  ( / Fµε ° ) 2α ( / Fµε ° ) 1α  ( / Fµε ° ) 2α ( / Fµε ° ) 

72<T<120 6.47 13.19 5.29 12.23 

-20<T<72 6.61 11.82 5.79 10.78 
 

Table 3.11: Average CTE of 4 inch and 8 inch FRP Deck at Web. 
 

CTE at Top/Bottom Surface of FRP Deck (Super Deck) 

Temperature Range 
( F° ) 1α  ( / Fµε ° ) 2α ( / Fµε ° ) 

72<T<120 6.07 9.75 

-20<T<72 5.86 8.98 
 

Table 3.12 CTE of Super Deck
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Chapter 4 

Thermal Testing of FRP Bridge Deck  

under Temperature Differences in Laboratory 

4.1 Introduction 

To understand the behaviors of fiber reinforced polymer (FRP) decks under 

temperature differences, 4 inch and 8 inch FRP deck specimens were tested in a laboratory. 

FRP deck specimens were subjected to positive and negative temperature difference.  

4.2  Scope 

The thermal testing of 8 inch and 4 inch deep FRP bridge decks under a temperature 

difference was studied and presented in this chapter. The thermal tests of FRP bridge deck 

specimens were divided into four different test cases based on different boundaries and 

thermal loads applied to the test specimens. It can be shown in the following organization 

chart: 

 

Notations of the above chart for each test case : 

8HS represented 8 in. FRP deck + Heating Test  + SSFF Boundary. 

Testing for  
 

8 in FRP Bridge Deck 

Heating Test Cooling Test 

SSFF Boundary 
( Test Case 8HS ) 

FFFF Boundary 
( Test Case 8HF )

SSFF Boundary 
( Test Case 8CS ) 

FFFF Boundary 
( Test Case 8CF )
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8HF represented 8 in. FRP deck + Heating Test  + FFFF Boundary. 

8CS represented 8 in. FRP deck + Cooling Test  + SSFF Boundary. 

8CF represented 8 in. FRP deck + Cooling Test  + FFFF Boundary. 

SSFF Boundary represented two simply supported edges and two free edges. 

FFFF Boundary represented four free edges. 

 

 

 

 

 

 

 

 
In the above chart, the brief notation for each test case : 

4HS represented 4 in. FRP deck + Heating Test  + SSFF Boundary. 

4HF represented 4 in. FRP deck + Heating Test  + FFFF Boundary. 

4CS represented 4 in. FRP deck + Cooling Test  + SSFF Boundary. 

4CF represented 4 in. FRP deck + Cooling Test  + FFFF Boundary. 

SSFF Boundary represented two simply supported edges and two free edges. 

FFFF Boundary represented four free edges. 

 
4.3 Test Specimens  

The cross section of 4 and 8 in FRP bridge deck for a deck module were shown in 

Figure 4.1 (a) and (b). 

Testing for  
 

4 in FRP Bridge Deck 

Heating Test Cooling Test 

SSFF Boundary 
( Test Case 4HS ) 

FFFF Boundary 
( Test Case 4HF )

SSFF Boundary 
( Test Case 4CS )

FFFF Boundary 
( Test Case 4CF )
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a) 4 inch Deep FRP Deck.                                    b) 8 inch Deep FRP Deck 

Figure 4.1: Cross Section of 4 inch and 8 inch Deep FRP Deck for a Module. 

Two test specimens (4 inch and 8 inch FRP deck) were assembled by BRP Inc. Each 

specimen consisted of four FRP deck modules. The dimensions of 4 inch and 8 inch FRP 

deck specimens (shown in Figure 4.2 and 4.3) were 72 x 81x 8 inch deep and 72 x 82 x 8 

inch, respectively. 

 

 

Figure 4.2: A 4 inch Deep FRP Deck Specimen. 
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Figure 4.3: A 8 inch Deep FRP Deck Specimen. 

 
4.4 Test Set-Up for SSFF and FFFF Boundaries  

4.4.1  Test Set-Up for SSFF Boundary ( Two Simply Supported Edges + Two Free 

Edges) 

The Test Set-Up of SSFF Boundary was shown in Figure 4.4. The stud bolts were 

embedded into concrete supports with 8 inch spacing. The FRP bridge deck specimen was 

placed on concrete supports with a bearing width of 6 inches. The 3/8 inch threaded rods 

were connected to the stud bolts through the FRP specimen, and a steel C channel (6 inch 

deep) was placed along the edge of specimen in order to distribute the forces from threaded 

rod equally along the edge supports, as shown in Figure 4.5. 
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Figure 4.4: Test Set-Up for SSFF Boundary Condition. 
 
 

 

Figure 4.5: Simply Supported Boundary Edges. 
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4.4.2 Test Set-Up for FFFF Boundary (All Four Sides are Free Edges.) 

The test set-up of FFFF Boundary did not require any mechanism to hold the FRP 

deck specimen. The steel rollers, 6 inches long, were inserted between the FRP Deck and the 

concrete beam support at four corners of the FRP deck in order to allow the FRP deck 

specimen to expand freely, as shown in Figure 4.6 and 4.7.  

 

 

Figure 4.6: Test Set-Up for FFFF Boundary. 
 

Steel Roller 



 51

 
 

Figure 4.7: Steel Roller at the Corner of the FRP Deck. 
 
4.5 Instrumentation 
 
4.5.1 Strain Measurement  

The type of strain gage for the test was CEA-06-250-UW-350. Refer to Vishay 

Measurements Group for more details.  

4.5.2 Deflection Measurement 

Deflection Data was recorded by using LVDT (Linear Variable Deflection 

Transducer ). 

4.5.3 Temperature Measurement 

TG sensor and LST Matching Networks were used to measure the temperature of 

FRP Deck Surface. Type of  TG sensor and LST Matching Networks were WTG-50B 

and LST-100F-350D respectively. Refer to Vishay Measurements Group Inc. for 

more details.   

Steel Roller 
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4.5.4 Data Acquisition System 

Data acquisition system 5000 and strain smart software were used to acquire the data. 

Data were recorded at low range rate of 1 sample per second. Refer to Vishay 

Meausurements Group Inc. for more details. 

4.5.5 Locations of Strain Gages, LVDT and Temperature Sensor 

The locations of strain gages, TG sensors and LVDT were shown in Figure 4.8 

through 4.11 for both 4 and 8 in. FRP deck specimens. 
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Figure 4.8: Locations of all Sensors on Top Surface of 8 inch. FRP Deck. 
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Figure 4.9: Location of all Sensors on Bottom Surface of 8 inch FRP Deck. 
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Figure 4.10: Locations of all Sensors on Top Surface of 4 inch FRP Deck. 
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Figure 4.11: Locations of all Sensors on Bottom Surface of 4 inch FRP Deck. 
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4.6 Test Procedures 

The test procedures for heating tests were different from that of the cooling tests. In 

the case of heating test, the top surface of the FRP bridge deck was heated from a propane 

heater while the bottom surface of FRP deck was left at room temperature. The temperature 

of the top surface of FRP deck in the heating test was maintained around 150° to 155 °F, 

which was the typical temperature found in the field on a hot sunny day. In the case of a 

cooling test, the top surface of the FRP bridge deck was subjected to cooling with dry ice 

while the bottom surface of FRP bridge deck was left at room temperature. In general, 

temperature of dry ice was around –110 °F. This can be used in the cooling test to cool 

temperature of the top surface of FRP deck down to temperature as low as –20 to –40 °F 

depending on the amount of dry ice. The heating and cooling test procedure was presented in 

section 4.5.1 and 4.5.2. 

 

4.6.1 Heating Test Procedure  

The top surface of FRP deck was heated by the propane heater until the temperature 

reached 150°-155 °F while the bottom surface was left at a room environment. This created a 

positive temperature difference, the difference of top and bottom deck temperature. The step-

by-step heating test procedure is described below: 

1. Setting up deck boundary for SSFF or FFFF Boundary (Refer to 4.3.1 or 4.3.2 for 

test setup). 

2. Placing the propane heater at the center on the top surface of the FRP deck. Heat 

from heater can be adjusted manually. 
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3. Covering the entire top surface of the deck with aluminum box as shown in Figure 

4.12. The aluminum box had an adjusted opening as shown in Figure 4.13 to allow 

heat out if temperature was too high. 

4. Air conditioning or fan can be used to maintain the temperature of the bottom deck 

closed to room temperature. 

5. Connecting all sensors to data acquisition system and start recording the data. 

6. Turning on the heater and adjusting the heater until the temperature of top surface 

reaches 150 ° F and keeping this temperature for 2 hours.  

7. Turning off the heater and allow the FRP deck to cool down to room temperature 

and stop recording the data after temperature of FRP deck drop down to room 

temperature.  

 

 

Figure 4.12: The Aluminum Cover Box. 

 



 59

 

Figure 4.13 The Adjusted Opening Window. 

4.6.2 Cooling Test Procedure 

The top surface of deck was cooled to around –30 °F to –40 °F while the bottom 

surface was left at room temperature. This created negative temperature difference. The  step 

by step heating test procedure was described through following: 

1. Setting up deck boundary for SSFF or FFFF Boundary (Refer to 4.3.1 or 4.3.2 for 

test setup). 

2. Covering the entire top surface of FRP deck with the plastic sheet  ( Figure 4.14 )  

in order to protect sensors and remove dry ice after testing. 

3. Connecting all sensors to data acquisition and start recording the data. At this 

stage, there is no thermal load applied to FRP deck. 

4. Covering entire top surface of FRP deck with 120 lbs of pebble dry ice (Figure 

4.15). 

5. Covering dry ice with plastic sheet and insulation sheet as shown in Figure 4.16 

and 4.17. 
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6. Keep recording data for at least 2 hrs after FRP deck reaching its lowest 

temperature (around –30 °F to –40 °F). 

7. Removing insulation sheet and dry ice from the FRP deck. 

8. Stop recording the data after the deck temperature rises to room temperature. 

 

 

Figure 4.14: Plastic Sheet Covered the Entire Top Surface. 
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Figure 4.15: Applying Dry Ice on the Top Surface of FRP Deck. 

 

Figure 4.16: Covering the Dry Ice with Plastic Sheet. 
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Figure 4.17: Insulation Sheets Covered on the Top of Dry Ice. 

 

4.7 Test Results for both 8 inch and 4 inch FRP Deck Specimens 

Some of the test results were presented in this section. All of the test data can be 

found in Appendix C and D for 4 inch and 8 inch FRP deck specimens. 

4.7.1 Test Results for 8 in. FRP deck specimen 

4.7.1.1 Test Results for Test Case 8HS (Heating Test + SSFF Boundary) 

 Temperature Data at the center on the top and bottom surface 

The temperature data of top and bottom surface were represented by temperature 

sensor TG #1 and TG #3, respectively (Refer to Figure 4.8 and 4.9). The results are shown in 

Figure 4.18. The two letters at the right top corner of Figure 4.18 represented the notation of 

the test case. For example, 8HS represented 8 inch FRP deck + Heating Test + SSFF 

Boundary. 
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Figure 4.18: Deck Temperature Versus Testing Time. 

 

 Temperature Difference Between Top and Bottom Surface of FRP Deck 

Temperature difference , T∆ , was calculated using the following equation.  

top bottomT T T∆ = −  

 where  

T∆     =    Temperature Difference 

 topT     =    Temperature of Top Deck Surface ( Data from TG #1 @ center ) 

 bottomT  =    Temperature of Bottom Deck Surface ( Data from TG #3 @ center ) 

The temperature data from Figure 4.18 were substituted into the above equation and 

are shown in Figure 4.19. 

 

8HS 
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Figure 4.19: Temperature Difference Between Top and Bottom Deck Surface. 

 

 Deflection Data at the center and edge 

The deflection locations at the center and edge of FRP deck were represented by 

LVDT #1 and #2 ( Refer to Figure 4.8 for detail ). The deflection data versus testing time 

was plotted as shown in the following Figure (Figure 4.20). 

8HS
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Figure 4.20: Deflection VS Testing Time at Center and Edge of FRP Deck. 

 

 Strain data at the center of top surface  

Strain gage #1 was located at the center of top surface (Refer to Figure 4.8). Strain 

data of gage #1 are shown in Figure 4.21 : 
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Figure 4.21: Strain Data at the Center of Top Surface. 
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4.7.1.2 Test Results for Test Case 8HF (Heating Test + FFFF Boundary)  
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Figure 4.22     Figure 4.23 
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Figure 4.24     Figure 4.25 

 

The following were titles of above Figures : 

Figure 4.22: Deck Temperature VS Testing Time (Test Case 8HF). 

Figure 4.23: Temperature Difference between Top and Bottom Deck Surface(Test Case 8HF) 

Figure 4.24: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 8HF). 

Figure 4.25: Strain Data at the Center of Top Surface (Test Case 8HF). 
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4.7.1.3 Test Results for Test Case 8CS (Cooling Test + SSFF Boundary) 
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Figure 4.26      Figure 4.27 
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Figure 4.28      Figure 4.29 

 

The following were titles of above Figures : 

Figure 4.26: Deck Temperature VS Testing Time (Test Case 8CS). 

Figure 4.27: Temperature Difference between Top and Bottom Deck Surface(Test Case 8CS)  

Figure 4.28: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 8CS). 

Figure 4.29: Strain Data at the Center of Top Surface (Test Case 8CS). 
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4.7.1.4 Test Results for Test Case 8CF (Cooling Test + FFFF Boundary) 
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Figure 4.30     Figure 4.31 
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Figure 4.32     Figure 4.33 

 

The following were titles of above Figures : 

Figure 4.30: Deck Temperature Versus Testing Time (Test Case 8CF). 

Figure 4.31: Temperature Difference between Top and Bottom Deck Surface(Test Case 8CF) 

Figure 4.32: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 8CF). 

Figure 4.33: Strain Data at the Center of Top Surface (Test Case 8CF). 
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4.7.2 Test Results for 4 in. FRP Deck 

4.7.2.1 Test Results for Test Case 4HS (Heating Test + SSFF Boundary) 

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400 450

Time (min)

T
em

pe
ra

tu
re

 (F
)

Top Temperature, TG1

Bottom Temperature, TG3

-10

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

Time (min)

T
em

pe
ra

tu
re

 D
iff

er
en

ce
 (F

)

 
Figure 4.34     Figure 4.35 
 

 
 

-0.1000

-0.0800

-0.0600

-0.0400

-0.0200

0.0000

0.0200

0 50 100 150 200 250 300 350 400 450

Time (min)

D
ef

le
ct

io
n 

(in
)

Edge Deflection, LVDT 2

Center Deflection, LVDT1

-200

-150

-100

-50

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

Time (min)

St
ra

in
 (m

e)
Gage #1

Gage #2

 
Figure 4.36       Figure 4.37 

 

 

The following were titles of above Figures :  

Figure 4.34: Deck Temperatures VS Testing Time (Test Case 4HS). 

Figure 4.35: Temperature Difference between Top and Bottom Deck Surface(Test Case 4HS) 

Figure 4.36: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 4HS). 

Figure 4.37: Strain Data at the Center of Top Surface (Test Case 4HS). 
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4.7.2.2 Test Results for Test Case 4HF (Heating Test + FFFF Boundary)  
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         Figure 4.38     Figure 4.39 
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      Figure 4.40     Figure 4.41 

 

 

The following were titles of above Figures :  

Figure 4.38: Deck Temperatures VS Testing Time (Test Case 4HF). 

Figure 4.39: Temperature Difference between Top and Bottom Deck Surface(Test Case 4HF) 

Figure 4.40: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 4HF). 

Figure 4.41: Strain Data at the Center of Top Surface (Test Case 4HF). 
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4.7.2.3 Test Results for Test Case 4CS (Cooling Test + SSFF Boundary) 
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      Figure 4.42          Figure 4.43 
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      Figure 4.44            Figure 4.45 
 

 

The following were titles of above Figures : 

Figure 4.42: Deck Temperatures VS Testing Time (Test Case 4CS). 

Figure 4.43: Temperature Difference between Top and Bottom Deck Surface(Test Case 4CS) 

Figure 4.44: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 4CS). 

Figure 4.45: Strain Data at the Center of Top Surface (Test Case 4CS). 
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4.7.2.4 Test Results for Test Case CF (Cooling Test + FFFF Boundary) 
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       Figure 4.48            Figure 4.49 

 

The following were titles of above Figures :  

Figure 4.46: Deck Temperatures VS Testing Time (Test Case 4CF). 

Figure 4.47: Temperature Difference between Top and Bottom Deck Surface(Test Case 4CF) 

Figure 4.48: Deflection VS Testing Time at Center and Edge of FRP Deck (Test Case 4CF). 

Figure 4.49: Strain Data at the Center of Top Surface (Test Case 4CF). 
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According to the results from figures 4.18 to 4.49, the experimental data for all test 

cases were tabulated in Tables 4.1 and 4.2 for 8 inch and 4 inch FRP deck specimens. The 

test data was chosen at the testing time (between 100 and 200 minutes) after establishing 

constant temperature load.  

Experimental Data for 8 in. FRP Deck 

Test Conditions Heating Test Cooling Test 

Boundary Conditions SSFF FFFF SSFF FFFF 

Notations of Test Case 8HS 8HF 8CS 8CF 

Results at Testing Time (min.) 100 150 150 150 

Top Surface Temperature, topT , ( F° ) 155 152 -30 -31 

Bottom Surface Temperature, bottomT , ( F° ) 74 74 60 61 

Reference Temperature, refT , (°F) 71 73 80 80 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 

bottom bottom refT T T∆ = − , (°F) 3 1 -20 -19 

max top bottomT T T∆ = ∆ − ∆ ,  (°F) 81 78 -90 -92 

Deflection at Center (in.), LVDT #1 -0.096 -0.123 0.103i 0.133i 

Deflection at Edge (in.), LVDT #2 -0.068 -0.097 0.078i 0.104i 

Raw Strain #1 (µε) ii 381 391 -787 -782 

Raw Strain #2 (µε)  ii - -221 13 4 

Raw Strain #13 (µε) ii -17 -30 -14 -39 

Raw Strain #14 (µε)  ii - -2 35 86 

Thermal Output of Top Surface (µε)iii -554 -521 480 484 

Thermal Output of Bottom Surface (µε)iii -20 -7 -87 83 

True Strain #1(µε) iv 935 912 -1267 -1266 

True Strain #2 (µε) iv - 300 -467 -480 

True Strain #13(µε) iv 3 -23 -101 -122 

True Strain #14 (µε) iv - 5 -52 3 
 

Table 4.1: Experimental Data of 8 inch FRP Deck Specimen. 
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Experimental Data for 4 in. FRP Deck 

Test Conditions Heating Test Cooling Test 

Boundary Conditions SSFF FFFF SSFF FFFF 

Test Case 4HS 4HF 4CS 4CF 

Results at Testing Time (min) 150 200 150 150 

Top Surface Temperature, topT , ( F° ) 153 151 -43 -45 

Bottom Surface Temperature, bottomT , ( F° ) 97 98 56 60 

Reference Temperature, refT , (°F) 80 80 82 84 

top top refT T T∆ = − ,  (°F) 73 71 -125 -129 

bottom bottom refT T T∆ = − , (°F) 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆ ,  (°F) 56 53 -99 -105 

Deflection at Center (in.), LVDT #1 -0.094 -0.105 0.159i 0.232i 

Deflection at Edge (in.), LVDT #2 -0.051 -0.076 0.085i 0.154i 

Raw Strain #1 (µε) ii 146 96 -762 -852 

Raw Strain #2 (µε)  ii -131 -116 -367 -386 

Raw Strain #13 (µε) ii 59 10 -92 -170 

Raw Strain #14 (µε)  ii -20 -32 3 24 

Thermal Output of Top Surface (µε)iii -481 -468 545 562 

Thermal Output of Bottom Surface (µε)iii -112 -119 113 104 

True Strain #1(µε) iv 627 564 -1307 -1414 

True Strain #2 (µε) iv 350 352 -912 -948 

True Strain #13(µε) iv 171 129 -205 -275 

True Strain #14 (µε) iv 92 87 -110 -81 
 

Table 4.2: Experimental Data of 4 inch FRP Deck Specimen. 
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Note : 

i   =  The center and edge deflection data were already subtracted from 0.008 and 0.006 in., 

respectively, due to weight of  100-120 lbs dry ice. 

ii   =  The raw strain was the strain value obtained from data acquisition while temperature 

was fluctuating. The raw strain needs to be compensated for thermal effect on strain 

gages to obtain true strain.  

iii =  Thermal output was calculated by using linear interpolation from the experimental data 

in Tables 3.3 and 3.4 of chapter 3. In table 3.2, strain on the reference material 

( reference materialε ) in cycle 2 was –323 µε when the temperature changed from 72 to 121 °F 

( T∆ = 49 °F, temperature increment). In Table 3.2, strain on the reference material 

( reference materialε ) in cycle 1 was 401 µε when the temperature changed from 72 to –29 °F 

( T∆ = 92 °F, temperature decrement).  

 In the heating test, Thermal Output per °F = 323
49

−  =  -6.59 µε/°F. 

 In the cooling test, Thermal Output per °F = 401
92−

 =  -4.36 µε/°F. 

Thermal outputs from table 4.1 and 4.2 were calculated base on the following equation. 

         Thermal Output of Top Surface = ( topT∆ ) x (Thermal Output per °F )     

 Thermal Output of Bottom Surface =  ( bottomT∆ ) x (Thermal Output per °F )          

iv =  True strain was the strain value after subtracting temperature effect on strain gage from 

raw strain. This can be computed by the following formula  

True strain (iv) = Raw Strain (ii) – Thermal Output (iii)  

Note : Discussions and analysis are presented in the next chapter (Chapter 5). 
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Chapter 5 

Correlation of Laboratory Thermal Data with Theory 

 This chapter focuses on the theoretical analysis (stresses, strains, and deflections) for 

FRP bridge deck components (8 inch and 4 inch deep) under thermal loads. The analysis was 

based on Navier-Levy, Macro approach, and Finite Element Method (FEM). The procedure 

for force and deformation computations using Navier-Levy and Macro approaches are 

presented in sections 5.1 and 5.2. Navier-Levy and Macro approaches can be found in 

sections G.3 and G.4, of Appendix G.  Further, the Matlab program was used for computing 

numerical results and graphical plots for Navier-Levy and Macro approaches. The matlab 

code for Navier-Levy and Macro approaches are shown in Appendix E.  

In section 5.3, FEM analysis and results are provided for all test cases (details for test 

cases can be found in section 4.2 of chapter 4). FEM contour plots and text commands for 

ANSYS for all test cases are presented in Appendix F. Theoretical results for all test cases 

(Based on Navier-Levy, macro and Finite Element approaches) are presented in section 5.4 

and compared with laboratory test results. Discussions and conclusions are presented in 

section 5.5. 

The structural properties for 8 inch and 4 inch deep FRP deck components that were 

used in the theoretical analysis are shown in Table 5.1 (Howard, 2002 and Punyamurthula,  

2004).  
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Notation Descriptions 8 in. deep FRP Deck 
(by Howard, 2002) 

4 in. deep FRP Deck 
(by Punyamurthula, 2004) 

E1 
Young’s Moduli  
in strong direction 4x106 psi. 3.8x106 psi. 

E2 
Young’s Moduli  
in weak direction 1.1x106 psi. 1.0x106 psi. 

G12 
Shear Moduli  
in the 1-2 plane 0.54x106 psi. 0.54x106 psi. 

D11 
Flexural Rigidity  
in Strong Direction 7x107 lbs.-in. 11x106 lbs.-in. 

D22 
Flexural Rigidity  
in Weak Direction 1.81x107 lbs.-in. 2.75x106 lbs.-in. 

D12 ------------------------ 0.41x107 lbs.-in. 0.69x106 lbs.-in. 

D66 Torsional Rigidity 9.32x106 lbs.-in. 1.5x106 lbs.-in. 

ν12 
Poison Ratio  
when stressed in 1 direction 0.23 0.25 

ν21 
Poison Ration  
when stressed in 2 direction 0.062 0.0658 

α1 
Thermal Coefficient  
in strong direction 

4.85 µε/ °F  (70 to 121 °F) 
 
4.98 µε/ °F (-20 to 70 °F) 

5.73 µε/ °F  (70 to 121 °F) 
 
5.59 µε/ °F (-20 to 70 °F) 

α2 
Thermal Coefficient  
in weak direction 

14.14 µε/ °F (70 to 121 °F) 
 
11.92 µε/ °F (-20 to 70 °F) 

9.56 µε/ °F (70 to 121 °F) 
 
8.51 µε/ °F (-20 to 70 °F) 

 
Table 5.1: Structural Properties of 8 in. and 4 in. FRP Bridge Deck Component. 

( Ref. Howard, 2002 and Punyamurthula, 2004) 
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Experimental Data under Thermal Loads. 

The experimental data (deflection and strain) at geometric center (mid-span) of 8 inch 

and 4 inch deep FRP deck components are tabulated in Tables 5.2 and 5.3, respectively 

(Refer Table 4.1 & 4.2 of Chapter 4).  

Experimental Thermal Data for 8 in. FRP Deck 

Test Case 8HS 8HF 8CS 8CF 

Boundary Condition SSFF FFFF SSFF FFFF 

topT , ( F° ) 155 152 -30 -31 

bottomT , ( F° ) 74 74 60 61 

refT , (°F) 71 73 80 80 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 

bottom bottom refT T T∆ = − , (°F) 3 1 -20 -19 

max top bottomT T T∆ = ∆ − ∆ ,  (°F) 81 78 -90 -92 

( , )
2 2center
a bw , LVDT 1, (in.)  -0.096 -0.123 0.103 0.133 

(6, )
2edge
bw , LVDT 2, (in.)  -0.068 -0.097 0.078 0.104 

_yy top surfaceε  @ Center, Gage #1 (µε) 935 912 -1267 -1266 

_yy bottom surfaceε @ Center, Gage #13 (µε) 3 -23 -101 -122 

_xx top surfaceε  @ Center, Gage #2 (µε) - 300 -467 -480 

_xx bottom surfaceε @ Center, Gage #14 (µε) - 5 -52 3 
 
Note :  “ xx ” subscripts represent strong direction (Cell direction) of FRP deck specimen. “ yy ” 
subscript represents weak direction of FRP deck specimen. centerw  and edgew  are deflections from 
LVDT 1 and 2 (Refer to Figure 4.9 of Chapter 4 for locations), respectively. Locations of strain gages 
#1, 2 , 13 and 14 can be found in Figures 4.8 and 4.9 . 

 
Table 5.2: Experimental Data for Heating and Cooling Tests of 8 in. FRP Deck.  

(Refer to section 4.2 of chapter 4 for details of test cases) 
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Experimental Thermal Data for 4 in. FRP Deck 

Test Case 4HS 4HF 4CS 4CF 

Boundary Condition SSFF FFFF SSFF FFFF 

topT , ( F° ) 153 151 -43 -45 

bottomT , ( F° ) 97 98 56 60 

refT , (°F) 80 80 82 84 

top top refT T T∆ = − ,  (°F) 73 71 -125 -129 

bottom bottom refT T T∆ = − , (°F) 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆ ,  (°F) 56 53 -99 -105 

( , )
2 2center
a bw , LVDT 1, (in.)  -0.094 -0.105 0.159 0.232 

(6, )
2edge
bw , LVDT 2, (in.)  -0.051 -0.076 0.085 0.154 

_yy top surfaceε  @ Center, Gage #1 (µε) 627 564 -1307 -1414 

_yy bottom surfaceε @ Center, Gage #13 (µε) 171 129 -205 -275 

_xx top surfaceε  @ Center, Gage #2 (µε) 350 352 -912 -948 

_xx bottom surfaceε @ Center, Gage #14 (µε) 92 87 -110 -81 
 
Note :  “ xx ” subscript represents strong direction (Cell direction) of FRP deck specimen. “ yy ” 
subscript represents weak direction of FRP deck specimen. centerw  and edgew  are deflections from 
LVDT 1 and 2 (Refer to Figure 4.11 of Chapter 4 for locations), respectively. Locations of strain 
gages #1, 2 , 13 and 14 can be found in Figures 4.10 and 4.11 . 
 

Table 5.3: Experimental Thermal Data for Heating and Cooling Tests of 4 in. FRP Deck. 
(Refer to section 4.2 of chapter 4 for details of test cases) 
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5.1 Thermal Analysis based on Navier-Levy Method (Refer to Section G.1 in  

Appendix G) 

 The procedure for deflection computations based on the Navier-Levy method for test 

case 8HS (the term 8HS means a heating test with simply supported boundary condition for 8 

inch deep FRP deck) are presented in this section. The deflection plot and Matlab code for 

computation are shown in Appendix E. All equations in the following computations are 

obtained  from section G.1 in Appendix G. 

 
Deflection Computation for Test Case 8HS with n = 1 

All structural properties and temperature details for the 8” deep FRP bridge deck 

components are obtained from Tables 5.1 and 5.2, respectively. Structural properties for 8” 

deep FRP deck component were shown as following: 

Exx = 4x106 psi. , Eyy = 1.1x106 psi.  

Gxy = 0.54x106 psi. 

Dxx = 7.0x107 lbs.-in., Dyy = 1.81x107 lbs.-in., Dxy = 0.41x107 lbs.-in., Dss = 9.32x106 lbs.-in. 

υxy = 0.23 , υyx = 0.062  

∝xx = 4.85 µε/°F, ∝yy = 14.14 µε/°F 

a = 72 in., b = 69 in., h = 8 in (Refer Figure G.1). 

Determination of thermal load 0
xxTM  and 0

yyTM   

max top bottomT T T∆ = ∆ − ∆ = 155-74 = 81 

From Eq. (G.17) and (G.18) 

( ) max
0

xxT
xx xx xy yy

TM D D
h

α α ∆ = − +  
 

 = -4.0259 x 103 lbs.-in./in. 
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( ) max
0

yyT
xy xx yy yy

TM D D
h

α α ∆ = − +  
 

 = -2.7932 x 103 lbs.-in./in. 

ˆ 2xy xy ssD D D= + = 2.2710 x 107  and 2ˆ
xyD = 5.1574 x 1014 lbs.-in. 

xx yyD D = 1.2670 x 1015 lbs.2-in.2 

Since 2ˆ
xyD < xx yyD D  (Case 3 as in Appendix G),   

1λ  and 2λ  are determined from Eqs. (G.30) and (G.31). The first term approximation is used 

in this computation (i.e. n = 1).  

Based on the first term approximation with n = 1 ( 1,n
n
b b
π πβ β= ∴ = ) 

From Eq. (G.30), ( )
2

2
1

ˆ
2

n
xx yy xy

xx

D D D
D
βλ = + , 1λ  = 0.0294 

From Eq. (G.31), ( )
2

2
2

ˆ
2

n
xx yy xy

xx

D D D
D
βλ = − , 2λ  = 0.0138 

The following coefficients are calculated based on Eqs. (G.42) to (G.65) 

From Eq. (G.54),  1 1 2cosh( )cos( )a a aλ λ= = 2.2926 

From Eq. (G.55),   2 1 2sinh( )sin( )a a aλ λ= = 3.4267 

From Eq. (G.56),   3 1 2cosh( )sin( )a a aλ λ= = 3.5278  
From Eq. (G.57),   4 1 2sinh( )cos( )a a aλ λ= = 2.2269  

From Eq. (G.58),   2 2
1 2 1b λ λ= − = -6.7254x10-4 

From Eq. (G.59),   2 1 2b λ λ= =  4.0585x10-4 

From Eq. (G.45),    

2 2 2 2
0 0

1 3 3

4 4yy xxT T
xy n yy

yy

D b M n D M
k

n D
β π

π
− −

= = 5.9334 x 103 

From Eq. (G.46), ( ) 2
2 1 1 2 2 12 xx n xyk a b a b D a Dβ= + + =  1.0631 x 105 
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From Eq. (G.47),   ( ) 2
3 3 1 4 2 32 xx n xyk a b a b D a Dβ= − + = -2.6256 x 105 

From Eq. (G.48),    ( ) 2
4 3 2 4 1 42 xx n xyk a b a b D a Dβ= + + = 1.1458 x 105 

From Eq. (G.49),    ( ) 2
5 1 2 2 1 22 xx n xyk a b a b D a Dβ= − + + = -2.6239 x 105 

From Eq. (G.50),    ( ) ( )3 3 2
6 3 2 4 2 2 3 2 1 4 1 4 1 3 23 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= − + + − + −

 
                                         = 8.2815 x 103 

 

From Eq. (G.51),    

( ) ( )3 3 2
7 1 2 2 2 2 1 2 1 2 1 1 2 2 13 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= + − − + − = 3.9651 x 103 

From Eq. (G.52),    

( ) ( )3 3 2
8 2 2 1 2 2 2 2 1 1 1 1 1 2 23 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= − + + − + −  = 8.2926 x 103

  

From Eq. (G.53),    

( ) ( )3 3 2
9 4 2 3 2 2 4 2 1 3 1 3 1 4 23 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= + − − + +

 
= 4.2337 x 103 

From Eq. (G.60) , 2
1 2

1

2 xx

xx n xy

b Dc
b D Dβ

=
+

 =  -1.4736  

 

From Eq. (G.61) , 
( )2 2 2 2

0 0
2 3 3 2

1

4

( )

yy xxT T
n xy xx

yy xx n xy

b D M n D M
c

n D b D D

β π

π β

+
=

+
=  0.1539  

From Eq. (G.62) , 
2 2 3

1 1 2 1
3 2 3 2

2 2 1 2

(3 )
( 3 )

n xy xx

n xy xx

D D
c

D D
λ β λ λ λ
λ β λ λ λ

+ −
= −

+ −
= 1.6868 

From Eq. (G.63), 2 1 5
4

3 3 4

k c kc
k c k

+
= −

+
= -1.2764 

From Eq. (G.64), 2 2 1
5

3 3 4

k c kc
k c k

+
= −

+
= 0.0679 

From Eq. (G.41), 1 2n nA c D c= + = 0.0292  

From Eq. (G.42), 3n nB c C=  = -0.0676  

From Eq. (G.43), 4 5n nC c D c= + = -0.0401  
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From Eq. (G.44), 6 2 7 3 5 8 5

6 1 7 3 4 8 4 9
n

k c k c c k cD
k c k c c k c k

+ +
= −

+ + +
= 0.0846 

Maximum deflection, ( , )w x y , occurs at the geometric center of the deck plate. Substituting 

2
ax =  and 

2
by =  into Eq. (G.35), we obtain: 

2

0 1 1 2 23 3
1

4( , ) ( cosh sinh cosh sinh )sinyyT
n n n n n

n yy

bw x y M A x B x C x D x y
n D

λ λ λ λ β
π

∞

=

= + + + +∑  

( , )
2 2center
a bw∴  = -0.0988 in.  and  (6, )

2edge
bw∴  = -0.0680 in. for n = 1 

Note : Negative sign represents upward direction.  

 

Deflection Computation for Test Case 8HS with n = 3, 5, 7…  

 
 In this section, deflection computation for 8HS test case is computed for higher order 

term approximations with n = 3, 5, 7… so as to compare the results with first term 

approximation.  It should be noted that for n = 2, 4, 6… the thermal load moment is zero due 

to symmetry of the deflected shape function.   

 The deflection solution for n = 1 to 15 was obtained using MATLAB program. The 

deflection solutions for different n values are plotted in Figure 5.1.  We can observe that as  

number of approximation terms (n) increases; the deflection converges or is nearly constant. 

It can be concluded that the more n terms are incorporated in computations, the more 

accuracy we obtain.  

 Based on Figure 5.1, the central deflection is nearly constant for n > 7. The difference 

in deck deflections when n=1 versus when n = 15 is only 3%, implying that the first term 

approximation can be used to predict deflection with a high degree of accuracy. The 
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deflection contour over FRP deck is shown in Figure 5.2 based on the first term 

approximation, n=1. 

 

Figure 5.1: Deflection of FRP deck at the center for Test Case 8HS.  
(Navier-Levy’s Method, n = 1,3,5,…,15). 

 

 

Figure 5.2: Deflection Contour for Test Case 8HS (Navier-Levy’s Method, n=1). 
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Deflections for other test cases are determined by using the above procedure and 

tabulated in Table 5.4. Deflection contour plot and Matlab code for computation of all test 

cases can be found in Appendix E. 

Deflections based on Navier-Levy Method (n=1) 

Deflection (in.) Test Case 
@Center @Edge 

8HS -0.0988 -0.0767 

8CS 0.0946 0.0705 

4HS -0.1021 -0.0692 

4CS 0.1631 0.1073 
 

Notes: Strain and stress computations are not presented in Navier-Levy approach (out of scope). 
 

Table 5.4: Deflection Results based on Navier-Levy Method. 
 
 
 

5.2 Thermal Analysis based on the Macro Approach (Refer to Section G.2 in  

Appendix G) 

Theoretical analysis based on the Macro approach for test case 8HS is presented in 

this section. The deflection plot and matlab code for computation are shown in Appendix E. 

All equations in the following computations are obtained from section G.2 in Appendix G.  

 

Deflection Computation for Test Case 8HS (Using Macro Approach)  

All structural properties and temperature details for the 8” deep FRP bridge deck 

components are obtained from Tables 5.1 and 5.2, respectively. Structural properties for 8” 

deep FRP deck component are shown as following:  
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Exx = 4x106 psi. , Eyy = 1.1x106 psi.  

Gxy = 0.54x106 psi. 

Dxx = 7.0x107 lbs.-in., Dyy = 1.81x107 lbs.-in., Dxy = 0.41x107 lbs.-in., Dss = 9.32x106 lbs.-in. 

υxy = 0.23 , υyx = 0.062  

∝xx = 4.85 µε/°F, ∝yy = 14.14 µε/°F 

a = 72 in., b = 69 in., h = 8 in (Refer Figure G.1) 

Note: In section G.2 of Appendix G, Macro approach is derived for a plate with two opposite edges ( 
which are simple supports @ y = 0 and b) and the other two opposite edges (which are elastic beams 
@ x = 0, a). This analysis can be used for two simply supports (@ y = 0 and b) and free boundaries 
(@ x = 0, a) by substituting EI = 0 (i.e. Flexural rigidity of elastic beams ( or eEI B ) is zero because 
elastic beam supports do not exist in heating and cooling tests,  only free boundary.) in the following 
computations.  
 

Determine thermal load, 0
xxTM  and 0

yyTM   

max top bottomT T T∆ = ∆ − ∆ = 155-74 = 81 

From Eq. (G.17) and (G.18) 

( ) max
0

xxT
xx xx xy yy

TM D D
h

α α ∆ = − +  
 

 = -4.0259 x 103 lbs.-in./in. 

( ) max
0

yyT
xy xx yy yy

TM D D
h

α α ∆ = − +  
 

 = -2.7932 x 103 lbs.-in./in. 

From Eq. (G.96), 1k   =  
( )

( )ssxyxyxxe

ssxxxyxxxx

DaDaDDBa
DDbaDDbaDb

42
42

23

222224

++

++

π
 =  25.1111 

From Eq. (G.97),  2k = ( )ssxyxyxxe

xx

DaDaDDBa
Db

42
32

25

4

++
−

π
 =  -1.8587 x 10-4 

From Eq. (G.98), 3k   = xxyyxxxyxyyyxy DbakDDbaDDbaDDa 62
2

24324363 164ˆ84 +







−+ πππ  

         =   3.5626 x 1024 
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From Eq. (G.99), 4k =  xxDba 4416  = 5.0043 x 1030 

 

 

From Eq. (G.100) 

( )3 4 2 6 4 2 4 4 2 2 4 6 2
5 1

ˆ ˆ4 4 8 2xx yy xy yy xy xy xx yy xy xx xxk a b D D a D D a b D D k a b D D a b D D b Dπ π
 

= − − + + + 
   

     =  5.0043 x 1029 

From Eq. (G.93), 11W   =
5

0403

k
MkMk yyxx TT +  = -0.0325 

From Eq. (G.95), 2c = 
11

02
1 W

Mkk
xxT

+  = 2.0617
 

 

From Eq. (G.94), 1c  =  22

2

2
c

Db
D

xx

xyπ
 = 1.2708 x 10-4 

The maximum deflection, ( , )w x y , occurs at the center of the deck plate. Substituting 
2
ax =  

and 
2
by =  into Eq. (G.92), we obtain     

),( yxw  =  ( ) 







+−+
















2111 sinsin caxxc
a
x

b
yW ππ   

( , )
2 2center
a bw∴  = -0.0942 in.     (6, )

2edge
bw∴  = -0.0767 in. 

The deflection contour over FRP deck is shown in Figure 5.3 (Note the deflection results are 

based on the first term approximation, n=1). 
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Figure 5.3: Deflection Contour for Test Case 8HS (Using Macro Approach). 
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Strain Computation for Test Case 8HS (Using Macro Approach) 

            According to Table 5.2, temperature changes on the top and bottom surfaces of the 

FRP deck specimen for Test Case 8HS are 84° F and 3 ° F, respectively. The temperature 

change is assumed to vary linearly along the depth. The temperature change profile is plotted, 

as shown in Figure 5.4.   

3 F

84 F 43.5 F

43.5 F

40.5 F

-40.5 F

x x x

z z z

-h/2

h/2
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bottom

T z T z T
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2
43.5 F

top bottomT T
T
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=

+
=
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81
8
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TT z z
h

z

z

∆
= −

= −

= −

 

Figure 5.4: Temperature Change Profile for Test Case 8HS. 

Note : In figure 5.4, we have 0T = 43.5 and 1T = -10.125 

For bending effects, the strain can be calculated using following formula (Refer to Eq. 

G.102)  

2
1

_ 11 12sin sin( ) 2xx bending xx
y xz W c z

b a a
π π πε ε

  = = − − +      
 

2
1

_ 11 1 22 sin sin( ) ( )yy bending yy
y xz W c x x a c z

b b a
π π πε ε   = = + − +  

  
 

Axial Effect Bending EffectTemperature Increment 
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Using the above equations, strain @ the center of top surface ( ,
2 2
a bx y= =  and 

4
2
hz = − = − ) and bottom surface ( ,

2 2
a bx y= =  and 4

2
hz = = ) are as follows:  

_

_

214

781
xx bending

yy bending

ε µε

ε µε

∴ = 
∴ = 

   Top surface _

_

214

781
xx bending

yy bending

ε µε

ε µε

∴ = − 
∴ = −     

Bottom Surface  

 

Stress Computation for Test Case 8HS (Using Macro Approach) 

 For a bending effect, the stress component of the FRP deck plate can be calculated by 

the following formula (Refer to Eq. G.108): 

  

2
1

11 12
11 12

2
12 22 1

11 1 22

sin sin( ) 2

sin sin( ) ( )

xx
xx

yy
yy

y xW c z T z
Q Q b a a
Q Q y xW c x x a c z T z

b b a

π π π α
σ
σ π π π α

   − − + −             =    
         + − + −        

Using the above equations, stress @ the center of top surface ( ,
2 2
a bx y= =  , 4

2
hz = − = − ) 

and bottom surface ( ,
2 2
a bx y= = , 4

2
hz = − = ) are as follows:  

_

_

122.70 psi.

216.70 psi.
xx bending

yy bending

σ

σ

∴ = 
∴ =     

Top Surface  

_

_

122.70 psi.

216.70 psi.
xx bending

yy bending

σ

σ

∴ = − 
∴ = − 

  Bottom Surface 

 The experimental strains at the center of FRP deck ( ,xx yyε ε ) are shown in Table 5.2. 

It can be seen in Table 5.2 that experimental strain results in SSFF (two opposite edges are 

simply supported edges and the other two opposite edges are free) and FFFF (all four edges 

free) boundaries are close for all test cases because in the laboratory, true simply supported 
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edge conditions (zero in-plane expansion) were difficult to attain.  The main reason for this 

was that in the simply supported edge conditions, the deck was able to move partially along 

the horizontal plane.  This is attributed to the fact that the diameters of threaded rods were 

smaller than the hole diameter on edges of the FRP decks, which allowed the FRP deck to 

expand or contract in the horizontal plane (see Figure 5.5), with partial (not full) horizontal 

restraint. 

 

Figure 5.5: Diameters of holes were larger than that of threaded rods. 

 

 In order to account for an axial effect (movement in horizontal plane) for the 8HS test 

case, we assume that the deck plate expands or contracts freely in the horizontal plane for a 

SSFF condition. Therefore, the total strain on the FRP deck is equal to a combination of 

strain from bending, as well as axial effects, which is assumed to be free to expand under 

laboratory conditions. The combination of bending and axial effects can be expressed as: 

total bending axialε ε ε= +  

total bending axialσ σ σ= +  
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 Thermally induced axial strain ( axialε ) in the cell and traffic directions: 

0
_xx axial xxTε α=  and 0

_yy axial yyTε α=  (since the FRP deck was found to freely expand or 

contract in horizontal plane for SSFF boundary condition). 

            Thermally induced axial stress ( axialσ ) in the cell and traffic directions: _ 0xx axialσ =  

and _ 0yy axialσ = . The thermally induced axial stress are assumed to be zero because the FRP 

deck was found to freely expand or contract in the horizontal plane for SSFF boundary 

condition in the laboratory.  

 Combining the thermal bending and axial effect together, deflection, strain and stress 

are shown in Table 5.5 

Deflection, Strain and Stress for Test Case 8HS 
(Based on Macro Approach) 

( , )
2 2center
a bw , in. -0.0942 

(6, )
2edge
bw , in. -0.0671 

 Bending Effect Axial Effect Bending + Axial  

_ (µε)xx Top Surfaceε  214 211 425 

_ (µε)xx BottomSurfaceε  -214 211 -3 

_ (µε)yy Top Surfaceε  781 615 1396 

_ (µε)yy BottomSurfaceε  -781 615 -166 

_ (psi.)xx Top Surfaceσ  126 0 126 

_ (psi.)xx BottomSurfaceσ  -126 0 -126 

_ (psi.)yy Top Surfaceσ  237 0 237 

_ (psi.)yy Bottom Surfaceσ  -237 0 -237 
 

Table 5.5: Deflection, Strain and Stress at Center for Test Case 8HS. 
(Based on Macro Approach) 
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 Stress and strains for other test cases are determined by using the above procedure 

and tabulated in Tables 5.6 and 5.7. The deflection contour plot and the Matlab code for 

computation of all test cases can be found in section E.3 and E.4 of Appendix E. 

 
 

Deflection, Strain and Stress for Test Case 8HS and 8CS 
(Based on Macro Approach) 

Test Case 8HS 8CS 

( , )
2 2center
a bw , in. 

-0.0942 0.0900 

(6, )
2edge
bw , in. 

-0.0739 0.0670 

@ center Bending + Axial   =   Total Bending +  Axial   =   Total 

_ (µε)xx Top Surfaceε  214    +    211   =      425 -241    +   -324    =     -565 

_ (µε)xx BottomSurfaceε  -214    +    211   =         -3 241     +   -324    =       -83 

_ (µε)yy Top Surfaceε  781   +    615   =    1396 -747     +   -775    =   -1522 

_ (µε)yy Bottom Surfaceε  -781   +    615   =    -166 747     +   -775     =      -28 

_ (psi.)xx Top Surfaceσ  126   +      0     =      126 -123     +        0     =    -123 

_ (psi.)xx Bottom Surfaceσ  -126   +     0      =     -126 123     +        0     =      123 

_ (psi.)yy Top Surfaceσ  237   +     0      =       237 -239     +        0     =    -239 

_ (psi.)yy BottomSurfaceσ  -237   +     0      =     -237 239     +        0     =      239 

 
Table 5.6: Deflection, Strain and Stress at Center for Test Case 8HS and 8CS. 

(Based on Macro Approach) 
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Deflection, Strain and Stress for Test Case 4HS and 4CS 

(Based on Macro Approach) 
Test Case 4HS 4CS 

( , )
2 2center
a bw , in. -0.0968 0.1546 

(6, )
2edge
bw , in. -0.0642 0.0985 

@ center  Bending + Axial   =   Total Bending +  Axial   =   Total 

_ (µε)xx Top Surfaceε       170    +    258   =      428       -291    +   -422    =     -713 

_ (µε)xx BottomSurfaceε      -170    +    258   =        88        291     +   -422    =     -131 

_ (µε)yy Top Surfaceε        390   +    430   =       820       -623     +   -642    =   -1265 

_ (µε)yy BottomSurfaceε       -390   +    430   =         40        623     +   -642     =      -19 

_ (psi.)xx Top Surfaceσ          67   +      0     =         67       -108     +        0     =    -108 

_ (psi.)xx Bottom Surfaceσ         -67   +     0      =        -67        108     +        0     =      108 

_ (psi.)yy Top Surfaceσ        127   +     0      =       -127        -209     +        0     =    -209  

_ (psi.)yy BottomSurfaceσ       -127   +     0      =        127        209     +        0     =      209 

 
Table 5.7: Deflection, Strain and Stress at Center for Test Case 4HS and 4CS. 

(Based on Macro Approach)  
 
 

5.3 FEM Analysis 

A FEM analysis was carried out to evaluate thermal stresses, strains and deflections 

in 8 inch and 4 inch deep FRP bridge decks. The shell 93 element from ANSYS V7.1 was 

used for thermal analysis of the FRP deck. The element had six degrees of freedom at each 

node (translations in the nodal x, y, and z directions and rotations about the nodal x, y and z-

axes). The deck web, deck top surface, and deck bottom surface were modeled as shell 

elements. The structural properties of 8 inch and 4 inch deep FRP decks can be found in 

Table 5.1.  
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The FRP deck was only modeled one quarter of the entire dimension since the 

structure has symmetric geometry and boundary. The “dsym” text command was conducted 

in this model for symmetric geometry and boundary. The temperature of the FRP deck was 

applied to nodes by using body load option (BF command). The temperature change on the 

top and bottom surfaces was uniform while the temperature on the deck web varied along 

depth linearly. In-plane nodal geometry at intersections between web and flange was 

identical. The element size of 4 inch and 8 inch FRP deck model are about 0.9 inches x 0.9 

inches. The total number of nodes and elements for 8 inch FRP deck models are 20,172 

nodes and 6,720 elements for a quarter model. The total nodes and elements for 4 in. FRP 

deck model are 12,608 nodes and 4240 elements for a quarter model. The FEM nodal 

geometries for 8 inch and 4 inch FRP decks are shown in Figure 5.6 and 5.7. Top surface was 

at Z = 0. 

1

X
Y

Z

Test Case : 8HS                                                                 

FEB 20 2004
17:41:19

ELEMENTS

 

Figure 5.6: Quarter Model of a 8 inch FRP Deck Specimen. 
 
 

Top Surface

Center 
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1
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Y

Z

Test Case : 4HS                                                                 
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17:42:16

ELEMENTS

 
 

Figure 5.7: Quarter Model of a 4 inch FRP Deck Specimen. 
 

Note : X, Y, Z coordinates of FEM model in Figures 5.6 and 5.7 are similar to those of  Navier-Levy 
and Macro approaches in Figures G.1 and G.2. 
 

The FEM contour plots and FEM text command for all test cases are presented in 

Appendix F.  The FEM results at the center of FRP deck are shown in Table 5.8.  

The notations used in the Table 5.8 are as follows : 

( , )
2 2center
a bw  and (6, )

2edge
bw  = Deflection @ center and edge of the FRP deck, respectively. 

_xx Top Surfaceε  and _xx BottomSurfaceε  = Strain in x direction on top/bottom surface, respectively. 

_yy Top Surfaceε  and _yy Bottom Surfaceε  = Strain in y direction on top/bottom surface, respectively. 

_xx Top Surfaceσ  and _xx BottomSurfaceσ = Stress in x direction on top/bottom surface, respectively. 

_yy Top Surfaceσ  and _yy BottomSurfaceσ = Stress in y direction on top/bottom surface, respectively. 

Refer to Figures 4.8 through 4.11 in chapter 4 for x, y direction. 

 

Center 

Top Surface
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FEM Results at Center of FRP Specimen 

Test Case 8HS 8CS 8HF 8CF 4HS 4CS 4HF 4CF 

Boundary Condition SSFF FFFF SSFF FFFF SSFF FFFF SSFF FFFF 

topT , ( F° ) 155 152 -30 -31 153 151 -43 -45 

bottomT , ( F° ) 74 74 60 61 97 98 56 60 

refT , (°F) 71 73 80 80 80 80 82 84 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 73 71 -125 -129 

bottom bottom refT T T∆ = −  3 1 -20 -19 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆  81 78 -90 -92 56 53 -99 -105 

( , )
2 2center
a bw , in. -0.1089 0.1051 -0.1243 0.1307 -0.0998 0.1598 -0.1275 0.2330 

(6, )
2edge
bw , in. -0.0855 0.0784 -0.1014 0.1029 -0.0633 0.0968 -0.0930 0.1665 

_ (µε)xx Top Surfaceε  421 -564 395 -567 436 -729 423 -752 

_ (µε)xx BottomSurfaceε  3 -86 -8 -80 80 -115 87 -104 

_ (µε)yy Top Surfaceε  1211 -1330 1153 -1359 719 -1095 705 -1144 

_ (µε)yy BottomSurfaceε  19 -219 -22 -190 142 -190 146 -158 

_ (psi.)xx Top Surfaceσ  62 -69 59 -70 73 -125 67 -129 

_ (psi.)xx Bottom Surfaceσ  -53 59 -59 70 -73 125 -67 129 

_ (psi.)yy Top Surfaceσ  30 -25 42 -43 26 -39 31 -54 

_ (psi.)yy BottomSurfaceσ  -29 25 -44 44 -26 39 -31 54 
 

Table 5.8: Results at Center for all of Test Cases (FEM Analysis). 

 

5.4  Comparison between experimental and theoretical results 

5.4.1 Deflection Comparison (Experiment, FEM, Navier-Levy and Macro Approach) 

According to the results from sections 5.1, 5.2 and 5.3, deflection results for all test 

cases are tabulated in Tables 5.9 and 5.10.  
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Test Case Deflection (in.) Experiment FEM Navier-Levy Macro Approach 

( 2, 2)centerw a b  -0.0960 -0.1089 -0.0988 -0.0942 
8HS 

(6, 2)edgew b  -0.0680 -0.0855 -0.0767 -0.0739 

( 2, 2)centerw a b  0.1030 0.1051 0.0946 0.0900 
8CS 

(6, 2)edgew b  0.0780 0.0784 0.0705 0.0670 

( 2, 2)centerw a b  -0.1230 -0.1243 - - 
8HF 

(6, 2)edgew b  -0.0970 -0.1014 - - 

( 2, 2)centerw a b  0.1330 0.1282 - - 
8CF 

(6, 2)edgew b  0.1040 0.0946 - - 

( 2, 2)centerw a b  -0.0940 -0.0998 -0.1021 -0.0968 
4HS 

(6, 2)edgew b  -0.0509 -0.0633 -0.0692 -0.0642 

( 2, 2)centerw a b  0.1590 0.1598 0.1631 0.1546 
4CS 

(6, 2)edgew b  0.0850 0.0968 0.1073 0.0985 

( 2, 2)centerw a b  -0.1050 -0.1275 - - 
4HF 

(6, 2)edgew b  -0.0760 -0.0930 - - 

( 2, 2)centerw a b  0.2320 0.2330 - - 
4CF 

(6, 2)edgew b  0.1540 0.1665 - - 
 
Note : Temperature data for all test cases are shown below  
 
Test Case 8HS 8CS 8HF 8CF 4HS 4CS 4HF 4CF 

Boundary Condition SSFF FFFF SSFF FFFF SSFF FFFF SSFF FFFF 

topT ,(°F) 155 152 -30 -31 153 151 -43 -45 

bottomT , (°F) 74 74 60 61 97 98 56 60 

refT , (°F) 71 73 80 80 80 80 82 84 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 73 71 -125 -129 

bottom bottom refT T T∆ = − , (°F)
 

3 1 -20 -19 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆ , (°F) 81 78 -90 -92 56 53 -99 -105 

 
Table 5.9: Deflection Results (Experiment, FEM, Navier-Levy, and Macro Approach)  

                       for all of Test Cases. 
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 Results from the above table are plotted in the form of a bar chart, which are shown in 

Figure 5.8. 
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Figure 5.8: Deflection Bar Chart for all of Test Cases. 
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Percent Deflection Difference, % (Theory V.S. Experiment) 

Test Cases FEM V.S. 
Experiment 

Navier-Levy V.S. 
Experiment 

Macro-Mechanics V.S. 
Experiment 

8HS @ Center 13 % 3 % 2 % 

8HS @ Edge 26 % 13 % 9 % 

8CS @ Center 2 % 8 % 13 % 

8CS @ Edge 1 % 10 % 14 % 

8HF @ Center 1 % - - 

8HF @ Edge 5 % - - 

8CF @ Center 4 % - - 

8CF @ Edge 9 % - - 

4HS @ Center 6 % 9 % 3 % 

4HS @ Edge 24 % 36 % 26 % 

4CS @ Center 1 % 3 % 3 % 

4CS @ Edge 14 % 26 % 16 % 

4HF @ Center 21 % - - 

4HF @ Edge 22 % - - 

4CF @ Center 0.4 % - - 

4CF @ Edge 8 % - - 

Average 10 % 13 % 11 % 
 

Table 5.10: Percent Deflection Difference (Theory V.S. Experiment). 

 

5.4.2  Strain Comparison (Experiment, FEM and Macro Approach) 

According to the results from section 5.1, 5.2 and 5.3, strain results for all test cases 
 
 are tabulated as Tables 5.11 and 5.12. 
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Strain Results at the Center of FRP Deck ( µε ) 

Test Cases Top / Bottom Surface Experiment FEM  Macro Approach 

_yy Top Surfaceε , (Gage #1) 935 1211 1396

_xx Top Surfaceε , (Gage #2) - 421 425

_yy Bottom Surfaceε , (Gage #13) 3 19 -166
8HS 

_xx Bottom Surfaceε , (Gage #14) - 3 -3

_yy Top Surfaceε  -1267 -1330 -1522

_xx Top Surfaceε  -467 -564 -565

_yy Bottom Surfaceε  -101 -219 -28
8CS 

_xx Bottom Surfaceε  -52 -86 -83

_yy Top Surfaceε  912 1153 - 

_xx Top Surfaceε  300 395 - 

_yy Bottom Surfaceε  -23 -22 - 
8HF 

_xx Bottom Surfaceε  5 -8 - 

_yy Top Surfaceε  -1266 -1359 - 

_xx Top Surfaceε  -480 -567 - 

_yy Bottom Surfaceε  -122 -190 - 
8CF 

_xx Bottom Surfaceε  3 -80 - 
 
Note: Refer to Figure 4.8 and 4.9 in Chapter 4 for x, y directions. Temperature data for all test cases 
are shown below.  
 

Test Case 8HS 8CS 8HF 8CF 4HS 4CS 4HF 4CF 

topT ,(°F) 155 152 -30 -31 153 151 -43 -45 

bottomT , (°F) 74 74 60 61 97 98 56 60 

refT , (°F) 71 73 80 80 80 80 82 84 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 73 71 -125 -129 

bottom bottom refT T T∆ = − , (°F)
 

3 1 -20 -19 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆ , (°F) 81 78 -90 -92 56 53 -99 -105 

 
Table 5.11: Strain Results for 8 inch FRP Deck. 
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Strain Results at the Center of FRP Deck ( µε ) 

Test Cases Top / Bottom Surface Experiment FEM  Macro-Mechanics

_yy Top Surfaceε , (Gage #1) 627 719 820 

_xx Top Surfaceε , (Gage #2) 350 436 428 

_yy Bottom Surfaceε , (Gage #13) 171 142 40 
4HS 

_xx Bottom Surfaceε , (Gage #14) 92 80 88 

_yy Top Surfaceε  -1307 -1095 -1265 

_xx Top Surfaceε  -912 -729 -713 

_yy Bottom Surfaceε  -205 -190 -19 
4CS 

_xx Bottom Surfaceε  -110 -115 -131 

_yy Top Surfaceε  564 705 - 

_xx Top Surfaceε  352 423 - 

_yy Bottom Surfaceε  129 146 - 
4HF 

_xx Bottom Surfaceε  87 87 - 

_yy Top Surfaceε  -1414 -1144 - 

_xx Top Surfaceε  -948 -752 - 

_yy Bottom Surfaceε  -275 -158 - 
4CF 

_xx Bottom Surfaceε  -81 -104 - 
 
Note: Refer to Figure 4.10 and 4.11 in Chapter 4 for x, y directions.  Temperature data for all test 
cases are shown below.  
 

Test Case 8HS 8CS 8HF 8CF 4HS 4CS 4HF 4CF 

topT ,(°F) 155 152 -30 -31 153 151 -43 -45 

bottomT , (°F) 74 74 60 61 97 98 56 60 

refT , (°F) 71 73 80 80 80 80 82 84 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 73 71 -125 -129 

bottom bottom refT T T∆ = − , (°F)
 

3 1 -20 -19 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆ , (°F) 81 78 -90 -92 56 53 -99 -105 

 
Table 5.12: Strain Results for 4 inch FRP Deck. 
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According to strain results in the above table (Tables 5.11 and 5.12), the strain bar 

charts for each test case are shown Figure 5.9 through Figure 5.16. 
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Figure 5.9: Strain Bar Chart for Test Case 8HS. 
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Figure 5.10: Strain Bar Chart for Test Case 8CS. 
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Figure 5.11: Strain Bar Chart for Test Case 8HF. 
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Figure 5.12: Strain Bar Chart for Test Case 8CF. 
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Figure 5.13: Strain Bar Chart for Test Case 4HS. 
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Figure 5.14: Strain Bar Chart for Test Case 4CS. 
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Figure 5.15: Strain Bar Chart for Test Case 4HF. 
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Figure 5.16: Strain Bar Chart for Test Case 4CF. 

 

According to strain bar charts as in Figure 5.9 through 5.16, strain results on bottom 

surface are small compared to those on top surface because of low temperature change. 

Percent strain difference (or Percent strain error) was calculated based on the following 

formula:   

. . .% x100 or x100
. .

Exp FEM Exp MacroStrain Difference
Exp Exp
− −

=
 

The average percent strain difference for both 4 inch and 8 inch FRP deck (for all test 

cases) are tabulated in Table 5.13. 
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Average of % strain difference for all of test cases ( for 4 and 8 in. FRP decks.) 

Location Experiment V.S. FEM Experiment V.S. Macro Approach 

Both Top/Bottom Surface   21 % *      25 % ** 

Only Top Surface 20 % 22 % 
 
Note :     * = Calculation is based on 26 out of 29 data samples. 

** = Calculation is based on 10 out of 13 data samples. 
 

Table 5.13: Average of Percent Strain Difference for all of Test Cases  
(for 4 inch and 8 inch FRP decks.) 

 
5.4.3  Stress Comparison (Experiment, FEM and Macro Approach) 
 

Experimental stress can be calculated from experimental strain results. The stress-

strain relation for orthotropic material under thermoelastic effect is (Refer to Eq. (A.39) in 

Appendix A) 

xx xyxx xx xx

yy yy yyxy yy

Q Q T
TQ Q

σ ε α
σ ε α

− ∆       =     − ∆          

where  , ,
1 1

xy yx
xx xy

xy yx xy yx

v EEQ Q
v v v v

= =
− −

 and 
1

y
yy

xy yx

E
Q

v v
=

−
 

 

Computation of Experimental Stresses on Top Surface for Test Case 4HS 

Elastic properties of , , , ,x y xy yx xxE E ν ν α , and yyα  can be found in Table 5.1. Strain data 

( xxα , yyα ), top temperature ( topT ) and reference temperature ( .refT ) for test case 4HS are 

obtained from Table 5.3.  

63.8x10
1 1-(0.25)(0.0658)

x
xx

xy yx

EQ
v v

= =
−

= 3.86 x 106 psi. 

60.25(1x10 )
1 1-(0.25)(0.0658)

xy y
xy

xy yx

v E
Q

v v
= =

−
 = 2.54 x 106 psi. 
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61x10
1 1-(0.25)(0.0658)

y
yy

xy yx

E
Q

v v
= =

−
= 1.02 x 106 psi. 

. 153 83top top refT T T∆ = − = − = 73 F°  

350 , 627xx yyε µε ε µε= =  ( Refer to Table 5.3 for test case 4HS)  

Substituting , , , ,xx xy yy xxQ Q Q T ε∆  and yyε  into the above equation we obtain stress 

components on top surface as 

( ) ( ) 282psi.
Top Surface

( ) ( ) 89 psi.
xx xx xx xx xy yy yy

yy xy xx xx yy yy yy

Q T Q T

Q T Q T

σ ε α ε α

σ ε α ε α

∴ = − ∆ + − ∆ = − 
∴ = − ∆ + − ∆ = − 

 

 Following the above computation for other test cases, the experimental stress results 

are tabulated in Table 5.14. 
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Experimental Stress Results @ the Center of FRP Deck (psi.) 

Test Cases 8HS 8CS 8HF 8CF 4HS 4CS 4HF 4CF 

_yy Top Surfaceσ  - 70 -250 82 -89 -302 -131 -379 

_xx Top Surfaceσ  - 339 -390 310 -282 -886 -241 -957 

_yy Bottom Surfaceσ  - 166 -41 141 7 26 -48 -58 

_xx Bottom Surfaceσ  - 228 -9 423 -19 141 -73 187 
 
Note: Refer to Figure 4.8 and 4.10 of Chapter 4 for Directions of xxσ  and yyσ . Experimental stress 

results in Test Case 8HS are not available since experimental strain ( xxε ) in x direction are not 
available. Temperature data for all test cases are shown below  
 
Test Case 8HS 8CS 8HF 8CF 4HS 4CS 4HF 4CF 

Boundary Condition SSFF FFFF SSFF FFFF SSFF FFFF SSFF FFFF 

topT ,(°F) 155 152 -30 -31 153 151 -43 -45 

bottomT , (°F) 74 74 60 61 97 98 56 60 

refT , (°F) 71 73 80 80 80 80 82 84 

top top refT T T∆ = − ,  (°F) 84 79 -110 -111 73 71 -125 -129 

bottom bottom refT T T∆ = − , (°F)
 

3 1 -20 -19 17 18 -26 -24 

max top bottomT T T∆ = ∆ − ∆ , (°F) 81 78 -90 -92 56 53 -99 -105 

 
Table 5.14: Experimental Stress Results. 
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Theoretical and experimental stress results are tabulated in Tables 5.15 and 5.16. 

Theoretical stress results from Macro Approach and FEM are obtained from sections 5.2 and 

5.3. 

 Stress Results at the Center of 8 in. FRP Deck (psi.) 

Test Cases Top / Bottom Surface Experiment FEM  Macro Approach 

_yy Top Surfaceσ  - 30 237 

_xx Top Surfaceσ  - 62 126 

_yy Bottom Surfaceσ  - -29 -237 
8HS 

(SSFF) 

_xx Bottom Surfaceσ  - -53 -126 

_yy Top Surfaceσ  70 -25 -239 

_xx Top Surfaceσ  339 -69 -123 

_yy Bottom Surfaceσ  166 25 239 
8CS 

(SSFF) 

_xx Bottom Surfaceσ  228 59 123 

_yy Top Surfaceσ  -250 43 - 

_xx Top Surfaceσ  -390 59 - 

_yy Bottom Surfaceσ  -41 -44 - 
8HF 

(FFFF) 

_xx Bottom Surfaceσ  -9 -59 - 

_yy Top Surfaceσ  82 -43 - 

_xx Top Surfaceσ  310 -70 - 

_yy Bottom Surfaceσ  142 44 - 
8CF 

(FFFF) 

_xx Bottom Surfaceσ  423 70 - 
 

Table 5.15: Stress Results (Experiment, FEM and Macro Approach) for 8 inch FRP Deck. 

Notes: Thermal stress of orthotropic materials (
xx xyxx xx xx

yy yy yyxy yy

Q Q T
TQ Q

σ ε α
σ ε α

− ∆       =     − ∆          
) are calculated 

based on a combination of strain in two principle directions (i.e. ,xx yyε ε ). A small strain error in one 
principle direction can lead to large stress error after combining strains in both directions with 
temperature effect ( Tα∆ ) for stress calculation, leading to high difference of stress in Tables  
5.15 and 5.16.
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Stress Results at the Center of 4 in. FRP Deck (psi.) 

Test Cases Top / Bottom Surface Experiment FEM  Macro Approach 

_yy Top Surfaceσ  -89 26 127 

_xx Top Surfaceσ  -282 73 67 

_yy Bottom Surfaceσ  7 -26 -127 
4HS 

(SSFF) 

_xx Bottom Surfaceσ  -19 -73 -67 

_yy Top Surfaceσ  -302 -40 -209 

_xx Top Surfaceσ  -886 -125 -108 

_yy Bottom Surfaceσ  26 40 209 
4CS 

(SSFF) 

_xx Bottom Surfaceσ  141 125 108 

_yy Top Surfaceσ  -131 31 - 

_xx Top Surfaceσ  -241 67 - 

_yy Bottom Surfaceσ  -48 -31 - 
4HF 

(FFFF) 

_xx Bottom Surfaceσ  -73 -67 - 

_yy Top Surfaceσ  -379 -55 - 

_xx Top Surfaceσ  -957 -129 - 

_yy Bottom Surfaceσ  -58 55 - 
4CF 

(FFFF) 

_xx Bottom Surfaceσ  187 129 - 
 
 

Table 5.16: Stress Results (Experiment, FEM and Macro Approach) for 4 inch FRP Deck. 
 

Notes: Thermal stress of orthotropic materials (
xx xyxx xx xx

yy yy yyxy yy

Q Q T
TQ Q

σ ε α
σ ε α

− ∆       =     − ∆          
) are calculated 

based on a combination of strain in two principle directions (i.e. ,xx yyε ε ). A small strain error in one 
principle direction can lead to large stress error after combining strains in both directions with 
temperature effect ( Tα∆ ) for stress calculation, leading to high difference of stress in Tables 5.15 
and 5.16. 
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5.5 Discussions and Conclusions 

Deflection  

• From Table 5.9 it is observed that for all the heating test cases, the deflections in FRP 

deck have negative sign, which means that the deck exhibits a hogging effect (upward 

convexity). This is because in the heating tests, the temperature of top surface is 

higher than that of bottom surface. Similarly for all the cooling tests, it can be seen 

that deflection in the FRP deck has a positive sign, which means the deck exhibits 

sagging effect. This is because in the cooling tests, the temperature of top surface is 

lower than that of bottom surface. 

• The theoretical deflection based on Macro Approach and Navier-Levy Method was 

nearly constant when number of Fourier series terms was higher than 7 (n > 7). The 

deflection difference in percent between one term approximation (n=1) and  fifteen 

term approximation (n=15) was about 3%. 

• The average deflection difference in percent between Experiment versus Navier-Levy, 

Macro, and FEM analysis are within 15%, which indicates that the theory is in good 

correlation with experimental test results (Refer Table 5.17).  

Average Deflection Difference in Percent Between Experiment and Theory 

Experiment V.S. Navier-Levy (1st term approximation) 13 % 

Experiment V.S. Macro Approach (1st term approximation ) 11 % 

Experiment V.S. FEM 10 % 

 
 Table 5.17: Average Deflection Difference in Percentage (Refer to Table 5.10). 

• Based on theoretical analysis (FEM, Navier-Levy, and Macro Approach), center 

deflection can be predicted more accurately than the edge deflection. The average 
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difference in deflections between theory and experiment at center and edge is 6% and 

10.7%, respectively. 

• The FRP deck deflection did not depend primarily on temperature of top or bottom 

surface individually, but the deflection did depend primarily on the temperature 

difference between the top and bottom deck surfaces. Deflections increased with 

increasing magnitude of temperature difference.  

• Deflection is predicted more accurately than strain and stress because boundary 

restraint mechanism in a laboratory can control the vertical movement ( w  or zu ), 

which agrees more closely with theoretical boundary conditions.  

 

Thermal Strain 

• The average strain difference in percentage between Experiment versus Macro 

Approach, and FEM analyses are about 20% and are shown in Table 5.18. 

Average Strain Difference in Percent Between 

Experiment V.S. Macro Approach (1st term approximation ) 25 % 

Experiment V.S. FEM 21 % 

 
Note: Average strain difference in percent between Experiment V.S. Macro Approach is 
based on 10 out of 13 data samples. Average strain difference in percent between Experiment 
V.S. FEM is based on 26 out of 29 data samples.  

 
Table 5.18: Average Strain Difference in Percentage. 

 
• It can be seen from Table 5.2 that experimental strain results in SSFF (two simply 

support edges and two free edges) and FFFF (all four edges free) boundaries are close 

for all test cases. This is because a boundary restraint for simply supported edges in 
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the laboratory tests was not one hundred percent effective to resist expansion or 

contraction in the horizontal plane, but resistance in vertical displacement along the 

simply supported edge was excellent. 

• During the cooling tests on 4 inch and 8 inch deep FRP decks, it was observed that 

there was no significant residual strain after the deck was brought to ambient 

temperature levels (after 200 minutes from the time the unloading was initiated) at the 

end of each thermal cycle. However, during the heating tests on 4 inch and 8 inch 

deep FRP decks, a significant amount of residual strain ( ≈  25 to 100 µε ; refer to 

heating test results in Appendix C and D), was left in the system at the end of each 

thermal cycle after 200 minutes from the start of unloading the decks.  In the field, 

FRP decks undergo several thermal cycles, which will lead to high residual strain in 

deck and also to distress in wearing surfaces.  

 

Thermal Stress 

• Thermal strains in both the x and y directions have to be considered together for 

orthotropic materials while evaluating thermal stresses. In our study, a good 

correlation of thermal stresses between the theory and experimental test results was 

not possible because small error in strain measurements or strain changes can lead to 

large error in thermal stresses (Refer to Tables 5.15 and 5.16). Thermal stress depends 

on the effectiveness of boundary restraints in the laboratory. If boundaries are fully 

restrained, thermal stress will be fully developed while thermal strain will not be 

significant. According to Tables 5.15 and 5.16, it was found that theoretical stress 

(Macro approach and FEM) was not in a good agreement with experimental stress 
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because the theoretical stress (Macro approach and FEM) was assumed to be zero for 

axial effect (free expansion in horizontal plane), which was not true under lab 

condition. Partial axial stress was induced during lab testing because of partial fixity 

in the horizontal plane of FRP decks. The inaccuracy in predicting thermal stress is 

attributed to in-plane partial fixity of the FRP deck (it was between free and fully 

fixity.). 

• Thermal stress results between Macro and FEM approaches have the same trend 

(same sign convention in stress) for stress on the top and bottom surface because free 

movement in horizontal plane (but fix in vertical direction) is assumed in both Macro 

Approach and FEM. 

• Rapid convergence of strains using the conventional plate theory is not guaranteed; 

hence a larger error with the first term approximation is noted than in deflection. 
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Chapter 6 

Field Evaluations of FRP Bridges 

 The thermal response of two FRP deck bridges (i.e. Market Street and Wickwire Run 

bridges) under temperature difference has been theoretically evaluated and compared with 

field data. In the Market Street Bridge, strains on the FRP deck under thermal fluctuations 

were recorded. Induced thermal stress in Market Street Bridge are evaluated based on field 

strain data (using stress-strain relation with temperature effect). Also FEM analysis is 

conducted on Market Street Bridge for discussion. In Wickwire Run Bridge, deflection on 

FRP deck under thermal fluctuation was recorded. Theoretical deflection (based on macro 

approach) is evaluated and compared with field deflection. 

 

6.1 General Details of Market Street and Wickwire Run Bridges 

 Market Street Bridge 

The Market Street Bridge in Wheeling, WV was a replacement structure, designed by 

Alpha Associates, Morgantown, WV in collaboration with CFC-WVU.  Initially, the bridge 

had a concrete filled steel grid deck supported on steel girders with sidewalks. In the year 

2000, the deck was replaced with FRP composite deck supported on seven steel plate girders 

(Web 3/4” x 78” and Flange 51 8 ” x 24”), which were spaced at 8.5 feet. The total span of 

the bridge is 179.5 feet and its width is 58 feet Figures 6.1 and 6.2 show the cross section of 

FRP bridge decks and elevation of Market Street Bridge respectively. In the Market Street 

Bridge, the FRP bridge deck is held to the steel plate girder using steel studs and cement 

grout. Installed superstructure views are shown in Figures 6.3 and 6.4. 
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Figure 6.1: Cross Section of FRP Deck Placed on Bridge Stringers. 
 

 

 

 

 

Figure 6.2: Cross Section at Center of Market Street Bridge. 
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Figure 6.3: View Before Applying Polymer Concrete (Market Street bridge). 
 

 

 

Figure 6.4: View After Applying Polymer Concrete (Market Street Bridge). 
 

 Wickwire Run Bridge 

The Wickwire Run Bridge has FRP composite decks supported on four steel stringers 

spaced at 6 feet. The total span of the bridge is 30 feet by 21 feet 8 inches in width (Figure 

6.5). The cross-section of FRP deck is same as in Market Street Bridge (Figure 6.1). 
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Figure 6.5: Cross Section at Center of Wickwire Run Bridge. 
 

6.2 Field Test Results of Market Street and Wickwire Run Bridges 

During the field monitoring of the Market Street Bridge and Wickwire Run Bridge, 

strain and deflections under temperature differences were measured using strain gages and 

LVDTs, respectively.  The data was collected through a data acquisition system. The 

temperature difference through the depth (top and bottom) of deck was recorded using a 

noncontact infrared thermal device. Field test results (thermal strain) for the Market Street 

Bridge are shown in Tables 6.1. For the Wickwire Run Bridge, the field results (deflection) 

are shown in Table 6.2. 

Temperature ( ° F) 
on FRP Deck at 

Strain ( µε ) 
at Bottom of FRP Deck 

Testing 

Date 
Time 

Bottom 
Surface 

Top 
Surface 11ε  22ε  

Initial Reading (11.34 am.) 62 72 0 0 5/15/03 
Final Reading (1.10 pm.) 72 108 41 5 

Initial Reading (11.36 am.) 20 47 0 0 
2/26/04 

Final Reading (1.17 pm.) 26 59 22 4 
 
Note : 11ε  and 22ε  are strains in the strong (or cell) and weak direction of FRP deck, respectively        

Table 6.1: Thermal Strain Data for Market Street Bridge. 
(Refer to Figure 6.2 for Gage Locations) 
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Temperature ( ° F) on FRP Deck at Date 
6/26/03 Bottom Surface Top Surface 

Deflection 
(in.) 

Initial Reading (8.11 am.) 61 61 0 

Final Reading (2.30 pm.) 67 111 -0.0494 
(upward) 

 
Table 6.2: Deflection Data for Wickwire Run Bridge. 

(Refer to Figure 6.5 for LVDT Locations) 
 

6.3 Evaluation of Thermal Stresses in Market Street Bridge 

Thermal stresses in Market Street bridge are determined using field strain and 

temperature data (See Section 6.3.1).  Theoretical analysis based on Finite Element Model 

(FEM) for thermal stresses and strains on Market Street is conducted which is  shown in 

section 6.3.2. For simplicity, the deck slab is modeled using the finite element package 

(ANSYS) as a solid slab of 8 inch thick, which is identical to the thickness of the FRP deck. 

It should be noted that theoretical results based on 8 inch thick solid deck was as close to the 

field data that has 8 inch thick hollow deck.  

 

6.3.1 Evaluation of thermal stress based on field test results (strain data) 

 According to data in Table 6.1, changes in temperature, on the top and bottom surface 

of FRP deck on 5/15/03 are 36 ° F and 10 ° F, respectively (i.e. 108 72 36topT∆ = − = , 

72 62 10bottomT∆ = − = ).  The profile of changes in temperature through the thickness of the 

deck are shown in Figure 6.6 (a), where it was assumed that the change in temperature varies 

linearly through the thickness of the deck.  
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Figure 6.6: Change in Temperature Profile for Market Street Bridge. 

An idealized temperature variation along the deck depth is a linear function of z 

(direction of FRP depth). Therefore, the change in temperature through the thickness of the 

deck is : 

0 1 23 3.25T T T z z∆ = + = −  

where 0 36 10 23
2 2

top bottomT T
T

∆ + ∆ +
= = =  and 1 10 36 3.25

8
bottom topT T

T
h

∆ − ∆ −
= = = −

 

Before determining the thermal stress in FRP decks, we have to evaluate the strain 

increment (i.e. Tα∆ ) due to change in temperature under free boundary conditions, and 

obtain strain data under temperature change for actual field boundary conditions. Strain 

difference between the free and field boundary conditions will then be used to evaluate the 

induced thermal stress, using constitutive equations (relationships between stress and strain). 

The following section shows step-by-step procedure to find induced thermal stresses based 

on field data (as shown in Table 6.1). 
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Step 1: Determine induced strain for free condition 

Change in temperature profile as shown in Figure 6.6 (a) is divided in two parts that 

are uniform temperate change (Figure 6.6 (b)) and gradient temperature change (Figure 6.6 

(c)). Uniform temperature change ( 0T  = 23 ° F) causes FRP deck to expand uniformly 

through the depth in horizontal plane. Gradient temperature change ( 1T z  = 13/–13 ° F on 

top/bottom surface) causes bottom surface of FRP deck to contract and top surface of FRP 

deck to expand with the same amount of strain.  

The induced strain due to uniform temperature change ( 0T ) as in Figure 6.6 (b)- are:  

0 6
11_ 11

0 6
22 _ 22

(6.07 10 )(23) 139.61

(9.75 10 )(23) 224.25
uniform

uniform

T x

T x

ε α µε

ε α µε

−

−

= = = 


= = = 
 @ Top and Bottom Surface 

Note : Subscript 11 and 22 represent strong and weak direction of FRP deck. Coefficients of thermal 
expansion (CTE) of FRP deck are 11α = 6.07 µε / ° F and 22α = 9.75 µε / ° F. 
 

The induced strain due to gradient temperature change ( 1T z ) as in Figure 6.6 (c)- are:  

1 6
11_ 11

1 6
22 _ 22

(6.07 10 )( 3.25)( 4) 78.91

(9.75 10 )( 3.25)( 4) 126.75
gradient

gradient

T z x

T z x

ε α µε

ε α µε

−

−

= = − − = 


= = − − = 
 @ Top Surface 

1 6
11_ 11

1 6
22 _ 22

(6.07 10 )( 3.25)(4) 78.91

(9.75 10 )( 3.25)(4) 126.75
gradient

gradient

T z x

T z x

ε α µε

ε α µε

−

−

= = − = − 


= = − = − 
 @ Bottom Surface 

Combining strains due to uniform and gradient temperature changes, we obtain induced 

strain for free boundary condition as:  

11_ 11_ 11_

22 _ 22_ 22_

139.61 78.91 218.52

224.25 126.75 351
free uniform gradient

free uniform gradient

ε ε ε µε

ε ε ε µε

= + = + = 
= + = + = 

 @ Top Surface 

11_ 11_ 11_

22 _ 22_ 22 _

139.61 78.91 60.7

224.25 126.75 97.5
free uniform gradient

free uniform gradient

ε ε ε µε

ε ε ε µε

= + = − = 
= + = − = 

 @ Bottom Surface 
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Step 2 : Field Strain 

Field strain on bottom surface of FRP deck (on 5/15/03, in Table 6.1) is: 

 11_

22 _

43

5
field

field

ε µε

ε µε

= 
= 

@ Bottom Surface 

 

Step 3 : Calculate induced  thermal stress  

Induced thermal stresses are calculated using stress-strain relation as given in Eq.(6.1).  

 

11_ 11_11 1211

12 2222 22_ 22 _

field free

field free

Q Q
Q Q

ε εσ
σ ε ε

−     =     −        (6.1) 

where 1 12 2 2
11 12 22

12 21 12 21 12 21

, ,
1 1 1

E v E EQ Q Q
v v v v v v

= = =
− − −  

Properties of FRP deck (Refer Table 6.6):  

1E  = 3.05 x 106 psi., 2E = 0.92 x 106 psi., 12ν = 0.25 and 21ν = 0.075 

Therefore, 

6
1

11
12 21

3.05x10
1 1 (0.25)(0.075)

EQ
v v

= =
− −

=  3.11x106 psi. 

6
12 2

12
12 21

(0.25)(0.92x10 )
1 1-(0.25)(0.075)

v EQ
v v

= =
−

= 2.34x105 psi. 

6
2

22
12 21

0.92x10
1 1-(0.25)(0.075)

EQ
v v

= =
−

 = 9.38x105 psi. 

Substituting 11, 12 22andQ Q Q  into Eq. (6.1) 

6
11_ 11_11 1211 6

6
12 2222 22_ 22 _

3.11 0.23 (43 60.7)(10 ) 76.70 psi.
(10 )

0.23 0.94 90.88 psi.(5 97.5)(10 )
field free

field free

Q Q
Q Q

ε εσ
σ ε ε

−

−

−     − −        = = =           −− −           
 

Note: Negative sign represents compressive stress. 



 125

A thermal stress in the bottom of FRP deck is compressive in both, cell (–76.70 psi.) 

and weak directions (–90.88 psi.). 

The other alternative method to calculate induced thermal stress will be as per Eq. 

(A.41) of Appendix A i.e., 

 

11 1211 11 11

12 2222 22 22

Q Q T
Q Q T

σ ε α
σ ε α

− ∆    
=     − ∆       (Ref. Reddy 1999) (6.2) 

where, 

11ε and 22ε  are measured strains in the field. 

11α and 22α  are the coefficient of thermal expansion of FRP deck. 

T∆ is temperature change at point of interest. 

 

Substituting 11 22 12 11 22 11 22, , , , , ,Q Q Q ε ε α α  and T∆ into Eq. (6.2), we obtain thermal stress at 

the bottom surface of FRP deck. 

6 6
11 1211 11 11 6

6 6
12 2222 22 22

3.11 0.23 43x10 (6.07x10 )(10) 76.70 psi.
(10 )

0.23 0.94 90.88 psi.5x10 (9.75x10 )(10)

Q Q T
Q Q T

σ ε α
σ ε α

− −

− −

 − ∆  − −        = = =          − ∆ −−            

Note that T∆  in the above equation is temperature change at the bottom surface ( bottomT∆ ) of FRP 
deck, which is equal to 0 (i.e. 72 62 10bottomT∆ = − = ). And 11 43ε µε=  and 22 5ε µε= (Refer to 
field data in Table 6.1). 

 

Using the above method, thermal stress for the field data as of 2/26/04 in Table 6.1 is 

calculated as following  

6 6
11 1211 11 11 6

6 6
12 2222 22 22

3.11 0.23 22x10 (6.07x10 )(6) 57.60 psi.
(10 )

0.23 0.94 54.48 psi.4x10 (9.75x10 )(6)

Q Q T
Q Q T

σ ε α
σ ε α

− −

− −

 − ∆  − −        = = =          − ∆ −−            

Note : 26 20 6 FT∆ = − = ° (Refer to field data in Table 6.1)  
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Induced thermal stress in Market Street Bridge from field data are given in Table 6.3. 

Bottom of FRP Deck (Field Data) 
Date bottomT∆  

( F)°  
topT∆  

( F)°  ( F)
top bottomT T T∆ = ∆ − ∆

°
11 ( )ε µε 22 ( )ε µε 11 (psi.)σ  22 (psi.)σ

5/15/03 10 36 26 43 5 -77 -91 

2/26/04 6 10 4 22 4 -58 -54 
 
Note: Subscript 11 and 22 represent strong and weak direction of FRP deck 
 

Table 6.3: Induced Thermal Stresses based on Field Results for Market Street Bridge. 
 
6.3.2 Evaluation of thermal stresses using FEM analysis (Market Street Bridge) 

Thermal stress analysis was conducted for the Market Street Bridge using the Finite 

Element Model (FEM). The FEM model was modeled for half-width of the bridge since a 

deck joint was provided along the bridge length at the geometric center of the bridge width 

(see Figure 6.2). In the FEM model, the deck slab was modeled as a solid slab of 8 inch 

thick, which is identical to the thickness of the FRP deck. This was carried out for 

simplification purposes only. The FEM model is shown in Figure 6.7 where the deck slab, 

top and bottom flanges of plate girders are modeled as “Solid 45” elements, while web of 

plate girders are modeled as a “Shell 93” element using ANSYS 7.1. All nodes at the 

junction of the top flange of the plate girder and bottom of deck are interconnected with the 

same nodes. The FEM model was developed for a quarter scale of full size and “dsym” 

command was used for symmetric case of deck geometry. The deck slab was modeled with 

four element layers each of 2 inch thickness so as to input the temperature through the depth 

of the deck. 
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Thermal stresses and strain results at center span of the bridge (at location of strain 

gage in the Figure 6.2) based on FEM are shown in Table 6.4.  The FE analysis was 

performed for two cases:  

Case 1: Change in temperature increasing linearly from bottom to top of deck (i.e. 

T∆ = 36, 29.5, 23, 16.5 and 10 F° ). Case 1 (represented as “L” notation in Table 6.4) was 

performed as per the AASHTO’s specification and is more conservative. 

Case 2: Change in temperature increasing non-linearly from bottom to top of deck 

(i.e. T∆ = 36, 16, 16, 13 and 10 F° ). Case 2 (represented as “NL” notation in Table 6.4) was 

performed to simulate the real field conditions where the change in temperature in hollow 

section of FRP deck slabs in not linear. Temperature change for both cases (i.e. case 1 and 2) 

is applied to nodes of deck slab as body load. 

1

X
Y

Z

 Market Street Bridge Model (Model for a quarter dimension and use dsym command)

JUN  2 2004
21:16:52

ELEMENTS

 

Figure 6.7: Market Street Bridge FEM Model. 
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11

( )
ε
µε

 22

( )
ε
µε

 
11

(psi.)
σ

 
22

(psi.)
σ

 
Location ( F)

T∆
°

 11

( )
Tα

µε
∆

 22

( )
Tα

µε
∆

L NL L NL L NL L NL 

Top 36 219 351 216 158 6.2 4.5 -87 -268 -324 -339

Bottom 10 60.7 97.5 95 72 3 2.4 83 12 -80 -86 
 
Note : Subscripts “11” represents deck cell direction (x direction in FEM model). Subscript 
“22” represents direction perpendicular to deck cell direction or stringer direction (y direction 
in FEM model). 
 

Table 6.4: Induced Thermal Stresses based on FEM Results for Market Street Bridge 
with topT∆ = 36 F° , bottomT∆ = 10 F° . 

 

From Tables 6.3 and 6.4, it is observed that the induced strain (i.e. 11ε  and 22ε ) on the 

deck’s top and bottom are positive, which means that the FRP deck slab expands on top and 

bottom surfaces.  It is also observed that the deck strain in the traffic direction ( 22ε ) is less 

than the deck strain in the cell direction. This is attributed to the fact that flexural rigidity of 

system (deck/stringer) in the traffic direction is always higher than the flexural rigidity in the 

direction perpendicular to traffic. 

With respect to stress based on field data calculation (Table 6.3) and FEM analysis 

(Table 6.4), it is observed that compressive stress exist on top and bottom surfaces of the 

deck except 11σ  on bottom surface in Table 6.4 was tensile stress as per FEM analysis. Since 

tensile strain ( 11ε , expansion) of deck slab was higher than the magnitude of 11 Tα ∆ , theory 

resulted in a positive sign in stress (Refer to Eq. (6.2)). 

The applied temperature change, topT∆ = 36 F°  and bottomT∆ = 10 F° , is not a critical 

scenario in the field. However, the critical temperature change may be as high as 100 oF at 

top and 30 oF at bottom of the deck. Therefore, the FEM model was conducted with higher 
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applied temperature change of 100 F°  on top surface and 30 F°  on bottom surface ( topT∆ = 

100 F°  and bottomT∆ = 30 F° ). The FEM results for topT∆ = 100 F°  and bottomT∆ = 30 F°  are 

shown in Table 6.5. 

11

( )
ε
µε

 22

( )
ε
µε

 11

(psi.)
σ

 22

(psi.)
σ

 Location 
( F)

T∆
°

 11

( )
Tα

µε
∆

 22

( )
Tα

µε
∆

L NL L NL L NL L NL 

Top 100 607 975 603 408 17 12 -236 -843 -899 -950

Bottom 30 182 292 276 166 9 6 225 -115 -244 -272
 
Note: Subscripts “11” represents deck cell direction. Subscript “22” represents direction 
perpendicular to deck cell direction or stringer direction.  
 

Table 6.5: FEM Results for topT∆ = 100 F° and bottomT∆ = 30 F° . 
 

It is observed from Table 6.5 that for the critical case of topT∆ = 100 F°  and bottomT∆ = 

30 F° , induced compressive stress is as high as 950 psi., and induced tensile strain 

(expansion) is as high as 603 µε . This indicates that in case of orthotropic material, the 

induced stress cannot be higher than the stress that is obtained from the following equation:  

11 11 12 11

22 12 22 22

Q Q T
Q Q T

σ α
σ α

− ∆     
=     − ∆     

 for both directions 

and induced strain cannot be higher than strain obtained from the following equation,  

11 11

22 22

T
T

ε α
ε α

∆   
=   ∆   

 for both directions 

It should also be noted that compressive (induced) stress cannot be higher than 

E Tα∆  and tensile strain (expansion) cannot be higher than Tα∆  for isotropic material. 
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6.4 Evaluation of theoretical deflection (Macro Approach) versus field deflection in 

Wickwire Run Bridge 

 In Appendix G, the closed form solution (Macro Approach) is presented for a plate 

supported on simple supports on two opposite edges while the other two are elastic beams 

(Refer to Figure G.2). The Macro approach (refer to section G.2 of Appendix G) is used to 

calculate deflection at center spacing under the following assumptions. Two steel stringers 

(WF 24x104) are treated as simple supports and diaphragms (C15x33.9) at the ends of the 

stringers are treated as elastic beams, as shown in Figure 6.8. The stiffeners at the end of 

stringer are attached to FRP deck. Deflections are calculated using macro approach (Refer to 

section 5.2 in chapter 5).  

Following the same procedures as in section 5.2 and substituting structural properties 

for FRP deck as in Table 6.6 and temperature data as in Table 6.2, we obtain theoretical 

deflections (based on Macro Approach).  

It should be noted that eB EI= = (29x106)(315) = 9.135x109 lbs/in.6 (Diaphram 

C15x33.9) and maxT∆ = top bottomT T− = 111-67 = 44 F°  (or max top bottomT T T∆ = ∆ − ∆ = 54-6 = 44 

F° ).  
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x

y

     WF 24x104 Stringer
(Treated as Simple Support)

      FRP Deck
@ Center Spacing

b = 6 ft. (Spacing)

a = 30 ft.

C15x33.9 Diaphram  

Figure 6.8: Plan View for Center Spacing of Wickwire Run Bridge. 

The theoretical and field deflections are shown in Table 6.7. 



 132

 

Properties for Super Deck 

E1 Young’s Moduli in strong direction 3.05x106 psi. 

E2 Young’s Moduli in weak direction 0.92x106 psi. 

G12 Shear Moduli in the 1-2 plane 0.44x106 psi. 

D11 Flexural Rigidity in Strong Direction 6.76x107 lbs.-in. 

D22 Flexural Rigidity in Weak Direction 1.82x107 lbs.-in. 

D12 -------------------------------------------------- 0.51x107 lbs.-in.] 

D66 Torsional Rigidity 4.3x105 lbs.-in. 

12ν  Poison Ratio when stressed in 1 direction 0.25 

21ν  Poison Ration when stressed in 2 direction 0.075 

1α  Thermal Coefficient in strong direction 
6.07 µε / ° F  (70 to 121 ° F) 
5.86 µε / ° F (-20 to 70 ° F) 

2α  Thermal Coefficient in weak direction 
9.75 µε / ° F  (70 to 121 ° F) 
8.98 µε / ° F  (-20to 70 ° F) 

 
Table 6.6: Properties of Super Deck. 

 

Wickwire Run Bridge 

Temperature ( ° F) at Deflection (in.) Date 
6/26/03 Bottom 

Surface 
Top 

Surface 
( F)

T∆
°

 
Field Data Macro Approach 

Initial Reading 
(8.11 am.) 61 61 0 0 0 

Final Reading 
(2.30 pm.) 67 111 44 -0.0494 -0.0479 

 
Table 6.7: Theoretical and Field Deflections for Wickwire Run Bridge. 

From Table 6.7, we can see that the theoretical deflection correlates well with field data. 
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6.5 Design Criteria 

 The existing stress design criteria in conventional bridge decks are mainly based on 

the service loads, but in the FRP composite bridges the temperature related stresses should be 

considered in spite of service loads.  Hence, during the design of FRP composite bridges, 

stresses and strains due to thermal loads should be combined with stresses and strains due to 

service loads, such as HS-25 truck type loading. A combination of thermal stress and stress 

under service load is shown in Table 6.8. A combination of thermal strain and strain due to 

service load is shown in Table 6.9. 

Location Max. Thermal Stress 
(psi.) 

Max. Field Stress (psi.) 
(Based on HS 25 Truck Load) Total Stress (psi.) 

Deck Top -900 -260 -1160 

Deck Bottom -270 400 130 
 

Table 6.8: Total Stress on FRP Deck. 
 

Location 
Max. Thermal Strain 

( µε ) 
Max. Field Strain ( µε ) 

(Based on HS 25 Truck Load) 
Total Strain ( µε ) 

Deck Top 603 -65 538 

Deck Bottom 276 100 376 
 

Table 6.9: Total Strain on FRP Deck. 
  

During the field monitoring of the Market Street Bridge, the strain due to service 

loads was found to be about –65 µε for deck top and 100 µε for deck bottom, which 

translates to a stress of –260 psi. for the deck top and 400 psi for the deck bottom (Tables 6.8 

and 6.9).  The thermal stress due to temperature difference of 100 oF at top of deck and 30 oF 

at bottom of deck was about -900 psi. which is compressive (Table 6.8). Typically, the total 

stresses (maximum) in FRP bridge decks (thermal + service loads) is about -1160 psi., 
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compressive (as shown in Table 6.8) out of which the thermal stresses is about 15% of 

allowable stresses of 6000 psi (i.e., 20% of ultimate stress which is 30,000 psi.) which is 

insignificant. Similarly the thermal strain is about 38% of allowable strain of 1600 µε  (i.e., 

20% of ultimate strain which is 8000 µε ). 

However, in some decks (e.g., SuperDeck) the allowable stresses may be only 2000 

psi (i.e., 20% of ultimate stress which is 10,000 psi), where the thermal stresses will be about 

45% of allowable stresses, which is a significant amount of stresses in the decks. With 

respect to strain, the thermal strain will be about 86% of allowable strain of 700 µε (i.e., 

20% of ultimate strain which is 3500 µε .)  

Hence a designer should be properly accounting for thermally induced stress and 

strain because of percent of thermal stress and strain in relation to traffic induced stresses and 

strains in FRP bridge decks. 

 

6.6 Design Examples 

The induced thermal strain (field data) and stress (calculated from thermal strain) of 

Market Street Bridge are shown in Table 6.10 (Refer to Tables 6.1 and 6.3). 

Location ( F)
T∆

°
 11

( )
Tα

µε
∆ 22

( )
Tα

µε
∆ 11

( )
ε
µε

 22

( )
ε
µε

11

(psi.)
σ

 22

(psi.)
σ

 

Top 36 219 351 N/A N/A N/A N/A 

Bottom 10 60.7 97.5 43 5 -77 -91 
          

Note: Subscript 11 and 22 represent strong and weak direction of FRP deck 
 

Table 6.10 Induced Thermal Strain (Field Data) and Stress of Market Street Bridge. 
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According to our field results in Table 6.10, it is observed that the induced thermal 

strain on the bottom surface of FRP deck was about 70% (i.e. 43 µε /60.7 µε ) of 11 Tα ∆  in 

the cell (bridge width) direction and 5% (i.e. 5 µε /97.5 µε ) of  22 Tα ∆  in the traffic (span) 

direction. Therefore, induced thermal in strain Market Street bridge can be calculated from 

Eq. (6.3) as : 

 
11 11 11

22 22 22

70% of 0.70
5% of 0.05

T T
T T

ε α α
ε α α

∆ ∆     
= =     ∆ ∆       (6.3) 

Notes : Positive sign represents expansion. Subscript “11” represents deck cell direction. Subscript 
“22” represents direction perpendicular to deck cell direction or stringer direction. 
 
And the induced thermal stress for Market Street Bridge can be calculated from Eq. (6.4). 
 

 
11 11 12 11 11 12 11

22 12 22 22 12 22 22

30% of ( ) 0.30
95% of ( ) 0.95

Q Q T Q Q T
Q Q T Q Q T

σ α α
σ α α

− ∆ − ∆         
= =        − ∆ − ∆           (6.4) 

Notes : Negative sign represents compressive stress. Subscripts “11” represents deck cell direction. 
Subscript “22” represents direction perpendicular to deck cell direction or stringer direction. 
 

The percentage of strain and stress distribution in Eqs. (6.3) and (6.4) can be used to 

calculate induced thermal strain and stress of Market Street Bridge for a critical temperature 

case ( topT∆ = 100° F and bottomT∆ = 30° F). The following is the design example for Market 

Street Bridge under a critical temperature case of topT∆ = 100° F and bottomT∆ = 30° F. It 

should be noted that the following design example is particularly suited for Market Street 

Bridge since the percentage of strain and stress distribution can be different in a different 

FRP bridge. 



 136

Design Example of Market Street Bridge 

Step 1 : Determined the Elastic Coefficient ( ijQ ) of FRP deck. 

 Properties of FRP Decks : 

1E  = 3.05 x 106 psi., 2E = 0.92 x 106 psi., 12ν = 0.25 and 21ν = 0.075 

 The Elastic Coefficient ( ijQ ) of FRP deck. 

6
1

11
12 21

3.05x10
1 1 (0.25)(0.075)

EQ
v v

= =
− −

=  3.11x106 psi. 

6
12 2

12
12 21

(0.25)(0.92x10 )
1 1-(0.25)(0.075)

v EQ
v v

= =
−

= 2.34x105 psi. 

6
2

22
12 21

0.92x10
1 1-(0.25)(0.075)

EQ
v v

= =
−

 = 9.38x105 psi. 

 

Step 2 : Calculated Induced thermal Strain. 

 Coefficient of Thermal Expansion (α ) of FRP Decks :  

11α =  6.07 / Fµε °  (Strong Direction of FRP Decks) 

22α =  9.75 / Fµε °  (Weak Direction of FRP Decks) 

 Calculate Induced Thermal Strain using Eq. (6.3) : 

Induced Thermal Strain on the Top Surface of FRP Deck : (Note : T∆ = 100° F) 

6
11 11

6
22 22

0.70 0.70(6.07x10 )(100) 425
0.05 490.05(9.75x10 )(100)

T
T

ε α µε
ε α µε

−

−

 ∆      = = =       ∆         
 

Induced Thermal Strain on the Bottom Surface of FRP Deck : (Note : T∆ = 30° F) 

6
11 11

6
22 22

0.70 0.70(6.07x10 )(30) 127
0.05 150.05(9.75x10 )(30)

T
T

ε α µε
ε α µε

−

−

 ∆      = = =       ∆           



 137

Step 3 : Calculated Induced Thermal Stress using Eq. (6.4) 

Substituting ijQ , 11α , 22α  , and T∆  into Eq. (6.4), we obtained : 

 Induced Thermal Stress on the Top Surface of FRP Deck : (Note : T∆ = 100° F) 

11 11 12 11

22 12 22 22

0.30 3.11 0.23 0.30x6.07x100 783 psi.
0.95 0.23 0.94 0.70x9.75x100 911 psi.

Q Q T
Q Q T

σ α
σ α

− ∆ − −           
= = =          − ∆ − −          

 

 Induced Thermal Stress on the Bottom Surface of FRP Deck : (Note : T∆ = 30° F) 

11 11 12 11

22 12 22 22

0.30 3.11 0.23 0.30x6.07x30 236 psi.
0.95 0.23 0.94 0.70x9.75x30 273 psi.

Q Q T
Q Q T

σ α
σ α

− ∆ − −           
= = =          − ∆ − −          

 

It was noted that the above 11σ  and 22σ  correlated well with FEM results in Table 6.5 (for 

“NL” column). 

 

6.7 Conclusions 

• For a positive temperature difference ( maxT∆ ) of 26 F°  (i.e. topT∆ - bottomT∆ = 36-10 = 

26 F° ), induced thermal stress in the Market Street bridge on the bottom side is 

compressive with a magnitude of -77 psi. and -91 psi. (refer to Table 6.3) in the 

strong and weak directions, respectively. For positive temperature difference,( maxT∆  ) 

of  4 F° (i.e. topT∆ - bottomT∆ = 10-6 = 4 F° ), induced thermal stress on the bottom side is 

also compressive with a magnitude of -58 psi. and -54 psi. (refer to Table 6.3) in the 

strong and weak directions, respectively. 

• Compressive stress  (Table 6.3) is induced in the deck when the deck is subjected to a 

positive temperature difference and compressive stress increases with increase in 

temperature difference (i.e. maxT∆ = topT∆ - bottomT∆ ). 
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• Deck strains on the top and bottom surfaces are found to be positive (Table 6.3) 

which means that the FRP deck expands on both sides when subjected to positive 

temperature difference. 

• Typically, the induced maximum thermal stress in FRP composite decks for a critical 

temperature change of 100 F°  at top and 30 F°  at bottom of the deck is found to be 

about 900 psi. of compressive stress (Refer to Table 6.6). The allowable stress in 

these FRP decks due to service load is about 6,000 psi. (GangaRao et.al., 2000) (= 

20% of ultimate stress which is 30,000 psi.). This indicates that we have good margin 

of safety (1/6), as the thermal stresses is only about 15% of allowable stress. 

However, there is a possibility where thermal stresses could be as high as 45% of 

allowable stress (as in the Super Deck), where the allowable stress of the deck is 

2,000 psi. (= 20% of ultimate stress which is 10,000 psi.). In this scenario, a designer 

should be cautious in designing the deck due to significant amount of thermal stresses 

induced in the deck. 

• Boundary conditions play an important role in thermal stresses and strains. Thermal 

stress is more significant than thermal strain when the boundaries are fully restrained 

and thermal strain is more significant than thermal stress when the boundaries are free 

to translate. 

• Typically, the temperature difference of FRP bridges (around 80° F to 100 F° ) is 

higher than that of traditional concrete bridge (around 20° F to 40 F° ). This is because 

the hollow section of FRP deck is not able to dissipate heat from the top surface to the 

bottom surface as effectively as a solid cross section of a traditional concrete bridge, 

and also it has relatively low thermal conductivity (thermal conductivity of FRP deck 
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is about 0.375 W/m° K while that of concrete is around 0.8 to 1.2 W/m° K).  In order 

to have a general idea of a temperature difference on FRP bridges, a temperature plot 

for the Wickwire Run Bridge is shown in Figure 6.9. 
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Figure 6.9: Temperature Plot for Wickwire Run Bridge. 
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Chapter 7 

Conclusions and Recommendations 

 This chapter focuses on conclusions based on the laboratory test data and field results. 

A few salient data are shown in section 7.1.1 and 7.1.2. The recommendations for future 

study are provided in section 7.2. 

 

7.1 Conclusions 

7.1.1 Conclusions based on the Laboratory Results 

• The coefficient of thermal expansion (CTE) in the weak direction of the FRP deck 

was higher than that in the strong direction. 

• The CTE of BRP’s 4 in. a FRP deck is 5.66 / Fµε °  in the strong direction and 

9.11 / Fµε °  in the weak direction. 

• The CTE of BRP’s 8 in. a FRP deck is 4.96 / Fµε °  in the strong direction and 

14.75 / Fµε °  in the weak direction. 

• The CTE of Super Deck is 6.07 / Fµε °  in the strong direction and 9.75 / Fµε °  in the 

weak direction. 

• The FRP deck exhibits a hogging effect (upward convexity) when the temperature of 

top surface is higher than that of bottom surface. 

• The FRP deck exhibits sagging effect (downward concavity) when the temperature of 

top surface is lower than that of bottom surface.  

• Deflections increased with increasing magnitude of temperature difference. The FRP 

deck deflection does not depend on the absolute temperature of top or bottom surface, 
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but depends primarily on the temperature difference between the top and bottom deck 

surfaces. 

• For SSFF boundary condition, the maximum deflections of the FRP deck subjected to 

a linear gradient temperature can be well predicted using the 1st term approximation 

of Macro approach. 

• The distribution of thermal effects between the induced thermal strain and stress 

depends on the effectiveness of boundary restraints in horizontal plane and vertical 

plane. If boundaries are fully restrained, thermal stress is fully developed while 

thermal strain is not significant. On the other hand, if boundaries are free, thermal 

strain is fully developed while thermal stress is not significant. 

• The FEM results (deflections and strains) of FRP deck are in good agreement with 

experimental data, where the deck was modeled as the individual “shell93” element 

(ANSYS) for top, bottom and web.  

• Boundary restraint in the plane of FRP deck for simply supported edges in the 

laboratory tests was not one hundred percent effective. However, resistance in the 

vertical direction along the simply supported boundary was excellent. 

• A good correlation of thermal stresses between the theory and experimental test 

results is difficult to obtain because a small strain error in one principle direction can 

lead to large stress error after combining strains in two different directions of a 

horizontal plane of a deck with temperature effect ( Tα∆ ).  

Stress Calculation: xx xyxx xx xx

yy yy yyxy yy

Q Q T
TQ Q

σ ε α
σ ε α

− ∆       =     − ∆        
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7.1.2 Conclusions based on the Field Results 

• Compressive stress was induced in the FRP deck when the deck was subjected to a 

positive temperature difference and compressive stress increased with an increase in 

the magnitude of temperature difference (i.e., maxT∆ = topT∆ - bottomT∆ ). 

• Induced thermal strains on the top and bottom surfaces of deck were found to be 

positive which means that the FRP deck expands on both sides when the FRP bridge 

decks were subjected to positive temperature difference, but results in compressive 

stress. 

• Deck strain in the traffic direction was less than the deck strain in the cell direction 

because flexural rigidity of the system (deck-stringer) in traffic direction was higher 

than flexural rigidity in direction perpendicular to traffic. 

• For a critical temperature change of 100 F°  at deck top and 30 F°  at deck bottom, the 

induced thermal stress in FRP composite decks can be as high as 45% of allowable 

stress in the weak direction and the induced thermal strain in FRP decks can be as 

high as 85% of allowable strain in the strong direction. 
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7.2 Recommendations 

• FRP decks are difficult to be restrained in the plane of a deck. 

• The analysis (based on Macro approach and FEM) can be expanded by including 

temperature dependent properties of FRP deck and a non-linear temperature change 

along the depth of decks. 

• The wearing surface has to be included in the FRP bridge deck finite element model 

to predict the effect of combining two different materials (i.e., wearing surface and 

FRP decks). 

• In order to reduce the temperature difference between top and bottom of FRP decks, 

the core of FRP decks may be filled with some types of light foam materials, which 

can transfer heat from the top surface of a deck to the bottom surface. The brighter 

color of wearing surface may reduce the temperature on the top surface of the FRP 

deck under the exposure of Sun. 

• Thermal field data (induced strain due to temperature change) for different types of 

deck-stringer connections and bridge structures are required in order to obtain the 

percentage distribution between thermal strain and stress for the design, which is a 

function of the in-plane restraint quality. 

• The cumulative strains due to repeated thermal cycles might be a reason of the 

wearing surface cracking in the field joints, which requires further study.  
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Appendix A 

Basic Thermal Analysis of Isotropic Beam and Orthotropic Plate 

Basic thermal analysis are presented in Appendix A. The objective of this appendix is 

to illustrate the basic mechanical law with temperature effect for beam and orthotropic plate 

which are required in thermal analysis of FRP deck in Appendix G. Appendix A is divided 

into two parts of basic thermal analysis (i.e. Isotropic beam and orthotropic plate). Table A.1 

are shown the relation or basic mechanical law which presented in this appendix. 

A.1.1) Strain-Displacement relation 

A.1.2) Stress-Strain relation 

A.1.3) Stress-Displacement relation 

A.1.4) Resultant forces and moments 

A.1) For 1-D Isotropic Beam 

A.1.5) Design Example for a beam 

A.2.1) Strain-Displacement relation 

A.2.2) Stress-Strain relation 

A.2.3) Stress-Displacement relation 

A.2.4) Resultant forces and moments 

A.2) For Orthotropic Plate 

A.2.5) Temperature increment along the plate depth 
 

Table A.1 Basic Mechanical Law with Temperature Effect. 

 

A.1 Basic thermal analysis for 1-D isotropic beam 

A.1.1 Strain-displacement relation in 1-D isotropic beam 

The strain of isotropic beam is divided into two parts (i.e. membrane and bending 

strain) as following (see Figure A.1) 
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Figure A.1: x and z Directions of a Beam. 

 
0 1

xx xx xxzε ε ε= +  (A.1) 

where 0
xxε  are the membrane strains, and 1

xxε  are bending strains (or curvatures). Both 

membrane and bending strains are defined as 
2

0 10 0
2 andxx xx

du d w
dx dx

ε ε= = − . Eq. (A.1) can be 

written in alternative forms as 

 

2
0 0

2xx
du d wz
dx dx

ε = −   (Ref. Reddy 1999) (A.2) 

 

A.1.2 Stress-strain relation in 1-D isotropic beam 

For a classical problem of combined bending and axial effects, the strain field can be 

structured as shown below 

 measured mech thε ε ε= +  (A.3) 

where : measuredε  is the strain measured on material. mechε  is mechanical strain due to an 

applied load or boundary conditions (i.e. mech
mech E

σε = ), thε  is thermal strain from 

temperature change (i.e. th Tε α= ∆ , α  is the coefficient of thermal expansion and T∆  is the 
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temperature increment from a reference temperature, refT T T∆ = − ). Equation (A.3) can be 

rewritten as : 

 
mech

measured T
E

σε α= + ∆  (A.4) 

Therefore the stress-strain relation can be expressed as 

 ( )mech measuredE Tσ ε α= − ∆  (A.5) 

For a beam, the above equation can be defined in alternative form as 

 ( )xx xx xx xxE Tσ ε α= − ∆  (A.6) 

 

A.1.3 Stress-displacement relation in 1-D isotropic beam 

Substituting Eq. (A.1) into Eq. (A.6), we obtain 

 
0 1( )xx xx xx xxE z Tσ ε ε α= + − ∆  (A.7) 

Substituting Eq. (A.2) into Eq.(A.6), we obtain 

 

2
0 0

2( )xx x xx
du d wE z T
dx dx

σ α= − − ∆  (A.8) 

According to section A.1.2 and A.1.3, stress resultants can be calculated from either 

the stress-strain relation in Eq. (A.6) or the stress-displacement relation in Eq. (A.8). It’s 

important to understand that the strain ( xxε ) in Eq. (A.6) is the strain which is measured from 

structures. If the measured strain ( xxε ) and temperature change ( T∆ ) are known, we can 

calculate the stress resultants based on Eq. (A.6). To understand the concept clearly, 

examples of a rod with free and fully fixed ends, subjected to uniform temperature increment, 

will be discussed below. 
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First we consider a rod with free ends (free expansion) subjected to a uniform 

temperature increment ( 0T T∆ = ). Since the rod can expand freely, the measured strain 

( measuredε ) due to temperature increase, is equal to 0Tα  (i.e. 0ormeasured xx Tε ε α= ).  

Substituting 0ormeasured xx Tε ε α=  into Eq. (A.6), we obtain 0 0( ) 0E T Tσ α α= − = . 

Therefore, it can be concluded that when a rod with free ends is subjected to a uniform 

temperature increment, the stress resultant is zero but the measured strain is not zero (i.e. 

0xxσ = , 00butxx Tε α≠ = ). 

Secondly we consider a rod with fully fixed end (no expansion) subjected to uniform 

temperature increment ( 0T T∆ = ). Since the rod is fully fixed and cannot expand, the 

measured strain ( measuredε ) is zero. Substituting 0measuredε =  into Eq. (A.6), we obtain 

0 0(0 )xx E T E Tσ α α= − = − . Therefore, it can be concluded that when a rod with fully fixed 

ends is subjected to temperature increase, the measured strain is zero but the stress resultant 

is not zero (i.e. 00xx E Tσ α≠ = − , compressive stress in rod but 0xxε = ) 

 

A.1.4 Resultant forces and moments in 1-D isotropic beam 

Beam geometry and a linear temperature profile are shown in Figures A.2 and A.3, 

respectively. Assume a temperature change is a linear function along the depth (z). 

h

z

x

L

 

Figure A.2: Beam Geometry and Coordinate System. 
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x x x

z z z

-h/2

-h/2

 

( )T z∆                   =               0T                      +                   1zT  

Figure A.3: Temperature Change Profile along the Depth. 

A linear function of temperature change can be defined as 

 
0 1( )T z T zT∆ = +  (A.9) 

where 0T  is a uniform temperature change along the depth (z) and 1zT  is a gradient 

temperature change along the depth. 

 

 Axial Forces 

 xx xxN dAσ= ∫  (A.10) 

Combining Eqs. (A.7) and (A.9) and substituting into Eq. (A.10) we obtain 

 

2
0 1 0 1

2

( )

h

xx xx xx xx xx
h

N E z T z T bdzε ε α α
−

= + − −∫  (A.11) 

where b is a beam width 

 
0 0( )xx xx xxN EA Tε α= −  (A.12) 

 0( )T
xx xx

duN EA N
dx

= −  (A.13) 

where T
xxN  is an axial force resultant and defined as 
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0T

xx xxN EA Tα=  (A.14) 

 

 Bending Moment 

 xx xxM zdAσ= ∫  (A.15) 

Combining Eqs. (A.7) and (A.9) and substituting into Eq. (A.15) we obtain 

 

2
0 1 0 1

2

( )

h

xx xx xx xx xx
h

M E z T z T z bdzε ε α α
−

= + − −∫  (A.16) 

 1 1 2( )xx xx xxM E T z dAε α= − ∫  (A.17) 

 ( )1 1
xx xx xxM EI Tε α= −  (A.18) 

 
2

2
T

xx xx
d wM EI M
dx

 
= − − 

 
 (A.19) 

where T
xxM  is a thermal moment resultant and defined as 

 
1T

xx xxM EI Tα=  (A.20) 
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A.1.5 Design Example for a beam under a linear gradient temperature 

A rectangular beam has dimensions of 0.5 in. width x 0.8 in. depth x 8 in. length.  The 

beam is subjected to a linear temperature change ( T∆  = 0 to 80 ° F) from bottom to top 

surface. Given properties : Young’s Modulus (E) = 1.2 x 106 psi and Coefficient of thermal 

expansion (α ) = 8 x 10-6 psi.  Calculate the maximum deflection, strain and stress on top and 

bottom surface based on simply supported and fixed boundary. 

Solution 

h

z

x

L

 

Temperature increment diagram along depth is shown below 

 

 

 

 

 

Cross Section         0 1T T zT∆ = +                  0T     1zT  

(Membrane Effect)            (Bending Effect) 

 

From the above diagram, the temperature increment can be divided into two parts 

such as an uniform temperature increment ( 0T ) and a temperature gradient ( 1zT ). A uniform 

temperature increment ( 0T ) results in membrane effect (axial effect) while the temperature 
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gradient ( 1zT ) results in bending effect. A function of temperature change ( T∆ ) can be 

defined as 

0 1 40 100T T zT z∆ = + = −  (where 0 140, 100T T= = − ) 
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Case 1: Beam with Fixed Ends 

 

 

 Calculating Stresses ( _ _,xx top surface xx bottom surfaceσ σ ) 

To calculate stress, either the stress-strain or stress-displacement relation from Eq. 

(A.6) and (A.8), respectively, can be used in calculation. In case of fixed ends, the beam is 

fully restrained and the measured strain is zero under temperature gradient.  Since the 

measured strain is known (i.e. 0xxε = ),the stress will be calculated using the stress-strain 

relation in Eq. (A.6) as shown 

( )xx xx xx xxE Tσ ε α= − ∆  

Substituting 0xxε =  and 40 100T z∆ = −  into the above equation, we obtain 

6 6(1.2 10 ) 0 (8 10 )(40 100 ) 384 960xx x x z zσ − = − − = − +   

_xx top surfaceσ∴  = -384 + 960(-0.4) = -768 psi. (Note z = -0.4 in. at top surface.) 

_xx bottom surfaceσ∴  = -384 + 960(0.4) = 0 psi. (Note z = 0.4 in. at bottom surface.) 

The above stresses results are the same results analyzed by finite element analysis 

(Ansys, solid 45 element) as shown in Table A.2. 
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 Calculating Deflection and Strain 

Since the beam is fully restrained at the ends, deflection ( 0w ) and strain ( xxε ) are 

zero. Deflection and strain results from finite element analysis are also zero. 

 

 Comparison between theoretical and FEM results 

@ Center of a Beam Beam Theory FEM 

0w (in.) 0 0 

_xx Top Surfaceσ  (psi.) -768 -768 

_xx BottomSurfaceσ  (psi.) 0 0 

_ (µε)xx Top Surfaceε  0 0 

_ (µε)xx BottomSurfaceε  0 0 

 
Table A.2: Comparison Results of Beam Theory and FEM for Case 1. 
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Case 2: Beam Bending with simply supported ends (Note : 0 0(0) ( ) 0u u L= = ). 

 

 

Governing Equation of the beam under thermoelastic effect. 

 Bending Effect 
4 2

0
4 2

T
xxd w d MEI

dx dx
= −  (A.21) 

where 1T
xx xxM EI Tα=   (Eq. (A.20)) and 0 1 40 100T T zT z∆ = + = −  ( 0 140, 100T T= = − ) 

 Membrane Effect 
2

0
2

T
xxd u dNEA

dx dx
=  (A.22) 

where 0T
xx xxN EA Tα=  (Eq. (A.14)) and 0 1 40 100T T zT z∆ = + = −  ( 0 140, 100T T= = − ) 

 Boundary Condition :  at x = 0 and L 

0 0 0u w= =  and 
2

0
2 0T

xx xx
d wM EI M
dx

= − − =   ( Refer to Eq. (A.19) ) 

0w  and 0u  in Eq. (A.21) and  (A.22) are solved by integration. 

2
0

1 22
T
xx

d wEI M c x c
dx

= − + +  

2
0

1 2 32
T
xx

dw xEI M dx c c x c
dx

= − + + +∫  

Substituting 1T
xx xxM EI Tα=  into the above equation 

2
10

1 2 32xx
dw xEI EI T x c c x c
dx

α= − + + +  

3 2
1

0 1 2 3 4( ) ( )
6 2xx
x xEIw x EI T x dx c c c x cα= − + + + +∫  
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2 3 2
1

0 1 2 3 4( )
2 6 2xx
x x xEIw x EI T c c c x cα= − + + + +  

Using the boundary condition 0 0(0) ( ) 0w w L= =  and (0) ( ) 0xx xxM M L= =  where 

2
0

2 0T
xx xx

d wM EI M
dx

= − − = , we obtain 1 2 4 0c c c= = =  and 
1

3 2
xxEI T Lc α

=  

 

1 2 2

0 2( )
2

xxT L x xw x
L L

α  
∴ = − − 

 
 (A.23) 

 Determining 0 ( )u x  

Integrating Eq. (A.22), we obtain 

0
1

T
xx

duEA N c
dx

= +  

Substituting 0T
xx xxN EA Tα=  

 
0

0 1 2( ) xxEAu x EA T x c x cα= + +  (A.24) 

Using boundary condition 0 0(0) ( ) 0u u L= =  we obtain 2 0c =  and 0
1 xxc EA Tα= −  

 0 ( )u x∴ = 0 (A.25) 

 

 Calculating Maximum Deflection (at center) 

Maximum deflection occurs at the center of beam ( i.e. x = 
2
L = 4 in.) 

-6 2 2

0 2

(8x10 )( 100)(8 ) 4 4( ) ( )
2 2 8 8
Lw −

∴ = − −  = -0.0064 in.  (upward direction) 

Note : Above deflection is same as the deflection from the finite element analysis. 
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 Calculating Stresses ( _ _,xx top surface xx bottom surfaceσ σ ) 

To calculate stresses, stress-strain and stress-displacement relation shown in Eq. (A.6)and 

(A.8) can be used. Since the displacement functions (i.e. 0 0,u w ) are determined in previous 

section, it is convenient to calculate stresses using the stress-displacement relation in Eq. 

(A.8). 

2
0 0

2( )xx xx xx
du d wE z T
dx dx

σ α= − − ∆  

Substituting 0 1T T zT∆ = +  

 

2
0 10 0

2( )xx xx xx xx
du d wE z T z T
dx dx

σ α α= − − −  (A.26) 

0du
dx

 = 0 because the displacement ( 0u ) is zero (simply supported boundary). Substituting 

1 2

0 2( )
2

xxT L x xw x
L L

α  
= − − 

 
  from Eq. (A.23) into 

2
0d wz

dx
, we have 

2
10

xx
d wz z T

dx
α= − . 

Substituting 0du
dx  

= 0, 
2

10
xx

d wz z T
dx

α= −  into the above equation, we obtain 

1 0 10xx xx xx xx xxE z T T z Tσ α α α = + − −   

  =  0
xx xxE Tα−  

  =  -(1.2x106)(8x10-6)(40) 

  =  - 384 psi. 

Note that the top stress is equal to bottom stress because bending effect disappears in the stress 
function but axial effect still appears in the stress function (i.e. 0

xx xxE Tσ α= − ) which only created 
uniform stress along the depth. 
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 Calculating Strain 

The strain-displacement relation in Eq. (A.2) will be used to compute strain. 

2
0 0

2xx
u wz
x x

ε ∂ ∂
= −

∂ ∂
 

      = 10 xxz Tα+       ( Note 0 0u = ) 

      = -6(8x10 )( 100)z−  

      = -48x10 z−  

_xx top surfaceε∴   = -8x10-4(-0.4)  =   320 µε  

_xx bottom surfaceε∴ = -8x10-4(0.4)  =  -320 µε  

 

 Comparison between analytical (beam theory) and FEM results 

@ Center of a Beam Beam Theory FEM 

0w (in.) -0.0064 -0.0064 

_xx Top Surfaceσ  (psi.) -384 -325 

_xx BottomSurfaceσ  (psi.) -384 -325 

_ (µε)xx Top Surfaceε  320 370 

_ (µε)xx BottomSurfaceε  -320 -270 

 
Table A.3: Comparison Results of Beam Theory and FEM for Case 2. 

Note : Difference between analytical (beam theory) and FEM results occurred since simply supported 
boundary for FEM solid element and beam theory are not identical (Rotational degree of freedom is 
not exist in FEM solid element.). 
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Case 3 Beam with simply supported ends (Note : 0 (0) 0u =  and 0 ( ) 0u L ≠ , a roller). 

 

 Maximum Deflection ( at center) 

Deflection in this case is the same as that in case 2 because required boundary conditions 

(i.e. 0 0w =  and 0xxM =  at x = 0 and L ) for deflection analysis are identical. Axial 

displacement ( 0u ) is not zero because a roller support allows a beam to expand freely in 

horizontal direction (i.e. Boundary condition 0 (0) 0u =  and 0
0 ( ) xxu L T Lα= ). 

Using boundary conditions 0 (0) 0u =  and 0
0 ( ) xxu L T Lα= , we obtain 2 0c =  and 

0
1 (1 )xxc T EAα= −  from Eq. (A.24) 

0
0 ( ) xxu x T xα∴ =  

 

 Calculating Stresses ( _ _,xx top surface xx bottom surfaceσ σ ) 

The stress-displacement relation of a beam can be defined as ( Refer to Eq. (A.26)) 

2
0 10 0

2( )xx xx xx xx
du d wE z T z T
dx dx

σ α α= − − −  

Substituting 0
0 ( ) xxu x T xα=  into 0 ( )du x

dx
 we obtain 00 ( )

xx
du x T

dx
α=  and Substituting 

1 2

0 2( )
2

xxT L x xw x
L L

α  
= − − 

 
  from Eq. (A.23) into 

2
0d wz

dx
, we have 

2
10

xx
d wz z T

dx
α= − . 

Substituting 00 ( )
xx

du x T
dx

α= , 
2

10
xx

d wz z T
dx

α= −  into the above equation, we obtain 
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0 1 0 1( )xx xx xx xx xx xxE T z T T z Tσ α α α α= + − −  

=  0 

 

 Calculating Strain 

The strain-displacement relation in Eq. (A.2) will be used for the strain calculation. 

2
0 0

2xx
u wz
x x

ε ∂ ∂
= −

∂ ∂
 

     = 0 1
xx xxT z Tα α+  

     = 0 1( )xx T zTα +  

     = 6(8 10 )(40 100 )x z− −  

_xx top surfaceε∴   = -8x10-6(40-100(-0.4))  =  640  µε  

_xx bottom surfaceε∴ = -8x10-6(40-100(0.4))  =  0 µε  

 

 Comparison between analytical (beam theory) and FEM results 

@ Center of a Beam Beam Theory FEM 

0w (in.) -0.0064 -0.0064 

_xx Top Surfaceσ  (psi.) 0 0 

_xx BottomSurfaceσ  (psi.) 0 0 

_ (µε)xx Top Surfaceε  640 640 

_ (µε)xx BottomSurfaceε  0 0 

 
Table A.4: Comparison Results of Beam Theory and FEM for Case 3. 
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A.2 Basic thermal analysis for Orthotropic Plate 

The basic mechanical relation with temperature effect for orthotropic plate is 

presented in this section. 

A.2.1 Strain-displacement relation (Kinematic) 

Kinematics is a study of the geometric changes or deformation in a body without 

considering forces causing such deformation. Kinematic shows a relationship of strain and 

displacement of elastic body as in Eq. (A.27) in Cartesian component form 

 

1 ( )
2

ji
ij

j i

uu
x x

ε
∂∂

= +
∂ ∂

 (A.27) 

Using notation 1x x= , 2x y=  and 3x z=  and let 1 2 3( , , ) ( , , )u u u u v w=  as displacements 

along ( , , )x y z , strain components in Eq. (A.27) become 

 
, ,xx yy zz

u v w
x y z

ε ε ε∂ ∂ ∂
= = =

∂ ∂ ∂
 (A.28) 

 

1 ( )
2
1 ( )
2
1 ( )
2

xy

xz

yz

u v
y x
u w
z x
v w
z y

ε

ε

ε

∂ ∂ = + ∂ ∂ 
∂ ∂ = + ∂ ∂ 
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 (A.29) 

Kenematic relations in Eq. (A.28) and (A.29) are used in three dimensional solid 

problem. In this section, we focus on 2-D orthotropic element (i.e. plate). The displacement 

and strain of an orthotropic plate as mentioned in Eqs. (A.28) and (A.29) can be modified or 

eliminated based on Kirchhoff hypothesis. Kirchhoff hypothesis (See Figure A.4) has the 

following assumptions. 
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Figure A.4: Undeformed and Deformed Geometries of a Plate (Reddy 1999). 
 

1. The transverse normals along thickness do not experience elongation. This implies 

that thickness normal strain is zero ( 0zz
w
z

ε ∂
= =

∂
). This also implies that w is 

independent of z. 

2. Straight lines perpendicular to the mid-surface remain straight and perpendicular to 

the mid-surface after deformation. This results in zero transverse shear strains 

( 0xz yzε ε= = ). 

1 1( ) 0 and ( ) 0
2 2xz yz

u w v w
z x z y

ε ε∂ ∂ ∂ ∂
= + = = + =

∂ ∂ ∂ ∂
 

The Kirchhoff hypothesis implies the following form of displacement field 
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 (A.30) 
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where 0 0 0( , , )u v w  denote displacements of mid-surface of a plate in ( , , )x y z  coordinate 

directions. Note that 0 0( , )u v  are associated with extensional deformation of the plate while 

0w denotes the bending deflection. 

Substituting Eq.(A.30) into Eqs. (A.28) and (A.29), we obtain the linear strain-displacement 

relation as (Ref. Reddy, 1999) 
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 (A.31) 

Note : Engineering shear strain ( xyγ ) is equal to 2 xyε  (i.e. xy xy xyGσ γ= ). 

Since the transverse strains ( , andxz yz zzε ε ε ) are identical to zero in the classical plate theory, 

linear strains in Eq.(A.31) can be reduced as 
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 (A.32) 

where ( )0 0 0, ,xx yy xyε ε γ  are the membrane strains, and ( )1 1 1, ,xx yy xyε ε γ  are bending strains (or 

curvatures). Both membrane and bending strains are defined as (Reddy, 1999) 
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 (A.33) 
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A.2.2  Stress-strain relation in orthotropic plate (Constitutive Equation) 

The generalized Hooke’s law is defined as 
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 (A.34) 

where [ ]C  is the stiffness matrix 

Note ( ), ,yz xz xyγ γ γ  are the engineering shear strain where 
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2
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   
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   

 

 Stress-strain relation for orthotropic material 

An orthotropic material has three planes of symmetry that coincide with the 

coordinate planes. Fiber-reinforced composite may be considered to be orthotropic material. 

When three mutually orthogonal planes of material symmetry exist, the number of stiffness 

coefficient ( ijC ) is reduced to 9 (out of 36). The stress-strain relation for orthotropic material 

can be defined as 
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 (A.35) 

The strain-stress relation can be defined by inversing Eq. (A.35) 
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 (A.36) 

where [ ]S  is the compliance matrix and symmetric. 
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 (A.37) 

where xE , yE , zE  are Young’s moduli in x, y and z material directions, respectively. 

ijv  is Poisson’s ratio, defined as the ratio of transverse strain in the jth direction to the axial 

strain in the ith direction when stressed in the ith direction. xyG , xzG  and yzG  are shear moduli 

in the x-y, x-z and y-z planes. Since the compliance matrix [S] is a symmetric matrix, it 

implies that 

 
, andxy yx yz zyxz zx

x y x z y z

v v v vv v
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= = =  (A.38) 
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 Stress-strain relation for orthotropic plate 

Through Kirchhoff hypothesis (plate theory), all three transverse strain components 

( , ,zz yz xzε γ γ ) in Eq. (A.35) are identically zero or negligible. When all three transverse 

strains are identically zero, a problem can be defined as a plane strain of state. If all three 

transverse strain components ( 0zz yz xzε γ γ= = =  ) are substituted into Eq. (A.35), we notice 

that 0xz yzσ σ= =  but , , and xx yy xy zzσ σ σ σ  are not zero. Since the stress zzσ  does not appear 

in the virtual work statement and in the equation of motion for plate theory, the stress zzσ  

can be negligible. When all three stress components ( , ,yz xz zzσ σ σ ) are neglected, a problem 

can be defined as a plane stress of state. Therefore, both plane strain and plane stress can be 

considered in the plate theory. As described above the stress-strain relation in Eq. (A.35) can 

be reduced as 
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 (A.39) 

where [ ]Q  is called the plane stress-reduced stiffness matrix 
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Inversing Eq. (A.39), we obtains 
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 (A.40) 
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 Stress-strain relation for orthotropic plate under thermoelastic effect 

The stress-strain relation in Eq. (A.39) does not include thermoelastic effect. In this 

section the thermoelastic effect is included in the stress-strain relation (Eq. (A.41)). 
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 (A.41) 

where ,xx yyα α  are the coefficients of thermal expansion in x and y direction, respectively. 

T∆   is the temperature increment from a reference temperature, refT T T∆ = − . 

Note that xyα = 0 for orthotropic materials. 

 

A.2.3 Stress-displacement relation in orthotropic plate 

In this section, stress-displacement relation is formulated by combining the stress-

strain and strain-displacement relations. The stress-strain and strain-displacement relations 

are expressed in Eq. (A.41) and (A.32), respectively. Substituting Eq. (A.32) into Eq. (A.41), 

we obtain 
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 (A.42) 

Substituting Eq. (A.33) into Eq. (A.42), we obtain the stress-displacement relation as 
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Stress components in Eq. (A.42) or (A.43) can be divided into three terms such as stresses 

due to membrane, bending and temperature changes. 

 

 Stresses due to membrane strain 

According to Eq. (A.42), stresses due to membrane strain can be defined as 
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Applying the strain-displacement relation into Eq. (A.44) we obtain 
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 Stresses due to bending strain 

According to Eq. (A.42), stresses due to bending strain can be defined as 
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 (A.46) 

Applying the strain-displacement relation into Eq. (A.46) we obtains 
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 Stresses due to temperature change 

According to Eq. (A.42), stresses due to thermal strain can be defined as 
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 (A.48) 

Combining all three terms of stress resultant, we can rewrite the stress resultant in an 

alternative form as 
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 (A.49) 

It is important to understand that in order to find the resultant stress, all three terms of 

stresses (i.e. stresses due to membrane, bending and thermal) must be considered together as 

shown in Eq. (A.42) or (A.43) or (A.49). In the previous section, the stress resultant in a rod 

is calculated based on the stress-strain relation. In this section, the stress resultant of a rod 

will be calculated based on the stress-displacement relation. Since a rod is treated as a 1-D 

isotropic element, the stress component ( xxσ ) in x direction will be only considered. 

Therefore, the stress-displacement relation for 1-D isotropic material can be defined as 

(Refer to Eq. (A.43) and (A.49) ) 

 _ _ _xx xx membrane xx bending xx thermalσ σ σ σ= + +  (A.50) 
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= 
2

0 0
2( )x xx

du d wE z T
dx dx

α− − ∆  (A.51) 

 

First Case : a rod subjected to uniform temperature increment ( 0T ) with free ends 

The transverse displacement ( 0w ) is zero because there is no bending strain from 

temperature gradient ( i.e. 
2

0
_ 2xx bending x

d wE z
dx

σ = −  =  0 ). Therefore, Eq. (A.51) becomes 
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Since the rod can expand freely, the axial displacement ( 0u ) is equal to 0
xxT Lα  where 

L is length of a rod ( i.e. 
0

00 xx
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du T LL T
dx L L

α α∆
= = = ). Substituting  00

xx
du T
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α=  and 

0T T∆ =  into Eq. (A.52) we obtain 0 0( ) 0xx xx xxE T Tσ α α= − = . 

 

Second Case : a rod subjected to uniform temperature increment ( 0T ) with fully fixed ends.  

Since the rod is fully fixed and cannot expand, the axial and transverse displacement 

( 0 0andu w ) is zero (i.e. 
2

0 0
2 0du d w

dx dx
= = ). Substituting 0 0du

dx
=  into Eq. (A.52) we obtain 

0 0(0 )xx xx xxE T E Tσ α α= − = − . 

 

A.2.4 Resultant forces and moments in othotropic plate 

The resultant forces and moments per unit width of orthotropic plate can be 

formulated by integrating stresses over the plate thickness (h). Coordinate system is shown in 

Figure A.5. The free-body of axial forces and moment resultants is shown in Figure A.6. The 
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resultant forces and moments in this section can be found in “Theory and Analysis of Elastic 

Plates”, by Reddy 1999. 

 

 

Figure A.5: Positive Directions of x, y and z Axis (Ref. Reddy, 1999). 

 

 

Figure A.6: Axial Forces and Moment Resultants on Plate (Ref. Reddy, 1999). 
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 The axial forces per unit width 
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Substituting Eq. (A.42) into Eq. (A.53) 

 

0 1
11 122

0 1
12 22

0 1
662

0
0

0 0

h
xx xx xxxx

yy yy yy yy
h

xy xy xy

z TN Q Q
N Q Q z T dz

QN z

ε ε α

ε ε α

γ γ−

   + − ∆       = + − ∆    
     +      

∫  (A.54) 

 

0
11 12

0
12 22

0
66

0
0

0 0 0

T
xx xxxx

T
yy yy yy

xy xy

NN A A
N A A N

AN

ε

ε

γ

              = −      
             

 (A.55) 

Substituting Eq. (A.33) into Eq. (A.55) 
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+ 
∂ ∂ 

 (A.56) 

 

where 
2

2

h

ij ij
h

A Q dz
−

= ∫  = ijQ h  are extensional stiffnesses and ( , )T T
xx yyN N  are thermal axial loads. 

 

2
11 12

12 22
2

h
T
xx xx

T
yyhyy

N TQ Q
dz

TQ QN

α
α

−

  ∆     =     ∆      
∫  (A.57) 

Note that T
xyN  is zero for orthotropic plate (since xyα =0). 
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 The moment resultants per unit width 
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   

=   
   
   

∫  (A.58) 

Substituting Eq. (A.42) into Eq. (A.58) 
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M Q Q z T z dz
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γ γ−

   + − ∆       = + − ∆    
     +      

∫  (A.59) 
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             

 (A.60) 

Substituting Eq. (A.33) into Eq. (A.60) 
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 (A.61) 

where 
32

2

2

12

h

ij ij ij
h

hD Q z dz Q
−

= =∫  are bending stiffnesses, and ( , )T T
xx yyM M  are thermal moment 

load. 
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M TQ Q
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TQ QM

α
α
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  ∆     =     ∆      
∫  (A.62) 

 

Note that T
xyM  is zero for orthotropic plate (since xyα =0). 
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A.2.5  Temperature Increment ( ( )T z∆ ) along the Depth 

Assuming that the temperature increment is uniform over the horizontal plane of a 

plate, temperature increment ( T∆ (z)) along the depth (z) can be defined as 

 ( ) ( ) refT z T z T∆ = −  (A.63) 

where ( )T z  is the temperature function of z. refT  is a reference temperature of FRP deck 

plate and h is the depth of FRP deck plate. 

Since temperature change ( ( )T z∆ ) is assumed to be linear along the depth (z), Eq. 

(A.63) can be written in the form of linear function (i.e y ax b= + ) as : 

 0 1( )T z T T z∆ = +  (A.64) 

where 0

2
top bottomT T

T
∆ + ∆

=  (A.65) 

 1 top bottomT T
T

h
∆ − ∆ 

= − 
 

 (A.66) 

 
Note : topT∆  and bottomT∆  are temperature changes on top and bottom surface of FRP deck, 

respectively. z is positive in downward direction. Therefore, z = 
2
h

 at the bottom surface of deck 

plate and z = 
2
h

−  at the top surface, while z = 0 at the middle of FRP deck plate.The profile of the 

temperature increment along the depth can be drawn as : 
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x x x

z z z

-h/2

-h/2

 

( )T z∆   =                      
0T    +   

1T z
 

(Axial Effect)                             (Bending Effect) 

According to Eq. (A.64), the temperature increment ( ( )T z∆ ) is divided into two 

terms (i.e. 0T  and 1T z ). The first term, 0T , is a uniform temperature increment. The 0T  term 

creates only the thermal axial forces ( T
xxN , T

yyN ). The second term, 1T z , is a gradient 

temperature increment and is zero at mid-plane (z = 0). The 1T z  term creates only the 

thermal bending moments ( T
xxM , T

yyM ). 
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Appendix B 

Derivation of Coefficients ( )xxT
nM x  and ( )yyT

nM x  for thermal load moment 

 The objective of this appendix is to present the derivation of coefficients in fourier 

series which used in thermal load. 

The thermal load, ( )xxT
nM x , can be expanded to sine series as shown in (B.1) (Ref. Szilard, 

1974)  

 
1

( , ) ( )sinxxTT
xx n n

n
M x y M x yβ

∞

=

= ∑  (B.1) 

Multiplying sin j y
b
π  and integrating from 0 to b on both sides of (B.1)  

 10 0

( , )sin sin sinxx

b b
TT

xx n
n

j y n y j yM x y dy M dy
b b b
π π π∞

=

= ∑∫ ∫  (B.2) 

Note  

 
0

0 when n j
sin sin b when n=j

2

b n y j y dy
b b
π π

≠
= 


∫  (B.3) 

From equations (B.2) and (B.3) 

 
0

2( ) ( , )sinxx

b
T T
n xx

j yM x M x y dy
b b

π
= ∫  (B.4) 

For uniform thermal load (ie. uniform temperature on top and bottom of deck plate), we have 

a uniform thermal load as 

 0( , ) xxTT
xxM x y M=  (B.5) 

where ( ) max
0

xxT
xx xx xy yy

TM D D
h

α α ∆ = − +  
   (B.6) 
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Substituting (B.5) into (B.4), we obtain 

                                   
xxT

nM 0

0

2 sin
xx bTM j ydy

b b
π

= ∫  (B.7) 

 
0

0

2 cos
xx

bTM b j y
b j b

π
π

 = − 
   (B.8) 

 ( )02 cos 1
xxTM j

j
π

π
= − +  (B.9) 

 
04 for 1,3,5,...

xxTM j
jπ

= =  (B.10) 

Therefore  

 
04 for   = 1,3,5,....

xx
xx

T
T
n

MM n
nπ

=  (B.11) 

        = 

( ) max4 xx xx xy yy
TD D
h

n

α α

π

∆ +  
 −  

Similarly, 

 04 for   = 1,3,5,....
yy

yy

T
T
n

MM n
nπ

=  (B.12) 

        =  
( ) max4 xy xx yy yy

TD D
h

n

α α

π

∆ +  
 −  

  

Reference: 

• Szilard, R., Theory and Analysis of Plates. Classical and Numerical Methods, 

Prentice-Hall, Englewood Cliffs, NJ, 1974. 
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Appendix C 

Laboratory Test Results for 8 in. FRP Bridge Deck 

 Experimental data for 8 in. deep FRP bridge deck are presented in this appendix. 

Strain gage, TG sensor and LVDT location can be found in Figures 4.8 and 4.9. 

1. Test Case 8HS (Heating Test + SSFF Boundary ) 
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Figure C.1             Figure C.2 
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Figure C.3     Figure C.4 
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Figure C.5 

 

The following were titles of above Figures. 

Figure C.1 Temperature on Top/Bottom Surface for Test Case 8HS 

Figure C.2 Temperature Difference ( top bottomT T T∆ = − ) for Test Case 8HS 
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Figure C.3 Center/Edge Deflections for Test Case 8HS 

Figure C.4 Strain in y direction @ Top Surface for Test Case 8HS 

Figure C.5 Strain in y direction @ Bottom Surface for Test Case 8HS 

2. Test Case 8HF (Heating Test + FFFF Boundary) 
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Figure C.6            Figure C.7 
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Figure C.8           Figure C.9 

 
 
The following were titles of above Figures. 

Figure C.6 Temperature on Top/Bottom Surface for Test Case 8HF 

Figure C.7 Temperature Difference ( top bottomT T T∆ = −  ) for Test Case 8HF 

Figure C.8 Center/Edge Deflections for Test Case 8HF 

Figure C.9 Strain in y Direction @ Top Surface for Test Case 8HF 
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       Figure C.10      Figure C.11 
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      Figure C.12 
 
The following were titles of above Figures. 

Figure C.10 Strain in x Direction @ Top Surface for Test Case 8HF 

Figure C.11 Strain in y Direction @ Bottom Surface for Test Case 8HF 

Figure C.12 Strain in x Direction @ Bottom Surface for Test Case 8HF 
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3. Test Case 8CS (Cooling Test + SSFF Boundary) 
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      Figure C.13           Figure C.14 
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Figure C.15           Figure C.16 

 
 
The following were titles of above Figures. 

Figure C.13 Temperature on Top/Bottom Surface for Test Case 8CS 

Figure C.14 Temperature Difference ( top bottomT T T∆ = −  ) for Test Case 8CS 

Figure C.15 Center/Edge Deflections for Test Case 8CS 

Figure C.16 Strain in y Direction @ Top Surface for Test Case 8CS 
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       Figure C.17     Figure C.18 
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      Figure C.19 
 
 
The following were titles of above Figures. 

Figure C.17 Strain in x Direction @ Top Surface for Test Case 8CS 

Figure C.18 Strain in y Direction @ Bottom Surface for Test Case 8CS 

Figure C.19 Strain in x Direction @ Bottom Surface for Test Case 8CS 
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4. Test Case 8CF (Cooling Test + FFFF Boundary) 
 

-40

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350

Time (min)

T
em

pe
ra

tu
re

 (F
)

Top Surface, TG #1

Bottom Surface, TG #3

-100

-80

-60

-40

-20

0

20

0 50 100 150 200 250 300 350

Time (min)

T
em

pe
ra

tu
re

 D
iff

er
en

ce
 (F

) 

 
Figure C.20             Figure C.21 
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Figure C.22            Figure C.23 

 
 
The following were titles of above Figures. 

Figure C.20 Temperature on Top/Bottom Surface for Test Case 8CF 

Figure C.21 Temperature Difference ( top bottomT T T∆ = −  ) for Test Case 8CF 

Figure C.22 Center/Edge Deflections for Test Case 8CF 

Figure C.23 Strain in y Direction @ Top Surface for Test Case 8CF 
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       Figure C.24       Figure C.25 
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Figure C.26 

 
 

The following were titles of above Figures. 

Figure C.24 Strain in x Direction @ Top Surface for Test Case 8CF 

Figure C.25 Strain in y Direction @ Bottom Surface for Test Case 8CF 

Figure C.26 Strain in x Direction @ Bottom Surface for Test Case 8CF 
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Appendix D 

Laboratory Test Results for 4 in. FRP Bridge Deck 

Experimental data for 4 in. deep FRP bridge deck are presented in this appendix. 

Strain gage, TG sensor and LVDT location can be found in Figures 4.10 and 4.11. 

1. Test Case 4HS (Heating Test + SSFF Boundary) 
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     Figure D.1          Figure D.2 
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            Figure D.3       Figure D.4 
 
The following were titles of above Figures 

Figure D.1 Temperature on Top/Bottom Surface for Test Case 4HS 

Figure D.2 Temperature Difference ( top bottomT T T∆ = − ) for Test Case 4HS 

Figure D.3 Center/Edge Deflections for Test Case 4HS 

Figure D.4 Strain in y direction @ Top Surface for Test Case 4HS 
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Figure D.5        Figure D.6 
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                 Figure D.7 
 
 
 
The following were titles of above Figures 

Figure D.5 Strain in x direction @ Top Surface for Test Case 4HS 

Figure D.6 Strain in y direction @ Bottom Surface for Test Case 4HS 

Figure D.7 Strain in x direction @ Bottom Surface for Test Case 4HS 
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2. Test Case 4HF (Heating Test + FFFF Boundary) 
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      Figure D.8          Figure D.9 
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     Figure D.10      Figure D.11 
 
 
 
The following were titles of above Figures 

Figure D.8 Temperature on Top/Bottom Surface for Test Case 4HF 

Figure D.9 Temperature Difference ( top bottomT T T∆ = − ) for Test Case 4HF 

Figure D.10 Center/Edge Deflections for Test Case 4HF 

Figure D.11 Strain in y direction @ Top Surface for Test Case 4HF 
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      Figure D.12       Figure D.13 
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      Figure D.14 
 
 
The following were titles of above Figures 

Figure D.12 Strain in x direction @ Top Surface for Test Case 4HF 

Figure D.13 Strain in y direction @ Bottom Surface for Test Case 4HF 

Figure D.14 Strain in x direction @ Bottom Surface for Test Case 4HF 
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3. Test Case 4CS (Cooling Test + SSFF Boundary) 
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Figure D.15            Figure D.16 
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Figure D.17            Figure D.18 

 
 
The following were titles of above Figures. 

Figure D.15 Temperature on Top/Bottom Surface for Test Case 4CS 

Figure D.16 Temperature Difference ( top bottomT T T∆ = − ) for Test Case 4CS 

Figure D.17 Center/Edge Deflections for Test Case 4CS 

Figure D.18 Strain in y direction @ Top Surface for Test Case 4CS 
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     Figure D.19      Figure D.20 
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     Figure D.21 
 
 
 

The following were titles of above Figures 

Figure D.19 Strain in x direction @ Top Surface for Test Case 4CS 

Figure D.20 Strain in y direction @ Bottom Surface for Test Case 4CS 

Figure D.21 Strain in x direction @ Bottom Surface for Test Case 4CS 
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4.  Test Case 4CF (Cooling Test + FFFF Boundary) 
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      Figure D.22            Figure D.23 
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      Figure D.24            Figure D.25 
 
 
The following were titles of above Figures 

Figure D.22 Temperature on Top/Bottom Surface for Test Case 4CF 

Figure D.23 Temperature Difference ( top bottomT T T∆ = − ) for Test Case 4CF 

Figure D.24 Center/Edge Deflections for Test Case 4CF 

Figure D.25 Strain in y direction @ Top Surface for Test Case 4CF 
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    Figure D.26      Figure D.27 
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     Figure D.28 
 
 
The following were titles of above Figures 

Figure D.26 Strain in x direction @ Top Surface for Test Case 4CF 

Figure D.27 Strain in y direction @ Bottom Surface for Test Case 4CF 

Figure D.28 Strain in x direction @ Bottom Surface for Test Case 4CF 
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Appendix E 

Theoretical Results From Navier-Levy and Macro Approach 

 In this appendix, the theoretical deflection plot and Matlab program code for 

computation of Navier-Levy method were shown in section E.1 and E.2, respectively. And 

the theoretical deflection plot and Matlab program code for computation of Macro approach 

were shown in section E.3 and E.4, respectively.  

 

E.1 Deflection Plot based on Navier-Levy Method 

 The deflection contour plots were presented for all test cases of simply supported 

edges. Center and edge deflection based on approximation terms of n = 1 to 15 were plotted 

and compared to deflection results of the 1st term approximation. 

 

 

Figure E.1: Deflection Mesh for Test Case 8HS (Navier-Levy). 
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Figure E.2: Center Deflection and Deflection Difference for Test Case 8HS (Navier-Levy). 

 

Figure E.3: Edge Deflection and Deflection Difference for Test Case 8HS (Navier-Levy). 
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Figure E.4: Deflection Mesh for Test Case 8CS (Navier-Levy). 

 

Figure E.5: Center Deflection and Deflection Difference for Test Case 8CS (Navier-Levy). 
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Figure E.6: Edge Deflection and Deflection Difference for Test Case 8CS (Navier-Levy). 

 

Figure E.7: Deflection Mesh for Test Case 4HS (Navier-Levy). 
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Figure E.8: Center Deflection and Deflection Difference for Test Case 4HS (Navier-Levy). 

 

Figure E.9: Edge Deflection and Deflection Difference for Test Case 4HS (Navier-Levy). 
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Figure E.10: Deflection Mesh for Test Case 4CS (Navier-Levy). 

 

Figure E.11: Center Deflection and Deflection Difference for Test Case 4CS (Navier-Levy). 
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Figure E.12: Edge Deflection and Deflection Difference for Test Case 4CS (Navier-Levy). 



 199

E.2  Matlab program code for computation based on Navier-Levy Method 

E.2.1 Deflection Mesh of Test Case 8HS (Navier-Levy) 

clc 
clear 
%Calculation of deflection at x,y with SSFF condition 
 
%--------------------- 
% FRP Deck Properties 
%--------------------- 
D11= 7e7 
D22 = 1.81e7 
D12 = 4.11e6 
D66 = 9.3e6 
h = 8               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 69              % Dimemsion in y direction (Free Edge) 
alpha1 = 4.85e-6    % Thermal Coefficient in x direction 
alpha2 = 14.14e-6   % Thermal Coefficient in y direction 
 
%--------------------- 
%Deflection at x,y 
%--------------------- 
% Deflection at the center of deck (i.e., x=a/2, y=b/2) 
% x and y are based on the interest of location for deflection 
x = a/2 
y = b/2 
n_max = 15          % The maximum terms of n for fourier series. 
Tmax = 81           % Maximum Temperature Difference i.e. T_top-T_bottom 
 
%---------------------------- 
%Finding M01 and M02  
%---------------------------- 
M01 = (D11*alpha1+D12*alpha2)*(-Tmax/h) 
M02 = (D12*alpha1+D22*alpha2)*(-Tmax/h) 
 
%---------------------------------------------------- 
spacing = 50  % Spacing of x and y in Mesh 
%---------------------------------------------------- 
 
D12hat = D12+2*D66 
D12bar = D12+4*D66 
i = 0 
 
if D12hat^2 < D11*D22 
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for x = linspace(0,a,spacing) 
   i = i+1; 
   j = 0; 
   for y = linspace(0,b,spacing) 
       j = j+1; 
     
for n = 1:2:n_max 
beta = n*pi/b; 
l1 = sqrt(beta^2/(2*D11)*(sqrt(D11*D22)+D12hat)); 
l2 = sqrt(beta^2/(2*D11)*(sqrt(D11*D22)-D12hat)); 
a1 = cosh(l1*a)*cos(l2*a); 
a2 = sinh(l1*a)*sin(l2*a); 
a3 = cosh(l1*a)*sin(l2*a); 
a4 = sinh(l1*a)*cos(l2*a); 
b1 = l2^2-l1^2; 
b2 = l1*l2; 
k1 = (-4*D12*beta^2*b^2*M02-4*M01*n^2*pi^2*D22)/n^3/pi^3/D22; 
k2 = D11*(2*a2*b2+a1*b1)+beta^2*D12*a1; 
k3 = D11*(-2*a4*b2+a3*b1)+beta^2*D12*a3; 
k4 = D11*(2*a3*b2+a4*b1)+beta^2*D12*a4; 
k5 = D11*(-2*a1*b2+a2*b1)+beta^2*D12*a2; 
k6 = beta^2*(a4*l1-a3*l2)*D12bar+D11*(-l2^3*a3+3*a4*b2*l2+3*a3*l1*b2-l1^3*a4); 
k7 = beta^2*(l2*a1+a2*l1)*D12bar+D11*(l2^3*a1+3*a2*b2*l2-l1^3*a2-3*a1*l1*b2); 
k8 = beta^2*(a1*l1-a2*l2)*D12bar+D11*(-l2^3*a2+3*a1*b2*l2+3*a2*l1*b2-l1^3*a1); 
k9 = beta^2*(a3*l1+l2*a4)*D12bar+D11*(l2^3*a4+3*a3*b2*l2-3*a4*l1*b2-l1^3*a3); 
c1 = 2*D11*b2/(D11*b1+beta^2*D12); 
c2 = 4*(D12*beta^2*b^2*M02+M01*n^2*pi^2*D22)/n^3/pi^3/D22/(D11*b1+beta^2*D12); 
c3 = -(l1*beta^2*D12bar+(3*l2^2*l1-l1^3)*D11)/(l2*beta^2*D12bar+(l2^3-
3*l2*l1^2)*D11); 
c4 = -(k2*c1+k5)/(k3*c3+k4); 
c5 = -(k2*c2+k1)/(k3*c3+k4); 
Dn = -(k6*c2+k7*c3*c5+k8*c5)/(k6*c1+k7*c3*c4+k8*c4+k9); 
An = c1*Dn+c2; 
Cn = c4*Dn+c5; 
Bn = c3*Cn; 
w0(n) = 
(4*b^2*M02/n^3/pi^3/D22+(An*cos(l2*x)+Bn*sin(l2*x))*cosh(l1*x)+(Cn*cos(l2*x)+Dn*s
in(l2*x))*sinh(l1*x))*sin(beta*y); 
w(n) = sum(w0); 
end 
W(j,i) = w(n); 
end 
end 
 
else 
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    display('ERROR : Wnh is not in case 3. (see P 311)') 
end 
x = linspace(0,a,spacing); 
y = linspace(0,b,spacing); 
mesh(x,y,W) 
surf(x,y,W) 
title('Deflection Shape for Navier-Levy Method (n=15)') 
ylabel('Free Edge') 
xlabel('Simply Supported Edge') 
zlabel('Deflection, in.') 
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E.2.2 Center Deflection of Test Case 8HS (Navier-Levy) 

clc 
clear 
%Calculation of deflection at x,y with SSFF condition 
 
%--------------------------- 
% FRP Deck Properties 
%--------------------------- 
D11= 7e7 
D22 = 1.81e7 
D12 = 4.11e6 
D66 = 9.3e6 
h = 8               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 69              % Dimemsion in y direction (Free Edge) 
alpha1 = 4.85e-6    % Thermal Coefficient in x direction 
alpha2 = 14.14e-6   % Thermal Coefficient in y direction 
 
%--------------------- 
%Deflection at x,y 
%--------------------- 
% Deflection at the center of deck (i.e., x=a/2, y=b/2) 
% x and y are based on the interest of location for deflection 
x = a/2 
y = b/2 
n_max = 15          % The maximum terms of n for fourier series. 
Tmax = 81           % Maximum Temperature Difference i.e. T_top-T_bottom 
 
%---------------------------- 
%Finding M01 and M02  
%---------------------------- 
M01 = (D11*alpha1+D12*alpha2)*(-Tmax/h) 
M02 = (D12*alpha1+D22*alpha2)*(-Tmax/h) 
 
%---------------------------------------- 
D12hat = D12+2*D66 
D12bar = D12+4*D66 
i = 0 
 
if D12hat^2 < D11*D22 
for n = 1:2:n_max 
beta = n*pi/b; 
l1 = sqrt(beta^2/(2*D11)*(sqrt(D11*D22)+D12hat)); 
l2 = sqrt(beta^2/(2*D11)*(sqrt(D11*D22)-D12hat)); 
a1 = cosh(l1*a)*cos(l2*a); 
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a2 = sinh(l1*a)*sin(l2*a); 
a3 = cosh(l1*a)*sin(l2*a); 
a4 = sinh(l1*a)*cos(l2*a); 
b1 = l2^2-l1^2; 
b2 = l1*l2; 
k1 = (-4*D12*beta^2*b^2*M02-4*M01*n^2*pi^2*D22)/n^3/pi^3/D22; 
k2 = D11*(2*a2*b2+a1*b1)+beta^2*D12*a1; 
k3 = D11*(-2*a4*b2+a3*b1)+beta^2*D12*a3; 
k4 = D11*(2*a3*b2+a4*b1)+beta^2*D12*a4; 
k5 = D11*(-2*a1*b2+a2*b1)+beta^2*D12*a2; 
k6 = beta^2*(a4*l1-a3*l2)*D12bar+D11*(-l2^3*a3+3*a4*b2*l2+3*a3*l1*b2-l1^3*a4); 
k7 = beta^2*(l2*a1+a2*l1)*D12bar+D11*(l2^3*a1+3*a2*b2*l2-l1^3*a2-3*a1*l1*b2); 
k8 = beta^2*(a1*l1-a2*l2)*D12bar+D11*(-l2^3*a2+3*a1*b2*l2+3*a2*l1*b2-l1^3*a1); 
k9 = beta^2*(a3*l1+l2*a4)*D12bar+D11*(l2^3*a4+3*a3*b2*l2-3*a4*l1*b2-l1^3*a3); 
c1 = 2*D11*b2/(D11*b1+beta^2*D12); 
c2 = 4*(D12*beta^2*b^2*M02+M01*n^2*pi^2*D22)/n^3/pi^3/D22/(D11*b1+beta^2*D12); 
c3 = -(l1*beta^2*D12bar+(3*l2^2*l1-l1^3)*D11)/(l2*beta^2*D12bar+(l2^3-
3*l2*l1^2)*D11); 
c4 = -(k2*c1+k5)/(k3*c3+k4); 
c5 = -(k2*c2+k1)/(k3*c3+k4); 
Dn = -(k6*c2+k7*c3*c5+k8*c5)/(k6*c1+k7*c3*c4+k8*c4+k9); 
An = c1*Dn+c2; 
Cn = c4*Dn+c5; 
Bn = c3*Cn; 
w0(n) = 
(4*b^2*M02/n^3/pi^3/D22+(An*cos(l2*x)+Bn*sin(l2*x))*cosh(l1*x)+(Cn*cos(l2*x)+Dn*s
in(l2*x))*sinh(l1*x))*sin(beta*y); 
w(n) = sum(w0); 
end 
else 
    display('ERROR : Wnh is not in case 3. (see P 311)') 
end 
n_odd = 1:2:n_max 
w_odd = w(1:2:n_max) 
plot (n_odd,w_odd) 
title('Test Case 8HS') 
xlabel('Number of Approximation Terms') 
ylabel('Center Deflection, in.') 
grid on 
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E.2.3 Edge Deflection of Test Case 8HS (Navier-Levy) 

clc 
clear 
%Calculation of deflection at x,y with SSFF condition 
 
%--------------------- 
% FRP Deck Properties 
%--------------------- 
D11= 7e7 
D22 = 1.81e7 
D12 = 4.11e6 
D66 = 9.3e6 
h = 8               % Height of FRP Deck 
a = 72             % Dimemsion in x direction  (SS Edge) 
b = 69             % Dimemsion in y direction (Free Edge) 
alpha1 = 4.85e-6    % Thermal Coefficient in x direction 
alpha2 = 14.14e-6   % Thermal Coefficient in y direction 
 
%------------------ 
%Deflection at x,y 
%------------------ 
% Deflection at the edge of deck (i.e., x=6, y=b/2) 
% x and y are based on the interest of location for deflection 
x = 6 
y = b/2 
n_max = 15          % The maximum terms of n for fourier series. 
Tmax = 81           % Maximum Gradient Temperature i.e., T_top-T_bottom 
 
%-------------------- 
%Finding M01 and M02  
%-------------------- 
M01 = (D11*alpha1+D12*alpha2)*(-Tmax/h) 
M02 = (D12*alpha1+D22*alpha2)*(-Tmax/h) 
 
%--------------------------------------- 
D12hat = D12+2*D66 
D12bar = D12+4*D66 
i = 0 
 
if D12hat^2 < D11*D22 
for n = 1:2:n_max 
beta = n*pi/b; 
l1 = sqrt(beta^2/(2*D11)*(sqrt(D11*D22)+D12hat)); 
l2 = sqrt(beta^2/(2*D11)*(sqrt(D11*D22)-D12hat)); 
a1 = cosh(l1*a)*cos(l2*a); 
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a2 = sinh(l1*a)*sin(l2*a); 
a3 = cosh(l1*a)*sin(l2*a); 
a4 = sinh(l1*a)*cos(l2*a); 
b1 = l2^2-l1^2; 
b2 = l1*l2; 
k1 = (-4*D12*beta^2*b^2*M02-4*M01*n^2*pi^2*D22)/n^3/pi^3/D22; 
k2 = D11*(2*a2*b2+a1*b1)+beta^2*D12*a1; 
k3 = D11*(-2*a4*b2+a3*b1)+beta^2*D12*a3; 
k4 = D11*(2*a3*b2+a4*b1)+beta^2*D12*a4; 
k5 = D11*(-2*a1*b2+a2*b1)+beta^2*D12*a2; 
k6 = beta^2*(a4*l1-a3*l2)*D12bar+D11*(-l2^3*a3+3*a4*b2*l2+3*a3*l1*b2-l1^3*a4); 
k7 = beta^2*(l2*a1+a2*l1)*D12bar+D11*(l2^3*a1+3*a2*b2*l2-l1^3*a2-3*a1*l1*b2); 
k8 = beta^2*(a1*l1-a2*l2)*D12bar+D11*(-l2^3*a2+3*a1*b2*l2+3*a2*l1*b2-l1^3*a1); 
k9 = beta^2*(a3*l1+l2*a4)*D12bar+D11*(l2^3*a4+3*a3*b2*l2-3*a4*l1*b2-l1^3*a3); 
c1 = 2*D11*b2/(D11*b1+beta^2*D12); 
c2 = 4*(D12*beta^2*b^2*M02+M01*n^2*pi^2*D22)/n^3/pi^3/D22/(D11*b1+beta^2*D12); 
c3 = -(l1*beta^2*D12bar+(3*l2^2*l1-l1^3)*D11)/(l2*beta^2*D12bar+(l2^3-
3*l2*l1^2)*D11); 
c4 = -(k2*c1+k5)/(k3*c3+k4); 
c5 = -(k2*c2+k1)/(k3*c3+k4); 
Dn = -(k6*c2+k7*c3*c5+k8*c5)/(k6*c1+k7*c3*c4+k8*c4+k9); 
An = c1*Dn+c2; 
Cn = c4*Dn+c5; 
Bn = c3*Cn; 
w0(n) = 
(4*b^2*M02/n^3/pi^3/D22+(An*cos(l2*x)+Bn*sin(l2*x))*cosh(l1*x)+(Cn*cos(l2*x)+Dn*s
in(l2*x))*sinh(l1*x))*sin(beta*y); 
w(n) = sum(w0); 
end 
else 
    display('ERROR : Wnh is not in case 3. (see P 311)') 
end 
n_odd = 1:2:n_max 
w_odd = w(1:2:n_max) 
plot (n_odd,w_odd) 
title('Test Case 8HS') 
xlabel('Number of Approximation Terms') 
ylabel('Edge Deflection, in.') 
grid on 
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E.2.4 Deflection Mesh of Test Case 8CS (Navier-Levy) 

 The matlab code of deflection mesh for test case 8CS is similar to that for test case 

8HS except the thermal coefficient and Tmax were changed as following. 

alpha1 = 4.98e-6    % Thermal Coefficient in x direction 
alpha2 = 11.92e-6   % Thermal Coefficient in y direction 
Tmax = -90          % Maximum Temperature Difference i.e., T_top-T_bottom 
 
 
E.2.5 Center Deflection of Test Case 8CS (Navier-Levy) 
 

The matlab code of center deflection for test case 8CS is similar to that for test case 

8HS except the thermal coefficient and Tmax were changed as following. 

alpha1 = 4.98e-6    % Thermal Coefficient in x direction 
alpha2 = 11.92e-6   % Thermal Coefficient in y direction 
Tmax = -90           % Maximum Temperature Difference i.e., T_top-T_bottom 
 

E.2.6 Edge Deflection of Test Case 8CS (Navier-Levy) 

The matlab code of edge deflection for test case 8CS is similar to that for test case 

8HS except the thermal coefficient and Tmax were changed as following. 

alpha1 = 4.98e-6    % Thermal Coefficient in x direction 
alpha2 = 11.92e-6   % Thermal Coefficient in y direction 
Tmax = -90           % Maximum Temperature Difference i.e., T_top-T_bottom 
 

E.2.7 Deflection Mesh of Test Case 4HS (Navier-Levy) 

The matlab code of deflection mesh for test case 4HS is similar to that for test case 8HS 

except FRP deck properties, thermal coefficient and Tmax were changed as following. 

D11= 11e6 
D22 = 2.75e6 
D12 = .69e6 
D66 = 1.5e6 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
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alpha1 = 5.73e-6    % Thermal Coefficient in x direction 
alpha2 = 9.56e-6    % Thermal Coefficient in y direction 
Tmax = 56           % Maximum Temperature Difference i.e., T_top-T_bottom 
 
 

E.2.8 Center Deflection of Test Case 4HS (Navier-Levy) 

The matlab code of center deflection for test case 4HS is similar to that for test case 

8HS except FRP deck properties, thermal coefficient and Tmax were changed as following. 

D11= 11e6 
D22 = 2.75e6 
D12 = .69e6 
D66 = 1.5e6 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
alpha1 = 5.73e-6    % Thermal Coefficient in x direction 
alpha2 = 9.56e-6    % Thermal Coefficient in y direction 
Tmax = 56           % Maximum Temperature Difference i.e., T_top-T_bottom 

 

E.2.9 Edge Deflection of Test Case 4HS (Navier-Levy) 

The matlab code of edge deflection for test case 4HS is similar to that for test case 

8HS except FRP deck properties, thermal coefficient and Tmax were changed as following. 

D11= 11e6 
D22 = 2.75e6 
D12 = .69e6 
D66 = 1.5e6 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
alpha1 = 5.73e-6    % Thermal Coefficient in x direction 
alpha2 = 9.56e-6    % Thermal Coefficient in y direction 
Tmax = 56           % Maximum Temperature Difference i.e., T_top-T_bottom 
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E.2.10 Deflection Mesh of Test Case 4CS (Navier-Levy) 

The matlab code of deflection mesh for test case 4CS is similar to that for test case 

8HS except FRP deck properties, thermal coefficient and Tmax were changed as following. 

D11= 11e6 
D22 = 2.75e6 
D12 = .69e6 
D66 = 1.5e6 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
alpha1 = 5.59e-6    % Thermal Coefficient in x direction 
alpha2 = 8.51e-6    % Thermal Coefficient in y direction 
Tmax = -99           % Maximum Temperature Difference i.e., T_top-T_bottom 
 
 
E.2.11 Center Deflection of Test Case 4CS (Navier-Levy) 

The matlab code of center deflection for test case 4CS is similar to that for test case 8HS 

except FRP deck properties, thermal coefficient and Tmax were changed as 

following. 

D11= 11e6 
D22 = 2.75e6 
D12 = .69e6 
D66 = 1.5e6 
h = 4                 % Height of FRP Deck 
a = 72               % Dimemsion in x direction (SS Edge) 
b = 70               % Dimemsion in y direction (Free Edge) 
alpha1 = 5.59e-6     % Thermal Coefficient in x direction 
alpha2 = 8.51e-6     % Thermal Coefficient in y direction 
Tmax = -99           % Maximum Temperature Difference i.e., T_top-T_bottom 
 
 
E.2.12 Edge Deflection of Test Case 4CS (Navier-Levy) 

The matlab code of edge deflection for test case 4CS is similar to that for test case 

8HS except FRP deck properties, thermal coefficient and Tmax were changed as following. 

D11= 11e6 
D22 = 2.75e6 
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D12 = 0.69e6 
D66 = 1.5e6 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction  (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
alpha1 = 5.59e-6    % Thermal Coefficient in x direction 
alpha2 = 8.51e-6    % Thermal Coefficient in y direction 
Tmax = -99           % Maximum Temperature Difference i.e., T_top-T_bottom 
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E.3  Deflection Plot based on Macro Approach 
 

 
Figure E.13: Deflection Mesh for Test Case 8HS (Macro Approach). 

 

 
 

Figure E.14: Deflection Mesh for Test Case 8CS (Macro Approach). 
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Figure E.15: Deflection Mesh for Test Case 4HS (Macro Approach). 
 

 
 

Figure E.16: Deflection Mesh for Test Case 4CS (Macro Approach). 
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E.4  Matlab program code for computation based on Macro Approach 

E.4.1 Deflection Mesh of Test Case 8HS (Macro Approach) 

clc 
clear 
%Calculation of deflection at x,y with SSFF condition 
%Macro Approach 
display('Test Case 8HS') 
 
%--------------------- 
% FRP Deck Properties 
%--------------------- 
Ex = 4e6 
Ey = 1.1e6 
Vxy =0.23 
D11= 7e7 
D22 = 1.81e7 
D12 = 4.11e6 
D66 = 9.32e6 
d12 = D12+2*D66 
h = 8               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 69              % Dimemsion in y direction (Free Edge) 
alpha1 = 4.85e-6    % Thermal Coefficient in x direction 
alpha2 = 14.14e-6   % Thermal Coefficient in y direction 
Be = 0 
 
%Temperature of Deck 
Ttop=155 
Tbottom=74 
Tref=71 
 
%------------------ 
%Deflection at x,y 
%------------------ 
Tmax = Ttop-Tbottom           % Maximum Temperature Difference i.e., T_top-T_bottom 
spacing = 50 
     
MT1 = -(D11*alpha1+D12*alpha2)*Tmax/h; 
MT2 = -(D12*alpha1+D22*alpha2)*Tmax/h; 
W11 = 
16*a^2*b^2*(2*pi^2*MT1*b^2*Be*D11+pi^2*MT1*b^2*D12^2*a+4*pi^2*MT1*b^2*D6
6*a*D12-
8*D22*D12*MT1*a^3+8*D22*D11*b^2*MT1*a+2*pi^2*MT2*a^2*Be*D11+pi^2*MT2*
a^3*D12^2+4*pi^2*MT2*a^3*D66*D12-
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16*d12*D12*MT1*b^2*a)/pi^4/(2*pi^2*D11^2*b^4*Be+pi^2*D11*b^4*D12^2*a+4*pi^2
*D11*b^4*D66*a*D12-8*D22*D12^2*a^5-
32*D22*D12*a^5*D66+4*pi^2*d12*a^2*b^2*Be*D11+2*pi^2*d12*a^3*b^2*D12^2+8*pi
^2*d12*a^3*b^2*D66*D12+8*D22*D11^2*b^4*a+32*D22*D11*b^2*a^3*D66+2*pi^2*D
22*a^4*Be*D11+pi^2*D22*a^5*D12^2+4*pi^2*D22*a^5*D66*D12-
16*d12*D12*b^4*a*D11-16*d12*D12^2*b^2*a^3-64*d12*D12*b^2*a^3*D66); 
c2 = 2*D11*b^2*(D11*W11*pi^4*b^2+D12*W11*pi^4*a^2-
16*MT1*b^2*a^2+4*D66*W11*pi^4*a^2)/W11/pi^5/a^3/(2*Be*D11+D12^2*a+4*D66*a*
D12); 
c1 = 1/2*D12*c2*pi^2/D11/b^2; 
 
% Meshing deflection 
i = 0 
for x = linspace(0,a,spacing) 
    i = i+1; 
    j = 0; 
    for y = linspace(0,b,spacing) 
        j = j+1; 
w = W11*sin(pi*y/b)*(sin(pi*x/a)+c1*x*(x-a)+c2); 
W(j,i)=w; 
end 
end 
 
x = linspace(0,a,spacing); 
y = linspace(0,b,spacing); 
mesh(x,y,W) 
surf(x,y,W) 
title('Deflection Shape for Macro-Mechanic Approach') 
ylabel('Free Edge') 
xlabel('Simply Supported Edge') 
zlabel('Deflection, in.') 
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E.4.2 Deflection Mesh of Test Case 8CS (Macro Approach) 

The matlab code of deflection mesh for test case 8CS is similar to that for test case 

8HS in section E.4.1 except thermal coefficient and temperature data were changed as 

following. 

alpha1 = 4.98e-6      % Thermal Coefficient in x direction 
alpha2 = 11.92e-6    % Thermal Coefficient in y direction 
Ttop=-30 
Tbottom=60 
Tref=80 
 
E.4.3 Deflection Mesh of Test Case 4HS (Macro Approach) 

The matlab code of deflection mesh for test case 4HS is similar to that for test case 

8HS in section E.4.1 except FRP deck properties, thermal coefficient and temperature data 

were changed as following. 

%-------------------------- 
% FRP Deck Properties 
%-------------------------- 
Ex = 3.8e6 
Ey = 1e6 
Vxy =0.25 
D11= 11e6 
D22 = 2.75e7 
D12 = 0.69e6 
D66 = 1.5e6 
d12 = D12+2*D66 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
alpha1 = 5.73e-6    % Thermal Coefficient in x direction 
alpha2 = 9.56e-6   % Thermal Coefficient in y direction 
Be = 0 
 
%Temperature of Deck 
Ttop=153 
Tbottom=97 
Tref=80 
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E.4.4. Deflection Mesh of Test Case 4CS (Macro Approach) 

The matlab code of deflection mesh for test case 4CS is similar to that for test case 

8HS in section E.4.1 except FRP deck properties, thermal coefficient and temperature data 

were changed as following. 

%--------------------------- 
% FRP Deck Properties 
%--------------------------- 
Ex = 3.8e6 
Ey = 1e6 
Vxy =0.25 
D11= 11e6 
D22 = 2.75e7 
D12 = 0.69e6 
D66 = 1.5e6 
d12 = D12+2*D66 
h = 4               % Height of FRP Deck 
a = 72              % Dimemsion in x direction (SS Edge) 
b = 70              % Dimemsion in y direction (Free Edge) 
alpha1 = 5.59e-6       % Thermal Coefficient in x direction 
alpha2 = 8.51e-6       % Thermal Coefficient in y direction 
Be = 0 
 
%Temperature of Deck 
Ttop=-43 
Tbottom=56 
Tref=82 
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Appendix F 

Theoretical Results using FEM (ANSYS Version 7.1) 

Appendix F was divided into two section. Section 1 showed the contour plot of 

deflection, strain and stress for all test cases. Section 2 showed the input text command of 

ANSYS V7.1 for all test cases. 

1. Contour plot results of deflection, strain and stress 

Notes for Test Case 8HS, 8CS, 4HS and 4CS (SSFF Boundary) 

• Simply Supported Edge @ Y = 0, b and Free Edge @ X = 0, a  (X is Cell Direction) 

• Top Surface @ Z = 0 and Bottom Surface @ Z = 4 and 8 in. for 4 and 8 in. FRP deck 

specimens, respectively.  

• The above contour was only shown a quarter model of specimens (i.e. Dimensions in 

X and Y direction were a/2 to b/2, respectively). 

• Applied Temperature and elastic properties of FRP deck can be found in Table 6.1 to 

6.4    

      in Chapter 6 

Notes for Test Cases 8HF, 8CF, 4HF and 4CF (FFFF Boundary)   

• Free Edge @ X = 0, a  and Y = 0, b (X is Cell Direction.) 

• Top Surface @ Z = 0 and Bottom Surface @ Z = 4 and 8 in. for 4 and 8 in. FRP deck 

specimens, respectively. 

• The above contour was only shown a quarter model of specimens (i.e. Dimensions in 

X and Y direction were a/2 to b/2, respectively). 

• Applied temperature and elastic properties of FRP deck can be found in Table 6.1 to 

6.4 in Chapter 6 
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Figure F.1: A Quarter Model of 8 in. FRP Deck Specimens. 
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Figure F.2: Displacement Contour Plot in Z Direction (Test Case 8HS). 
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Figure F.3: Strain Contour Plot in X Direction (Test Case 8HS). 
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Figure F.4: Strain Contour Plot in Y Direction (Test Case 8HS). 
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Figure F.5: Stress Contour Plot in X Direction (Test Case 8HS). 
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Figure F.6: Stress Contour Plot in Y Direction (Test Case 8HS). 
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Figure F.7: Displacement Contour Plot in Z Direction (Test Case 8HF). 
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Figure F.8: Strain Contour Plot in X Direction (Test Case 8HF). 
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Figure F.9: Strain Contour Plot in Y Direction (Test Case 8HF). 
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Figure F.10: Stress Contour Plot in X Direction (Test Case 8HF). 
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Figure F.11: Stress Contour Plot in Y Direction (Test Case 8HF). 
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Figure F.12: Displacement Contour Plot in Z Direction (Test Case 8CS). 
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Figure F.13: Strain Contour Plot in X Direction (Test Case 8CS). 
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Figure F.14: Strain Contour Plot in Y Direction (Test Case 8CS). 
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Figure F.15: Stress Contour Plot in X Direction (Test Case 8CS). 
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Figure F.16: Stress Contour Plot in Y Direction (Test Case 8CS). 
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Figure F.17: Displacement Contour Plot in Z Direction (Test Case 8CF). 
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Figure F.18: Strain Contour Plot in X Direction (Test Case 8CF). 
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Figure F.19: Strain Contour Plot in Y Direction (Test Case 8CF). 
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Figure F.20: Stress Contour Plot in X Direction (Test Case 8CF). 
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Figure F.21: Stress Contour Plot in Y Direction (8CF). 
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Figure F.22: A Quarter Model of 4 in. FRP Deck Specimens. 
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Figure F.23: Displacement Contour Plot in Z Direction (Test Case 4HS). 
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Figure F.24: Strain Contour Plot in X Direction (Test Case 4HS). 
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Figure F.25: Strain Contour Plot in Y Direction (Test Case 4HS). 
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Figure F.26: Stress Contour Plot in X Direction (Test Case 4HS). 
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Figure F.27: Stress Contour Plot in Y Direction (Test Case 4HS). 
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Figure F.28: Displacement Contour Plot in Z Direction (Test Case 4HF). 
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Figure F.29: Strain Contour Plot in X Direction (Test Case 4HF). 
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Figure F.30: Strain Contour Plot in Y Direction (Test Case 4HF). 
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Figure F.31: Stress Contour Plot in X Direction (Test Case 4HF). 
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Figure F.32: Stress Contour Plot in Y Direction (Test Case 4HF). 
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Figure F.33: Displacement Contour Plot in Z Direction (Test Case 4CS). 
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Figure F.34: Strain Contour Plot in X Direction (Test Case 4CS). 
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Figure F.35: Strain Contour Plot in Y Direction (Test Case 4CS). 

 

1

MN

MX

X
Y

Z

Test Case : 4CS                                                                 

-577.161
-447.474

-317.787
-188.1

-58.413
71.274

200.961
330.648

460.335
590.022

FEB 14 2004
19:35:36

NODAL SOLUTION

STEP=1
SUB =1
TIME=1
SX       (AVG)
RSYS=0
DMX =.162335
SMN =-577.161
SMX =590.022

 

Figure F.36: Stress Contour Plot in X Direction (Test Case 4CS). 
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Figure F.37: Stress Contour Plot in Y Direction (Test Case 4CS). 
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Figure F.38: Displacement Contour Plot in Z Direction (Test Case 4CF). 
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Figure F.39: Strain Contour Plot in X Direction (Test Case 4CF). 
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Figure F.40: Strain Contour Plot in Y Direction (Test Case 4CF). 
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Figure F.41: Stress Contour Plot in X Direction (Test Case 4CF). 
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Figure F.42: Stress Contour Plot in Y Direction (Test Case 4CF). 
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2. Text Command for ANSYS (V 7.1) 

2.1 Test Case 8HS (ANSYS Text Command) 

/clear 
/prep7   
/title,Test Case : 8HS 
antype,static    
et,1,shell93 
r,1,0.5        ! 0.5 thick Top, Bottom Flange  
r,2,0.395    ! 0.395 thick Vertical Web 
r,3,0.25      ! 0.25 thick Diagonal Web  
mp,ex,1,4e6 
mp,ey,1,1.1e6 
mp,ez,1,1.1e6        
mp,prxy,1,0.23  
mp,pryz,1,0.0575   
mp,prxz,1,0.23  
mp,gxy,1,0.54e6 
mp,gyz,1,0.27e6    
mp,gxz,1,0.54e6 
    
!-------------------------------------------------- 
!Thermal Coefficient for Heating Test 
!-------------------------------------------------- 
mp,alpx,1,4.85e-6  
mp,alpy,1,14.14e-6  
mp,alpz,1,14.14e-6  
 
!-------------------------------------------------------------------- 
!Nodes and Elements for Top Surface (section id 1) 
!--------------------------------------------------------------------- 
secnum,1   !Set the subsequently defined elements as section id 1 
n,1  
n,5,,1 
n,31,,12.695 
n,47,,20 
n,73,,31.695 
n,81,,35.3475   
fill,1,5 
fill,5,31 
fill,31,47 
fill,47,73 
fill,73,81 
ngen,2,100,1,81,2,.45 
ngen,2,200,1,81,1,.9 
e,1,201,203,3,101,202,103,2 
egen,40,2,1 
 
!------------------------------------------------------------------------- 
!Nodes and Elements for Bottom Surface (section id 2)  
!------------------------------------------------------------------------- 
ngen,2,300,1,300,1,,,7.5     !copying nodes from Top surface 
egen,2,300,1,40,,,,,,1    !copying elements and increasing section id by 1 from top surface 
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!----------------------------------------------------------------------------------------------------- 
!Assign the new real constant set number to subsequently defined elements 
!----------------------------------------------------------------------------------------------------- 
real,2   ! 0.395 thick  
 
!------------------------------------------------------------ 
!Nodes and Elements for webs (section id 3) 
!------------------------------------------------------------ 
secnum,3 !Set the subsequently defined elements as section id 3 
 
!the 1st web (y=1) 
!------------------------- 
n,1001,,1 
ngen,3,1,1001,,,.45 
ngen,2,3,1001,1003,2,,,0.3125 
ngen,13,6,1001,1003,1,,,.625 
ngen,12,6,1004,1006,1,,,.625 
e,1001,1003,1009,1007,1002,1006,1008,1004 
egen,12,6,81,,1 
 
!the 2nd web (y=12.695) 
!--------------------------------- 
ngen,2,100,1001,1075,1,,11.695 
egen,2,100,81,92,1 
 
!the 3rd web (y=20) 
!-------------------------- 
ngen,2,200,1001,1075,1,,19 
egen,2,200,81,92,1 
 
 
!the 4th web (y=31.695) 
!------------------------------- 
ngen,2,300,1001,1075,1,,30.695 
egen,2,300,81,92,1 
 
!------------------------------------------------------------------------- 
!Nodes and Elements for Diagonal Webs (section id 4) 
!------------------------------------------------------------------------- 
real,3    !0.25 thick  
secnum,4  !Set the subsequently defined elements as section id 4 
 
!the 1st diagonal web (from y = 1 to 12.695) 
!----------------------------------------------------------- 
n,1401,,1,6.25 
n,1441,,12.695,1.25 
fill,1401,1441 
ngen,2,100,1401,1441,2,.45 
ngen,2,200,1401,1441,,.9 
e,1401,1601,1603,1403,1501,1602,1503,1402 
egen,20,2,129 
 
!the 2nd diagonal web (from y = 20 to 31.695) 
!------------------------------------------------------------- 
n,1701,,20,1.25 
n,1741,,31.695,6.25 
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fill,1701,1741 
ngen,2,100,1701,1741,2,.45 
ngen,2,200,1701,1741,,.9 
e,1701,1901,1903,1703,1801,1902,1803,1702 
egen,20,2,149 
 
!------------------------------------------------------------------------------ 
!Extrude the section to 36 in. (one quarter of real structure) 
!------------------------------------------------------------------------------ 
nummrg,node  !Merge the conincident nodes 
nummrg,elem  !Merge the conincident elements 
numcmp,node  !Compress the numbering of nodes  
numcmp,elem  !Compress the numbering of elements 
 
ngen,20,828,1,828,1,.9 
egen,20,828,1,168 
 
nummrg,node 
nummrg,elem 
numcmp,node 
numcmp,elem 
 
ngen,2,10252,1,10252,1,18 
egen,2,10252,1,3360 
 
nummrg,node 
nummrg,elem 
numcmp,node 
numcmp,elem 
 
!-------------------------- ------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!--------------------------------------------------------------- 
Ttop=155  !Temperature @ Top Surface 
Tbottom=74  !Temperature @ Bottom Surface 
tref,71               !Initial Temperature (Reference Temperature) 
 
nsel,s,loc,z,0        !Select all nodes on Top Surface 
bf,all,temp,Ttop    !Apply temperature to above selected nodes 
 
nsel,s,loc,z,7.5       !Select all nodes on Bottom Surface 
bf,all,temp,Tbottom   !Apply temperature to above selected nodes 
 
 
!------------------------------------------------ 
!Apply Temperature to Vertical Web 
!------------------------------------------------ 
n=7.5/.3125          !number of interval along the depth 
*do,k,1,n-1,1 
zz=k*0.3125          !location of z 
nsel,s,loc,z,zz 
bf,all,temp,Ttop-(Ttop-Tbottom)/7.5*zz 
*enddo 
 
!-------------------------------------------------- 
!Apply Temperature to diagonal Web 



 241

!---------------------------------------------------- 
n=40                  !number of interval along the depth 
*do,k,1,n-1,1 
zz=1.25+k*0.125      !location of z   
nsel,s,loc,z,zz 
bf,all,temp,Ttop-(Ttop-Tbottom)/7.5*zz 
*enddo 
 
!---------------------------------------------------------------- 
!Boundary Condition for Simply Supported Edge 
!---------------------------------------------------------------- 
nsel,s,loc,y,0 
d,all,uz    
 
!--------------------    
!dsym at x=36 
!-------------------- 
nsel,s,loc,x,36 
dsym,symm,x 
 
!--------------------------- 
!dsym at y=35.3475 
!--------------------------- 
nsel,s,loc,y,35.3475 
dsym,symm,y 
nsel,all 
esel,all 
finish 
/solu 
solve 
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2.2 Test Case 8HF (ANSYS Text Command) 
 

ANSYS text command for test case 8HF was similar to that for test case 8HS except 

applied temperature and boundary condition were changed as following 

!--------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!--------------------------------------------------------------- 
Ttop=152  !Temperature @ Top Surface 
Tbottom=74  !Temperature @ Bottom Surface 
tref,73               !Initial Temperature (Reference Temperature) 
 
!---------------------------- 
!Boundary Condition 
!---------------------------- 
nsel,s,loc,x,0 
nsel,r,loc,y,0 
nsel,r,loc,z,7.5 
d,all,uz 

 
    

2.3 Test Case 8CS (ANSYS Text Command) 
 

ANSYS text command for test case 8CS was similar to that for test case 8HS except 

applied temperature was changed as following 

!--------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!--------------------------------------------------------------- 
Ttop=-30  !Temperature @ Top Surface 
Tbottom=60  !Temperature @ Bottom Surface 
tref,80               !Initial Temperature (Reference Temperature) 
 
 
2.4 Test Case 8CF (ANSYS Text Command) 
 
ANSYS text command for test case 8CF was similar to that for test case 8HS except 

applied temperature and boundary condition were changed as following 

!--------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!--------------------------------------------------------------- 
Ttop=-31  !Temperature @ Top Surface 
Tbottom=61  !Temperature @ Bottom Surface 
tref,80               !Initial Temperature (Reference Temperature) 
 
!---------------------------- 
!Boundary Condition 
!---------------------------- 



 243

nsel,s,loc,x,0 
nsel,r,loc,y,0 
nsel,r,loc,z,7.5 
d,all,uz 
 
 
2.5 Test Case 4HS (ANSYS Text Command) 
 
/clear 
/prep7 
/title,Test Case : 4HS   
antype,static    
et,1,shell93 
r,1,0.43      ! 0.43 thick  
r,2,0.375     ! 0.375 thick  
mp,ex,1,3.8e6 
mp,ey,1,1e6 
mp,ez,1,1e6        
mp,prxy,1,0.25  
mp,pryz,1,0.06     
mp,prxz,1,0.25     
mp,gxy,1,0.54e6 
mp,gyz,1,0.27e6    
mp,gxz,1,0.54e6    
 
!-------------------------------------------------- 
!Thermal Coefficient for Heating Test 
!-------------------------------------------------- 
mp,alpx,1,5.73e-6  
mp,alpy,1,9.56e-6  
mp,alpz,1,9.56e-6    
 
!--------------------------------------------------------------------- 
!Nodes and Elements for Top Surface (section id 1) 
!--------------------------------------------------------------------- 
secnum,1   !Set the subsequently defined elements as section id 1 
n,1  
n,7,,2.735 
n,19,,8.58 
n,33,,15.045 
n,45,,20.89 
n,57,,26.735 
n,69,,32.3925 
n,77,,35.625    
fill,1,7 
fill,7,19 
fill,19,33 
fill,33,45 
fill,45,57 
fill,57,69 
fill,69,77 
ngen,2,100,1,77,2,.45 
ngen,2,200,1,77,1,.9 
e,1,201,203,3,101,202,103,2 
egen,38,2,1 
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!------------------------------------------------------------------------- 
!Nodes and Elements for Bottom Surface (section id 2)  
!------------------------------------------------------------------------- 
ngen,2,300,1,300,1,,,4 !copying nodes from Top surface 
egen,2,300,1,38,,,,,,1    !copying elements and increasing section id by 1 from top surface 
 
!------------------------------------------------------------------------------------------------------ 
!Assign the new real constant set number to subsequently defined elements 
!------------------------------------------------------------------------------------------------------ 
real,2    ! 0.375 thick  
 
!------------------------------------------------------------ 
!Nodes and Elements for webs (section id 3) 
!------------------------------------------------------------ 
secnum,3 !Set the subsequently defined elements as section id 3 
 
!the 1st web (y=2.735) 
!------------------------------ 
n,1001,,2.735 
ngen,3,1,1001,,,.45 
n,1004,,2.735,.4 
ngen,2,1,1004,,,.9 
ngen,5,5,1001,1005,1,,,.8 
ngen,2,25,1001,1003,1,,,4 
e,1001,1003,1008,1006,1002,1005,1007,1004 
egen,5,5,77,,1 
 
!the 2nd web (y=8.58) 
!------------------------------ 
n,1101,,8.58 
ngen,3,1,1101,,,.45 
n,1104,,8.58,.4 
ngen,2,1,1104,,,.9 
ngen,5,5,1101,1105,1,,,.8 
ngen,2,25,1101,1103,1,,,4 
e,1101,1103,1108,1106,1102,1105,1107,1104 
egen,5,5,82,,1 
 
 
!the 3rd web (y=15.045) 
!-------------------------------- 
n,1201,,15.045 
ngen,3,1,1201,,,.45 
n,1204,,15.045,.4 
ngen,2,1,1204,,,.9 
ngen,5,5,1201,1205,1,,,.8 
ngen,2,25,1201,1203,1,,,4 
e,1201,1203,1208,1206,1202,1205,1207,1204 
egen,5,5,87,,1 
 
 
!the 4th web (y=20.89) 
!------------------------------ 
n,1301,,20.89 
ngen,3,1,1301,,,.45 
n,1304,,20.89,.4 
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ngen,2,1,1304,,,.9 
ngen,5,5,1301,1305,1,,,.8 
ngen,2,25,1301,1303,1,,,4 
e,1301,1303,1308,1306,1302,1305,1307,1304 
egen,5,5,92,,1 
 
!the 5th web (y=26.735) 
!-------------------------------- 
n,1401,,26.735 
ngen,3,1,1401,,,.45 
n,1404,,26.735,.4 
ngen,2,1,1404,,,.9 
ngen,5,5,1401,1405,1,,,.8 
ngen,2,25,1401,1403,1,,,4 
e,1401,1403,1408,1406,1402,1405,1407,1404 
egen,5,5,97,,1 
 
!the 6th web (y=32.3925) 
!---------------------------------- 
n,1501,,32.3925 
ngen,3,1,1501,,,.45 
n,1504,,32.3925,.4 
ngen,2,1,1504,,,.9 
ngen,5,5,1501,1505,1,,,.8 
ngen,2,25,1501,1503,1,,,4 
e,1501,1503,1508,1506,1502,1505,1507,1504 
egen,5,5,102,,1 
 
!------------------------------------------------------------------------------- 
!Extrude the section to 36 in. (one quarter of real structure) 
!------------------------------------------------------------------------------- 
nummrg,node  !Merge the conincident nodes 
nummrg,elem  !Merge the conincident elements 
numcmp,node  !Compress the numbering of nodes  
numcmp,elem  !Compress the numbering of elements 
 
ngen,40,520,1,520,1,.9 
egen,40,520,1,106 
 
nummrg,node 
nummrg,elem 
numcmp,node 
numcmp,elem 
 
!---------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!---------------------------------------------------------------- 
Ttop=153  !Temperature @ Top Surface 
Tbottom=97  !Temperature @ Bottom Surface 
tref,80               !Initial Temperature (Reference Temperature) 
 
nsel,s,loc,z,0        !Select all nodes @ Top Surface 
bf,all,temp,Ttop      !Apply temperature to above selected nodes 
 
nsel,s,loc,z,4        !Select all nodes @ Bottom Surface 
bf,all,temp,Tbottom !Apply temperature to above selected nodes 
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!------------------------------------------------ 
!Apply Temperature to Vertical Web 
!------------------------------------------------ 
n=4/.4                !number of interval along the depth 
*do,k,1,n-1,1 
zz=k*0.4              !location of z 
nsel,s,loc,z,zz 
bf,all,temp,Ttop-(Ttop-Tbottom)/4*zz 
*enddo 
 
!---------------------------- 
!Boundary Condition 
!---------------------------- 
nsel,s,loc,y,0 
d,all,uz 
 
!------------------- 
!dsym at x=36 
!------------------- 
nsel,s,loc,x,36 
dsym,symm,x 
 
!------------------------ 
!dsym at y=35.625 
!------------------------ 
nsel,s,loc,y,35.625 
dsym,symm,y 
 
nsel,all 
esel,all 
finish 
/solu 
solve 
 
 
2.6 Test Case 4HF (ANSYS Text Command) 
 

ANSYS text command for test case 4HF was similar to that for test case 4HS 

except applied temperature and boundary condition were changed as following 

!--------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!--------------------------------------------------------------- 
Ttop=151  !Temperature @ Top Surface 
Tbottom=98  !Temperature @ Bottom Surface 
tref,80               !Initial Temperature (Reference Temperature) 
 
!---------------------------- 
!Boundary Condition 
!---------------------------- 
d,194,uz 
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2.7 Test Case 4CS (ANSYS Text Command) 
 

ANSYS text command for test case 4CS was similar to that for test case 4HS 

except applied temperature were changed as following 

!---------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!---------------------------------------------------------------- 
Ttop=-43  !Temperature @ Top Surface 
Tbottom=56  !Temperature @ Bottom Surface 
tref,82               !Initial Temperature (Reference Temperature) 

 
 
2.8 Test Case 4CF (ANSYS Text Command) 
 

ANSYS text command for test case 4CF was similar to that for test case 4HS 

except applied temperature and boundary condition were changed as following 

!--------------------------------------------------------------- 
!Apply Temperature to Top and Bottom Surface 
!--------------------------------------------------------------- 
Ttop=-45  !Temperature @ Top Surface 
Tbottom=60  !Temperature @ Bottom Surface 
tref,84               !Initial Temperature (Reference Temperature) 
 
!---------------------------- 
!Boundary Condition 
!---------------------------- 
d,194,uz 
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Appendix G 

Thermal Analysis of FRP Decks as Orthotropic Panels 

n this appendix, the overall behavior of an orthotropic rectangular plate subjected to a 

linear gradient temperature along the depth was analyzed using Navier-Levy method and 

Macro approach. The FRP deck is treated as a single equivalent layer of an orthotropic plate. 

In section G.1, thermal analysis of a rectangular plate under Free-Free-Simple-Simple 

(FFSS) boundary condition is derived by using Navier-Levy method (Using 1st term 

approximation). In section G.2, the deflection equation for a rectangular plate with two 

elastic beams and two simply supported edges is derived based on Macro-mechanic 

approach. 

G.1  Navier and Levy’s Method 

a

b

Simply Supported Boundary (S)

Simply Supported Boundary (S)

Free Boundary (F)

Free Boundary (F)

x

y
 

Figure G.1: Plate with FFSS Boundary Condition. 

Consider a rectangular plate with simply supported edges along y = 0, b (see Figure 

3.1). The other two edges at x = 0, a can be either free, or simply supported, or clamped 



 249

edges. In this section, we consider a rectangular plate with the other two edges at x = 0 and a, 

as free edges. Theory of thin plates with small deflection criterion (< t/10, where t = plate 

thickness) has been used in the analysis. The plate theory is valid under assumptions that the 

transverse normals along thickness do not experience elongation. Straight lines perpendicular 

to the mid-surface remain straight and perpendicular to the mid-surface after deformation. 

For the linear analysis of plate, the governing equation of bending effect is uncoupled from 

that of axial effect. The governing equation of an orthotropic plate for linear case is 

represented as: 

2 224 4 4

4 2 2 4 2 2

( , )( , )( , ) ( , ) ( , )ˆ2 ( , ) ( 2 )
T TT
xy yyxx

xx xy yy

M M x yM x yw x y w x y w x yD D D kw x y q
x x y y x x y y

∂ ∂∂∂ ∂ ∂
+ + + = − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

  (G.1) 

where ( , )w x y   is deflection function of plate, k  is modulus of the elastic foundation, and q  

is distributed traverse load. ( , )T
xxM x y  and ( , )T

yyM x y  are thermal moment load in x and y 

direction respectively. xxD  and yyD  are flexural rigidities per unit length in x and y direction 

respectively. ssD  is torsional rigidity per unit length. xxQ  and yyQ  in Eq.(G.2) are the elastic 

stiffness. xE , yE  are Young’s moduli in x, y direction respectively. xyG  is the shear modulus 

in the x-y plane. xyυ  is Poisson’s ratio, defined as the ratio of transverse strain in the y 

direction to the axial strain in the x direction when stressed in the x direction. Similar rule is 

applied to yxυ . 

 

2
2

2

xx xxh

yy yy

hxy xy

ss ss

D Q
D Q

z dz
D Q

D Q
−

   
   
   =   
   
      

∫  (G.2) 
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/(1 )

/(1 )

/(1 ) or /(1 )

xx xy yxxx

yy yy xy yx

xy xy yy xy yx yx xx xy yx

ss xy

EQ
Q E

Q E E

Q G

υ υ

υ υ

υ υ υ υ υ υ

−  
   −   =   − −   

      

 (G.3) 

 xy xy yy yx xxD D Dυ υ= =  (G.4) 

 ˆ 2xy xy ssD D D= +  (G.5) 

 

 

2
0

2

2
0

2

2
0

0

0

0 0 0
2

T
xxxx xyxx
T

yy xy yy yy

xy ss

w
x MD DM
wM D D M
y

M D
w

x y

 ∂
 

∂      
     ∂   = − −       ∂           ∂
 

∂ ∂  

 (G.6) 

In this analysis we consider the plate subjected to thermal loads only (ie. k = 0, and q 

= 0). The thermal loads, T
xxM  and T

yyM , are provided by linear gradient temperature. T
xyM  is 

identically zero for isotropic or orthotropic plates. Therefore the governing equation of an 

orthotropic plate under thermal load is reduced to (Reddy, 1999 and Szilard, 1974) 

224 4 4

4 2 2 4 2 2

( , )( , )( , ) ( , ) ( , )ˆ2
TT
yyxx

xx xy yy

M x yM x yw x y w x y w x yD D D
x x y y x y

∂∂∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂ ∂ ∂   (G.7) 

In Navier’s method or Levy’s method the deflection functions, ( , )w x y  and thermal 

loads T
xxM  and T

yyM  are expanded in trigonometric series. The trigonometric function used 

for deflection and thermal moments is restricted to those that satisfy the boundary conditions. 

Using Levy method, the deflection function, ( , )w x y for equation (G.7) is represented as 
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 1
( , ) ( )sinn

n

n yw x y W x
b
π∞

=

= ∑  (G.8) 

 1
( , ) ( ( ) ( ) )sinh p

n n n
n

w x y W x W x yβ
∞

=

= +∑  (G.9) 

where   nβ  = n
b
π , ( )nW x  is coefficient to be determined such that equation (G.7) is satisfied 

everywhere in the plate ( 0 , 0x a y b< < < < ). ( )h
nW x  and ( )p

nW x  are the homogenous and 

particular solution of equation (G.7) respectively. 

The right-hand side of equation (G.7) also is expanded in sine series. Therefore, 

thermal load ( ,T T
xx yyM M ) can be expressed in Fourier Series as 

 1
( , ) ( )sinxxTT

xx n n
n

M x y M x yβ
∞

=

= ∑  (G.10) 

 1
( , ) ( )sinyyTT

yy n n
n

M x y M x yβ
∞

=

= ∑  (G.11) 

 
Assuming the temperature of top and bottom surfaces of an FRP deck are different in 

magnitude but are uniform over the top and bottom plate surfaces in the horizontal plane of 

the deck. Also assuming the orthotropic plate is subjected to a linear gradient temperature, 

temperature increment ( T∆ (z)) along the depth (z) can be defined as  

 ( ) ( ) refT z T z T∆ = −  (G.12) 

where ( )T z the temperature function of z. refT  is a reference temperature of FRP deck plate. 

h is the depth of FRP deck plate.  

Since temperature change ( ( )T z∆ ) is assumed to be linear along the depth (z), Eq. 

(G.12) can be written in the form of linear function (i.e y ax b= + ) as following 
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0 1( )T z T T z∆ = +  (G.13) 

where 
0

2
top bottomT T

T
∆ + ∆

=  (G.14) 

 
1 top bottomT T

T
h

∆ − ∆ 
= − 

   (G.15) 

 
Note : topT∆  and bottomT∆  are temperature changes on top and bottom surface of FRP deck, 

respectively. z is positive in downward direction as shown in Figure 3.2. Therefore, z = 
2
h

 at the 

bottom surface of deck plate and z = 
2
h

−  at the top surface while z = 0 at the middle of FRP deck 

plate. 
 

The thermal moment load can be defined as ( Refer to Eq. (A.62) in Appendix A ) 

2
11 12

12 22
2

h
T
xx xx

T
yyhyy

M TQ Q
zdz

TQ QM

α
α

−

  ∆     =     ∆      
∫  

 
Substituting T∆ from Eq. (3.13) into the above equation, we obtain  

 

0 12

0 1

2

h
T

xx xx xy yyxx

T
hxy xx yy yyyy

Q QM T T z
zdz

Q QM T T z

α α

α α
−

     +   =     
+       

∫  (G.16) 

                                                      
0 1 22

0 1 2

2

h

xx xx xy yy

hxy xx yy yy

Q Q T z T z
dz

Q Q T z T z

α α

α α
−

   + =    
+     

∫  

 

      

( )( )
( )( )

1

1

xx xx xy yy

xy xx yy yy

D D T

D D T

α α

α α

 + =  
+  

 

 



 253

                                                      
( )

( )

max

max

xx xx xy yy

xy xx yy yy

TD D
h
TD D
h

α α

α α

 ∆ − +     =  
∆  − +     

 

Note that max top bottomT T T∆ = ∆ − ∆  

Based on the above equation, we notice that the thermal load moments ( ,T T
xx yyM M ) 

are constant because we assume that the temperature over plate surface in the horizontal 

plane (xy plane) of the deck is uniform (i.e. T∆  is a function of z.). The coefficients, xxT
nM  

and yyT
nM ,  of  sin n yβ  in equation (G.10) and (G.11) are defined as 

 ( )0 max
0

4( ) where
xx

xx xx

T
T T
n xx xx xy yy

M TM x M D D
n h

α α
π

∆ = = − +  
   (G.17) 

 ( )0 max
0

4( ) where
yy

yy yy

T
T T
n xy xx yy yy

M TM x M D D
n h

α α
π

∆ = = − +  
   (G.18) 

See Appendix B for derivation of ( )xxT
nM x and ( )yyT

nM x  in equations (G.17) and (G.18) 

The constant thermal load moments ( ,T T
xx yyM M ) will be expanded in sine series ( Eq. 

(G.10) and (G.11) ) before substituting them into the governing equation (Eq. (G.1)) in order 

to solve equation conveniently (i.e. Left and right side of Eq. (G.1) are sine series.) 

Substituting  (G.8), (G.10) and (G.11) into (G.7) 

4 2 2
2 4 2

4 2 2
1 1

( ) ( ) ( )ˆ2 ( ) sin ( ) sin
xx

yy

T
Tn n n

xx n xy n yy n n n n n
n n

d W x d W x d M xD D D W x y M x y
dx dx dx

β β β β β
∞ ∞

= =

  
− + = − +  

   
∑ ∑

 

 
(G.19) 

 

4 2 2
2 4 2

4 2 2
1

( ) ( ) ( )ˆ2 ( ) ( ) sin 0
xx

yy

T
Tn n n

xx n xy n yy n n n n
n

d W x d W x d M xD D D W x M x y
dx dx dx

β β β β
∞

=

 
− + + − = 

 
∑

 

 (G.20) 
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Since equation (G.20) must be true for all points (x, y) in the domain 0< x < a and 0 < 

y < b, the coefficient of sin n yβ  must be zero for any n. This leads to the following equation. 

 

4 2 2
2 4 2

4 2 2

( ) ( ) ( )ˆ2 ( ) ( ) 0
xx

yy

T
Tn n n

xx n xy n yy n n n
d W x d W x d M xD D D W x M x

dx dx dx
β β β− + + − =  (G.21) 

 

 

4 2 2
2 4 2

4 2 2

( ) ( ) ( )ˆ2 ( ) ( )
xx

yy

T
Tn n n

xx n xy n yy n n n
d W x d W x d M xD D D W x M x

dx dx dx
β β β− + = − +  (G.22) 

 

 Determining ( )h
nW x , the homogenous solution 

From equation (G.22), the form of the homogenous solution depends on the nature of 

the roots λ of the following equation. 

 4 4 2 4ˆ2 0xx n xy n yyD D Dλ β λ β− + =  (G.23) 

The following three cases are the solution for λ . 

Case 1  2ˆ
xy xx yyD D D>  

 1 1 2 2cosh sinh cosh sinhh
n n n n nW A x B x C x D xλ λ λ λ= + + +  (G.24) 

 

1
2 2

2 2 2
1

ˆ ˆ
xy xy yy

n n
xx xx xx

D D D
D D D

λ β β
    
 = − −           

 (G.25) 

 

1
2 2

2 2 2
2

ˆ ˆ
xy xy yy

n n
xx xx xx

D D D
D D D

λ β β
    
 = + −           

 (G.26) 

Case 2  2ˆ
xy xx yyD D D=  

 ( ) ( )cosh sinhh
n n n n nW A B x x C D x xλ λ= + + +  (G.27) 
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 2 2
ˆ

xy
n

xx

D
D

λ β
 

=   
 

 (G.28) 

Case 3 2ˆ
xy xx yyD D D<  

 1 1 2 2cosh sinh cosh sinhh
n n n n nW A x B x C x D xλ λ λ λ= + + +  (G.29) 

 ( )
2

2
1

ˆ
2

n
xx yy xy

xx

D D D
D
βλ = +  (G.30) 

 ( )
2

2
2

ˆ
2

n
xx yy xy

xx

D D D
D
βλ = −  (G.31) 

The four constants, , ,n n nA B C  and nD  are determined by using the boundary conditions on 

edges x = 0, a.  

 

 Determining ( )p
nW x , the particular solution  

 The particular solution, ( )p
nW x , can be determined by substituting 

1
( , ) ( )sinp

n n
n

w x y W x yβ
∞

=

= ∑  into equation (G.22). We obtain  

 

4 2 2
2 4 2

4 2 2

( ) ( ) ( )ˆ2 ( ) ( )
xx

yy

Tp p
Tpn n n

xx n xy n yy n n n
d W x d W x d M xD D D W x M x

dx dx dx
β β β− + = − +  (G.32) 

Substituting and yyxx TT
n nM M  from equations (G.17) and (G.18) into the right-hand side of 

equation (G.32), we found that the right hand side of equation (G.32) become a constant.  If 

the right-hand side of equation (G.32) are constant or linear functions of x, the particular 

solution, ( )p
nW x , is also a constant or a linear function of x resulting in 

4

4

( )p
nd W x

dx
 and 

2

2

( )p
nd W x

dx
 being zero. The particular solution, ( )p

nW x , is given by solving equation (G.32) 
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2
2

2

4

( ) ( )
( )

xx
yy

T
Tn

n n
p

n
n yy

d M x M x
dxW x

D

β

β

− +
=  (G.33) 

Substituting equations (G.17) and (G.18) into (G.33), we obtain 

 

2

03 3

4( ) yyTp
n

yy

bW x M
n Dπ

=  (G.34) 

Substituting equations (G.29) for case 3 and (G.34) into (G.9), we obtain the deflection 

function as  

2

0 1 1 2 23 3
1

4( , ) ( cosh sinh cosh sinh )sinyyT
n n n n n

n yy

bw x y M A x B x C x D x y
n D

λ λ λ λ β
π

∞

=

= + + + +∑  (G.35) 

 Equation (G.35) is valid for case 3 when 2ˆ
xy xx yyD D D< . We consider case 3 since the 

properties of FRP deck, given in Chapter 6, meet the criteria for case 3 ( 2ˆ
xy xx yyD D D< ). From 

equation (G.35), four unknown coefficients have to be determined. , ,n n nA B C  and nD  are 

determined by applying the boundary conditions on edges x = 0 and a, giving 4 equations to 

solve for 4 unknowns.  

 

 Determining , ,n n nA B C  and nD  

Free Boundary Condition on Edges x = 0, a  

The free boundary conditions on edges x = 0, a are xxM = 0 and xV = 0. We expand it into 

four equations as (0, )xxM y  = 0, ( , )xxM a y  = 0, (0, )xV y  = 0, and ( , )xV a y  = 0. This provides 

four equations to solve for four unknowns, , ,n n nA B C  and nD .  

For xxM   =   0   

Substituting xxM  from equation (G.6) into xxM  = 0 for free boundary condition, we obtain 
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2 2

2 2

( , ) ( , ) ( , ) 0T
xx xy xx

w x y w x yD D M x y
x y

∂ ∂
− − − =

∂ ∂  (G.36) 

Substituting ( , )T
xxM x y  from a combination of equations (G.10) and (G.17) into above 

equation, we obtain 

 

2 2
0

2 2
1

4( , ) ( , ) sin 0
Txx

xx xy n
n

Mw x y w x yD D y
x y n

β
π

∞

=

∂ ∂
+ + =

∂ ∂ ∑  (G.37) 

For xV  = 0  

Substituting xV  =  
( , )( , ) 2 xyxx M x yM x y

x y
∂∂

+
∂ ∂

 into the equation of xV  = 0 for free boundary 

condition, we obtain 

 
( , )( , ) 2 0xyxx M x yM x y

x y
∂∂

+ =
∂ ∂  (G.38) 

Substituting ( , ), ( , )xx yyM x y M x y  from equation (G.6) into the above equation 

 
3 3 3

3 2 2

( , ) ( , ) ( , )4 0xx xy ss
w x y w x y w x yD D D

x x y x y
∂ ∂ ∂

− − − =
∂ ∂ ∂ ∂ ∂

 (G.39) 

 

3 3

3 2

( , ) ( , ) 0xx xy
w x y w x yD D

x x y
∂ ∂

+ =
∂ ∂ ∂  (G.40) 

where  xyD  = 4xy ssD D+  

 Now we have equations (G.37) and (G.40) for xxM  = 0  and xV  = 0 corresponding to 

free boundary conditions. Substituting ( , )w x y  from equation (G.35) into equations (G.37) 

and (G.40) and expanding derivative. Applying (0, )w y  and ( , )w a y into the expanded 

equation then solving for , ,n n nA B C  and nD .  Maple software is conducted for solving and 

simplifying the solution. These following are formula for coefficients nA , nB , nC  and nD .  
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 1 2n nA c D c= +  (G.41) 

 3n nB c C=   (G.42) 

 4 5n nC c D c= +  (G.43) 

 
6 2 7 3 5 8 5

6 1 7 3 4 8 4 9
n

k c k c c k cD
k c k c c k c k

+ +
= −

+ + +  (G.44) 

 
2 2 2 2

0 0
1 3 3

4 4yy xxT T
xy n yy

yy

D b M n D M
k

n D
β π

π
− −

=  (G.45) 

 ( ) 2
2 1 1 2 2 12 xx n xyk a b a b D a Dβ= + +  (G.46) 

 ( ) 2
3 3 1 4 2 32 xx n xyk a b a b D a Dβ= − +  (G.47) 

 ( ) 2
4 3 2 4 1 42 xx n xyk a b a b D a Dβ= + +  (G.48) 

 ( ) 2
5 1 2 2 1 22 xx n xyk a b a b D a Dβ= − + +  (G.49) 

 ( ) ( )3 3 2
6 3 2 4 2 2 3 2 1 4 1 4 1 3 23 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= − + + − + −  (G.50) 

 ( ) ( )3 3 2
7 1 2 2 2 2 1 2 1 2 1 1 2 2 13 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= + − − + −  (G.51) 

 ( ) ( )3 3 2
8 2 2 1 2 2 2 2 1 1 1 1 1 2 23 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= − + + − + −  (G.52) 

 ( ) ( )3 3 2
9 4 2 3 2 2 4 2 1 3 1 3 1 4 23 3 xx n xyk a a b a b a D a a Dλ λ λ λ β λ λ= + − − + +  (G.53) 

 1 1 2cosh( )cos( )a a aλ λ=  (G.54) 

 2 1 2sinh( )sin( )a a aλ λ=  (G.55) 

 3 1 2cosh( )sin( )a a aλ λ=  (G.56) 

 4 1 2sinh( ) cos( )a a aλ λ=  (G.57) 

 
2 2

1 2 1b λ λ= −  (G.58) 

 2 1 2b λ λ=  (G.59) 

 
2

1 2
1

2 xx

xx n xy

b Dc
b D Dβ

=
+  (G.60) 

 
( )2 2 2 2

0 0
2 3 3 2

1

4

( )

yy xxT T
n xy xx

yy xx n xy

b D M n D M
c

n D b D D

β π

π β

+
=

+
 (G.61) 
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2 2 3
1 1 2 1

3 2 3 2
2 2 1 2

(3 )
( 3 )

n xy xx

n xy xx

D D
c

D D
λ β λ λ λ
λ β λ λ λ

+ −
= −

+ −  (G.62) 

 
2 1 5

4
3 3 4

k c kc
k c k

+
= −

+  (G.63) 

 
2 2 1

5
3 3 4

k c kc
k c k

+
= −

+  (G.64) 
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G.2 Macro Approach 

Theory of plates and shells was used in the following analysis based on Macro 

approach. The following were some additional assumptions and criteria for the analysis 

excluding assumptions of theory of plates and shells. Temperature was uniformly distributed 

along horizontal plane (surface plane). The exterior beams do not resist torsion but do resist 

bending in vertical plane. The exterior beam properties are identical to each other. Neglect 

axial forces induced from thermal expansions. 

a

b

x

y

Simply Support Boundary

Simply Support Boundary

 Plate

A Elastic Beam

 

Figure G.2: Plate with Elastic Beams. 

According Eq. (G.7), the governing equation of an orthotropic plate under thermal 

loads is defined as  

 

224 4 4

4 2 2 4 2 2

( , )( , )( , ) ( , ) ( , )ˆ2
TT
yyxx

xx xy yy

M x yM x yw x y w x y w x yD D D
x x y y x y

∂∂∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂ ∂ ∂ (G.65) 

 In the previous section, the generalized deflection function ( ( , )w x y ) based on Navier 

and Levy’s method is in the form of sine series only. In this section, the polynomial function 
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can be added into the generalized deflection function in order to have faster convergence of 

solution which will improve the accuracy of the first term approximation. The generalized 

deflection function ),( yxw  of a plate is defined as 

2 3 2 3
1 2 3 4 1 2 3 4

1 1
( , ) sin sinij

i j

i x j yw x y W c c x c x c x d d y d y d y
a b
π π∞ ∞

= =

     = + + + + + + + +          
∑∑

 (G.66) 

Since boundaries are symmetric and the temperature was uniformly distributed over 

horizontal plane, i.e. top and bottom surface, the deflection function of ),( yxw  can be 

reduced to a symmetric function (i.e. 4c  and 4d  = 0 ) as following 

 
2 2

1 2 3 1 2 3
1 1

( , ) sin sinij
i j

i x j yw x y W c c x c x d d y d y
a b
π π∞ ∞

= =

     = + + + + + +          
∑∑  (G.67) 

where 1c  to 3c  and 1d  to 3d are the constants coefficients. ijW  are the coefficients of series. 

The deflections along edges ( y = 0 and b) are zero because simply supported boundaries are 

applied on both edges (i.e. ( ,0) ( , ) 0w x w x b= = ). This implies that the generalized deflection 

function ( ( , )w x y ) in Eq. (G.67) can be reduced to  

 
2

1 2 3
1 1

( , ) sin sinij
i j

j y i xw x y W c c x c x
b a
π π∞ ∞

= =

    = + + +        
∑∑  (G.68) 

 
The thermal load moments ( ( , ), ( , )T T

xx yyM x y M x y ) are expanded in term of sine series as 

 1 1
( , ) sin sinxxTT

xx ij
i j

i x j yM x y M
a b

π π∞ ∞

= =

   =    
   

∑∑  (G.69) 

 1 1
( , ) sin sinyyTT

yy ij
i j

i x j yM x y M
a b

π π∞ ∞

= =

   =    
   

∑∑  (G.70) 

where , yyxx TT
ij ijM M  are the coefficients of sine series. 
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Since the temperatures are uniform over plate surfaces in the horizontal plane, 

thermal load induced moments are uniform (Refer to Eq. (G.16)). In case of uniform thermal 

load induced moment, we can define , yyxx TT
ij ijM M  as 

 ( )0 max
02

16 where
xx

xx xx

T
T T
ij xx xx xy yy

M TM M D D
ij h

α α
π

∆ = = − +  
   (G.71) 

 ( )0 max
02

16 where
yy

yy yy

T
T T
ij xy xx yy yy

M TM M D D
ij h

α α
π

∆ = = − +  
   (G.72) 

In order to have a simple solution for practicing design, only the first term of sine 

series will be used in the analysis. Therefore, generalized deflection function ( ( , )w x y ) in Eq. 

(G.67) and thermal load moments ( andT T
xx yyM M ) in Eqs. (G.69) and (G.70) become 

 ( ) 2
11 1 2 3, sin( ) sin( )y xw x y W c c x c x

b a
π π = + + + 

   (G.73) 

 
0

11 2

16( , ) sin sin sin sin
xx

xx

T
TT

xx
Mx y x yM x y M

a b a b
π π π π

π
       = =       
         (G.74) 

 
0

11 2

16( , ) sin sin sin sin
yy

yy

T
TT

yy
Mx y x yM x y M

a b a b
π π π π

π
       = =       
         (G.75) 

where yyT
11 11and  MxxTM  are defined in Eqs (G.71) and (G.72) by letting i = j = 1. 

 
Boundary Conditions for simply supported and elastic beam supported boundary are :  

At y = 0 and b (Simply Supported Boundaries) 

 ( ,0) ( , ) 0w x w x b= =  (G.76) 

 ( ,0) ( , ) 0yy yyM x M x b= =  (G.77) 

At x = 0 and a (Elastic Beam Boundaries) 

 (0, ) ( , ) 0xx xxM y M a y= =  (G.78) 
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4

4

(0, )(0, )(0, ) 2 ( (0, ) )xyxx
x

M yM yw yEI V y
y x y

∂∂∂
= + =

∂ ∂ ∂  (G.79) 

 ( )
4

4

( , )( , )( , ) 2 ( , )xyxx
x

M a yM a yw a yEI V a y
y x y

∂∂∂
= − − =

∂ ∂ ∂  (G.80) 

where EI  is flexural rigidity of a elastic beam. The right hand side of Eq. (G.79) and (G.80) 

is the shear force per unit length of plate along the edge (x = 0 and a). 

The generalized deflection function ( ( , )w x y ) must be satisfied on all above boundary 

conditions and governing equation in Eq. (G.65). Suppose that origin (i.e. x = y = 0) is 

maintained at a corner of plate (not at the center of a plate), generalized deflection function in 

Eq. (G.73) can be written in an alternative form as : 

 ( )11 1 2( , ) sin siny xw x y W c x x a c
b a

π π    = + − +          (G.81) 

 We need to check if the generalized deflection ( ( , )w x y ) in Eq. (G.81) satisfies the 

boundary conditions in Eqs. (G.76) to (G.80) or not. 

 

At boundary y = 0 and b (Simply Supported Boundaries) 

Check if the generalized deflection ( ( , )w x y ) is satisfied the boundary condition in Eq. 

(G.76).  

 

( )

( )

11 1 2

11 1 2

(0) ( )( ,0) sin sin ( ) 0
( ,0) 0
( , ) 0 ( ) ( )( , ) sin sin ( ) 0

satisfied

xw x W c x x a c
b aw x

w x b b xw x a W c x x a c
b a

π π

π π

     = + − + =     =        →   =        = + − + =          
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Check if the generalized deflection ( ( , )w x y ) is satisfied the boundary condition in Eq. 

(G.77) (i.e. ( ,0) ( , ) 0yy yyM x M x b= = ). Moment resultants are defined as (Refer to Eq. (A.61) 

in Appendix A) 

 

2 2

2 2

( , ) ( , )( , ) ( , )T
yy xy yy yy

w x y w x yM x y D D M x y
x y

∂ ∂
= − − −

∂ ∂  (G.82) 

 
Substituting the generalized deflection ( ( , )w x y ) from Eq. (G.81) and thermal load moment 

( T
yyM ) from Eq. (G.75) to the above equation . 

( )
2 2

11 1 11 1 22 2

0
2

( , ) sin sin 2 sin sin

16 sin sin
yy

yy xy yy

T

y x y xM x y D W c D W c x x a c
b a a b b a

M x y
a b

π π π π π π

π π
π

          = − − + + + − +                  

   −    
   

 

  (G.83) 

 
Substituting y = 0 and b to the above equation, we obtain ( ,0) ( , ) 0.yy yyM x M x b= = This 

implies that the generalized deflection ( ( , )w x y ) in Eq. (G.81) is satisfied the boundary 

condition in Eq. (G.77). 

 

At boundary x = 0 and a (Elastic Beam Boundaries) 

The boundary condition in Eq. (G.78) is (0, ) ( , ) 0xx xxM y M a y= = . The relation of 1c  

and 2c  will be determined by this boundary condition. The moment resultant ( ( , )xxM x y ) is 

defined as (Refer to Eq. (A.61) in Appendix A)) 

 

2 2

2 2

( , ) ( , )( , ) ( , )T
xx xx xy xx

w x y w x yM x y D D M x y
x y

∂ ∂
= − − −

∂ ∂  (G.84) 
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Substituting the generalized deflection ( ( , )w x y ) from Eq. (G.81) and thermal load moment 

( T
xxM ) from Eq. (G.74) to the above equation. 

( )
2 2

11 1 11 1 22 2

0
2

( , ) sin sin 2 sin sin

16 sin sin
xx

xx xx yy

T

y x y xM x y D W c D W c x x a c
b a a b b a

M x y
a b

π π π π π π

π π
π

          = − − + + + − +                  

   −    
   

  (G.85) 

Substituting x = 0 into the above equation and using boundary condition in Eq. (G.78) (i.e. 

(0, ) 0xxM y = ) to solve for the relation 1c  and 2c ,  

 

2

11 1 11 22(0, ) 2 sin 0xx xx yy
yM y D W c D W c

b b
π π   = − + =       (G.86)

 

The above equation implies that the coefficient of sin( )y
b

π  must be zero for all y. 

Therefore, the relation of 1c  and 2c  can be express as 

 

2

1 222
xy

xx

D
c c

b D
π

=  (G.87) 

The coefficient ( 2c ) in the above equation will be determined by using the boundary 

condition in Eq. (G.79) expressed as 

 

4

4

(0, )(0, )(0, ) 2 xyxx M yM yw yEI
y x y

∂∂∂
= +

∂ ∂ ∂  (G.88) 

The above equation can be written in the general form as 

 

4

4

( , )( , )( , ) 2 xyxx M x yM x yw x yEI
y x y

∂∂∂
= +

∂ ∂ ∂  (G.89) 

Expand the above equation by substituting ( , )w x y from Eq.(G.81), ( , )xxM x y  from Eq. 

(G.85)and ( , )xyM x y  from Eq. (G.6), we have 
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( )

( )
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yWD
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b
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a
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a
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a
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a
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b
yEIW

b

ss

T
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ππ
π

ππππ

ππππππ

 

Substituting x = 0 (for the boundary condition) and 
2

1 222
xy

xx

D
c c

b D
π

= from (G.87) into the 

above equation, we have  

0
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sin4sin16
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2114
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c
Db
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b
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xx
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xyxxe

xx πππππ
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Solve the above equation for 2c   

 
2 0

2 1
11

xxTk Mc k
W

= +  (G.90) 

where 
( )

( )
4 2 2 2 2 2

1 3 2

2 4

2 4
xx xx xy xx ss

e xx xy xy ss

b D a b D D a b D D
k

a B D aD aD Dπ

+ +
=

+ +
 

( )
4

2 5 2

32
2 4

xx

e xx xy xy ss

b Dk
a B D aD aD Dπ

−
=

+ +  

eB EI=
 
 is flexural rigidity of a elastic beam. 

Now 11W  is the only unknown in deflection function ( ( , )w x y ) that we need to determine. 

Substituting thermal moment load ( ,T T
xx yyM M ) and the deflection function ( ( , )w x y ) from 

Eqs (G.74), (G.75) and (G.81), respectively into the governing equation in Eq. (G.65) , we 

have 
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sinsin16sinsin
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x
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yWD
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a
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a
yyxx TT
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xyxx

πππππ
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Dividing both sides of the above equation by 







b
yπsin  

( )
4 2 2 4

11 11 1 11 1 24 2 2 4

0 0
2 2

ˆsin 2 sin 2 sin

16sin
yyxx

xx xy yy

TT

x x xD W D W c D W c x x a c
a a b a a a a

M Mx
a a b

π π π π π π π

π

        + − + + − +              
  = +     

  

Multiplying both sides of the above equation by 







a
xπsin  and integrating with respect 

to x from 0 to a, applying orthogonality conditions of trigonometric function and 

substituting 1c  and 2c from Eqs (G.87) and (G.90), respectively, we obtain 

 11W =
5

0403

k
MkMk yyxx TT +

 (G.91)
 

where 

3k  = xxyyxxxyxyyyxy DbakDDbaDDbaDDa 62
2

24324363 164ˆ84 +







−+ πππ         

4k = xxDba 4416                

3 4 2 6 4 2 4 4 2 2 4 6 2
5 1

ˆ ˆ4 4 8 2xx yy xy yy xy xy xx yy xy xx xxk a b D D a D D a b D D k a b D D a b D D b Dπ π
   

= − − + + +   
   

              

 Finally we obtain the deflection function ( ( , )w x y ) of plate with two opposite edges 

simply supported an the other two edges supported elastically by beams as following 
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 ),( yxw  =  ( ) 







+−+
















2111 sinsin caxxc
a
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b
yW ππ

 (G.92) 

 11W   =
5

0403

k
MkMk yyxx TT +

 (G.93)
 

 1c  =  22

2

2
c

Db
D

xx

xyπ

 
(G.94) 

 2c = 
11

02
1 W

Mkk
xxT

+
 (G.95)

 

 1k   =  
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( )ssxyxyxxe

ssxxxyxxxx
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DDbaDDbaDb
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222224

++

++

π
 (G.96) 

 2k = ( )ssxyxyxxe

xx

DaDaDDBa
Db

42
32

25

4
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−

π
 (G.97) 

 3k   = xxyyxxxyxyyyxy DbakDDbaDDbaDDa 62
2

24324363 164ˆ84 +







−+ πππ  (G.98) 

 4k =  xxDba 4416  (G.99) 

( )3 4 2 6 4 2 4 4 2 2 4 6 2
5 1

ˆ ˆ4 4 8 2xx yy xy yy xy xy xx yy xy xx xxk a b D D a D D a b D D k a b D D a b D D b Dπ π
 

= − − + + + 
   

  (G.100) 

 Linear Elastic Strain of Plate under a Linear Gradient Temperature 

The strain-displacement relation of plate can be defined as (Refer to Eq. A.32 in 

Appendix A) 

 

2
0 1 0 0

_ _ 2

2
0 1 0 0

_ _ 2

xx xx axial xx bending xx xx

yy yy axial yy bending yy yy

u wz z
x x
v wz z
y y

ε ε ε ε ε

ε ε ε ε ε

∂ ∂
= + = + = − ∂ ∂ 


∂ ∂ = + = + = −

∂ ∂ 

 (G.101) 
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The first and second terms of the above equation are the strains due to axial and 

bending effect, respectively.  

For pure bending case, Eq. (G.101) reduced to  

 

2
1 0

_ 2

2
1 0

_ 2

xx bending xx

yy bending yy

wz z
x
wz z
y

ε ε

ε ε

∂
= = − ∂ 


∂ = = −

∂ 

 (G.102) 

Substituting 0 ( , )w x y = ( ) 







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







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

2111 sinsin caxxc
a
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b
yW ππ  from Eq. (G.93) into the 

above equation, we obtain 
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y xW c z
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y xW c x x a c z
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    



   = + − +      

 (G.103) 

 
 

 Linear Elastic Stress of a Plate under a Linear Gradient Temperature 

A linear gradient temperature of a plate can be defined as (Refer to Eq. (A.66) in 

Appendix A) 

 
0 1( )T z T T z∆ = +  

x x x

z z z

-h/2

-h/2
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 The first term ( 0T ) of the above equation is a uniform temperature increment (axial 

effect). The second term ( 1T z ) is the a linear gradient temperature increment which is zero at 

mid-plane of a plate, z = 0 (bending effect). 

 Stress components of a plate can be defined by displacement function or strain. The 

stress-displacement relation can be expressed as (Refer to Eq. (A.42) in Appendix A) 

 

0 1
11 12

0 1
12 22

xx xx xx xx

yy yy yy yy

z TQ Q
Q Q z T

σ ε ε α
σ ε ε α

 + − ∆      =     + − ∆        
 (G.104) 

Substituting 0 1( )T z T T z∆ = +  into the above equation, we obtain 
 

 

0 0 1 1
11 12

0 0 1 1
12 22

( ) ( )

( ) ( )
xx xx xx xx xx

yy yy yy yy yy

T z TQ Q
Q Q T z T

σ ε α ε α
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 − + −      =     − + −        
 (G.105) 

The stress components in the above equation are divided into stresses due to axial and 

bending effects. The first term ( i.e. 0 0
xx xxTε α−  and 0 0

yy yyTε α− ) results in the axial effect. 

The second term ( i.e. 1 1( )xx xxz Tε α− and 1 1( )yy yyz Tε α− ) results in the bending effect. 

Substituting 
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 into the above equation, we obtain the 

stress and displacement relation as 
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 (G.106) 

Note : The  ( 00
xx

u T
x

α∂
−

∂
) and ( 00

yy
v T
y

α∂
−

∂
) terms result in axial effect.  
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The 
2

10
2( )xx

wz T
x

α∂
− +

∂
 and 

 

2
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2( )yy
wz T
y
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− +

∂
 terms result in bending effect. 

For pure bending case, the stress components in Eqs. (G.105) and (G.106) reduced to  
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 (G.107) 

Substituting 0 ( , )w x y = ( ) 

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yW ππ  for Eq.(G.93) into the above 

equation, we obtain stress components for pure bending case as 
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 (G.108) 

  

Design examples for Navier-Levy and Macro approaches can be found in section 5.1 

and 5.2 of chapter 5. 
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