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ABSTRACT 
 

INVENTORY MODELS FOR PRODUCTION SYSTEMS WITH 
CONSTANT/LINEAR DEMAND, TIME VALUE OF MONEY, AND 

PERISHABLE/NON-PERISHABLE ITEMS 
 
 

Karen N. Oganezov 
 

 
This research considers inventory systems for economic production models where the objective 
is to find the optimal cycle time, which minimizes the total cost, and optimal amount of shortage 
if it is allowed. Several aspects such as time value of money, inflation, constant and linear 
demand rates, shortages, and deterioration are considered in developing different models. Closed 
formulas are obtained for the optimal policy in one model. For others, more complex models 
where closed formulas cannot be obtained, search techniques are used to find the optimal 
solution. 
 
First, a deterministic inventory control problem is considered for determination of optimal 
production quantities for an item with constant demand rate, while considering the effect of time 
value of money. Closed formulas are obtained to calculate the optimal cycle time and 
corresponding production quantity for the model without shortage. However, search procedures 
are used to find the optimal cycle time and maximum amount of shortage allowed for the models 
where shortage is allowed. 
 
In the next inventory control problem, a deterministic model for items with linear demand rate 
over time, for a finite planning horizon, while considering the effect of time value of money, is 
considered. Search techniques are developed to find the optimal cycle time for the models 
without shortage, and the optimal cycle time and maximum amount of shortage for the models 
where shortage is allowed. A proof of the existence of a unique optimal point for the cost 
function is presented for the model without shortage. 
 
A deterministic inventory control problem is also considered for items with constant rate of 
demand and exponentially decaying inventory over an infinite planning horizon, while 
considering the effect of time value of money. Two different search techniques are developed to 
find the optimal cycle time for the models without shortage, and the optimal cycle time and 
maximum amount of shortage allowed for the models where shortage is allowed. A proof of the 
existence of a unique optimal point for the cost function is presented for the model without 
shortage.  
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Chapter 1 

Introduction 

 

Most organizations in any sectors of the economy have some type of inventory system. 

Inventories are common to agriculture, manufacture, retail, etc. A hospital, for example, has 

methods to control blood supplies and pharmaceuticals. For many small business owners, 

inventory is one of the most visible and tangible aspects of doing business.  Raw materials, sub-

assemblies, work in process, and finished goods all represent various forms of inventory. 

Government agencies, as well as production and manufacturing organizations are concerned with 

inventory planning and control. Inventories tie up money. Each type of inventory represents 

money tied up until the inventory leaves the company as products. Similarly, merchandise stocks 

in a retail store contribute to profits only when their sale puts money into the cash register. These 

stocks represent a large portion of the business investment and must be managed well in order to 

maximize profits. Investment in inventories represents a considerable amount of money. In fact, 

many small businesses cannot absorb the types of losses that arise from poor inventory 

management.  A review of American industry reveals that in general, 20 - 40% of the total assets 

of companies are tied up in inventory (Tersine 1994). Unless inventories are controlled, they are 

unreliable, inefficient and costly. Cash invested in inventories could be used for other purposes, 

like paying debts or making capital investments.  

Effective inventory management helps organizations to save money. Inventory 

management must determine how much and when to order/produce each item 

purchased/manufactured by the organization. Successful inventory management involves 

balancing the costs of inventory with its benefits.  Many small business owners fail to fully 
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realize the true costs of carrying inventory, which include not only direct costs of storage, 

insurance and taxes, but also the cost of money tied up in inventory.  The fine line between 

keeping too much inventory and not enough is not the manager’s only concern.  Managers 

should consider keeping stocks low, without sacrificing performance or service. They should 

also guard against ending up with obsolete items.  

One of the most important aspects of inventory control is to have the items in stock at the 

moment they are needed.  This includes going into the market to buy the goods early enough to 

ensure delivery at the proper time.  Thus, buying requires advance planning to determine 

inventory needs for each time period and then making the commitments without delay.   

The objective of inventory management is to determine when to order, and how much 

should be ordered in order to minimize the related total costs. The following sections discuss 

relevant cost factors in inventory systems and review the most common inventory models. First, 

the most common assumptions and definitions found in the literature are presented, and then an 

explanation of the cost factors will follow.  

 

1.1. Assumptions 

In general, there are two types of assumptions encountered in the literature. First, general 

assumptions that are found in most inventory problems, and the second type is special 

assumptions that are unique to specific problems. The general assumptions are summarized 

below: 

1. Initial inventory level is zero 

2. Planning horizon is infinite 
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3. Replenishment is either instantaneous or has a finite rate which is known with 

certainty 

4. Shortages either are not allowed or may be allowed and satisfied when 

replenishments are received  

5. On-hand inventory at time zero is zero when shortages are not allowed 

6. Holding cost per unit per year (or any other unit of time) is known 

7. For economic order quantity (EOQ) models order (or lot size) quantities are fixed at 

Q items  

8. Total cost = Setup cost + Purchase (or Production cost) + Holding cost. When 

shortages are allowed, Shortage cost is added to the Total cost 

9. Demand rate is constant and known 

Examples of special assumptions include: 

1. Time value of money. The effect of inflation and time value of money is very 

important and it is now included in most of the recent papers concerning inventory. 

High inflation rates in some countries could undermine the entire economic 

development. Since money tied up in inventories could decrease their actual value 

over time, the effect of inflation rate should be reflected in the development of 

inventory policies. 

2. Inventory items may deteriorate, perish or become obsolete. There are many 

industries where items such as dairy products, medicines and vegetables deteriorate at 

a considerable rate and the loss from deterioration cannot be ignored. The first 

attempt to derive optimal inventory policies for deteriorating items was made by 
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Ghare et al. (1963), who developed an EOQ model for an item that deteriorates 

exponentially.  

3. Demand rate may be linear and known with certainty, a deterministic function, or a 

random variable that follows some probability distribution. Different patterns of 

demand are commonly used to reflect sales in different phases of the product life 

cycle in the market. For example, demand can be increasing linearly when a product 

is in its growth phase, and then it becomes constant in its maturity period, and later it 

becomes a decreasing linear function when the product is in its decline phase. For 

cases that are more general, demand may not be known and is treated as a random 

variable that follows some probability distribution.  

4. Permissible delay in payment. In general, the EOQ model assumes that the payment 

for the order is paid as soon as the items are received. However, in practice suppliers 

may allow for a certain delay in payment without charging interest. The delay in 

payment is advantageous to both customers and suppliers. For suppliers, it is some 

form of price discount to motivate customers to order more quantities from them. 

This assumption received some attention in the literature. Haley and Higgins (1973) 

first introduced the economic order quantity model where permissible delay in 

payment is allowed. Goyal (1985) developed a mathematical formulation for 

determining the EOQ with permissible delay in payment for a single item. Later, 

other authors applied permissible delay in payments for different inventory systems. 

As an example, Liao et al. (2000) applied delay in payments for inventory models for 

deteriorating items.  
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1.2. Types of Inventory Costs 

In the following sections, different types of costs incurred in an inventory system are 

discussed. Basically, there are four major inventory costs. These are: 1) Costs associated with 

ordering when inventories are ordered from external sources, or setup cost when inventories are 

produced internally, 2) Costs associated with procuring or manufacturing the units, 3) Costs of 

carrying the items in inventory, 4) Shortage costs, which are associated with unsatisfied demands 

when the item is out of stock. 

 

1.2.1. Order/Setup Cost 

Ordering cost includes cost of forms, supplies, order processing, clerical support, etc. 

Thus, it includes all the cost components associated with a single order for the given item. When 

items are manufactured, setup costs are substituted for ordering costs. Operations managers can 

lower ordering costs by using efficient procedures such as electronic ordering and payment. The 

setup cost is mainly the cost incurred in preparing a machine or process for manufacturing an 

order. It includes the cost associated with the loss of production time, and labor cost for cleaning 

and changing tools or holders (Heizer 2001). 

 

1.2.2. Purchase or Production Cost 

Depending on the type of inventory model considered, there would be a cost associated 

with purchasing an item or a cost associated with producing it. For the purchasing case, 

purchasing cost simply represents the price of the purchased units. Besides, there are other costs 

incurred during procurement, such as transportation or freight cost. For the production case, 

production cost is the cost of the unit produced, which includes direct labor, direct material, etc. 
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It may be appropriate and more practical to divide this cost into two parts. An initial cost, which 

occurs at the beginning of each cycle and is applied to the entire quantity produced during the 

production period, and a running cost which is occurred as production progresses and applies to 

the individual units produced. As an example, one may consider the situation where the initial 

cost is the cost of the raw material for the entire production quantity, which is paid at the 

beginning of the cycle, and the second is the labor cost associated with production process, paid 

continuously during production.  

 

1.2.3. Holding Cost 

Holding costs are the costs associated with holding or carrying inventory over time. They 

include several components such as obsolescence, warehouse rental or usage, costs related to 

storage such as light and cooling/heating, and costs paid out of pocket such as insurance, taxes, 

extra interest payments, breakage and pilferage at the storage site, etc. There is also another very 

important component: The opportunity cost. This is the cost incurred for having money tied up in 

inventory rather than investing it. In estimating this cost, one should use the largest rate of return 

that the company could have obtained from alternative investment (Hadley and Whitin 1963). It 

is very difficult to represent accurately all the costs of carrying inventory.  The usual range of 

annual holding cost is 20% – 40% of the inventory investment. Many firms fail to account for all 

of the inventory holding costs. Consequently, inventory holding costs are often understated 

(Heizer 2001). 
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1.2.4. Shortage Cost 

Shortage cost occurs when the system is out of stock, but demand still exists. There are 

two types of shortage costs that depend on the reaction of the customer to the out-of-stock 

situation. First, when a company is out of stock and receives an order, it may take some costly 

steps to fill the order. This is the case of backorders, where the sale is not lost, but additional 

costs are incurred, such as special handling, shipping, and packaging costs. The second case is 

when the sale is lost. In this case, the company will lose potential profit from the sale, in addition 

to intangible loss of goodwill. A goodwill loss could cost the company a loss of future sales since 

the prospective customer might not come back to purchase other items in the future. For 

production companies, if the raw material is out-of-stock, the whole production process may 

have to shut down and the associated cost could be very high (Starr and Miller 1962). 

 

1.3. Models of Inventory Systems 

Based on the type of demand, whether it is constant or a function of some variables, and 

on the replenishment type, whether through production or by ordering, different models can be 

identified for deterministic single item inventory systems as discussed in the following sections. 

 

1.3.1. Economic Order Quantity (EOQ) for Single Item with Constant Demand 

This model is generally referred to as the classical inventory model (Tersine 1994). It 

assumes that demand rate for the item is constant and known with certainty. Although in the real 

world, demand is usually probabilistic and not constant, deterministic models are still a very 

good approximation and good starting point for describing the inventory system. Also, many 

products have relatively stable demands, such as toiletries, toothpaste, etc. 
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As shown in Figure 1.1, after receiving an order, the inventory level becomes Q units. 

These units are consumed with a constant demand rate D until they are all gone. When the 

inventory level reaches the reorder point R, a new order is placed for Q new units. The new items 

are received and placed in inventory just as the inventory level reaches zero. Models have been 

developed for cases with no shortage, or when shortage is allowed and fully satisfied from the 

new shipment.  

 
Figure 1.1  EOQ with constant demand 

 

1.3.2. Economic Order Quantity (EOQ) for Single Item with Linear Demand 

For many inventory systems, such as those for electronic products, clothes, and domestic 

goods, the demand rate may constantly increase after the successful introduction into the market.  

The demand for the products could also drop at a constant rate after the maturity period. 

The demand rate of the product during its introduction or in its decline phase may be 

approximated as linearly increasing or decreasing functions, respectively. Many papers have 

considered EOQ models with demand as a linear function. Donaldson (1977) was the first to 

introduce and develop an EOQ model in which shortages were not allowed and the demand had a 

linearly increasing function over time over a finite time horizon, H. Figure 1.2 presents the EOQ 

model with linearly increasing demand, when demand at time t, D(t), is equal to a + bt where a 

and b are constant. Cycle time may be considered as either constant for all cycles, or it may vary 
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between cycles. If order quantity, Q, is constant, then cycle time changes between cycles. This 

model can also be considered when shortages are allowed and satisfied from the new shipment. 

 

 

 

 

 

 

 
Figure 1.2  EOQ with linearly increasing demand 

 

1.3.3. Economic Production Quantity (EPQ) for Single Item with Constant Demand  

In EOQ models, it is assumed that the entire inventory order, Q, is received at one time. 

There are cases, however, where the firm receives its inventory over a period of time or where 

the item is produced locally rather than purchased. Such cases require a different model, one that 

does not  assume  instantaneous  replenishment  of the item.  Because this model is especially 

suitable for the production environments, it is commonly called the production order quantity 

model. EPQ models, with and without shortages, have been addressed in many articles and 

textbooks, dating back to the early 1960s (e.g. Hadley and Whitin 1963). This model is useful 

when units are continuously added to inventory over time, while production is in process. The 

general EOQ assumptions are still valid (Heizer 2001). As shown in Figure 1.3, the inventory on-

hand increases at the rate p – D; this is the production rate minus the consumption rate during the 

production time. At tp, the end of the production period, the production process stops and the 

inventory level reaches Q1, its maximum. If there were no consumption from zero to tp, the 
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inventory level would have increased up to quantity Q at the production rate p. After tp, the 

inventory decreases at the consumption rate D until the inventory level reaches zero at the end of 

the cycle T, where the production process resumes again. The model can also be considered with 

backordering, when system is out of stock but the demand still exists. Backorders accumulate 

until the end of the cycle, where the production process starts again.  

 

 

 

 

 

 

 
 

Figure 1.3  EPQ with constant demand 

 

1.3.4. Economic Production Quantity (EPQ) for Single Item with Linear Demand 

This model is applied for items manufactured and consumed at the same time with a 

linearly increasing or decreasing demand. The model is applied only for a finite planning 

horizon. Production time tp, which is the length of the production period, would change for every 

cycle because of the linear change in demand while cycle time T is considered to be constant 

over the planning horizon. Hong et al. (1990) introduced production policies for linearly 

increasing demand with finite and uniform production rate. The inventory scheme shown in 

Figure 1.4 is used to develop the details of the system. This model can also be considered while 

allowing for shortages. 
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Figure 1.4  EPQ with linearly increasing demand 

 

1.4. Statement of the Problem and Research Objective 

The inventory models proposed in this research are for production inventory systems 

where items are manufactured within the organization and distributed or consumed 

simultaneously. The literature is very rich with discussion of inventory models. Many papers 

have been published where different inventory models were introduced and developed. Most of 

the published papers are concentrated around developing solutions for EOQ models. Different 

aspects of EOQ have been discussed and analyzed such as time value of money, allowable 

shortages and constant vs. non-constant demand rates. Not many authors, however, have 

addressed the problem of economic production quantities. No attempt could be found in the 

literature to develop inventory models for production policies with time value of money or 

linearly changing demand. 

The objective of this study is to find the optimal cycle time (quantity of manufactured 

items), and optimal amount of backorders where different inventory concepts such as time value 

of money, inflation, constant or linear demand, shortages, and deterioration are considered. The 
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planning horizon for the models in most of the cases is finite. For some cases where demand rate 

is constant, the optimal replenishment policy will be derived for an infinite planning horizon. For 

models with linear trend in demand production, the production time tp will change for every 

cycle because of the linear change in demand while the cycle time T will be considered fixed 

over the planning horizon. 

The first problem to be considered will investigate the EPQ models where time value of 

money is applied and demand is known and constant over time. Two different models are 

developed. In the first model, no shortage is allowed, while the second model allows for 

shortages. In each model, two different cost functions are considered. In the first case, the 

production cost is incurred at the beginning of the cycle. In the second case, two costs are 

applied in the production process, the first (initial cost) occurs at the beginning of the cycle and 

is applied to the entire quantity produced during the cycle, while the second cost (running cost) 

takes place at the time of production and applies only to the quantity produced at that time. 

Closed formulas are obtained to calculate the optimal cycle time and corresponding production 

quantity for the models without shortage. Search procedures are used to find the optimal cycle 

time and maximum amount of shortage allowed for the models where shortage is allowed. 

The second problem to be investigated will consider the EPQ models with time value of 

money, known but variable demand that is a linear function of time. For this problem, again two 

models will be developed, with and without shortages and using two production cost functions as 

described above. Search techniques will be developed to search for the optimal cycle time for the 

models without shortage, and the optimal cycle time and maximum amount of shortage for the 

models where shortage is allowed. A proof of the existence of a unique optimal point for the cost 

function will be presented for the model without shortage. 
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The last problem is similar to the first one, but it will investigate the EPQ models with 

time value of money and exponentially decaying inventory. Similar to the first two problems, 

models will be developed with and without shortages and using two production cost functions. 

Two different search techniques will be developed to search for the optimal cycle time for the 

models without shortage, and the optimal cycle time and maximum amount of shortage allowed 

for the models where shortage is allowed. A proof of the existence of a unique optimal point for 

the cost function will be presented for the model without shortage.  

Chapter 2 of this document presents the literature related to the problem. Chapter 3 gives 

an introduction to inventory problems with and without shortages that take into account the 

effects of time value of money. Closed formulas are presented for the models without shortages. 

Chapter 4 gives a detailed formulation of the deterministic single item models with linearly 

increasing demand rate with and without shortages. Optimal solutions and numerical examples 

are presented as well. A proof of the existence of a unique optimal point for the cost function is 

presented for the model without shortage. Chapter 5 is concerned with developing the 

mathematical formulations related to models with inventory deterioration. Chapter 6 presents 

conclusions and suggestions for future research. 
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Chapter 2 

Literature Review 

 

The study of inventory models has been widely discussed in the literature during the past 

several decades. Many papers have been published where different inventory models were 

introduced and developed. Most of the papers are concentrated on the development of solutions 

for economic order quantity models. Different aspects of EOQ models were discussed and 

analyzed, such as time value of money, allowable shortages, and different types of demand. In 

the following sections, a review of the recent literature for both EOQ and EPQ models is 

presented. 

 

2.1. EOQ without Time Value of Money 

Economic order quantity models were developed a long time ago and became very 

popular after World War II (Hadley and Whitin 1963). The basic EOQ model is presented in 

almost all books as a classical example of inventory management. Most of the papers found in 

the literature concentrate on developing inventory systems for EOQ models. 

 

2.1.1. Constant Demand 

Chung (1998) explored the problem of EOQ with the assumption of permissible delay in 

payment. His work was based on the paper by Goyal (1985) who initially presented the model. 

The article investigated an alternative approach for the determination of the EOQ. First, he 

showed that total annual cost is a convex function and then developed a simple theorem for 

determining the EOQ to simplify the solution procedure described by Goyal (1985). 
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The economic ordering policy with constant demand rate for deteriorating items and 

permissible delay in payments was presented by Aggarwal and Jaggi (1995). In a few industries, 

there are items such as radioactive materials, highly volatile substances, etc., for which the rate 

of deterioration is significantly high and the loss associated with deterioration cannot be ignored. 

Chu et al. (1998) continued research on that model and investigated the convexity of the total 

cost function. They showed that the total cost function is piecewise-convex, and developed a 

better solution procedure than the one presented by Aggarwal and Jaggi (1995). 

The EOQ model with a deterministic and continuous demand was applied to an inventory 

system for a recoverable item by Teunter (2001). A simple square root EOQ formula was derived 

for the inventory system with items that can be recovered (i.e. repaired, refurbished or 

remanufactured). Repair brings an item to a working condition. Refurbishing increases the 

quality of the product and brings it to a specified level. Remanufacturing makes the quality of an 

item as good as new. 

 

2.1.2. Variable Demand 

An inventory model for deteriorating items, linear trend in demand, and allowing 

shortages was presented by Bhunia and Maiti (1999). In this paper, the assumption of constant 

replenishment cost for the finite time horizon was relaxed. The replenishment cost includes 

transportation costs, and loading and unloading costs that depend on the lot size. Since the 

demand increases linearly, the optimal lot-size would change in every cycle. Therefore, the 

replenishment cost cannot be the same for the successive replenishments. The results for the 

model without shortages were also derived as a special case. 
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Wang (2002) considered an inventory model with linear demand for deteriorating items, 

with shortages and partial backlogging. In earlier research it was assumed, that the shortages in 

inventory were either fully backordered or totally lost. In this paper, a more realistic scenario 

was assumed where part of the shortage was backordered and the rest was lost. The backordering 

rate was defined, as well as the opportunity cost due to lost sales. The backordering rate 

describes the percentage of customers who would like to wait for their order to be satisfied in the 

next cycle. This rate would decrease with the waiting time for the next replenishment. Numerical 

examples were presented to show the effects of changes of backordering rate and opportunity 

cost on the total cost and on the optimal number of replenishments. 

 

2.2. EOQ with Time Value of Money 

Consideration of the time value of money was one of the first “special concepts” applied 

to the basic EOQ model. In this section, literature review is presented for time value of money, 

with static and variable demands, along with other special concepts considered in inventory 

models.  

 

2.2.1. Constant Demand 

First, the EOQ model, with constant demand rate under inflationary conditions with an 

effect on all costs, was analyzed by Buzacott (1975). He showed that the effect of inflation 

results in cost increases. The effect of inflation was considered in the main cost components, and 

the optimal order quantity expression was developed. 

The EOQ model has been expanded in many ways to improve Buzacott’s model and 

bring it closer to real life problems. Moon and Lee (2000) discussed the EOQ model for a 
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constant demand, where time value of money is considered and life of the product changes 

randomly. Normal and exponential distributions were considered for the product life cycle. 

Simulation models were developed for use with other probability distributions.  

Liao et al. (2000) discussed an EOQ inventory model with time value of money, 

deteriorating items and permissible delay in payment, with a constant demand rate. In that study, 

the inventory model was developed and expressions were obtained for the inventory system’s 

total cost under two different conditions. First, when the permissible credit period for payment is 

less than the cycle time, and second, when it is greater than the cycle time. Sarker et al. (2000) 

investigated a similar problem while allowing for shortages. The present value of the total cost 

was first developed, and then the optimal ordering quantity and maximum allowable shortage 

were obtained using a search technique. The purpose of the paper was to aid retailers of 

perishable products to determine the EOQ, where inflation is considered and a delay in payments 

for purchased products is allowed.  

 

2.2.2. Variable Demand 

In general, the classical EOQ models assume constant demand over an infinite planning 

horizon. This assumption is valid during the maturing phase of the product life cycle and for a 

finite period of time. In other phases of a product life demand for the product may increase after 

its successful introduction into the market or decrease due to, for example, introduction of new 

competitive products. The inventory model with a linear trend in demand was initially introduced 

by Donaldson (1977). Several other papers were also published with linearly increasing or 

decreasing demand. Time value of money and inflation were not considered in those papers.  
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Hariga and Ben-Daya (1996) incorporated inflationary conditions into the inventory 

problem with linear trend in demand and developed optimal solution procedures with and 

without shortages. The models relax the assumptions of equal replenishment cycles and equal 

positive inventory periods in each cycle.  

Ray and Chaudhuri (1997) considered an inventory model with shortages allowed and 

effects of inflation taken into account, where demand rate depends on the on-hand inventory 

level. The paper states that it was observed that the demand in supermarkets is usually influenced 

by the amount of inventory presented on the shelves. The paper claims that it is a common belief 

that consumers would have been tempted to buy more of some products if a large quantity of that 

product is placed on the shelves in the supermarkets. Hence, the demand is in direct relation to 

the level of inventory at any particular moment.  

Chen (1998) introduced a model for a deteriorating item, where effects of inflation and 

time value of money were considered, shortages were permitted, and the demand rate was 

considered linear. The deterioration rate was considered a random variable, which follows the 

Weibull distribution. The solution of the model determines the optimal replenishment schedule 

over a finite planning horizon. The paper proposed a dynamic programming model for obtaining 

the optimal policy.  

Another type of demand rate was considered by Yang et al. (2001), where this rate 

fluctuates over time. It is a more general case than increasing, decreasing or stable demand 

patterns. The inventory model considers the effect of inflation, deteriorating items and shortages. 

The model can also be applied to the cases with no shortages or no deterioration. Four possible 

scenarios for replenishment were analyzed to identify the least expensive policy to follow.  

These scenarios include models where the inventory is permitted to start and/or end with 
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shortages. They finally showed that the cost function is a convex function of the number of 

replenishments, hence by searching for a local minimum, the optimal number of replenishments 

will be found. Later, a paper presented by Skouri and Papachristos (2002) showed by examples 

that the solution algorithm proposed by Yang et al. does not work for all cases and hence does 

not lead to the optimal replenishment schedule.  

Linear trend in demand, shortages during the finite planning horizon, and time value of 

money were considered for an inventory model with deteriorating items by Chung and Tsai 

(2001). A solution algorithm using a line search was used to determine the optimal time interval 

or optimal order quantity. Hou (2006) developed a similar model in which he considered stock-

dependent consumption rate.  

 

2.3. EPQ without Time Value of Money 

In many industries, the products and supplies are not ordered and received by the 

companies, but rather produced within the company. In that case, the main decision for inventory 

management is how much to manufacture in each cycle so that the total cost is minimized. 

Balkhi and Benkherouf (1996) proved the uniqueness of the optimal replenishment schedule for 

a similar model in which the planning horizon is finite. 

Balkhi (2001) discussed an inventory model for deteriorating items where demand and 

production rate are known and continuous functions of time (e.g. linear function). A finite 

planning horizon was considered and shortages were allowed and fully backordered. A 

mathematical model was developed and the conditions under which the total cost of inventory 

system achieves its unique global minimum were obtained. 
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Giri et al. (2005) introduced an EPQ model where demand rate increases with time (e.g. 

linear function), the production rate is finite and adjustable in each cycle over an infinite 

planning horizon, and shortages are permitted and partially backordered. They suggested a 

procedure to approximately find the minimum total cost of the system over a finite time horizon. 

Teng and Chang (2005) developed an EPQ model for deteriorating items when the 

demand rate depends on both selling price per unit and on-display stock level. In addition, a 

restriction was imposed on the number of stocks on-display. An algorithm for finding the 

optimal solution to maximize the profit was proposed. 

 

2.4. EPQ with Time Value of Money  

Chandra and Bahner (1985) introduced the concept of time value of money for 

production inventory system. A search technique was suggested to use in order to obtain the 

optimal policy and the present worth of the total cost. Sensitivity analyses were performed for 

both cases, and it was concluded that optimum order policies of the economic order system and 

production system as well as total costs were significantly affected by inflation and time value of 

money. The effect becomes more significant when the inflation rate increases.  

Dohi et al. (1992) proposed inventory policies for infinite time horizon, taking into 

account the time value of money. They assumed that items are uniformly delivered, and did not 

include production cost in their models. Chung (1996) proposed an algorithm to compute the 

optimal ordering time interval for the models developed by Dohi. Chung et al. (1998) developed 

a simple algorithm to solve the same problem, without some the assumptions that were made by 

Chung. 
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Wee and Law (1999) developed a production inventory model for a deteriorating item 

with price-dependent demand. They also considered shortages and time value of money. The 

deterioration rate was assumed a random variable that follows the Weibull distribution. An 

optimization procedure was presented and applied to search for optimal production policies that 

maximize the total net present value of profit. 
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Chapter 3 

EPQ Models with and without Shortages and Time Value of Money 
 

 
In general, production order quantity models are used for cases where the firm receives 

its inventory over a period of time or where the item is produced locally rather than purchased. 

These models are useful when units are continuously added to the inventory over time while the 

production is in process. In that case, the main decision for inventory management is to 

determine how much to manufacture so that the total cost is minimized. This chapter considers 

some of the aspects examined in the literature for EOQ models and applies them to economic 

production quantity (EPQ) models. The objective of this study is to find the optimal inventory 

policies when time value of money is considered and demand is constant over time.  

Models are developed with and without shortages while using two production cost 

functions. In the first case, the production cost is incurred at the beginning of the cycle. In the 

second case, production cost is divided into two parts: an initial cost, which occurs at the 

beginning of each cycle and is applied to the entire quantity produced during the cycle, and a 

running cost that is incurred as production progresses and is applied to the individual units 

produced. As an example, one may consider the situation where the initial cost is the cost of the 

raw material for the entire production quantity, which is acquired at the beginning of the cycle, 

and the second (running cost) is the labor cost associated with the production process and is paid 

as the production takes place. 

Time value of money was one of the first “special concepts” considered with the basic 

EOQ model. The effect of time value of money is very important and should be reflected in the 

development of inventory models. Since money tied up in inventories can change its actual value 

over time, the effect of inflation rate can affect the optimal policies.  
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In this chapter, models are developed for an infinite planning horizon while considering 

time value of money. Closed formulas are obtained in models where shortage is not allowed, for 

the optimal policies and the corresponding costs, which has not been accomplished in the 

existing literature. Search techniques are developed to find the optimal cycle time and maximum 

amount of shortage for models where shortage is allowed. 

 

3.1. Assumptions 

The general assumptions presented in Chapter 1 are used in the mathematical models 

developed in this chapter. Additionally, the following assumptions are also made:  

1. Replenishment rate is finite and constant during the production time. 

2. Demand rate is constant and less than the production rate. 

 

3.2. Inventory Models with no Shortage 

The objective of the inventory models is to determine the optimal cycle time or the 

corresponding optimal production quantity in order to minimize the total relevant cost. 

Consequently, the production time and the maximum inventory level can be easily calculated. 

Figure 3.1 represents the EPQ model with constant demand. The inventory on-hand increases 

with the rate p – D, which is the production rate minus consumption rate, until time tp when the 

production process stops and the inventory on hand reaches its maximum level, Q1. After that 

point, the inventory level decreases with the consumption rate, D, until it becomes zero at the 

end of the cycle, T, when the production process is resumed again. 

The total cost TC(T) for this EPQ model consists of three elements: 

TC(T) = Setup Cost + Production Cost + Holding Cost 
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Figure 3.1  EPQ model with constant demand 
 
 

3.2.1. Case 1 

For this case, the setup cost and the production cost are assumed to be incurred at the 

beginning of each cycle, and the inventory holding cost is incurred continuously during the 

period T.  

During the first cycle, the inventory level, I(t), at time t is equal to:  
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where F is inventory carrying rate and c is unit production cost. 

To incorporate the effect of time value of money into the equations, the difference 

between the interest rate and inflation rate is calculated as r, the inflation free or real interest rate 

representing the time value of money:  
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Assuming continuous compounding and a constant setup cost, A, the present value of the 

total cost of the inventory system for the first cycle, P, can be expressed as: 
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Integrating by parts, we get, after some simplifications: 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

−
=−

−
−−∫ r

eet
rr

DpFcdtteDpFc
p

p

p rt
rt

p

t
rt 1

0

 

and 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+=− −−−∫ r

tTee
r

FcDdteDtDTFc p
rtrT

T

t

rt p

p

1  

Substituting these expressions into Equation (3.1) and simplifying, we get the present 

value of the total cost for the first period: 
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According to Figure 3.2, the present value, P, for the first period is repeated at the start of 

each of the subsequent cycles. The present value of the total cost for N cycles, Pt, can then be 

calculated as follows:  
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Figure 3.2  Cash flow diagram 
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For an infinite planning horizon, N → ∞, and Pt can be expressed as: 

    ⎟
⎠
⎞

⎜
⎝
⎛
−

= −rTt e
PP

1
1          (3.3) 

Substituting Equation (3.2) into Equation (3.3) we get the present value, Pt, of the total 

cost: 
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The present value of the total cost function, Pt, is a function of the length of the cycle, T. 

Taking the first derivative of Pt with respect to T and equating to zero, we get: 
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Using a common denominator and after some simplifications, the equation can be written 

as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−+−++=
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

D
Dp

r
Fe

rD
Fpe

r
FrT

cD
rAe p

rDT
p
DprT

rT 1        (3.6) 

For simplicity, the following constants are defined: 
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Equation (3.6) can then be written as follows: 
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In general, xe
 
can be expressed as the following series:  

( ) ( ) ( )
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1

432 xxxxe x  

Applying this expansion to each of rTe , rTVe and p
rDT

e
−

, and ignoring the cubic and 

higher terms, which are very close to zero, Equation (3.7) becomes:  
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r
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It should be noted that the value of rT is usually smaller than 0.01, and since V and 
p
D  

are always smaller than one (in fact, their sum is equal to one), the values of rTV and 
p

rDT  are 

even smaller. The cubic terms are hence smaller than 610*
6
1 − . Higher terms are even much 

smaller.  

After some simplifications, and using the original values of K, U and V, the following 

equation is obtained: 

( )
cD
pAFDFpprT 22 =−+  

and the optimal cycle time can be defined as: 

     
)(

2*

FDFpprcD
ApT

−+
=         (3.9) 

The corresponding production quantity is: 
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The above formulas reduce to the standard equations of optimal production quantity and 

cycle time when the value of r is equal to zero:  

)(
2*

DpFcD
ApT
−

=        (3.11) 

)(
2**

DpFc
ADpDTQ
−

==       (3.12) 

 
3.2.2. Case 2 

In the second case, the production cost, c, has two components. A cost, c1, that is incurred 

at the beginning of each cycle and is applied to the total quantity produced during the cycle, and 

a second cost, c2, which is incurred as the production process takes place.  

The total cost for this model consists of the same three elements as in the first model: 

TC(T) = Setup Cost + Production Cost + Holding Cost 

The difference between the two cases is only in the production cost. With continuous 

compounding, the present value of the production cost of the system during the first cycle is now 

defined as follows: 

Production Cost = ∫ −+
pt

rtdtepcQc
0

21         (3.13) 

The present value of the total cost of the inventory system for the first period becomes: 
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21      (3.14) 

where c3 = c1 + c2 
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The procedure followed in Case 1 is repeated and leads to the following value for the 

total cost for all cycles:  

( ) ( ) ( ) 2
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Taking the derivative of Pt with respect to T and equating it to zero, then following the 

same procedure used in Case 1, the optimal cycle time is obtained as: 

( )( )( )[ ]DprcccFprcD
ApT

−+++
=

2211

* 2            (3.16) 

The corresponding production quantity is:  

( )( )( )[ ]DprcccFprc
ADpDTQ

−+++
==

2211

** 2      (3.17) 

 

3.3. Numerical Example and Sensitivity Analysis 

A numerical example is presented below to illustrate the application of the models 

developed. The following data are used: 

p = 4500 units/yr, D = 1500 units/yr, A = 50 $/order, F = 0.15 $/$/yr, c = 2 $/unit 

The model was applied for Case 1, using different values for the real interest rate, and the 

results obtained are summarized in Table 3.1. When the value of r is equal to zero, the standard 

equations for optimal production quantity and cycle time were used to calculate T and Q. Since 

the present value of the total cost, with infinite horizon, approaches infinity as r approaches zero, 

the present value of the total relevant cost for the first year was calculated using the results of the 

infinite horizon policy, and pro-rating the value for the partial cycle at the end of the year. Figure 

3.3 shows the relation between cycle time and the real interest rate. As expected, the cycle time 
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decreases as the real interest rate increases. Accordingly, the optimal production quantity, Q, 

decreases with high real interest rates. The present value of the total cost also decreases as the 

real interest rate increases. 

For Case 2, the same example was used, with the same parameters. The only difference is 

that the production cost, c, is substituted with a raw material cost c1 = 1.5 $/unit, and a labor cost        

c2 = 0.5 $/unit. The results are summarized in Table 3.1. As in Case 1, the cycle time and order 

quantity decrease as the real interest rate increases. The results obtained for the two cases are 

almost identical. 

 
Case 1 Case 2 Real 

interest 
rate r 
(%) 

T 
(m) 

Q 
(units) 

Pt 
($) 

PV for 
first year 

($) 

T 
(m) 

Q 
(units)

Pt 
($) 

PV for 
first year

($) 
0% 6.93 866.03 - 3,173.21 6.93 866.03 - 3,173.21 
1% 6.61 825.72 318,194.20 3,165.37 6.63 828.87 318,125.14 3,164.66 
2% 6.32 790.57 159,515.57 3,157.82 6.37 796.12 159,449.24 3,156.40 
3% 6.08 759.55 106,611.92 3,150.56 6.14 766.96 106,548.01 3,148.45 
4% 5.86 731.93 80,152.91 3,142.16 5.93 740.80 80,091.18 3,140.06 
5% 5.66 707.11 64,272.35 3,132.80 5.74 717.14 64,212.59 3,130.24 
6% 5.48 684.65 53,681.44 3,123.25 5.56 695.61 53,623.46 3,120.22 
7% 5.31 664.21 46,113.49 3,113.62 5.41 675.91 46,057.14 3,110.11 
8% 5.16 645.50 40,435.11 3,103.98 5.26 657.79 40,380.26 3,099.98 
9% 5.03 628.28 36,016.62 3,094.37 5.13 641.06 35,963.16 3,089.87 
10% 4.90 612.37 32,480.20 3,084.85 5.00 625.54 32,428.02 3,079.84 
11% 4.78 597.61 29,585.38 3,075.42 4.89 611.10 29,534.39 3,069.90 
12% 4.67 583.87 27,171.85 3,066.12 4.78 597.61 27,121.98 3,060.07 
13% 4.57 571.04  25,128.63 3,056.95  4.68 584.98 25,079.80 3,050.37 
14% 4.47 559.02  23,376.42 3,047.91  4.58 573.12 23,328.56 3,040.80 
15% 4.38 547.72  21,857.06 3,039.02  4.50 561.95 21,810.13 3,031.37 

 
Table 3.1  Optimal ordering policies for different values of r for Cases 1 and 2 
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Figure 3.3  Effect of real interest rate r on cycle time T  
and present value of the total cost Pt 

 
 

Tables 3.2, 3.3, and 3.4 along with Figures 3.4, 3.5, and 3.6 show the results obtained for 

different values of carrying rate, F, demand rate, D, and setup cost, A, and the behavior of T and 

Pt with respect to those parameters. As expected, with the increase in F and D the cycle time gets 

smaller. The increase in setup cost leads to increase in the value of T. The present value of the 

total cost increases with the increase of these parameters. It increases significantly with the 

increase in D, increases with a lesser degree with the increase in A, and remains relatively flat 

with changes in F. 
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Case 1 Case 2 Carrying 
rate F 
(%) 

T 
(m) 

Q 
(units) 

Pt 
($) 

T 
(m) 

Q 
(units) 

Pt 
($) 

5% 6.51 813.49 39,836.75 6.71 838.53  39,767.14  
6% 6.32 790.57 39,903.35 6.51 813.49  39,835.77  
7% 6.16 769.48 39,968.14 6.32 790.57  39,902.42  
8% 6.00 750.00 40,031.26 6.16 769.48  39,967.26  
9% 5.86 731.93 40,092.84 6.00 750.00  40,030.42  
10% 5.72 715.10 40,152.97 5.86 731.93  40,092.04  
11% 5.60 699.38 40,211.77 5.72 715.10  40,152.21  
12% 5.48 684.65 40,269.30 5.60 699.38  40,211.04  
13% 5.37 670.82 40,325.66 5.48 684.65  40,268.60  
14% 5.26 657.79 40,380.91 5.37 670.82  40,324.99  
15% 5.16 645.50 40,435.11 5.26 657.79  40,380.26  
16% 5.07 633.87 40,488.32 5.16 645.50  40,434.49  
17% 4.98 622.84 40,540.60 5.07 633.87  40,487.72  
18% 4.90 612.37 40,591.98 4.98 622.84  40,540.02  
19% 4.82 602.41 40,642.52 4.90 612.37  40,591.42  
20% 4.74 592.93 40,692.25 4.82 602.41  40,641.98  

 
Table 3.2  Optimal ordering policies for different values of F for Cases 1 and 2 
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Figure 3.4  Effect of carrying rate F on cycle time T  
and present value of the total cost Pt 
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Case 1 Case 2 Demand 
rate D  
(units) 

T 
(m) 

Q 
(units) 

Pt 
($) 

T 
(m) 

Q 
(units)

Pt 
($) 

1,000 6.05 504.22 27,510.37 6.12 510.02 27,481.84 
1,100 5.82 533.37 30,109.04 5.89 540.24 30,075.85 
1,200 5.62 561.95 32,700.17 5.70 570.01 32,662.01 
1,300 5.45 590.10 35,284.50 5.53 599.45 35,241.08 
1,400 5.30 617.91 37,862.65 5.39 628.67 37,813.67 
1,500 5.16 645.50 40,435.11 5.26 657.79 40,380.26 
1,600 5.05 672.93 43,002.31 5.15 686.89 42,941.29 
1,700 4.94 700.27 45,564.59 5.05 716.05 45,497.08 
1,800 4.85 727.61 48,122.25 4.97 745.36 48,047.94 
1,900 4.77 754.98 50,675.55 4.89 774.87 50,594.12 
2,000 4.69 782.46 53,224.72 4.83 804.66 53,135.81 

 
Table 3.3  Optimal ordering policies for different values of D for Cases 1 and 2  
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Figure 3.5  Effect of demand rate D on cycle time T  
and present value of the total cost Pt 
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Case 1 Case 2 Setup 
Cost A  

($/order) 
T 

(m) 
Q 

(units) 
Pt 
($) 

T 
(m) 

Q 
(units) 

Pt 
($) 

10  2.31 288.68 38,805.10 2.35 294.17  38,780.71  
20  3.27 408.25 39,349.25 3.33 416.03  39,314.69  
30  4.00 500.00 39,768.21 4.08 509.52  39,725.82  
40  4.62 577.35 40,122.36 4.71 588.35  40,073.36  
50  5.16 645.50 40,435.11 5.26 657.79  40,380.26  
60  5.66 707.11 40,718.44 5.76 720.58  40,658.30  
70  6.11 763.76 40,979.49 6.23 778.31  40,914.47  
80  6.53 816.50 41,222.88 6.66 832.05  41,153.33  
90  6.93 866.03 41,451.86 7.06 882.52  41,378.03  
100  7.30 912.87 41,668.77 7.44 930.26  41,590.88  
110  7.66 957.43 41,875.37 7.81 975.67  41,793.63  
120  8.00 1,000.00 42,073.06 8.15 1,019.05 41,987.63  
130  8.33 1,040.83 42,262.92 8.49 1,060.66 42,173.94  

 
Table 3.4  Optimal ordering policies for different values of A for Cases 1 and 2 
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Figure 3.6  Effect of setup cost A on cycle time T  
and present value of the total cost Pt 
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Computational experience has also shown that any increase in any of the two components 

of the production cost for Case 2 would lead to shorter cycle times and smaller production 

quantities, and considerably increases the present value of the total cost. Table 3.5 and Figure 3.7 

show the results and behavior of cycle time, T, and present value of he total cost, Pt, with respect 

to simultaneous changes in both costs c1 and c2. These behaviors are attributed to the fact that 

higher unit costs result in increases of the holding cost, which force the cycle time to get smaller 

and make the total cost higher. 

 
Raw material cost c1, 

$/unit 
Labor cost c2, 

$/unit c = c1 + c2 
T 

(months)
Q 

(units) 
Pt 
($) 

$0.30  $0.10  $0.40  11.77 1,470.87  8,804.73 
$0.60  $0.20  $0.80  8.32 1,040.06  16,832.67 
$0.90  $0.30  $1.20  6.79 849.21  24,737.80 
$1.20  $0.40  $1.60  5.88 735.44  32,579.35 
$1.50  $0.50  $2.00  5.26 657.79  40,380.26 
$1.80  $0.60  $2.40  4.80 600.48  48,152.31 
$2.10  $0.70  $2.80  4.45 555.94  55,902.49 
$2.40  $0.80  $3.20  4.16 520.03  63,635.35 
$2.70  $0.90  $3.60  3.92 490.29  71,354.06 
$3.00  $1.00  $4.00  3.72 465.13  79,060.92 
$3.30  $1.10  $4.40  3.55 443.48  86,757.67 
$3.60  $1.20  $4.80  3.40 424.60  94,445.66 
$3.90  $1.30  $5.20  3.26 407.95  102,125.97
$4.20  $1.40  $5.60  3.14 393.11  109,799.47
$4.50  $1.50  $6.00  3.04 379.78  117,466.88

 
Table 3.5  Optimal ordering policies for different values of c1 and c2  

increased simultaneously 
 
 

Table 3.6 and Figure 3.8 show the effect of changing the relative weights of the unit 

production cost components c1 and c2 for Case 2 while maintaining their total as a constant. The 

present value of the total cost is increases when c1 increases and c2 decreases; which is expected 

as the present value decreases when most of the cost is increased at later stages. 

 



 36

0

2

4

6

8

10

12

14

$0.4 $1.2 $2.0 $2.8 $3.6 $4.4 $5.2 $6.0

C
yc

le
 ti

m
e,

 T
 (m

on
th

s)

$0

$20,000

$40,000

$60,000

$80,000

$100,000

$120,000

$140,000

Unit cost, c 1 + c 2 ($/unit)

Pr
es

en
t v

al
ue

 o
f t

ot
al

 c
os

t, 
 

P t
 ($

)

T P t

 
 

Figure 3.7  Effect of changes in unit costs c1 and c2 on cycle time T  
and present value of the total cost Pt 

 
 

Raw material cost c1,  
$/unit 

Labor cost c2, 
$/unit 

T 
(months)

Q 
(units) 

Pt 
($) 

$0.00  $2.00  5.60 699.38  40,208.85 
$0.10  $1.90  5.57 696.36  40,220.62 
$0.20  $1.80  5.55 693.38  40,232.35 
$0.30  $1.70  5.52 690.43  40,244.02 
$0.40  $1.60  5.50 687.52  40,255.64 
$0.50  $1.50  5.48 684.65  40,267.21 
$0.60  $1.40  5.45 681.82  40,278.73 
$0.70  $1.30  5.43 679.02  40,290.20 
$0.80  $1.20  5.41 676.25  40,301.62 
$0.90  $1.10  5.39 673.52  40,312.99 
$1.00  $1.00  5.37 670.82  40,324.32 
$1.10  $0.90  5.35 668.15  40,335.60 
$1.20  $0.80  5.32 665.52  40,346.83 
$1.30  $0.70  5.30 662.91  40,358.02 
$1.40  $0.60  5.28 660.34  40,369.17 
$1.50  $0.50  5.26 657.79  40,380.26 
$1.60  $0.40  5.24 655.28  40,391.32 
$1.70  $0.30  5.22 652.79  40,402.33 
$1.80  $0.20  5.20 650.33  40,413.30 
$1.90  $0.10  5.18 647.90  40,424.23 
$2.00  $0.00  5.16 645.50  40,435.11 

 
Table 3.6  Optimal ordering policies for different values of c1 and c2  
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Figure 3.8  Effect of changes in relative values of c1 and c2 
on cycle time T and present value of the total cost Pt 

 
 
3.4. Inventory Models with Shortage 

The objective of the inventory models where shortage is allowed is to determine the 

optimal cycle time and the optimal quantity of allowed shortage in order to minimize the total 

relevant cost. Consequently, the production time and the maximum inventory level can be 

determined. The models are applied for an infinite planning horizon. Figure 3.9 gives a graphical 

representation of the first cycle in the system. The inventory production starts at time zero and 

the amount of shortage is reduced at the rate of p – D, which is the production rate minus 

consumption rate, until time t1 when all the shortage is satisfied. After t1, the inventory builds up 

at the same rate of p – D until time tp when the production process stops and the inventory on 

hand reaches its maximum level. After time tp, the inventory level decreases with the 

consumption rate, D, until it becomes zero at time t2. After t2, the system is out of stock but the 
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demand still exists, and backorders accumulate until the end of the cycle, T, when the production 

process is resumed again.  

 

Figure 3.9  EPQ model with constant demand and shortages 

 
The total cost TC for this EPQ model consists of four elements: 

TC = Setup Cost + Production Cost + Holding Cost + Shortage Cost 

 
3.4.1. Case 3 

For this case, the setup cost and the production cost are assumed to be incurred at the 

beginning of each cycle, and the inventory holding cost is incurred continuously during the 

cycle. A shortage cost will also be incurred.  

During the first cycle, the inventory level, I(t), at time t is equal to: 

( ) ( )DptStI −−=−  for 0 < t < t1 

( ) ( )( )1ttDptI −−=  for t1 < t < tp 

( ) ( ) DtSQtI −−=  for tp < t < t2 

( ) ( )2ttDtI −=−  for t2 < t < T 

where   
Dp

St
−

=1 ;   
D
STt −=2 ;   

p
Qt p = ;        

D
QT =  

I(t) 

Q 

S 
0 

Q1 

t 

T
tp t2t1 

p 

p-D 

D



 39

The shortage cost is assumed to consist of two components: K0 times the maximum 

amount of shortage, S, where K0 is shortage cost per unit short. This component is incurred at the 

beginning of the cycle. The second component is K times duration of the shortage, for each unit 

short, where K is shortage cost per unit short per time unit. This component is incurred during 

the shortage time of the individual units. Assuming continuous compounding, the present value 

of the total cost of the inventory system for the first cycle can be expressed as: 
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Integrating by parts, we get, after some simplifications: 
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Substituting these expressions into Equation (3.18) and simplifying, we get the present 

value of the total cost for the first period as: 
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For an infinite planning horizon, N → ∞ , and Pt can be expressed as: 
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Substituting Equation (3.19) into (3.20) and representing T, t1, t2 and tp in terms of Q and 

S, we get the present value, Pt, of the total cost: 
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The total inventory cost in Equation (3.21) is a function of the production quantity, Q, 

and shortage, S. Closed formulas could not be obtained for the optimal values of Q and S. A 

search technique needs to be applied to find the optimal policy. 

 

3.4.2. Search Algorithm 

An iterative search procedure was developed using a combination of a modified version 

of the Simplex Evolutionary Operation (EVOP) (Spendley et al., 1962) and a Univariate Walk. 

The search starts by applying the modified EVOP until no further improvement can be achieved 

then the Univariate Walk is used to obtain the solution. 
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The modified EVOP search tries to minimize the objective function, f(x), of k variables. 

The algorithm builds a regular simplex with k+1 vertices, in k dimensions around the starting 

point. The coordinates of the vertices are defined in the following matrix, S0, in which each of 

the k+1 rows represents a vertex, and the k columns represent coordinates of these vertices.  
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For two variables, k = 2, the vertices of the simplex are (0, 0), (p, q), (q, p) and the 

simplex is an equilateral triangle. For a simplex with a centroid at point (X1, X2, …Xk) and an 

edge length, L, the matrix can be defined as: 
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After defining the initial Simplex, S0, with any point in the acceptable range of the 

variables as the centroid, and L as the initial edge length, the objective function can be evaluated 

at each of the vertices of the simplex. For a minimization problem, the vertex, Vj, j = 1, 2,..., k+1, 
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with the highest value of the objective function is selected and a projection is made from that 

vertex through the centroid. The rotation of the simplex gives a new vertex, Vj
*, located along the 

projection line on the opposite side of Vj. The old vertex is deleted and a new simplex is formed, 

with the new vertex replacing the old one, and all other vertices kept unchanged.  The 

coordinates of the new vertex, Vj
*, can be calculated by subtracting the coordinates of Vj from 

twice the average of the coordinates of all the other vertices. The general formula for the new 

vertex, Vj
*, is: 

( )
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kjj
j V

k
VVVVV

V −
++++++

×= ++− 11121* ......
2  

The objective function is evaluated at the new vertex, and the search continues until the 

value of the objective function at the new vertex, Vj
*, is more than or equal to the value at the old 

vertex, Vj, or until the new vertex, Vj
*, falls outside the acceptable range for one or more 

variables. In either case, the process stops and the centroid of the current simplex is determined. 

The edge length is then reduced and a new simplex is constructed around the centroid. The 

search continues until the edge length becomes smaller than a stoppage value that is pre-

determined by the user. The centroid of the last simplex would give the optimal or near optimal 

solution.  

To assure that the optimal value is attained, the search continues with a Univariate Walk 

that starts with the final centroid obtained with EVOP. In this case, the value of the first variable, 

X1, is changed to a new value, X1 + L, while keeping all other variables constant. If the objective 

function improves at the new point, the move continues at the same direction with the same edge 

length, L. Otherwise, the search proceeds in opposite direction. If no improvement is attained in 

either direction, the search continues with another variable. When all variables are exhausted, the 

length of the step, L, is reduced and the process continues. The search stops when no more 
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improvement can be achieved and the value of L becomes smaller than a stoppage value defined 

by the user.  

 
3.4.3. Case 4 

As in the models with no shortage, the production cost, c, for this case, has two 

components. A cost, c1, that is incurred at the beginning of each cycle and is applied to the total 

quantity produced during the production period and a second cost, c2, that is incurred as the 

production process takes place.   

The main difference between Cases 3 and 4 is in the production cost. For Case 4, the 

production cost for the model with shortages is similar to the one used with the model with no 

shortage, and expressed in Equation (3.13). In addition, for the holding cost, the unit production 

cost c, is replaced with the sum of two cost components, c1 and c2. 

For the inventory system where shortages are allowed, the present value of the total cost 

for the first period becomes: 
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where c3 = c1 + c2 

The procedure followed in Case 3 is repeated and leads to the following value for the 

total cost for all cycles:  
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Similar to Case 3, the total inventory cost is a function of Q and S and a search procedure 

is used to find the optimal policy.  

 

3.5. Numerical Example and Sensitivity Analysis 

A numerical example is presented to illustrate the application of the models developed 

for the inventory system when shortage is allowed and items are fully backordered. A software 

was developed, using Visual Basic Applications, to apply the search technique.  

Consider an inventory system with the following data: 

p = 4500 units/yr, D = 1500 units/yr, A = 50 $/order, F = 0.15 $/$/yr, c = 2 $/unit,                       

K = 1 $/unit/yr, K0 = 0 $/unit. 

The model was applied for Case 3, using different values for the real interest rate, and the 

results obtained are summarized in Table 3.7. The table shows the relations between the optimal 

values of the cycle time, order quantity, shortage, maximum inventory on hand, and the real 

interest rate. As expected, the cycle time decreases as the real interest rate increases. 

Accordingly, the optimal production quantity, Q, shortage, S, and maximum inventory on hand, 

Imax, decrease with higher real interest rates. The present value of the total cost also decreases as 

the real interest rate increases. When the value of r is equal to zero, the standard equation for 

optimal production quantity and cycle time were used to calculate T and Q. Since the present 
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value of the total cost, with infinite horizon, approaches infinity as r approaches zero, the last 

column in Table 3.7 was calculated for the present value of the total relevant cost for the first 

year, using the results of the infinite horizon policy, and pro-rating the value for the partial cycle 

at the end of the year. Figure 3.10 shows the behavior of optimal production quantity, Q, 

shortage, S, and present value of the total cost, Pt, with respect to real interest rate, r. 

 

Real interest 
rate r, (%) 

Q 
(units) 

S 
(units)

Imax 
(units)

T 
(months)

Pt  
($) 

PV for first 
year, ($) 

0% 987.42 151.91 506.37 7.90 - 3,151.91 
1% 928.62 142.98 476.10 7.43 316,175.66 3,144.58 
2% 879.06 135.44 450.60 7.03 158,553.93 3,137.36 
3% 836.56 128.98 428.73 6.69 105,998.48 3,130.36 
4% 799.59 123.35 409.71 6.40 79,711.12 3,123.62 
5% 767.05 118.39 392.97 6.14 63,931.94 3,117.15 
6% 738.13 113.98 378.10 5.91 53,407.50 3,109.53 
7% 712.20 110.03 364.77 5.70 45,886.23 3,099.97 
8% 688.78 106.46 352.73 5.51 40,242.26 3,090.34 
9% 667.50 103.21 341.79 5.34 35,850.08 3,080.72 
10% 648.05 100.24 331.79 5.18 32,334.35 3,071.16 
11% 630.18 97.52 322.60 5.04 29,456.18 3,061.71 
12% 613.68 95.00 314.12 4.91 27,056.30 3,052.39 
13% 598.40 92.66 306.27 4.79 25,024.44 3,043.21 
14% 584.19 90.49 298.97 4.67 23,281.82 3,034.18 
15% 570.92 88.46 292.15 4.57 21,770.64 3,025.30 

 
Table 3.7  Optimal ordering policies for different values of r  

when shortages are allowed 
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Figure 3.10  Effect of real interest rate r on ordering quantity Q, shortage S  
and present value of the total cost Pt  

 

Tables 3.8, 3.9, 3.10, and 3.11 along with Figures 3.11, 3.12, 3.13, and 3.14 show the 

results obtained for different values of carrying rate, F, demand rate, D, shortage cost, K, and 

setup cost, A, and the behavior of Q, S and Pt with respect to those parameters. The production 

quantity decreases with an increase in F, but increases with the increase in D or A. The shortage, 

S, increases with the increase in carrying rate, F, and setup cost, A, and it decreases when 

shortage cost increases. High carrying rate results in smaller value of Q and drives the amount of 

shortage to a higher value. Increasing demand results in more production, hence in higher value 

of Q. High setup costs result in fewer but larger orders and also in larger shortages.  The increase 

in shortage cost obviously reduces shortages. When the demand rate increases, shortages 

increase at the beginning, but after some point, they start decreasing. When demand is low, there 

is no reason to have high amount of shortages. Also, when the demand is equal to the production 

rate, the amount of shortage is equal to zero. However, the amount of shortage increases between 

these two extremes. The present value of the total cost follows the same patterns encountered in 

the model without shortage. 
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Carrying rate F 
(%) 

Q 
(units)

S 
(units)

Imax 
(units)

T 
(months)

Pt  
($) 

5% 819.77 50.01 496.50 6.56 39,805.67 
6% 800.64 57.55 476.21 6.41 39,860.54 
7% 783.40 64.52 457.74 6.27 39,912.29 
8% 767.76 71.01 440.83 6.14 39,961.21 
9% 753.52 77.06 425.29 6.03 40,007.56 
10% 740.47 82.72 410.93 5.92 40,051.55 
11% 728.48 88.04 397.62 5.83 40,093.39 
12% 717.42 93.04 385.24 5.74 40,133.23 
13% 707.17 97.76 373.69 5.66 40,171.23 
14% 697.65 102.23 362.87 5.58 40,207.54 
15% 688.78 106.46 352.73 5.51 40,242.26 
16% 680.50 110.48 343.19 5.44 40,275.51 
17% 672.74 114.30 334.20 5.38 40,307.39 
18% 665.46 117.94 325.70 5.32 40,337.98 
19% 658.62 121.41 317.67 5.27 40,367.37 
20% 652.16 124.73 310.05 5.22 40,395.63 

 
Table 3.8  Optimal ordering policies for different values of F  

when shortages are allowed  
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Figure 3.11  Effect of carrying rate F on ordering quantity Q, shortage S  
and present value of the total cost Pt  
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Demand rate D  
(units) 

Q 
(units) 

S  
(units) 

Imax  
(units) 

T 
(months)

Pt  
($) 

200 226.82 51.63 165.11 13.61 6,121.58 
400 326.24 70.02 227.22 9.79 11,552.10 
600 405.80 82.40 269.29 8.12 16,867.81 
800 475.81 91.34 299.87 7.14 22,121.41 

1,000 540.26 97.86 322.34 6.48 27,333.53 
1,200 601.23 102.47 338.43 6.01 32,514.83 
1,400 659.97 105.49 349.16 5.66 37,671.66 
1,600 717.34 107.10 355.19 5.38 42,808.19 
1,800 773.96 107.44 356.94 5.16 47,927.28 
2,000 830.33 106.60 354.70 4.98 53,031.03 
2,200 886.87 104.63 348.66 4.84 58,120.99 
2,400 943.95 101.57 338.94 4.72 63,198.33 
2,600 1,001.90 97.44 325.59 4.62 68,263.96 
2,800 1,061.07 92.24 308.61 4.55 73,318.59 
3,000 1,121.79 85.96 287.97 4.49 78,362.78 

 
Table 3.9  Optimal ordering policies for different values of D  

when shortages are allowed  
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Figure 3.12  Effect of demand rate D on ordering quantity Q, shortage S  
and present value of the total cost Pt  
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Shortage cost K 
($/unit/time) 

Q 
(units) 

S  
(units) 

Imax  
(units) 

T 
(months)

Pt  
($) 

1 688.78 106.46 352.73 5.51 40,242.26 
2 667.81 58.37 386.84 5.34 40,327.69 
3 660.05 40.21 399.82 5.28 40,360.66 
4 656.01 30.68 406.66 5.25 40,378.14 
5 653.53 24.80 410.89 5.23 40,388.97 
6 651.85 20.81 413.76 5.21 40,396.34 
7 650.64 17.92 415.84 5.21 40,401.68 
8 649.72 15.74 417.41 5.20 40,405.72 
9 649.01 14.03 418.64 5.19 40,408.89 
10 648.44 12.66 419.63 5.19 40,411.45 

 
Table 3.10  Optimal ordering policies for different values of K  

when shortages are allowed 
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Figure 3.13  Effect of shortage cost K on ordering quantity Q, shortage S  
and present value of the total cost Pt  
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Setup cost A 
($/order) 

Q 
(units) 

S  
(units) 

Imax  
(units) 

T 
(months)

Pt  
($) 

10 308.67 47.59 158.19 2.47 38,718.92 
20 436.22 67.31 223.50 3.49 39,227.34 
30 533.98 82.45 273.54 4.27 39,618.87 
40 616.31 95.21 315.66 4.93 39,949.90 
50 688.78 106.46 352.73 5.51 40,242.26 
60 754.26 116.63 386.21 6.03 40,507.16 
70 814.43 125.98 416.97 6.52 40,751.24 
80 870.39 134.69 445.57 6.96 40,978.86 
90 922.93 142.87 472.42 7.38 41,193.00 
100 972.59 150.61 497.79 7.78 41,395.88 

 
Table 3.11  Optimal ordering policies for different values of A  

when shortages are allowed 
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Figure 3.14  Effect of setup cost A on ordering quantity Q, shortage S  
and present value of the total cost Pt  

 

For Case 4, the same example was used with the same parameters, except that the 

production cost, c, was substituted with a raw material cost c1 = 1.5 $/unit, and a labor cost c2 = 
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0.5 $/unit. The results are summarized in Table 3.12. As in Case 3, the optimal values of the 

cycle time, order quantity, shortage, and maximum inventory on hand decrease as the real 

interest rate increases. The present value of the total cost also decreases as the real interest rate 

increases. The results were very close to the case with one cost, hence the detailed tables and 

figures are not repeated. 

The results of simultaneous changes in unit costs c1 and c2 are summarized in Table 3.13 

and their graphical representation is illustrated in Figure 3.15. 

 
 

Real interest 
rate r, (%/yr) 

Q 
(units) 

S 
(units)

Imax 
(units)

T 
(months)

Pt  
($) 

PV for first 
year, ($) 

0% 987.42 151.91 506.37 7.90 - 3,151.91 
1% 933.12 143.67 478.41 7.46 316,097.90 3,143.78 
2% 886.78 136.63 454.55 7.09 158,480.01 3,135.79 
3% 846.61 130.53 433.88 6.77 105,927.90 3,128.04 
4% 811.37 125.17 415.75 6.49 79,643.44 3,120.55 
5% 780.14 120.42 399.67 6.24 63,866.83 3,113.35 
6% 752.20 116.16 385.30 6.02 53,344.69 3,106.42 
7% 727.02 112.33 372.35 5.82 45,825.48 3,096.64 
8% 704.18 108.85 360.60 5.63 40,183.39 3,086.51 
9% 683.33 105.67 349.88 5.47 35,792.92 3,076.37 
10% 664.20 102.76 340.05 5.31 32,278.75 3,066.28 
11% 646.57 100.07 330.98 5.17 29,402.02 3,056.28 
12% 630.26 97.58 322.59 5.04 27,003.48 3,046.40 
13% 615.10 95.27 314.80 4.92 24,972.85 3,036.65 
14% 600.96 93.11 307.53 4.81 23,231.38 3,027.05 
15% 587.75 91.09 300.74 4.70 21,721.28 3,017.60 

 
Table 3.12  Optimal ordering policies for different values of r  

and two separate costs when shortages are allowed  
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Raw 
material 
cost c1, 
$/unit 

Labor 
cost c2, 
$/unit 

c = c1 + c2 
Q 

(units) 
S 

(units) 
Imax 

(units) 
T 

(months) 
Pt 
($) 

$0.30  $0.10  $0.40  1,484.50 56.70 932.97 11.88 8,783.61 
$0.60  $0.20  $0.80  1,068.22 76.94 635.21 8.55 16,775.86 
$0.90  $0.30  $1.20  885.48 90.64 499.68 7.08 24,638.14 
$1.20  $0.40  $1.60  777.43 100.86 417.42 6.22 32,432.48 
$1.50  $0.50  $2.00  704.18 108.85 360.60 5.63 40,183.39 
$1.80  $0.60  $2.40  650.39 115.26 318.33 5.20 47,903.63 
$2.10  $0.70  $2.80  608.74 120.49 285.34 4.87 55,600.88 
$2.40  $0.80  $3.20  575.26 124.81 258.70 4.60 63,280.17 
$2.70  $0.90  $3.60  547.57 128.40 236.64 4.38 70,944.99 
$3.00  $1.00  $4.00  524.16 131.42 218.02 4.19 78,597.90 
$3.30  $1.10  $4.40  504.02 133.95 202.06 4.03 86,240.82 
$3.60  $1.20  $4.80  486.44 136.09 188.21 3.89 93,875.25 
$3.90  $1.30  $5.20  470.91 137.89 176.05 3.77 101,502.35
$4.20  $1.40  $5.60  457.05 139.41 165.29 3.66 109,123.07
$4.50  $1.50  $6.00  444.58 140.68 155.70 3.56 116,738.19

 
Table 3.13  Optimal ordering policies for simultaneous changes in 

 values of c2 and c1 when shortages are allowed 
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Figure 3.15  Effect of changes in unit costs c1 and c2 on ordering quantity Q,  
shortage S and present value of the total cost Pt  
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Chapter 4 

EPQ Models with and without Shortages, with Linear Demand  

and Time Value of Money 

 

In general, the classical EOQ and EPQ models assume constant demand over an infinite 

planning horizon. This assumption is valid during the mature phase of the product life cycle and 

for a finite period of time. In other phases of the product life, demand for the product may 

increase after its successful introduction into the market or decrease due to, for example, 

introduction of new competitive products. This chapter considers a linear function for the 

demand rate over a finite horizon, and develops inventory models for the economic production 

quantity (EPQ) problem. In many practical cases, items may be out of stock while demand still 

exists, so models are also considered where shortages are allowed, and items are backordered 

and used during the following cycle. The objective of this part of this research is to find the 

optimal inventory cycle time (or quantity of manufactured items), where time value of money is 

considered and demand is in the form of a linearly increasing function over time for a finite time 

horizon. Models are developed with and without allowing shortages while using two production 

cost functions. 

In this chapter, models are developed for a finite planning horizon while considering time 

value of money and linearly increasing demand rate. A search technique is developed to find the 

optimal policies for these models, and the corresponding costs.  
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4.1. Assumptions 

The general assumptions presented earlier are still valid for the mathematical models 

developed in this chapter. Additional assumptions are presented below:  

1. Replenishment rate is finite and constant during the production time 

2. Planning horizon is finite 

3. Demand rate is a linear function of time and is always less than the production rate 

over the planning horizon, i.e., 

D(t) = a + bt,   a, b > 0 and 0 ≤ t ≤ H 

 

4.2. Inventory Models with no Shortage 

These models are developed for items manufactured and consumed during the same 

cycle, with a linearly increasing demand over time. They are applied only for a finite planning 

horizon. Production time for cycle j, tpj, would change in every cycle because of the linear 

change in demand while the cycle time, T, is considered to be constant over the planning 

horizon. The inventory scheme shown in Figure 4.1 is used to develop the details of the model 

for cycle j + 1. The inventory on-hand increases with the rate p – D(t), which is the production 

rate minus consumption rate, until time tpj  when the production process stops and the inventory 

on hand reaches its maximum level. After that point, the inventory level decreases with the 

consumption rate, D(t), which increases linearly, until it becomes zero at the end of the cycle,    

(j + 1)T, when cycle (j + 1) starts and the production process is resumed again. 

The total cost TC(T) for this EPQ model consists of three elements: 

TC(T) = Setup Cost + Production Cost + Holding Cost 
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4.2.1. Case 1 

For this case, the setup cost and the production cost are assumed to be incurred at the 

beginning of each cycle, and the inventory holding cost is incurred continuously during the 

cycle.  

   

 

 

 

 

 

Figure 4.1  EPQ with linearly increasing demand 

 
As in the previous models, time value of money, which is the inflation free or real interest 

rate, r, is represented by the difference between the interest rate and inflation rate:  

r = R – f 

There are m cycles in the planning horizon. The first cycle starts at time zero, and the last 

one starts at time (m – 1)T. Hence, the present value of the total setup cost during the planning 

horizon is given by: 
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where H = mT. 

The present value of production cost is equal to: 
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To find production time, tpj – jT, during cycle j + 1, we equate the total number of items 

produced during this time to the total number of items consumed during the entire cycle:  
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To calculate the present value of the holding cost for the planning horizon, first the 

present value of the holding cost for the (j + 1)-th cycle (j = 0, 1, 2, …, m – 1) ) needs to be 

calculated, and then the summation of all m cycles would equal the present value of the total 

holding cost. The present value of the holding cost during the (j + 1)-th cycle is calculated as:  
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I1(t), the amount of inventory on hand at time t, for the time period starting from the 

beginning of the cycle, jT, till the end of production time, tpj, is equal to: 
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Starting from the end of the production time, tpj, till the end of the cycle, (j + 1)T, the 

inventory level, I2(t), at time t is equal to: 
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Substituting Equations (4.6) and (4.7) into (4.5), integrating it by parts and simplifying, 

we get: 
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From Equation (4.3), the value of tpj is defined as: 
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Substituting this value in Equation (4.8), and after some simplifications we get: 
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The present value of holding cost for m cycles during the planning horizon is: 
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The present value of the total cost, HC, in Equation (4.11) can be written, after some 

simplifications, as: 
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Now, combining all the inventory costs into one equation, using H = mT, and after some 

simplifications, we get the following function for the present value of the total cost: 
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This total cost is a function of m, which is a discrete variable. To find the optimal value 

of m when the total cost function is convex, the Golden Search technique (Bazaraa and Shetty, 

1979) can be used. However, the search has to be slightly modified to work with discrete values. 

At the first iteration, k = 1, the initial interval [ak, bk] for the variable m is identified as [1, m`], 

where m` is the maximum value of m as defined by the user. The values of λk = ak + (1 – α)(bk – 
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ak) and µk = ak + α(bk – ak) are then calculated,  where α = 0.618.  The total costs at points λk 

and µk are evaluated. If TC(λk) > TC(µk), then the new interval becomes [ak+1, bk+1], where ak+1 

= λk and bk+1 = bk. Furthermore, λk+1 = µk and µk+1 = ak+1 + α(bk+1 – ak+1). Only the total cost 

for µk+1 has to be calculated since the total cost for λk+1 is the same as for µk. If TC(λk) < TC(µk), 

then the new interval is [ak+1, bk+1], where ak+1 = ak and  bk+1  = µk; µk+1 = λk and λk+1 = ak+1 + 

(1 – α)(bk+1 – ak+1). In this case, only the total cost for λk+1 has to be calculated since the total 

cost for µk+1 is the same as for λk. After evaluating the total costs, k is replaced by k + 1 and the 

procedure is repeated until a stopping criterion is met. A typical stopping criterion is when       

(bk – ak) < l, where l > 0 is the allowable accuracy; then the procedure stops and the optimal 

solution lies in the interval [ak, bk].  

 Following this procedure with a discrete variable m, and working with integer values of λ 

and µ, the optimal value of m and the corresponding total cost can be obtained when the 

accuracy level, l, is equal to one. 

 
4.2.2. Case 2 

In the second case, the production cost, c, has two components. A cost, c1, that is incurred 

at the beginning of each cycle and is applied to the total quantity produced during the production 

time, and. a second cost, c2, which is incurred as the production process takes place.  

The total cost for this model consists of the same three elements as in the first model: 

TC(T) = Setup Cost + Production Cost + Holding Cost 

The only differences between the two cases are in the production cost and holding cost. 

The present value of the production cost of the system during the planning horizon is now 

defined as follows: 
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After integration and substituting expression for tpj from Equation (4.3) we get:  
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The procedure followed in Case 1 is repeated and the following function is obtained for 

the present value of the production cost for the entire planning horizon:  

( )( )
( ) +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−
−

−++
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟

⎠
⎞

⎜
⎝
⎛ +−

−

−

1

1

12
122

1

1
2

2

2
2

11

p
bTrT

p
bTmrTbTa

p
Tr

rT

mrT

er

epec

er
epcrbTcaTrcPC  

     ∑
−

=

−
1

0

2
1

m

j

rjTjebTc           (4.14) 

The present value of the holding cost of the system during the planning horizon is defined 

as: 
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Adding all inventory costs and using H = mT, we get the following present value of the 

total cost for the entire planning horizon: 
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Similar to Case 1, the above total inventory cost is a function of m, and the Golden 

Search technique can be used to find the minimum total inventory cost. The corresponding m 

would be the optimal number of equal length cycles during the planning horizon.  

 

4.3. Convexity of the Total Cost Function 

To show that the total cost function has no local minima, so the search technique would 

indeed find the optimal point, a similar inventory model was developed without considering the 

time value of money. This was done for simplicity, and with the assumption that the time value 

of money does not affect the convexity of the total cost function. Otherwise, the equations 

become too cumbersome, and the proof becomes very hard. 
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Considering each of the three cost components, the setup cost is paid at the beginning of 

each cycle, for m cycles during planning horizon, hence: 

SC = mA 

Since there is no time value of money, the production cost for all cycles is simply equal 

to: 
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where H = mT 

The holding cost for cycle (j + 1) is equal to: 

dttIFcdttIFcHC
Tj

t

t

jT
j

pj

pj

∫∫
+

+=
)1(

21 )()(       (4.18) 

The expressions for inventory on hand, I1(t) and I2(t), were presented in Equations (4.6) 

and (4.7). Substituting them into Equation (4.18), using the value tpj from Equation (4.9), and 

after some simplifications, we get: 
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For simplicity, the following variables are defined: 
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Equation (4.18) can then be written as follows: 
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The holding cost for m cycles during the planning horizon is the summation of Equation 

(4.20) for the m cycles: 
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Hence, adding all inventory costs and substituting back the values of S1, S2 and S3 and 

simplifying, the total inventory cost during the entire planning horizon is equal to: 
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The feasible region for this function is on the positive side of the T axis. The total cost 

function consists of two parts: a third order polynomial, and an inverse function. In general, the 

third order polynomial function is represented as follows:  

DCXBXAXY +++= 23  

The graph of this function can have different shapes, depending on the values of the 

coefficients A, B, C, and D (Bronshtein and Semendyaev, 1980). If A > 0, then Y → + ∞ when X 

→ + ∞, and Y → – ∞ when X → – ∞. If A < 0, then Y → – ∞ when X → + ∞, and Y → + ∞ 

when X → – ∞. It is clear from the total cost function that the coefficients A and B have positive 

values. Hence the polynomial function either has two extreme points, one maximum and one 

minimum, or does not have any at all. If there are no extreme points, the point of deflection 

would have the coordinates ⎟⎟
⎠
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3
, i.e. on the negative side of T. After that 

point, the slope of the function increases. After T = 0, with the increase of T, the rate of increase 

of the polynomial function gets larger, while the rate of decrease of the inverse function gets 
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smaller. This condition leads to only one minimum point for the TC function on the positive side 

of T. Figure 4.2 gives a representation of these functions.  
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TC(T)
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AX3 + BX2 + CX + D 1/T

 

Figure 4.2  Shape of the TC function and its components when the  
polynomial function has no extremes  

 
If the polynomial function has two extreme values, and A > 0, then ∆= B2 – 3AC > 0, 

and the maximum would be at point 
A

B
3

∆−−  and the minimum at 
A

B
3

∆+− . Since B has a 

positive value, the maximum point will always be on the negative side of T. Depending on the 

value of C (positive or negative), the minimum point can be either on the positive or the negative 

side of T.  In the case when both extremes are on the negative side, the shape of the TC function 

after T = 0 is similar to the case when there is no extreme points in the polynomial part of the 

function (see Figure 4.2).  When the extreme points are on both sides of T = 0, both the 

polynomial and inverse functions decrease, when T > 0, as T increases up to a certain point when 

the polynomial function starts increasing while the inverse function keeps on decreasing. 

However, the rate of increase of the polynomial function gets larger while the rate of decrease of 
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the inverse function continues to get smaller.  At some point both rates become equal and that is 

the point where the TC function has its minimum point. Figure 4.3 illustrates this case. 
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Figure 4.3  Shape of the TC function and its components when the  
polynomial function has two extremes  

 
Hence, in all cases, the total cost function will always have one unique minimum point on 

the positive side of the T axis; i.e. the function is convex.   

Consequently, the Golden Search technique will always find the optimal policy and there 

is no need for complete enumeration. 

 

4.4. Numerical Example and Sensitivity Analysis 

A numerical example is presented to illustrate the application of the models developed. 

Consider an inventory system with a linear increasing rate of demand and the following data: 

p = 4500 units/yr, a = 1500 units/yr, b = 300 units/yr/yr, A = 50 $/order, F = 0.15 $/$/yr,             

c = 2 $/unit, H = 5 yrs. 
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A software was developed with Visual Basic Applications to apply the Golden Search 

technique and find the optimal policies for the models developed. The model was applied for 

Case 1, using different values for the real interest rate, and the results obtained are summarized 

in Table 4.1. 

Real interest rate r 
 (%) m T 

(months) 
Pt 
($) 

0% 9 6.67 23,413.18 
1% 10 6.00 22,835.65 
2% 10 6.00 22,274.35 
3% 11 5.46 21,727.28 
4% 11 5.46 21,197.02 
5% 12 5.00 20,680.66 
6% 12 5.00 20,180.39 
7% 13 4.62 19,694.13 
8% 13 4.62 19,222.56 
9% 14 4.29 18,765.29 
10% 14 4.29 18,321.01 
11% 14 4.29 17,890.91 
12% 15 4.00 17,472.97 
13% 15 4.00 17,067.82 
14% 15 4.00 16,675.47 
15% 16 3.75 16,293.91 

  
Table 4.1  Optimal ordering policies for different values of r 

 
As expected, the increase in real interest rate leads to a smaller cycle time, larger number 

of inventory cycles, and reduction in the present value of the total cost of the system. For r = 0%, 

Equation (4.22), which was developed with no time value of money, was used to find the optimal 

policy.  

The tables and figures presented below represent the relations between parameters and 

the optimal policies. Increases in inventory carrying rate, F, slope of the demand, b, or 

production cost, c, make the cycle time smaller, but lead to an increase in the total cost of the 

system. On the other hand, an increase in the setup cost, A, leads to an increase in the cycle time, 
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decrease in the number of cycles during the planning horizon, and an increase in the total cost of 

the system.  
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Figure 4.4  Effect of real interest rate r on cycle time T  
and present value of the total cost Pt 

 
 

Carrying rate F 
(%) m T  

(months) 
Pt 
($) 

3% 10 6.00 18,991.71 
4% 11 5.45 19,013.15 
5% 11 5.45 19,033.88 
6% 11 5.45 19,054.60 
7% 11 5.45 19,075.32 
8% 12 5.00 19,094.81 
9% 12 5.00 19,113.78 
10% 12 5.00 19,132.74 
11% 12 5.00 19,151.70 
12% 13 4.62 19,170.12 
13% 13 4.62 19,187.60 
14% 13 4.62 19,205.08 
15% 13 4.62 19,222.56 
16% 13 4.62 19,240.03 
17% 14 4.29 19,256.67 
18% 14 4.29 19,272.88 
19% 14 4.29 19,289.09 

 
Table 4.2  Optimal ordering policies for different values of F 
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Figure 4.5  Effect of carrying rate F on cycle time T  
and present value of the total cost Pt 

 

Demand rate 
slope b  

(units/time/time)
m T  

(months) 
Pt 
($) 

50 12 5.00 14,319.17 
100 12 5.00 15,305.15 
150 13 4.62 16,288.38 
200 13 4.62 17,268.42 
250 13 4.62 18,246.48 
300 13 4.62 19,222.56 
350 13 4.62 20,196.65 
400 14 4.29 21,168.69 
450 14 4.29 22,138.16 

 
Table 4.3  Optimal ordering policies for different values of b 
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Figure 4.6  Effect of demand rate slope b on cycle time T  
and present value of the total cost Pt  

 
 

Setup cost A  
($/order) m T  

(months) 
Pt 
($) 

$10 29 2.07 18,616.37 
$20 21 2.86 18,818.34 
$30 17 3.53 18,974.05 
$40 15 4.00 19,106.01 
$50 13 4.62 19,222.56 
$60 12 5.00 19,328.11 
$70 11 5.45 19,425.75 
$80 11 5.45 19,518.07 
$90 10 6.00 19,602.16 
$100 9 6.67 19,684.75 
$110 9 6.67 19,760.59 
$120 9 6.67 19,836.43 
$130 8 7.50 19,906.82 
$140 8 7.50 19,974.42 
$150 8 7.5 20,042.02 
$160 7 8.57 20,109.36 

 
Table 4.4  Optimal ordering policies for different values of A 
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Figure 4.7  Effect of setup cost A on cycle time T  
and present value of the total cost Pt  

For Case 2, the same example was used with the same parameters, but the production 

cost, c, was replaced with a raw material cost c1 = 1.5 $/unit, and a labor cost c2 = 0.5 $/unit. 

Results are summarized in Table 4.5. 

 
Real interest rate r 

(%) m T 
(months) 

TC       
($) 

0% 9 6.67 23,413.18 
1% 10 6.00 22,828.57 
2% 10 6.00 22,260.58 
3% 11 5.46 21,709.03 
4% 11 5.46 21,173.36 
5% 12 5.00 20,654.32 
6% 12 5.00 20,149.65 
7% 12 5.00 19,661.33 
8% 13 4.62 19,186.79 
9% 13 4.62 18,726.95 
10% 14 4.29 18,281.75 
11% 14 4.29 17,848.87 
12% 14 4.29 17,429.83 
13% 15 4.00 17,023.92 
14% 15 4.00 16,629.44 
15% 15 4.00 16,247.44 

 
Table 4.5  Optimal ordering policies for different values of r  

and two separate costs 
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As in Case 1, the cycle time decreases as the real interest rate increases. The effects of all 

other parameters on the optimal policy are similar to Case 1 and are not repeated here. 

The results of simultaneous changes in unit costs c1 and c2 are summarized in Table 4.6 

and their graphical representation is illustrated in Figure 4.8. 

 
Raw material cost c1, 

$/unit 
Labor cost c2, 

$/unit c = c1 + c2 m T 
(months) 

Pt 
($) 

$0.30  $0.10  $0.40  10 6.00 4,107.23 
$0.60  $0.20  $0.80  8 7.50 7,925.82 
$0.90  $0.30  $1.20  10 6.00 11,699.68 
$1.20  $0.40  $1.60  11 5.45 15,451.33 
$1.50  $0.50  $2.00  13 4.62 19,186.79 
$1.80  $0.60  $2.40  14 4.29 22,912.24 
$2.10  $0.70  $2.80  15 4.00 26,629.91 
$2.40  $0.80  $3.20  16 3.75 30,341.27 
$2.70  $0.90  $3.60  17 3.53 34,047.46 
$3.00  $1.00  $4.00  18 3.33 37,749.35 
$3.30  $1.10  $4.40  19 3.16 41,447.62 
$3.60  $1.20  $4.80  20 3.00 45,142.82 
$3.90  $1.30  $5.20  20 3.00 48,835.35 
$4.20  $1.40  $5.60  21 2.86 52,524.76 
$4.50  $1.50  $6.00  22 2.73 56,212.19 

 
Table 4.6  Optimal ordering policies for different values of c1 and c2  
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Figure 4.8  Effect of changes in unit costs c1 and c2 on cycle time T  
and present value of the total cost Pt  
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4.5. Inventory Models with Shortage 

The objective of the inventory models where shortage is allowed is to determine the 

optimal cycle time and the optimal quantity of allowed shortage in order to minimize the total 

relevant cost. Consequently, the production time and the maximum inventory level can be 

determined. 

The models are applied for items manufactured, and consumed with a linearly increasing 

demand. They apply only for a finite planning horizon. The inventory scheme shown in Figure 

4.9 is used to develop the details of the system.  

 

 

 

 

 

 

 

 

 

Figure 4.9  EPQ with linearly increasing demand and shortage 

 
For cycle j + 1, production starts at time jT, and the negative inventory increases with the 

rate p – D(t), until time t1j of each cycle. After t1j, the inventory continues to increase with the 

same rate and the inventory on hand starts building up until time tpj, when the production process 

stops and the inventory on hand reaches its maximum level. After that point, the inventory level 

decreases with the consumption rate, D(t), until it becomes zero at time t2j. After t2j, the system is 

S 
tpj 

(j+1)T 

D(t) = a+bt

p 

jT 
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out of stock but the demand still exists and the system continues to receive orders until the end of 

the cycle, (j + 1)T, when the production process resumes again. Production time, tpj – jT, for 

cycle j + 1 would change from cycle to cycle because of the linear change in demand, while the 

cycle time of each cycle, T, and amount of shortage, S, allowed during the cycle are assumed to 

be constant over the planning horizon. 

The total cost TC for this EPQ model consists of four elements: 

TC = Setup Cost + Production Cost + Holding Cost + Shortage Cost 

 
4.5.1. Case 3 

For this case, the setup cost and the production cost are assumed to be incurred at the 

beginning of each cycle, and the inventory holding cost is incurred continuously during the time 

period from t1j to t2j. A shortage cost is also incurred and is addressed below. 

The present value for the total setup cost during the planning horizon and the present 

value of the total production cost are the same as in the model without shortage and are given by: 
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where H = mT, and: 
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The production time, tpj – jT, was calculated earlier for the models without shortage and it 

remains the same for the models with shortage as well. Time t1j, when inventory on hand 

becomes zero during the production period, can be derived from the following equation: 

( ) ( )dtbtajTtpS
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j ∫ +−−=

1

1        (4.25) 
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Integrating and solving the resulting quadratic equation for t1j, we get two possible 

solutions: 

( ) ( ) ( )SbTjbapjTbap
bb

apt j 221 222
1 −+−−−±

−
=      (4.26) 

To determine the sign in front of the square root, the first cycle (j = 0) is considered: 

( ) bSap
bb

apt 21 2
10 −−±

−
=       (4.27) 

According to the assumptions of the model, the production rate is always greater than the 

demand rate during the entire planning horizon, including time t1. Hence, 10btap +> , which 

means that 
b

apt −
<10  and the unique solution for Equations (4.26) and (4.27) has a negative 

sign for the square root. Since it is true for j = 0, it will also be true for all j = 0, 1, 2, …, m – 1. 

Hence, the final equation for time t1j is: 
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Time t2j, when the inventory level reaches zero during the consumption period, can be 

obtained from the following expression: 
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Integrating and solving the resulting quadratic equation for t2j, we get the following 

solution: 
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To calculate the holding cost for the planning horizon, the present value of the holding 

cost for the (j + 1)-th cycle (j = 0, 1, 2, …, m – 1) is calculated, and then summed for all m 

cycles. The present value of the holding cost during the (j + 1)-th cycle is calculated as:  
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I1(t), the amount of inventory on hand at time t, for the time between t1j and tpj is equal to: 
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Starting from the end of the production time, tpj, till t2j when the on-hand inventory 

becomes zero, the inventory level, I2(t), at time t is equal to: 
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Substituting Equations (4.32) and (4.33) into (4.31), integrating by parts and simplifying, 

we get: 
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The present value of the holding cost for all cycles during the planning horizon is the 

summation of Equation (4.34):  
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The shortage cost is obtained following a similar procedure. Assuming that the shortage 

cost during cycle j + 1 consists of two components: K0 times the maximum amount of shortage, 
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S, which is incurred at the beginning of the cycle, and K times duration of the shortage, for each 

unit short, and is incurred during the shortage time of the individual units, the present value of 

the shortage cost for the (j + 1)-th cycle (j = 0, 1, 2, …, m – 1) is calculated as: 

( )
rjT

Tj

t

rt
t

jT

rt
j SeKdtetIKdtetIKBC

j

j

−
+

−− ++= ∫∫ 0

1

43

2

1

)()(      (4.36) 

I3(t) for time between the beginning of the cycle, jT, till time t1j is given by: 
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Starting from time t2j till the end of the inventory cycle, (j + 1)T, the inventory level, I4(t), 

at time t is given by: 

222
)()(

22
2

22)1(

4
btatbTbjTTbjaTajTSdbaStI

Tj

t

++−−−−−=+−= ∫
+

ττ    (4.38) 

Substituting Equations (4.37) and (4.38) into (4.36), integrating by parts, and simplifying, 

we get: 
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The present value of holding cost for all cycles during the planning horizon is the 

summation of Equation (4.39): 
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The present value of the total cost function is the sum of all the cost components: 

TC = SC + PC + HC +BC 

Using H = mT, the total inventory cost becomes a function of m, which is a discrete 

variable, and S. Assuming the total cost to be a convex function, simple search techniques may 

be used to find the optimal policy. Since m is an integer and S is continuous, the Golden Search 

technique needs to be modified and used to find the optimal policy. The search procedure needs 

to be performed twice. For each m used in the first search, the optimal value of S is found in the 

second search, which gives the minimum total cost corresponding to m. At the first iteration, k = 

1, the initial interval [ak, bk] for variable m is identified as [1, m`], where m` is the maximum 

value of m as defined by the user. Then the values of λmk = ak + (1 – α)(bk – ak) and µmk = ak + 

α(bk – ak) are calculated, where α = 0.618.  Next, for each of the points λmk and µmk, the initial 

interval [a2k, b2k] for variable S is identified as [0, S`], where S` is maximum value of S as 

defined by the user. The corresponding λsk and µsk are calculated and a second Golden Search 

procedure is performed to find the minimum total cost for each of λmk and µmk. The first Golden 

Search procedure is then continued by comparing the minimum total costs obtained for λmk and 

µmk. A new interval [ak+1, bk+1] is then selected for variable m and the corresponding λmk+1 and 

µmk+1 are calculated. The second Golden Search is then invoked. This double search is continued 

until the stopping criteria are met. 

During the search procedure, one important detail needs to be noted. In the process of 

selecting the initial intervals [a2k, b2k] for variable S, a specific requirement has to be considered. 

Since the models have a linearly increasing rate of demand, as the demand increases in the later 

cycles, time t1j – jT increases and gets closer to the production time, tpj – jT, which means that the 

inventory on hand gets smaller. If the value of S is too large, a situation may arise where the 
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production during the cycle may not be enough to satisfy the shortage. To avoid this situation, 

the following restriction may be added, using the last cycle (the most critical cycle in this case): 
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From equation (4.3), we have:  
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Substituting Equation (4.42) into Equation (4.41) we get the following inequality: 
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This condition should be considered when the initial interval [a2k, b2k] for variable S is 

determined. For each k in the modified Golden Search, the maximum value allowed for S has to 

be calculated from Equation (4.43) and should not be exceeded when defining the initial interval 

[a2k, b2k].  

The models developed are too complex to prove the convexity of the total cost function. 

However, a complete enumeration for the values of m and an exhaustive search technique were 

applied for the intervals specified for variables m and S and the results obtained were always the 

same as those obtained using the modified Golden Search procedure.  
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4.5.2. Case 4 

In this case, as in the models without shortage, the production cost, c, has two 

components. A cost, c1, which is incurred at the beginning of each cycle and is applied to the 

total quantity produced during the production period and a second cost, c2, is incurred as the 

production process takes place.  

The total cost for this model consists of the same four elements as in Case 3. The main 

difference between the two cases is in the production cost. However, the production cost for this 

model is the same as for the model where shortages are not allowed. This cost is given in 

Equation (4.14). Also for the holding cost, the unit production cost, c, used in Case 3 is replaced 

with the sum of two cost components, c1 and c2: 

( )
+

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−−++

+
= −

r
ppt

bt
atpt

bt
ate

r
ccF

HC pj
j

jj
j

j
rt

j
pj

22

2
1

11

2
2

2
21   

⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ −−−+⎟

⎠
⎞

⎜
⎝
⎛ ++

−−

r
bbtap

r
e

r
bbta

r
e

j

rt

j

rt jj

12

12

     (4.44) 

As in Case 3, the present value of total cost function is the summation of the all cost 

components: 

TC = SC + PC + HC +BC 

Similar to Case 3, the total inventory cost is a function of m and S and the modified 

Golden Search procedure used in Case 3 is used here to find the minimum total inventory cost 

and the corresponding policy.  
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4.6. Numerical Example and Sensitivity Analysis 

A numerical example is presented to illustrate the application of the inventory models 

developed for cases with shortage. A software was developed with Visual Basic Applications to 

apply the modified Golden Search procedure. Consider an inventory system with a linear 

increasing rate of demand and the following data: 

p = 4500 units/yr, a = 1500 units/yr, b = 300 units/yr, A = 50 $/order, F = 0.15 $/$/yr,                  

c = 2 $/unit, H = 5 yrs. 

The model was applied for Case 3, using different values of real interest rate, and the 

results obtained are summarized in Table 4.7. 

 
Real interest rate r  

(%) m T 
(months) 

S  
(units) 

Pm, S      
($) 

1% 9 6.67 143.65 22,734.09 
2% 9 6.67 143.66 22,181.33 
3% 10 6.00 128.84 21,641.32 
4% 11 5.45 116.80 21,117.52 
5% 11 5.45 116.80 20,606.26 
6% 12 5.00 106.81 20,111.10 
7% 12 5.00 106.81 19,628.54 
8% 12 5.00 106.81 19,161.45 
9% 13 4.62 98.39 18,706.60 
10% 13 4.62 98.40 18,266.06 
11% 14 4.29 91.21 17,838.23 
12% 14 4.29 91.21 17,422.97 
13% 14 4.29 91.21 17,020.85 
14% 15 4.00 85.00 16,629.58 
15% 15 4.00 85.00 16,250.58 

 
Table 4.7  Optimal ordering policies for different values of r  

for the models with shortages 

 
As expected, the increase in real interest rate leads to a smaller cycle time, larger number 

of inventory cycles, smaller value for shortage, and reduction in the present value of the total 

cost of the system. The total costs for the system were also smaller than the corresponding ones 
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in the system with no shortage (Table 4.1), which is expected. As in the model without shortages, 

increases in inventory carrying rate, F, slope of the demand, b, or production cost, c, shorten the 

cycle time and lead to increase in the total cost of the system. Increases in inventory carrying 

rate, F, lead to an increase in the value of S within the same number of cycles. Also, as in the no 

shortage models, an increase in the setup cost, A, leads to an increase in the cycle time, a 

decrease in the number of cycles during the planning horizon, an increase in the value of S, and 

an increase in the total cost of the system. Increase in the slope of the demand, b, first increases 

the value of S and then it decreases it back, again within the same number of cycles. The results 

in Table 4.10 do not show this behavior, but further calculations showed that the shortage S 

follows this pattern when the number of cycles remains the same. The following tables and 

figures show the results obtained and the effect of the individual parameters on the optimal 

policies. 
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Figure 4.10  Effect of real interest rate r on cycle time T  
and shortage S  
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Figure 4.11  Effect of real interest rate r on present value of the total cost Pt 
 
 
 

Carrying rate F  
(%) m T 

(months) 
S  

(units) 
Pm, S      
($) 

3% 10 6.00 31.71 18,987.79 
4% 11 5.45 37.59 19,006.95 
5% 11 5.45 46.12 19,024.37 
6% 11 5.45 54.34 19,041.15 
7% 11 5.45 62.27 19,057.34 
8% 11 5.45 69.92 19,072.97 
9% 12 5.00 70.69 19,087.54 
10% 12 5.00 77.22 19,100.89 
11% 12 5.00 83.53 19,113.80 
12% 12 5.00 89.64 19,126.29 
13% 12 5.00 95.55 19,138.38 
14% 12 5.00 101.27 19,150.10 
15% 12 5.00 106.81 19,161.45 
16% 13 4.62 103.35 19,171.81 
17% 13 4.62 108.15 19,181.65 
18% 13 4.62 112.81 19,191.20 
19% 13 4.62 117.33 19,200.47 
20% 13 4.62 121.72 19,209.48 

 
Table 4.8  Optimal ordering policies for different values of F  

for the models with shortages 
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Figure 4.12  Effect carrying rate F on cycle time T  
and shortage S  
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Figure 4.13  Effect of carrying rate F on present value of the total cost Pt 
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Shortage cost K  
($/unit/time) m T 

(months) 
S  

(units) 
Pm, S      
($) 

1 12 5.00 106.8107 19,161.45 
2 13 4.62 55.6964 19,188.10 
3 13 4.62 38.8412 19,198.53 
4 13 4.62 29.8181 19,204.12 
5 13 4.62 24.1968 19,207.59 
6 13 4.62 20.3585 19,209.97 
7 13 4.62 17.5721 19,211.69 
8 13 4.62 15.4556 19,213.00 
9 13 4.62 13.7946 19,214.03 
10 13 4.62 12.4552 19,214.85 

 
Table 4.9  Optimal ordering policies for different values of K 

for the models with shortages 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Shortage cost, K  ($/unit/time)

C
yc

le
 ti

m
e,

 T
 (m

on
th

s)

0

20

40

60

80

100

120

Sh
or

ta
ge

, S
 (u

ni
ts

)

T S

 

Figure 4.14  Effect of shortage cost K on cycle time T  
and shortage S  
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Figure 4.15  Effect of shortage cost K on present value of the total cost Pt 
 
 

Demand rate slope b 
(units/time) m T 

(months) 
S  

(units) 
Pm, S      
($) 

50 11 5.45 109.48 14,255.24 
100 12 5.00 103.16 15,241.33 
150 12 5.00 105.25 16,223.86 
200 12 5.00 106.56 17,204.71 
250 12 5.00 107.10 18,183.89 
300 12 5.00 106.81 19,161.45 
350 13 4.62 97.25 20,136.46 
400 13 4.62 95.09 21,109.90 
450 13 4.62 91.67 22,082.14 

 
Table 4.10  Optimal ordering policies for different values of b 

for the models with shortages 
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Figure 4.16  Effect of demand rate slope b on cycle time T  
and shortage S  
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Figure 4.17  Effect of demand rate slope b on present value of the total cost Pt 
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Setup cost A  
($/order) m T 

(months) 
S  

(units) 
Pm, S      
($) 

$10 28 2.14 45.09 18,588.95 
$20 20 3.00 63.41 18,779.57 
$30 16 3.75 79.58 18,926.37 
$40 14 4.29 91.21 19,050.77 
$50 12 5.00 106.81 19,161.45 
$60 11 5.45 116.80 19,261.13 
$70 11 5.45 116.80 19,353.45 
$80 10 6.00 128.85 19,438.31 
$90 9 6.67 143.67 19,519.96 
$100 9 6.67 143.67 19,595.80 

 
Table 4.11  Optimal ordering policies for different values of A 

for the models with shortages 
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Figure 4.18  Effect of setup cost A on cycle time T  
and shortage S  
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Figure 4.19  Effect of setup cost A on present value of the total cost Pt 
 

For Case 4, the same example was used with the same parameters. The only difference is 

that the production cost, c, was replaced with a raw material cost c1 = 1.5 $/unit, and a labor cost            

c2 = 0.5 $/unit. The results obtained are summarized in Table 4.12. As in Case 3, the cycle time 

decreases as the real interest rate increases. Also all other measures follow patterns similar to 

Case 3. 

Table 4.13 and Figures 4.20 and 4.21 show the results and the effect of simultaneous 

changes in both costs c1 and c2 on cycle time, T, and present value of the total cost, Pt. As in the 

model without shortages, increases in production cost, c, shorten the cycle time, because of 

higher holding cost, and lead to increase in the total cost of the system. Shortages increase within 

the same number of cycles, but drop again after a certain point, when the number of cycles 

increases. 
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Real interest rate r 
(%) m T 

(months) 
S  

(units) 
Pm, S      
($) 

1% 9 6.67 143.65 22,726.21 
2% 9 6.67 143.66 22,166.02 
3% 10 6.00 128.84 21,621.24 
4% 10 6.00 128.84 21,091.79 
5% 11 5.45 116.80 20,577.51 
6% 11 5.45 116.80 20,077.89 
7% 12 5.00 106.81 19,593.66 
8% 12 5.00 106.81 19,122.67 
9% 12 5.00 106.81 18,666.82 
10% 13 4.62 98.40 18,223.73 
11% 13 4.62 98.40 17,794.22 
12% 14 4.29 91.21 17,378.33 
13% 14 4.29 91.21 16,973.77 
14% 14 4.29 91.21 16,582.03 
15% 15 4.00 85.00 16,202.54 

 
Table 4.12  Optimal ordering policies for different values of r  

and two separate costs for the models with shortages 

 

Raw material 
cost c1 
$/unit 

Labor cost 
c2,  

$/unit 
c = c1 + c2 m T 

(months)
S 

(units) 
Pt 
($) 

$0.30  $0.10  $0.40  6 10.00 54.08 4,100.54 
$0.60  $0.20  $0.80  8 7.50 75.59 7,907.11 
$0.90  $0.30  $1.20  10 6.00 85.30 11,668.01 
$1.20  $0.40  $1.60  11 5.45 98.03 15,402.80 
$1.50  $0.50  $2.00  12 5.00 106.81 19,122.67 
$1.80  $0.60  $2.40  13 4.62 112.81 22,831.56 
$2.10  $0.70  $2.80  14 4.29 116.79 26,532.20 
$2.40  $0.80  $3.20  15 4.00 119.31 30,226.52 
$2.70  $0.90  $3.60  15 4.00 128.95 33,915.77 
$3.00  $1.00  $4.00  16 3.75 129.09 37,599.84 
$3.30  $1.10  $4.40  17 3.53 128.65 41,280.83 
$3.60  $1.20  $4.80  17 3.53 135.42 44,959.12 
$3.90  $1.30  $5.20  18 3.33 133.73 48,633.87 
$4.20  $1.40  $5.60  19 3.16 131.85 52,307.14 
$4.50  $1.50  $6.00  19 3.16 136.79 55,977.67 

 
Table 4.13  Optimal ordering policies for different values of c1 and c2  
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Figure 4.20  Effect of changes in unit costs c1 and c2 
on cycle time T and shortage S  
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Figure 4.21  Effect of changes in unit costs c1 and c2 
on present value of the total cost Pt 
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Chapter 5 

EPQ Models with and without Shortages, with Constant Demand, 

Deterioration, and Time Value of Money 

 

There are many industries where items such as dairy products, medicines and vegetables 

deteriorate at a considerable rate, and the loss from deterioration cannot be ignored. The models 

presented in this chapter investigate the economic production quantity for systems with time 

value of money and exponentially decaying inventory. Models are developed with and without 

shortage and using two different production cost functions.  

 

5.1. Assumptions 

The mathematical models developed for finding the optimal cycle time and optimal 

shortage quantity, and the corresponding production quantity are based on the general 

assumptions presented earlier and the following additional assumptions:  

1. Items have a constant deterioration rate 

2. Replenishment rate is finite and constant during the production time 

3. Demand rate is constant and less than the production rate 

 

5.2. Inventory Models with no Shortage 

These models are developed for items manufactured and consumed during the same 

cycle, with constant rate of demand and exponentially decaying inventory, over an infinite 

planning horizon, while considering the effect of time value of money. The objective of these 

models is to determine the optimal cycle time, T, or the corresponding optimal production 
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quantity, Q, in order to minimize the total relevant cost. Consequently, the production time and 

the maximum inventory level can be easily calculated. Figure 5.1 gives a graphical 

representation of the first cycle in this system. The inventory on-hand increases with a rate that is 

equal to the difference between p – D, the production rate minus the consumption rate, and a 

decay rate, θ, until time tp when the production process stops and the inventory on hand reaches 

its maximum level. After that point, the inventory level decreases with the consumption rate, D, 

and the decay rate, θ, until it becomes zero at the end of the cycle, T, when the production 

process is resumed again. 

 
 
 

 

 

 

 

 
Figure 5.1  EPQ model for deteriorating items without shortage 

 
The total cost TC (T) for this EPQ model, consists of three elements: 

TC (T) = Setup Cost + Production Cost + Holding Cost 

 
5.5.1. Case 1 

For this case, the setup cost and the production cost are assumed to be incurred at the 

beginning of each cycle, and the inventory holding cost is incurred continuously during the 

cycle, T.  

Q 

tp T 

D + I(t)θ

p 

0 

Imax 
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As in previous chapters, the inflation free or real interest rate, r, represents the time value 

of money. Assuming continuous compounding, the present value of the total cost of the 

inventory system for the first cycle can be expressed as: 

∫∫ −− +++=
T

t

rt
t

rt
p

p

p

dtetIFcdtetIFccptAP )()( 2
0

1         (5.1) 

According to Ghare et al. (1963), starting with an initial inventory, I0, the inventory level 

after time t during the consumption period is equal to: 

∫−− −=
t

xtt
t dxexDeeII

0
0 )( θθθ          (5.2) 

where D(x) is the demand rate at time x. 

With zero inventory at the beginning of the cycle, and a constant demand rate, D, the 

inventory level, I1(t), at time t during the production time, can be written, based on Ghare’s 

formula, as follows: 
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From Equation (5.3), the inventory level at the end of production cycle time, tp, can be 

determined as: 
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Again, using the formula developed by Ghare et al. (1963), the inventory level, I2(t), at 

time t, during the pure consumption period, can be written as: 
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To proceed with the model development, we need to determine the value of the 

production time, tp. This value is determined such that the inventory level at time T is equal to 

zero. Equating I2(T) from Equation (5.5) to zero, and substituting the value of 
ptI from Equation 

(5.4), we have: 
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In general, xe
 
can be expressed as the following series:  
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+++++=
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432 xxxxe x  

Applying this expansion to each of ( )ptTe −θ  and pte θ− , and ignoring the cubic and higher 

terms, which are very close to zero, especially when θ < 1, T < 1, and tp < T < 1, Equation (5.6) 

becomes:  
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This is a quadratic equation in tp, which after simplification is solved to give two 

solutions for tp, expressed in terms of T: 
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To determine which of the two solutions is the correct one for the problem on hand, let us 

consider the extreme case when the production rate, p, is equal to consumption rate, D. In this 
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case the time for the end of the production, tp, will be equal to the cycle time, T, and Equation 

(5.7) becomes: 

2

11
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It is clear that the sign of the square root has to be negative in order for tp to be equal to T. 

If we consider the case where the demand, D, is slightly less than the production rate, p, such that 

D = p – δ and substitute this value into the first part of Equation (5.7), the equation becomes: 
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As long as the expression 
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T  is positive, i.e. 

T
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δ <  or Tp δθ> , the sign of the 

square root in Equation (5.7) has to be negative, since tp is always less than the cycle time, T. 

Since p > δ, θ < 1, and T < 1, the expression Tp δθ>  will always hold, and the sign of the 

square root is always negative. Hence, the unique solution to the quadratic equation for time tp is: 
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Substituting the expressions defined above in Equation (5.1), we get the present value of 

the total cost for the first cycle: 
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Integrating by parts and simplifying, we get: 
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As shown in Figure 5.2, the present value, P, for the first cycle is repeated at the 

beginning of each of the following cycles. The present value of the total cost for N cycles, Pt, can 

then be calculated as follows:  

( )rTNrTrT
t eeePP )1(21 −−−− ++++= L  

 

Figure 5.2  Cash flow diagram 

 
For an infinite planning horizon, N → ∞ and Pt can be expressed as: 
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Substituting Equation (5.9) into (5.10), we get the present value, Pt, of the total cost: 
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The above cost is a function of T. The Golden Search technique can be used to find the 

optimal policy for the system. Following the search procedure described earlier, the optimal 

value of T and the corresponding total cost value can be obtained. 

 
5.5.2. Case 2 

In the second case, the production cost, c, has two components. A cost, c1, that is incurred 

at the beginning of each cycle and is applied to the total quantity produced during the production 

time, and a second cost, c2, which is incurred as the production process takes place.   

The total cost for this model consists of the same three elements as in the first model: 

TC(T) = Setup Cost + Production Cost + Holding Cost 

The only difference between the two cases is in the production cost. With continuous 

compounding, the present value of the production cost during the first cycle is now defined as 

follows: 

∫ −+=
pt

rtdtepcQcPC
0

21       (5.12) 

The present value of the total cost of the inventory system for the first cycle becomes: 
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where c3 = c1 + c2 

The procedure followed in Case 1 is repeated and leads to the following value for the 

present value of the total cost for an infinite number of cycles:  

 

 



 98

( ) ( ) ( )
⎪⎩

⎪
⎨
⎧

+
⎢
⎢
⎣

⎡ +−−
++−++⎟

⎠
⎞

⎜
⎝
⎛
−

=
−−

−

− θr
DepeDpccFe

r
pcptcA

e
P

rTrt
rt

prTt

p
p

21
2

1 1
1

1  

        
( )

( ) ( ) ( )
( ) ⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

+
+−

+−−
+

−+−

r
DppepeDp

r
e p

p

rt
t

Tr

θθθθ
θ

θ

       (5.14) 

As in Case 1, the above cost is a function of T and the Golden Search technique can be 

used to find the minimum cost and the corresponding cycle time, T. 

 

5.3. Convexity of the Total Cost Function 

To show that the total cost function has no local minima, so the search technique would 

find the optimal point, a similar inventory model was developed without considering the time 

value of money. This was done for simplicity, and with the assumption that the time value of 

money does not affect the convexity of the total cost function. Balkhi and Benkherouf (1996) 

proved the uniqueness of the optimal replenishment schedule for a similar model in which the 

planning horizon is finite. 

Similar to the models developed above, the total cost of the inventory system per unit 

time can be expressed as (see Equation (5.1)): 

∫∫ +++=
T

t

t
p

p

p

dttI
T
FcdttI

T
Fc

T
cpt

T
ATC )()( 2

0
1       (5.15) 

The expressions for the inventory on hand, I1(t) and I2(t), remain the same as in Equations 

(5.3) and (5.5). Substituting their values into Equation (5.15) and integrating, we get: 
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The equation for tp remains the same as in (5.8): 
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Substituting the expression for tp into Equation (5.16), and substituting the exponential 

expressions as sums of series while ignoring cubic and higher terms, which have very small 

values, we get, after some simplification, the total cost per unit time for the inventory model for 

an exponentially decaying item, without considering the time value of money: 
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The total cost function consists of the following four components as functions of T, and a 

constant part:  
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 The first component is a linear function of T, with a positive slope. The second is a 

square root of a quadratic equation, which is in general represented as follows: 

CBxAxY ++±= 2  
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For that component, the square root has a negative sign, coefficient A is negative, B is 

equal to zero, and C is positive. This function, where A < 0 and ∆ = 4AC – B2 < 0, has a convex 

shape (Bronshtein and Semendyaev, 1980).  

The other two components of the total cost function are the inverse function and the 

square root of inverse quadratic equation. Grouping these two components gives us: 
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Under the square root, we have the expression ( )
2

2

p
DpD −θ , which can be written as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

p
D

p
D 12θ . Since θ < 1, 1<

p
D , and T < 1, the value of this expression is very small when 

compared to 2

1
T

 and is considered negligible. In this case, the sum of these two components 

becomes equal to 
T
A , which is a convex function.  

Since all the functions are convex, their summation is also a convex function, which 

yields a global minimum on the positive part of the T axis. Hence, the Golden Search technique 

can be applied to find the optimal policy and will always reach the global minimum.  

 

5.4. Numerical Example and Sensitivity Analysis 

A numerical example is presented to illustrate the application of the models developed. 

Consider an inventory system with the following data: 
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p = 4500 units/yr,    D = 1500 units/yr,    A = 50 $/order,    F = 0.15 $/$/yr,   c = 2 $/unit, 

θ = 0.05 unit/unit/yr. 

A software was developed with Visual Basic Applications to apply the Golden Search 

technique and find the optimal policies for the models developed. The model was applied for 

Case 1, using different values of real interest rate, and the results obtained are summarized in 

Table 5.1. They show the relations between cycle time, T, order quantity, Q, maximum inventory 

on hand, Imax, and the real interest rate r. Figure 5.3 shows the effect of r on the optimal values of 

the cycle time, T, and present value of the total cost Pt. As expected, the cycle time decreases as 

the real interest rate increases. Accordingly, the optimal production quantity and maximum 

inventory on hand decrease with higher real interest rates. The present value of the total cost also 

decreases as the real interest rate increases. 

 
Real interest 

rate r  
(%) 

T 
(months) 

Q 
(units) 

Imax 
(units) 

Pt 
($) 

PV for first 
year,  
($) 

0% 5.93 746.92 495.88 - 3,201.23 
1% 5.77 727.31 482.92 320,788.74 3,191.64  
2% 5.58 702.41 466.45 160,766.02 3,182.50  
3% 5.4 680.00 451.63 107,417.56 3,173.03  
4% 5.24 660.00 438.39 80,738.17 3,163.32  
5% 5.09 640.88 425.74 64,726.76 3,153.61  
6% 4.96 623.70 414.36 54,049.60 3,143.79  
7% 4.83 608.06 404.01 46,420.77 3,135.80  
8% 4.71 593.15 394.13 40,697.29 3,124.31  
9% 4.61 579.41 385.03 36,244.15 3,114.77  
10% 4.5 566.44 376.44 32,680.35 3,105.25  
11% 4.41 554.45 368.50 29,763.41 3,095.94  
12% 4.32 542.86 360.82 27,331.69 3,086.74  
13% 4.23 532.27 353.80 25,273.25 3,077.65  
14% 4.16 522.41 347.26 23,508.15 3,068.72  
15% 4.08 512.88 340.94 21,977.77 3,059.96  

 
Table 5.1  Optimal ordering policies for different values of r 
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Figure 5.3  Effect of real interest rate r on cycle time T  
and present value of the total cost Pt 

 
 

The results obtained using different values of deterioration rate, θ, are summarized in 

Table 5.2.  

Deterioration rate θ 
(%) 

T 
(months) 

Q 
(units) 

Imax 
(units) 

Pt 
($) 

1% 5.05 631.98 421.02 40,489.46  
2% 4.96 621.48 413.75 40,542.82  
3% 4.87 611.46 406.81 40,595.20  
4% 4.79 601.89 400.19 40,646.68  
5% 4.71 593.15 394.13 40,697.29  
6% 4.64 584.36 388.06 40,747.07  
7% 4.57 576.36 382.52 40,796.08  
8% 4.50 568.56 377.13 40,844.33  
9% 4.44 561.03 371.93 40,891.88  
10% 4.38 553.81 366.95 40,938.74  
11% 4.32 546.75 362.07 40,984.95  
12% 4.26 540.33 357.64 41,030.54  
13% 4.21 534.08 353.32 41,075.53  
14% 4.16 527.81 349.00 41,119.93  
15% 4.10 521.84 344.88 41,163.79  

 
Table 5.2  Optimal ordering policies for different values of θ 
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Figure 5.4 shows the effect of θ on the optimal values of T and Pt. As expected, the cycle 

time gets smaller with the increase in deterioration rate. Although the present value of the total 

cost increases, the changes are not significant. 
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Figure 5.4  Effect of deterioration rate θ on cycle time T  
and present value of the total cost Pt 

 
 

Tables 5.3, 5.4, and 5.5 along with Figures 5.5, 5.6 and 5.7 show the results obtained for 

different values of carrying rate, F, demand rate, D, and setup cost, A, and effect of these 

parameters on the optimal values of T and Pt. Similar to the results presented in previous 

chapters, the cycle time gets smaller with the increase in F and D. Increases in the setup cost 

result in higher values of T. The present value of the total cost increases significantly with the 

increase in D and A, and remains relatively flat with the changes in F. 
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Carrying rate F 
(%) 

T 
(months) 

Q 
(units) 

Imax 
(units) 

Pt 
($) 

6% 5.55 698.80 464.06 40,217.43 
7% 5.43 684.16 454.38 40,274.88 
8% 5.32 670.43 445.29 40,331.15 
9% 5.22 657.75 436.90 40,386.32  
10% 5.13 645.41 428.73 40,440.44  
11% 5.03 633.61 420.92 40,493.59  
12% 4.95 622.66 413.68 40,545.80  
13% 4.87 612.26 406.79 40,597.12  
14% 4.79 602.68 400.45 40,647.60  
15% 4.71 593.15 394.13 40,697.29  
16% 4.64 584.13 388.16 40,746.20  
17% 4.57 575.42 382.39 40,794.39  
18% 4.51 567.29 377.00 40,841.87  
19% 4.45 559.15 371.61 40,888.69  
20% 4.39 551.86 366.78 40,934.87  

 
Table 5.3  Optimal ordering policies for different values of F 
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Figure 5.5  Effect of carrying rate F on cycle time T  
and present value of the total cost Pt 
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Demand rate D 
(units/time) 

T 
(months) 

Q 
(units) 

Imax 
(units) 

Pt 
($) 

1,000 5.48 460.63 357.35 27,750.27 
1,100 5.28 487.80 367.56 30,355.28 
1,200 5.11 514.61 376.31 32,951.74 
1,300 4.96 541.08 383.61 35,540.46 
1,400 4.83 566.85 389.27 38,122.13 
1,500 4.71 593.15 394.13 40,697.29  
1,600 4.61 619.03 397.56 43,266.39 
1,700 4.53 645.20 400.02 45,829.83 
1,800 4.45 670.97 401.09 48,387.93 
1,900 4.38 697.38 401.37 50,940.97 
2,000 4.32 723.54 400.36 53,489.17 
2,100 4.27 750.13 398.41 56,032.75 
2,200 4.22 777.08 395.46 58,571.88 
2,300 4.18 804.56 391.59 61,106.70 
2,400 4.14 832.20 386.57 63,637.34 

 
Table 5.4  Optimal ordering policies for different values of D 
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Figure 5.6  Effect of demand rate slope b on cycle time T  
and present value of the total cost Pt  
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Setup cost A 
($/order) 

T  
(months) 

Q  
(units) 

Imax  
(units) 

Pt 
($) 

$20 2.99 375.19 249.61 39,514.00  
$40 4.22 530.55 352.66 40,356.43  
$60 5.16 649.58 431.50 41,006.12  
$80 5.95 750.07 497.97 41,556.03  
$100 6.65 838.63 556.49 42,042.20  
$120 7.28 919.07 609.60 42,483.07  
$140 7.86 992.78 658.22 42,889.62  
$160 8.39 1,061.23 703.33 43,269.01  
$180 8.89 1,125.44 745.62 43,626.19  
$200 9.37 1,186.54 785.84 43,964.79  
$220 9.82 1,244.56 824.00 44,287.53  
$240 10.25 1,299.85 860.34 44,596.53  
$260 10.67 1,352.90 895.19 44,893.48  
$280 11.06 1,403.92 928.69 45,179.75  
$300 11.45 1,453.38 961.14 45,456.46  

 
Table 5.5  Optimal ordering policies for different values of A 
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Figure 5.7  Effect of setup cost A on cycle time T  
and present value of the total cost Pt 
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For Case 2, the same example was used, with the same parameters, except that the 

production cost, c, was replaced with a raw material cost c1 = 1.5 $/unit, and a labor cost c2 = 0.5 

$/unit. The results obtained are summarized in Table 5.6. As in Case 1, the cycle time, order 

quantity, and maximum inventory on hand decrease as the real interest rate increases. The 

present value of the total cost also decreases as the real interest rate increases. The effects of all 

other parameters on the optimal policy are similar to Case 1 and are not repeated here. 

 
Real interest 

rate r  
(%) 

T 
(months) 

Q 
(units) 

Imax 
(units) 

Pt 
($) 

PV for first 
year,  
($) 

0% 5.93 746.92 495.88 - 3,201.23 
1% 5.79 729.54 484.39 320,727.46 3,191.06  
2% 5.61 706.38 469.08 160,706.64 3,181.37  
3% 5.44 685.56 455.30 107,359.92 3,171.41  
4% 5.29 666.45 442.66 80,682.13 3,161.23  
5% 5.15 648.72 430.93 64,672.20 3,150.97  
6% 5.02 632.21 420.00 53,996.39 3,140.66  
7% 4.90 617.26 410.10 46,368.82 3,130.43  
8% 4.79 603.20 400.79 40,646.51 3,120.25  
9% 4.69 589.51 391.72 36,194.47 3,110.17  
10% 4.59 577.16 383.54 32,631.69 3,100.22  
11% 4.50 565.58 375.87 29,715.72 3,090.30  
12% 4.41 554.45 368.50 27,284.90 3,080.62  
13% 4.33 544.06 361.61 25,227.32 3,071.01  
14% 4.25 534.19 355.07 23,463.04 3,061.63  
15% 4.18 524.99 348.97 21,933.42 3,052.28  

 
Table 5.6  Optimal ordering policies for different values of r  

and two separate costs 
 

Table 5.7 and Figure 5.8 show the results obtained with simultaneous increases in raw 

material and labor costs, c1 and c2. As explained in the previous chapters, increases in these costs 

lead to a significant reduction in the cycle time and considerable increases in the present value of 

the total cost.  
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Raw 

material 
cost c1 
$/unit 

Labor 
cost c2,  
$/unit 

c = c1 + c2 
T 

(months)
Q 

(units) 
Imax 

(units) 
Pt 
($) 

$0.30  $0.10  $0.40  10.64 1,349.73 893.11 8,926.04 
$0.60  $0.20  $0.80  7.55 953.93 632.60 17,002.56 
$0.90  $0.30  $1.20  6.17 778.47 516.74 24,944.96 
$1.20  $0.40  $1.60  5.35 674.08 447.71 32,817.92 
$1.50  $0.50  $2.00  4.79 603.21 400.79 40,646.51 
$1.80  $0.60  $2.40  4.38 550.49 365.87 48,443.57 
$2.10  $0.70  $2.80  4.05 509.57 338.75 56,216.75 
$2.40  $0.80  $3.20  3.79 476.50 316.83 63,971.03 
$2.70  $0.90  $3.60  3.58 449.34 298.81 71,709.84 
$3.00  $1.00  $4.00  3.39 426.34 283.56 79,435.72 
$3.30  $1.10  $4.40  3.24 406.46 270.36 87,150.56 
$3.60  $1.20  $4.80  3.10 389.17 258.88 94,855.84 
$3.90  $1.30  $5.20  2.98 373.80 248.68 102,552.73
$4.20  $1.40  $5.60  2.87 360.16 239.63 110,242.18
$4.50  $1.50  $6.00  2.77 348.06 231.59 117,924.98

 
Table 5.7  Optimal ordering policies for different values of c1 and c2  
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Figure 5.8  Effect of changes in unit costs c1 and c2 on cycle time T  
and present value of the total cost Pt  
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5.5. Inventory Models with Shortage 

The objective of the inventory models where shortage is allowed is to determine the 

optimal cycle time and optimal quantity of allowed shortage in order to minimize the total 

relevant cost. Consequently, the production time and the maximum inventory level can be 

determined. The models are applied for an infinite planning horizon. Figure 5.9 gives a graphical 

representation of the first cycle in the system, when items deteriorate exponentially and shortage 

is allowed. The inventory production starts at time zero and increases with the rate p – D, which 

is production rate minus consumption rate, until time t1. After t1, it continues to increase with a 

rate that is equal to the difference between p – D and the decay rate, θ, and the inventory on hand 

starts building up until time tp when the production process stops and the inventory on hand 

reaches its maximum level. After time tp, the inventory level decreases with the consumption 

rate, D, and the decay rate, θ, until it becomes zero at time t2. After t2, the system is out of stock 

but the demand still exists, and backorders accumulate with the rate of D, until the end of the 

cycle, T, when the production process is resumed again. 

 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 5.9  EPQ model with shortage for deteriorating items 
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The total cost TC for this EPQ model, consists of four elements: 

TC = Setup Cost + Shortage Cost + Production Cost + Holding Cost 

 
5.5.1. Case 3 

For this case, the setup cost and the production cost are assumed to be incurred at the 

beginning of each cycle, and the inventory holding cost is incurred continuously during the 

cycle. A shortage cost will also be incurred and is addressed below.  

The inventory level, I(t), at time t is equal to:  

( ) ( )DptStI −−=− 1      for 0 < t < t1  
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Assuming that the shortage cost consists of two components: K0 times the maximum 

amount of shortage, S, which is incurred at the beginning of the cycle, and K times duration of 

the shortage, for each unit short, and is incurred during the shortage time of the individual units, 

and assuming continuous compounding, the present value of the total cost of the inventory 

system for the first period can be expressed as: 
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To find the value of tp, we equate the inventory level at time t2 to zero and substitute for 

ptI with its value (from Equation (5.4)):   
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In general, xe
 
can be expressed as the following series:  
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Applying this expansion to each of 1teθ , pteθ  and 2teθ  and ignoring the cubic and higher 

terms, which are very close to zero, especially when θ < 1, and t1 < tp < t2 < 1, Equation (5.19) 

becomes:  
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The solution to this quadratic equation is: 
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Since the present value, P, for the first period is repeated at the beginning of each of the 

following cycles, the present value of the total cost for N cycles, Pt, can be calculated as follows:  
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For an infinite planning horizon, N → ∞, Pt can be expressed as: 
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Solving for P in Equation (5.18) after performing the integrations and simplifying, and 

substituting for it in the above equation, we get the present value, Pt, of the total cost: 
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The total inventory cost in Equation (5.21) is a function of the cycle time, T, and the 

shortage, S. Closed formulas could not be obtained for the optimal values of T and S. A search 

technique needs to be applied to find the optimal policy. The same iterative search procedure 

described in Chapter 3, which uses a combination of a modified version of the Simplex 

Evolutionary Operation (EVOP) and a Univariate Walk is used to find the optimal policy. In 

order for the search procedure to work more efficiently, variables are normalized in order for 

them to have comparable ranges. 

 
5.5.2. Case 4 

For this case, as in the models without shortage, the production cost, c, has two 

components. A cost, c1, that is incurred at the beginning of each cycle and is applied to the total 

quantity produced during the production period and a second cost, c2, which is incurred as the 

production process takes place.   
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The main difference between the two cases is in the production cost. Equation (5.12) is 

applicable for the model with shortages as well. In addition, the unit production cost is replaced 

with the sum of the components, c1 and c2. 

The present value of the total cost for the first period for the inventory system where 

shortages are allowed becomes: 
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where c3 = c1 + c2 

The procedure followed in Case 3 is repeated and leads to the following value for the 

total cost for all cycles:  
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Similar to Case 3, the total inventory cost is a function of T and S and a search procedure 

is used to find the minimum total inventory cost. Other inventory variables can be calculated 

based on the values of T and S obtained with the search technique.  

  

5.6. Numerical Example and Sensitivity Analysis 

A numerical example is presented to illustrate the application of the models developed 

for the inventory system where shortage is allowed and items are fully backordered. A software 

was developed, using Visual Basic Applications, to apply the search technique that was 

developed based on the modified EVOP and a Univariate Walk. Consider an inventory system 

with the following data: 

p = 4500 units/yr,    D = 1500 units/yr,    A = 50 $/order,    F = 0.15 $/$/yr,    c = 2 $/unit, 

θ = 0.05 unit/unit/yr,       K = 1 $/unit/yr,            K0 = 0 $/unit. 

The model was applied for Case 3, using different values of real interest rate, and the 

results obtained are summarized in Table 5.8. This table shows the relations between the optimal 

values of the cycle time, order quantity, shortage, maximum inventory on hand, and the real 

interest rate. As expected, the cycle time decreases as the real interest rate increases. 

Accordingly, the optimal production quantity, Q, shortage, S, and maximum inventory on hand, 

Imax, decrease with higher real interest rates. The present value of the total cost also decreases as 

the real interest rate increases. 

Figure 5.10 shows the effects of real interest rate, r, on the optimal production quantity, 

Q, shortage, S, and present value of the total cost. Table 5.9 and Figure 5.11 illustrate the effect 

of the deterioration rate, θ, on the optimal policy. Increases in the deterioration rate result in 
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decreases in production quantity and increases in shortage. The present value of the total cost 

also increases but at a very slow rate. 

Real interest 
rate r 
(%) 

T 
(months) 

Q 
(units)

S 
(units)

Imax 
(units) 

Pt 
($) 

1% 6.00 754.52 77.11 424.40 320,014.31  
2% 5.78 726.98 74.39 408.86 160,392.72  
3% 5.59 702.03 71.76 394.95 107,177.07 
4% 5.41 679.85 69.64 382.37 80,563.50 
5% 5.25 659.18 67.57 370.73 64,591.19 
6% 5.10 640.53 65.73 360.20 53,939.81 
7% 4.96 623.29 63.88 350.62 46,329.17 
8% 4.83 607.20 62.12 341.71 40,619.17 
9% 4.72 592.34 60.65 333.32 36,176.40 
10% 4.61 578.53 59.22 325.58 32,620.79 
11% 4.50 565.55 57.83 318.36 29,710.46 
12% 4.41 553.68 56.77 311.54 27,284.18 
13% 4.32 542.22 55.53 305.17 25,230.29 
14% 4.24 531.61 54.42 299.24 23,469.05 
15% 4.15 521.46 53.31 293.61 21,941.96 

 
Table 5.8  Optimal ordering policies for different values of r  

when shortages are allowed 
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Figure 5.10  Effect of real interest rate r on ordering quantity Q, shortage S  
and present value of the total cost Pt  
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Deterioration 
rate θ 
(%) 

T 
(months) 

Q 
(units)

S 
(units)

Imax 
(units) 

Pt 
($) 

1% 5.10 638.32 41.54 383.76 40,458.94  
2% 5.03 629.64 47.03 372.27 40,502.02  
3% 4.96 621.58 52.48 361.25 40,542.98  
4% 4.89 614.06 57.49 351.06 40,581.98  
5% 4.83 607.20 62.12 341.71 40,619.17  
6% 4.78 600.74 66.73 332.65 40,654.70  
7% 4.73 594.80 70.83 324.46 40,688.67  
8% 4.68 589.00 74.93 316.39 40,721.19  
9% 4.64 583.82 78.91 308.86 40,752.36  
10% 4.59 578.79 82.47 301.87 40,782.28  
11% 4.56 574.19 86.10 295.09 40,811.01  
12% 4.52 569.58 89.16 288.88 40,838.63  
13% 4.48 565.18 92.32 282.72 40,865.20  
14% 4.45 561.25 95.46 276.90 40,890.80  
15% 4.42 557.29 98.26 271.41 40,915.47  

 
Table 5.9  Optimal ordering policies for different values of θ  

when shortages are allowed  
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Figure 5.11  Effect of deterioration rate θ on ordering quantity Q, shortage S  
and present value of the total cost Pt  
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Tables 5.10 through 5.13 along with Figures 5.12 through 5.15 present the optimal values 

obtained for Q, S, and Pt for different values of carrying rate, F, demand rate, D, shortage cost, 

K, and setup cost, A. Increases in F result in decreases in the production quantity, Q, while 

increases in D or A result in increases in its value. The amount of shortage, S, increases with 

increases in carrying rate and setup cost. It also decreases when the shortage cost increases. The 

increase in demand, D, results in an increase in the shortage at the beginning, but after some 

point, the shortage starts decreasing. The present value of the total cost behaves in a way similar 

to the model without shortage. 

 

Carrying rate F 
(%) 

T 
(months) 

Q 
(units)

S 
(units)

Imax 
(units) 

Pt 
($) 

4% 5.91 743.88 54.67 439.64 40,053.12  
5% 5.78 727.28 55.62 427.71 40,110.31  
6% 5.66 711.75 56.36 416.69 40,166.14  
7% 5.55 697.47 57.26 406.34 40,220.69  
8% 5.44 683.89 57.93 396.68 40,274.04  
9% 5.34 671.06 58.66 387.46 40,326.26  
10% 5.24 658.94 59.27 378.82 40,377.42  
11% 5.15 647.50 60.08 370.44 40,427.57  
12% 5.07 636.62 60.74 362.57 40,476.78  
13% 4.99 626.34 61.21 355.29 40,525.08  
14% 4.91 616.51 61.58 348.40 40,572.53  
15% 4.83 607.20 62.12 341.71 40,619.17  
16% 4.77 598.41 62.74 335.26 40,665.04  
17% 4.70 589.85 63.24 329.09 40,710.17  
18% 4.63 581.48 63.43 323.34 40,754.59  
19% 4.57 573.79 64.05 317.64 40,798.34  
20% 4.51 566.39 64.21 312.57 40,841.44  

 
Table 5.10  Optimal ordering policies for different values of F  

when shortages are allowed  
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Figure 5.12  Effect of carrying rate F on ordering quantity Q, shortage S  
and present value of the total cost Pt 

 
 
 

Demand rate D 
(units/time) 

T 
(months) 

Q 
(units)

S 
(units)

Imax 
(units) 

Pt 
($) 

100 17.58 149.07 42.16 103.55 3,369.67  
300 10.23 258.58 64.29 176.86 8,980.78 
500 7.97 334.87 73.61 223.74 14,396.70 
700 6.78 398.22 76.90 258.93 19,727.26 
900 6.03 454.87 76.49 286.84 25,003.72 

1,100 5.51 507.48 73.45 309.28 30,240.00 
1,300 5.12 557.90 68.51 327.39 35,443.63 
1,500 4.84 607.29 62.16 341.72 40,619.17 
1,700 4.61 656.24 54.74 352.47 45,769.58 
1,900 4.44 705.74 46.62 359.89 50,896.89 
2,100 4.31 756.46 37.98 364.08 56,002.59 
2,300 4.20 808.68 29.14 364.69 61,087.78 
2,500 4.13 863.12 20.26 361.71 66,153.35 

 
Table 5.11  Optimal ordering policies for different values of D  

when shortages are allowed  
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Figure 5.13  Effect of demand rate D on ordering quantity Q, shortage S  
and present value of the total cost Pt  

 
 
 

Shortage cost K 
($/unit/time) 

T 
(months) 

Q 
(units)

S 
(units)

Imax 
(units) 

Pt 
($) 

1 4.83 607.20 62.12 341.71 40,619.17  
2 4.78 601.29 34.79 364.95 40,652.67  
3 4.76 599.04 24.20 374.00 40,665.75 
4 4.75 597.85 18.66 378.71 40,672.72 
5 4.75 596.90 15.14 381.58 40,677.05 
6 4.74 596.45 12.55 383.85 40,680.00 
7 4.74 596.11 11.03 385.13 40,682.15 
8 4.74 595.69 9.50 386.38 40,683.77 
9 4.73 595.49 8.49 387.25 40,685.04 
10 4.73 595.36 7.68 387.97 40,686.07 

 
Table 5.12  Optimal ordering policies for different values of K  

when shortages are allowed  
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Figure 5.14  Effect of shortage cost K on ordering quantity Q, shortage S  
and present value of the total cost Pt  

 

Setup cost A 
($/order) 

T 
(months) 

Q 
(units) 

S 
(units)

Imax 
(units) 

Pt 
($) 

40 4.33 543.16 55.51 305.82 40,286.68 
50 4.83 607.20 62.12 341.71 40,619.17 
60 5.29 665.07 68.14 374.07 40,920.42 
70 5.71 718.19 73.40 404.02 41,198.00 
80 6.11 767.72 78.44 431.81 41,456.83 
90 6.47 814.49 83.40 457.84 41,700.33 
100 6.82 858.53 87.94 482.47 41,931.02 
110 7.15 900.23 92.20 505.81 42,150.76 
120 7.47 940.13 96.02 528.40 42,361.02 
130 7.77 978.72 100.15 549.79 42,562.97 
140 8.06 1,015.50 103.84 570.43 42,757.54 
150 8.34 1,051.24 107.61 590.30 42,945.52 
160 8.61 1,085.46 111.02 609.50 43,127.55 
170 8.87 1,118.85 114.40 628.19 43,304.18 
180 9.13 1,151.15 117.55 646.38 43,475.89 
190 9.38 1,182.84 120.98 663.88 43,643.08 
200 9.62 1,213.42 123.98 681.08 43,806.10 

 
Table 5.13  Optimal ordering policies for different values of A  

when shortages are allowed  
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Figure 5.15  Effect of setup cost A on ordering quantity Q, shortage S  
and present value of the total cost Pt  

 
For Case 4, the same example was used with the same parameters, except that the 

production cost, c, was replaced with a raw material cost c1 = 1.5 $/unit, and a labor cost c2 = 0.5 

$/unit. The results are summarized in Table 5.14. 

Real interest 
rate r  
(%) 

t1 
(months) 

T 
(months) 

Q 
(units)

S 
(units)

Imax 
(units) 

Pt 
($) 

1% 0.31 6.02 757.28 77.53 425.81 319,950.84 
2% 0.30 5.82 731.39 74.89 411.29 160,331.39 
3% 0.29 5.63 708.18 72.41 398.38 107,117.66 
4% 0.28 5.47 686.91 70.19 386.5 80,505.85 
5% 0.27 5.31 667.53 68.15 375.69 64,535.15 
6% 0.27 5.17 649.63 66.59 365.37 53,885.25 
7% 0.26 5.04 633.09 64.84 356.16 46,275.98 
8% 0.25 4.92 617.76 63.36 347.46 40,567.24 
9% 0.25 4.81 603.56 61.69 339.72 36,125.65 
10% 0.24 4.70 590.02 60.45 331.98 32,571.13 
11% 0.24 4.60 577.53 59.26 324.88 29,661.84 
12% 0.23 4.51 565.79 57.71 318.64 27,236.52 
13% 0.23 4.42 554.61 56.65 312.27 25,183.55 
14% 0.22 4.34 544.23 55.54 306.49 23,423.16 
15% 0.22 4.26 534.37 54.71 300.77 21,896.88 

 
Table 5.14  Optimal ordering policies for different values of r 

and two separate costs when shortages are allowed 
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As in Case 3, the optimal values of the cycle time, order quantity, shortage, and 

maximum inventory on hand decrease as the real interest rate increases. The present value of the 

total cost also decreases as the real interest rate increases. 

 
Raw 

material 
cost c1 
$/unit 

Labor 
cost c2,  
$/unit 

c = c1 + c2
T 

(months)
Q 

(units) 
S 

(units)
Imax 

(units) 
Pt 
($) 

$0.30  $0.10  $0.40  10.73 1,359.64 33.70 866.41 8,915.92 
$0.60  $0.20  $0.80  7.65 964.91 45.52 594.78 16,978.34 
$0.90  $0.30  $1.20  6.29 791.27 53.46 472.18 24,903.82 
$1.20  $0.40  $1.60  5.47 688.06 58.90 398.48 32,758.22 
$1.50  $0.50  $2.00  4.92 617.76 63.36 347.46 40,567.24 
$1.80  $0.60  $2.40  4.51 565.99 66.62 309.90 48,344.14 
$2.10  $0.70  $2.80  4.19 525.73 69.03 280.80 56,096.81 
$2.40  $0.80  $3.20  3.93 493.26 70.99 257.30 63,830.41 
$2.70  $0.90  $3.60  3.72 466.54 72.73 237.82 71,548.52 
$3.00  $1.00  $4.00  3.54 443.74 73.85 221.57 79,253.75 
$3.30  $1.10  $4.40  3.39 424.27 74.96 207.53 86,948.08 
$3.60  $1.20  $4.80  3.25 407.09 75.58 195.49 94,633.01 
$3.90  $1.30  $5.20  3.13 392.14 76.52 184.62 102,309.76
$4.20  $1.40  $5.60  3.02 378.67 76.73 175.46 109,979.29
$4.50  $1.50  $6.00  2.93 366.41 77.09 166.95 117,642.42

 
Table 5.15  Optimal ordering policies for different values of c1 and c2  

when shortages are allowed 

 
Table 5.15 and Figure 5.16 show the changes in the optimal policy corresponding to 

changes in the unit costs. The order quantity and the present value of the total cost behave the 

same way as in the previous model where no shortage is allowed, while the shortage increases 

with an increase in the combined unit cost, although at a slow rate. 
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Figure 5.16  Effect of changes in unit costs c1 and c2 on ordering quantity Q,  
shortage S and present value of the total cost Pt  
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Chapter 6 

Summary and Future Research 

6.1. Summary 

In Chapter 3, the deterministic inventory control problem was considered for the 

determination of optimal production quantities for items with constant demand rate, while 

considering the effect of time value of money. Two different models were developed. In the first 

model, no shortage was allowed, while the second model allowed for shortages. In each model, 

two different cost functions were considered. In the first function, the production cost is incurred 

at the beginning of the cycle, while in the second, the production cost consists of two parts: An 

initial cost, which is incurred at the beginning of the cycle and is applied to the entire quantity 

produced during the cycle, and a running cost that is incurred as production progresses and is 

applied to the individual units produced. Closed formulas were obtained for the optimal cycle 

time and the corresponding optimal production quantity for the models without shortage. For the 

models where shortage is allowed, a search technique was developed which applies a 

combination of a modified Simplex EVOP and a Univariate Walk to find the optimal cycle time 

and the amount of shortage allowed. Numerical examples were presented and sensitivity 

analyses were performed. 

In Chapter 4, optimal production cycle times are determined for deterministic inventory 

problems with linear demand rate over time, while considering the effect of time value of money. 

The optimal policies are determined over a finite planning horizon. Similar to Chapter 3, two 

different models were developed, one without shortage, and the other with shortages. In each 

model, two different cost functions were considered, depending on when the production cost 

occurs. Modified Golden Search techniques were developed to find the optimal number of 
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inventory production cycles and the amount of shortage allowed (when applicable), for each of 

the production cost functions. A proof of the existence of a unique optimum for the cost function 

was given for the models where shortages are not allowed. Numerical examples were presented 

and sensitivity analyses were performed.  

Optimal cycle times were determined in Chapter 5 for deterministic inventory problems 

with constant demand rate, and exponentially decaying inventory while considering the effect of 

time value of money over an infinite planning horizon. As in the previous chapters, models were 

developed with and without shortage. For each system, two different cases were considered. The 

existence of a unique optimum for the cost function was shown for the models where shortages 

are not allowed. Two different search techniques were used to find the optimal policies.  The first 

uses the Golden Search to find the optimal cycle time for the models without shortage. For the 

models where shortage is allowed, a search technique was developed, which applies a 

combination of a modified Simplex EVOP and a Univariate Walk to find the optimal cycle time 

and amount of shortage allowed. As for the previous models, numerical examples were presented 

and sensitivity analyses were performed.  

 

6.2. Future Research 

Several extensions can be made to this research:  

1. In the first problem, a closed formula was developed for the model without shortage. 

For the rest of the models search techniques were used to find optimal policies. One 

extension to this study would be to attempt to develop closed formulas for the rest of 

the models.  
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2. In developing the models, only one concept was introduced at a time, along with time 

value of money. One may want to investigate models with combination of several 

concepts and determine the optimal polices for these cases.  

3. Another extension to this research could be to attempt to prove the convexity of the 

total cost function where interest rate is included in the total cost function. 

4. The models developed in this research were considered for a single item. One may 

relax this assumption and consider models with multiple items. 

5. The production rate in all the models was constant and the demand rate was either 

constant or increasing linearly over time.  Other extension to this research could be to 

consider probabilistic demand or production rate. 
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Appendix A. Computer program used for EPQ model with shortages and time value of 
money 
 
Note: The same program is used for the EPQ model with shortages, deterioration and time value 
of money. The total cost function is changed for the different models. 
 
Dim A, p, c, c1, c2, F, InflRate, NomRate, r, D, L As Double 
Dim k, p_, q, R_, K_, K0, Z As Double 
Dim i, j, inew, Div As Integer 
Dim flag, flag1, flag2, found As Boolean 
Dim X(2), V(3, 3), VV(3) As Double 
Dim TotCost1, TotCost2 As Double 
Dim Total_cost, max_TC As Double 
Dim TCnew, TCB, TC(3) As Double 
 
Private Sub cmdCalculate_Click() 
A = Val(txtSetup_A.Text) 
p = Val(txtProdRate_p.Text) 
c = Val(txtProdCost_c.Text) 
c1 = Val(txtRawCost_c1.Text) 
c2 = Val(txtLaborCost_c2.Text) 
F = Val(txtCarryingRate_F.Text) / 100 
InflRate = Val(txtInflRate.Text) / 100 
NomRate = Val(txtNomRate.Text) / 100 
r = NomRate - InflRate 
D = Val(txtDemand_D.Text) 
K0 = Val(txtShortCost_K0.Text) 
K_ = Val(txtShortCost_K.Text) 
L = Val(txtLength_L.Text) 
Div = Val(txtDivisor_Div.Text) 
Z = Val(txtStopping_Z.Text) 
X(1) = Val(txtVariable(0).Text) 
X(2) = Val(txtVariable(1).Text) 
 
k = 2 
p_ = ((k - 1) + Sqr(k + 1)) / (k * Sqr(2)) 
q = (Sqr(k + 1) - 1) / (k * Sqr(2)) 
R_ = (p_ * L + (k - 1) * q * L) / (k + 1) 
 
For j = 1 To k Step 1 
    V(1, j) = X(j) - R_ 
Next j 
 
For j = 1 To k Step 1 
        For i = 2 To k + 1 Step 1 
                If i - 1 = j Then 
                    V(i, j) = X(j) - R_ + p_ * L 
                Else 
                    V(i, j) = X(j) - R_ + q * L 
                End If 
        Next i 
Next j 
 
For i = 1 To k + 1 Step 1 
    If V(i, 1) > V(i, 2) And V(i, 2) > 0 Then 
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        If chkOneCost.Value = 1 Then 
          TC(i) = TC_Function1_ByVal(V(i, 1), V(i, 2)) 
        Else 
          TC(i) = TC_Function2_ByVal(V(i, 1), V(i, 2)) 
        End If 
    Else 
      TC(i) = 9999999999# 
    End If 
Next i 
 
'Find the Min of TC(i)and new Vertex 
 
Do While (L >= Z) 
TCnew = 0 
TCold = 0 
flag = True 
flag1 = True 
inew = 0 
 
 Do While (flag = True) 
 
    If TCnew >= TCold And flag1 = False Then 
       flag = False 
       L = L / Div 
    End If 
    flag1 = False 
    
    If flag = True Then 
      max_TC = 0 
     
      If inew <> 0 Then 
        TC(inew) = TCnew 
      End If 
     
      For i = 1 To k + 1 Step 1 
        If TC(i) > max_TC Then 
            max_TC = TC(i) 
            inew = i 
        End If 
      Next i 
     
      TCold = TC(inew) 
     
      For j = 1 To k Step 1 
        VV(j) = 0 
      Next j 
     
      For j = 1 To k Step 1 
        For i = 1 To k + 1 Step 1 
            VV(j) = VV(j) + V(i, j) 
        Next i 
      VV(j) = 2 * (VV(j) - V(inew, j)) / k - V(inew, j) 
      Next j 
      
      If VV(1) > VV(2) And VV(2) > 0 Then 
        If chkOneCost.Value = 1 Then 
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           TCnew = TC_Function1_ByVal(VV(1), VV(2)) 
        Else 
           TCnew = TC_Function2_ByVal(VV(1), VV(2)) 
        End If 
           For j = 1 To k Step 1 
             V(inew, j) = VV(j) 
           Next j 
      Else 
       TCnew = 9999999999# 
      End If 
    
    End If 
 Loop 
 
If L >= Z Then 
    For j = 1 To k Step 1 
    X(j) = 0 
        For i = 1 To k + 1 Step 1 
            X(j) = X(j) + V(i, j) 
        Next i 
    X(j) = X(j) / (k + 1) 
    Next j 
     
    R_ = (p_ * L + (k - 1) * q * L) / (k + 1) 
     
    For j = 1 To k Step 1 
        V(1, j) = X(j) - R_ 
    Next j 
     
    For j = 1 To k Step 1 
            For i = 2 To k + 1 Step 1 
                    If i - 1 = j Then 
                        V(i, j) = X(j) - R_ + p_ * L 
                    Else 
                        V(i, j) = X(j) - R_ + q * L 
                    End If 
            Next i 
    Next j 
      
     For i = 1 To k + 1 Step 1 
       If V(i, 1) > V(i, 2) And V(i, 2) > 0 Then 
          If chkOneCost.Value = 1 Then 
             TC(i) = TC_Function1_ByVal(V(i, 1), V(i, 2)) 
          Else 
             TC(i) = TC_Function2_ByVal(V(i, 1), V(i, 2)) 
          End If 
       Else 
         TC(i) = 9999999999# 
       End If 
     Next i 
End If 
Loop 
 
For j = 1 To k Step 1 
  X(j) = 0 
     For i = 1 To k + 1 Step 1 
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         X(j) = X(j) + V(i, j) 
     Next i 
  X(j) = X(j) / (k + 1) 
Next j 
 
If chkOneCost.Value = 1 Then 
  TCB = TC_Function1_ByVal(X(1), X(2)) 
Else 
  TCB = TC_Function2_ByVal(X(1), X(2)) 
End If 
 
L = Val(txtLength_L.Text) 
 
Do While (L >= Z) 
found = True 
   
  Do While (found = True) 
  found = False 
    
'Direction of positive X 
    
  flag2 = True 
     
    Do While (flag2 = True) 
        X(1) = X(1) + L 
         
     If X(1) > X(2) And X(2) > 0 Then 
        If chkOneCost.Value = 1 Then 
            Total_cost = TC_Function1_ByVal(X(1), X(2)) 
        Else 
            Total_cost = TC_Function2_ByVal(X(1), X(2)) 
        End If 
         
        If (Total_cost < TCB) Then 
           TCB = Total_cost 
           found = True 
        Else 
           flag2 = False 
           X(1) = X(1) - L 
        End If 
      Else 
         flag2 = False 
         X(1) = X(1) - L 
      End If 
    Loop 
 
'Direction of positive Y 
 
    flag2 = True 
    Do While (flag2 = True) 
        X(2) = X(2) + L 
           
          If X(1) > X(2) And X(2) > 0 Then 
            If chkOneCost.Value = 1 Then 
              Total_cost = TC_Function1_ByVal(X(1), X(2)) 
            Else 
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              Total_cost = TC_Function2_ByVal(X(1), X(2)) 
            End If 
 
             If (Total_cost < TCB) Then 
               TCB = Total_cost 
               found = True 
             Else 
               flag2 = False 
               X(2) = X(2) - L 
             End If 
          Else 
           flag2 = False 
           X(2) = X(2) - L 
          End If 
    Loop 
 
'Direction of negative X 
     
    flag2 = True 
    Do While (flag2 = True) 
        X(1) = X(1) - L 
         
        If X(1) > X(2) And X(2) > 0 Then 
           If chkOneCost.Value = 1 Then 
             Total_cost = TC_Function1_ByVal(X(1), X(2)) 
           Else 
             Total_cost = TC_Function2_ByVal(X(1), X(2)) 
           End If 
               
              If (Total_cost < TCB) Then 
                TCB = Total_cost 
                found = True 
              Else 
                flag2 = False 
                X(1) = X(1) + L 
              End If 
        Else 
            flag2 = False 
            X(1) = X(1) + L 
        End If 
    Loop 
     
'Direction of negative Y 
    flag2 = True 
    Do While (flag2 = True) 
         X(2) = X(2) - L 
         
         If X(1) > X(2) And X(2) > 0 Then 
           If chkOneCost.Value = 1 Then 
             Total_cost = TC_Function1_ByVal(X(1), X(2)) 
           Else 
             Total_cost = TC_Function2_ByVal(X(1), X(2)) 
           End If 
             
           If (Total_cost < TCB) Then 
              TCB = Total_cost 
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              found = True 
           Else 
              flag2 = False 
              X(2) = X(2) + L 
           End If 
        Else 
           flag2 = False 
           X(2) = X(2) + L 
        End If 
    Loop 
 
  Loop 
 
L = L / Div 
 
Loop 
 
If chkOneCost.Value = 1 Then 
  txtQuantity1.Text = Format(X(1), "###,###.0000") 
  txtShortage1.Text = Format(X(2), "###,###.0000") 
  txtTotalCost1.Text = Format(TCB, "###,###.0000") 
  txtTime1.Text = Format(X(1) * 12 / D, "###,###.0000") 
  txtImax1.Text = Format(X(1) - X(1) * D / p - X(2), "###,###.0000") 
   
Else 
  txtQuantity2.Text = Format(X(1), "###,###.0000") 
  txtShortage2.Text = Format(X(2), "###,###.0000") 
  txtTotalCost2.Text = Format(TCB, "###,###.0000") 
  txtTime2.Text = Format(X(1) * 12 / D, "###,###.0000") 
  txtImax2.Text = Format(X(1) - X(1) * D / p - X(2), "###,###.0000") 
End If 
 
End Sub 
 
Public Function TC_Function1_ByVal(ByVal a1 As Double, ByVal a2 As Double) As Double 
TotC1 = A + c * a1 + K_ * a2 / r - K_ * (p - D) / r ^ 2 + K0 * a2 
TotC2 = (p - D) * Exp(-r * a2 / (p - D)) * (K_ + F * c) / r ^ 2 - F * c * p * Exp(-r * a1 / p) / r ^ 2 
TotC3 = D * Exp(-r * (a1 - a2) / D) * (K_ + F * c) / r ^ 2 - K_ * Exp(-r * a1 / D) * (a2 + D / r) / r 
TotCost1 = (TotC1 + TotC2 + TotC3) / (1 - Exp(-r * a1 / D)) 
TC_Function1_ByVal = TotCost1 
End Function 
 
Public Function TC_Function2_ByVal(ByVal a1 As Double, ByVal a2 As Double) As Double 
TotC_1 = A + c1 * a1 + c2 * p / r + K_ * a2 / r - K_ * (p - D) / r ^ 2 + K0 * a2 
TotC_2 = (p - D) * Exp(-r * a2 / (p - D)) * (K_ + F * (c1 + c2)) / r ^ 2 - p * Exp(-r * a1 / p) * (F * (c1 + c2) / r + c2) 
/ r 
TotC_3 = D * Exp(-r * (a1 - a2) / D) * (K_ + F * (c1 + c2)) / r ^ 2 - K_ * Exp(-r * a1 / D) * (a2 + D / r) / r 
TotCost2 = (TotC_1 + TotC_2 + TotC_3) / (1 - Exp(-r * a1 / D)) 
TC_Function2_ByVal = TotCost2 
End Function 
 
Private Sub chkOneCost_Click() 
If chkOneCost.Value = 1 Then 
chkTwoCosts.Value = 0 
txtQuantity2.Text = "" 
txtShortage2.Text = "" 
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txtTotalCost2.Text = "" 
txtTime2.Text = "" 
txtImax2.Text = "" 
lblLabor.Visible = False 
lblRaw.Visible = False 
txtRawCost_c1.Visible = False 
txtLaborCost_c2.Visible = False 
lblQuantity2.Visible = False 
lblShortage2.Visible = False 
lblTotalCost2.Visible = False 
lblTime2.Visible = False 
lblImax2.Visible = False 
txtQuantity2.Visible = False 
txtShortage2.Visible = False 
txtTotalCost2.Visible = False 
txtTime2.Visible = False 
txtImax2.Visible = False 
 
lblProdCost.Visible = True 
txtProdCost_c.Visible = True 
lblQuantity1.Visible = True 
lblShortage1.Visible = True 
lblTotalCost1.Visible = True 
lblTime1.Visible = True 
lblImax1.Visible = True 
txtQuantity1.Visible = True 
txtShortage1.Visible = True 
txtTotalCost1.Visible = True 
txtTime1.Visible = True 
txtImax1.Visible = True 
 
End If 
End Sub 
 
Private Sub chkTwoCosts_Click() 
If chkTwoCosts.Value = 1 Then 
chkOneCost.Value = 0 
txtQuantity1.Text = "" 
txtShortage1.Text = "" 
txtTotalCost1.Text = "" 
txtTime1.Text = "" 
txtImax1.Text = "" 
lblLabor.Visible = True 
lblRaw.Visible = True 
txtRawCost_c1.Visible = True 
txtLaborCost_c2.Visible = True 
lblQuantity2.Visible = True 
lblShortage2.Visible = True 
lblTotalCost2.Visible = True 
lblTime2.Visible = True 
lblImax2.Visible = True 
txtQuantity2.Visible = True 
txtShortage2.Visible = True 
txtTotalCost2.Visible = True 
txtTime2.Visible = True 
txtImax2.Visible = True 
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lblProdCost.Visible = False 
txtProdCost_c.Visible = False 
lblQuantity1.Visible = False 
lblShortage1.Visible = False 
lblTotalCost1.Visible = False 
lblTime1.Visible = False 
lblImax1.Visible = False 
txtQuantity1.Visible = False 
txtShortage1.Visible = False 
txtTotalCost1.Visible = False 
txtTime1.Visible = False 
txtImax1.Visible = False 
 
End If 
End Sub 
 
Private Sub cmdEnd_Click() 
End 
End Sub 
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Appendix B. Computer program for EPQ model without shortages, with linear demand 
and time value of money 
 
Note: Similar programs with minor changes are used for the EPQ model without shortages, 
deterioration and time value of money. The total cost function is changed for the different 
models. 
 
Dim A_, p, c, c1, c2, F, r, H, b0, b1, m As Double 
Dim NomRate, InflRate As Double 
Dim a(100), b(100), Lyam(100), Myu(100)  As Double 
Dim TC_M(100), TC_L(100), Sum1, Sum2 As Double 
Dim TotCost1, TotCost2 As Double 
 
Private Sub cmdCalculate_Click() 
         
A_ = Val(txtSetup_A.Text) 
p = Val(txtProdRate_p.Text) 
c = Val(txtProdCost_c.Text) 
c1 = Val(txtRawCost_c1.Text) 
c2 = Val(txtLaborCost_c2.Text) 
F = (Val(txtCarryingRate_F.Text)) / 100 
H = Val(txtHorizon_H.Text) 
b0 = Val(txtD_Interc_b0.Text) 
b1 = Val(txtD_Slope_b1.Text) 
m = Val(txtInterval_m.Text) 
InflRate = (Val(txtInflRate.Text)) / 100 
NomRate = (Val(txtNomRate.Text)) / 100 
r = NomRate - InflRate 
 
If chkOneCost.Value = 1 Then 
 
i = 1 
a(1) = 1 
b(1) = m 
Lyam(1) = Round(a(1) + (1 - 0.618) * (b(1) - a(1)), 0) 
Myu(1) = Round(a(1) + 0.618 * (b(1) - a(1)), 0) 
TC_M(1) = TC_Function1_ByVal(Myu(1)) 
TC_L(1) = TC_Function1_ByVal(Lyam(1)) 
 
Do While (b(i) - a(i) <> 1) 
 
    If TC_L(i) > TC_M(i) Then 
       a(i + 1) = Lyam(i) 
        b(i + 1) = b(i) 
        Lyam(i + 1) = Myu(i) 
        TC_L(i + 1) = TC_M(i) 
        Myu(i + 1) = Round(a(i + 1) + 0.618 * (b(i + 1) - a(i + 1)), 0) 
        TC_M(i + 1) = TC_Function1_ByVal(Myu(i + 1)) 
    Else 
        a(i + 1) = a(i) 
        b(i + 1) = Myu(i) 
        Lyam(i + 1) = Round(a(i + 1) + (1 - 0.618) * (b(i + 1) - a(i + 1)), 0) 
        Myu(i + 1) = Lyam(i) 
        TC_M(i + 1) = TC_L(i) 
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        TC_L(i + 1) = TC_Function1_ByVal(Lyam(i + 1)) 
    End If 
    i = i + 1 
Loop 
     
    If TC_L(i) > TC_M(i) Then 
        txtTotalCost1.Text = Format(TC_M(i), "###,###.0000") 
        txtPeriod1.Text = Myu(i) 
        txtTime1.Text = Format(H * 12 / Myu(i), "###,###.0000") 
    Else 
        txtTotalCost1.Text = Format(TC_L(i), "###,###.0000") 
        txtPeriod1.Text = Lyam(i) 
        txtTime1.Text = Format(H * 12 / Lyam(i), "###,###.0000") 
 
    End If 
 
Else 
 
i = 1 
a(1) = 1 
b(1) = m 
Lyam(1) = Round(a(1) + (1 - 0.618) * (b(1) - a(1)), 0) 
Myu(1) = Round(a(1) + 0.618 * (b(1) - a(1)), 0) 
TC_M(1) = TC_Function2_ByVal(Myu(1)) 
TC_L(1) = TC_Function2_ByVal(Lyam(1)) 
 
Do While (b(i) - a(i) <> 1) 
 
    If TC_L(i) > TC_M(i) Then 
       a(i + 1) = Lyam(i) 
        b(i + 1) = b(i) 
        Lyam(i + 1) = Myu(i) 
        TC_L(i + 1) = TC_M(i) 
        Myu(i + 1) = Round(a(i + 1) + 0.618 * (b(i + 1) - a(i + 1)), 0) 
        TC_M(i + 1) = TC_Function2_ByVal(Myu(i + 1)) 
    Else 
        a(i + 1) = a(i) 
        b(i + 1) = Myu(i) 
        Lyam(i + 1) = Round(a(i + 1) + (1 - 0.618) * (b(i + 1) - a(i + 1)), 0) 
        Myu(i + 1) = Lyam(i) 
        TC_M(i + 1) = TC_L(i) 
        TC_L(i + 1) = TC_Function2_ByVal(Lyam(i + 1)) 
    End If 
     
    i = i + 1 
Loop 
     
    If TC_L(i) > TC_M(i) Then 
        txtTotalCost2.Text = Format(TC_M(i), "###,###.0000") 
        txtPeriod2.Text = Myu(i) 
        txtTime2.Text = Format(H * 12 / Myu(i), "###,###.0000") 
    Else 
        txtTotalCost2.Text = Format(TC_L(i), "###,###.0000") 
        txtPeriod2.Text = Lyam(i) 
        txtTime2.Text = Format(H * 12 / Lyam(i), "###,###.0000") 
    End If 
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End If 
     
End Sub 
 
Public Function TC_Function1_ByVal(ByVal X1 As Double) As Double 
Sum1 = 0 
TC1 = (2 * A_ * X1 ^ 2 + 2 * c * b0 * H * X1 + c * b1 * H ^ 2) * (Exp(-r * H) - 1) / (2 * X1 ^ 2 * (Exp(-r * H / X1) 
- 1)) 
TC2 = F * c * p * Exp(-r * H * (2 * b0 * X1 + b1 * H) / (2 * p * X1 ^ 2)) * (Exp(-r * H * (p * X1 + b1 * H) / (p * 
X1)) - 1) / (r ^ 2 * (Exp(-r * H * (p * X1 + b1 * H) / (p * X1 ^ 2)) - 1)) 
TC3 = F * c * ((b0 + b1 / r) * (Exp(-r * H / X1) - 1) * X1 + b1 * H * Exp(-r * H / X1) + p * X1) * (Exp(-r * H) - 1) / 
(X1 * r ^ 2 * (Exp(-r * H / X1) - 1)) 
    For j = 0 To (X1 - 1) Step 1 
        Sum1 = Sum1 + j * Exp(-r * j * H / X1) 
    Next j 
TC4 = (H * c * b1 / (X1 ^ 2 * r ^ 2)) * (H * r ^ 2 + F * X1 * (Exp(-r * H / X1) - 1)) * Sum1 
TotCost1 = TC1 - TC2 + TC3 + TC4 
TC_Function1_ByVal = TotCost1 
End Function 
 
Public Function TC_Function2_ByVal(ByVal X1 As Double) As Double 
Sum2 = 0 
TC_1 = (2 * r * A_ * X1 ^ 2 + 2 * c1 * b0 * H * r * X1 + c1 * b1 * H ^ 2 * r + 2 * c2 * p * X1 ^ 2) * (Exp(-r * H) - 
1) / (2 * r * X1 ^ 2 * (Exp(-r * H / X1) - 1)) 
TC_2 = p * Exp(-r * H * (2 * b0 * X1 + b1 * H) / (2 * p * X1 ^ 2)) * (Exp(-r * H * (p * X1 + b1 * H) / (p * X1)) - 
1) * (c2 * r + F * c1 + F * c2) / (r ^ 2 * (Exp(-r * H * (p * X1 + b1 * H) / (p * X1 ^ 2)) - 1)) 
TC_3 = F * (c1 + c2) * ((b0 + b1 / r) * (Exp(-r * H / X1) - 1) * X1 + b1 * H * Exp(-r * H / X1) + p * X1) * (Exp(-r 
* H) - 1) / (X1 * r ^ 2 * (Exp(-r * H / X1) - 1)) 
    For j = 0 To (X1 - 1) Step 1 
        Sum2 = Sum2 + j * Exp(-r * j * H / X1) 
    Next j 
TC_4 = (b1 * H / (r ^ 2 * X1 ^ 2)) * (H * c1 * r ^ 2 + X1 * F * (c1 + c2) * (Exp(-r * H / X1) - 1)) * Sum2 
TotCost2 = TC_1 - TC_2 + TC_3 + TC_4 
TC_Function2_ByVal = TotCost2 
End Function 
 
Private Sub chkOneCost_Click() 
If chkOneCost.Value = 1 Then 
chkTwoCosts.Value = 0 
txtTotalCost2.Text = "" 
txtPeriod2.Text = "" 
txtTime2.Text = "" 
lblLabor.Visible = False 
lblRaw.Visible = False 
txtRawCost_c1.Visible = False 
txtLaborCost_c2.Visible = False 
lblMinTotal2.Visible = False 
lblNumber2.Visible = False 
lblTime2.Visible = False 
txtTotalCost2.Visible = False 
txtPeriod2.Visible = False 
txtTime2.Visible = False 
 
lblProdCost.Visible = True 
txtProdCost_c.Visible = True 
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lblMinTotal1.Visible = True 
lblNumber1.Visible = True 
lblTime1.Visible = True 
txtTotalCost1.Visible = True 
txtPeriod1.Visible = True 
txtTime1.Visible = True 
 
End If 
End Sub 
 
Private Sub chkTwoCosts_Click() 
If chkTwoCosts.Value = 1 Then 
chkOneCost.Value = 0 
txtTotalCost1.Text = "" 
txtPeriod1.Text = "" 
txtTime1.Text = "" 
lblLabor.Visible = True 
lblRaw.Visible = True 
txtRawCost_c1.Visible = True 
txtLaborCost_c2.Visible = True 
lblMinTotal2.Visible = True 
lblNumber2.Visible = True 
lblTime2.Visible = True 
txtTotalCost2.Visible = True 
txtPeriod2.Visible = True 
txtTime2.Visible = True 
 
lblProdCost.Visible = False 
txtProdCost_c.Visible = False 
lblMinTotal1.Visible = False 
lblNumber1.Visible = False 
lblTime1.Visible = False 
txtTotalCost1.Visible = False 
txtPeriod1.Visible = False 
txtTime1.Visible = False 
 
End If 
End Sub 
 
Private Sub cmdExit_Click() 
End 
End Sub 
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Appendix C. Computer program for EPQ model with shortages, linear demand, and time 
value of money: 
 
Dim A_, p, c, F, InflRate, NomRate, r, m, H As Double 
Dim b0, b1, c1, c2, K, K0, S, S_starL, S_starM As Double 
Dim a(1000), b(1000), Lyam_m(1000), Myu_m(1000), Lyam_S(1000), Myu_S(1000) As Double 
Dim a2L(1000), b2L(1000), Lyam_SL(1000), Myu_SL(1000)  As Double 
Dim a2M(1000), b2M(1000), Lyam_SM(1000), Myu_SM(1000)  As Double 
Dim TC_LL(1000), TC_LM(1000), TC_ML(1000), TC_MM(1000) As Double 
Dim t1(1000), tp(1000), t2(1000), TotCost1, Short As Double 
Dim t_1(1000), t_p(1000), t_2(1000), TotCost2 As Double 
Dim X1, X2, X3, i, j, y, TC_M(1000), TC_L(1000) As Double 
 
Private Sub cmdCalculate_Click() 
A_ = Val(txtSetup_A.Text) 
p = Val(txtProdRate_p.Text) 
c = Val(txtProdCost_c.Text) 
c1 = Val(txtRawCost_c1.Text) 
c2 = Val(txtLaborCost_c2.Text) 
F = (Val(txtCarryingRate_F.Text)) / 100 
InflRate = (Val(txtInflRate.Text)) / 100 
NomRate = (Val(txtNomRate.Text)) / 100 
r = NomRate - InflRate 
b0 = Val(txtD_Interc_b0.Text) 
b1 = Val(txtD_Slope_b1.Text) 
K0 = Val(txtShortCost_K0.Text) 
K = Val(txtShortCost_K.Text) 
H = Val(txtHorizon_H.Text) 
m = Val(txtPeriod_m.Text) 
S = Val(txtInitShortage_S.Text) 
 
If chkOneCost.Value = 1 Then 
 
i = 1 
a(1) = 1 
b(1) = m 
Lyam_m(1) = Round(a(1) + (1 - 0.618) * (b(1) - a(1)), 0) 
Myu_m(1) = Round(a(1) + 0.618 * (b(1) - a(1)), 0) 
S_starL = Function3_ByVal(Lyam_m(1)) 
S_starM = Function3_ByVal(Myu_m(1)) 
 
          j = 1 
          a2L(1) = 0 
          If S_starL < S Then 
             b2L(1) = S_starL 
          Else 
             b2L(1) = S 
          End If 
           
          a2M(1) = 0 
          If S_starM < S Then 
             b2M(1) = S_starM 
          Else 
             b2M(1) = S 
          End If 



 143

           
          Lyam_SL(1) = a2L(1) + (1 - 0.618) * (b2L(1) - a2L(1)) 
          Myu_SL(1) = a2L(1) + 0.618 * (b2L(1) - a2L(1)) 
          Lyam_SM(1) = a2M(1) + (1 - 0.618) * (b2M(1) - a2M(1)) 
          Myu_SM(1) = a2M(1) + 0.618 * (b2M(1) - a2M(1)) 
          TC_LL(1) = TC_Function1_ByVal(Lyam_m(1), Lyam_SL(1)) 
          TC_LM(1) = TC_Function1_ByVal(Lyam_m(1), Myu_SL(1)) 
          TC_ML(1) = TC_Function1_ByVal(Myu_m(1), Lyam_SM(1)) 
          TC_MM(1) = TC_Function1_ByVal(Myu_m(1), Myu_SM(1)) 
           
          Do While (b2L(j) - a2L(j) > 0.001) 
                     
                If TC_LL(j) > TC_LM(j) Then 
                   a2L(j + 1) = Lyam_SL(j) 
                   b2L(j + 1) = b2L(j) 
                   Lyam_SL(j + 1) = Myu_SL(j) 
                   TC_LL(j + 1) = TC_LM(j) 
                   Myu_SL(j + 1) = a2L(j + 1) + 0.618 * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LM(j + 1) = TC_Function1_ByVal(Lyam_m(1), Myu_SL(j + 1)) 
                Else 
                   a2L(j + 1) = a2L(j) 
                   b2L(j + 1) = Myu_SL(j) 
                   Myu_SL(j + 1) = Lyam_SL(j) 
                   TC_LM(j + 1) = TC_LL(j) 
                   Lyam_SL(j + 1) = a2L(j + 1) + (1 - 0.618) * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LL(j + 1) = TC_Function1_ByVal(Lyam_m(1), Lyam_SL(j + 1)) 
                End If 
                j = j + 1 
          Loop 
           
            If TC_LL(j) > TC_LM(j) Then 
                 TC_L(1) = TC_LM(j) 
                 Lyam_S(1) = Myu_SL(j) 
            Else 
                 TC_L(1) = TC_LL(j) 
                 Lyam_S(1) = Lyam_SL(j) 
            End If 
           
          j = 1 
                             
          Do While (b2M(j) - a2M(j) > 0.001) 
                     
                If TC_ML(j) > TC_MM(j) Then 
                   a2M(j + 1) = Lyam_SM(j) 
                   b2M(j + 1) = b2M(j) 
                   Lyam_SM(j + 1) = Myu_SM(j) 
                   TC_ML(j + 1) = TC_MM(j) 
                   Myu_SM(j + 1) = a2M(j + 1) + 0.618 * (b2M(j + 1) - a2M(j + 1)) 
                   TC_MM(j + 1) = TC_Function1_ByVal(Myu_m(1), Myu_SM(j + 1)) 
                Else 
                   a2M(j + 1) = a2M(j) 
                   b2M(j + 1) = Myu_SM(j) 
                   Myu_SM(j + 1) = Lyam_SM(j) 
                   TC_MM(j + 1) = TC_ML(j) 
                   Lyam_SM(j + 1) = a2M(j + 1) + (1 - 0.618) * (b2M(j + 1) - a2M(j + 1)) 
                   TC_ML(j + 1) = TC_Function1_ByVal(Myu_m(1), Lyam_SM(j + 1)) 
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                End If 
                j = j + 1 
          Loop 
           
             If TC_ML(j) > TC_MM(j) Then 
                 TC_M(1) = TC_MM(j) 
                 Myu_S(1) = Myu_SM(j) 
             Else 
                 TC_M(1) = TC_ML(j) 
                 Myu_S(1) = Lyam_SM(j) 
             End If 
      
  Do While (b(i) - a(i) <> 1) 
   
  If TC_L(i) > TC_M(i) Then 
     a(i + 1) = Lyam_m(i) 
     b(i + 1) = b(i) 
     Lyam_m(i + 1) = Myu_m(i) 
     Lyam_S(i + 1) = Myu_S(i) 
     TC_L(i + 1) = TC_M(i) 
     Myu_m(i + 1) = Round(a(i + 1) + 0.618 * (b(i + 1) - a(i + 1)), 0) 
     S_starM = Function3_ByVal(Myu_m(i + 1)) 
      
          j = 1 
          a2M(1) = 0 
          If S_starM < S Then 
             b2M(1) = S_starM 
          Else 
             b2M(1) = S 
          End If 
          Lyam_SM(1) = a2M(1) + (1 - 0.618) * (b2M(1) - a2M(1)) 
          Myu_SM(1) = a2M(1) + 0.618 * (b2M(1) - a2M(1)) 
          TC_ML(1) = TC_Function1_ByVal(Myu_m(i + 1), Lyam_SM(1)) 
          TC_MM(1) = TC_Function1_ByVal(Myu_m(i + 1), Myu_SM(1)) 
           
          Do While (b2M(j) - a2M(j) > 0.001) 
                     
                If TC_ML(j) > TC_MM(j) Then 
                   a2M(j + 1) = Lyam_SM(j) 
                   b2M(j + 1) = b2M(j) 
                   Lyam_SM(j + 1) = Myu_SM(j) 
                   TC_ML(j + 1) = TC_MM(j) 
                   Myu_SM(j + 1) = a2M(j + 1) + 0.618 * (b2M(j + 1) - a2M(j + 1)) 
                   TC_MM(j + 1) = TC_Function1_ByVal(Myu_m(i + 1), Myu_SM(j + 1)) 
                Else 
                   a2M(j + 1) = a2M(j) 
                   b2M(j + 1) = Myu_SM(j) 
                   Myu_SM(j + 1) = Lyam_SM(j) 
                   TC_MM(j + 1) = TC_ML(j) 
                   Lyam_SM(j + 1) = a2M(j + 1) + (1 - 0.618) * (b2M(j + 1) - a2M(j + 1)) 
                   TC_ML(j + 1) = TC_Function1_ByVal(Myu_m(i + 1), Lyam_SM(j + 1)) 
                End If 
                j = j + 1 
          Loop 
           
             If TC_ML(j) > TC_MM(j) Then 
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                 Myu_S(i + 1) = Myu_SM(j) 
             Else 
                 Myu_S(i + 1) = Lyam_SM(j) 
             End If 
      
     TC_M(i + 1) = TC_Function1_ByVal(Myu_m(i + 1), Myu_S(i + 1)) 
  Else 
     a(i + 1) = a(i) 
     b(i + 1) = Myu_m(i) 
     Myu_m(i + 1) = Lyam_m(i) 
     Myu_S(i + 1) = Lyam_S(i) 
     TC_M(i + 1) = TC_L(i) 
     Lyam_m(i + 1) = Round(a(i + 1) + (1 - 0.618) * (b(i + 1) - a(i + 1)), 0) 
     S_starL = Function3_ByVal(Lyam_m(i + 1)) 
      
          j = 1 
          a2L(1) = 0 
          If S_starL < S Then 
             b2L(1) = S_starL 
          Else 
             b2L(1) = S 
          End If 
          Lyam_SL(1) = a2L(1) + (1 - 0.618) * (b2L(1) - a2L(1)) 
          Myu_SL(1) = a2L(1) + 0.618 * (b2L(1) - a2L(1)) 
          TC_LL(1) = TC_Function1_ByVal(Lyam_m(i + 1), Lyam_SL(1)) 
          TC_LM(1) = TC_Function1_ByVal(Lyam_m(i + 1), Myu_SL(1)) 
      
          Do While (b2L(j) - a2L(j) > 0.001) 
                     
                If TC_LL(j) > TC_LM(j) Then 
                   a2L(j + 1) = Lyam_SL(j) 
                   b2L(j + 1) = b2L(j) 
                   Lyam_SL(j + 1) = Myu_SL(j) 
                   TC_LL(j + 1) = TC_LM(j) 
                   Myu_SL(j + 1) = a2L(j + 1) + 0.618 * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LM(j + 1) = TC_Function1_ByVal(Lyam_m(i + 1), Myu_SL(j + 1)) 
                Else 
                   a2L(j + 1) = a2L(j) 
                   b2L(j + 1) = Myu_SL(j) 
                   Myu_SL(j + 1) = Lyam_SL(j) 
                   TC_LM(j + 1) = TC_LL(j) 
                   Lyam_SL(j + 1) = a2L(j + 1) + (1 - 0.618) * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LL(j + 1) = TC_Function1_ByVal(Lyam_m(i + 1), Lyam_SL(j + 1)) 
                End If 
                j = j + 1 
          Loop 
      
            If TC_LL(j) > TC_LM(j) Then 
                 Lyam_S(i + 1) = Myu_SL(j) 
            Else 
                 Lyam_S(i + 1) = Lyam_SL(j) 
            End If 
      
     TC_L(i + 1) = TC_Function1_ByVal(Lyam_m(i + 1), Lyam_S(i + 1)) 
  End If 
       i = i + 1 
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Loop 
     
    If TC_L(i) > TC_M(i) Then 
        txtTotalCost1.Text = Format(TC_M(i), "###,###.0000") 
        txtPeriod1.Text = Myu_m(i) 
        txtShortage1.Text = Format(Myu_S(i), "###,###.0000") 
        txtTime1.Text = Format(H * 12 / Myu_m(i), "###,###.0000") 
    Else 
        txtTotalCost1.Text = Format(TC_L(i), "###,###.0000") 
        txtPeriod1.Text = Lyam_m(i) 
        txtShortage1.Text = Format(Lyam_S(i), "###,###.0000") 
        txtTime1.Text = Format(H * 12 / Lyam_m(i), "###,###.0000") 
 
    End If 
 
Else 
 
i = 1 
a(1) = 1 
b(1) = m 
Lyam_m(1) = Round(a(1) + (1 - 0.618) * (b(1) - a(1)), 0) 
Myu_m(1) = Round(a(1) + 0.618 * (b(1) - a(1)), 0) 
S_starL = Function3_ByVal(Lyam_m(1)) 
S_starM = Function3_ByVal(Myu_m(1)) 
 
          j = 1 
          a2L(1) = 0 
          If S_starL < S Then 
             b2L(1) = S_starL 
          Else 
             b2L(1) = S 
          End If 
           
          a2M(1) = 0 
          If S_starM < S Then 
             b2M(1) = S_starM 
          Else 
             b2M(1) = S 
          End If 
           
          Lyam_SL(1) = a2L(1) + (1 - 0.618) * (b2L(1) - a2L(1)) 
          Myu_SL(1) = a2L(1) + 0.618 * (b2L(1) - a2L(1)) 
          Lyam_SM(1) = a2M(1) + (1 - 0.618) * (b2M(1) - a2M(1)) 
          Myu_SM(1) = a2M(1) + 0.618 * (b2M(1) - a2M(1)) 
          TC_LL(1) = TC_Function2_ByVal(Lyam_m(1), Lyam_SL(1)) 
          TC_LM(1) = TC_Function2_ByVal(Lyam_m(1), Myu_SL(1)) 
          TC_ML(1) = TC_Function2_ByVal(Myu_m(1), Lyam_SM(1)) 
          TC_MM(1) = TC_Function2_ByVal(Myu_m(1), Myu_SM(1)) 
           
          Do While (b2L(j) - a2L(j) > 0.0001) 
                     
                If TC_LL(j) > TC_LM(j) Then 
                   a2L(j + 1) = Lyam_SL(j) 
                   b2L(j + 1) = b2L(j) 
                   Lyam_SL(j + 1) = Myu_SL(j) 



 147

                   TC_LL(j + 1) = TC_LM(j) 
                   Myu_SL(j + 1) = a2L(j + 1) + 0.618 * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LM(j + 1) = TC_Function2_ByVal(Lyam_m(1), Myu_SL(j + 1)) 
                Else 
                   a2L(j + 1) = a2L(j) 
                   b2L(j + 1) = Myu_SL(j) 
                   Myu_SL(j + 1) = Lyam_SL(j) 
                   TC_LM(j + 1) = TC_LL(j) 
                   Lyam_SL(j + 1) = a2L(j + 1) + (1 - 0.618) * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LL(j + 1) = TC_Function2_ByVal(Lyam_m(1), Lyam_SL(j + 1)) 
                End If 
                j = j + 1 
          Loop 
           
            If TC_LL(j) > TC_LM(j) Then 
                 TC_L(1) = TC_LM(j) 
                 Lyam_S(1) = Myu_SL(j) 
            Else 
                 TC_L(1) = TC_LL(j) 
                 Lyam_S(1) = Lyam_SL(j) 
            End If 
           
          j = 1 
                             
          Do While (b2M(j) - a2M(j) > 0.0001) 
                     
                If TC_ML(j) > TC_MM(j) Then 
                   a2M(j + 1) = Lyam_SM(j) 
                   b2M(j + 1) = b2M(j) 
                   Lyam_SM(j + 1) = Myu_SM(j) 
                   TC_ML(j + 1) = TC_MM(j) 
                   Myu_SM(j + 1) = a2M(j + 1) + 0.618 * (b2M(j + 1) - a2M(j + 1)) 
                   TC_MM(j + 1) = TC_Function2_ByVal(Myu_m(1), Myu_SM(j + 1)) 
                Else 
                   a2M(j + 1) = a2M(j) 
                   b2M(j + 1) = Myu_SM(j) 
                   Myu_SM(j + 1) = Lyam_SM(j) 
                   TC_MM(j + 1) = TC_ML(j) 
                   Lyam_SM(j + 1) = a2M(j + 1) + (1 - 0.618) * (b2M(j + 1) - a2M(j + 1)) 
                   TC_ML(j + 1) = TC_Function2_ByVal(Myu_m(1), Lyam_SM(j + 1)) 
                End If 
                j = j + 1 
          Loop 
           
             If TC_ML(j) > TC_MM(j) Then 
                 TC_M(1) = TC_MM(j) 
                 Myu_S(1) = Myu_SM(j) 
             Else 
                 TC_M(1) = TC_ML(j) 
                 Myu_S(1) = Lyam_SM(j) 
             End If 
      
  Do While (b(i) - a(i) <> 1) 
   
  If TC_L(i) > TC_M(i) Then 
     a(i + 1) = Lyam_m(i) 
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     b(i + 1) = b(i) 
     Lyam_m(i + 1) = Myu_m(i) 
     Lyam_S(i + 1) = Myu_S(i) 
     TC_L(i + 1) = TC_M(i) 
     Myu_m(i + 1) = Round(a(i + 1) + 0.618 * (b(i + 1) - a(i + 1)), 0) 
     S_starM = Function3_ByVal(Myu_m(i + 1)) 
      
          j = 1 
          a2M(1) = 0 
          If S_starM < S Then 
             b2M(1) = S_starM 
          Else 
             b2M(1) = S 
          End If 
          Lyam_SM(1) = a2M(1) + (1 - 0.618) * (b2M(1) - a2M(1)) 
          Myu_SM(1) = a2M(1) + 0.618 * (b2M(1) - a2M(1)) 
          TC_ML(1) = TC_Function2_ByVal(Myu_m(i + 1), Lyam_SM(1)) 
          TC_MM(1) = TC_Function2_ByVal(Myu_m(i + 1), Myu_SM(1)) 
           
          Do While (b2M(j) - a2M(j) > 0.0001) 
                     
                If TC_ML(j) > TC_MM(j) Then 
                   a2M(j + 1) = Lyam_SM(j) 
                   b2M(j + 1) = b2M(j) 
                   Lyam_SM(j + 1) = Myu_SM(j) 
                   TC_ML(j + 1) = TC_MM(j) 
                   Myu_SM(j + 1) = a2M(j + 1) + 0.618 * (b2M(j + 1) - a2M(j + 1)) 
                   TC_MM(j + 1) = TC_Function2_ByVal(Myu_m(i + 1), Myu_SM(j + 1)) 
                Else 
                   a2M(j + 1) = a2M(j) 
                   b2M(j + 1) = Myu_SM(j) 
                   Myu_SM(j + 1) = Lyam_SM(j) 
                   TC_MM(j + 1) = TC_ML(j) 
                   Lyam_SM(j + 1) = a2M(j + 1) + (1 - 0.618) * (b2M(j + 1) - a2M(j + 1)) 
                   TC_ML(j + 1) = TC_Function2_ByVal(Myu_m(i + 1), Lyam_SM(j + 1)) 
                End If 
                j = j + 1 
          Loop 
           
             If TC_ML(j) > TC_MM(j) Then 
                 Myu_S(i + 1) = Myu_SM(j) 
             Else 
                 Myu_S(i + 1) = Lyam_SM(j) 
             End If 
      
     TC_M(i + 1) = TC_Function2_ByVal(Myu_m(i + 1), Myu_S(i + 1)) 
  Else 
     a(i + 1) = a(i) 
     b(i + 1) = Myu_m(i) 
     Myu_m(i + 1) = Lyam_m(i) 
     Myu_S(i + 1) = Lyam_S(i) 
     TC_M(i + 1) = TC_L(i) 
     Lyam_m(i + 1) = Round(a(i + 1) + (1 - 0.618) * (b(i + 1) - a(i + 1)), 0) 
     S_starL = Function3_ByVal(Lyam_m(i + 1)) 
      
          j = 1 
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          a2L(1) = 0 
          If S_starL < S Then 
             b2L(1) = S_starL 
          Else 
             b2L(1) = S 
          End If 
          Lyam_SL(1) = a2L(1) + (1 - 0.618) * (b2L(1) - a2L(1)) 
          Myu_SL(1) = a2L(1) + 0.618 * (b2L(1) - a2L(1)) 
          TC_LL(1) = TC_Function2_ByVal(Lyam_m(i + 1), Lyam_SL(1)) 
          TC_LM(1) = TC_Function2_ByVal(Lyam_m(i + 1), Myu_SL(1)) 
      
          Do While (b2L(j) - a2L(j) > 0.0001) 
                     
                If TC_LL(j) > TC_LM(j) Then 
                   a2L(j + 1) = Lyam_SL(j) 
                   b2L(j + 1) = b2L(j) 
                   Lyam_SL(j + 1) = Myu_SL(j) 
                   TC_LL(j + 1) = TC_LM(j) 
                   Myu_SL(j + 1) = a2L(j + 1) + 0.618 * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LM(j + 1) = TC_Function2_ByVal(Lyam_m(i + 1), Myu_SL(j + 1)) 
                Else 
                   a2L(j + 1) = a2L(j) 
                   b2L(j + 1) = Myu_SL(j) 
                   Myu_SL(j + 1) = Lyam_SL(j) 
                   TC_LM(j + 1) = TC_LL(j) 
                   Lyam_SL(j + 1) = a2L(j + 1) + (1 - 0.618) * (b2L(j + 1) - a2L(j + 1)) 
                   TC_LL(j + 1) = TC_Function2_ByVal(Lyam_m(i + 1), Lyam_SL(j + 1)) 
                End If 
                j = j + 1 
          Loop 
      
            If TC_LL(j) > TC_LM(j) Then 
                 Lyam_S(i + 1) = Myu_SL(j) 
            Else 
                 Lyam_S(i + 1) = Lyam_SL(j) 
            End If 
      
     TC_L(i + 1) = TC_Function2_ByVal(Lyam_m(i + 1), Lyam_S(i + 1)) 
  End If 
       i = i + 1 
        
Loop 
     
    If TC_L(i) > TC_M(i) Then 
        txtTotalCost2.Text = Format(TC_M(i), "###,###.0000") 
        txtPeriod2.Text = Myu_m(i) 
        txtShortage2.Text = Format(Myu_S(i), "###,###.0000") 
        txtTime2.Text = Format(H * 12 / Myu_m(i), "###,###.0000") 
    Else 
        txtTotalCost2.Text = Format(TC_L(i), "###,###.0000") 
        txtPeriod2.Text = Lyam_m(i) 
        txtShortage2.Text = Format(Lyam_S(i), "###,###.0000") 
        txtTime2.Text = Format(H * 12 / Lyam_m(i), "###,###.0000") 
 
    End If 
End If 
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End Sub 
 
Public Function TC_Function1_ByVal(ByVal X1 As Double, ByVal X2 As Double) As Double 
PCExp = 0 
BC1 = 0 
BC2 = 0 
BC3 = 0 
HC1 = 0 
HC2 = 0 
   For y = 0 To X1 - 1 Step 1 
     PCExp = PCExp + y * Exp(-r * y * H / X1) 
     t1(y) = (p - b0) / b1 - Sqr((p - b0) ^ 2 - 2 * y * H * b1 * (p - b0) / X1 + b1 * (y ^ 2 * H ^ 2 * b1 / X1 ^ 2 - 2 * 
X2)) / b1 
     tp(y) = y * H / X1 + b0 * H / (X1 * p) + b1 * H ^ 2 * (2 * y + 1) / (2 * p * X1 ^ 2) 
     t2(y) = -b0 / b1 + Sqr(b0 ^ 2 / b1 ^ 2 + 2 * b0 * H * (y + 1) / (b1 * X1) + H ^ 2 * (y + 1) ^ 2 / X1 ^ 2 - 2 * X2 / 
b1) 
     BC1 = BC1 + Exp(-r * t1(y)) * (-X2 - p * y * H / X1 + b0 * y * H / X1 + b1 * y ^ 2 * H ^ 2 / (2 * X1 ^ 2) - b0 * 
t1(y) - b0 / r + p * t1(y) + p / r - b1 * t1(y) ^ 2 / 2 - b1 * t1(y) / r - b1 / r ^ 2) 
     BC2 = BC2 + Exp(-r * t2(y)) * (-b0 * y * H / X1 - b0 * H / X1 - b1 * y ^ 2 * H ^ 2 / (2 * X1 ^ 2) - b1 * y * H ^ 2 
/ X1 ^ 2 - b1 * H ^ 2 / (2 * X1 ^ 2) + b0 * t2(y) + b0 / r + b1 * t2(y) ^ 2 / 2 + b1 * t2(y) / r + b1 / r ^ 2 + X2) 
     BC3 = BC3 + Exp(-r * y * H / X1) * (X2 + b0 / r - p / r + b1 * y * H / (X1 * r) + b1 / r ^ 2 - b0 * Exp(-r * H / 
X1) / r - b1 * H * (y + 1) * Exp(-r * H / X1) / (X1 * r) - b1 * Exp(-r * H / X1) / r ^ 2 - X2 * Exp(-r * H / X1)) 
     HC1 = HC1 + Exp(-r * tp(y)) * (b0 * t2(y) + b1 * t2(y) ^ 2 / 2 + p * t1(y) - b0 * t1(y) - b1 * t1(y) ^ 2 / 2 - p * 
tp(y) - p / r) 
     HC2 = HC2 + Exp(-r * t2(y)) * (b0 + b1 * t2(y) + b1 / r) / r + Exp(-r * t1(y)) * (p - b0 - b1 * t1(y) - b1 / r) / r 
   Next y 
 
SC = A_ * (Exp(-r * H) - 1) / (Exp(-r * H / X1) - 1) 
PC = c * b0 * H * (Exp(-r * H) - 1) / (X1 * (Exp(-r * H / X1) - 1)) + c * b1 * H ^ 2 * (Exp(-r * H) - 1) / (2 * X1 ^ 2 
* (Exp(-r * H / X1) - 1)) + c * b1 * H ^ 2 * PCExp / X1 ^ 2 
BC = K * (BC1 + BC2 + BC3) / r + K0 * X2 * (1 - Exp(-r * H)) / (1 - Exp(-r * H / X1)) 
HC = F * c * (HC1 + HC2) / r 
TotCost1 = SC + PC + BC + HC 
TC_Function1_ByVal = TotCost1 
End Function 
 
Public Function TC_Function2_ByVal(ByVal X1 As Double, ByVal X2 As Double) As Double 
PCExp_2 = 0 
BC_1 = 0 
BC_2 = 0 
BC_3 = 0 
HC_1 = 0 
HC_2 = 0 
   For y = 0 To X1 - 1 Step 1 
     PCExp_2 = PCExp_2 + y * Exp(-r * y * H / X1) 
     t_1(y) = (p - b0) / b1 - Sqr((p - b0) ^ 2 - 2 * y * H * b1 * (p - b0) / X1 + b1 * (y ^ 2 * H ^ 2 * b1 / X1 ^ 2 - 2 * 
X2)) / b1 
     t_p(y) = y * H / X1 + b0 * H / (X1 * p) + b1 * H ^ 2 * (2 * y + 1) / (2 * p * X1 ^ 2) 
     t_2(y) = -b0 / b1 + Sqr(b0 ^ 2 / b1 ^ 2 + 2 * b0 * H * (y + 1) / (b1 * X1) + H ^ 2 * (y + 1) ^ 2 / X1 ^ 2 - 2 * X2 / 
b1) 
     BC_1 = BC_1 + Exp(-r * t_1(y)) * (-X2 - p * y * H / X1 + b0 * y * H / X1 + b1 * y ^ 2 * H ^ 2 / (2 * X1 ^ 2) - 
b0 * t_1(y) - b0 / r + p * t_1(y) + p / r - b1 * t_1(y) ^ 2 / 2 - b1 * t_1(y) / r - b1 / r ^ 2) 
     BC_2 = BC_2 + Exp(-r * t_2(y)) * (-b0 * y * H / X1 - b0 * H / X1 - b1 * y ^ 2 * H ^ 2 / (2 * X1 ^ 2) - b1 * y * H 
^ 2 / X1 ^ 2 - b1 * H ^ 2 / (2 * X1 ^ 2) + b0 * t_2(y) + b0 / r + b1 * t_2(y) ^ 2 / 2 + b1 * t_2(y) / r + b1 / r ^ 2 + X2) 
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     BC_3 = BC_3 + Exp(-r * y * H / X1) * (X2 + b0 / r - p / r + b1 * y * H / (X1 * r) + b1 / r ^ 2 - b0 * Exp(-r * H / 
X1) / r - b1 * H * (y + 1) * Exp(-r * H / X1) / (X1 * r) - b1 * Exp(-r * H / X1) / r ^ 2 - X2 * Exp(-r * H / X1)) 
     HC_1 = HC_1 + Exp(-r * t_p(y)) * (b0 * t_2(y) + b1 * t_2(y) ^ 2 / 2 + p * t_1(y) - b0 * t_1(y) - b1 * t_1(y) ^ 2 / 
2 - p * t_p(y) - p / r) 
     HC_2 = HC_2 + Exp(-r * t_2(y)) * (b0 + b1 * t_2(y) + b1 / r) / r + Exp(-r * t_1(y)) * (p - b0 - b1 * t_1(y) - b1 / r) 
/ r 
   Next y 
 
SC_2 = A_ * (Exp(-r * H) - 1) / (Exp(-r * H / X1) - 1) 
PC_21 = (Exp(-r * H) - 1) * (2 * c1 * b0 * r * H / X1 + c1 * b1 * r * H ^ 2 / X1 ^ 2 + 2 * c2 * p) / (2 * r * (Exp(-r * 
H / X1) - 1)) + c1 * b1 * H ^ 2 * PCExp_2 / X1 ^ 2 
PC_22 = c2 * p * Exp(-r * H * (2 * b0 + b1 * H / X1) / (2 * p * X1)) * (Exp(-r * H * (1 + b1 * H / (X1 * p))) - 1) / (r 
* (Exp(-r * H * (1 + b1 * H / (X1 * p)) / X1) - 1)) 
PC_2 = PC_21 - PC_22 
BC_2 = K * (BC_1 + BC_2 + BC_3) / r + K0 * X2 * (1 - Exp(-r * H)) / (1 - Exp(-r * H / X1)) 
HC_2 = F * (c1 + c2) * (HC_1 + HC_2) / r 
TotCost2 = SC_2 + PC_2 + BC_2 + HC_2 
TC_Function2_ByVal = TotCost2 
End Function 
 
Public Function Function3_ByVal(ByVal X3 As Double) As Double 
Short = b0 * H * (1 - b0 / p) / X3 - b1 * H ^ 2 * (b0 / (p * X3) - b0 / (2 * p * X3 ^ 2) - 1 / 2) - b1 * H ^ 2 * (1 - 1 / 
X3 + b0 / (p * X3) + b1 * H / (p * X3) - b1 * H / (2 * p * X3 ^ 2)) ^ 2 / 2 
Function3_ByVal = Short 
End Function 
 
Private Sub chkOneCost_Click() 
If chkOneCost.Value = 1 Then 
chkTwoCosts.Value = 0 
txtTotalCost2.Text = "" 
txtPeriod2.Text = "" 
txtTime2.Text = "" 
txtShortage2.Text = "" 
lblLabor.Visible = False 
lblRaw.Visible = False 
txtRawCost_c1.Visible = False 
txtLaborCost_c2.Visible = False 
lblMinTotal2.Visible = False 
lblNumber2.Visible = False 
lblTime2.Visible = False 
lblShortage2.Visible = False 
txtTotalCost2.Visible = False 
txtPeriod2.Visible = False 
txtTime2.Visible = False 
txtShortage2.Visible = False 
 
lblProdCost.Visible = True 
txtProdCost_c.Visible = True 
lblMinTotal1.Visible = True 
lblNumber1.Visible = True 
lblTime1.Visible = True 
lblShortage1.Visible = True 
txtTotalCost1.Visible = True 
txtPeriod1.Visible = True 
txtTime1.Visible = True 
txtShortage1.Visible = True 
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End If 
End Sub 
 
Private Sub chkTwoCosts_Click() 
If chkTwoCosts.Value = 1 Then 
chkOneCost.Value = 0 
txtTotalCost1.Text = "" 
txtPeriod1.Text = "" 
txtTime1.Text = "" 
txtShortage1.Text = "" 
lblLabor.Visible = True 
lblRaw.Visible = True 
txtRawCost_c1.Visible = True 
txtLaborCost_c2.Visible = True 
lblMinTotal2.Visible = True 
lblNumber2.Visible = True 
lblTime2.Visible = True 
lblShortage2.Visible = True 
txtTotalCost2.Visible = True 
txtPeriod2.Visible = True 
txtTime2.Visible = True 
txtShortage2.Visible = True 
 
lblProdCost.Visible = False 
txtProdCost_c.Visible = False 
lblMinTotal1.Visible = False 
lblNumber1.Visible = False 
lblTime1.Visible = False 
lblShortage1.Visible = False 
txtTotalCost1.Visible = False 
txtPeriod1.Visible = False 
txtTime1.Visible = False 
txtShortage1.Visible = False 
 
End If 
End Sub 
 
Private Sub cmdExit_Click() 
End 
End Sub 
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