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ABSTRACT 
 

Response of clonal genotypes of Juncus effusus L. to different environmental regimes 
 

Daniel B. Stover 
 
 

A genetic tradeoff is hypothesized between resource use efficiency (RUE) and resource 
acquisition rate (RAR) in that it is impossible for selection to maximize both traits.  In low-
resource environments, RUE is expected to be favored while in high-resource environments 
RAR will be maximized.  Growth rates and allocations of reciprocally transplanted clonal 
genotypes of J. effusus from differing nitrogen and elevation sites were examined.  High-
nitrogen populations outperformed their low-nitrogen counterparts, which were more 
nitrogen efficient.  Plants originating from high-elevation sites grew larger irrespective of 
transplant environment.  Elevation appears to be the dominant factor on biomass, nutrient 
allocation and growth at high elevation whereas nitrogen is the dominant factor in lower 
elevation.  Minirhizotrons showed root growth was a function of origin site, with high-
elevation populations outperforming others regardless of nitrogen treatment.  Our results 
support the hypothesized negative correlation between the physiological traits for RUE and 
RAR.   
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“I speculated whether a species very liable to repeated and  
great changes of conditions might not assume a fluctuating  
condition ready to be adapted to either condition.” 

 
—Charles Darwin, letter to Karl Semper (1881) 
 

 
 
 
 

“Nothing in biology makes sense except in the light of evolution.” 
 

—Th. Dobzhansky (1973) 
 
 
 
 

“I may not have gone where I intended to go, but I think I have  
ended up where I intended to be.” 

 
—Douglas Adams 
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CHAPTER 1 
 
 
 
 
 
 

GENERAL INTRODUCTION 

 

ECOLOGICAL GENETICS AND PHENOTYPIC PLASTICITY WITHIN 

NUTRIENT IMPACTED WATERSHEDS 
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 Human impacts on natural systems have become a focus of concern for a wide range 

of reasons.  These impacts range from purely aesthetic to impacts that could have severe 

economic implications.  In some ecosystems, impacts of excess nutrients have the potential 

to cause significant economic and public health problems (Richter et al. 1997, Turner et al. 

1999).  Agricultural runoff in particular has become a major contributor to this nutrient 

enrichment process.  With the continual degradation of the environment, it is necessary to 

understand the relative consequences of applied nutrient stresses to aquatic systems.  

Transitional zones, such as wetlands, have been known to provide a buffer to excess nutrient 

impact.  As a result, wetlands provide the ideal system to understand the level and magnitude 

of disruption that will occur in transitional systems (Mitsch and Wilson 1996). 

Environmental changes can force a plant population to become extinct, migrate, or 

adapt.  Adaptation of plant species to heavily stressed and impacted environments can create 

natural tools for bio-remediation of soils.  A population’s level of intraspecific variation 

defines its ability to survive and continue after disturbance has occurred (Brewer and 

Bertness 1996, Bennington and McGraw 1996).  There are two distinct outcomes of plant 

adaptations to extreme environments: tolerance or avoidance (Bennington and McGraw 

1995).  By changing location (spatially) or ontogenetic patterns (temporally), a plant 

population can adapt to meet the specific demands of a changing environment.  It is this 

spatially-based component of variation in adaptation that is the focus of this study. 

 Nutrient enrichment of the environment can have multiple effects on plant 

populations.  Genetic diversity provides two alternative routes for individuals within a 

population to become plastic or labile in response to environmental change (Bradshaw 1965, 

West-Eberhard 1989, Sultan and Bazzaz 1993, Via et al. 1995).  The generalist route allows 
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all individuals to be plastic as the environment changes.  The specialist route allows 

individuals to become specialized to the specific environmental conditions (Via 1994a, Via 

1994b, Pigliucci 2001, Taylor and Aarssen 1988).  This allows for a large gradient of 

phenotypes across the population niche (Garbutt and Bazzaz 1987).   

A significant amount of research exists for differential responses among individuals 

within a population, however there are only a few interpretive studies that examine the 

underlying mechanism(s) that control such results.  It has been postulated that individuals 

within a population would not have the ability to efficiently utilize resources in a low-

resource environment and be able to rapidly respond to the same resources when available in 

high abundance (high-resource environments; Garbutt and McGraw unpublished).  

Conversely, individuals with high acquisition rates can respond rapidly in high-resource 

environment, but not maintain this efficiency in a low-resource environment.  In effect, 

populations have adapted their physiological response to meet the constraints placed upon 

them by the availability of resources and therefore should maximize fitness within their site 

of origin.  This differentiation leads to ecotypic variation within a plant species.  As a result, 

a plant species can theoretically occupy a much larger fundamental niche.  It is this filling of 

an underutilized niche that allows for the genetic differences to become clear and defined in 

relation to fitness (Brewer et al. 1998). 

 Individuals originating from a low resource environment tend to have high resource 

use efficiency (RUE) and a relatively low growth rate (Nault and Gagnon 1988).  This 

tradeoff increases an individual plant’s relative fitness in its environment.  According to our 

hypothesis, in an environment with high resource availability, the most fit plants tend to have 
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both high resource acquisition and growth rates, although this leads to decreased resource use 

efficiency (Figure 1.1). 

 Selection pressures upon phenotypes within a population result in differentiation of 

genotypes depending on the stress (e.g. low nutrient levels) imposed by the environment.  

Evolutionary pressures can act on populations of a plant species to potentially express 

extreme phenotypic variation across its range (Lortie and Aarssen 1996).  Fluctuating 

environmental pressures can select for individuals that can respond to variable resource 

availability rapidly.  For example, strong selection pressures may result in populations that 

have high fitness values within low resource availability environments (low nitrogen).  Plants 

from these environments are typically shorter than average because available resources are 

used for the maintenance and longevity of existing biomass (Figure 1.2A).  Conversely, 

selection may favor individuals with high acquisition efficiency and, therefore, will allocate 

the ample resources to biomass (Figure 1.2B).  In this idealized model, in high-resource 

environments, genotypes that produce large amounts of biomass will be able to maximize 

their acquisition of resources (i.e. light and nutrients) and thus will have the highest fitness.  

An assumption of this experiment is that these environmental and evolutionary selection 

pressures have resulted in a negative genetic correlation between resource acquisition rates 

(RAR) and resource utilization efficiency (RUE).  This negative correlation denies 

individuals the ability to show positive growth and reproductive fitness within both high and 

low resource environments (Figure 1.2).   

 Growth rates are the key features defining RAR and RUE responses in relation to a 

plants fitness.  For example, we expect an individual located in a high-resource environment 

and having a high RAR to have a relatively high growth rate (biomass production) of 
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aboveground and belowground structures (Levin et al. 1998).  Individuals with high RUE 

within a low-resource environment should respond with lower allocations to growth, but 

more efficient biomass production.  This decreased allocation to gross structural components 

should result in a much higher development (and therefore allocation) in fine plant structures 

(i.e. secondary and tertiary roots and tillers) and may result in increased plant fitness in the 

given low resource environment.  In this example, an individual would allocate more 

resources into root development for nutrient foraging in attempts to obtain a higher return 

rate for the carbon investment.  This allocation to roots, as opposed to an investment in 

photosynthetic structures, is a direct result of nutrient level limiting growth and development.  

This tradeoff leads us to believe that plants have developed or evolved a “home-site-

advantage” to their particular environment (Antonovics 1971).   

Individuals from populations with high RAR will quickly acquire nutrients (such as 

nitrogen,) in a nutrient-rich environment, resulting in a lower nitrogen utilization efficiency.  

In this case, the plant would produce more above- and belowground structures with emphasis 

on storage (because of a competition pressure).  Well-developed belowground structures 

allow quick acquisition of nutrients and storage, potentially discouraging competition.  Later 

in the growing season, when nutrient resources are in highest demand, these previously 

acquired resources could then ensure maximum individual fitness.  In wetland plants, the 

ability of individual to compete for these resources assists in determining overall fitness 

(Weiher and Keddy 1995). 

In the natural environment, plants compete both above- and belowground for 

resources (Ryser and Eek 2000).  The capacity to acquire aboveground resources is 

associated with leaf area and the capacity to acquire belowground resources is associated 
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with root length (Ryser 1998).  However, the ability to acquire nutrients from the soil is not 

only based on the simple definition of root length, but also in the spatial configuration of the 

root system, or “root architecture”.  We hypothesize that root architecture plays a greater role 

in acquisition than just gross root length (Lynch 1995, Nielsen et al. 1997).  Root architecture 

is clearly controlled by the genetics of the plant as result of strong environmental influences.  

This genetic x environmental interaction controls a root systems plasticity and ability to 

function efficiently in complex environmental conditions.  Changes in root patterns or 

phenologies can lead to belowground niche separation (Parrish and Bazzaz 1976, Lamont 

and Bergl 1991). 

Research on root architecture often focuses on root system functionality as 

determined by root development and morphology.  The architecture of the belowground 

system is defined by five major characteristics: distribution of branches within the system 

(topology); lengths; diameters of internodes or links; and angles of branching (Fitter and 

Strickland 1991).   

Development of the root architecture concept has resulted a wide range of questions 

that examine the efficiency by which plants forage for resources in soils.  To quantify an 

individual’s ability to mine the soils, an index of efficiency was created.  Exploitation 

efficiency (EE) is operationally defined as a known column of soil exploited per unit volume 

of root biomass (Berntson 1994, Fitter 1987).  A series of studies in the early 1990’s showed 

that large diameter roots have high exploitation of resources, but a low overall efficiency, and 

the converse relationship exists for smaller root systems (Berntson 1994, Fitter 1991).   

There is a strong negative relationship between total root branching and EE.  Overall, 

potential soil exploitation was more strongly correlated with root architecture than efficiency 
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(Berntson 1994, Fitter 1991).  However, it is still unclear as to which specific part of root 

architecture is more important: changes in the overall size of root systems or changes in size- 

independent aspects of its architecture (Berntson 1994). 

Soil moisture and nutrient availability fluctuate spatially as well as temporally and 

may lead to specialized adaptive features in the root system (Bazzaz and Sultan 1987, 

Caldwell 1994, Fitter 1994, Bazzaz 1996, Bell and Sultan 1999).  The inherent ability to alter 

the rhizosphere, in attempts to ensure functionality and overall growth when soil resources 

become limiting, serves as the crucial element of individual adaptive plasticity in plants 

(Grime 1994).  “Because root growth and deployment are critical to maintaining function in 

different environmental conditions, plasticity of these traits may influence the ecological 

tolerance of individuals and hence the field distribution of species” (Bell and Sultan 1999).  

Plasticity in the specific deployment of roots is critical for acquisition of nutrients (Fitter 

1994).  Again, relatively little research has been conducted to understand the differences in 

root systems among ecotypes of the same species. 

 A wetland ecosystem provides an excellent system to study our proposed 

physiological tradeoffs in fitness.  Wetlands are often the recipient of excess agricultural 

nutrient runoff and serve as a “biofilter” to many farms.  Sequestration of excess nutrients 

prevents eutrophication of aquatic ecosystem.  In this situation, it is expected that the plant 

community may adapt to the elevated availability of nutrients, with nitrogen being in the 

highest concentration.  Quantitatively, nitrogen is the highest applied agricultural amendment 

in the world.  The Chesapeake Bay Foundation’s 2001 State of the Bay Report reported 

roughly 331 million pounds of nitrogen reach the Chesapeake Bay annually.  In addition, the 
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number one source of nutrient pollution in the Chesapeake Bay watershed is agricultural 

runoff, which contributes to more than 40 percent of total raw nitrogen inputs.   

By studying the ecological genetics of representative wetland species, I aim to 

determine the underlying relationships between nitrogen availability and its effects on plant 

population’s responses to the negative correlation between RAR and RUE.  This research 

should provide a critical understanding of the plastic adaptive ability of plants to respond to 

excess nitrogen in heavily impacted aquatic systems such as the Chesapeake watershed in the 

eastern United States.  I believe these data will potentially provide a strong selective tool for 

development of constructed systems with native plants for remediation of these impacted and 

heavily disturbed systems.  Utilization of indigenous plant species that can adapt to the 

temporal and spatial variability of excess nitrogen inputs is essential to protecting the 

ecosystem and ensuring the health and economic stability of the system. 

 In this study, Juncus effusus L. (common rush) was used as my model species to 

evaluate evolutionary adaptation of wetland plants in response to nitrogen availability 

(Figure 1.3).  J. effusus is a common representative in most northern freshwater wetlands.  

The ability of J. effusus to reproduce clonally makes it an ideal candidate to examine the 

effects of high- and low-nutrient environments in relation to different genotypes because of 

the ability to subject the same clonal genotype to multiple experimental conditions.  The final 

goal of this thesis is to suggest practical applications for wetland remediation by appropriate 

selection of J. effusus ecotypes. 

 In conclusion, I hypothesize that populations of J. effusus will respond according to 

the model proposed by Garbutt and McGraw (figure 1.1).  This study will lend the initial 

support for negative physiological correlations between RAR and RUE traits in plant 
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populations.  Plant populations from high-nitrogen environments will maximize growth only 

within similar environments.  Conversely, low-nitrogen populations will maintain its growth 

form and efficiency among all environments.  In addition, I hypothesized above- and 

belowground portions of J. effusus will respond in a similar manner based on its life history 

responses to specific environmental conditions (home-site-advantage).  Furthermore, I 

expected to find a more developed root morphology and architecture in individuals 

originating in high-nitrogen environments.  In addition, we will examine the response of J. 

effusus to additional environmental constraints to determine if nitrogen is the only controlling 

factor affecting the proposed model. 
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Figure 1.1.  Predicted relationships between resource acquisition, utilization, growth rate and 
fitness in plants.  Sign indicates directionality of genetic correlation (Garbutt and McGraw 
unpublished).
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Figure 1.2: The hypothesized response of the a) resource use efficiency (RUE), b) resource 
acquisition rate (RAR), and c) fitness of Juncus effusus across an environmental nutrient 
gradient (low to high). 
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Figure 1.3:  Juncus effusus L., a common wetland plant. 
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INTRODUCTION 
 
 Plants are faced with multiple obstacles to growth within their habitat.  Variation in 

light, water, predation pressures, temperature and nutrients can greatly influence plant 

development and growth strategies.  Nutrients in the environment can act as the primary 

selective force on plant populations.  Lack of essential nutrients can result in stunted, 

physiologically immature individuals, whereas nutrient excess can result in toxicities that can 

produce similar growth trends.  However, mechanisms have evolved that allow plants to 

survive in these conditions. 

Genetic variation may exist within plant species that allow utilization or toleration of 

high levels of nutrients (Brewer and Bertness 1996; Bennington and McGraw 1996).  

Similarly, it has been postulated that individual plants do not have the ability to 

simultaneously utilize resources in a low-resource environment and rapidly respond to the 

same resources in high resource availability environments (Chapter 1; Figure 1.1; Garbutt 

and McGraw unpublished).  Thus, if both high- and low-resource environments exist within a 

species range, a potential divergence within the fundamental niche in response to nutrient 

availability would be expected (Garbutt and McGraw unpublished).  This model for plant 

growth opposes earlier models in which plants showed a lagged developmental phase 

(Garbutt and McGraw unpublished; Grime 1994, 1979). 

 Individuals originating from a low resource availability environment tend to have 

high resource use efficiency (RUE) and a relatively low growth rate (Nault and Gagnon 

1988).  This genetically-based tradeoff increases a plant’s relative fitness in a low-resource 

environment.  In high-resource availability environments, native plants tend to have high 

resource acquisition rates (RAR), leading to a high growth rate and potentially decreased 
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RUE.  Under these environmental constraints, plants are expected to have an increased 

relative fitness.  Selection pressures upon individuals within a population will result in 

different phenotypic expression types depending on the nutrient level in the environment 

(Briggs and Walters 1984; Lortie and Aarssen 1996).  Naturally, these phenotypes and their 

resulting characters will be strongly correlated to the nutrient status of their respective 

environments.  It is assumed that these pressures result in a negative correlation between 

RAR and RUE and prevent adaptation to both environments.  It is these variable responses of 

populations that allow for wide scale occupation and utilization of habitats (Harper 1977). 

For more than a century, much research effort has been focused on the effects of 

nutrient limitations and excess induced toxicity on plant fitness (Mooney et al. 1987, 

Marschner 1995, Ernest and Brown 2001).  As a result, many other external and intrinsic 

factors have been ignored or simplified in experimental design considerations (Hutchings et 

al. 2003).  Elevation is a prime example of an important environmental characteristic that is 

often oversimplified and underrepresented in classic experimental designs used in studies of 

ecological genetics.  Nutrient poor soils, colder temperatures, and shorter growing seasons 

often characterize high-elevation sites (Archibold 1995).  These sites should therefore place a 

strong selective environmental stress upon genotypes and populations grown in these sites.  

However, little information is available about the effect and magnitude high-nitrogen would 

have on these sites and the resulting impact on indigenous genotypes. 

 The interactive effect of elevation on species and populations has been extensively 

studied over the past century (Clausen et al. 1940, Walter 1973, Chapin and Chapin 1981, 

Bennington and McGraw 1995, Santamaria et al. 2003).  Understanding the physiological 

ecology of the interaction with elevation has been the primary goal of these studies, but often 



 19

the importance of genotypic responses within a population has been omitted.  These studies 

demonstrate the strong control that elevation has upon growth of common morphological 

characters (i.e. leaves, stems etc.).  In addition, the environmental conditions that are 

characteristic of these sites (i.e. lower temperatures, shorter growing degree-days, lower 

nutrient quality etc.) often result in expression of phenotypes that are small and more 

efficient at nutrient utilization.  Most species that are common at high elevations have shorter 

growth cycles and fast reproductive outputs (Mencuccini et al. 1995).  It is reasonable to 

conclude that individuals from these conditions have developed adaptations to meet the need 

of these specific environments. 

 The ability for populations to respond to changes in the environment is a broad 

phenomenon called phenotypic plasticity.  Pigliucci (2001) defined phenotypic plasticity as 

the property of a given genotype to produce different phenotypes in response to 

environmental conditions.  Grime et al. (1986) provide insight to the general linkage between 

ecology and the significance of phenotypic plasticity.  They hypothesized three primary types 

of plasticity in contrasting ecological scenarios.  Each of these three potential routes of 

plasticity is controlled by a specific environmental conditioning.  The first option suggested 

by Grime et al. (1986) is Stress-Tolerant.  Here, plasticity should be expressed via reversible 

mechanisms, such as acclimation, and permits individuals of the population to survive the 

current environmental conditions.  This “wait and see” strategy delays reproductive events 

until the stress has passed and is the physiological form of plasticity.  The second form of 

plasticity is the Competitive strategy.  In this strategy, morphological and developmental 

plasticity interact and provide alternate nutrient foraging mechanisms.  These alternative 

mechanisms maximize an individual’s competitive ability by redirecting growth and 
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acquisition from an unfavorable to favorable resource zone (i.e. root growth into a nutrient 

patch or phototropism by the stem to reach a light source).  The final type of plasticity is a 

ruderal strategy.  This method is characterized by plasticity in life history and phenology.  In 

this situation, an environmental cue triggers premature reproduction to escape stress and 

permits at least some reproductive fitness.   

 It is important to remove environmental bias to the genotype.  Sultan (1987) correctly 

summarized Lewontin’s (1978) interpretation of need to remove this bias, “by virtue of this 

capacity for response (i.e. plasticity), the relation of organism to environment is no longer to 

be considered a “problem” that the organism has to “solve”.  Plants and their genetics as a 

whole, along with the environment, are in a continuous feedback process.  Ultimately, the 

environment is not a problem to be solved by individuals, but rather dynamic interactions 

since the each strongly affect each other at the same time. 

Understanding the dynamic interactions between plants and their environment is the 

essential and has a number of applications such as development of remediation techniques.  

Fertilizer and excess nutrient application is recognized as having the predominant negative 

impact on watersheds in the mid-Atlantic region of the United States.  Poor agricultural 

practices, land-use changes and human wastes have resulted in roughly 331 million pounds 

of nitrogen reaching the Chesapeake Bay annually (Chesapeake Bay Foundation 2001).  

Natural biological/environmental “filters”, such as forests, oysters, underwater grasses and 

wetlands, can be utilized to reduce the impact of nitrogen in ecosystems.  Wetlands in 

particular hold the most promise for managing excess nutrients in aquatic systems due to 

recent advances in management and frequent utilization as a remediation too for increasing 

environmental quality.  However, poor understanding of ecosystem function, rapid land-use 
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changes, increasingly severe environmental degradation, and a general lack of legal control 

have resulted in massive loss and degradation of wetlands.   

In this study, we have sought to understand the interactions between phenotypic 

variations and different environmental (nitrogen and elevation) regimes in wetland 

communities.  We have used Juncus effusus L. (common rush) as a model system to 

investigate the impacts of limited and excess nitrogen availability on growth.  The potential 

for J. effusus to reproduce sexually (via a seed) and asexually (via vegetative propagation) 

makes this plant an ideal candidate to examine the effects of high- and low-nutrient 

environments in relation to different genotypes (Bertness and Ellison 1987, Brewer et al. 

1998).  We hypothesize that, as a result of inherent negative correlations between resource 

utilization and acquisition, genotypes within populations that have become strongly adapted 

to their native environmental conditions (i.e. nitrogen availability or elevation) will not 

rapidly respond to the opposite environmental conditions while maintaining the same level of 

fitness.  The power of this study lies in its ability to examine the interactions of both nitrogen 

and elevation interactions while describing the individual relationships within each 

population.  To our knowledge, no previous studies have examined the potentially powerful 

role of elevation as a selective pressure on the wetland plants from the Juncaceae family. 
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METHODS AND MATERIALS 
 
Plant Source 

Juncus effusus L. plants were collected from two high-elevation sites (Trout Pond and 

Chestnut Ridge Park Pond) and two low-elevation sites (WVU Agricultural and Animal 

Science Farm and White Park) in Monongalia County, WV (Figure 2.1 and 2.2).  Site 

nutrient status were identified by standard total soil carbon:nitrogen content analysis at the 

WVU Department of Biology: two high-nutrient sites (Animal Sciences Farm and Trout 

Pond) and two low-nutrient (White Park and Chestnut Ridge Park) (Figure 2.1).  Tillers were 

collected from twenty widely spaced clumps of J. effusus at each site (four in all).  Given the 

phalanx growth pattern of this species, it is reasonable to assume that each clump is the 

offspring of a single seed and hence each tiller represents a single genotype.  All plants were 

then vegetativly propagated through a hydroponics technique using 0.25 strength Johnson’s 

stock nutrient solution (Johnson et al. 1957; Figure 2.3).  

Experimental Set-up 

In this experiment, sixteen clones of each respective genotype from each site were 

produced (764 plants total).  In June 2001, clones were reciprocally transplanted back into a 

field setting with which each site receiving four clones of each of the forty potential 

genotypes (McGraw 1987).  Once planted, the clones grower until completion of the field 

experiment in mid November 2001.  Total number of tillers, tallest tiller length, and date of 

first reproductive tiller were censused twice monthly.  A surrogate for tiller area was 

calculated by multiplying tiller number by tiller height.   

Sample Preparation 

Harvested plant material was placed into individually label paper bags that were  
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then air dried at 700C in a mechanical convection oven.  Each sample was then weighed for 

total biomass and processed using a UDY Cyclone Sample Mill (Fort Collins, CO) with a 

20mm filter screen and underwent total Carbon-Nitrogen analysis using the Carlo Erba 

CHNS model NA 1500 Analyzer (Carlo Erba, Milan, Italy) using a Acetanilide standard.  

Data Analysis 

Data collected from this experiment were subjected to two separate analyses.  The 

first examines population level responses of J. effusus to differing nitrogen availability.  The 

second analysis compares ecotypic differences in growth based on variations in nutrient and 

elevation.  Growth rates were calculated to provide a more detailed understanding of changes 

that had occurred within the field setting.  Absolute growth rates (AGR) were calculated to 

show changes in growth over time and are calculated as follows: 

Absolute Growth Rate = 
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−  

Where x is the size of a plant component at time t (Demchik and Garbutt 1999; McGraw and 

Garbutt 1990).  Relative growth rate (RGR) implies the changes in the efficiency of J. effusus 

within nitrogen or elevation factor.  This index is calculated by the following equation: 

Relative Growth Rate = 
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where x is size of plant component at time t (Fisher 1920, Bazzaz and Harper 1977).  A 

repeated measures analysis of variance was preformed on time related data to determine 

significant differences in the growth of J. effusus as a response to differing environmental 

conditions.  All statistical analyses were conducted using JMP 3.0.1 (SAS Institute, Cary, 

NC). 
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Figure 2.1:  Site map and characteristics of research plots located in Monongalia County, 
West Virginia.  Low-nitrogen sites included Chestnut Ridge Park and White Park.  High-
nitrogen sites were Trout Pond and WVU Agricultural Farm. 
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Figure 2.2A.  Site locations of reciprocal transplant: Agricultural Farm (top) and Trout Pond 
(bottom). 
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Figure 2.2B.  Site locations of reciprocal transplant: White Park (top) and Chestnut Ridge 
Park (bottom). 
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Figure 2.3:  Vegetative propagation of J. effusus inside an environmental growth chamber. 
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RESULTS 

Analysis I: Differential Genotypic and Population Responses 

Tiller Area 

Across all environments, the size (tiller area) of plants changed over time (Table 2.1; 

Julian date p<0.0001).  Individual populations also showed variations between one another 

(Figure 2.4; Population p<0.0001) with Chestnut Ridge having the highest mean 

photosynthetic area and White Park the least.  However, there were also population 

variations over time (Figure 2.5; Population*date p=0.0218).  Here, White Park and 

Agricultural Farm populations more rapidly produced tiller area and therefore diverged from 

the Chestnut Ridge and Trout Pond populations by final harvest.  In addition, there were 

significant increases in tiller area with respect to time with the shape of the growth curves of 

the individual treatments significantly differ with respect to population (Transplant Site 

Nitrogen Level *date p<0.0001, Figure 2.5 Date* Transplant Site Nitrogen Level *population 

p=0.0002).   

Genotypic analysis shows both generalist and specialist responses of genotypes 

(Figure 2.6; Genotype[population] p=0.0005).  Genotypes originating from the Agricultural 

Farm and Chestnut Ridge sites showed little variation among sites or nitrogen treatments.  

With the exception of genotype WP-10, genotypes from the White Park were also generalists 

as can be seen by the relatively flat slope within the reaction of norm.  Genotype WP-10’s 

divergent shape of its response suggests that it is a specialist within the Agricultural Farm 

site environmental conditions.  Three genotypes (TP-1, TP-2 and TP-3) from the Trout Pond 

site showed a specialist response to specific environments.  These genotypes tended to show 

a more positive response to high-nitrogen environments.  In addition, genotypes responded 
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differently with respect to nutrient treatment over time (Date* Transplant Site Nitrogen Level 

*genotype[population] p=0.0001).   

Genotype by environment interactions analysis (Garbutt and Zangerl 1986)  

(magnitude and equability plot) is shown in Figure 2.7.  Chestnut Ridge genotypes had an 

above average equability (i.e. a flat slope) whereas White Park genotypes had a below 

average magnitude which supports the hypothesis of nutrient efficiency limiting their ability 

to respond to higher nutrient availability.  High-nutrient populations were positively 

correlated between magnitude of response and equability, implying a possible tradeoff 

between equability and magnitude response. 

Tiller area growth rates (AGR and RGR) were analyzed with the initial tiller number 

census data as a covariate (Table 2.2).  Tiller area growth rate (AGR) and growth efficiency 

(RGR) differed over time with respect to transplant site nitrogen level  (Measurement 

Interval* Transplant Site Nitrogen Level p=0.0161 and p=0.0494; Figures 2.8A-D 

respectively).  Plants from low-nutrient sites had higher tiller area growth rates early in the 

study, but were surpassed later in the growing season by plants grown in high-nitrogen sites 

(Figure 2.9).  Low-nutrient transplant sites were typically less efficient at producing tiller 

area over time compared to high-nutrient transplant sites (Figure 2.10).  Tiller area growth 

rate significantly differed between genotypes grown in each site (Genotype[population] 

p=0.0438).    

Biomass and Composition 

The Chestnut Ridge population (Figure 2.11) produced the highest mean dry weight 

(Table 2.3; Population p=0.0009).  Transplant site also had a significant effect on biomass 

(Transplant Site Nitrogen Level p=0.0270) with more biomass produced in the Agricultural 
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Farm and the White Park sites (Figure 2.12).  A strong genotype effect is also present on the 

overall mean biomass (Genotype[population] p<0.0001).  The nutrient content of the biomass 

shows no significant differences in accumulation of carbon within the tiller tissue.  Figure 

2.13 (Table 2.3) illustrates the unexpected increase in nitrogen concentration the low-

nitrogen treatment site of White Park (Transplant Site Nitrogen Level p=0.0003).  The 

carbon:nitrogen ratios were significantly different within populations (Table 2.3; Population 

p=0.0429).  Here the low-nitrogen populations produced higher tissue quality (C:N ratio) 

compared to high-nitrogen counterparts (Figure 2.14).  A significant transplant site treatment 

effect occurred in tissue concentration (Transplant Site Nitrogen Level p<0.0001).  In this 

case, mean C:N ratio was highest at Chestnut Ridge sites and lowest in White Park (Figure 

2.15).  Finally, there was a significant interaction on C:N ratios from population grown in 

opposing transplant nitrogen levels (Transplant Site Nitrogen Level *Population p=0.0329).  

Populations originating from high-nitrogen sites generally produced a higher C:N within 

high-nitrogen sites (Figure 2.16). 
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Table 2.1: Tiller area (cm2) repeated measures analysis of variance.  Type III mean squares 
are reported (* = p < 0.05). 
 
Source DF Tiller Area 
Julian Date (D) 1 4575689.3* 
Transplant Site Nitrogen Level (T) 3 468511.8 
Population (P) 3 1897880.9* 
D*T 3 2370203.8* 
D*P 3 744087.7* 
D* T*P 9 2482503.3* 
Genotype #[Population] (G[P]) 4 1535519.1* 
D*(G[P]) 4 766960.2* 
T*(G[P]) 12 718647.7 
D* T*(G[P]) 12 2969924.9* 
 
Table 2.2: Analysis of variance of tiller area absolute (cm2/day) and relative (cm2/cm2/day) 
growth rates with tiller number as a covariate.  Type III mean squares are reported  
(* = p < 0.05). 
 
Source DF Absolute 

Growth Rate
Relative 

Growth Rate 
Tiller Number Covariate 1 914.1809 0.029462 
Measurement Interval (M) 1 471.8284 0.000522 
Transplant Site Nitrogen Level (T) 3 172.3637 0.002811 
Population (P) 3 231.0374 0.003430 
M* T 3 1689.9675* 0.010355* 
M*P 3 425.9061 0.004501 
T*P 9 918.2840 0.005635 
M* T*P 9 868.8071 0.003140 
Genotype #[Population] (G[P]) 4 543.3155 0.012955* 
M*(G[P]) 4 367.8862 0.007702 
T*(G[P]) 12 530.3418 0.007023 
M* T*(G[P]) 12 1055.7236 0.008273 
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Table 2.3: Analysis of variance of final tiller biomass (g), nitrogen concentration (mg/g N) 
and carbon:nitrogen ratio.  Type III mean squares are reported (* = p < 0.05). 
 
Source DF Tiller 

Biomass 
Nitrogen 

Concentration 
C:N  
Ratio 

Transplant Site Nitrogen Level (T) 3 9.365* 479.745* 14296.256* 
Population (P) 3 16.964* 34.247 4815.834* 
T*P 9 3.138 75.521 10811.641* 
Genotype #[Population] (G[P]) 4 28.122* 47.799 4454.948 
T*(G[P]) 12 5.979 175.331 8739.231 
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Figure 2.4:  Mean tiller area (cm2) of populations.  AG= Agricultural Farm, CR= Chestnut 
Ridge, TP=Trout Pond and WP=White Park. 
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Figure 2.5:  Mean productivity of tiller area (cm2) of populations over time. 
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Figure 2.6:  Mean tiller area absolute growth rate reaction of norms for individual genotypes 
grown within each site. 
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Figure 2.7:  Genotype by environment (magnitude and equability) plot for biomass of 
genotypes from four field sites.  z= Agricultural Farm |= Chestnut Ridge =Trout Pond 

=White Park. 
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Figure 2.8A-D:  Tiller area relative growth rate (cm2/cm2/day) over the duration of the 
experiment of origin populations grown within each site.  z= Agricultural Farm |= 
Chestnut Ridge =Trout Pond =White Park. 
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Figure 2.9:  Tiller area absolute growth rate (cm2/day) of tillers grown in differing nitrogen 
transplant sites over the duration of the experiment.  
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Figure 2.10:  Tiller area relative growth rate (cm2/cm2/day) of tillers grown in differing 
nitrogen transplant sites over the duration of the experiment.   
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Figure 2.11:  Final dry weight (g) of tillers by origin field site.  AG= Agricultural Farm, CR= 
Chestnut Ridge, TP=Trout Pond and WP=White Park. 
 

Populations

AG CR TP WP

D
ry

 W
ei

gh
t

(g
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

 
 
Figure 2.12:  Final dry weight (g) of tillers by transplant field site.  AG= Agricultural Farm, 
CR= Chestnut Ridge, TP=Trout Pond and WP=White Park. 
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Figure 2.13:  Final nitrogen concentration (mg/g) of tiller tissue from each transplant field 
site.  AG= Agricultural Farm, CR= Chestnut Ridge, TP=Trout Pond and WP=White Park. 
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Figure 2.14:  Final carbon:nitrogen ratio within tillers based on origin field site.  AG= 
Agricultural Farm, CR= Chestnut Ridge, TP=Trout Pond and WP=White Park. 
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Figure 2.15:  Final carbon:nitrogen ratio of tillers from each transplant field site.  AG= 
Agricultural Farm, CR= Chestnut Ridge, TP=Trout Pond and WP=White Park. 
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Figure 2.16:  Mean carbon:nitrogen ratios of populations grown in differing nitrogen 
environments.  
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Analysis II:  Differential Ecotypic Response To Elevation and Nitrogen 
 
Tiller Area 

Across all environments, log-transformed tiller area significantly differed between 

dates (Table 2.4; Julian date p<0.0001).  High-elevation populations produced more tiller 

area than low-elevation sites (Figure 2.17; Origin elevation p<0.0001).  Reciprocal 

transplants of populations based on elevation show that high-elevation populations had 

higher mean tiller area when transplanted into either high- or low-elevation sites (Figure 

2.18; Transplant elevation*origin elevation p=0.0135) and over time (Date*transplant 

elevation*origin elevation p=0.0089).  Although transplant elevation did not significantly 

directly affect tiller area, it did impact tiller area differently over time (Date*transplant 

elevation p<0.0001).  Low-nitrogen populations appear to have a divergent response to 

elevation.  Figure 2.19 shows higher mean tiller area in high elevations and a significantly 

lower area in low elevations (Origin nitrogen*origin elevation p<0.0001).  This relationship 

also holds with respect to elevation transplantation.  Plants from low-elevation, low-nitrogen 

sites produced fewer mean number of tillers regardless transplant elevation (high or low) 

sites (Figure 2.20; Transplant elevation*origin nitrogen*origin elevation p=0.0041).  

Absolute growth rates (AGR) of tiller area differed significantly over time (Table 2.4; 

Measurement Interval p=0.0016).  Tiller area growth rates also significantly differed by 

transplant elevation over time (Measurement Interval*transplant elevation p=0.0036).  Here, 

plants grown in low-elevation sites had a higher mean growth rate over the course of the 

experiment.  Low-elevation transplant sites had higher growth rates regardless of home site 

elevation (Figure 2.21; Transplant elevation*origin elevation p=0.0345).  This elevation 

interaction also varied over time (Measurement Interval*transplant elevation*origin elevation 
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p=0.0366).  Higher AGR was observed in plants that were grown in low-elevation sites 

despite their origin elevation level. 

Tiller area growth efficiency expectedly varied over time (Table 2.4; Measurement 

Interval p=0.0044).  A greater efficiency in tiller area production was evident in populations 

that were transplanted back into their home site (Figure 2.22; Transplant elevation*origin 

elevation p=0.0337).  In terms of site nutrient status, a significant divergence in tiller area 

growth efficiency is present in relation to elevation (Figure 2.23; Transplant 

nitrogen*transplant elevation*origin elevation p=0.0107).  Populations transplanted to low-

elevation sites tended to be more efficient at producing tiller area despite a population’s 

origin or transplant nutrient status.  However, populations transplanted into sites with low 

elevations and low nitrogen seemed to have the highest relative growth rates.  This trend was 

also variable over time (Measurement Interval*transplant nitrogen*transplant 

elevation*origin nitrogen p=0.0275). 

Biomass 

 Significantly higher tiller biomass (Table 2.5) was observed in low-nitrogen 

populations from low elevations as well as high-nitrogen populations from high-elevation 

sites (Figure 2.24; Origin elevation*origin nitrogen p=0.0010).  When these populations were 

reciprocally transplanted, the high-elevation populations returned to high-nitrogen sites 

maintained their biomass accumulation (Figure 2.5; Transplant nitrogen*origin elevation 

p=0.0349).  High-elevation populations that were transplanted into low-nitrogen sites 

significantly increased their biomass production whereas low-elevation populations in low-

nitrogen sites declined.  Overall, plants transplanted into high elevations had more biomass 

(Figure 2.26; Transplant elevation p<0.0001). 
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Nutrient Composition 

Tillers from plants grown at low elevations typically had a higher nitrogen 

concentration (Table 2.5; Figure 2.28; Transplant elevation p<0.0001).  The interaction of 

these two site variables shows that plants from populations transplanted to low elevation, 

nitrogen-poor sites accumulated more nitrogen in aboveground tissues (Figure 2.29; 

Transplant nitrogen*transplant elevation p=0.0002).  This trend appears not to be related to 

the plants’ origin nutrient status (Figure 2.30; Transplant nitrogen*transplant 

elevation*origin nitrogen p=0.0342).  In terms of carbon accumulation, plants grown in low-

nitrogen conditions typically had higher carbon content (Table 2.5; Figure 2.27; Transplant 

nitrogen p=0.0012).  Plants grown in high-elevation (Figure 2.31) sites typically had a higher 

C:N ratios (Table 2.5; Transplant elevation p<0.0001) regardless of nitrogen level (Figure 

2.32; Transplant nitrogen*transplant elevation p=0.0019).  When this interaction is further 

decomposed, plants grown at high elevations tended to yield higher C:N ratios within their 

home sites (Figure 2.33; Transplant nitrogen*transplant elevation*origin nitrogen p=0.0141).  

Transplant elevation also had a significant impact on C:N ratios, regardless of nutrient status 

or elevation origin (Figure 2.33; transplant nitrogen*transplant elevation*origin elevation 

p=0.0140). 
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Table 2.4: Analysis of variance for Tiller area, absolute (cm2/day) and relative (cm2/cm2/day) 
growth rates.  Type III mean squares are reported (* = p < 0.05).  Note that Measurement 
Interval is reported as Julian Date for growth rates. 
 
Source DF Tiller  

Area 
Absolute 

Growth Rate
Relative 

Growth Rate 
Julian Date (D) 1 74.0868* 1547.5144* 0.0108* 
Transplant Nitrogen Level (TN) 1 1.8608 0.0054 0.0009 
Transplant Elevation (TE) 1 0.1588 19.7996 0.0001 
TN*TE 1 0.1573 40.9769 0.0005 
Origin Nitrogen Level (ON) 1 0.0003 3.9865 0.0007 
Origin Elevation (OE) 1 24.3568* 1.8664 0.0000 
ON*OE 1 44.6159* 10.9918 0.0005 
TN*ON 1 0.3089 31.7558 0.0003 
TN*OE 1 2.2002 54.9630 0.0027 
TE*ON 1 0.2745 7.2795 0.0000 
TE*OE 1 3.9584* 691.8584* 0.0060* 
TN*TE*ON*OE 1 2.4757 2.1416 0.0008 
TN*TE*ON 1 0.2302 318.7911 0.0086* 
TE*TN*OE 1 0.0102 122.0871 0.0003 
TN*ON*OE 1 1.3991 91.3360 0.0040 
TE*ON*OE 1 5.3599* 78.7579 0.0001 
D*TN 1 0.4982 3.6096 0.0009 
D*TE 1 13.3901* 1310.9503* 0.0035 
D*TN*TE 1 0.1597 420.2184 0.0020 
D*ON 1 0.0001 24.2297 0.0007 
D*OE 1 0.4063 0.6734 0.0002 
D*ON*OE 1 4.4151* 104.3702 0.0003 
D*TN*ON 1 0.3350 226.1126 0.0001 
D*TN*OE 1 0.3298 7.7909 0.0006 
D*TE*ON 1 2.4480 14.8357 0.0004 
D*TE*OE 1 4.4417* 676.1948* 0.0027 
D*TN*TE*ON*OE 1 0.1448 433.8952 0.0002 
D*TN*TE*ON 1 0.6613 529.2677 0.0065* 
D*TE*TN*OE 1 0.1104 2.7945 0.0006 
D*TE*ON*OE 1 0.2285 247.1964 0.0004 
D*TN*ON*OE 1 0.8558 2.7348 0.0025 
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Figure 2.17:  The effect of origin site elevation on tiller area (cm2).   
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Figure 2.18:  The interactive effect of transplant and origin site elevation on tiller area (cm2).  
(H=High, L=Low) 
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Figure 2.19:  The interactive effect of origin site elevation and nutrient level on tiller area 
(cm2).  (H=High, L=Low) 
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Figure 2.20:  The interactive effect of transplant elevation, origin site nitrogen level and 
origin elevation on tiller area (cm2).  (H=High, L=Low) 
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Figure 2.21:  The interactive effect of transplant and origin site elevation on tiller area AGR 
(cm2/day).  (H=High, L=Low) 
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Figure 2.22:  The interactive effect of transplant and origin site elevation on tiller area RGR 
(cm2/ cm2/day).  (H=High, L=Low) 
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Figure 2.23:  The interactive effect of transplant nitrogen and elevation and origin nitrogen 
level on tiller area RGR (cm2/ cm2/day).  (H=High, L=Low) 
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Table 2.5: Analysis of variance for tiller biomass (g), carbon and nitrogen concentrations 
(mg/g) and carbon:nitrogen ratios.  Type III mean squares are reported (* = p < 0.05).   
 
Source DF Biomass Carbon 

Concentration 
Nitrogen 

Concentration 
C:N Ratio 

Transplant Nitrogen Level (TN) 1 0.2446 32832.9250* 177.9724* 790.3610 
Transplant Elevation (TE) 1 31.1156* 7834.6830 699.9089* 13516.3630*
TN*TE 1 0.9408 7236.7210 311.8944* 5841.0080* 
Origin Nitrogen (ON) 1 1.1849 757.5330 0.6616 2022.0000 
Origin Elevation (OE) 1 0.4447 118.7220 29.3499 3.7230 
ON*OE 1 11.7830* 79.9180 12.6082 1732.5710 
TN*ON 1 1.4378 1459.4780 2.6228 276.6590 
TN*OE 1 4.7581* 2674.4690 50.1083 32.7930 
TE*ON 1 0.1087 563.6650 4.2194 9.4360 
TE*OE 1 0.3542 1279.1230 20.3564 808.5410 
TN*TE*ON*OE 1 0.9942 270.2260 7.4656 589.2440 
TN*TE*ON 1 1.7720 1403.4250 98.1714* 3624.4460* 
TE*TN*OE 1 0.9028 4072.7780 60.4597 3627.4560* 
TN*ON*OE 1 0.4071 1616.0590 5.6117 1.9550 
TE*ON*OE 1 0.1456 1158.6070 7.2589 1956.8670 
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Figure 2.24:  The interactive effect of origin nitrogen level and elevation on tiller biomass 
(g).  (H=High, L=Low) 
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Figure 2.25:  The interactive effect of transplant nitrogen level and site elevation on biomass 
(g).  (H=High, L=Low) 
 

Nitrogen Treatment / Origin Elevation

H/H H/L L/H L/L

Ln
 D

ry
 W

ei
gh

t
(g

)

0.0

0.2

0.4

0.6

0.8

1.0

 



 51

Figure 2.26:  The effect of transplant site elevation on tiller biomass (g). 
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Figure 2.27:  The effect of transplant nitrogen level on tiller carbon concentration (mg/g C). 
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Figure 2.28:  The effect of transplant elevation on tiller nitrogen concentration (mg/g N). 
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Figure 2.29:  The interactive effect of transplant site nitrogen and elevation on tiller nitrogen 
concentration (mg/g N).  (H=High, L=Low) 
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Figure 2.30:  The interactive effect of transplant nitrogen level, elevation and origin nitrogen 
level on tiller nitrogen concentration (mg/g N).  (H=High, L=Low) 
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Figure 2.31:  The effect of transplant site elevation on tiller C:N ratio. 
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Figure 2.32:  The interactive effect of transplant site elevation and nutrient level on tiller C:N 
ratio.  (H=High, L=Low) 
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Figure 2.33:  The interactive effect of transplant nitrogen level, elevation and origin nitrogen 
level on tiller C:N ratio.  (H=High, L=Low) 
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Figure 2.34:  The interactive effect of transplant elevation, nitrogen and origin elevation on 
tiller C:N ratio.  (H=High, L=Low) 
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DISCUSSION 

Genotype and Population Responses 

As seen in other species (Garbutt and Bazzaz 1987), the populations of J. effusus 

studied here contained both specialist and generalist genotypes, although the majority had a 

typical norm of reaction associated with a generalist response.  Generalist ecotypes typically 

maintain more equable response across environments, producing a relatively low phenotypic 

variation.  It is reasonable to assume that this is the result of significant physiological 

plasticity.  This “jack-of-all trades; master of none” strategy is typically found in variable 

environments.  The specialist approach has a relatively tightly constrained response to a very 

specific, typically long-term set of environmental conditions (Kassen 2002).  Low tolerance 

to environmental change is due to antagonistic pleiotropy, which suggests that mutations or 

traits that help maximize fitness in one environment are not beneficial and may be harmful in 

other environments (Kassen 2002, Elena and Sanjuan 2003).   

Selective pressures resulting from the environmental constraints at our field sites have 

produced both generalists and specialists.  Genotypes from the Agricultural Farm and 

Chestnut Ridge field sites responded as generalists to the different nutrient levels among 

sites.  White Park Genotypes responded as generalists except one, WP-10, which appeared to 

be a specialist in the environmental conditions (i.e. high nitrogen) found in the Agricultural 

Farm site.  Three genotypes from the Trout Pond responded as specialists within high-

nutrient environments suggesting that environmental conditions at the Trout Pond have 

remained uniform long enough to select for more specialized genotypes.  Generally, our data 

suggest that genotypes from low-nutrient sites responded more as generalists to nitrogen 
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availability, whereas the majority of the specialists genotypes originated in high-nitrogen 

sites. 

To understand better how the genotypes were responding to the environment, we 

examined the niche structure in response to nitrogen availability.  This analysis gives 

measures of the relative niche breadth (equability) and magnitude of response between 

genotypes of interest.  Garbutt and Zangerl (1983) proposed that highly equable responses 

would be correlated with a lower magnitude of response because of a physiological tradeoff 

(Garbutt and Bazzaz 1987).  Our data suggest that Chestnut Ridge genotypes were more 

uniform and had a larger niche breadth than other genotypes.  White Park genotypes were 

smaller than average, implying a generalist approach to occupying its niche, based on my 

assumption that high-resource specialists would maximize growth.  However, one White 

Park genotype was a specialist with respect to the performance of genotypes from the 

Agricultural Farm site.   

Magnitude of response and equability were positively correlated among genotypes 

from high-nitrogen sites (Trout Pond and Ag Farm), supporting Garbutt and Zangerl’s (1983) 

contention of a possible tradeoff between equability and magnitude of response.  This 

tradeoff has ecologically important implications on the potential plasticity of a genotype 

across a resource gradient.  Highly equable genotypes could fill broader range of niches 

using a generalist approach, whereas genotypes with high magnitude would specialize within 

a resource environment.  As a result, the niche for a given genotype could be controlled by 

resource availability and resulting tradeoffs between resource acquisition and use efficiency.   

In this study, J. effusus growth varied in response to the nitrogen level within the 

transplant site.  Generally, plants originating from high-nitrogen populations that were 
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transplanted into high-nitrogen sites maintained growth and production of tiller area observed 

similar to their home site.  Agricultural Farm and White Park populations had higher mean 

tiller area over time, suggesting differences in growth based on elevation.  I attribute low 

performance and growth early in the growing season to transplant shock.   

We believe that a “home site advantage” relationship exists in populations within our 

experiment.  As a result of higher resource acquisition, ecotypes from high-nitrogen sites 

exhibit the most fitness for other high-nitrogen environments.  This partially supports our 

idea of a negative correlation between resource use and acquisition.  However, tiller area 

production was high in some low-nitrogen sites (i.e. Chestnut Ridge), suggesting that another 

suite of genetic characters were being enacted upon.  Home-site advantages have developed 

to maximize the fitness of the genotype to specific environmental conditions.  It is important 

to point out that, a population’s growth greatly decreases when faced with new nutrient 

condition compared to home or similar-status sites.  Pigliucci (2001) suggests that resource 

limitations might result in magnified phenotypic differences.  Previous environmental 

changes (i.e. local air pollution, increased CO2 levels, heavy metals) may have elicited 

adaptations within affected species, and, when faced with a relatively new change, 

populations could rely on this memory or previous experiences in order to survive (Ernst 

1993).  Since this field study lasted one growing season we cannot infer long-term plastic 

responses within our study populations.  However, significant changes in the growth patterns 

of J. effusus were observed within weeks from the initial transplant shock.  We hypothesize 

that foreign genotypes could potentially shift their phenotypic expression to meet the needs 

of the new environmental conditions in successive growing seasons.  Overall, it is important 

to understand that genotypes and their environment interact uniquely and that this interaction 
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results in a wide variety of potential phenotypic outcomes (Sultan and Bazzaz 1993).  This 

wide breadth of variability results in the maintenance of genetic diversity within the 

populations. 

 Biomass allocations were highest in the populations originating from Chestnut Ridge 

site.  This increased allocation is unexpected since this is a low-nitrogen site.  Plants 

transplanted to the Agricultural Farm and White Park exhibited greater biomass production 

than in other sites.  Both of these sites are at a lower elevation and implies a potential 

interactions of elevation upon populations.  Plants transplanted to high-elevation sites (Trout 

Pond and Chestnut Ridge) had 20 % higher C:N ratios, suggesting that individuals in these 

locations were becoming more efficient in nitrogen utilization.  

Elevation Response 

 I expected plant populations from cooler environments to be shorter with reduced 

growth and expressing increased resource-use efficiency (Chapin and Chapin 1981).  

Therefore, it is logical to assume that, when transplanted to lower elevations where 

environmental characteristics are more favorable for growth and development, this transplant 

effect would stimulate a population’s growth potential.  The results of this study appear to 

support the findings of Chapin and Chapin (1981).  Interestingly, some of the general 

assumptions of nitrogen-elevation model were not completely supported.  Most notably, tiller 

biomass and nitrogen accumulation were in opposite directions to that expected by the 

model, suggesting the multifaceted role of elevation was underestimated within our model 

assumptions. 

Ecotype Response 
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We hypothesized that inherent negative correlations exist between resource utilization 

and acquisition, resulting in individuals that have become strongly adapted to their specific 

home environmental conditions (relative elevation and nitrogen) and that cannot rapidly 

respond to the differing environmental conditions.  This study showed a strong overall trend 

for high-elevation populations growing in low-nitrogen environments to have higher tiller 

area and growth rates.  This is counter to the model proposed by Garbutt and McGraw (see 

Chapter 1).  Their model suggests that plants from low-resource environments should have 

considerably lower AGR’s than those from high-resource environments.  Fundamentally, 

individuals from low-resource environments should have evolved attributes to increase 

resource use efficiency.  In other words, populations from this environment invest in optimal 

or efficient usage of a low-supply resource (i.e. nitrogen).  This conservative allocation to 

biomass helps ensure the survival and persistence of plants in resource-limited environment.  

Ecotypes from high-resource environments make gross resource investments into biomass.  

This increased allocation to biomass helps overcome competition.   

The plasticity of J. effusus appears to be most affected by differences in elevation 

rather than nitrogen availability.  It is unusual that plant populations at high elevation 

produced the most biomass at low- rather than high-nitrogen conditions.  This might imply 

that plastic shifts occur much more slowly with nitrogen rather than factors associated with 

elevation.  Although nitrogen indeed is an important controlling factor on the plasticity of J. 

effusus, its effect is far outweighed by elevation.  This shift is unusual because these plants 

should not be carbon-limited, but might reflect carbon stress due to transplanting and 

adjusting to new environmental conditions.  Dueck (et al. 1991) found that moderate 

increases in nitrogen supply could result in increased frost sensitivity in plants.  This suggests 
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that plants accustomed to high-nitrogen soils might be more sensitive to nitrogen acquisition 

and, therefore, have lower growth rates when transplanted to high-elevation sites.  As a 

result, ecotypes might switch from nitrogen acquisition and accumulation to carbon storage 

for over-wintering or a reproductive outburst (Pianka 1994).  This interaction can only be 

confirmed by a whole-plant examination (above and belowground) in field conditions.  

Response of populations to these environmental conditions is dependent on the physiological 

potential of all genotypes of a population to react to these temporal and spatial patterns of 

change (Ernst 1993, Fowden et al. 1993, Via et al. 1995, Bazzaz 1996, Gedroc et al. 1996, 

Bell and Sultan 1999). 

Although differences exist between the proposed model and the results of this study, 

we believe our model is still useful as a guide to growth responses within the context of 

limiting resources.  It is important to note that we assumed that nutrient availability would be 

the main factor acting upon genotypes within these populations.  In our findings, the 

influence of elevation as a selective pressure on genotypes seemed more important.  Since 

distribution of nutrients and other essential environmental characteristics are heterogeneous 

across a landscape, a separate model is needed to predict spatial distribution of individual 

ecotypes.   

Applications 

 The results from this study have implications that go beyond a basic understanding of 

ecological genetics and phenotypic plasticity.  By applying information on home site 

advantage nitrogen and elevation interactions on the physiology of plant systems, 

environmental managers can begin to develop techniques for selection of genotypes for 

nitrogen remediation.  Selection of genotypes that naturally (or artificially) grow in elevated 
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nitrogen runoff at specific elevations result in phenotypes that maximize their fitness and 

growth rates within these conditions.  Introduction of these special populations into 

constructed wetlands or buffer strips could lead to increased extraction of nitrogen and 

therefore a decreased impact upon the watershed.   

The overall results of this study partially support the hypothesized negative 

correlation between RUE and RAR as predicted in the Garbutt and McGraw Model (Chapter 

1).  However, this study provides evidence that elevation has an important role in the growth 

and development of our study populations.  When grown in high elevation, J. effusus 

increased aboveground growth regardless of nitrogen status.  Although results of this study 

support our negative correlation hypothesis with respect to nitrogen, physiological responses 

to differences in elevation is apparently not governed by the same sets of genes as nitrogen 

response.  To understand this phenomenon in terms of entire plant growth and life history 

strategy better, I also must quantify belowground growth. 
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CHAPTER 3 
 
 
 
 
 

CHANGES IN JUNCUS EFFUSUS L. ROOT MORPHOLOGY IN RELATION TO 
NITROGEN AVAILABILITY 
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INTRODUCTION 
 

Historically, plant roots have been the least-studied and often-ignored aspect of plant 

biology.  Ironically, this forgotten portion is likely the most essential component of the entire 

plant biological system.  Root systems are comprised of a congregate of several individual 

components that together constitute what Waisel et al. (2002) appropriately called the 

functional “Hidden Half” of plants.  Plant roots perform numerous biologically significant 

tasks including nutrient uptake, carbon compound release for mycorrhizal interactions, 

structural support, and carbohydrate storage (Bohm 1979, Feldamn 1984, Wilcox 1968).  It is 

estimated that roots can contribute 40-85% of net primary productivity in some ecosystems 

(Fogel 1985, Fitter 1987).   

The inherent opaque nature of soil and the vast network of roots that are deployed 

into the rhizosphere make quantification extremely difficult (Fitter and Stickland 1992, 

Nielsen et al 1997).  Over the past decade, advances in technology have permitted a better 

understanding of the importance of roots to overall plant growth and development.  

Rhizotron tubes (Day et al. 1996), ground penetrating radar (Butnor et al. 2003) and glass 

plate rhizotrons techniques (Gross et al. 1992) have allowed excellent, if limited, 

quantification of root growth and development.   

Plant roots have some of the most adaptive characteristics of any plant organ.  Since 

the primary functional task of roots is the uptake of nutrients and water, roots have  a number 

of genetic adaptations to meet the challenges of the ever-changing and non-uniform nature of 

the rhizosphere. (Berntson and Woodward 1992, Berntson 1994, Lynch and Van Beem 1994, 

Casper et al. 2003).  When considering the role roots play in plant survival within diverse 

environments, we must assume that plant roots have devised multiple and complex adaptive 
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strategies to maintain fitness in soil, an often highly populated matrix of roots, microbes, 

insects, etc. (Eissenstat and Caldwell 1989, Jackson and Caldwell 1989, Lariguauderie and 

Richards 1994, Bell and Sultan 1999).  Many studies have shown plants to have the inherent 

plasticity to shift root morphology in response to changes in the rhizosphere (Drew et al. 

1973, Grime et al. 1986, Fitter 1987, Fitter and Stickland 1991, Zobel, 1991).  Pregitzer 

(2003) noted that it is feasible for differing functionality to exist within a root system.  If this 

assumption were true, all aspects of root morphology (i.e. lifespan, physiology, etc.) would 

become dependent on the acquired resource.  This idea has strong implications for root 

plasticity in a heterogeneous environment.  The effectiveness of this selective pressure to 

produce a specific and effective adaptation depends on three aspects of interactions between 

genotype and environment.  These include functionality of adaptive plasticity (environmental 

tolerance), diversity of norms of reaction in a population, and distribution of variability 

within the environment (Levins 1968, Sultan 1987, Sultan and Bazzaz 1993). 

 Soil nutrient status provides a powerful selective force on plant populations.  Genetic 

variation seems to exist within species for the ability to utilize, or at least tolerate, high levels 

of nutrients.  Garbutt and McGraw (chapter 1) postulated that individuals in a population do 

not have the ability to maintain fitness when subjected to rapidly changing nutrient 

availabilities.  The inherent negative correlation between efficiency of resource utilization 

(RUE) and effectiveness of resource acquisition (RAR) prevents the unique physiological 

traits of both strategies from being simultaneously expressed.  As a result, increased resource 

use efficiency increases an individual’s fitness in low-resource environments.  Conversely, 

high resource acquisition rates are associated with high resource availability.  Physiological 

characteristics of RUE include conservative growth rates with lower amounts of biomass 
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containing increased tissue quality.  Plants from high-resource environments are 

characterized by high growth rates that result in abundant low tissue quality biomass.  The 

plants’ “perception” of response to a changing environment results in two opposing 

strategies: one becomes conservative with its resources to ensure its place in the environment 

whereas the other enters into a competitive race to prevent other (potentially better-adapted) 

species from gaining a foothold on its environment.   

These opposing strategies have developed in plant populations that have persisted in 

relatively homogeneous environments.  The long-term expression of these traits has resulted 

in a life history form, or an “ecotype”, for each respective site (Darwin 1859, Turesson 1922, 

1930, Bennington and McGraw 1995).  Although selective pressures have forced these 

populations to express a specific growth form continually, the potential for genetic variation 

remains in the gene pool (Bennington and McGraw 1996).  If environmental conditions 

change, the standing population has the potential to shift the expression of its phenotype to 

meet its changing environment.  Past studies suggested that organisms within stressful or 

unfavorable environments tend to have increased environmental variance and decreased 

heritability (Blum 1988, Bennington and McGraw 1996). 

Despite the elusive nature of the plant root, roots provide opportunities to explore the 

critical phenomena of plasticity in life histories.  Changes that occur in developing root 

systems are a function not only of the environment, but also of the genetics of the system.  

This interactive ability has evolved over the past 400 million years of natural selection and 

has made the root system the most plastic of all plant structures (Fitter 1987).  In addition, 

plant roots are the most dynamic plant organs when faced with changes in environmental 

conditions.  The resulting ability to exploit resources in the environment is a direct function 
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of the genotype x environment interaction and a plants phenotypic plasticity.  For example, 

Jackson et al. (1990) found that root systems have an exceptionally high rate of plasticity in 

response to phosphorus fertilization.  This morphological plasticity implies a critical 

connection between nutrient uptake capacity and mineral nutrient capture (especially in the 

short-term fertilization pulses). 

The goal of this study was to determine changes in root morphology related to the life 

history and application of nitrogen in the rhizosphere.  I measured responses to simulated 

nitrogen environments to determine if the physiological RUE and RAR traits are negatively 

correlated within root systems.  Due to the inherent negative correlation between these two 

traits, we believe that plant root systems will not be able to respond rapidly to the same 

resource in opposing nitrogen availability environments.   

Juncus effusus L. (common rush) was the model organism for this study due to its 

abundant representation in most aquatic and wetland environments.  The potential for J. 

effusus to reproduce asexually (via vegetative propagation) makes this species and ideal 

candidate to examine the effects of variable nutrient environments in relation to different 

genotypes because treatments can be applied to multiple members of the same genetic 

structure. 
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METHODS AND MATERIALS 

Plant Source 

I collected Juncus effusus L. plants from two high-nutrient sites (WVU Agricultural 

and Animal Science Farm and Trout Pond) and two low-nutrient locations (Chestnut Ridge 

Park Pond and White Park) in Monongalia County, WV.  Sites were identified by standard 

total soil carbon:nitrogen content analysis by the WVU Department of Biology (Chapter 2; 

Figure 2.2).  Each site was also identified by elevation; high (Trout Pond and Chestnut 

Ridge) and low (Agricultural Farm and White Park).  Four tillers were collected from each of 

five widely spaced clumps of J. effusus at each site.  Given the phalanx growth pattern of this 

species, I assumed that each clump was the offspring of a single seed and, hence, each tiller 

represented a single genotype. All plants were propagated vegetatively through a 

hydroponics technique using 0.25 strength Johnson’s stock nutrient solution (Johnson et al. 

1957).  

Experimental Set-up 

Forty glass plate mini-rhizotrons were built from pieces of 0.25 inch (0.64 cm) plate 

glass that measured 8.5 inches (21.59 cm) wide by 22 inches (55.88 cm) long.  Four U-bolts 

secured all a U-shaped length of 1 inch (2.54 cm) diameter black vacuum tubing with an 

internal wire support between two glass plates.  (Figure 3.1). I filled each mini-rhizotron with 

pro-mix potting soil (without nitrogen) and planted them with a corresponding genotype of J. 

effusus.  Twenty rhizotrons were treated with a 0.25 strength Johnson’s stock nutrient 

solution containing nitrogen, while the second group received the same stock solution 

without nitrogen.   
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Experimental treatments began on February 26, 2002 in environmental growth 

chambers and later in a greenhouse (Morgantown, WV) at an angle of 300 from vertical.  

Changes in root development and morphology were tracked by taking a digital root images.  

These images were acquired approximately every three to four days with a 3.3 mega pixel 

Olympus C-3040 Zoom Camedia digital camera.  I also measured changes in tiller 

morphology (total tiller number, highest tiller height, and tiller area).  On May 1, 2002, I 

harvested all plants rinsed soil particles from the roots, and acquired final root images with a 

Microtek ScanMaker 9600 XL flatbed scanner.   

Sample Preparation 

After harvesting the plants, I separated the tillers from the roots and dried them in 

individually labeled paper bags with a mechanical convection oven at 70°C.  I weighed each 

sample for total biomass and ground them using a UDY Cyclone Sample Mill (Fort Collins, 

CO) with a 20 mm filter screen.  I analyzed the processed samples for total carbon-nitrogen 

using the Carlo Erba CHNS model NA 1500 Analyzer (Carlo Erba, Milan, Italy) with an 

Acetanilide standard.  

Data Analysis 

I used the MacRHIZO Pro version 3.10b (Régent Instruments, Québec, Canada) 

software package to analyze the rhizotron images and determine multiple aspects of root 

morphology: length, diameter, surface area, total volume, total number of tips, forks and 

crossings, etc.  I compared above- and belowground data to morphological growth and 

developmental data collected from the rhizotron images and analyzed the data for elevation 

and nitrogen effects.   



 74

To provide a complete understanding of changes in growth over time in each micro-

environmental setting, I used two measures of grow rate. I calculated absolute growth rate 

(AGR) as follows: 

Absolute Growth Rate = 
12

12

tt
xx

−
−  

where x is the size of a plant component at time t (Demchik and Garbutt 1999; McGraw and 

Garbutt 1990). I also used relative growth rate (RGR) as an estimate of the changes in the 

efficiency of J. effusus to the given treatments.  This index was calculated by the following 

equation: 

Relative Growth Rate = 
12

12 lnln
tt

xx
−
−  

where x is size of component at time t. (McGraw and Garbutt 1990).  I used SPSS version 

11.5 (SPSS, Chicago, IL) for my statistical analysis.  
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Figure 3.1:  Minirhizotron design for root morphology observation. 
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RESULTS  

Tiller Area 
 Tiller area (Table 3.1) varied significantly over time (Date p=0.0128).  Tiller area was 

greatest in both high-nitrogen and high-elevation populations (Figure 3.2; Origin nitrogen 

p<0.0001; Origin elevation p=0.0091).  Aboveground area was higher within high-nitrogen 

populations grown in high elevations (Origin elevation*origin nitrogen p<0.0001).  Plants 

originating from high-nitrogen, high-elevation sites produced more tiller area when treated 

with high-nitrogen treatments (Figure 3.3; Transplant nitrogen*origin elevation*origin 

nitrogen p=0.0091).  However, plants originating from low-nitrogen, high-elevation 

populations produced less tiller area when subjected to high-nitrogen treatments.  There were 

no significant treatment effects on AGR or RGR over the course of the experiment. 

Root Length 

There were significant variations between dates in root length (Table 3.2; Date 

p<0.0001).  Root length was significantly longer in high-nitrogen populations (Figure 3.4; 

Origin nitrogen p=0.0092).  High-elevation populations also had a higher mean root length 

compared to low-elevation sites (Figure 3.5; Origin elevation p=0.0004).  

Root Surface Area 

 Root surface area measurements varied significantly over time (Table 3.2; Date 

p<0.0001).  Root surface area was significantly higher in high-elevation populations (Origin 

elevation p=0.0035).  Mean root surface area was highest in high-nitrogen populations from 

high elevations (Figure 3.6; Origin nitrogen*origin elevation p=0.0269).  Growth rates 

(AGR) of root surface area also varied over time (Table 3.3; Measurement Interval 
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p<0.0001).  In addition, there were significant variations over time for the both nitrogen 

populations among the different origin elevations (Measurement Interval*origin 

nitrogen*origin elevation p=0.0120).  Growth efficiency measurements only varied over time 

(Table 3.3; Measurement Interval p=0.0117). 

Root Diameter 

 Significant differences in root diameter were observed over time (Table 3.2; Date 

p<0.0001).  Diameters were higher in low-nitrogen populations compared to high-nitrogen 

sites (p=0.0391).  Plants from low-nitrogen populations at low elevations produced larger 

root diameters (Figure 3.7; Origin nitrogen*origin elevation p=0.0001).  There were no 

significant differences in absolute growth rates (AGR) among treatments (Table 3.3).  

Although, the efficiency (RGR) of root diameter production varied over time for nitrogen 

populations in differing nitrogen treatments, no definitive trend for this interaction was 

evident. 

Root Tips 

The production of root tips varied over time (Table 3.2; Date <0.0001).  High-

nitrogen populations had the most root tips (Figure 3.8; Origin nitrogen p=0.0007).  The 

same trend was seen in high-elevation populations (Figure 3.9; Origin elevation p<0.0001).  

High-elevation populations produced more root tips over time than low-elevation populations 

(Figure 3.10; Date*origin elevation p=0.0367).  Nevertheless, there was a noticeable drop at 

the fifth measurement due to transfer from the environmental growth chambers to the 

greenhouse.  Absolute growth rate of root tips (Table 3.3) was significantly different over 

time (Measurement Interval p<0.0001).  Although significant, the interaction of differing 
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nitrogen populations and elevations over time did not reveal a deterministic pattern 

(Measurement Interval*origin nitrogen*origin elevation p=0.00160).   

Biomass 

Biomass was only significantly different based on the origin nitrogen level of the 

populations (Table 3.4).  Tiller biomass (Origin nitrogen p=0.0141) and whole-plant dry 

biomass (p=0.0296) was highest in populations from high-nitrogen sites (Figures 3.11 and 

3.12 respectively).  Root biomass did not significantly differ among nitrogen treatments.  

Root:shoot ratios (Table 3.4, Figure 3.17) were significantly higher in plants treated with 

nitrogen (Treatment Nitrogen p=0.0350).   

Nutrient Composition 

Nitrogen analysis of tiller and root tissues did not reveal significant accumulation 

differences.  Carbon accumulation was also not significantly different between treatments in 

both the above- and belowground components.  Neither tiller or whole plant tissue analysis 

yielded significantly different C:N ratios between treatments (Table 3.4).  However, root 

tissues appeared to have a significant difference in C:N ratios.  Plants from low elevations 

had a higher mean C:N ratio when compared to plants that originated from high-elevation 

sites such as the Trout Pond or Chestnut Ridge Park (Figure 3.13; Origin elevation 

p=0.0034).  Root C:N ratios were affected by nitrogen treatments (Treatment nitrogen 

p=0.0068).  Roots that were treated with a high-nitrogen Johnson’s solution yielded higher 

carbon to nitrogen ratios (Figure 3.14).  In terms of root:shoot ratios, nitrogen concentration 

was highest (Origin nitrogen p=0.0440) in plants originating from low-nitrogen environments 
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(Figure 3.15).  Furthermore, root:shoot C:N ratios are highest in plants originating from low-

nitrogen populations (Figures 3.16 and 3.17; Table 3.4, Origin nitrogen p=0.0370). 
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Table 3.1: Repeated measures analysis of variance for tiller area (cm2).  Type III mean 
squares are reported (* = p < 0.05).   
 
Source DF Tiller Area 
Date (D) 10 724028.80* 
Treatment Nitrogen (TN) 1 19174.25 
Origin Nitrogen (ON) 1 1673388.44* 
Origin Elevation (OE) 1 246828.71* 
D*TN 10 62182.58 
D*ON 10 68378.33 
TN*ON 1 4614.35 
D*TN*ON 10 88175.38 
D*OE 10 48799.44 
TN*OE 1 9596.64 
D*TN*OE 10 18532.62 
ON*OE 1 822804.30* 
D*ON*OE 10 53832.99 
TN*ON*OE 1 216569.41* 
D*TN*ON*OE 10 51923.29 
 
Table 3.2: Repeated measures analysis of root length (cm), surface area cm2), diameter (cm) 
and number of root tips.  Type III mean squares are reported (* = p < 0.05).   
 

Source DF 
Root  

Length 
Surface  

Area 
Root 

Diameter 
Root  
Tips 

Date (D) 9 5059662.32* 2350455.92* 0.17* 13394180.10*
Treatment Nitrogen (TN) 1 9027.16 7618.95 0.00 10.00 
Origin Nitrogen (ON) 1 231853.05* 62868.63 0.01* 746905.89 
Origin Elevation (OE) 1 437634.72* 151250.34* 0.00 1527975.09* 
D*TN 9 55406.58 31214.08 0.01 61739.24 
D*ON 9 123616.19 41261.82 0.01 377886.28 
TN*ON 1 11871.85 2076.75 0.00 2816.18 
D*TN*ON 9 43273.65 23704.93 0.01 168696.99 
D*OE 9 342541.86 164047.16 0.01 1157192.74* 
TN*OE 1 83.46 368.01 0.00 1645.35 
D*TN*OE 9 112245.00 50209.65 0.00 185517.48 
ON*OE 1 88448.36 86259.16* 0.02* 29782.19 
D*ON*OE 9 69653.56 32519.13 0.01 349904.76 
TN*ON*OE 1 18682.79 17970.36 0.00 88545.40 
D*TN*ON*OE 9 34159.94 14231.08 0.01 107793.59 
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Table 3.3: Analysis of variance of absolute and relative growth rates for root surface area 
(cm2/day; cm2/cm2/day), diameter (cm/cm/day) and number of root tips.  Type III mean 
squares are reported (* = p < 0.05).   
 

Source DF 

Root Surface 
Area Absolute 
Growth Rate 

Root Surface 
Area Relative 
Growth Rate

Root Diameter 
Relative 

Growth Rate 

Root Tips 
Absolute 

Growth Rate
Measurement Interval (D) 8 13416.027* 0.598* 0.307* 87268.578* 
Treatment Nitrogen (TN) 1 62.983 0.008 0.000 383.982 
Origin Nitrogen (TN) 1 6.578 0.001 0.003 346.931 
Origin Elevation (OE) 1 26.568 0.005 0.001 367.715 
D*TN 8 1544.921 0.231 0.032 3123.283 
D*ON 8 2461.099 0.064 0.028 16326.199 
TN*ON 1 6.878 0.000 0.002 603.712 
D*TN*ON 8 922.803 0.234 0.040* 10194.615 
D*OE 8 1503.371 0.074 0.023 18658.423 
TN*OE 1 66.301 0.000 0.000 1361.028 
D*TN*OE 8 1264.449 0.090 0.006 9954.332 
ON*OE 1 33.135 0.009 0.000 4350.390 
D*ON*OE 8 5077.187* 0.159 0.004 34760.812* 
TN*ON*OE 1 73.385 0.001 0.000 227.415 
D*TN*ON*OE 8 3748.160 0.218 0.009 15371.575 
 
Table 3.4: Analysis of variance of tiller and whole plant biomass (g), root carbon: nitrogen 
ratios, and root:shoot biomass (g), nitrogen concentrations (mg/g) and carbon:nitrogen 
ratios..  Type III mean squares are reported (* = p < 0.05).   
 

Source DF 
Tiller 

Biomass
Total 

Biomass 
Root  
C:N 

Root:Shoot 
Biomass  

Root:shoot 
Nitrogen 

Root:Shoot 
C:N  

Treatment Nitrogen 
(TN) 1 0.00 0.00 534.89* 1.196* 0.194 0.307 
Origin Nitrogen 
(ON) 1 0.69* 1.99* 8.77 0.222 0.261* 0.435* 
Origin Elevation 
(OE) 1 0.00 0.03 446.21* 0.321 0.195 0.296 
TN*ON 1 0.06 0.14 174.29 0.006 0.176 0.287 
TN*OE 1 0.02 0.11 108.18 0.019 0.002 0.003 
ON*OE 1 0.13 0.67 73.62 0.104 0.086 0.088 
TN*ON*OE 1 0.13 0.36 7.15 0.006 0.001 0.049 
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Figure 3.2:  The effects of elevation on tiller area (cm3) from differing nitrogen populations. 
 

Origin Nitrogen

High Low

Ti
lle

r A
re

a 
(c

m
2 )

0

100

200

300

400

High Elevation
Low Elevation

 



 83

Figure 3.3:  The effect of high-and low-nitrogen treatments on tiller area (cm3) from differing 
nutrient and elevation populations. 
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Figure 3.4:  Differences in root length (cm) between differing nitrogen populations. 
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Figure 3.5:  The effect of elevation on root length (cm). 
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Figure 3.6:  The effects of elevation on root surface area (cm3) in two nitrogen populations. 
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Figure 3.7:  The effects of elevation on root diameter (cm) in differing nitrogen populations. 
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Figure 3.8:  Differences in mean number of root tips in two nitrogen populations. 
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Figure 3.9:  The mean number of root tips in opposing elevations. 
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Figure 3.10:  The effect of elevation on the mean number of root tips over time. 
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Figure 3.11:  Differences in tiller biomass (g) between two nitrogen populations 
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Figure 3.12:  Differences in whole plant biomass between two nitrogen populations 
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Figure 3.13:  The effect of elevation on root C:N ratios. 
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Figure 3.14:  The effect of nitrogen on root C:N ratios. 
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Figure 3.15:  The effect of nitrogen on root:shoot weight. 
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Figure 3.16:  The effect of origin nitrogen level on nitrogen concentration within root:shoot 
ratios. 
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Figure 3.17:  The effect of nitrogen on root:shoot C:N ratios. 
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DISCUSSION 
 
Aboveground Characters 

Aboveground growth was strongly influenced by adaptations that were derived from 

environmental characteristics of their home sites.  Specifically, plants from high-nitrogen 

environments tended to produce more aboveground biomass than low-nitrogen populations. 

Plant populations form high-nitrogen environments have a higher growth rate due to 

increased in RAR, as predicted by the Garbutt and McGraw model (chapter 1).  I believe that 

increased tiller growth also provides additional adaptive fitness to prevent competition for 

other resources such as nitrogen and sunlight.  Ervin and Wetzel (2002) found that J. effusus 

was an effective dominant competitor for aboveground resources by shading out other 

species with increased tiller number and height.    

 Conversely, low-nitrogen populations should have an increased efficiency for 

nitrogen utilization (RUE) and therefore a lower growth rate.  Increased use efficiency is in 

response to the spatial and temporal variability to nitrogen availability.  In effect, the 

populations must be conservative (i.e. efficient) in their utilization of nitrogen in biological 

processes.  This conservativeness negatively correlates with increased growth.  The resulting 

shorter tillers might also reflect a decreased need for aboveground competition for light 

resources (Lortie and Aarssen 1996, Ryser and Eek 2000).   

Overall, our study populations did not strongly respond to the presence or absence of 

nitrogen.  Notably, plants from low-nitrogen sites did not respond positively to the high-

nitrogen treatment.  This implies that populations were unable to shift their functionality to 

respond to opposing nitrogen conditions rapidly.  These results support our models’ 

predictions on how plants will divergently respond to resource availability. 
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Elevation also provided an interesting control on the response to nitrogen treatments 

in our minirhizotron study.  Tiller area was greater in high-elevation populations than low-

elevation populations.  Chapin and Chapin (1981) found that Carex produced larger tillers 

when local sub-arctic temperatures were warmer.  Furthermore, they suggest that these 

populations increased tiller size to maximize photosynthesis.  This scenario is possible for 

our populations, since warmer greenhouse temperatures and more growing degree-days 

encountered by high-elevation plants might have activated potential for additional growth.   

Aboveground characters significantly differed with respect to origin elevation and 

origin nitrogen environmental factors.  Overall, high-nitrogen populations from high 

elevations maximized productivity.  High nitrogen acquisition combined with warmer 

temperatures resulted in increased growth for these populations.  In low origin elevation 

populations, low-nitrogen origin sites outperformed high-nitrogen sites.  This is due to 

increased RUE from low-nitrogen populations that are adapted to maintain a lower growth 

rates, regardless of temperature changes. 

Belowground Characters 

 Nearly all of the measured belowground characters (length, surface area, diameter 

and root tips) were influenced by their origin environmental conditions.  Root length, 

diameter, and  root tip abundance was highest in plants from high-nitrogen populations.  This 

supports our model, since high-nitrogen populations are expected to maximize their growth 

and therefore fitness in response to abundant resources and high acquisition rates.  Increasing 

root length, surface area and the number of root tips are the prime routes by which plants can 

forage the soil for nitrogen.  Increased growth in plants from with historically low nitrogen 

quality was restricted by the negative correlation between growth and resource use 
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efficiency.  This low growth rate might also result in intra-species competition.  Casper and 

Jackson (1997) found that an individual might begin to suffer competition within its own root 

system and therefore further decrease its growth rate.   

 Root diameter did not follow the previous responses to origin nitrogen status.  In this 

case, low-nitrogen populations had greater root diameters than those observed in high-

nitrogen individuals.  Having shorter, but thicker, roots might be a response by plants in these 

environmental conditions to conserve growth efficiency while maintaining the potential for 

nitrogen absorption in a resource limited environment.  In this scenario, plants accustomed to 

low nitrogen cannot afford to explore the soil for more nitrogen and therefore must maintain 

larger roots to intercept what nitrogen is readily available.  Low-nitrogen populations grown 

at low elevations yielded the largest mean root diameter.   

 Overall, the effect of origin elevation produced growth trends in roots similar to those 

in tillers.  High-elevation populations significantly outperformed low-elevation sites.  This 

suggests that high-elevation sites are maximizing their belowground growth potential in 

response to growing season conditions (i.e. warmer temperatures, available moisture, 

increased photosynthetic activity).  Chapin and Chapin (1981) found that cold soil 

environments (high elevations) typically had greater biomass in roots compared to tillers.  

Interestingly, the number of root tips increased over time in high-elevation sites that suggest 

maximization of growth potential due to growing season conditions.   

Root surface area was greatest in high-nitrogen populations from high-elevation sites.  

This supports our proposed model where populations from high-nitrogen sites should have 

increased growth because of increased acquisition rates.  In addition, high-elevation sites 

should maximize this character in an expectedly shorter growing season rather than low-
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elevation sites.  This results from adaptation to specific environmental conditions that have 

directed the plasticity of phenotypic response.  Our results concur with Fitter’s (1987) 

geometrical conflict: root systems with the most efficient nutrient exploitation capacity are 

less efficient at the transport of the nutrient to the rest of the system for utilization.   

Overall, the response of J. effusus root systems seems to behave in a pattern similar to 

their aboveground counterparts with respect to origin elevation and nitrogen status.  These 

two environmental factors have placed strong constraints on the genetics of these differing 

populations, resulting in site-specific adaptations.  Furthermore, it appears that growth and 

performance are more strongly correlated with these adaptive co-occurring conditions rather 

than independent nitrogen or elevation factors. 

 Unfortunately, the contribution of root hairs and root turnover to nitrogen foraging 

could not be assessed from our study. We expected that high resource acquisition rates would 

match a dramatic increase in root hair proliferation upon resource interception (Marschner 

1995).  However, this key aspect is nearly impossible to accurately extract and quantify 

(Pagel and Day, personal communication). 

Biomass and Nutrient Dynamics 

Tiller biomass was significantly higher in populations from high-nitrogen sites.  This 

reflects our model predictions that high-nitrogen sites will have higher resource acquisition 

rates and therefore produce more biomass.  Rapid uptake of resources and their conversion  

to biomass is expected to reduce competition by other plants while maximizing fitness within 

that specific environment.  Root biomass did not reflect the significant differences associated 

with tradeoffs between RAR and RUE.  However, combined plant biomass (above- and 

belowground portions) again support our model that high-nitrogen populations yield more 
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biomass due to increased RAR.  Low-nitrogen populations were more efficient in their 

growth and, therefore, did not produce large quantities of biomass.  Plants from low-resource 

environments place less energy into the quantity of biomass produced, but rather the quality 

of each structural component, which supports the Garbutt and McGraw physiological 

response model.   

In terms of nutrient dynamics, carbon and nitrogen concentration in tillers and roots 

did not significantly differ in response to any environmental treatment.  Root C:N ratios were 

greater in high-nitrogen treatments.  The increased availability of nitrogen translated into 

higher nitrogen concentration or relative quality despite a plant’s adaptive growth strategy.  

In addition, low-elevation sites were more efficient at fixing carbon per nitrogen acquired.  

Increased C:N efficiency implies that low-elevation sites maintain higher tissue quality in 

response to expected competition and longer growing seasons.  Not surprisingly, more 

carbon would be allocated to the root system early in the plant’s development and 

establishment to ensure access to essential, and often limiting, nutrients in the soil (Ervin and 

Wetzel 1997). 

Overall Response 

The overall response of this plant system appears to show strong genetic control 

because of origin nitrogen and elevation levels.  Evolutionary programming of the ecotypes 

(and resulting phenotypes) has provided a strong divergence in the four distinct home sites.  

Each home site has adapted and optimized its expressed and potential fitness within its 

environment.  In effect, high-nitrogen/high-elevation populations maximize growth due to 

increased resource availability and consequently higher acquisition.  High-nitrogen/low-

elevation populations have a high acquisition rate that maximizes their growth potential.  
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Low-nitrogen/high-elevation populations are restricted (in growth) by RUE and cooler 

temperatures.  Low-nitrogen/low-elevation populations are adapted to higher temperatures, 

but RUE restricts growth.  High-elevation sites are also restricted by low temperatures but 

have the potential to maximize growth within the constraints of each physiological parameter 

in our model.  Futuyma and Moreno (1988) believed that negative genetic correlations might 

act as another check within the system to ensure greater levels of diversity within the 

population.   

The unique power of this study is that it included whole-plant responses to changing 

environmental factors.  Numerous studies have examined aboveground responses to nitrogen 

and elevation, while few studies have mirrored this effort belowground (Fitter and Stickland 

1992).  Nevertheless, as in nearly all aspects of ecological research, there lies the potential 

for refinement.  To refine this study further, both a larger sample population would be 

beneficial as well as assignment of an additional level of complexity with the inclusion of 

genotype responses within each site.  In addition, inclusion of more than two nitrogen levels 

along with larger rhizotrons would increase the resolution of our study.  Root restriction by 

pots is known to have strong affect on growth, allocation and physiological parameters 

(McConnaughay and Bazzaz 1991 Gedroc et al. 1996).  Finally, expanding the understanding 

of plasticity of root morphology (i.e. architecture) and its role in exploitation efficiency are 

needed to understand fully the role of root systems on nutrient uptake within impacted 

environments. 
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CONCLUSIONS 
 

The Garbutt and McGraw model (discussed in Chapter 1) proposed that plants would 

respond differently to nitrogen availability due to inherent negative correlations between 

resource acquisition rates (RAR) and resource utilization efficiency (RUE).  Although 

current literature suggests that phenotypic or physiological plasticity is responsible for 

changes in response to environmental conditions, not all populations can readily respond to 

drastic changes in the environment.  As a result, tradeoffs in plastic behavior must occur 

within plant populations to ensure that fitness is maximized.  Within the range of a species, 

multiple environments will be encountered.  Plants from high-resource environments should 

maximize growth in abundant resource environments and in low-resource environments, 

plants should maximize efficiency over growth.  As a result, local conditions drive 

populations to different peaks in the adaptive landscape.   

Utilizing the Garbutt and McGraw model’s predictions, the primary objective of this 

study was to evaluate evolution of plants and their responses to nutrient availability.  In 

addition, we investigated the role of elevation as an additional constraint on performance and 

fitness of plants with respect to physiological tradeoffs between RUE and RAR.  Our final 

goal was to suggest practical application for remediation of nitrogen-impacted watersheds by 

appropriate selection of ecotypes of J effusus. 

Using the unique power of clonal genotypes of J. effusus and reciprocal transplants, 

this study found that plasticity did occur within our field sites and that populations respond 

significantly to nitrogen availability.  Specifically, high-nitrogen populations outperformed 

their low-nitrogen counterparts.  Low-nitrogen populations were more efficient than those 

from high-nitrogen origins. 
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Although nitrogen is a critical component and constraint on plant fitness, it is only 

one factor in a suite of interactions that affect phenotypic expression.  Elevation appears to 

have a strong influence on plant growth.  Our model predicted that populations from low 

elevations should maximize growth compared to high-elevation populations due to longer 

growing seasons, warmer temperatures, and a higher mean soil temperature.  Overall, we 

predicted that our nitrogen resource availability model would be nested within an elevation 

response control on the population.  Unfortunately, the effect of genotypes could not be 

examined due to constraints in hypothesis testing.  The results of our study suggest negative 

correlations were still present with respect to nitrogen availability.  Plants that originated 

from high-elevation sites grew larger irrespective of the environment in which they were 

growing.  Increased plant growth within high-elevation sites did not agree with our 

expectations or model but does suggest that differences in elevation affect a different suite of 

genes, therefore affecting plant fitness on multiple dynamic levels.  

The second level of the study examined the importance of belowground growth in the 

response to nitrogen availability.  Roots are typically difficult to examine due to their opaque 

growth medium, however glass-plate minirhizotrons enabled us to measure multiple growth 

characters.  We predicted that the belowground portion would respond similarly to their 

aboveground counterparts.  Our results suggest differences in origin elevation and origin 

nitrogen status strongly control the genetic expressions of root system growth.  High-

elevation populations outperformed low-elevation populations and nitrogen treatments had 

little effect on growth.  We believe that warmer temperatures might have activated growth 

potential in the short term. 
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Overall, this study has found that plants respond differently to nitrogen availability 

based on their site of origin.  In addition, a negative correlation exists between the 

physiological traits for resource use efficiency and resource acquisition rate as predicted by 

the Garbutt and McGraw model.  Environmental factors attributed to elevation have a 

stronger control on growth than those due to nitrogen limitations.  We also conclude that root 

systems respond to nitrogen treatments based on historical strategies rather than treatments in 

the short term.  Finally, elevation was determined to be the dominant factor controlling 

biomass, nutrient allocation and growth.  The results of this study important since the impact 

of elevation on growth have never studied within the Juncaeace family. 

A synthesis of the data that emerged from this study suggests that elevation has the 

strongest control on plant growth in high elevations (Figure 4.1).  Conversely, nitrogen 

appears to have the strongest control on plant growth in low elevations, suggesting a mean 

response masked the response of elevation in low-nitrogen environments.  This trend was 

observed in both RUE and RAR traits. 

The findings of this study should assist in the development of plant selection 

protocols for remediating nitrogen-impacted watersheds.  By effectively selecting individuals 

from populations that have a historically similar nitrogen and elevation regimes, constructed 

wetlands can be designed to sequester excess nitrogen (i.e. from agriculture, poultry farms 

and sewage plants etc.) from the watershed and improve water quality.  This will reduce the 

cost and need for intensive management of water quality improvement programs via this 

natural and ecologically friendly method.  Future studies in this area should emphasize the 

response of individual genotypes and examine the effects of a suite of environmental 
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variables (i.e. phosphorus limitations, competition, etc.) that force populations to varying 

peaks in the adaptive landscape and affecting overall plant fitness.   
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Figure 4.1:  Response of Juncus effusus to differing nitrogen and elevation regimes. 
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