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ABSTRACT

Recognition Capacity of Biometric-Based Systems

Francesco P. Nicolò

Performance of biometrics-based recognition systems depends on various factors:

database quality, image preprocessing, encoding techniques, etc. Given a biometric

database and a selected encoding method, the capability of a recognition system is

limited by the relationship between the number of classes that the recognition system

can encode and the length of encoded data describing the template at a specific level

of distortion. In this work, we evaluate constrained recognition capacity of biometric

systems under the constraint of two global encoding techniques: Principal Compo-

nent Analysis and Independent Component Analysis. The developed methodology is

applied to predict capacity of different recognition channels formed during acquisition

of different iris and face databases. The proposed approach relies on data modeling

and involves classical detection and information theories. The major contribution is

in providing a guideline on how to evaluate capabilities of large-scale biometric recog-

nition systems in practice. Recognition capacity can also be promoted as a global

quality measure of biometric databases.
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Chapter 1

Introduction

1.1 Motivation

In many large scale biometrics-based recognition problems, knowledge of the limit-

ing capabilities of underlying recognition systems is critical. These limits, however,

are determined by a variety of factors including source coding techniques used to

process data, quality, complexity, and variability of the collected data. Given an en-

coding technique, the remaining factors can be attributed to a recognition channel

introduced and characterized by O’Sullivan and Schmid in [1] and further analyzed

by Westover and O’Sullivan [2]. Similar to a communication channel, a recogni-

tion channel is characterized by its capacity, with the difference being recognition

capacity. In a biometrics-based recognition problem, recognition capacity can be

thought as being the maximum number of classes that can be successfully recognized

asymptotically with probability close to zero when the number of informative sam-

ples gets large. Thus, capacity can be viewed as a measure of performance that can

be used to evaluate capabilities of large scale recognition systems. Also, since the

maximum number of biometric classes that can be successfully recognized is directly

related to distortions and noise present in the images or signals submitted for recog-

nition, we propose to treat capacity as a measure of overall quality of data in a given

database. In this thesis, we briefly summarize the results by Schmid and O’Sullivan

on recognition capacity, introduce a concept of constrained capacity, and evaluate

1



2 CHAPTER 1. INTRODUCTION

the constrained capacity for specific iris and face-based recognition problems using 5

public databases. To evaluate capacity of a biometric-based recognition channel we

first formulate stochastic model that describe data and then involve fundamentals of

classical detection and information theories. Since the computation of the capacity

of a biometric channel requires knowledge of a model characterizing encoded data,

before computing capacity we validate the fit of proposed models by using statistical

goodness tests.

1.2 Performance Analysis of Recognition Systems

An early general approach for prediction of performance of Recognition systems was

introduced by O’Sullivan and Schmid [3]. In this work the concepts of physical

signature like random process was introduced. An unknown physical signature is

authenticated if it is statistically correlated with a set of known signatures. The

problem of authentication is stated as a binary hypothesis testing. The prediction of

performance is based on application of Chernoff information and Large Deviation.

In a successive work of Schmid and O’Sullivan [1], a recognition system is com-

pared to a maximum likelihood decoder that recovers the original signal transmitted

into a noisy Gaussian channel. Classical information theory concepts are used to de-

rive an upperbound to the error recognition exponent and the concept of constrained

capacity is introduced as well. The value of capacity provides the asymptotic recog-

nition limits of the system under practical constrains.

The work by Westover and O’Sullivan [2] continues the preceding work analyzing

the tradeoff between the complexity of a signature representation and the complexity

of the environment for reliable communication of that signature. It is shown that the

tradeoff can be characterized in terms of three rates related to the number of bits

available for representing memory, sensory data, and the number of patterns popu-

lating a given statistical environment.
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In ATR applications, other examples are given by Shusterman et al. [4] that pro-

poses a rate-distortion framework based on Hilbert-Schmidt norm for evaluation of

the codebook (target library) size. The analyzed data are in the form of computer-

aided design model.

Other few results on performance analysis for various ATR systems are given by

by Srivastava et al. [5] that suggests use of Laplace approximation method for solving

an integral for Bayesian probability. The asymptotic analysis relies on vanishing value

of noise variance, which results into overoptimistic limits.

1.3 Contributions

The main contributions of this work are: (1) in designing a methodology to pre-

dict capabilities of biometrics-based recognition system by developing and evaluating

models characterizing encoded biometric data and (2) in introducing a global quality

measure of biometrics databases.

1.4 Organization

In Chapter 2 we introduce the concepts of recognition capacity and channel. In Chap-

ter 3 we describe the model for PCA encoding of iris and face biometric; numerical

results for capacity are also provided. Chapter 4 will be focused on BesselK model

and its validation for ICA encoded data. Numerical results for the capacity are pro-

duced as well. Conclusions and Future Work are provided in Chapter 5 and Chapter

6.



Chapter 2

Recognition Capacity

2.1 Biometric-Based Recognition

Biometrics-based recognition systems are a special case of a more general recogni-

tion systems. Biometric recognition systems operate in two modes: enrollment and

matching. During enrollment mode, an image or signal containing information about

an individual’s biometrics is acquired, encoded and stored in a database.

During matching mode, an image or signal containing information about a biomet-

rics is encoded and compared against each encoded biometrics stored in the database.

Encoded biometrics-based information is called a template. A template from the

database that has most similarity with the template submitted for recognition repre-

sents the identified biometric class.

In the following, both images, signals, and templates containing information about

a biometrics are considered to be realizations of random processes underlying gener-

ation of the biometrics.

Consider X1, X2, ..., XM n-dimensional templates of M (M is the number of indi-

viduals in the database) distinct biometric vectors contained in a biometric database.

Assume that the underlying biometric vectors are independent and identically dis-

tributed.

Denote by Y an n-dimensional biometric template submitted for recognition. We

state the problem of identification as (M + 1)-hypothesis testing problem [6].

4



2.2. RECOGNITION CAPACITY 5

We assume that Y is recognized as coming from class k, k = 1, ...,M if the

template Xk and Y have a biometric signature in common and thus a joint probability

distribution, PXk,Y . The remaining templates do not have signatures in common and

thus are described by a product distribution PXm
× PY .

When Y is submitted for identification, to conclude on similarities with templates

we test the following (M + 1) hypotheses:

Ho : Xk, k = 1, ...,M and Y are independent.

H1 : X1 and Y have signature in common;

Y is independent of all Xk 6= X1.
...

HM : XM and Y have signature in common;

X i, i = 1, ...,M − 1 and Y are independent.

The test statistic for the recognition problem above is a vector of loglikelihood

ratios, which in this specific case is called information density [7]:

iMn =
1

n


log

PX1,Y

PX1
×PY

...

log
PXM ,Y

PXM
×PY

 (2.1)

The decision is made in favor of hypothesis that XM and Y have signal in common

if the m-th entry results in the maximum value and exceeds a decision threshold, γ.

If all entries in (2.1) are below γ, then Y is recognized as an imposter.

2.2 Recognition Capacity

In this section, we find the operational capacity for a biometrics-based identification

system. This requires both the number of biometric classes in the database and the

length of templates grow. The number of classes has to grow exponentially with the

length of the observed vector.

The results in this section are based on a straightforward analogy between a
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Figure 2.1: A block-diagram of a biometrics-based recognition system
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recognition system and a communication system that uses random coding [8]. The

templates in the recognition problem correspond to codewords in the communication

problem. Suppose that X1, X2, ..., XM , with M = 2nR, templates (random code-

words) are drawn i.i.d. from the distribution PX . Here R is the rate of the random

code. Given that one of these random codewords is randomly selected as the truth,

assume that an observation Y is drawn from the corresponding conditional distribu-

tion determined by PX,Y , and that this distribution satisfies the assumptions from

the previous sections. The observation Y is directly analogous to the output of a

communication system. The observation Y must be matched against each of the

2nR templates stored in the database. This matching process defines the recognition

output and is analogous to channel decoding.

Figure 2.2: Constellation of the templates in White Gaussian Noise Channel

The probability of error is

Pe =
1

M

M∑
m=1

Pe|Xm
, (2.2)

where Pe|Xm
is the conditional probability of error given that the codeword Xm is

sent over the channel. The minimum probability of error decision rule is the same as

the maximum likelihood decision rule: select the most likely observation given Xm.

A rate R is achievable if a sequence of recognition systems can be defined with
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rates Rn ≤ R so that the probability of error goes to zero as n goes to infinity. Define

the recognition capacity to be the supremum of achievable rates. The direct analogy

to communication systems using random codes immediately yields the recognition

capacity.

Theorem 1 Under the assumptions above, the recognition capacity equals the sup-

mutual information rate Ī(X; Y ). That is, all rates less than C = Ī(X; Y ) are achiev-

able (the probability of error using the minimum probability of error decoding rule

tends to zero as n tends to infinity); conversely, if rate R is achievable then R ≤ C.

In the next two chapters we will provide two examples (capacity of biometric

recognition channels under constraints of PCA and ICA data encoding) to illustrate

the above theory.



Chapter 3

PCA Representation Rate

In this chapter we will derive an expression for the constrained capacity of noisy

biometrics-based recognition channel under the constraint of PCA-encoded data.

3.1 PCA Encoding

Principal Component Analysis is a global coding algorithm that in the field of bio-

metrics is largely applied to face recognition problem [9]. In our experiments we will

use PCA to encode both iris and face biometrics. Consider a biometric database with

M users and r images per user. M preprocessed images (one per user) B1, B2, ..., BM

are available for training a biometric recognition system that uses PCA encoded data

for recognition. These images are encoded and stored in the database in a form of

templates.

PCA algorithms requires training, that is estimation of a set of parameters in-

cluding scatter matrix and its eigenvalues and eigenvectors. The estimate of scatter

matrix is given by :

ΣZ =
1

m− 1

m∑
i=1

(Bi −B)(Bi −B) = ZT Z

where B is the sample mean.The matrix ΣZ is decomposed using an eigenvalue de-

composition [6]:

9
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ΣZ = QΛQT ,

where Λ is the matrix of eigenvalues. Q is the orthogonal matrix with columns

composed of eigenvectors of ΣZ . In practice only the n largest eigenvalues are chosen

from the total M . Hence, a new matrix Q̃ with vector columns corresponding to the

essential eigenvalues is formed.

The feature vector X i of the i-th user is obtained by projecting image (Bi −B) onto

columns of matrix Q̃

X i = Q̃T (Bi −B) (3.1)

Each column of Q̃ represents a vector of a set of bases {q̃j}i=1,2,..,n is assumed to

be statistically uncorrelated.

3.2 Asymptotic Behavior of Eigenvalues

The n eigenvalues λ1, λ2, ..., λn of the matrix ΣX have been obtained from the largest

n eigenvalues of the matrix Λ such that the sum of all n eigenvalues is about 99

percent of the sum of all M eigenvalues. Experimental tests on our Iris and Face

Database show that the values of the eigenvalues decrease as M increases. M indicates

the number of images used to train our PCA encoding system. The dependency of

λ1(M), λ2(M), ..., λn(M) on M is shown in Fig. 3.1:

Note that the eigenvalues λi exists only if M > i.
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Figure 3.1: Depedency of n-th Eigenvalue on M . The results are obtained using
CASIA1 iris database

3.3 Model for PCA encoded data

In this section we propose and validate a Gaussian model for PCA-encoded iris and

face data.

3.3.1 Gaussian Model

In Chapter 2 we have introduced the concept of information density and explained

how it can be applied to the problem biometric-based recognition. To apply this

model to PCA-encoded data we assume that PCA templates X i, i = 1, 2, ...M stored

in the database are realizations of i.i.d. vector processes. The processes are Gaussian

with zero mean and covariance matrix:

ΣX =


λ1 0

..

0 λn

 ,

where λ1, λ2, ..., λn are the eigenvalues of the scatter matrix ΣZ .

According to the introduced model a random source signal XY is transmitted
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through a white gaussian noise channel. Thus the template submitted for identifica-

tion is given by:

Y = XY + N,

where:

N ∼ N (0, σ2I),

with σ2 being noise variance.

In our case the noisy candidate Y is one of the images from the testing set. Note

that training and testing data do not overlap. The noisy template will be compared

against all the templates X i, i = 1, 2, ...M in the database.

Note that we assume that X i are i.i.d . The assumption of independency is derived

from the fact that each signature belongs to a different individual.

To find constrained recognition capacity we form joint and marginal distribution

for concatenated vector [X i, Y ] and arrive to the following expression for information

density:

in = − 1

2n
[X i, Y ](R1

−1 −R0
−1)[X i, Y ]T − 1

2n
log det(R1R0

−1) (3.2)

where

R0 =

(
ΣX 0

0 ΣX + σ2I

)
is the covariance matrix of the vector [X i, Y ] when the signature Xi and the noisy

candidate Y are independent and

R1 =

(
ΣX ΣX

ΣX ΣX + σ2I

)
is the covariance matrix of the vector[X i, Y ] when the signature Xi and noise

candidate Y have a signal in common.

The information rate is the average of the information density under the joint
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distribution of X i, Y :

In(M) =
1

n
EXi,Y

{in(M)} =
1

2n

n∑
k=1

log

(
1 +

λk(M)

σ2(M)

)
(3.3)

where σ2(M) is an entry of the diagonal covariance matrix of N.

For very large database the number of users M → ∞ and number of principal

components n →∞. In this case we have the PCA-based recognition capacity or PCA

representation rate (asymptotic information rate) :

I = lim
M→∞

lim
n→∞

1

2n

n∑
k=1

log

(
1 +

λk(M)

σ2(M)

)
(3.4)

3.3.2 Database Descriptions

All experiments have been performed on five datasets:

1. CASIA version 1 iris database provided by the Chinese Academy of Science [10]

2. An iris database of images collected at WVU

3. Bath iris database provided by University of Bath [11]

4. CASIA version 3 iris database

5. FRGC version 1 face database used in the Face Recognition Grand Challenge

[12]

The CASIA v.1 contains 108 iris classes with 6 images per class. The WVU dataset

we used contains 108 iris classes with 5 images per class. The Bath dataset we used

contains 50 iris classes with 20 images per class. The CASIA v.3 we used contains 59

iris classes with 20 images per class. The FRGC dataset we used contains 108 face

classes with 6 images per class. In figures 3.2, 3.3 samples of biometrics images from

the considered databases are shown:
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CASIA1 WVU BATH CASIA3

Iris Images

Segmented Images

Figure 3.2: Samples of Iris Biometrics from the CASIA1, WVU, BATH, CASIA3
databases

FRGC FRGC

Figure 3.3: Samples of Face Biometrics from FRGC database

3.3.3 Model Verification: Shapiro-Wilk Test

The Shapiro-Wilk [13] test is a statistical method to determine if a sample set S
follows a hypothesis of normality. The test produces the W statistics based on the

set S of size k. The W statistics is here defined:

W =

(∑k
i=1 wix

′
i

)2

∑k
i=1(xi − x)

(3.5)

where x′i, xi, x are respectively the original data, the ordered data and the sample

mean of the set S and wi are constants derived from the means, variances and covari-

ances of the order statistics of a sample of size k from a standard normal distribution.

Small values of W indicate departures of S from normality. The probability of the W

statistic being at least as extreme as the one observed, given that the hypothesis of

normality is true, is called p-value (see appendix A). A value p < pcrit (pcrit = 0.05)
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rejects the hypothesis of normality. For each vector X i, we normalize the n compo-

nents by the relative n eigenvalues. A set of 1 − 3 samples for each template X i is

randomly selected. We concatenate all the selected samples to create a testing set

S of size k ≥ M . The results of applying Shapiro-Wilk test to each database are

reported in the Table 3.1.

Iris Database p k (samples/templates) M (templates)
CASIA 0.8469 1 108

0.4714 3 108
WVU 0.3880 1 108

0.1609 3 108
BATH 0.8682 1 50

0.5300 3 50
CASIA3 0.6294 1 59

0.1444 3 59
Face Database p k (samples/templates) M (templates)

FRGC 0.7777 1 108
0.1128 3 108

Table 3.1: Shapiro-Wilk test results for Biometric Databases

For all the considered databases the hypothesis of normality is never rejected.

3.4 PCA-Based Recognition Capacity of Iris and

Face Biometric Channels

To find the limits (3.4) we empirically evaluate the ratio of variances. The following

plots indicate the dependency of λi(M) and σ(M) on M. The assumption that we

make is that the noise N is identical distributed for each principal component. The

noise is estimated for r ≥ 5 images per class. From the graph we can note that λi(M)

and σ(M) have the same kind of dependency on M and the ratio λ(M)
σ(M)

= γ(M) (Signal

to Noise Ratio) converges to a fixed value γ as M →∞. This imply that the sum (3.4)

converges to an asymptotic value I = 1
2
log(1 + γ). I will be the obtained recognition

capacity for PCA encoded data of the considered database. Fig 3.4-3.13 show the
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trend of eigenvalues and noise variances as M increases. Note in all considered cases,

the limiting value of Signal to Noise Ratio is clearly observed.

Figure 3.4: n-th Eigenvalue vs the number of training images (that is the number of
users M) for CASIA1 DATABASE (linear scale)

Figure 3.5: n-th Eigenvalue vs the number of training images for CASIA1 DATABASE
(log scale)
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Figure 3.6: n-th Eigenvalue vs the number of training images for WVU DATABASE
(linear scale)

Figure 3.7: n-th Eigenvalue vs the number of training images for WVU DATABASE
(log scale)
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Figure 3.8: n-th Eigenvalue vs the number of training images for BATH DATABASE
(linear scale)

Figure 3.9: n-th Eigenvalue vs the number of training images for BATH DATABASE
(log scale)
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Figure 3.10: n-th Eigenvalue vs the number of training for CASIA3 (DEV1)
DATABASE (linear scale)

Figure 3.11: n-th Eigenvalue vs the number of training images for CASIA3 (DEV1)
DATABASE (log scale)
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Figure 3.12: n-th Eigenvalue vs the number of training images for FRGC DATABASE
(linear scale)

Figure 3.13: n-th Eigenvalue vs the number of training images for FRGC DATABASE
(log scale)
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The values of PCA-based recognition capacity I (bits per principal component)

as a characteristic of the overall quality of database for different databases are sum-

marized in Table 3.2.

Iris Database I (bits/pc) γ classes (M)
CASIA 0.4842 0.9552 108
WVU 0.0387 0.0551 108
BATH 0.7128 1.6863 50
CASIA3 (DEV1) 0.1068 0.1596 59

Face Database I (bits/pc) γ classes (M)
FRGC 0.1274 0.1931 108

Table 3.2: Recognition Capacity of Biometric Databases using PCA encoded data

The rate indicates the constrained relationship between the number of classes that

the PCA system can encode and the length of encoded data describing the template

at a specific level of distortion. Based on the values of constrained capacity we can

evaluate the overall quality of biometric database. High values of recognition rate

indicate good quality database, low values of recognition rate indicate low quality

database. Note, because we are evaluating biometric images in the feature space, the

additive noise in this space corresponds to the effect of various factors in the image

space; in particular for iris many factors like occlusion, specular reflection, resolution,

blurring, lighting and resolution and lighting for face. In the next section we will

illustrate how one of the listed factor (resolution) influences the value of recognition

capacity.

3.5 Recognition Capacity vs Resolution

The following experiment shows how PCA-based recognition capacity depends on

the resolution of the iris images. We illustrate this on the CASIA-1 iris database.

The dataset is composed of 108 iris classes with 6 image per class. We evaluate

capacity of the recognition channel at six different resolutions. The original images

(360x64 pixels) were downsampled. The dependence of constrained capacity on the
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reciprocal of SNR (γ−1) is shown in Fig. 3.14. The recognition capacity decreases as

γ−1 increases.

Figure 3.14: Capacity vs reciprocal of SNR (γ−1 ) for CASIA1 Iris Database

Note that in this case that γ−1 increases as the image resolution decreases. This

result is analogous to the rate-distortion curve in the case of lossy coding.
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ICA Representation rate

In this chapter we will derive an expression for the constrained capacity of noisy

biometrics-based recognition channel under the constraint of ICA-encoded data.

4.1 ICA based encoding

Consider a biometric database composed of images characterizing M classes, r images

per class. The images are encoded following a two-step procedure: (1) images are first

subject to principal component analysis and then (2) independent component analysis

is applied to PCA templates. As shown in [14], PCA templates do not possess high

discriminating power when applied to iris biometric, since PCA algorithm extracts

global features. To improve recognition performance, the PCA templates are further

refined using ICA algorithm.

Similar to PCA algorithm the ICA encoding method projects images into a new

coordinate system. While PCA components in a PCA template are empirically un-

correlated, the ICA components in an ICA template are empirically independent.

Let Ĩ be a matrix with vector columns given by Ĩ1, Ĩ2, ..., ĨM , a sequence of pre-

processed, normalized, and whitened images indexed by their class. Assume that each

class is represented by a single iris image.

ICA is a blind source-separation method. It assumes that observed data can

be represented as a linear combination of a number of independent signals. The

23
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unknowns are the mixing coefficients and the independent input signals. Let S be a

matrix composed of unknown independent input signals arranged in columns. Then

the linear forward model that ICA assumes is I = AS where A is the unknown mixing

matrix. As argued in [15], the results of linear mixing of non-Gaussian signals are

more Gaussian than the input signals. Then to estimate the mixing matrix A and

one of the components of S, one has to define a measure of non-Gaussianity. One of

theoretically sound criteria is the maximization of the negentropy given by:

J(X) = H(A−1I)gauss −H(A−1I) (4.1)

where Hgauss is the entropy of the data under the assumption that data are Gaus-

sian distributed and under the constraint of the same covariance matrix for the distri-

butions in H and Hgauss in (see [15] for more detailed explanation). Once the mixing

matrix and one of the input signals are estimated, the remaining input signals can be

obtained by invoking the Gram-Schmidt orthogonalization procedure. To deal with

empirical case, (4.1) is approximated by expressions involving empirical moments.

4.2 Model for ICA encoded data

In this section we propose and validate a Bessel K model for ICA-encoded iris data.

4.2.1 Bessel K Model

Let X1, X2, ..., XM be n-dimensional vectors of ICA components. Each vector is a

projection of an image from an individual biometric class onto the space formed by

the columns of mixing matrix. Suppose that vectors are independent and identically

distributed each described by the Bessel K distribution. To be more specific,

Xm =
√

GmZm + µ, m = 1, 2, ..M (4.2)

where Zm is the Gaussian distributed vector with zero mean and covariance matrix

Σz, Gm is a gamma-distributed random variable with parameters α and θ and µ is
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the mean vector of Xm. The vector Zm and the scalar Gm are independent.

A noisy ICA template presented for identification is modeled as a Bessel K dis-

tributed vector augmented with independent Gaussian noise with zero mean and

covariance matrix ΣN :

Y = XY + N, N ∼ N (0, ΣN).

Because BesselK distribution is a kind of Scale Gaussian Mixture [16], the condi-

tional distribution of Xm given Gm = g:

X̃m = (Xm | Gm = g) ∼ N (0, gΣZ), Ỹ = (XY + N | GY = g).

To evaluate the information density we first find the joint and marginal distribu-

tions of the concatenated random vector [X̃m, Ỹ ]T .

Under hypothesis Hm, the noisy candidate Y has the same signature of Xm and

the conditional vector [X̃m, Ỹ ]T is Gaussian with the following covariance matrix:

R1 =

(
gΣZ gΣZ

gΣZ gΣZ + ΣN

)
.

Under the null hypothesis H0, the signature part XY of the noisy candidate is

independent of all signatures Xm. The conditional vector [X̃m, Ỹ ]T is Gaussian with

the following covariance matrix:

R0 =

(
gΣZ 0

0 gΣZ + ΣN

)
.

The conditional information density for this vector is:

ĩn =− 1

2n

n∑
k=1

[
X̃k

2

σ2
Nk

(M)
− 2

X̃kỸk

σ2
Nk

(M)
+

g(M)σ2
Zk

(M)Ỹk

2

σ2
Nk

(M)(σ2
Nk

(M) + g(M)σ2
Zk

(M))
−

log

(
1 +

g(M)σ2
Zk

(M)

σ2
Nk

(M)

)]
,
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where the matrices ΣZ , ΣN are diagonal with the respective k-th entries σ2
Zk

, σ2
Nk

and µ is zero.

The conditional information rate is is the expected value of the previous expression

under the joint distribution of X̃m, Ỹ

Ĩn(M) =
1

2n

n∑
k=1

log

(
1 +

g(M)σ2
Zk

(M)

σ2
Nk

(M)

)
. (4.3)

This rate depends on the non deterministic scalar g(M). Because of (4.2), for the

generic template X the covariance matrix can be easily factorized resulting in:

ΣX = Eg{Gm}ΣZ = αθΣZ .

Because the data are pre-whitened, the covariance matrix ΣX is:

ΣX =
1

M − 1

M∑
i=1

(X i − µ)(Xi − µ) = I,

where I is identity matrix. The conditional rate (4.3) becomes:

Ĩn(M) =
1

2n

n∑
k=1

log

(
1 +

g(M)

σ2
Nk

(M)α(M)θ(M)

)
.

Finally, the information rate of the random vector [Xm, Y ]T is:

In(M) = Eg{Ĩn(M)} =
1

2n

n∑
k=1

Eg

{
log

(
1 +

g(M)

σ2
Nk

(M)α(M)θ(M)

)}
. (4.4)

It is not straightforward to estimate the value of information rate using (4.4).

If g
σ2

Nk
αθ

< 1 we can apply the Taylor expansion of log

(
1 + g

σ2
Nk

αθ

)
. In this case we

have the approximate expression:

In(M) = Eg{Ĩn(M)} =
1

2nα(M)θ(M)

∞∑
i=1

n∑
k=1

(−1)(i−1)

i

Eg{gi(M)}
σ2

Nk
(M)

.
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Taking the limit with respect to n and M results in expression for ICA-based

recognition capacity or ICA representation rate:

I = lim
M→∞

lim
n→∞

1

2nα(M)θ(M)

∞∑
i=1

n∑
k=1

(−1)(i−1)

i

E{gi(M)}
σ2

Nk
(M)

. (4.5)

4.2.2 Model Verification: K-S and K-L Test

Let X i be a vector of ICA components. The components in the vector X i are em-

pirically statistically independent by construction. In our computations we model

the mean vector as m = µ[1, 1, ..., 1] and covariance matrix as Σx = σ2I (I identity

matrix). Hence we can consider each single component X
(k)
i as a random sample

from a univariate distribution with mean µ and variance σ2. Because we have also

assumed X i for i = 1, 2, ..M to be i.i.d, if we consider all the weights X
(k)
i for all the

users i = 1, 2, ..,M and for all the components k = 1, 2, ..., n we have a sample set S
of size M × n from a single univariate distribution. So, given a number of biomet-

ric templates M we can fit the distribution of the sample set S with a given set of

probability density functions (pdf). This is a parametric approach that requires esti-

mation of the parameters of the theoretical fit by empirical data. For our experiment

we arbitrary choose three theoretical distributions: BesselK, Laplace, Gaussian. The

following list summarizes which parameters need to be specified to completely define

the considered distributions:

• BESSELK : α =
k4

3k2

, θ =
3k2

2

k4

, µ = k1

• LAPLACE : b =

√
k2

2
, µ = k1

• GAUSSIAN : µ = k1 , σ2 = k2,

where k1, k2, k4 are the first, second and the fourth cumulants.

Now, the unbiased estimators for the 1st, the 2nd and 4th order cumulants of the

distribution are:

k1 = µ1 (4.6)
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k2 =
n

n− 1
µ2 (4.7)

k4 =
n2[(n + 1)µ4 − 3(n− 1)µ2

2]

(n− 1)(n− 2)(n− 3)
(4.8)

where µ1, µ2 and µ4 are the first, second and fourth sample central moments and n

is the number of samples in the empirical distributions.

The following figures show the best fit of the distributions for the considered

biometric databases:

(a) linear scale (b) log scale

Figure 4.1: Empirical pdf of ICA encoded Iris Images from CASIA-1 Database and the
parametric distribution providing the best fit (Kurtosis of empirical pdf = 83.7712)
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(a) linear scale (b) log scale

Figure 4.2: Empirical pdf of ICA encoded Iris Images from WVU Database and the
parametric distribution providing the best fit (Kurtosis of empirical pdf = 91.7742)

(a) linear scale (b) log scale

Figure 4.3: Empirical pdf of ICA encoded Iris Images from BATH Database and the
parametric distribution providing the best fit (Kurtosis of empirical pdf = 37.1320)



30 CHAPTER 4. ICA REPRESENTATION RATE

(a) linear scale (b) log scale

Figure 4.4: Empirical pdf of ICA encoded Iris Images from CASIA3 (DEV1) Database
and the parametric distribution providing the best fit (Kurtosis of empirical pdf =
51.8308)

(a) linear scale (b) log scale

Figure 4.5: Empirical pdf of ICA encoded Face Images from FRGC Database and the
parametric distribution providing the best fit (Kurtosis of empirical pdf = 98.8771)
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The estimated parameters of the theoretical distribution are summarized in the

table 4.1.

BesselK Laplace Gaussian
α θ µ β µ σ µ

CASIA 0.0371 26.6767 9.3e-018 0.7039 9.3e-018 0.9908 9.3e-018
WVU 0.0338 29.3199 -2.6e-017 0.7039 -2.6e-017 0.9908 -2.6e-017
BATH 0.0879 11.1543 -4.9e-017 0.7001 -4.9e-017 0.9804 -4.9e-017

CASIA3(1) 0.0614 16.0057 -4.2e-018 0.7012 -4.2e-018 0.9833 -4.2e-018
FRGC 0.0313 31.6659 8.3e-017 0.7039 8.3e-017 0.9908 8.3e-017

Table 4.1: Estimated parameters from empirical data

Since the empirical value of the mean is very small, of order 10−17 − 10−18. We

assume it is zero.

Two criteria have been used to verify the goodness of data fits:

• The Kolmogorov-Smirnov test

• K-L divergence.

The Kolmogorov-Smirnov (K-S) test is used to verify that a particular sample S
comes from a population with a specific distribution [17]. The K-S test compares the

cumulative probability functions (cdf) G(x) of the empirical data with the cdf F (x)

of the theoretical distribution which we want to fit. In particular, the two-sided test

statistic is:

T = sup
x∈S

|F (x)−G(x)| (4.9)

The statistical test will be the following:{
H0 : The sample S follows the theoretical distribution;

H1 : The sample S doesn’t follows the theoretical distribution.

Given that the null hypothesis H0 is true, the probability of the T statistic being

at least as extreme as the one observed is called p-value (see appendix A). A value of

p < pcrit (pcrit = 0.05) rejects the hypothesis H0.
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Empirical and parametric (fitted) distribution are shown in Figures 4.6, 4.7, 4.8,

4.9, 4.10.

Figure 4.6: KS Test for CASIA IRIS
DATABASE

Figure 4.7: KS Test for WVU IRIS
DATABASE

Figure 4.8: KS Test for BATH IRIS
DATABASE

Figure 4.9: KS Test for CASIA3 (DEV1)
IRIS DATABASE
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Figure 4.10: KS Test for FRGC FACE DATABASE

The results of the K-S tests are listed in Table 4.2:

BesselK Laplace Gaussian
T p T p T p

CASIA 0.1302 0.2624 0.2603 5.9901e-004 0.3058 2.7410e-005
WVU 0.0751 0.8885 0.2969 5.2222e-005 0.3264 5.7513e-006
BATH 0.1424 0.5277 0.2373 0.0520 0.2804 0.0123

CASIA3 (DEV1) 0.1039 0.9882 0.2836 0.1008 0.3343 0.0315
FRGC 0.1758 0.0509 0.2937 6.5351e-005 0.3499 8.5718e-007

Table 4.2: K-S test results for the biometrics databases

When the BesselK model is used, the p-values always exceeds the critical p-value

(pcrit = 0.05) and are always greater than the Laplace and Gaussian ones. Note that

the Gaussian model is always rejected for all the considered databases. Thus, the

BesselK model provides the best fit.

The Kullback-Leibler (K-L) divergence [8] measures the relative entropy [18] be-

tween the empirical pdf f(x) and theoretical pdf g(x) :

DKL(f ‖ g) =
∑
x∈S

f(x) log

[
f(x)

g(x)

]
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The smallest values of DKL(f ‖ g) indicates the best fit. Because this measure-

ment is not symmetric, we define and use the symmetric K-L divergence:

d(f, g) =
1

2

∑
x∈S

f(x) log

[
f(x)

g(x)

]
+

1

2

∑
x∈S

g(x) log

[
g(x)

f(x)

]
The value of d(f, g) indicates the distance between the empirical pdf f(x) and

theoretical pdf g(x).

The result of applying K-L test to the biometric databases are reported in the Table

4.3:

Database d (BesselK) d (Laplace) d (Gaussian)
CASIA 0.4183 0.9986 1.5191
WVU 0.3109 1.4053 2.0038
BATH 0.3585 0.7650 1.2049

CASIA3 (DEV1) 0.3888 1.0694 1.6996
FRGC 0.8558 1.6603 2.3646

Table 4.3: K-L test result for the biometrics databases

Again, in all cases the BesselK model gives the lowest value of d(f, g) correspond-

ing to the best fit. In conclusion, the K-S and K-L tests have showed that the BesselK

model provides a good fit into the empirical distribution of ICA encoded iris and face

data.
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4.3 ICA-Based Recognition Capacity of Iris and

Face Databases

To estimate the ICA-based recognition capacity we use the approximate expression

(4.5). The assumption that we make is that the noise N is identical distributed for

each independent component. Empirical studies on the considered databases about

the convergence of (4.5) show that estimation of the first moment of the random

variable g in (4.5) is sufficient to obtain the practical values of recognition capacity.

In Table 4.4 we summarize the estimated values of ICA-based recognition capacity I

(bits per independent component) for the considered iris and face databases. These

results have been obtained testing the system for a total of 5 images or more per

users.

Iris Database I (bits/ic) classes (M)
CASIA 0.5695 108
WVU 0.3629 108
BATH 1.5761 50
CASIA3 (DEV1) 0.5907 59

Face Database I (bits/ic) classes (M)
FRGC 0.3510 108

Table 4.4: Recognition Capacity of Biometric Databases using ICA encoded data

Similarly to the PCA case the ICA-based recognition capacity is an index of the

overall quality of the database. High values of recognition rate indicate good quality

database, low values of recognition rate indicate low quality database.
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4.4 ICA-Based Recognition Capacity vs PCA-Based

Recognition Capacity

In Table 4.5 we compare the obtained values of ICA-based (bits per independent

component) and PCA-based (bits per pricipal component) recognition capacity for

the considered iris and face databases.

Iris Database IICA (bits/ic) IPCA (bits/pc) classes (M)
CASIA 0.5695 0.4842 108
WVU 0.3629 0.0387 108
BATH 1.5761 0.7128 50
CASIA3 (DEV1) 0.5907 0.1068 59

Face Database IICA (bits/ic) IPCA (bits/pc) classes (M)
FRGC 0.3510 0.1274 108

Table 4.5: Recognition Capacity of Biometric Databases using ICA and PCA encoded
data

For all the considered databases the values of Recognition Capacity for ICA en-

coded data are greater than PCA-based ones.

Fig 4.11 shows the histogram of ICA-based and PCA-based recognition capacity

for the iris databases.

Figure 4.11: ICA-Based and PCA-Based Recognition Capacity of Iris Databases
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Conclusion

In this work we have proposed and validated two theoretical models to calculate the

constrained capacity of PCA and ICA encoded data. We have considered four iris

databases ( CASIA1, WVU, BATH, CASIA3 ) and one face database (FRGC).

Firstly, we have modeled the PCA feature vectors as realizations of a Gaussian

Process. The Shapiro-Wilk test has been used to validate this hypothesis. A graphi-

cal representation of eigenvalues and noise of PCA components has been proposed to

calculate the asymptotic rate for a large number of users. The values of rate obtained

discriminates the global quality of each database. We have further showed how ca-

pacity depends on resolution of the images tested.

In the second part of the work, we have represented the Independent Components

as BesselK random variables. This model has been compared with the Gaussian and

Laplace model. The Kolmogorov-Smirnov test and Kullback-Leibler divergence have

been used to verify the goodness of data fit. Both tests have confirmed BesselK

distribution as best fit. The parameters of the distribution have been estimated as

well. Finally the capacity of ICA encoded data has been calculated for each database.

Again, the global quality of the databases can be measured by the values of capacity

obtained.
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Comparing ICA and PCA capacity tables we can state that ICA capacity is al-

ways larger then the PCA capacity for the five databases. This result indicates that

the ICA encoding is more efficient in terms of retrieving information for the purpose

of recognition than PCA with respect to the considered databases.
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Future Work

1. PCA and ICA are only two encoding techniques used to encode iris and face

data. In future work we can calculate capacity for other encoding methods like

correlation based or Gabor Filter Based.

2. A parametric approach has been used to model the distribution of the PCA and

ICA weights and to calculate the capacity. In future work we can use a non

parametric approach to calculate the recognition rate and compare it with our

models.

3. In this work we have assumed that the number of images per class of a considered

database is the same and equal or larger than five. These assumptions have been

made to have a good estimation of the noise. In practice different numbers of

images per class are available. In future work, we can explore how this factor

influences capacity.

4. In this work we have considered an example of how resolution affects capacity. In

future we could study how other factors (blurring, lighting, etc) affect capacity.

5. Recognition capacity is an index of overall quality of database. In future we can

compare this methodology with other methodologies for quality assessment.
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Appendix A

Goodness of fit

A.1 Hypothesis Testing and Test Statistics

A statistical hypothesis test is a kind of statistical inference to make a quantitative

decision about a process. Specifically, it decides whether there is enough evidence to

”reject” a supposition or hypothesis about the process based on a sample data set

S . The supposition is called null hypothesis H0. A common layout for hypothesis

testing is:

{
H0 : The sample S follows the null hypothesis;

Ha : The sample S follows the alternative hypothesis.

The test statistic T summarizes the information of the sample S that is relevant

to the hypothesis. Thus, the test statistic is defined for a specific hypothesis test. A

good test statistic tends to take on certain values when the null hypothesis is true

and to take on other values when it is false. That is, a good test statistic is a sensitive

indicator of whether the sample data S agrees or disagrees with the null hypothesis.

Given the specific hypothesis, the sample set S is considered a set of realizations of

hypothetical random variables; thus the test statistic T is a function of the random

variables.
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A.2 Critical value and p value

The critical value or significance level α defines the sensitivity of a statistical test

and indicates the maximum probability of rejecting a true null hypothesis (a decision

known as type I error). In practice, for many reasons, this value is decided arbitrarily;

typical critical values are 0.1, 0.05, and 0.01. The p-value is the probability of a test

statistic T being at least as extreme as the one observed tobs given that the null

hypothesis is true. Precisely, given the specific null hypothesis as the truth and

observed the value tobs of the test statistic T from the sample S, the value p is defined

as:

1. P (T ≥ tobs), for an upper-tailed (one-sided) test

2. P (T ≤ tobs), for a lower-tailed (one-sided) test

3. P (T ≤ t1obs) + P (T ≥ t2obs) , for a double-tailed (two-sided) test

where t1obs , t2obs are two possible values of T for the same observation

The type of test is defined contextually within the test statistic T . For example, if

the test statistic T takes small values when the null hypothesis is true, the upper-tail

test will be used. Similarly, the appropriate definition of p will be used for the other

cases. In general, the null hypothesis is rejected if the p-value is smaller than or

equal to the critical value. The interval of probability for which the null hypothesis is

rejected is called critical region (or rejection region) of the test statistic; the comple-

mentary region is called acceptance region. The distribution of test statistic T , given

that the null hypothesis is true, is called Null distribution.



Appendix B

Bessel K Distribution

A Multivariate Bessel K Distribution is a kind of gaussian scale mixture (GSM)

defined as:

X =
√

GZ + µ

where Z ∼ N (0, ΣZ) and G ∼ Γ(α, θ).

The peculiarity of any GSM is:

(X | G = g) ∼ N (µ, gΣZ)

The general form of the probability density function (pdf) with zero mean (µ = 0)

of a multivariate BesselK distribution is:

pX(X) =
2

Γ(α)(π|ΣZ |)
n
2 (2θ)

α
2
+n

4

q(X)(α
2
−n

4
)K(α−n

2
)

(√
2q(X)

θ

)
(B.1)

where :

q(X) = XΣ−1
z XT

is the usual quadratic form of a multivariate distribution and Kλ is the modified

Bessel function of third kind of index λ.

The one dimensional version of the (B.1) with unitary variance is:
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pX(x) =
2

Γ(α)
√

π(2θ)
α
2
+ 1

4

|x|(
α
2
− 1

4
)K(α− 1

2
)

(√
2

θ
|x|

)
(B.2)

The univariate BesselK distribution (BK) is a leptokurtic distribution (kurtosis

> 3) with very heavy tail. It’s a very special form of the Generalized Hyperbolic

Distribution [19].

The odd cumulants of a BK are zero are even have the following form:

k2i = α

(
θ

2

)i
(2i)!

i
, i > 1

In particular the second and forth cumulant are:

k2 = var(x) = mean(g) = αθ

k4 = E{x4} − 3k2
2 = 3E{g2} − 3E{g}2 = 3var{g} = 3 αθ2

from these equations we can determinate the two parameters α,θ

α =
k4

3k2

θ =
3k2

2

k4

The kurtosis of the BK distribution is:

kurt(x) =
k4 + 3k2

k2
2

=
k4

k2
2

+ 3 =
1

α
+ 3

Because α > 0 , the kurtosis is always > 3 (leptokurtic).
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