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ABSTRACT 
 

Effects of various phytase concentrations in diets with low-phytate corn on broiler chick 
performance and metabolism 

 
Nicole J. Baker 

 
 
 
Research indicates a reduction of phosphorus content in fecal excreta with the supplementation 
of phytase to corn-soybean based diets or with the use of low phytate corn (LPC) in broilers.  
This study examined how 0-to-3-wk broiler chicks are impacted by concomitant phytase 
supplementation with LPC (0.136% phytate P by analysis) in the diet.  Various levels of phytase 
(250, 500, 750, 1000, 2000 FYT/kg) from either 2500 or 5000 FYT/g of dry Peniophora lycii 
phytase product were used as experimental treatments.  Efficacy of treatments was determined 
using a response curve created with monocalcium phosphate providing 0.23%, 0.28%, 0.33%, 
and 0.38% levels of nonphytate phosphorus (nPP).  All diets that included phytase contained 
0.23% nPP, 0.8% calcium and LPC.  Following a 6-day pre-test, 576 broiler chicks were 
randomly assigned to one of the 12 dietary treatments, with 8 replicates and 6 birds per cage.  
Measurements of live performance, tibia ash, mineral digestibility, and apparent metabolizable 
energy (AME) were obtained.  Increasing phytase concentration led to a linear increase in live 
weight gain (P=0.0309) and a linear decrease in feed conversion (P=0.0010).  At enzyme levels 
greater than 250 FYT/kg, digestible phosphorus, calcium, and AME increased (P<0.05).  The 
two Peniophora lycii products, when used to make similar experimental treatments, did not 
differ regarding performance, mineral digestibility and AME (P>0.05).  Thus, phytase 
supplementation in diets containing LPC had a positive impact on broiler chick growth.  
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 Animal manure contains valuable nutrients for crops, such as nitrogen, phosphorus, and 

potassium.  Manure is considered an amendment that improves the physical and chemical 

properties of soil, as well as the nutrient values of soil by adding organic material.  Manure 

improves soil structure by aiding in its ability to hold water and retain nutrients.  These nutrients 

are available for immediate use by plants when added to soil systems.  Using animal waste to 

supplement soil improves soil quality and makes use of an otherwise excess waste product.   

 The broiler chicken produces the largest amount of manure, nitrogen, and phosphorus per 

pound animal unit compared to any farm animal (NRCS, 1995).  Poultry diets may be formulated 

to crude protein specifications while the excess protein not utilized for growth or maintenance is 

excreted as nitrogen. On average, most protein contains 16% nitrogen, of this approximately 

25% or less is retained by the birds (Leeson and Summers, 2001).  Litter removed annually from 

a broiler house with 22,000 birds contains as much phosphorus as the sewage in a community of 

6,000 people (NRCS, 1995).   

 The poultry industry and other livestock operations are facing growing concerns about 

the land application of litter contaminating surface waters (Sharpley, 1999).  Surplus nutrients 

from fertilizers in crop run-off increase eutrophication.  Eutrophication is the process by which a 

body of water becomes enriched in dissolved nutrients that stimulate growth of aquatic plant life, 

usually resulting in the depletion of oxygen. The overgrowth of this undesirable plant life, blocks 

out sunlight, causing these aquatic weeds to die. During the decomposition stage, soluble oxygen 

is utilized in the water leading to oxygen shortages for aquatic life.  Thus, water quality is 

decreased by eutrophication.  The addition of phosphorus to freshwater increases the 

eutrophication process, which restricts water use for fisheries, recreation, industry, and drinking 

due to increased growth of undesirable algae and aquatic weeds. 
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According to the Environmental Protection Agency, agriculture is the leading source of 

water quality impairments to rivers and lakes in the United States (NRC, 1993). Algal blooms of 

toxic cyanobacteria (blue-green algae) occur in drinking water supplies and may pose serious 

health hazards to humans and animals due to crop run-off (Sharpley, 1999).  Cyanobacteria 

produce hepatoxins, neurotoxins, and non-specific toxins that may lead to illness in humans and 

death in animals due to ingestion of contaminated water (Morris, 2000).  Primary contributors to 

outbreaks of dinoflagelate Pfisteria piscicida in the Chesapeake Bay are due to excess nutrients 

in waters, mainly phosphorus build-up (NRCS, 1995; Sharpley, 1999).  Neurological damage in 

people exposed to toxic volatile chemicals produced by this dinoflagelate has dramatically 

increased the public awareness of eutrophication and the need for solutions (Grattan et al., 1998).  

Eutrophication has serious implications on health as well as the environment.      

Scientists are exploring ways to increase the value of manure by altering biochemical 

characteristics to make it more suitable for crops.  Nitrogen-based management of waste has 

been practiced for years; only since the early 1980s has the emphasis turned to phosphorus-based 

management of waste (Sharpley, 1999).  Manure application rate recommendations are routinely 

based on nitrogen content and crop requirement for nitrogen to minimize the purchase of 

commercial fertilizer nitrogen (NRCS, 1995; Sharpley, 1999).  The nitrogen-based management 

system often results in a build-up of phosphorus in soil and contributes to excess nutrient run-off.  

Phosphorus-based nutrient management regulations require that manure applications be limited 

to the phosphorus needs of the crop.  Most livestock and poultry farmers produce more manure 

phosphorus than their crops require.  Phosphorus-based management utilizes less manure than 

nitrogen-based management and the use of more supplemental nitrogen fertilizer (Knowlton, 

2002).  Waste from broiler chickens is a good source of manure because of its high nutritive 
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quality in a concentrated form.  The value of poultry fertilizer would be increased tremendously 

if the amount of phosphorus was reduced to more closely meet the needs for adequate fertilizer.  

Poultry nutritionists are working to maintain broiler performance and enhance the value of 

manure.   

Phosphorus is an essential mineral to broiler chicken growth, especially skeletal tissue.  

Phosphorus acts as an integral part of many systems in the body and is required to adequately 

sustain life and promote growth in broilers.  Phosphorus plays a key role in intermediary 

metabolism, contributes to cell membranes (phospholipids), functions in acid-base balance, and 

is an important component of nucleic acids (Angel et al., 2002). 

Broiler chickens in the United States primarily consume corn-soybean based diets, which 

are naturally high in phosphorus. However, these plant phosphorus sources are phytate bound 

and not readily available to the bird.  Inorganic phosphorus sources are more available and added 

to the diet usually as monocalcium, or dicalcium phosphate. The addition of inorganic 

phosphorus is costly and somewhat redundant because the bird is already receiving adequate 

phosphorus from organic ingredients in the diet.   

Phosphorus is abundant in corn and soybean meal; but two-thirds of the total phosphorus 

contained in feed ingredients of plant origin is bound as phytic acid (Nelson, 1967; Sohail et al., 

1999).  Unavailable phosphorus is referred to as phytate phosphorus (PP) or phytic acid found in 

a cyclic complex.  Phytate phosphorus is either unavailable or poorly utilized by monogastric 

animals due to insufficient quantities of endogenous phytase, which is used to break the phytic 

acid molecule (hexophosphoiniositol) (Waldroup et al., 2000; Angel et al., 2002).   Phytates are 

associated with a number of anti-nutritional effects largely because they chelate divalent cations, 

such as calcium and zinc, and can reduce nutrient availability of protein and amino acids, as well 
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as starch and other carbohydrates (Ravindran, 1995).  Therefore, diminishing phytate phosphorus 

complexes may increase nutrient availability and dietary energy, in addition to liberating 

phosphorus (Ravindran et al., 1995; Sohail et al., 1999; Ravindran et al., 2000).   

  Phytate phosphorus may be defined as a ringed complex containing six phosphate 

molecules, as well as starch, protein, calcium, magnesium, zinc, iron, and other trace minerals 

(Angel et al., 2002; Yan et al., 2003).  Chickens lack the endogenous enzyme phytase, and 

cannot digest or absorb phosphorus in the phytate form.  Adding supplemental phytase to broiler 

diets increases the availability of phytate-bound phosphorus, and therefore may reduce the 

amount of phosphorus excreted into the environment (Waldroup et al., 2000; Yan et al., 2001; 

Angel et al., 2002; Yan et al., 2003)   Phytase releases the phytate bound phosphorus, thus 

increasing phosphorus availability to the bird and therefore decreasing phosphorus in the excreta.  

The addition of dietary phytase can aid in reducing formulation cost by decreasing inorganic 

phosphorus inclusion in the feed (Waldroup et al., 2000). 

  A small amount of the phytase enzyme can produce a large benefit in the reduction of 

phosphorus waste.  In broilers, the addition of phytase is reported to reduce phosphorus excretion 

by 25-40% and nitrogen excretion up to 10%, thus increasing the efficiency of nutrient 

utilization in the bird (NRC, 1993). Phytase can improve phosphorus and nitrogen utilization by 

broilers, as well as the value of chicken manure as a soil amendment.   

Phytases are widely distributed in plants, animals, and microorganisms.  Phytases are 

currently recognized in two classes: a 3-phytase and a 6-phytase, which initiates the 

dephosphorylation of phytic acid at different positions on the inositol ring (IUB, 1979; Angel et 

al. 2002).  The 3-phytases do not always completely dephosphorylate the phytic acid complex, 

whereas the 6-phytases do.  It has been stated that microorganisms normally produce the 3-



 6

phytase and the 6-phytases are found in plants (Angel et al., 2002).  There are exceptions to this 

general rule, for example, an enzyme with 3-phytase has been reported in soybeans, and an 

enzyme with 6-phytase activity has been reported in Escherichia coli (Angel et al., 2002; 

Radcliffe, 2000).  Another exception, Peniophora lycii is a microbial, 6-phytase active over a pH 

range 4-4.5 (Linden, 2000).   The efficacy of microbial phytase to improve dietary phosphorus 

bioavailability has been reported by several researchers (Nelson 1967, Waldroup et al. 2000, Yan 

et al. 2001). 

Phytate content of corn is manipulated in another strategy to increase phosphorus 

utilization and decrease phosphorus waste; with the use of genetically engineered corn 

containing decreased phytate (Raboy and Gerbasi, 1996).  This hybrid corn, known as low 

phytate corn (LPC) or high available phosphorus corn (HAPC) has enhanced phosphorus 

availability to animals due to low phytate levels and increased nonphytate phosphorus (nPP) 

(Huff, 1998; Li et al., 2000).  Low phytate corn contains similar total phosphorus content to 

normal yellow dent corn, but PP and nPP distribution vary.  Normal corn contains approximately 

0.03% nPP where LPC contains about 0.17% nPP (Huff et al., 1998; Waldroup et al., 2000; Yan 

et al., 2000).   

Li and coauthors (2000) clearly demonstrated that phosphorus in LPC is more available 

than phosphorus in normal corn, and that a reduction in phytate content with LPC does not 

compromise nutritional value.  Results also indicated that phosphorus excretion could be 

substantially reduced by substituting LPC for normal corn in the diet (Li et al., 2000).  The 

combined effects of LPC and phytase supplementation indicate marked reduction in phosphorus 

excretion without compromising broiler chick performance (Huff et al., 1998; Waldroup et al., 

2000; Yan et al., 2000).   
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Energy as well as trace minerals can be liberated in varying amounts depending on 

phytate complexes (Angel, 2002).  Inconsistencies in metabolizable energy may be due to 

variations in phytic acid content of feed.  With the addition of phytase to broiler diets, variations 

in metabolizable energy from no change (Biehl and Baker, 1997) up to 5.5% increase in 

metabolizable energy have been reported (Camden et al. 2001).   

  Calcium is of particular interest because it is strongly chelated to the negatively charged 

phosphate groups of phytic acid.  The calcium: total phosphorus ratio is recommended to be 

2.0:1 ratio for maximum growth performance (NRC, 1994).  Because calcium is liberated from 

the phytate complex with the addition of supplemental phytase, the addition of calcium can be 

reduced in the diet formulation (Qian, 1997).  Calcium (Ca) and phosphorus (P) levels in the diet 

(Edwards and Veltmann, 1983; Qian, 1997) influence phytate phosphorus utilization of corn-

soybean diets by broilers.  Excess Ca binds with phytate to form an insoluble complex that is less 

accessible to phytase, and can have an effect on metabolizable energy (Kornegay, 1999).     
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The poultry industry and other livestock operations are facing growing concerns about 

the land application of manure contaminating surface waters (Sharpley, 1999).  A manure 

fertilizer for crops provides necessary, but often more, nutrients than required for crop growth.  

The surplus nutrients, phosphorus being of greatest concern, may leach into watersheds and 

contribute to eutrophication (Grattan et al., 1998; Sharpley, 1999).  

Phosphorus is an essential mineral for broiler chicken metabolism and skeletal 

development.  However, two-thirds of the phosphorus provided in typical broiler diet 

ingredients, corn and soybean, are bound to phytic acid (Nelson, 1967; Sohail et al., 1999).  

Phytate phosphorus (PP) is either unavailable or poorly utilized by monogastric animals, due to 

insufficient quantities of endogenous phytase enzyme that aids in digestion of the phytic acid 

complex (Waldroup et al., 2000; Angel et al. 2002).  Phytic acid can act as an anti-nutrient, due 

to the ability of the complex to bind starch, proteins and trace minerals, such as phosphorus, zinc, 

iron, calcium, and magnesium (Kornegay, 1999; Camden et al., 2001; Radcliffe, 2002).   

  The addition of phytate-degrading enzymes can improve the nutritional value of plant-

based foods by enhancing nutrient digestibility through phytate hydrolysis during digestion in the 

gut (Yi and Kornegay, 1996; Konietzny and Greiner, 2002).  Research has shown that the 

supplementation of exogenous phytase to broiler diets is an effective means for increasing the 

availability of phosphorus to the bird as well as reducing phosphorus excretion, by liberating 

phytate bound phosphorus (Nelson, 1967; Jongbloed and Kemme, 1990; Kornegay et al., 1996; 

Waldroup, 2000; Angel, 2002).  Results phytase dosage efficacy have been inconsistent, in part 

this may be due to variable PP content of the diet (Kornegay, 1999; Angel, 2002; Radcliffe, 

2002) or uniformity of phytase distribution in the diet (Johnston and Southern, 2000; Angel, 

2002). 
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The sparing ability of phytase on inorganic phosphorus is a common determination of 

phytase efficacy.  The amount of inorganic phosphorus spared with the addition of phytase is 

termed the phosphorus sparing effect.  Phytase supplementation is measured in phytase units 

(FYT).  One phytase unit is defined as the quantity of phytase that generates one micromole of 

inorganic phosphorus from 5.1 mmol/L of sodium phytate at pH of 5.5 and 37 degrees Celsius 

(Johnston and Southern, 2000; McMullen et al., 2001).  Typically, phytase manufacturers claim 

that 0.1% phosphorus sparing is obtainable with the addition of 300-500 phytase units/kg of diet.  

Past literature reports that 0.1% phosphorus sparing has been achieved with a range of 781-1413 

phytase units/kg of diet (Angel et al., 2002).  These large discrepancies in efficacy could be a 

result of variation in corn and soybean PP content or mix uniformity of the feed (Johnston and 

Southern, 2000).   

Given that young chicks only consume a few grams of feed each day, it is necessary to 

provide all essential nutrients, in the proper quantity (Beumer, 1991).  Utilizing different 

concentrations of phytase may alter growth and performance due to uniformity of mix.  The 

addition of a more concentrated product leaves more space available in the diet for other 

ingredients, but it is more difficult to ensure that all ingredients are adequately dispersed.  

Commercial recommendations for mixer coefficient of variation (CV) is less than 10% but a 

mean CV of 30% on an average mixer has been reported (Johnston and Southern, 2000).  

Phytase efficacy and performance data may vary due to inadequate mixer uniformity.     

Many studies analyze total phosphorus of the diet, but few include information on PP 

content and phytase analysis (Angel et al., 2002).  In several studies that focused on similar corn-

soybean meal diets, phytase supplementation, total phosphorus, and calculated PP, results of toe 

ash were largely varied (Kornegay et al., 1995; Qian et al., 1997, Camden et al., 2001).  More 
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specifically, nonphytate phosphorus was calculated to be 0.27-0.28% with 500-600 FYT/kg, and 

toe ash results ranged from 11.6-12.7%.  Toe ash is comparable to tibia ash and both are highly 

sensitive indicators of phosphorus levels in the broiler chick, making these differences 

noteworthy (Angel et al., 2002). Inconsistencies in metabolizable energy may also be due to 

variations in phytic acid content of feed.  With the addition of phytase to broiler diets, variations 

in metabolizable energy from no change (Biehl and Baker, 1997) up to 5.5% increase in 

metabolizable energy have been reported (Camden et al. 2001).  Data are still limited as to the 

variability in PP content in feed ingredients (Applegate and Angel, 2003).  Phytate phosphorus 

analysis of ingredients will allow for improved diet formulation (Angel et al., 2002).  

Phytate content of corn can be manipulated to increase phosphorus utilization with the 

use of genetic engineering for a homozygous lpa1-1 gene (Raboy and Gerbasi, 1996).  This 

hybrid corn, known as low phytate corn (LPC) or high available phosphorus corn (HAPC) has 

enhanced phosphorus availability to animals due to low phytate levels and increased nonphytate 

phosphorus (nPP) (Huff, 1998; Li et al., 2000).  Low phytate corn contains similar total 

phosphorus content to normal yellow dent corn, but PP and nPP distribution vary.  Normal corn 

has been reported to contain 0.03% nPP where LPC contains about 0.17% nPP (Huff et al., 1998; 

Waldroup et al., 2000; Yan et al., 2000).   

Li and coauthors (2000) demonstrated that phosphorus in LPC is more available than 

phosphorus in normal corn, and that a reduction in phytate content with LPC does not 

compromise nutritional value.  Results have also indicated that phosphorus excretion could be 

substantially reduced by substituting LPC for normal corn in the diet (Li et al., 2000).  The 

combined effects of LPC and phytase supplementation indicate marked reduction in phosphorus 
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excretion without compromising broiler chick performance (Huff et al., 1998; Waldroup et al., 

2000; Yan et al., 2000).   

In an attempt to determine appropriate levels of phytase supplementation in LPC-soybean 

meal diets, the current study explored the effects of varying phytase concentrations of two 

different commercial phytase products on feed uniformity, broiler performance and metabolism.        
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Diet Formulation 

Experimental corn-soybean based mash diets were formulated to meet or exceed NRC 

(1994) recommendations for all nutrients except calcium and phosphorous.  Formulations were 

adjusted to determine the efficacy of phytase in liberating phosphorus, calcium and energy from 

phytic acid.  All dietary treatments used LPC, containing 0.23% total phosphorus, 0.14% PP, and 

by difference 0.09% nPP.  Birds consumed a NRC (1994) based pre-test diet formulated with 1% 

calcium and 0.45% nPP from 1 to 5 d.  A series of diets designated as the standard curve was 

created to determine phosphorus-sparing effect.  Diets utilized for the standard curve contained 

0.8% calcium and varying levels of nPP (0.23%, 0.28%, 0.33%, and 0.38%).    Nonphytate 

phosphorus was adjusted with monocalcium phosphate, ground limestone, and cellulose.  

Concentrations of exogenous phytase varied by adding different levels of commercial phytase 

products.   Experimental diets containing added phytase were formulated to contain 0.8% 

calcium and 0.23% nPP (Table 1). 

 

Feed Manufacture 

Two dry Peniophora lycii phytase products were used, each containing a different 

concentration of the enzyme (Product 1 and Product 2).  Product 1 contained 2500 FYT/g and 

was added to diets in concentrations of 250, 500, 750, 1000, and 2000FYT/kg.  Product 2, 

contained 5000FYT/g and was added to diets in concentrations of 250, 500, and 750FYT/kg. 

Due to the small quantities of enzyme inclusion to feed, it was essential to ensure 

adequate homogeneity in the mixer by determining mix CV.  All diets were mixed in a single 

screw vertical mixer1.  Mixer coefficient of variation was determined by mixing four 454.5kg 

corn/salt batches for 40 minutes each.  To mimic enzyme inclusion, salt was added at 0.01% of 
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the test batch.  Ten samples were analyzed from each batch with Quantab titrators2 for chloride 

analysis.  Testing procedure followed those of McCoy (1994).  

  Four 907kg basal diet batches were formulated (0.23%, 0.38%, Product 1 at 2000 

FYT/kg, Product 2 at 750 FYT/kg) and assayed for phytase3, total phosphorus3, and PP4 to 

ensure appropriate mix and formulation.  High Performace Liquid Chromatography was used to 

determine phytate phosphorus with post column detection.  The four basal diets were then 

blended in small rations, and in different proportions to create eight subsequent experimental 

diets (0.28% nPP, 0.33% nPP, Product 1 @ 250, 500, 750, and 1000 FYT/kg and Product 2 @ 

250, 500 FYT/kg).  Feed samples from all diets were analyzed for total phosphorus3, 5, soluble 

phosphorus3, calcium5 and gross energy6. 

 

Performance Data 

Following a 1 - 5 d adaptation period, 576 Ross 308 x Ross 344 straight run broilers7 

were randomly assigned to one of 12 dietary treatments.  The experiment was conducted as a 

randomized complete block design, run from 6 – 21 d.  Treatments were replicated 8 times using 

a pen of 6 birds as an experimental unit.  Birds were housed in raised wire brooding cages in a 

cross-ventilated negative pressure room.  Mash feed, supplied in external troughs, and water, 

supplied through nipple drinkers, was provided ad libitum.  Nipple drinkers were adjusted by 

visual inspection to appropriate height for chicks (Lott et al. 2001).  Live weight gain was 

determined by difference in chick weights at 6 and 21 days of age, total feed consumption was 

calculated and mortality weights were recorded throughout the experiment.  Feed conversion was 

calculated as the feed intake to weight gain ratio (including mortality weight).   
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On day 21, after birds were euthanized, right tibias were extracted from all birds and 

pooled by pen for tibia ash determination of dry fat-free bone (AOAC, 1990).  Tibias were dried 

for 48 hours at 110 degrees Celsius.  After drying, bones were defatted with diethyl ether by the 

Soxhlet extraction method (AOAC, 1990).  Dry defatted bones were ashed in an ashing oven at 

550 degrees Celsius for 12 hours (AOAC, 1990).  Tibia ash percentage was calculated by percent 

of the dry fat-free bone weight remaining as ash.   

 

Energy and Mineral Utilization  

  Apparent metabolizable energy (AME) was estimated over 4 days (18 to 21 d).  Total 

excreta was collected during re-feeding after an 18-hour fast.  Feed intake and total excreta per 

pen were calculated.  Excreta were dried for 48 hours at 65 degrees Celsius (Namkung and 

Leeson 1999), and ground using a Thomas-Wiley Mill, Model 48.  Gross energy via adiabatic 

bomb calorimetry6 was determined on feed and excreta to calculate AME.  Feed and excreta 

samples were analyzed for total phosphorus3, 5, soluble phosphorus3, and calcium5 by Inductively 

Coupled Plasma Atomic Emissions Spectrophotometer5.  Digestible P and digestible Ca were 

calculated by percentage differences between feed and excreta. 
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Statistical Analysis 
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Data analysis was performed with the general linear model program of SAS9.  The 

analysis of variance probability values are presented for the overall 12-treatment comparison.  

Fischer’s least significant difference test was utilized for multiple comparisons of the means.  

Four diets increasing in monocalcium phosphate, consisting of the standard curve, were 

evaluated for linearity.  Diets containing each phytase product were evaluated across increasing 

levels for linear and quadratic effects.  Experimental diets containing phytase were compared to 

the control diet (0.23 nPP %, without phytase). The three treatments containing Product 2 were 

compared with the three corresponding treatments of Product 1 based on enzyme activity level.  

Probability values are presented for the main effects of product type and enzyme activity level, 

as well as the interaction. 
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Feed Manufacture 

Mixer CV, with 0.01% salt inclusion, did not exceed 18%.  Analysis of diets indicated 

total phytase, total phosphorus, and calcium within expected calculated values (Table 1).  

 

Performance Data  

Live weight gain increased in all experimental treatments compared to the control diet 

(P<0.05, Table 2).  Increasing levels of Product 1 had a significant linear effect on LWG 

(P=0.0309).  Increasing levels of Product 2 did not affect LWG (P>0.05); however, LWG 

produced from Product 2 did not vary from Product 1 (P = 0.2796).  Feed intake (FI) was greater 

compared to the control diet for all treatments other than Product 2 at 250 FYT/kg (P<0.05, 

Table 2).  Feed intake was similar in Product 1 and Product 2 (P = 0.9132).  Feed conversion 

improved with the addition of enzyme in all treatments except Product 1 at 250 FYT/kg (P<0.05, 

Table 2).  Increasing levels of Product 1 had a linear decrease in FC (P=0.0010).  Product 1 at 

1000 FYT/kg numerically had the lowest FC and highest phosphorus sparing effect (Table 2 and 

3).   

 The percent of tibia ash increased from the control diet for Product 1 at 500, 1000, and 

2000FYT/kg (P<0.05, Table 2). Tibia ash did not increase from basal control diet for Product 2.  

Product 1 and Product 2 were not different with respect to tibia ash (P = 0.3343).  Treatments did 

not affect mortality (Table 2). 

 

Mineral and Energy Utilization 

 The addition of phytase increased Ca digestibility from the control diet in treatments 

greater than 500FYT/kg for Product 1 and 250FYT/kg for Product 2 (P<0.05, Table 4).  
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Phosphorus digestibility increased with the addition of phytase from the control diet for both 

products at levels greater than 250FYT/kg (P<0.05, Table 4).  Calcium and phosphorus 

digestibilities were similar at comparable levels of Product 1 and Product 2 (P=0.2333). 

 Water-soluble phosphorus content was variable (Table 4).  Experimental diets were 

similar to the control diet in all treatments except Product 1 at 250 and 2000 FYT/kg (P<0.05, 

Table 4).  Product 1 and Product 2 did not produce similar water-soluble phosphorus levels in the 

excreta (P=0.0207, Table 4).     

 Apparent metabolizable energy when adjusted to a constant feed and fecal dry matter of 

88% indicated increased AME in all experimental treatments containing phytase compared to the 

control diet (P<0.05, Table 5).  The effect on AME was similar for Product 1 and Product 2 

(P=0.1287).   
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Discussion 
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 No difference in the products could be detected for any measured variable, except water-

soluble phosphorus levels in excreta.  Variations in water-soluble phosphorus found due to 

variable results.  Although products were not different, numerically reduced efficacy may have 

been a result of inadequate mix uniformity. A CV of less than 10% has become the accepted 

degree of variation that separates uniform from nonuniform feed mixes (McCoy et al., 1994; 

Johnston and Southern, 2000).  Coefficient of variation up to 20% has been reported to be 

adequate for maximum growth performance in broiler chicks (fed diet with a 0.03- 0.04% tested 

inclusion) (McCoy et al., 1994).  The current study utilized a more concentrated ingredient 

(Product 2 at 0.01% of the diet).  A mixer CV of 18% may have been too high for optimal chick 

performance and reduction of phosphorus excretion.   

    The addition of phytase, in both products, at greater than 500 FYT/kg improved all 

measured variables, other than tibia ash.  Tibia ash efficacy was not consistent, resulting in 

improvement in Product 1 at 500, 1000, and 2000 FYT/kg and no difference in all other 

treatments from the control diet.  The addition of phytase increased ash percentage, therefore 

phosphorus stores in the bone were higher due to increased liberation of phosphorus. 

 To evaluate efficacy of phytase at improving phosphorus utilization, it was necessary to 

have all experimental treatments below NRC (1994) recommendations for both phosphorus and 

calcium.  Minimum phosphorus and calcium requirements seem to have been met in treatments 

containing greater than 500 FYT/kg for both products because digestibilities improved from the 

control treatment. 

 Although a reduction of total phosphorus is often emphasized in literature, water-soluble 

phosphorus has the greatest environmental implications on eutrophication (Miles et al., 2003).  

The combination of LPC and phytase in the diet has been reported to reduce water-soluble 
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phosphorus in litter compared with normal corn (Miles et al., 2003).  Water-soluble phosphorus 

did not change from control diet with greater than 250 FYT/kg (Table 4).  Applegate and Angel 

(2003) reported that with correct phytase inclusion both total phosphorus and water-soluble 

phosphorus decrease.  However, they also found that incorrect application of phytase and an 

insufficient decrease in dietary total phosphorus will result in no change in excreta phosphorus 

and an increase in water-soluble phosphorus.  The lack of change in water-soluble phosphorus in 

the current study may have resulted from the addition of more phytase than necessary.  Total and 

available phosphorus may have been too high with LPC and 0.23% nPP in control diet and 

resulted in liberation of excess phosphorus with the addition of phytase.  More phosphorus than 

required for bird growth may have been liberated and therefore excess was excreted as water-

soluble phosphorus. 

 Apparent metabolizable energy was markedly increased with phytase supplementation at 

all levels.  Increases in AME up to 6% have been reported (Ravindran, 1999; Camden et al., 

2001).  The addition of phytase to diets liberated phosphorus as well as energy substrates bound 

to phytic acid.  Increased energy utilization with added phytase is in part due to increased protein 

digestibility (Camden et al. 2001) and starch digestibility (Ravindran, 1999).  In addition, past 

research has speculated that calcium-phytate complexes with fatty acids forming metallic soap in 

the gut lumen, therefore decreasing fat utilization (Leeson, 1993; Ravindran, 1999; Ravindran et 

al. 2000). 

  Efficacy of phosphorus increased with the addition of phytase to LPC, but not as much 

as reported with normal yellow dent corn (Waldroup et al. 2000).  Low phytate corn contains less 

phytate bound phosphorus for the phytase to liberate; therefore, reduced efficacy is expected 

(Radcliffe, 1999; Kornegay, 1999; Angel et al. 2002).   
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 Phosphorus sparing was not as effective as commercial recommendation of 0.1% with 

300-500 FYT/kg in this experiment.  At 500 FYT/kg in Product 1, a 0.052% phosphorus sparing 

effect was found based on tibia ash.  These results were below observations reported by 

Applegate (2003) of 0.065% phosphorus sparing with 500FYT/kg based on tibia ash and normal 

corn.  Feed conversion was the most effected variable for phosphorus sparing with 0.092% at 

1000 FYT/kg in Product 1.  Feed conversion and tibia ash are the most common indices and 

often the most sensitive for comparing phosphorus sparing (Applegate and Angel, 2003).  

 Analysis of phytate level of corn is important when utilizing phytase in research or 

practice to ensure appropriate use of enzyme.  Inappropriate diet formulation is costly and results 

in either performance decrements or environmental burdens.  Low phytate corn alters results of 

enzyme efficacy; inclusion of phytase to analyzed diets allows a more accurate diet formulation 

to achieve desired results.  The addition of concentrated products, such as phytase, requires 

uniform mixing to ensure appropriate enzyme dispersion for maximal chick performance. 
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Table 1. Basal diets utilized for composition of experimental treatments in phytase study. 
 

 
 

A Analyses of LPC: Total phosphorus, 0.23%; Phytate Phosphorus, 0.14%. 
B Particle sizes of corn=697.5µ, limestone=169.5µ, cellulose=185.5µ, 
MonoCalPhos=789µ 
C Supplied per kilogram of diet: manganese, 0.02%; zinc, 0.02%; iron, 0.01%; copper, 0.0025%; iodine, 
0.0003%; selenium, 0.00003%; folic acid, 0.69 mg; choline, 386 mg; riboflavin, 6.61 mg; biotin, 0.03 mg; 
vitamin B6, 1.38 mg; niacin, 27.56 mg; panthothenic acid, 6.61 mg; thiamine, 2.20 mg; menadione, 0.83 
mg; vitamin B12, 0.01 mg; vitamine E, 16.53 IU; vitamin D3, 2,133 ICU; vitamin A, 7,716 IU.  

Ingredient 0.23% nPP Diet 0.38% nPP Diet
Product 1 @ 
2000 FYT/Kg  

Product 2            
@ 750 FYT/Kg 

         
Low phytate corn AB 56.21 56.21 56.21 56.21
Soybean meal (44%) 31.08 31.08 31.08 31.08
Corn Gluten Meal (60%) 5 5 5 5
Soybean oil 4.26 4.26 4.26 4.26
Limestone B 1.70 1.36 1.70 1.70
Cellulose B 0.46 0 0.40 0.44
Salt 0.44 0.44 0.44 0.44
L-Lysine HCl 0.09 0.09 0.09 0.09
DL-Methionine  0.18 0.18 0.18 0.18
Mono Calcium Phosphate B 0.34 1.13 0.34 0.34
NB 3000 Vitamin PremixC 0.25 0.25 0.25 0.25
Phytase 0 0 0.05 0.01
          
Calculated Composition         
ME (Kcal/Kg) 3200 3200 3200 3200
Crude protein (%) 21.95 21.95 21.95 21.95
Methionine + Cystine (%) 0.9 0.9 0.9 0.9
Lysine (%) 1.1 1.1 1.1 1.1
Crude fat (%) 6.86 6.85 6.86 6.86
Calcium (%) 0.8 0.8 0.8 0.8
Nonphytate P (%) 0.23 0.38 0.23 0.23
          
Analyzed Composition         
Phosphorus (%) 0.43 0.56 0.41 0.42
Phytate Phosphorus (%) 0.207 0.217 0.217 0.215
Calcium (%) 0.79 0.78 0.77 0.78
Phytase (FYT/kg)                   50               58 1813  742  
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A Live Weight Gain        F Product 1 contains 2,500 FYT/g 

B Feed Intake         G Product 2 contains 5,000 FYT/g  

C Feed Conversion        H Fischer’s least significant difference 
D Mortality         I Levels include only 250, 500, and 750 FYT/kg 
E Dry, Defatted right tibia 

 

Analyzed 
Total P 

(%) 
Analyzed 

Ca (%) 
Bird LWGA 

(kg) 
Pen   FIB

(kg) 
FCC 

(kg/kg) 
MortalityD 

(%) Tibia AshE (%) 
0.23 calc. nPP 0.43 0.79 0.3297e 3.393e 1.817a 8.33 28.02c 

0.28 calc. nPP 0.46 0.75 0.4275b 4.117b 1.611cde 0 31.40cd 

0.33 calc. nPP 0.50 0.77 0.4785a 4.427a 1.560de 2.08 34.16ab 

0.38 calc. nPP 0.56 0.78 0.4927a 4.459a 1.509de 0 35.56a 

Product 1F @ 250 FYT/kg 0.42 0.82 0.3764d 3.808cd 1.727ab 4.17 29.43de 

Product 1 @ 500 FYT/kg 0.41 0.77 0.3853cd 3.750cd 1.625bcd 0 31.11cd 

Product 1 @ 750 FYT/kg 0.42 0.78 0.3962bcd 3.822cd 1.629bcd 2.08 30.21de 

Product 1 @ 1000 FYT/kg 0.42 0.78 0.4080bcd 3.802cd 1.591cde 4.17 30.83cd 

Product 1 @ 2000 FYT/kg 0.41 0.77 0.4216bc 4.130b 1.634bcd 0 32.58bc 

Product 2G @ 250 FYT/kg 0.43 0.79 0.3861cd 3.602de 1.681bc 8.33 29.32de 

Product 2 @ 500 FYT/kg 0.43 0.78 0.3922bcd 3.873c 1.667bcd 2.08 29.80de 

Product 2 @ 750 FYT/kg 0.42 0.78 0.4199bc 3.924bc 1.642bcd 6.25 30.06de 

ANOVA P-value -- -- 0.0001 0.0001 0.0003 0.0653 0.0001 
LSDH -- -- 0.038 0.226 0.115 -- 2.32 
Standard curve- linear effect P-
value -- -- 0.0001 0.0001 0.0001 0.0158 0.0001 
Product 1 linear effect P-value -- -- 0.0309 0.4255 0.0010 0.8549 0.5978 
Product 1 quadratic effect P-
value -- -- 0.1967 0.0925 0.0022 0.694 0.9648 
Product 2 linear effect P-value -- -- 0.7840 0.1626 0.9907 0.2001 0.6074 
Product 2 quadratic effect P-
value -- -- 0.6500 0.2965 0.9340 0.217 0.7747 

Product 1 vs. Product 2 (2 products x 3 levels- factorial arrangement)I 

Product P-value -- -- 0.2796 0.9132 0.9303 0.1192 0.3343 
Level P-value -- -- 0.1953 0.0826 0.2472 0.1590 0.2502 

Product x Level 
P-value -- -- 0.8348 0.0556 0.5942 0.9033 0.5886 

Table 2. Performance and Tibia Ash Data (day 6-to-day 21) 
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Table 3. Phosphorus sparing effect (%) comparison 
 

Treatment Analyzed 
Total P (%)

Analyzed 
Ca (%) 

Derived 
Calc P (%) 

LWGA 

LWG % P 
sparing 
effectB 

Derived 
Calc P 

(%) FCC 

FC % P 
sparing 
effect 

Derived 
Calc P 

(%) AshD 

Ash % P 
sparing 
effectB 

0.23 calc. nPP 0.43 0.79 --- --- --- --- --- --- 
0.28 calc. nPP 0.46 0.75 --- --- --- --- --- --- 
0.33 calc. nPP 0.50 0.77 --- --- --- --- --- --- 
0.38 calc. nPP 0.56 0.78 --- --- --- --- --- --- 
Product 1E @ 250 FYT/kg 0.42 0.82 0.253 0.023 0.252 0.022 0.249 0.019 
Product 1 @ 500 FYT/kg 0.41 0.77 0.262 0.032 0.305 0.075 0.282 0.052 
Product 1 @ 750 FYT/kg 0.42 0.78 0.271 0.042 0.303 0.073 0.264 0.034 
Product 1 @ 1000 FYT/kg 0.42 0.78 0.282 0.053 0.322 0.092 0.276 0.046 
Product 1 @ 2000 FYT/kg 0.41 0.77 0.295 0.065 0.300 0.070 0.311 0.081 
Product 2F @ 250 FYT/kg 0.43 0.79 0.262 0.032 0.276 0.046 0.247 0.017 
Product 2 @ 500 FYT/kg 0.43 0.78 0.268 0.038 0.283 0.053 0.256 0.026 
Product 2 @ 750 FYT/kg 0.42 0.78 0.293 0.064 0.296 0.066 0.261 0.031 

 
A Calculated P values derived from the linear     D Calculated P values derived from the linear   
Regression of LWG for the standard curve      Regression of Tibia Ash for the standard curve 
(LWG-0.1028)/1.07951=calc. P, r2=0.6825       (Ash%-16.7975)/50.77848=calc. P, r2=0.4935 
B Sparing effect based on Monocalcium P      E Product 1 contains 2,500 FYT/g 
C Calculated P values derived from the linear     F Product 2 contains 5,000 FYT/g 
Regression of FC for the standard curve 

(FC-2.2192)/-1.95051=calc. P, r2=0.4534 
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 Analyzed 

Total P 
(%) 

Analyzed 
Ca (%) 

Digestible 
Ca (%) 

Digestible P 
(%) 

Water   
Soluble
P (g/kg) 

0.23 calc. nPP 0.43 0.79 67.1c 71.3c 1.94e 

0.28 calc. nPP 0.46 0.75 75.5ab 75.7bc 2.80c 

0.33 calc. nPP 0.50 0.77 77.5ab 76.7abc 3.44b 

0.38 calc. nPP 0.56 0.78 81.2a 77.4ab 4.16a 

Product 1A 250 FYT/kg 0.42 0.82 71.7bc 74.8bc 2.58cd 

Product 1 500 FYT/kg 0.41 0.77 72.2bc 77.2ab 1.86e 

Product 1 750 FYT/kg 0.42 0.78 77.1ab 81.5a 1.93e 

Product 1 1000 FYT/kg 0.42 0.78 76.0ab 80.5ab 2.14de 

Product 1 2000 FYT/kg 0.41 0.77 75.1b 79.3ab 2.34cde 

Product 2B 250 FYT/kg 0.43 0.79 71.6bc 75.8abc 2.11de 

Product 2 500 FYT/kg 0.43 0.78 73.4b 79.2ab 2.24de 

Product 2 750 FYT/kg 0.42 0.78 73.9b 77.8ab 1.95e 

ANOVA P-value -- -- 0.0001 0.0001 0.0001 

LSDC -- -- 6.03 5.76 0.49 
Standard curve-linear effect 

P-value -- -- 
0.0092 0.2177 0.0001 

Product 1 linear effect P-value -- -- 0.2349 0.0843 0.0585 
Product 1 quadratic effect P-

value -- -- 
0.2879 0.1173 0.0466 

Product 2 linear effect P-value -- -- 0.7863 0.3394 0.4184 
Product 2 quadratic effect P-

value -- -- 
0.8488 0.3801 0.3654 

Product 1 vs. Product 2 (2 products x 3 levels- factorial arrangement)D 

Product P-value -- -- 0.6534 0.8444 0.8724 

Level P-value -- -- 0.1214 0.0579 0.0399 
Product x Level 

P-value -- -- 
0.4759 0.2333 0.0393 

 
A Product 1 at 2,500 FYT/g                                                  C Fischer’s least significant difference value 
B Product 2 at 5,000 FYT/g                                                  D Levels include only 250, 500, and 750 FYT/k 

Table 4. Mineral Digestibility Data (Day 18-to-Day 21) 
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Analyzed 
Total P 

(%) 
Analyzed 
Ca (%) 

Apparent Metabolizable 
Energy (kcal/kg) adjusted to a 

constant DM (88%)  
[standard deviation] 

0.23 calc. nPP 0.43 0.79 3452c  [183] 

0.28 calc. nPP 0.46 0.75 3680a  [94] 

0.33 calc. nPP 0.50 0.77 3588ab  [247] 

0.38 calc. nPP 0.56 0.78 3643ab  [241] 

Product 1A 250 FYT/kg 0.42 0.82 3573b  [269] 

Product 1 500 FYT/kg 0.41 0.77 3595ab  [140] 

Product 1 750 FYT/kg 0.42 0.78 3691a  [126] 

Product 1 1000 FYT/kg 0.42 0.78 3644ab  [96] 

Product 1 2000 FYT/kg 0.41 0.77 3639ab  [176] 

Product 2B 250 FYT/kg 0.43 0.79 3607ab  [103] 

Product 2 500 FYT/kg 0.43 0.78 3665ab  [137] 

Product 2 750 FYT/kg 0.42 0.78 3610ab  [150] 

ANOVA P-value -- -- 0.0147 

LSDC -- -- 116 

Standard curve-linear effect P-value -- -- 0.1502 

Product 1 linear effect P-value -- -- 0.2474 

Product 1 quadratic effect P-value -- -- 0.2969 

Product 2 linear effect P-value -- -- 0.3350 

Product 2 quadratic effect P-value -- -- 0.3330 

Product 1 vs. Product 2 (2 products x 3 levels- factorial arrangement)D 

Product P-value -- -- 0.7966 

Level P-value -- -- 0.2811 

Product x Level P-value -- -- 0.1287 
 
A Product 1 at 2,500 FYT/g                                                  C Fischer’s least significant difference value 
B Product 2 at 5,000 FYT/g                                                  D Levels include only 250, 500, and 750 FYT/kg 
  
 

Table 5. Apparent Metabolizable Energy Data (Day 18-to-Day 21) 
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Notations for footnotes in article: 
 
 1 Weigh-Tronix vertical mixer at West Virginia University 
 2  Hach Company, Loveland, Colorado, 80539 
 3 Roche Vitamins Inc., Parsippany, New Jersey 07054 
 4 University of Maryland, Roselina Angel 
 5  New Jersey Feed Laboratory Inc., Trenton, New Jersey 08650 
 6 Parr Instrument Co., Moline, Illinois 61265 
 7 Pilgrim’s Pride, Moorefield, West Virginia 26836 
 8 Thomas Scientific Co., Swedesboro, New Jersey 08085  
 9 SAS Institute. 1991. SAS User’s Guide: Statistics. Version 6.03 Edition. SAS   
 Institute, Inc., Cary, North Carolina. 
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