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Abstract 

Signal Fusion and Semantic Similarity Evaluation for Social Media 

Based Adverse Drug Event Detection 

Hameeduddin Irfan Khaja 

Recent advancements in pharmacovigilance tasks have shown the usage of social media 

as a resource to obtain real-time signals for drug surveillance. Researchers demonstrated a good 

potential for the detection of Adverse Drug Events (ADEs) using social media much earlier than 

the traditional reporting systems maintained by official regulatory authorities like the United 

States Food and Drug Administration (FDA). Existing automated drug surveillance systems have 

used various types of social media channels and search query logs for monitoring ADE signals. 

In this thesis, we address two key performance issues related to automated drug 

surveillance systems. The first is to improve the ADE signal detection by analyzing signals from 

multiple social media channels, and the second is usage of semantic similarity to evaluate ADE 

narratives detected by drug surveillance systems. Most current approaches for detecting ADEs 

from social media rely on a single channel: forums or microblogs or query logs. In this study we 

propose a new methodology to fuse signals from different social media channels. We use 

graphical causal models to discover potentially hidden connections between data channels, and 

then use such associations to generate signals for ADEs. Further, prior work have not emphasized 

much on the language of healthcare consumers, which is often casual and informal in expressing 

health issues on social media. There is a high potential to miss the semantic similarity between 

ADE terms extracted from social media and terms from formal official narratives when the two 

sets of terms do not share exact text. Thus, we exhibit the usage of semantic similarity to enhance 

accuracy of detected ADEs, and evaluated similarity measurement algorithms developed over 

biomedical vocabularies in ADE surveillance domain. We experimented on a dataset of drugs 

which had FDA black box warnings with a retrospective analysis spanning years 2008 to 2015. 

The results show a better detection rate and an improved performance in terms of precision, 

recall and timeliness using our proposed methods. 
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Chapter 1 

 

Introduction 

 

1.1 Problem and Motivation  

 

According to the United States Federal Drug Administration (FDA), an Adverse Drug Event 

(ADE) is defined as any sign or symptom or disease which is unintended and harmful and happens 

for the normal dosage of the drug [1]. The two main approaches to discover ADEs are 

premarketing review and postmarketing surveillance. The premarketing review is carried out 

before the drug is released into the market to detect any potential adverse events. In 

premarketing review potential risks are identified and they are communicated to the prescribers. 

Unfortunately, the premarketing review process does not completely identify or address all 

possible adverse events due to the shortcoming of duration and size, thus mostly insufficient of 

detecting all adverse events caused by the drug [2]. Postmarketing surveillance is carried out by 

pharmacovigilance teams for reporting ADEs after the drug has been released into the market.  

High morbidity and mortality rates are associated with adverse drug events, and hence, 

pharmacovigilance serves a critical task in postmarketing surveillance [3], [4]. Existing traditional 

approach of reporting adverse events in postmarketing surveillance includes a centralized 

voluntary reporting system like U.S. FDA Adverse Event Reporting System (FAERS) [5], the Yellow 

Cards from the UK Medicines Agency (MHRA) [6], and VigiBase – the World Health Organization’s 

(WHO’s) ADE reporting system [7], [8]. Researchers have been working on finding and improving 

novel approaches for pharmacovigilance tasks besides the traditional approach by focusing on 

capturing real-time health data through healthcare content over Web 2.0 [9], [10]. Over the past 

decade many studies have used publicly available information sources: Web forums, chat rooms, 

blogs, social networking sites, news websites, personal webpages, and so on to detect ADEs [3].  

Recent advancements in pharmacovigilance tasks have shown that the usage of social 

media data as a good resource to obtain real-time signals for drug surveillance [8]–[13]. 

Researchers have shown a good potential for the detection of ADEs using social media much 

earlier than the traditional reporting systems [8], [14]. In this thesis, we address two key 

performance issues related to automated drug surveillance systems, the first is to improve the 

ADE signal detection by analyzing signals from multiple social media channels, and the second is 

usage of semantic similarity to evaluate ADE narratives detected by drug surveillance systems 

against official narratives, such as those from the FDA. 
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Most automated drug surveillance systems detecting adverse events from social media 

or Web 2.0 relied on single channels [3]. One exception is Adjeroh et al., which proposed that 

fusing heterogeneous signals from social media channels could generate good detection rate for 

adverse drug events [8]. Their results were quite promising as the signal fusion system they 

developed utilizing Twitter and search query log signals could detect drug alerts much earlier 

than the FDA. In this study we propose a new methodology to fuse signals from three different 

social media channels: Twitter, discussion forums and FDA Adverse Event Reporting System 

(FAERS) based on a causality model for ADE surveillance. Many studies have exhibited the 

usefulness of causality models in solving similar identification problems in economics [15]. We 

used graphical causal models to discover potentially hidden connections between data channels 

and use such associations to generate signals for adverse drug events.  

Also, we note that most of the work have not emphasized the issue of language usage. It 

is well-known that the language healthcare consumers use in expressing health issues on social 

media forums and microblogging websites like Twitter is often very casual and informal [16]. On 

the other hand, warning labels and notifications from official regulatory agencies (such as the 

FDA in the US) are formal documents and usually described in a language that is very carefully 

selected by biomedical experts. This raises a major concern as the words detected from social 

media channels by the surveillance systems do not exactly match with the contents of a typical 

FDA Black Box Warning (BBW) label or alert notification.  

For many pairs of terms, there is a potential to miss the semantic similarity between social 

media extracted ADE terms and terms from FDA notification when two sets of terms do not share 

exact text. More specifically, the problem is as follows: given a formal FDA ADE narrative: X= {x1, 

x2, … xn}, and an informal ADE narrative from social media Y= {y1, y2, … ym}, determine the 

semantic similarity between X and Y. The three major issues related to semantic similarity in 

automated drug surveillance are: 1) How to measure semantic similarity between social media 

narratives and official formal documents, 2) How to use semantic similarity to evaluate the 

accuracy of detected ADEs, and 3) How to use semantic similarity to improve ADE signal 

detection. This work focuses on the first two problems. In general, X and Y could represent any 

two documents with words from a given language. Thus, semantic similarity can have 

applications in other fields such as general healthcare, automobile industry, medical devices, 

ecommerce, etc. 

Previously, Yang et al. [11] attempted to address the problem of health consumers’ 

language over the Internet by generating adverse drug reaction (ADR) lexicons using Consumer 

Health Vocabulary (CHV) – developed by Zeng et al. [16]. However, this did not address the issue 

comprehensively, as there are over 200 biomedical vocabularies in just UMLS (Unified Medical 

Language System), which also includes CHV [17]. Here, we use UMLS-Similarity program 

developed by McInnes et al. [18], for computing semantic similarity. It incorporates well-known 
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semantic similarity and semantic relatedness measures. The prominent ones include path finding 

measures (such as Rada et al. [19], and Wu & Palmer [20]) as well as information content (IC) 

measures (such as Jiang and Conrath [21], and Sánchez et al. [22]). In prior work, Park et al. 

evaluated vocabularies from UMLS based on diabetes-related terms extracted from social media 

[23]. However, it confines itself to only one subset of the vast healthcare domain. In this work we 

focused on evaluating all the measures listed in UMLS-Similarity and vocabularies in UMLS to 

determine the best combination of measures and vocabulary in computing semantic similarity 

for evaluating adverse drug event narratives. 

 

1.2 Thesis Contributions 

 

The contributions of the thesis are summarized as follows: 

• A detailed study conducted on automated drug surveillance systems developed 

for detecting adverse drug events from social media. 

• Proposed a causality-based signal fusion scheme to generate adverse drug event 

signals from potentially hidden connections between social media channels. 

• Proposed methodology to use semantic similarity for evaluating the performance 

of automated drug surveillance systems against the gold standard FDA alerts. 

• The results reported in this thesis have crucial implications for various stakeholder 

groups, including regulatory agencies like FDA, health institutes, postmarketing 

monitoring teams, pharmaceutical companies and consumer advocacy groups. 

 

1.3 Thesis Outline 

 

Chapter 2 presents a brief background and prior work related to this thesis. It is organized 

in two parts. The first section discusses existing automated methods for adverse drug events 

surveillance using social media, and the characteristics of various social media channels based on 

the CRUFS methodology presented by Abbasi and Adjeroh [9]. The second section describes 

measures of semantic similarity developed over biomedical vocabularies, an overview of 

biomedical vocabularies in the UMLS Metathesaurus, and related work which demonstrated the 

use of semantic similarity in biomedical domain.  

In Chapter 3 we propose a novel methodology of signal fusion based on causality. Here, 

we introduce the dataset we used to generate signals followed by the methodology that explains 

the graphical causal model for signal fusion. We also describe the experiment setup to implement 
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our strategy, and finally a discussion on the results we obtained in comparison with prior work. 

In Chapter 4 we present our evaluation of semantic similarity measures and biomedical 

vocabularies for comparing the ADE narratives. We discuss various aspects of selecting and 

refining biomedical vocabularies to be used with similarity measures, and finally evaluating their 

combinations against human ratings to get the best vocabulary and measure configuration for 

our ADE surveillance problem domain. Lastly, concluding remarks and future directions are 

offered in Chapter 5. 

 

1.4 Publication Resulting in part from this Thesis 

 

H. I. Khaja, M. Abate, W. Zheng, A. Abbasi, and D. Adjeroh, “Evaluating Semantic Similarity 

for Adverse Drug Event Narratives,” in Proceedings - 2018 International Conference on Social 

Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation in Modeling 

and Simulation (SBP-BRiMS) 2018. [Accepted] 
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Chapter 2 

 

Background and Related Work 

 

The traditional systems for ADE reporting includes MedWatch from U.S. FDA Adverse Event 

Reporting System [5], the Yellow Cards from the UK Medicines Agency (MHRA) [6], and the 

VigiBase – the World Health Organization’s (WHO’s) ADE reporting system [7]. Each of these 

system work in a very similar fashion, that includes visiting their official website and reporting 

the ADE in detail by filling ADE reporting forms. The ADEs submitted to MedWatch becomes part 

of world’s largest ADE database, FDA’s Adverse Event Reporting System (FAERS). This database 

includes 6.2 million ADE records and around 400,000 records are added each year. However, only 

20,000 reports are submitted voluntarily by providers and patients each year. This varying extent 

of voluntary reporting is because of the lengthy, formal process which requires filling of an 

extensively detailed ADE reporting form which is time consuming and difficult [24]. Above all, 

FDA generally requires up to 44 months to detect an ADE associated with a drug [25], whereas, 

automated drug surveillance systems were able to successfully detect many ADEs at least 15 

months earlier (with some detected 2 to 3 years beforehand) [9]. 

 

2.1 Automated Adverse Drug Event Surveillance Systems 

 

Karimi et al. in their survey on postmarketing drug surveillance classified prior works into 

two main categories. The first class of methods uses social media resources to identify ADR 

mentions. The second delve into detection of adverse events using signal detection techniques, 

with the aim of reporting ADEs earlier than FDA [26].  

It has been observed that existing automated postmarketing drug surveillance systems 

have used various social media channels including forums like: DailyStrength [13], MedHelp [11], 

PatientsLikeMe [14] etc., search query logs from major search engines like Google, Bing, or 

Yahoo!, [14], [26], the advancement of Twitter as a superior micro-blogging website, many 

studies have demonstrated it as a good channel for monitoring drug signals [3], [8], [13], [14]. 

These channels exhibit different characteristics with respect to Credibility, Recency, Frequency, 

and Salience, an evaluation proposed by Abbasi and Adjeroh [9]. Social media channels such as 

Twitter and certain health forums have lower credibility as they are prone to spam. On the other 

hand, forums exhibit greater salience as they are capable of containing greater background and 

covering more context than a 140-character tweet, and far more relative to a query 
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encompassing a few search terms [9], despite having lower volume of content than Twitter and 

search queries. 

ADE signal detection from social media resources incorporates methodologies which are 

good enough to detect potential adverse events earlier than the gold standard FDA’s MedWatch. 

Precision, Recall and detection time has been the prominent evaluating factors for such ADE 

surveillance systems. Abbasi et al. [14] in their study discuss that most of the ADE signal detection 

approaches use “mention models” that build ADR occurrence frequency time-series at different 

temporal granularities (e.g., weekly, monthly, yearly), and apply temporal association rules or z-

score thresholds to the time series [14].  

Many works in automated ADE surveillance have relied on evaluating individual social 

media source channels: forum or microblogs or search query logs, rather a combination of these 

channels to evaluate adverse drug events detection. When applied to a large dataset, these 

methods have very low detection rates. In a prior work, Adjeroh et al. demonstrated correlation-

based peak labeling fusion scheme on Twitter and search query logs [8]. They showed that fusing 

these social media channels together could generate good detection rate for adverse events. 

Nevertheless, as is well known, correlation does not necessarily imply causation, neither is 

correlation necessary for causation [27]–[29]. We address this issue by applying causality models 

to fuse channel-wise time series data. Our causality problem using time series from drug-ADR 

references is different from traditional causality analysis: rather than the usual long-range time 

series [28], we focus on causality over local temporal windows. 

Another important aspect of this work is to determine the accuracy of suggested adverse 

drug events with respect to the reference ADE narrative for which we use semantic similarity. 

Additionally, semantic similarity can also be used to improve the strength of ADE signals from 

social media channels such as microblogs, chat rooms, web forums, social networks, and so on.   

 

2.2 Semantic Similarity Measures for Biomedical Vocabularies 

 

Semantic similarity is defined as a relatedness measure between two terms in a taxonomy 

having an IS-A relationship [19]. Semantic relatedness defines functional relationships, such as PART-

OF, TREATS, AFFECTED BY, and other functional relations in addition to IS-A relation. Semantic similarity 

measures are mainly classified into knowledge-based measures and distributional-based 

measures [30]. Knowledge-based semantic similarity measures are taxonomy-based measures. 

Typical examples include random walk, path finding, and information content (IC) measures [30]. 

Path finding based semantic similarity measures use the distance between two concepts in a 

taxonomy tree as the main objective of computing semantic similarity. A drawback of path 
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finding based measures is that they give equal weight to all relationships between concepts. This 

limitation is addressed by Information content (IC) based measures by allocating different 

weights to different relationships based on the information content of concepts [30]. Information 

content is a measure of concept specificity. Intrinsic IC measures compute information content 

(IC) of concepts from the taxonomic structure itself. The idea of intrinsic IC is based on the 

assumption that the taxonomic structure of vocabulary is organized in a comprehensive way, 

where concepts with many children and few parents have lower IC value than the concepts which 

are more specific or have less children. Random walk measures on the other hand simulate walks 

on a concept graph and define the relatedness on overall connectivity between concepts unlike 

the shortest path in path finding based and IC-based measures. 

Distributional-based measures deploy a domain corpus in addition to the taxonomic 

structure of the vocabulary [31]. A study by Pedersen et al. proposed a distributional-based 

measure called context vector measure for semantic relatedness and showed that this measure 

outperformed knowledge-based path finding measures [31]. Sánchez et al. showed that 

knowledge-based intrinsic IC measures outperformed distributional measures [32]. Garla and 

Brandt [30] observed that these studies have methodological differences preventing a direct 

comparison. However, they showed that for a wide range of vocabularies and benchmarks, 

intrinsic IC measures performed as well or better than distributional measures. In addition, they 

suggested the use of UMLS vocabularies for higher concordance with human judgments. Yet, no 

ADE specific evaluation has been done. Moreover, the performance of similarity measures 

heavily depends on vocabulary chosen. 

 

2.3 Biomedical Vocabularies in the UMLS Metathesaurus 

 

The UMLS, or Unified Medical Language System, is a set of files and software that brings 

together many health and biomedical vocabularies and standards to enable interoperability 

between computer systems [17]. The Metathesaurus is the biggest component of the UMLS. It is 

a large biomedical thesaurus that is organized by concept, or meaning, and it links similar names 

for the same concept from over 200 different source vocabularies. These vocabularies are 

electronic versions of various thesauri, classifications, code sets, and lists of controlled terms 

used in patient care, health services billing, public health statistics, indexing and cataloging 

biomedical literature, and/or basic, clinical, and health services research [33]. Some of the 

prominent source vocabularies in UMLS Metathesaurus includes:  ICD-10-CM (International 

Classification of Diseases, Tenth Revision, Clinical Modification), LOINC (Logical Observation 

Identifiers Names and Codes), MSH (Medical Subject Headings), RxNorm, and SNOMED CT 

(Systemized Nomenclature of Medicine Clinical Term). 
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In UMLS Metathesaurus, source vocabularies are represented by the acronym SAB 

(Source Abbreviation) and are organized based on concepts described by Concept Unique 

Identifier (CUI). CUI is the basic and most general representation of a concept or terminology 

wherein each CUI has its own definition/meaning, and the possible relations (REL) to other 

concepts are defined based on CUIs. Refer Table B.1 in Appendix B, for the list of all relationships 

defined in UMLS [33]. 

Several studies have earlier evaluated semantic similarity measures. These measures 

have been evaluated based on a specific standard rating coded by healthcare professionals as 

seen in Pedersen et al. [31] and Sánchez et al. [32], where pairs were coded by physicians and 

experts. In addition to this very few biomedical ontologies have been addressed in testing the 

semantic measures. Most efforts on this issue relied only on SNOMED CT or MSH considering 

these vocabularies as gold standard [30]–[32], while ignoring other biomedical vocabularies.  

Pesquita et al. [34] addressed some aspects of selection of semantic similarity measures, 

but the work is limited to Gene Ontologies and its specific applications. In our work, we consider 

the use of semantic similarity measures in general biomedical applications, especially where the 

terms are extracted from social media healthcare resources and other microblogging websites. 

For a social media generated signal, we have the language as a major concern and hence 

the testing on selection of semantic similarity measure and source vocabulary should be based 

on ratings obtained from general healthcare consumers, in addition to ratings from healthcare 

professionals. Thus, we used human ratings as the standard to compare the performance of each 

combination of measure and vocabulary configuration. The human ratings obtained for this 

evaluation consists of ratings from people who use social media as a primary source for health-

related information as well as ratings from people who are working in healthcare industry.  

Our methodology involves comparison of similarity values for every combination of 

semantic similarity measures and selected vocabulary configurations with human ratings as a 

benchmark to select the best combination as discussed in Chapter 4. Therefore, the objective of 

this work is to have a best combination of the vocabularies from UMLS Metathesaurus and the 

semantic similarity algorithms to compare the narratives in the reference document (E.g. FDA 

black box warnings), and the target narrative identified by the automated drug surveillance 

system using social media.  

In this thesis, we first demonstrate signal fusion using causality model to detect Adverse 

Drug Events and report the detection rate using this methodology. In addition to this, we evaluate 

the suggested ADE narrative against FDA’s black box warnings to measure the efficiency of the 

system using biomedical semantic similarity measures. We evaluate the efficiency in terms of 

precision, recall and timeliness as discussed in Chapter 3. 
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Chapter 3 

 

Causality Based Signal Fusion for ADE Detection 

 

In this chapter, we propose a new methodology to fuse signals from three different social 

media user-generated content (UGC) channels: Twitter, Discussion Forums and FDA Adverse 

Event Reporting System (FAERS) based on a causality model for ADE surveillance. For causality 

modeling, we used graphical causal models to represent causal relations, and then used the 

Granger causality test to detect potential flags for ADE. This chapter is organized as follows: 

Section 3.1 introduces the dataset and signals we utilized for our work. Section 3.2 describes the 

causality model in detail including the Granger Causality tests, ADE signal detection and 

evaluation of detected ADE narratives against official FDA documents. Section 3.3 discusses the 

experimental setup for selecting possible candidates from the signals and filtering them to obtain 

the potential flag for ADEs. Finally, Section 3.4 provides a discussion of our experimental results 

and compares it with the correlation-based signal fusion methodology described in [8]. 

 

3.1 Dataset and Signals 

 

The methodology to generate signals has been adapted from Adjeroh et al. [8], where the 

authors described the signal generation process as simple drug-ADR reference model, based on 

a predefined list of keywords for human anatomy, drug reactions, and drug administration 

problems. That is, for a given data source, we consider joint references to a given drug (or its 

various aliases) and a keyword from each of the three keyword sets. We recorded the number of 

such references in terms of weeks from 2008 to 2014, and then formed a time series by 

normalizing these counts into empirical probabilities and z-scores. 

To identify potential ADR mentions, lexicons were developed for anatomy-related terms, 

reactions, and drug administration keywords. The lexicons, which were developed by research 

assistants with backgrounds in biology and medicine, were used to tag the tweets. For example, 

the statement “I’ve been through headaches since I started taking Actos.” would be tagged as 

“I’ve been through <ANATOMY><REACTION> since I started taking <DRUG>”. For word-sense 

disambiguation, we used the CMU part-of-speech tagger designed specifically for tweets [35], to 

help improve the likelihood that anatomy and side-effect tags were applied appropriately. 

For an adverse event E, given a time window ti ∈ T = {t1 ... tg}, where tg is the current time 

period of the analysis, and tg is less than the eventual event time period te. Let D(d) represent the 
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number of drug names associated with event E that appear in document d. Let C = {d1 ... dn} 

signify the set of documents occurring during ti within a given channel, where each D(dj) ≥ 1. 

Further, let A(dj), R(dj), and M(dj) represent the number of anatomy, reaction, and administration 

terms present in dj, respectively. The total raw score for time ti is then computed as:  

𝑠(𝑡𝑖) = ∑(𝐷(𝑑𝑗)  +  𝐴(𝑑𝑗)  +  𝑅(𝑑𝑗)  +  𝑀(𝑑𝑗))

𝑛

𝑗=1

                                                                              (1) 

Each s(ti) is converted to a z-score z(ti) = (s(ti) – μg)/σg , where μg and σg are the mean and 

standard deviation, respectively, across all ti in T plus the training period where s(ti) > 0. T can 

vary and depending on the resolution of the signals—such as daily, weekly, and monthly time 

models, as well as the value of the current window time period tg. 

We computed the signals for a total of 90 Drugs which had an FDA black box warning for 

ADEs between 2008 and 2015. Data from three user-generated content channels was collected: 

twitter, forums, and FDA Adverse Event Reporting System (FAERS). Approximately 12 million 

tweets containing drug-name keywords spanning 2008 to 2014 were gathered through Topsy’s 

API. Over 5 million postings from 10 popular health forums were obtained using web crawlers. 

The forums include: AskAPatient, CafePharma, DailyStrength, DrugBuyersGuide, Drugs.com, 

Drugs-Forum, eHealth, MedHelp, MedsChat, and PatientsLikeMe.  The postings spanned the time 

period 2008 onwards. In addition to the social media signals, we used FAERS data obtained for 

the selected drugs for the years 2008 to 2014 and processed them as signals using the above 

approach.  

 

3.2 Causality Based Signal Fusion 

 

For causality modeling, we used graphical causal models [15], [29], [36]–[38] to represent 

causal relations, and then used the Granger causality test [28], [39]–[42] to detect potential 

causal relations. Causality between two variables, say A and B is determined by checking their 

relationship with a third variable, say C, in particular their informational (in)dependence with C. 

For example, Graph (19) in Figure 3.1 (each rectangle contains equivalent structures. Figure 

adapted from [15]). An arrow indicates dependence between nodes. Thus, A and B are 

independent, while A and C have a dependence relationship. An overall network of causal 

relations in a large system can then be constructed by combining triples such as (A, B, C). Three 

key assumptions for graphical causal models are causal sufficiency, Markov condition, and 

stability [12]. In particular, the Markov condition states that the probability of a node can be 

written by conditioning on the node’s parent. Thus, given the network: A→B→C←D, the joint 

distribution can be written as: P (A, B, C, D) = P(A).P(D).P(B|A).P(C|B, D). Since C has two parents 
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B and D, both are involved in its representation. By computing all the possible joint probabilities 

for a given network triple, Kwon and Bessler [15] identified 11 possible classes of observationally 

equivalent causal structures for a given network triple. Figure 3.1 shows these classes for 

variables A, B and C. Each block denotes an equivalent class. For example, from Bayes theorem, 

we see that for Graph (12) (A→C→B), P (A, B, C) = P(A).P(C|A).P(B/C) = P(A). 

([P(A|C).P(C)]/P(A)).P(B|C) = P(A|C).P(C).P(B|C). Similarly, for Graph (13) (A←C→B), P (A, B, C) = 

P(C).P(A|C).P(B|C). Their joint probabilities are same; thus the two graphs are equivalent.  

 

 

Figure 3.1: Equivalent classes in graphical causal model. (From [15]) 

 

3.2.1 Granger Causality Test 

 

Engle and Granger [28] developed a method to check whether a given time series, say X(t) 

is caused by another time series, say Y(t), even when X and Y are not correlated. Here, Y(t) is said 

to be caused by X(t) if a series of t-tests and F-tests on lagged values of X and of Y, show that the 

statistically significant information about future values of Y are provided by the X values (see 

Figure 3.2). Basically, Y(t) causes X(t) if the future values of X(t) can be predicted more accurately 

using the lagged values of both Y(t) and X(t) than using only lagged values of X(t). In this work, 
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we model dependence based on Granger-causality. That is, A Granger-causes B (A→B) implies 

that B depends on A. 

 

  

Figure 3.2: Causality between two time-series variables (X and Y). 

 

3.2.2 Causality Based ADE Detection 

 

From Figure 3.1, we observe three interesting classes in Graph (7) (C→A←B), Graph (11) 

(A→C←B), and Graph (15) (A→B←C) (see Figure 3.3). These structures are unique -- they contain 

unconnected colliders or v-structures. Their joint probabilities cannot be factored into other 

representations [15]. These three classes identify causation among the given set of variables.  

 

 

Figure 3.3: Causal v-structures. 

 

Our problem is thus to search over the space of the causal directed acyclic graphs to 

identify these causal v-structures for our problem of ADRs. By specifying how the variables A, B, 

and C relate to our channels Forums, FAERS and Twitter, we convert our problem of signal 

detection to that of finding causal v-structures. Here, the nodes (variables) will correspond to 
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Forums, FAERS and Twitter, signals for each drug. We propose the following steps: (1) Map A, B, 

and C (network node triples) appropriately to our channels for each drug; (2) Identify pairwise 

dependencies (cointegration or causation) between variables using the Granger model based on 

a defined threshold for F-value (𝜏𝑓) and p-value (𝜏𝑝) for the F-tests; (3) Analyze results to 

determine causal v-structures. Each local region where a causal v-structure is detected becomes 

a candidate for an ADE. For each drug, we compute the candidates for the three v-structures. 

The potential flags are identified as the candidates occurring in at least one v-structure. 

For a given drug, the month with the highest number of flags denotes the detection of 

ADE as alert signal. The time specified by the alert signal will be considered as the detection time 

for ADE. We search the anatomy and reaction terms based on the detection time of the flag 

across all the three channels: Twitter, Forums and FAERS, and accumulate unique terms for both 

anatomy and reaction categories. We then match the obtained anatomy and reaction terms for 

the ADE against the anatomy and reaction terms given in FDA’s black box warning for the drug 

to evaluate precision and recall of the detected ADE terms. For computing precision and recall, 

we apply semantic similarity algorithms from the biomedical domain (discussed in chapter 4). 

 

3.3 Experiment Setup 

 

We obtained signals as described in Section 3.1 for a total of 335 weeks ranging from 

2007-12-30 to 2014-05-25 from three channels: Forums, FAERS, and Twitter for the list of 90 

drugs shown in Table A.1 in Appendix A. Of the 90 drugs there were 16 drugs which had multiple 

black box warnings on different dates and hence we analyzed them for each of the dates.  

For each drug, we compute the Granger causality across the permutation of pairs formed 

by the 3 channels using the grangercausalitytests program from statsmodels package in Python 

[43]. We specify the input parameter maximum lag as 3 and we design our Granger test for 

multiple window sizes (∆ = 8, 10, 12, 14, and 16 weeks). Graphically, our Granger model for 

testing causality between any two social media channels (say Forums(A) and Twitter(C)) can be 

depicted in Figure 3.4. Our causality testing for ADE surveillance is different from traditional 

causality analysis which usually focuses on long-range time series [28]. The figure explains that 

we test Granger causality over local temporal windows defined by the window size ∆. The whole 

experiment is performed for both overlapping as well as non-overlapping windows for the 335-

week dataset. 
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Figure 3.4: Implementation of Granger causality tests over local temporal windows. 

 

3.3.1 Selecting Candidates for V-Structures 

 

We now analyze the Granger test results for the pairs of channels by forming the v-

structures for each window size separately. We defined our threshold for Granger results: 𝜏𝑓 as 

2.5 and 𝜏𝑝  as 0.15 a slightly moderate one to get more combination of flags. The set of candidate 

windows in v-structure (say A→C←B) are added from both Granger tests, A→C and B→C. For 

each window having any lag satisfying thresholds (𝜏𝑓 , 𝜏𝑝) in Granger test A→C, we select the 

corresponding nearest window from B→C which satisfies (𝜏𝑓 , 𝜏𝑝), as candidates in A→C←B. 

Likewise,  for each window having any lag satisfying thresholds (𝜏𝑓 , 𝜏𝑝) in Granger test B→C, we 

select the corresponding nearest window from A→C satisfying (𝜏𝑓 , 𝜏𝑝),  (see Figure 3.5).   

 

 

Figure 3.5: Forming candidates in causal v-structure (A→C←B). 
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To automate this process, we developed the procedure for candidate selection as shown 

in Figure 3.6 for choosing the candidate set of v-structures. 

Procedure for Selecting Candidates in V-Structures 

Algorithm FormStructure(A→C, B→C): 
1: Consider v-structure A→C←B (say A represents Forum, B represents FAERS, and C 

represents Twitter) and ∆ be the window size (for overlapping windows ∆ =1). 
2: Scan the results of A → C satisfying thresholds to get candidates, A_candidates 
3: D = SelectCandidates(A_candidates, B→C) 
4: Scan the results of B → C satisfying thresholds to get candidates, B_candidates 
5: D1 = SelectCandidates(B_candidates, A→C) 
6: Merge D & D1, store complete candidate set for A→C←B for window size ∆. 
 
Algorithm SelectCandidates(A→C, B→C): 
1: Initialize set D. 
2: for each row A_ID in A_candidates:  
// to find corresponding row in B → C, A_corres  
3: set B_ID = A_ID 
4: for B_IDArray = [B_ID – 2∆, B_ID – ∆, B_ID, B_ID + ∆, B_ID + 2∆] 
5:  rowID=B_IDArray[2]  
6:  if rowID has a candidate: 
7:   A_corres = rowID  
8:   break 
9:  rowID1= B_IDArray[1], rowID2= B_IDArray[3]  
10:  if rowID1 or rowID2 has a candidate: 
11:   if rowID1 has a candidate, A_corres = rowID1 
12:    else A_corres = rowID2 
13:    break 
14:   rowID1= B_IDArray[0], rowID2= B_IDArray[4]  
15:   if rowID1 or rowID2 has a candidate: 
16:   if rowID1 has a candidate, A_corres = rowID1 
17:    else A_corres = rowID2 
18:    break 
19:   A_corres = B_ID  
// if none of the neighbors is found  
20:   end if 
21: end for 
22:  merge A_candidates and A_corres, add to D. 
23: end for 
24: return D 

Figure 3.6: Candidate selection algorithm. 
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Figure 3.7 shows the graphical representation of the candidate selection process for the 

v-structure A→C←B. As shown in figure we have n windows for Granger test results for A→C and 

B→C, here n varies on the number of weeks and also the window size ∆. For each window (say x) 

having any lag satisfying thresholds (𝜏𝑓 , 𝜏𝑝) in A→C we find the corresponding window in B→C 

such that any lag in the window y=x or its closest neighboring windows (y-2∆, y-∆, y+∆, y+2∆) 

satisfies the thresholds (𝜏𝑓 , 𝜏𝑝). The process is repeated for windows in B→C, and we form such 

(x,y) candidates from A→C and B→C for the v-structure A→C←B.  

 
Figure 3.7: Candidate selection for A→C←B. 

 

Using this procedure, we compute candidate sets for all the window sizes (∆ = 8, 10, 12, 

14, 16 weeks), for the v-structures: A→C←B, A→B←C, and B→A←C. 

 

3.3.2 Finding Potential Flags 

 

We now report the potential flags for each drug representing a potential ADE. One can 

clearly observe that the procedure used to select candidates for forming the v-structures as 

discussed in Section 3.3.1 is not strict, as any window having a single lag satisfying the threshold 

(𝜏𝑓 , 𝜏𝑝) is considered to be a candidate. Thus, there is a need to filter the candidates before 

processing them for finding potential flags. In theory, it is desired to have all lags satisfying the 

threshold for a selected candidate, but this would be too strict and could miss some candidates.  
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In practice, we made the filtering process flexible by varying threshold (𝜏𝑓 , 𝜏𝑝) and defining rules 

based on the number of lags satisfying a given threshold (𝜏𝑓 , 𝜏𝑝). Given a v-structure A→C←B, 

we define rules Rule(α, β) as follows: For a selected candidate in  A→C←B, at least α number of 

lags should satisfy (𝜏𝑓 , 𝜏𝑝) on Granger test A→C and at least β number of lags should satisfy 

(𝜏𝑓 , 𝜏𝑝) on Granger test B→C, and vice versa. We choose rules:  

1. Rule(1,1),  

2. Rule(2,1),  

3. Rule(2,2), and  

4. Rule(3,1). 

where each rule would indicate the number of lags that satisfies (𝜏𝑓 , 𝜏𝑝) for Granger  

tests of a candidate in v-structure.  

Figure 3.8 shows an example for Rule(2,1). Here the Rule(2,1) for v-structure A→C←B, 

would only select candidates satisfying thresholds for at least 2 lags on Granger test A→C and at 

least 1 lag on Granger test B→C, and at least 1 lag on A→C and at least 2 lags on B→C.  

 

 
Figure 3.8: Filtering candidate selection for A→C←B using Rule(2,1). 
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Empirically we decided two thresholds:  

1. 𝜏𝑓=2.5 with 𝜏𝑝=0.15 for all the 4 lag rules, and  

2. 𝜏𝑓=3.0 with 𝜏𝑝=0.05 only for Rule(1,1) and Rule(2,1). 
 

With the above threshold and lag rule combination we have 6 separate settings to filter 

candidate sets from v-structures:  

1. 𝜏𝑓=2.5 with 𝜏𝑝=0.15 for Rule(1,1), 

2. 𝜏𝑓=2.5 with 𝜏𝑝=0.15 for Rule(2,2), 

3. 𝜏𝑓=2.5 with 𝜏𝑝=0.15 for Rule(2,1), 

4. 𝜏𝑓=2.5 with 𝜏𝑝=0.15 for Rule(3,1), 

5. 𝜏𝑓=3 with 𝜏𝑝=0.05 for Rule(1,1), and 

6. 𝜏𝑓=3 with 𝜏𝑝=0.05 for Rule(2,1). 

 

For each drug we set the target date as 3 months before FDA’s black box warning date. 

The evaluation of potential flags for each setting is based on the filtered candidate set for v-

structures, such that the selected candidate for a flag should be present in at least two v-

structures and at least one signal in it should end before the target date.  

 

 
Figure 3.9: Finding potential flags from v-structures. 

 

For a given flag if both the signals in it ends before the target date then we consider it as 

red flag otherwise it is considered to be a yellow flag. We follow the procedure shown in Figure 

3.10 in filtering the candidate set and evaluating potential flags. 
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Procedure for finding Flags from Candidate Set 

Algorithm FindFlags(A→C←B, A→B←C, B→A←C): 
1: Consider setting (τf, τp) as threshold with lag rule Rule(n1, n2) and ∆ as window size. 

Take the target, as 3 months before FDA’s black box warning date. Initialize list D1. 
2: d1=FilterCandidates(A→C←B, τf, τp, n1, n2, ∆) 

3: d2=FilterCandidates(A→B←C, τf, τp, n1, n2, ∆)  

4: d3=FilterCandidates(B→A←C, τf, τp, n1, n2, ∆) 

5: s=MultipleOccurrence(d1, d2, d3) 

6: flags=SearchFlags(d1, d2, d3, s) 

7: <red_flags, yellow_flags> = RedYellow(flags, target) 

 

Algorithm FilterCandidates(X, τf, τp, n1, n2, ∆): 

1: Let A_ID, A_f1, A_p1, A_f2, A_p2, A_f3, A_p3 denote attributes for left-hand side of X. Let  
B_ID, B_f1, B_p1, B_f2, B_p2, B_f3, B_p3 denote attributes for right-hand side of X. 

2: Initialize D as empty dataframe. 
3: for candidate rows, C in X: 
4:  Initialize count1 = 0, count2 = 0. 
5: for i=1 to 3: 
6:   if A_fi >= τf and A_pi <= τp, increment count1, end if 

7:   if B_fi >= τf and B_pi <= τp, increment count2, end if 

8:  end for  

9:  if (count1 >=n1 and count2 >=n2) or (count1 >=n2 and count2 >=n1) add C to 

dataframe D, end if  

// D is filtered candidate set for v-structure X.  

10: end for 

11: return D. 

 

Algorithm MultipleOccurrence(d1, d2, d3): 

1: Initialize s as empty set  

// Finding potential flags.  

2: for dataframe, X in [d1, d2, d3]: 

3: initialize s1 as empty set  

4:  for candidate row, C in X:  

              // to add unique signals from the v-structure X 

5:  if A_ID is not in s1, append A_ID to s1, end if 

6:  if B_ID is not in s1, append B_ID to s1, end if 

7: end for 

8: append s1 to s. 

9: end for 

10: for j in s: 

11: if count(j) < 2, remove j from s, end if  
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              // candidates from multiple v-structures 

12: end for 

13: return s 

 

Algorithm SearchFlags(d1, d2, d3, s): 

1: Initialize K as empty dataframe. 

2: for each dataframe X, in [d1, d2, d3]: 

3: for candidate row, C in X: 

4:  if A_ID in s, append C to K, end if 

5:   if B_ID in s and A_ID not in s, append C to K, end if 

6: end for 

7: end for 

8: return K 

 

Algorithm RedYellow(flags, target): 

1: for each row, C in flags: 

2: if A_endDate < target and B_endDate < target, append C to red_flags. 

3: else if A_endDate < target or B_endDate < target, append C to yellow_flags. 

4: end if 

5: end for 

6: return <red_flags, yellow_flags> 

Figure 3.10: Algorithm for finding potential flags. 
 

Following the above algorithm, we computed red and yellow flags for the combinations 

of window sizes 10, 12, 14 and 16 weeks with the 6 rule settings defined above.  

 

3.3.3 Evaluating ADE Narratives 

 

Now that we obtained potential flags for all drugs using different settings and window 

configurations, we compute the month which has the highest number of potential red flags to be 

considered as the time for the alert signal for the drug. We also specify that in the absence of red 

flags, we consider the month which has the highest number of yellow flags as the alert signal. 

The complete methodology is summarized in Figure 3.11. 
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Figure 3.11: Methodology for causality-based signal fusion. 

 

Based on the alert signal month for each drug, we extract anatomy and reaction terms 

from all the 3 channels: Twitter, Forums and FAERS. The extracted anatomy and reaction terms 

are again processed to remove redundancy. Finally, we use Semantic Similarity measure sanchez 

with CHV-SNOMEDCT vocabulary configuration (refer Chapter 4) for evaluating our social media-

based ADE narratives against the official FDA documents. The performance is evaluated in terms 

of detection rate, precision and recall for both overlapping windows and non-overlapping 

windows setup. 
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3.4 Experiment Results and Discussion 

 

3.4.1 Experiment Results 

 

As mentioned in the methodology section, we evaluated our approach using overlapping 

as well as non-overlapping window configurations for the time series data of the 90 drugs having 

a total of 107 FDA black box warnings. Table 3.1 and Table 3.2 represent a detailed result for 

detecting red and yellow flags for the complete dataset. 

 

Table 3.1: Detection using non-overlapping windows. 

Setting Total BBW 

Detected 
Detected as Red Detected as Yellow  

Maximum 

Flags for a Drug (𝝉𝒇, 𝝉𝒑) Rule 

(2.5, 0.15) (1, 1) 65 55 10 96 

(2.5, 0.15) (2, 1) 54 47 7 41 

(2.5, 0.15) (2, 2) 20 18 2 8 

(2.5, 0.15) (3, 1) 23 19 4 12 

(3.0, 0.05) (1, 1) 37 31 6 15 

(3.0, 0.05) (2, 1) 15 12 3 5 

 

Table 3.2: Detection using overlapping windows. 

Setting Total BBW 

Detected 
Detected as Red Detected as Yellow  

Maximum Flags 

for a Drug (𝝉𝒇, 𝝉𝒑) Rule 

(2.5, 0.15) (1, 1) 62 62 0 661 

(2.5, 0.15) (2, 1) 52 52 0 203 

(2.5, 0.15) (2, 2) 20 20 0 17 

(2.5, 0.15) (3, 1) 32 32 0 36 

(3.0, 0.05) (1, 1) 46 45 1 60 

(3.0, 0.05) (2, 1) 14 14 0 24 

 

For each configuration we computed the month which has the highest number of 

potential red flags of all the settings as alert signal for the drug. We also specify that in the 

absence of red flags, we consider the month which has the highest number of yellow flags as the 

alert signal. Thus, for each drug we obtain alert signal. We evaluate the performance of the 
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system in terms of Precision and Recall using the semantic similarity techniques. We evaluated 

our results for the drugs dataset discussed in Section 3.1. Table 3.3 shows these results 

summarized in terms of mean and median statistics over all the drugs for both overlapping and 

non-overlapping window configurations. Here we present the performance factors in terms of 

detection rate: the proportion of drugs identified as having a potential Adverse Drug Event. We 

also evaluate the suggested ADE narrative against the gold standard FDA black box warnings by 

computing the precision and recall for anatomy and reaction terms.  

 

Table 3.3: Performance statistics for causality configurations. 

Window 
Configuration 

Detection 
Rate 

Statistic 
Anatomy Reaction 

Precision Recall Precision Recall 

Overlapping 0.62 
Mean 0.1883 0.5637 0.1778 0.5339 

Median 0.1667 0.6667 0.1667 0.5000 

Non-
Overlapping 

0.63 
Mean 0.1972 0.4524 0.1755 0.4649 

Median 0.1434 0.3765 0.1429 0.5500 
 

Timeliness or detection time is another perspective to evaluate an automated drug 

surveillance system. Detection rate tells us whether the considered approach is able to detect 

the adverse drug event or not, however one would also like to see how early the adverse drug 

events gets detected; so that it helps the concerned authorities like FDA to respond. Thus, we 

computed the detection time for each black box warning in terms of number of months prior to 

the FDA. Figure 3.12 shows the list of drugs detected with their earliest detection time prior to 

the FDA’s black box warning for overlapping as well as non-overlapping windows. 
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Figure 3.12: Detection time for drugs. 
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3.4.2 Comparison with Prior Work 

 

We have also compared our results against the correlation-based peak labeling fusion 

scheme for search engine query log terms and Twitter data used by Adjeroh et al. [8]. One key 

observation here is that Adjeroh et al. [8] used the dataset which had only 46 drugs experimented 

for FDA alerts. On the other hand, the drug dataset for this work is based on FDA blackbox 

warnings (BBWs) for a total of 90 different drugs. Furthermore, 16 drugs had more than one black 

box warning (the drug Aceon, had three black box warnings) making it a total of 107, which is 

more than double the size of dataset used in [8]. Thus, a direct comparison of all the performance 

factors cannot be done; however, the detection rate and the timeliness of detection provide a 

fair measure to compare how well the ADEs have been detected. Figure 3.13 and Table 3.4 show 

the comparison in terms of detection rate. (first 5 rows are described in [8]).  

 

Table 3.4: Comparing detection rate for fusion techniques. 

Fusion Technique Detection Rate 

fuse([Q, T], [52,104]) 0.6522 

fuse([Q, T], [n,52,104]) 0.5435 

fuse[Q, T], [n]) 0.3478 

fuse([Q], [n]) 0.4783 

fuse([T], [n]) 0.3261 

Causality-based (overlapping) 0.6222 

Causality-based (non-overlapping) 0.6333 

Causality-combined 0.6777 
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Figure 3.13: Detection rate comparison. 

 

The detection rate for both overlapping and non-overlapping configurations performed 

well better than 4 of the fusion techniques proposed by Adjeroh et al.  [8]. Also, we achieved a 

detection rate of 68 percent when we take into account the total detections from both 

overlapping as well as non-overlapping configurations which is more than the highest detection 

rate: 65 percent described in [8].  

We represent the timeliness in terms of maximum, mean and median statistic of 

detection time before FDA action for overlapping as well as non-overlapping window 

configurations; and then compare against the prior work [8] (see Table 3.5).  

 

Table 3.5: Timeliness comparison. 

Fusion Technique 
Detection time before FDA action (in months) 

Mean Median Maximum 

Causality-based (overlapping) 19.75 14.99 55.07 

Causality-based (non-overlapping) 19.46 14.00 56.02 

fuse([Q, T], [52,104]) [8] 23.58 23.5 36 

 

For both the causality-based window configurations we get almost the same result in 

terms of detection time. Our causality-based fusion techniques had significantly good maximum 
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detection time in comparison with prior work. However, prior work’s detection time for mean 

statistic was slightly better than our results, whereas the median statistic shows more difference 

in the timeliness of causality-based fusion techniques against the correlation-based fusion 

scheme described in [8]. 

As mentioned earlier, we used three different user-generated content (UGC) channels in 

this study for 107 blackbox FDA warnings. On the other hand, prior work used only Twitter and 

search query logs for the 46 FDA alerts drug dataset [8]. Thus, considering the dataset and the 

social media channels being used, our comparative analysis tells us that, the causality-based 

technique discussed in this work has relatively better performance. 

 

3.4.3 Discussion 

 

Clearly, we can see that Non-overlapping window configuration has slightly better 

detection rate when compared to overlapping window configuration (see Table 3.3). This could 

be due to the fact that the non-overlapping window covers a greater range of weeks for 

candidates in a v-structure allowing it to get a longer cross channel detection, thus having more 

potential candidates for drug signals. On the other hand, the overlapping window has a focused 

and shorter range of weeks for a given flag. This observation also answers the point that 

overlapping configuration has relatively greater precision and recall values than non-overlapping 

configuration, as the focused signals are the ones that have a high signal strength for a flag.  

From Table 3.2, it is evident that no yellow flags are detected for overlapping 

configuration except for the setting: (𝜏𝑓 = 3.0, 𝜏𝑝 = 0.05) with Rule(1,1), essentially forming the 

flags for shorter range and having more red flags than non-overlapping window configuration. 

Additionally, the maximum number of flags detected for any drug is far more than non-

overlapping window configuration for all settings. This observation could indicate that 

overlapping configuration is better capable of capturing more number of closer hidden 

connections between channels, but one needs to be cautious with the false alarms. A false alarm 

is defined as the potential flag representing an ADE falsely, i.e. an alert signal which does not 

correspond to the FDA action for a drug. Differentiating false alarms and improving the social 

media alert signal for the drugs could be an interesting future aspect to the study. 

In this work, we propose causality-based methodology to identify ADEs from the 

associations between social media UGC channels. Identifying the false alarms and detecting ADEs 

for unknown FDA blackbox warnings could be some of the directions for the future work. 
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Chapter 4 

 

Evaluating Semantic Similarity for ADE Narratives 

 

In this chapter, we discuss a new approach to evaluate semantic similarity measures in 

biomedical domain for comparing ADE narratives. Our objective is to evaluate all the possible 

similarity measurement algorithms (SMAs) listed in UMLS-Similarity program along with the 

vocabulary configurations (VCs) from UMLS Metathesaurus database to determine the best 

combination of measures and respective vocabulary configurations in computing semantic 

similarity in the domain of adverse drug event surveillance. This chapter is organized as follows: 

Section 4.1 introduces the materials and methods focusing on the dataset we used and the 

methodology involved in this work. Section 4.2 describes the experiment and results in detail 

including the experimental setup, results computed in each phase, and finally results showing 

evaluation of ADE narratives. The last Section 4.3 presents a brief discussion on our methodology 

in the light of the results we obtained.  

 

4.1 Materials and Methods 

 

Our methodology follows the procedure: 1) Identify the best vocabulary configurations 

(VCs) to use, 2) Determine the best combination of VCs and similarity measurement algorithms 

(SMAs) via joint optimization, and 3) Perform semantic similarity measurement using VC and SMA 

on narratives from social media against FDA narratives. 

 

4.1.1 Datasets 

 

Problem Domain Terms: In order to evaluate vocabulary configurations and similarity 

measures, we used anatomy and reaction terms extracted from social media channels for the 90 

drugs described in Chapter 3. The dataset was formed after the extracted terms were processed 

for removing redundancy. The dataset had 105 initial anatomy terms and 202 initial reaction 

terms (referred as clusters), which was expanded with words with similar meanings, resulting in 

a new list with 178 anatomy terms, and 417 reaction terms. Refer Appendix B for the list of 

problem domain terms and clusters. 
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Human Ratings: Language is a major concern in evaluating the signals generated from 

social media, hence, the testing on SMAs and VCs should be based on the ratings obtained from 

general healthcare consumers along with healthcare professionals. Thus, we used human ratings 

as the standard to compare the performance of each combination of SMA and VC. Initially, we 

had 178 anatomy terms and 417 reaction terms, and forming pairs with all these terms would 

lead to over 100,000 pairs and that would have been impossible for the respondents to rate the 

similarity. Thus, we randomly selected 30 anatomy terms forming a set of 435 [(30*29)/2] 

anatomy pairs and 40 reaction pairs forming a set of 780 [(40*39)/2] reaction pairs. Further, to 

rate these 1215 pairs we contacted 6 computer science graduate researchers having appreciable 

knowledge of biomedical vocabulary usage over social media. Finally, based on their ratings a 

template with a set of 100 pairs was designed comprising 50 anatomy pairs and 50 reaction pairs. 

This template had rating options 0, 0.25, 0.5, 0.75 and 1 indicating levels from non-similar to very 

similar. We obtained 130 user ratings across the United States. This consists of 54 individuals 

coming from 5 different universities with health sciences and engineering background, and 76 

from Amazon Mechanical Turk users having at least US Bachelor’s degree. Further, we selected 

117 ratings by excluding the outliers that had a negative correlation with the mean. We also 

analyzed the inter-rater agreement in terms of average correlation between raters. We filtered 

the ratings to achieve the benchmark of 80% average correlation and this resulted in a total of 

107 ratings. 

FDA BBW:  To evaluate our work, we used FDA black box warning (BBW) labels as gold 

standard references and extracted ADE terms from the labels. We used FDA BBW data from 

January 2008 to April 2015 (http://www.fda.gov/safety/medwatch/safetyinformation/). This 

included 107 BBWs, on 90 drugs over the seven-year period.  

 

4.1.2 Selection of Vocabulary Configurations (VCs) 

 

Since the biomedical terms are found in multiple vocabularies it becomes a challenging 

question to decide which vocabulary to be used. The harder part is to find how good a given 

vocabulary is, in terms of covering all terms in a given problem domain. 

Initial Selection:  As stated earlier, UMLS has a huge collection of biomedical vocabularies 

which serves as a good resource for our work. However, we cannot use all the vocabularies in 

UMLS-Similarity due to performance and computational issues (see [44] for example). For our 

domain-specific social media extracted ADE terms, we followed the discussions in Park et. al [23], 

and selected vocabularies represented by source abbreviation (SAB):  SNOMEDCT_US, CHV, MSH, 

LCH_NW, LNC, RXNORM, NCI_FDA, VANDF, and MTHSPL from UMLS [33]. We note that the work 

in [23] was based on terms extracted from social media using queries for terms related to 
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diabetes which is one of the most common groups of diseases and with a high degree of co-

morbidity. For a more comprehensive treatment, we have considered some additional 

vocabularies where the content is closely related to ADE terms; namely, FMA, MDR, UWDA, 

WHO, NCI_NICHD, NCI_CTCAE, NDFRT_FDASPL, ICD10CM, MTHHH, and GS. Thus, given our 

specific problem domain of analyzing adverse drug events over social media channels, we had a 

total of 19 vocabularies to start our study as shown in Table 4.1.  

 

Table 4.1: Selected vocabularies from UMLS. 

Source Name 
Source Abbreviation 

(SAB) 

US Edition of SNOMEDCT SNOMEDCT_US 

Consumer Health Vocabulary CHV 

Medical Subject Headings MSH 

Library of Congress Subject Headings, Northwestern University subset LCH_NW 

Logical Observation Identifiers Names and Codes (LOINC) LNC 

RxNorm Vocabulary RXNORM 

U.S. Food and Drug Administration NCI_FDA 

Veterans Health Administration National Drug File VANDF 

Metathesaurus FDA Structured Product Labels MTHSPL 

Foundational Model of Anatomy Ontology FMA 

Medical Dictionary for Regulatory Activities Terminology (MedDRA) MDR 

University of Washington Digital Anatomist UWDA 

WHO Adverse Reaction Terminology WHO 

National Institute of Child Health and Human Development NCI_NICHD 

Common Terminology Criteria for Adverse Events NCI_CTCAE 

National Drug File – FDASPL NDFRT_FDASPL 

International Classification of Diseases, 10th Edition, Clinical Modification ICD10CM 

Metathesaurus HCPCS Hierarchical Terms MTHHH 

Gold Standard Drug Database GS 

 

Refining the VC selection: Now that we have the vocabularies chosen from UMLS, our 

next task is to reduce the list to get the best possible vocabularies based on the concepts defined 

in each VC, and the coverage of problem domain terms.  To filter the vocabularies, we consider 

the following five features: 

1. Total CUI’s: Total number of concept unique identifiers (CUIs) listed for the vocabulary;  
2. Terms Detected: number of problem domain terms detected in the vocabulary; 
3. Concept coverage: number of concepts (CUI’s) listed for problem domain terms; 
4. Unique concepts: number of unique CUIs listed for each vocabulary; and 
5. Clusters Detected: number of clusters which had at least one term detected as CUI. 
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For our purpose, good vocabularies are expected to have higher values for each of these 

features. 

 

4.1.3 Similarity Measurement Algorithms (SMAs) 

 

 For automated evaluation of semantic similarity, the vocabulary is just one piece of the 

puzzle. Another key piece is the specific algorithm to be used to perform the similarity evaluation 

using the identified vocabulary. Thus, having narrowed down the vocabulary list as described 

above we now turn to the problem of selecting the SMAs. Interestingly, the match performance 

can also be influenced by the vocabulary used. Thus, the final choice of vocabulary cannot be 

made in isolation, but must consider the specific semantic similarity measurement algorithm 

being used. We used all the similarity measurement algorithms listed in UMLS-Similarity program 

except the vector measure which is meant to compute semantic relatedness (see Table 4.2). Each 

algorithm could have a range different for the similarity values, but for most, the range is from 0 

to 1. However, a value of -1 would indicate there is no similarity between the pair of terms based 

on the vocabulary configuration. A similarity value could be -1 for two reasons: either one or both 

terms in a pair is (are) not found in the given configuration, or there is no path in the configuration 

connecting the term pairs. 

 

Table 4.2: Similarity Measurement Algorithms in UMLS-Similarity.  

S. No. UMLS-Similarity Notation Type Reference 

1 lch path finding Leacock and Chodorow(1998) [45] 

2 wup path finding Wu and Palmer (1994) [20] 

3 zhong path finding Zhong et al. (2002) [46] 

4 path path finding path measure [18] 

5 upath path finding Undirected path [18] 

6 cdist path finding Rada et al. (1989) [19] 

7 nam path finding Nguyen and Al-Mubaid (2006) [47] 

8 res IC-based Resnik (1995) [48] 

9 lin IC-based Lin (1988) [49] 

10 jcn IC-based Jiang and Conrath (1997) [21] 

11 vector context vector Pedersen et al. (2007) [31] 

12 pks path finding Pekar and Staab (2002) [50] 

13 faith IC-based Pirro and Euzenat (2010) [51] 

14 cmatch feature-based Maedche and Staab (2001) [52] 

15 batet feature-based Batet et al. (2011) [53] 

16 sanchez IC-based Sánchez et al. (2012) [22] 
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4.1.4 Joint Selection of VC and SMA 

 

We computed similarity values for the problem domain terms using each combination of 

selected VCs and the SMAs. To select the best SMA and VC, we compared their results with those 

from human observers. Comparison of the computed similarity values against the human ratings 

is performed in two steps: (1) using Pearson correlation against the mean rating from human 

observers, and (2) using information retrieval measures.  

Correlation Analysis: For the mean representation of human ratings, we calculated the 

Pearson correlation coefficient against the corresponding computed similarity values. We used 

SciPy package in Python [54] to compute correlations. The syntax for correlation coefficient is 

given as: 

𝑟12  = [∑(𝑌𝑖1  −  𝑌1) ∗ (𝑌𝑖2  −  𝑌2)] / [∑(𝑌𝑖1  −  𝑌1)2 ∗ ∑(𝑌𝑖2  − 𝑌2)2]

1
2

                               (2) 

 

Correlation results helped us in reducing the number of combination of vocabulary 

configurations and similarity measurement algorithms. The combined results suggested 

favorable vocabularies as well as SMAs. We use these results for two key purposes: (1) Filtering 

the similarity measurement algorithms given all VCs; and (2) Analyzing the influence of SMAs on 

selection of vocabulary configurations.  

Information Retrieval Factors: To further evaluate which combination of measurement 

algorithms and vocabulary configurations produces computed ratings that best mirror the human 

ratings, we grouped the problem domain term pairs into three classes: similar pairs, unknown 

pairs, and non-similar pairs.  Let S(x,y) be the semantic similarity value between term pair (x, y), 

as returned by a given algorithm. We then used two thresholds 𝜏1 and 𝜏2 (𝜏1  ≥  𝜏2) to classify a 

word pair (𝑣1, 𝑣2) as follows: 

𝐶𝑙𝑎𝑠𝑠(𝑆(𝑣1, 𝑣2)) = {

𝑠𝑖𝑚𝑖𝑙𝑎𝑟,   𝑆(𝑣1, 𝑣2) >  𝜏1

𝑢𝑛𝑘𝑛𝑜𝑤𝑛,   𝜏1 ≥ 𝑆(𝑣1, 𝑣2) ≥  𝜏2

𝑛𝑜𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟,   𝑆(𝑣1, 𝑣2) <  𝜏2

                                                                     (3) 

We used traditional information retrieval measures, namely, Precision (Pr), Recall (Rc), 

and F-measure (Fm) to evaluate the performance of selected combinations of vocabulary 

configurations and similarity measurement algorithms across the three classes. The formula to 

compute each of these factors for a given class is given as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟)  =  
𝑁𝐶  ∩  𝑁𝐻

𝑁𝐶  
                                                                                                                    (4) 
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𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐)  =  
𝑁𝐶  ∩ 𝑁𝐻

𝑁𝐻
                                                                                                                          (5) 

where, 
NC = Number of computed pairs in a given class 
NH = Number of human pairs in a given class 
  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹𝑚)  =  
2 ∗ 𝑃𝑟 ∗  𝑅𝑐

Pr +  𝑅𝑐
                                                                                                      (6) 

For the final selection of best combination of vocabulary configuration and similarity 

measurement algorithm for the given problem domain terms, we combine the information from 

the correlation analysis, and from the information retrieval measures. 

 

4.2 Experiments and Results 

 

4.2.1 Filtering Vocabularies 

 

Using programs from the UMLS-Interface [18], we listed the Concept Unique Identifiers 

(CUIs) for vocabularies configured with combinations of relations (see Table 4.3). In Table 4.3, 

SAB refers to vocabularies and PAR (parent), CHD (child), RB (broader), and RN (narrower) are 

the relations defined in UMLS [17]. We observed that most vocabularies contain only PAR, CHD 

relations. While some have RB or RN as a primary way of representing hierarchy as seen for 

Medical Subject Headings (MSH). Interestingly, some vocabularies have concepts but are not 

connected by any relations. Thus, we chose to use relation categories: PAR, CHD; RB, RN; 

Similarity relations; and all relations. Similarity relations include all relations except XR (Not 

related), Empty relations and DEL (Deleted concept). For the complete list of all relations defined 

in UMLS, refer Table B.1 in Appendix B. 

Using the UMLS-Interface package, we obtain all the concepts (CUIs) for the problem 

domain terms for each vocabulary configuration. Thus, we can evaluate the vocabularies based 

on various features discussed in Section 4.1.2. Figures 4.1 – 4.4 show some of the features used 

to filter the vocabularies. 

Combination with CHV: Based on the results obtained (see Figure 4.1 – 4.4), we observed 

that the top 5 vocabularies for anatomy category are SNOMEDCT_US, CHV, LNC, MSH, and FMA. 

The top 5 vocabularies for reaction category are SNOMEDCT_US, CHV, MDR, MSH, and LNC. 

However, in Table 4.3, we see that CHV has only 2 CUIs for all the various types of relations 

specified. Clearly, this doesn’t mean that CHV has only 2 concepts defined in it (see Figure 4.1). 

In fact, CHV has no relations defined between CUIs which restricts its use independently. On the 
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other hand, we see that there are other vocabularies where we have concepts obtained for 

different relation configurations like PAR/CHD, RB/RN, similar relations and all relations. 

Interestingly, it is noted that when we provide more number of relations, the UMLS-Similarity 

program raises an error and more relations would have a huge computational impact. Thus, we 

decided to include significant relations based on the number of concepts retrieved in Table 4.3 

as shown in Table 4.4. The sources listed in Table 4.4 were used in combination with CHV as it 

has more coverage of terms and improves results as seen in previous work [11], [23], [30]. 

 

Table 4.3: Number of concepts in UMLS vocabularies using the SAB/REL configurations. 
SAB/REL PAR, CHD RB, RN Similar Relationships All Relationships 

CHV 2 2 2 2 

FMA 97817 2 97830 97830 

GS 2 2 2 2 

ICD10CM 91673 2 101407 101407 

LCH_NW 2 2 14578 14578 

LNC 113526 24157 166393 166393 

MDR 23439 2 53175 53175 

MSH 28575 346054 366174 366174 

MTHHH 7142 2 7142 7142 

MTHSPL 2 2 50635 50635 

NCI_CTCAE 2 2 2 2 

NCI_FDA 2 2 2 2 

NCI_NICHD 2 2 2 2 

NDFRT_FDASPL 2 2 9137 9137 

RxNorm 2 173552 202077 202077 

SNOMEDCT_US 321004 43208 357226 357997 

UWDA 61087 61087 61087 61087 

VANDF 2 25072 31727 31727 

WHO 1737 3176 3178 3178 

 

Table 4.4: Relations used for selected source vocabularies. 
Source vocabulary(SAB) Relations(REL)  

SNOMEDCT_US PAR/CHD 

MSH RB/RN 

LNC PAR/CHD 

MDR PAR/CHD 

FMA PAR/CHD 
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Figure 4.1: Percentage of terms detected. 

 

 
Figure 4.2: Percentage of concepts(CUIs) covered for terms. 
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Figure 4.3: Percentage of unique concepts(CUIs) obtained. 

 

 
Figure 4.4: Percentage of clusters detected. 
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4.2.2 Joint Selection of VC and SMA 

 

Correlation Analysis: If the significance level is ≤ 5% (i.e., P-value ≤ 0.05) and the 

corresponding correlation coefficient is positively high for any vocabulary configuration and 

similarity measurement algorithm, then we say that SMA or VC is favored. From Table 4.5, and 

Figures 4.5 and 4.6, we can see that for anatomy category the similarity measurement algorithms 

which frequently appear to be good are cmatch, jcn and sanchez with vocabulary configurations 

CHV-SNOMEDCT_US and CHV-LNC. 

For reaction category, we did not get significant p-value to favor any of the algorithms. 

However, it has been observed that nam has very high correlation coefficient with vocabularies 

CHV-MDR and CHV-MSH, and undefined value for CHV-LNC. This behavior is because of the 

similarity values being -1.0 for most term pairs, resulting in less variability. Overall, the correlation 

analysis suggests that CHV-SNOMEDCT_US and CHV-MDR are the best VCs for working on 

reaction category terms (see Figure 4.6). Detailed results showing correlation coefficient and p-

value for each SMA and selected VC are given in Appendix B, refer Table B.4 and Table B.5 for 

anatomy and reaction categories respectively. 

 

    Table 4.5: Outcomes of Pearson correlation. 

Category SMA favored VC favored 

Anatomy cmatch, jcn, sanchez CHV-SNOMEDCT_US, CHV-LNC 

Reaction nam CHV-SNOMEDCT_US, CHV-MDR 

 



38 
 

 
Figure 4.5: Correlation of computed similarity with human ratings – Anatomy pairs. 

 

 
Figure 4.6: Correlation of computed similarity with human ratings – Reaction pairs. 
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Information Retrieval Factors: For the median of human ratings, we chose thresholds 𝜏1 

as 0.75 and 𝜏2 as 0.3 to classify them into similar pairs, unknown pairs, and non-similar pairs. 

Similar to human ratings, for the SMA-VC obtained similarity values we chose 𝜏1 ranging from 0.5 

to 0.95 and 𝜏2 ranging from 0.05 to 0.45 with a step size of 0.05. We selected the top 5 SMA-VCs 

based on F-measure against human rating statistic. For anatomy terms (Table 4.6), we found that 

the algorithms jcn, faith, lin, cmatch and sanchez with CHV-SNOMEDCT_US vocabulary are having 

high F-measure values with respect to human ratings. For reaction category (Table 4.7), the 

algorithms wup, lin, pks, cmatch with CHV-SNOMEDCT_US vocabulary configuration, and res with 

CHV-MDR vocabulary configuration performed well. Interestingly, we observe that sanchez has 

good F-measure for both CHV-SNOMEDCT_US and CHV-MDR. 

Table 4.6 and 4.7 shows results only for similar pairs class. Detailed results for each class 

including similar pairs, non-similar pairs, unknown pairs are described in Table B.6 and Table B.7 

given in Appendix B for anatomy and reaction categories respectively. 

 

Table 4.6: Top 5 Similarity Algorithm/Vocabulary Configurations (Similar Pairs – Anatomy). 

Measure τ1 τ2 τdiff Configuration Pr Rc Fm 

jcn  0.8  0.5  0.3  CHV-SNOMEDCT_US  0.89  0.62  0.73  

faith  0.7  0.5  0.2  CHV-SNOMEDCT_US  0.89  0.62  0.73  

lin  0.8  0.45  0.35  CHV-SNOMEDCT_US  0.89  0.62  0.73  

cmatch  0.5  0.45  0.05  CHV-SNOMEDCT_US  0.73  0.62  0.67  

sanchez  0.8  0.5  0.3  CHV-SNOMEDCT_US  0.73  0.62  0.67  

 

Table 4.7: Top 5 Similarity Algorithm/Vocabulary Configurations (Similar Pairs – Reaction). 

Measure τ1 τ2 τdiff Configuration Pr Rc Fm 

pks  0.55  0.35  0.2  CHV-SNOMEDCT_US  1  0.3  0.46  

res  0.8  0.3  0.5  CHV-MDR  1  0.3  0.46  

sanchez  0.5  0.4  0.1  CHV-MDR  1  0.3  0.46  

wup  0.75  0.3  0.45  CHV-SNOMEDCT_US  1  0.3  0.46  

sanchez  0.85  0.3  0.55  CHV-SNOMEDCT_US  0.75  0.3  0.43 

 

4.2.3 Application to Evaluating ADE Surveillance Systems 

 

Considering both the information retrieval factors the correlation analysis, our results 

suggest the following: for anatomy term pairs, we should use jcn, cmatch, or sanchez similarity 

measurement algorithm with CHV-SNOMEDCT_US vocabulary configuration. For reaction term 

pairs, we should use sanchez, res, or wup similarity measurement algorithm, with CHV-
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SNOMEDCT_US or CHV-MDR vocabulary configuration. A key observation is the need for a 

combination of vocabularies (typically, CHV with some others), rather than one single vocabulary 

as has been used in prior work, such as [8]. Prior work also did not consider the impact of the 

similarity measurement algorithm on the results. We evaluated suggested ADE narratives from 

social media based on the method described in Chapter 3 for non-overlapping windows using the 

BBW data discussed in Section 4.1.1. We considered four cases (see Table 4.8): exact match i.e., 

not using semantic similarity; and the other 3 cases with similarity measure algorithm sanchez 

along with vocabulary configurations CHV, SNOMEDCT_US and combination of CHV-

SNOMEDCT_US. Exact match is a string matching technique as used in Adjeroh et al. [8] where 

the authors used this methodology to compare the ADE narratives by expanding terms having 

similar meanings. The obtained results indicate that using semantic similarity has significantly 

greater improvement, especially, our suggested approach using a vocabulary configuration 

combining CHV-SNOMEDCT_US outperformed others.  

 

Table 4.8: Evaluating social media ADE narratives for BBW data. 

Approach 
Anatomy Reaction 

Pr Rc Fm Pr Rc Fm 

exact match 0.048 0.176 0.076 0.022 0.140 0.038 

CHV 0.048 0.176 0.076 0.024 0.141 0.041 

SNOMEDCT_US 0.181 0.395 0.249 0.155 0.402 0.224 

CHV-SNOMEDCT_US 0.197 0.452 0.275 0.175 0.465 0.255 

 

4.3 Discussion 

 

In our implementation, we chose UMLS-Similarity as it is built on UMLS which provides 

access to multiple vocabularies unlike other alternatives which require configuring vocabularies 

individually. In addition to this advantage, it has been observed in prior studies that using UMLS 

vocabularies would generate good results having higher agreement with human judgements [11], 

[23], [30]. 

The human ratings we used had a good representation of doctors, health professionals, 

health science students, engineering graduates and general graduate students. We even 

collected responses from Amazon’s Mechanical Turk users having at least a US Bachelor’s Degree 

[55]. Overall we achieved an interrater agreement of 80% average correlation for over a hundred 

human observer ratings. As the participants were familiar with social media as a significant source 

of healthcare information and considering the interrater agreement, we believe our dataset best 

fits the testing. 
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We followed a-step-by-step approach testing all the vocabulary configurations and 

similarity measure algorithms exhaustively, to get the best suitable VC and SMA combination for 

the adverse drug event terms. Our results showed that the configuration of CHV-SNOMEDCT_US 

is the best for anatomy terms using the IC-based similarity measure algorithms sanchez and jcn. 

It is also observed that CHV-MDR and CHV-SNOMEDCT_US configurations work well for reaction 

category terms with sanchez similarity measure algorithm. However, our results also indicate 

that using biomedical ontologies and the similarity measures is not sufficient for reaction 

category terms. The major reason is that reaction terms are more general and are not as specific 

when compared to anatomy category terms. Thus, we believe that using general English 

vocabularies such as WordNet [56] along with UMLS would improve the semantic similarity for 

reaction category terms. 

Our findings also show that the vocabulary MedDRA -- Medical Dictionary for Regulatory 

Activities (abbreviated as MDR in UMLS) has a good representation of reaction category problem 

domain terms. This can be considered in the light of the fact that SIDER, a well-known dataset for 

representing side effects uses MedDRA to generate side effect names [57]. 
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Chapter 5 

 

Conclusion and Future Work 

 

We study the problem of Adverse Drug Events and the postmarketing drug surveillance 

involved to detect such harmful events.  The study included examining prior works in adverse 

drug events (ADE) detection using social media as a prime resource. Primarily our objective was 

focused on fusing social media UGC channels for ADE detection, as the signal fusion technique 

had seen to be generating promising results in terms of early detection of ADE. During this study 

we introduced a novel approach of using graphical causal model for social media signal fusion. 

Using the proposed Causality-based technique, we were able to investigate ADE detection on 90 

drugs having a total of 107 FDA black box warnings. Further, we presented a methodology to 

evaluate precision and recall of detected ADE narratives against the gold standard FDA using 

semantic similarity algorithms published in biomedical domain. 

We experimented different similarity measure algorithms designed for biomedical 

ontologies. We showed that choosing a measure alone is not enough for computing semantic 

similarity for terms in a problem domain. Likewise, having known of a vocabulary which is related 

to a particular problem domain does not solve the problem of computing semantic similarity for 

the terms in that problem domain. We defined a way of choosing the vocabulary first, we also 

showed that combining a vocabulary with CHV improves the concept coverage and thereby 

covering more terms from the problem domain and later we experimented each configuration 

of vocabulary with different measures. The results shown in this work are based on the existing 

measures published in UMLS-Similarity program version 1.47 and the source vocabularies 

extracted from UMLS version 2017AA. For future releases of UMLS and the UMLS-Similarity 

program the methodology we developed can still be used to find the best measure and 

vocabulary configuration combination for a given problem domain terms.  

 Unlike most of the prior studies which focused only on ADE detection or some of them 

just representing the recall of detected ADE narrative, we evaluated the detected ADEs in terms 

of timeliness, recall and precision. Our results had a good detection rate, precision and recall 

considering the dataset we have used representing over 100 FDA black box warnings. In future 

we would like to further examine causality on fusing additional social media channels including 

search query logs. Identifying the false alarms and detecting ADEs for unknown FDA blackbox 

warnings could be some of the prospective studies. Another direction for future work could be 

to implement semantic similarity algorithms in capturing signals from social media channels. Also 

utilizing general English vocabularies like WordNet [56] in addition to UMLS could be one more 

interesting aspect to consider. 



43 
 

References 

 

[1] “Guideline for Industry Clinical Safety Data Management: Definitions and Standards for 
Expedited Reporting,” 1995. [Online]. Available: 
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Gui
dances/ucm073087.pdf. [Accessed: 19-Mar-2018]. 

[2] Y. Ji, H. Ying, P. Dews, M. S. Farber, et al., “A fuzzy recognition-primed decision model-
based causal association mining algorithm for detecting adverse drug reactions in 
postmarketing surveillance,” in IEEE World Congress on Computational Intelligence, 
WCCI, 2010. 

[3] A. Sarker, R. Ginn, A. Nikfarjam, K. O’Connor, et al., “Utilizing social media data for 
pharmacovigilance: A review,” J. Biomed. Inform., vol. 54, pp. 202–212, 2015. 

[4] K. Wester, A. K. Jönsson, O. Spigset, H. Druid, et al., “Incidence of fatal adverse drug 
reactions: A population based study,” Br. J. Clin. Pharmacol., vol. 65, no. 4, pp. 573–579, 
2008. 

[5] “MedWatch Voluntary Report.” [Online]. Available: 
https://www.accessdata.fda.gov/scripts/medwatch/index.cfm?action=reporting.home. 
[Accessed: 04-Apr-2018]. 

[6] “Yellow Card Scheme - MHRA.” [Online]. Available: https://yellowcard.mhra.gov.uk/. 
[Accessed: 04-Apr-2018]. 

[7] “UMC | VigiBase.” [Online]. Available: https://www.who-umc.org/vigibase/vigibase/. 
[Accessed: 04-Apr-2018]. 

[8] D. Adjeroh, R. Beal, A. Abbasi, W. Zheng, et al., “Signal Fusion for Social Media Analysis of 
Adverse Drug Events,” IEEE Intell. Syst., vol. 29, no. 2, pp. 74–80, 2014. 

[9] A. Abbasi, D. Adjeroh, M. Dredze, M. J. Paul, et al., “Social media analytics for smart 
health,” IEEE Intell. Syst., vol. 29, no. 2, pp. 60–80, 2014. 

[10] A. Abbasi, T. Fu, D. Zeng, and D. Adjeroh, “Crawling credible online medical sentiments 
for social intelligence,” Soc. Comput. Int. Conf. IEEE, pp. 254–263, 2013. 

[11] C. C. Yang, H. Yang, and L. Jiang, “Postmarketing Drug Safety Surveillance Using Publicly 
Available Health-Consumer-Contributed Content in Social Media,” ACM Trans. Manag. 
Inf. Syst., vol. 5, no. 1, pp. 1–21, 2014. 

[12] R. B. Correia, L. Li, and L. M. Rocha, “Monitoring potential drug interactions and reactions 
via network analysis of Instagram user timelines.,” Biocomput. Proc. Pacific Symp. (pp. 
492-503)., vol. 21, pp. 492–503, 2016. 

[13] A. Nikfarjam, A. Sarker, K. O’Connor, R. Ginn, et al., “Pharmacovigilance from social 
media: Mining adverse drug reaction mentions using sequence labeling with word 
embedding cluster features,” J. Am. Med. Informatics Assoc., vol. 22, no. 3, pp. 671–681, 
2015. 

[14] A. Abbasi, J. Li, S. Abbasi, D. Adjeroh, et al., “Don’t Mention It? Analyzing User-Generated 
Content Signals for Early Adverse Drug Event Warnings,” Proceedings, Wkshp. Inf. 
Technol. Syst. (WITS), Dallas, TX., pp. 1–16, 2015. 

[15] D. H. Kwon and D. A. Bessler, “Graphical methods, inductive causal inference, and 



44 
 

econometrics: a literature review,” Computational Economics, vol. 38, no. 1. pp. 85–106, 
2011. 

[16] Q. T. Zeng and T. Tse, “Exploring and developing consumer health vocabularies,” Journal 
of the American Medical Informatics Association, vol. 13, no. 1. pp. 24–29, 2006. 

[17] O. Bodenreider, “The Unified Medical Language System (UMLS): integrating biomedical 
terminology,” Nucleic Acids Res., vol. 32, no. 90001, pp. D267–D270, 2004. 

[18] B. T. McInnes, T. Pedersen, and S. V. S. Pakhomov, “UMLS-Interface and UMLS-Similarity : 
open source software for measuring paths and semantic similarity.,” AMIA Annu. Symp. 
Proc., pp. 431–5, 2009. 

[19] R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and application of a metric 
on semantic nets,” IEEE Trans. Syst. Man Cybern., vol. 19, no. 1, pp. 17–30, 1989. 

[20] Z. Wu and M. Palmer, “Verbs semantics and lexical selection.,” Proc. 32nd Annu. Meet. 
Assoc. Comput. Linguist. -, pp. 133–138, 1994. 

[21] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus statistics and lexical 
taxonomy,” Proc. Int. Conf. Res. Comput. Linguist. Taiwan, 1997. 

[22] D. Sánchez, M. Batet, D. Isern, and A. Valls, “Ontology-based semantic similarity: A new 
feature-based approach,” Expert Syst. Appl., vol. 39, no. 9, pp. 7718–7728, 2012. 

[23] M. S. Park, Z. He, Z. Chen, S. Oh, et al., “Consumers’ Use of UMLS Concepts on Social 
Media: Diabetes-Related Textual Data Analysis in Blog and Social Q&A Sites.,” JMIR Med. 
Informatics, vol. 4, no. 4, p. e41, Nov. 2016. 

[24] R. J. W. Stephanie N. Schatz, “Adverse Drug Reactions,” Pharmacother. self Assess. 
Progr., 2015. 

[25] M. Hashiguchi, S. Imai, K. Uehara, J. Maruyama, et al., “Factors Affecting the Timing of 
Signal Detection of Adverse Drug Reactions,” PLoS One, vol. 10, no. 12, p. e0144263, Dec. 
2015. 

[26] S. Karimi, C. Wang, A. Metke-Jimenez, R. Gaire, et al., “Text and data mining techniques 
in adverse drug reaction detection,” ACM Comput. Surv., vol. 47, no. 4, pp. 1–39, 2015. 

[27] G. Sugihara, R. May, H. Ye, C. Hsieh, et al., “Detecting causality in complex ecosystems.,” 
Science, vol. 338, no. 6106, pp. 496–500, 2012. 

[28] R. Engle and C. W. J. Granger, “Co-integration and error-correction representation, 
estimation and testing,” Econometrica, vol. 55, no. 2, pp. 251–276, 1987. 

[29] R. Sangüesa and U. Cortés, “Learning causal networks from data: a survey and a new 
algorithm for recovering possibilistic causal networks *,” AI Commun., vol. 10, no. 1, pp. 
31–61, 1997. 

[30] V. N. Garla and C. Brandt, “Semantic similarity in the biomedical domain: An evaluation 
across knowledge sources,” BMC Bioinformatics, vol. 13, no. 1, 2012. 

[31] T. Pedersen, S. V. S. Pakhomov, S. Patwardhan, and C. G. Chute, “Measures of semantic 
similarity and relatedness in the biomedical domain,” J. Biomed. Inform., vol. 40, no. 3, 
pp. 288–299, 2007. 

[32] D. Sánchez and M. Batet, “Semantic similarity estimation in the biomedical domain: An 
ontology-based information-theoretic perspective,” J. Biomed. Inform., vol. 44, no. 5, pp. 
749–759, 2011. 

[33] National Library of Medicine (US), UMLS® Reference Manual. National Library of 
Medicine (US), 2009. 



45 
 

[34] C. Pesquita, D. Faria, A. O. Falcão, P. Lord, et al., “Semantic similarity in biomedical 
ontologies,” PLoS Comput. Biol., vol. 5, no. 7, p. e1000443, 2009. 

[35] K. Gimpel, N. Schneider, B. O’Connor, D. Das, et al., “Part-of-Speech tagging for Twitter: 
Annotation, Features, and Experiments,” Proc. 49th Annu. Meet. Assoc. Comput. Linguist. 
Shortpapers, no. 2, pp. 42–47, 2011. 

[36] J. Pearl, “Causal inference in statistics: An overview,” Stat. Surv., vol. 3, no. 0, pp. 96–146, 
2009. 

[37] W. Buntine, “A guide to the literature on learning probabilistic networks from data,” IEEE 
Trans. Knowl. Data Eng., vol. 8, no. 2, pp. 195–210, 1996. 

[38] C. N. Glymour and G. F. Cooper, Computation, causation, and discovery. Aaai Press, 1999. 
[39] C. W. J. Granger, “Some properties of time series data and their use in econometric 

model specification,” J. Econom., vol. 16, no. 1, pp. 121–130, 1981. 
[40] C. W. J. Granger and A. A. Weiss, “Time series analysis of error-correction models,” in 

Studies in Econometrics, Time Series, and Multivariate Statistics, Elsevier, 1983, pp. 255–
278. 

[41] J. Geweke, “Measurement of linear dependence and feedback between multiple time 
series,” J. Am. Stat. Assoc., vol. 77, no. 378, pp. 304–313, 1982. 

[42] J. F. Geweke, “Measures of conditional linear dependence and feedback between time 
series,” J. Am. Stat. Assoc., vol. 79, no. 388, pp. 907–915, 1984. 

[43] S. Seabold and J. Perktold, “Statsmodels: econometric and statistical modeling with 
Python,” in 9th Python in Science Conference, 2010, pp. 57–61. 

[44] “Re: [umls-similarity] Practical large coverage configuration.” [Online]. Available: 
https://www.mail-archive.com/umls-similarity@yahoogroups.com/msg00334.html. 
[Accessed: 15-Mar-2018]. 

[45] C. Leacock and M. Chodorow, “Combining local context and WordNet similarity for word 
sense identification.,” WordNet An Electron. Lex. database., pp. 265–283, 1998. 

[46] J. Zhong, H. Zhu, J. Li, and Y. Yu, “Conceptual graph matching for semantic search.,” Int. 
Conf. Concept. Struct. , no. Springer, Berlin, Heidelberg., pp. 92–106, 2002. 

[47] H. Al-Mubaid and H. A. Nguyen, “A cluster-based approach for semantic similarity in the 
biomedical domain,” in Annual International Conference of the IEEE Engineering in 
Medicine and Biology - Proceedings, 2006, pp. 2713–2717. 

[48] P. Resnik, “Using information content to evaluate seantic similarity in a taxonomy,” in 
Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), 
1995. 

[49] D. Lin, “An information-theoretic definition of similarity,” Proc. ICML, pp. 296–304, 1998. 
[50] V. Pekar and S. Staab, “Taxonomy learning: factoring the structure of a taxonomy into a 

semantic classification decision,” Proc. 19th Int. Conf. Comput. Linguist. - Vol. 1, pp. 1–7, 
2002. 

[51] G. Pirró and J. Euzenat, “A feature and information theoretic framework for semantic 
similarity and relatedness,” in International Semantic Web Conference, 2010, pp. 615–
630. 

[52] A. Maedche and S. Staab, “Comparing ontologies-similarity measures and a comparison 
study,” 2001. 

[53] M. Batet, D. Sánchez, and A. Valls, “An ontology-based measure to compute semantic 



46 
 

similarity in biomedicine,” J. Biomed. Inform., vol. 44, no. 1, pp. 118–125, 2011. 
[54] T. E. Oliphant, “SciPy: Open source scientific tools for Python,” Comput. Sci. Eng., vol. 9, 

pp. 10–20, 2007. 
[55] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s mechanical Turk: A new source of 

inexpensive, yet high-quality, data?,” Perspect. Psychol. Sci., vol. 6, no. 1, pp. 3–5, 2011. 
[56] G. A. Miller, “WordNet: a lexical database for English,” Commun. ACM, vol. 38, no. 11, pp. 

39–41, 1995. 
[57] M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork, “The SIDER database of drugs and side 

effects,” Nucleic Acids Res., vol. 44, no. D1, pp. D1075–D1079, 2016. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



47 
 

Appendix A 

 

Causality Based Signal Fusion 

 

Table A.1: List of 90 drugs used in Causality Based Signal Fusion. 

ABLAVAR EXJADE AVELOX LETAIRIS RITUXAN 

FIORICET ONTAK PERFOROMIST COZAAR SEREVENT 

ACTIQ MULTAQ MULTIHANCE MAGNEVIST SIMPONI 

TEKTURNA RANEXA OMNISCAN CELLCEPT RAPAMUNE 

ALTACE DEPAKENE PROHANCE MYFORTIC OSMOPREP 

ARZERRA HALCION OPTIMARK VIRAMUNE VISICOL 

ATACAND ADVAIR EOVIST NIZORAL SUTENT 

AVANDAMET OCTAGAM HUMIRA ORTHO EVRA TASIGNA 

AVANDIA ZORTRESS PRINZIDE MITOXANTRONE HCL TASINGA 

IMURAN ELAPRASE HYZAAR NOVANTRONE INCIVEK 

REGRANEX RAPTIVA IDURSULFASE ZYPREXA ANDROGEL 

BROVANA TRUVADA INCLUSIG ORTHO NOVUM FARESTON 

SYMBICORT ENBREL INFED ACEON TYGACIL 

ZYBAN ESTRADERM SOPRANOX PROMACTA TYSABRI 

APLENZIN POTIGA SPORANOX PROPYLTHIOURACIL ULTRACET 

CIMZIA FACTIVE EPZICOM QUALAQUIN PROMETRIUM 

CLEOCIN FLOXIN TRIZIVIR REGLAN STAVZOR 

DANTRIUM FLUDARA ARAVA REMICADE VIREAD 
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Appendix B 

 

Evaluation of Semantic Similarity for ADE Narratives 

 

Table B.1: Relationships defined in UMLS. 

REL (Relationship) Description 

AQ Allowed qualifier 

CHD has child relationship in a Metathesaurus source vocabulary 

DEL Deleted concept 

PAR has parent relationship in a Metathesaurus source vocabulary 

QB can be qualified by. 

RB has a broader relationship 

RL 

the relationship is similar or "alike". the two concepts are similar or 
"alike". In the current edition of the Metathesaurus, most relationships 

with this attribute are mappings provided by a source, named in SAB and 
SL; hence concepts linked by this relationship may be synonymous, i.e. 

self-referential: CUI1 = CUI2. In previous releases, some MeSH 
Supplementary Concept relationships were represented in this way. 

RN has a narrower relationship 

RO has relationship other than synonymous, narrower, or broader 

RQ related and possibly synonymous. 

RU Related, unspecified 

SIB has sibling relationship in a Metathesaurus source vocabulary. 

SY source asserted synonymy. 

XR Not related, no mapping 

 Empty relationship 
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Problem Domain Terms used in Evaluation of Semantic Similarity 

 

This appendix lists all the biomedical terms used in this research. It is organized as follows: 

1. Clusters - The problem domain terms for this research are represented in terms of 
clusters having one or more terms for each cluster. The clusters are organized into: 

a. Anatomy Clusters 
b. Reaction Clusters 

 

2. Terms – The multiple terms representing each cluster are expanded to get total terms 
in each category:  

a. Anatomy Terms 
b. Reaction Terms 

 

1.a Anatomy Clusters 

 

We have 105 clusters in anatomy category listed as follows: 
 

1. {abdomen} 
2. {achilles} 
3. {anus, anal} 
4. {appendix} 
5. {arm, arms} 
6. {artery, arteries, arterial} 
7. {back} 
8. {bladder} 
9. {blood} 
10. {bone marrow} 
11. {bone, bones} 
12. {brain} 
13. {breast, breasts, boob, boobs} 
14. {buttocks, butt, ass} 
15. {canal} 
16. {cardiovascular, cardio} 
17. {cervex, cervical} 
18. {cheek, cheeks, cheekbones} 
19. {chest} 
20. {child, children, childrens, children's} 
21. {chin} 
22. {clavical} 
23. {cognitive, cognition} 
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24. {colon} 
25. {ear, ears, earlobe, earlobes} 
26. {elbow, elbows} 
27. {erectile} 
28. {eye, eyes} 
29. {face} 
30. {female, females} 
31. {foot, feet} 
32. {forearm, forearms} 
33. {forehead} 
34. {gastric} 
35. {genital, genitals} 
36. {gland, glands} 
37. {hair} 
38. {hand, palm} 
39. {head} 
40. {heart, heartbeat} 
41. {heel} 
42. {hip, hips} 
43. {hive, hives} 
44. {immune system} 
45. {impair, impaired} 
46. {infant, infants} 
47. {intestinal, intestine, intestines} 
48. {joint, joints} 
49. {kidney} 
50. {knee, knees} 
51. {leg, legs} 
52. {ligament, ligaments} 
53. {lip, lips} 
54. {liver} 
55. {lobe, lobes} 
56. {lumbar} 
57. {lung, lungs} 
58. {lymph node, lymph nodes, lymph gland, lymph glands} 
59. {lymph} 
60. {macular} 
61. {male, males} 
62. {man, men} 
63. {mental} 
64. {mouth} 
65. {muscle, muscles, muscular} 
66. {nail, nails} 
67. {neck} 
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68. {nerve, nerves} 
69. {newborn, newborns} 
70. {nipple, nipples} 
71. {nose} 
72. {ovarian, ovary, ovaries} 
73. {pancreas} 
74. {pectoral} 
75. {pelvis} 
76. {peptic} 
77. {plasma cell, plasma cells} 
78. {pregnant, pregnancy} 
79. {pulmonary} 
80. {pulse} 
81. {rectum, rectal} 
82. {respiratory} 
83. {retina, retinal} 
84. {rheumatic} 
85. {shoulder, shoulders} 
86. {sinus} 
87. {skin} 
88. {spine, spinal cord} 
89. {spleen} 
90. {sternum} 
91. {stomach} 
92. {tendon} 
93. {testicle, testicular, testes} 
94. {thigh, thighs} 
95. {thoracic} 
96. {throat} 
97. {tongue} 
98. {tonsil, tonsils} 
99. {tooth, teeth} 
100. {urinary} 
101. {vagina, vaginal} 
102. {vein, venous, veins} 
103. {white blood cell, white blood cells} 
104. {women, woman} 
105. {wrist, wrists} 
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1.b Reaction Clusters 

 

We have 202 clusters in reaction category listed as follows: 
1. {abnormality, abnormalities, abnormal} 
2. {ache, aching, aches, ached} 
3. {acne} 
4. {acute} 
5. {addiction, addictive} 
6. {adverse} 
7. {aggression, aggressive} 
8. {agitate, agitated, agitates, agitation} 
9. {akathisia} 
10. {allergic, allergy, allergen} 
11. {amnesia} 
12. {anemia} 
13. {angina} 
14. {anorexia, anorexic} 
15. {anxiety, anxious} 
16. {appendicitis, appendectomy} 
17. {arrhythmia} 
18. {asthenia} 
19. {atrocious} 
20. {attack} 
21. {awful} 
22. {bad} 
23. {benign} 
24. {bleed, bleeding, bleedings, bleeds, blood, bloody} 
25. {blind, blindness} 
26. {blister, blisters} 
27. {blur, blurred, blurry, blurs} 
28. {bradycardia} 
29. {breakdown} 
30. {breath, breathe, breathing} 
31. {burn, burning, burns, burned} 
32. {cancer, cancerous} 
33. {cause, causes, caused} 
34. {chill, chills} 
35. {chronic} 
36. {clot, clots, clotting} 
37. {colitis} 
38. {confusion} 
39. {constipation} 
40. {convulsion, convulsions} 
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41. {cramp, cramps, cramping} 
42. {crohns disease, crohn syndrome, regional enteritis} 
43. {crystalization, crystal, crystals} 
44. {damage, damaged, damages} 
45. {danger, dangers, dangerous, dangerously} 
46. {deaf, deafness} 
47. {death, dead, died} 
48. {decrease, decreasing, decreased} 
49. {depressed, depression} 
50. {destruction, destroy, destroys, destroyed} 
51. {diabetes, diabetic} 
52. {diarrhea} 
53. {difficult} 
54. {dire} 
55. {disorder} 
56. {diverticulitis} 
57. {diverticulosis} 
58. {dizziness, dizzy} 
59. {drowsiness, drowsy} 
60. {dysfunction} 
61. {dyskinesia} 
62. {dyspepsia} 
63. {dyspnea} 
64. {eczema} 
65. {edema} 
66. {effect, effects} 
67. {epilepsy} 
68. {excess, excessive, overly} 
69. {exhaustion, exhausted, exhausting} 
70. {explode, exploding, explosive, explosion} 
71. {failure, failures} 
72. {faint, fainting} 
73. {fatigue, fatigued, fatiguing, fatigues} 
74. {fetal circulation} 
75. {fever, fevers} 
76. {flush, flushed, flushes, flushing} 
77. {fracture, fractures} 
78. {gas, gaseous, gassy, gastritis} 
79. {hallucinating, hallucinations} 
80. {headache, headaches} 
81. {heartburn} 
82. {hepatitis c, hcv} 
83. {hive, hives} 
84. {horrible, horrific, horrifying} 
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85. {hostile} 
86. {human immunodeficiency virus, hiv, acquired immunodeficiency syndrome, aids} 
87. {hurt, hurts, hurting} 
88. {hyperactive} 
89. {hyperglycemia} 
90. {hyperkalemia} 
91. {hypertension} 
92. {hypoglycemia} 
93. {hypotension} 
94. {ill, illness} 
95. {impair, impaired, impairs, impairing} 
96. {impotence, impotent} 
97. {impulsive} 
98. {inability, unable} 
99. {increase, increased, increasing} 
100. {indigestion} 
101. {infect, infected, infection, infects, infections} 
102. {inflamation, inflamed, inflame} 
103. {injure, injury, injuries, injured} 
104. {insomnia} 
105. {interaction, interactions} 
106. {interval, intervals} 
107. {irreparable} 
108. {irreversible} 
109. {irritable, irritate, irritated, irritability, irritates} 
110. {itch, itching, itchy, itches} 
111. {jaundice} 
112. {ketoacidosis} 
113. {leukemia} 
114. {leukoencephalopathy, leukodystrophy} 
115. {loss, losses} 
116. {lymphoma} 
117. {malignancies, malignancy, malignant} 
118. {melanoma} 
119. {mellitus} 
120. {miscarriage} 
121. {mortified} 
122. {murmur, murmurs} 
123. {myopathy, myopathic} 
124. {nausea, nauseous} 
125. {nervousness} 
126. {neuropathy} 
127. {numb, numbness, numbing} 
128. {obstructive sleep apnea, osa} 
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129. {pain, painful, pains} 
130. {palpitations} 
131. {pancreatitis} 
132. {panicky} 
133. {paresthesia} 
134. {parkinsonism} 
135. {persistent} 
136. {pneumonia} 
137. {pounding} 
138. {pressure} 
139. {priapism} 
140. {problem, problems} 
141. {progressive multifocal leukoencephalopathy, pml} 
142. {psychiatric, psychotic, psychosis, psycho} 
143. {pulmonary arterial hypertension, pah, pulmonary hypertension} 
144. {pulsate, pulsating} 
145. {rapid, rapidly} 
146. {rash, rashes} 
147. {react, reaction, reactions} 
148. {reduce, reducing, reduced, reduction, reductions} 
149. {regulatory, regulation, regulate} 
150. {rhythm, rhythms} 
151. {ringing} 
152. {runny} 
153. {rupture, ruptures, ruptured, rupturing} 
154. {sad, sadness} 
155. {sclerosis} 
156. {seizure, seizures, seizing} 
157. {sensation} 
158. {sensitivity, sensitive} 
159. {serious, seriousness, seriously} 
160. {serotonin syndrome, serotonin toxicity, serotonin sickness, serotonin poisoning} 
161. {severe, severely} 
162. {shakiness, shaky} 
163. {sharp} 
164. {short, shortness, shortening, shorter} 
165. {sleep, sleeping, sleepiness, slept} 
166. {sore, soreness} 
167. {spasm, spasms} 
168. {stroke, strokes} 
169. {stuffy, stuffiness, congest, congested, congestion} 
170. {sudden} 
171. {sugar, glycosylate, glycosylated, hemoglobin, hba1c} 
172. {suicidal, suicide} 
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173. {sweat, sweats, sweating} 
174. {swell, swelling, swollen, swells} 
175. {syncope} 
176. {tachycardia} 
177. {temper, tempers} 
178. {tenderness} 
179. {tendonitis} 
180. {terrible} 
181. {terrified, terrifying} 
182. {thrombosis, thromboembolism} 
183. {tingle, tingling} 
184. {tinnitus} 
185. {tired, tiredness, tire} 
186. {torsades de pointes, ventricular tachycardia} 
187. {toxicity} 
188. {trauma, traumatic} 
189. {tremor, tremors} 
190. {tumor, tumors, tumorous} 
191. {ulcer, ulcers, ulcerative} 
192. {unexplained} 
193. {upset, irritated, irritable, irritate, irritation, upsetting} 
194. {vaginitis} 
195. {vertigo} 
196. {virus, viral} 
197. {vomit, vomits, vomiting, vomited} 
198. {wart, warts} 
199. {watery} 
200. {weak, weaken, weakening, weakness, weaknesses} 
201. {weight} 
202. {worse, worsen, worsening} 
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2.a Anatomy Terms 

 

For the 105 anatomy clusters we have 178 anatomy terms as shown in Table B.2. 
 

Table B.2: Anatomy terms. 

abdomen achilles anus 

anal appendix arm 

arms artery arteries 

arterial back bladder 

blood bone marrow bone 

bones brain breast 

breasts boob boobs 

buttocks butt ass 

canal cardiovascular cardio 

cervex cervical cheek 

cheeks cheekbones chest 

child children childrens 

children's chin clavical 

cognitive cognition colon 

ear ears earlobe 

earlobes elbow elbows 

erectile eye eyes 

face female females 

foot feet forearm 

forearms forehead gastric 

genital genitals gland 

glands hair hand 

palm head heart 

heartbeat heel hip 

hips hive hives 

immune system impair impaired 

infant infants intestinal 

intestine intestines joint 

joints kidney knee 

knees leg legs 

ligament ligaments lip 

lips liver lobe 

lobes lumbar lung 

lungs lymph node lymph nodes 

lymph gland lymph glands lymph 

macular male males 
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man men mental 

mouth muscle muscles 

muscular nail nails 

neck nerve nerves 

newborn newborns nipple 

nipples nose ovarian 

ovary ovaries pancreas 

pectoral pelvis peptic 

plasma cell plasma cells pregnant 

pregnancy pulmonary pulse 

rectum rectal respiratory 

retina retinal rheumatic 

shoulder shoulders sinus 

skin spine spinal cord 

spleen sternum stomach 

tendon testicle testicular 

testes thigh thighs 

thoracic throat tongue 

tonsil tonsils tooth 

teeth urinary vagina 

vaginal vein venous 

veins white blood cell white blood cells 

women woman wrist 

wrists   
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2.b Reaction Terms 

 

For the 202 reaction clusters we have 417 reaction terms as shown in Table B.3. 
 

Table B.3: Reaction terms. 

abnormality abnormalities abnormal 

ache aching aches 

ached acne acute 

addiction addictive adverse 

aggression aggressive agitate 

agitated agitates agitation 

akathisia allergic allergy 

allergen amnesia anemia 

angina anorexia anorexic 

anxiety anxious appendicitis 

appendectomy arrhythmia asthenia 

atrocious attack awful 

bad benign bleed 

bleeding bleedings bleeds 

blood bloody blind 

blindness blister blisters 

blur blurred blurry 

blurs bradycardia breakdown 

breath breathe breathing 

burn burning burns 

burned cancer cancerous 

cause causes caused 

chill chills chronic 

clot clots clotting 

colitis confusion constipation 

convulsion convulsions cramp 

cramps cramping crohns disease 

crohn syndrome regional enteritis crystalization 

crystal crystals damage 

damaged damages danger 

dangers dangerous dangerously 

deaf deafness death 

dead died decrease 

decreasing decreased depressed 

depression destruction destroy 

destroys destroyed diabetes 
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diabetic diarrhea difficult 

dire disorder diverticulitis 

diverticulosis dizziness dizzy 

drowsiness drowsy dysfunction 

dyskinesia dyspepsia dyspnea 

eczema edema effect 

effects epilepsy excess 

excessive overly exhaustion 

exhausted exhausting explode 

exploding explosive explosion 

failure failures faint 

fainting fatigue fatigued 

fatiguing fatigues fetal circulation 

fever fevers flush 

flushed flushes flushing 

fracture fractures gas 

gaseous gassy gastritis 

hallucinating hallucinations headache 

headaches heartburn hepatitis c 

hcv hive hives 

horrible horrific horrifying 

hostile human immunodeficiency virus hiv 

acquired 
immunodeficiency 

syndrome 
aids hurt 

hurts hurting hyperactive 

hyperglycemia hyperkalemia hypertension 

hypoglycemia hypotension ill 

illness impair impaired 

impairs impairing impotence 

impotent impulsive inability 

unable increase increased 

increasing indigestion infect 

infected infection infects 

infections inflamation inflamed 

inflame injure injury 

injuries injured insomnia 

interaction interactions interval 

intervals irreparable irreversible 

irritable irritate irritated 

irritability irritates itch 

itching itchy itches 
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jaundice ketoacidosis leukemia 

leukoencephalopathy leukodystrophy loss 

losses lymphoma malignancies 

malignancy malignant melanoma 

mellitus miscarriage mortified 

murmur murmurs myopathy 

myopathic nausea nauseous 

nervousness neuropathy numb 

numbness numbing obstructive sleep apnea 

osa pain painful 

pains palpitations pancreatitis 

panicky paresthesia parkinsonism 

persistent pneumonia pounding 

pressure priapism problem 

problems 
progressive multifocal 
leukoencephalopathy 

pml 

psychiatric psychotic psychosis 

psycho 
pulmonary arterial 

hypertension 
pah 

pulmonary hypertension pulsate pulsating 

rapid rapidly rash 

rashes react reaction 

reactions reduce reducing 

reduced reduction reductions 

regulatory regulation regulate 

rhythm rhythms ringing 

runny rupture ruptures 

ruptured rupturing sad 

sadness sclerosis seizure 

seizures seizing sensation 

sensitivity sensitive serious 

seriousness seriously serotonin syndrome 

serotonin toxicity serotonin sickness serotonin poisoning 

severe severely shakiness 

shaky sharp short 

shortness shortening shorter 

sleep sleeping sleepiness 

slept sore soreness 

spasm spasms stroke 

strokes stuffy stuffiness 

congest congested congestion 

sudden sugar glycosylate 
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glycosylated hemoglobin hba1c 

suicidal suicide sweat 

sweats sweating swell 

swelling swollen swells 

syncope tachycardia temper 

tempers tenderness tendonitis 

terrible terrified terrifying 

thrombosis thromboembolism tingle 

tingling tinnitus tired 

tiredness tire torsades de pointes 

ventricular tachycardia toxicity trauma 

traumatic tremor tremors 

tumor tumors tumorous 

ulcer ulcers ulcerative 

unexplained upset irritated 

irritable irritate irritation 

upsetting vaginitis vertigo 

virus viral vomit 

vomits vomiting vomited 

wart warts watery 

weak weaken weakening 

weakness weaknesses weight 

worse worsen worsening 
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Correlation of Computed Similarity against Human Ratings 

 

Table B.4: Anatomy – Pearson correlation results. 
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Table B.5: Reaction – Pearson correlation results. 
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Information Retrieval Factors  

 

Table B.6: Anatomy – Top 20 SMAs/VCs. (Ranked by Fm_similar) 
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Table B.7: Reaction – Top 20 SMAs/VCs. (Ranked by Fm_similar) 
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