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Abstract 
 

fMRI Studies of Amblyopia: Pediatric and Adult Perspectives 
 

Ian Patrick Conner 
 
Functional magnetic resonance imaging (fMRI) is currently the technique of choice for mapping 
functional neuroanatomy in humans, and over the past 15 years there has been a dramatic growth 
in the number of studies that provide brain-behavior correlations in normal healthy adults.   More 
recently, a few studies have begun to make such measures in healthy children.  In addition, fMRI 
is increasingly being applied to study brain function in subjects with neurological disease.  The 
overall aim of these studies was to apply fMRI methods to the study of amblyopia, the most 
prevalent developmental vision disorder.  Amblyopia develops early in life, usually before 5 
years old, and is most treatable during childhood.  Our approach was to study both children and 
adults with either the strabismic or the anisometropic type of amblyopia.  In our first experiment 
(Chapter 3), we applied fMRI techniques to map retinotopic visual organization in children.  We 
conclude that cortical visual organization is measurable and highly mature in children aged 9 to 
12 years.  In our second experiment (Chapter 4), we applied similar techniques to adults with 
amblyopia.  We conclude that visual field organization is abnormal in the brains of these adults.  
In our final experiment (Chapter 5), we applied these same techniques to children with 
amblyopia, and observed abnormalities similar to those seen in adults.  These studies present a 
novel neurological characterization of amblyopia, and provide a basis for further studies of 
human visual development, in health and disease. 
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1.1 Overview of the Human Visual System 

Human vision is the process of transforming photons of light into coherent perception.  It 

occurs seemingly without effort, yet all attempts to reproduce even the most fundamental visual 

functions in machines have proven exceedingly difficult.  Consider, for a moment, the 

complexity of the system.  Light must first be transduced into an electrical signal at the retina by 

specialized neurons called photoreceptors.  This signal is processed in the retina, transmitted 

through at least one relay to the visual cortex, where it is further processed and distributed to 

multiple visual areas in the brain for integration with information from other neural processes.  

We then use this information to make decisions- jump or crouch, eat or don’t eat, friend or foe.  

We also use this information to navigate in space, determining distance, direction, and depth, and 

avoiding danger.  We read, we drive, we create and appreciate art, and we take all of these things 

for granted, because of the seeming simplicity of visual perception.  It is a remarkable system.     

However, the “machine” of human vision is susceptible to failure, particularly when its 

normal postnatal development is interrupted.  Since human vision requires experience for proper 

development, the first months and years of life are crucial.  Impaired visual function and 

perception result from abnormal development, and are largely untreatable in adults after 

development is complete.  This work aims to better understand the consequences of this process, 

ultimately so that better management and treatment of patients with impaired vision can be 

achieved.   

First, though, it is necessary to have some background information about the organization 

and physiological properties of the normal human visual system.  This section will cover some of 

the basic concepts necessary to understand abnormal visual development and perception.  It will 

begin with a brief description of the anatomical organization of the visual system, placing 

particular emphasis on the central visual pathways.  This will be followed by a discussion of the 

organizing principles in visual cortex, and the concept and properties of visual receptive fields. 

 

1.1.1 Anatomical Organization 

 The eye is a complex sensory organ comprised of optical and neural elements, which 

develops from the neural tube as an outgrowth of the prosencephalon, and therefore is truly a 

part of the central nervous system (Pei and Rhodin, 1970; Barishak, 1992).  The optical 
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components of the eye serve to refract and focus light onto the retina (Fig. 1-1).  Most of the 

refraction occurs at the cornea, the thick, fibrous, anterior window of the eye.  In the normal eye, 

the elastic lens, by action of the ciliary muscle, refines the focus to form a clear, inverted image 

on the retina via a process called accommodation.  However, eyes which are too long in the 

anteroposterior dimension are unable to focus far away objects, while eyes which are too short 

cannot focus close objects.  These conditions are termed myopia (i.e., near-sightedness) and 

hyperopia (i.e., far-sightedness), and are important because they can lead to one type of 

amblyopia, which will be discussed later (von Noorden and Campos, 2001).   

 The retina, which lines the entire posterior chamber of the eye, contains the first neural 

elements of the visual system (Kuffler, 1953).  Although the terminology is variable, the sensory 

retina is composed of ten layers and at least five different classifications of neurons: the 

photoreceptors and bipolar, ganglion, horizontal, and amacrine cells, in addition to supporting 

cell types (Fig. 1-2) (Wassle and Boycott, 1991; Dacey, 2000).  The photoreceptors are located 

in the outermost layer of the retina and are comprised of two types: rods and cones (O'Brien, 

1982).  The rods, distributed throughout the retina except in the fovea (i.e., the central 2 degrees 

of the retina), are primarily responsive under low luminance levels, and have only one 

photopigment.  In contrast, the cones, concentrated in the fovea, are most responsive under 

higher luminance levels, and possess one of three different photopigments (Curcio et al., 1987).  

Both photoreceptor types signal to specialized bipolar cells, which in turn signal to retinal 

ganglion cells (RGCs).  Communication occurs in a basically serial fashion, with pooling and 

refinement of visual information via the horizontal and amacrine cells, which are types of retinal 

interneurons (Yamada and Ishikawa, 1965; Dowling and Boycott, 1966).  The RGCs, located in 

the innermost nuclear layer of the retina, project their axons to form the optic nerve, providing 

the output from the retina to the lateral geniculate nucleus (LGN) of the thalamus, the superior 

colliculus, and the pretectum of the midbrain.  The largest projection is to the LGN, although the 

other pathways are important for the regulation of eye movements, accommodation, and 

pupillary constriction.  The optic nerve exits the eye at the papilla, or optic disk, where retinal 

layers are absent and the physiologic blind spot is located. 

Specialized RGCs transmit different aspects of the visual image from the retina (Boycott 

and Wassle, 1974; Kaplan and Shapley, 1986).  A class of large RGCs, called parasol or Y cells, 

responds quickly but transiently to sustained illumination and projects to the ventral two laminae 
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of the LGN, termed the magnocellular layers (Leventhal et al., 1981; Conley and Fitzpatrick, 

1989).  These neurons are insensitive to color but quite sensitive to luminance contrast (~ 2% or 

less), and are optimally tuned for low spatial and high temporal frequencies (Hicks et al., 1983; 

Shapley and Lennie, 1985).  A class of smaller RGCs, called midget or X cells, adapts more 

slowly to specific wavelengths of light and projects to the dorsal four laminae of the LGN, 

termed the parvocellular layers (Conley and Fitzpatrick, 1989; Rodieck and Watanabe, 1993).  

These neurons are sensitive to color but relatively insensitive to luminance contrast (~ 10%), and 

are optimally tuned for high spatial and low temporal frequencies (Schiller and Colby, 1983; 

Shapley and Lennie, 1985).  Approximately 80% of all RGCs in the human retina are of the 

midget or X cell type, while parasol or Y cells account for about 10% (Dacey, 1994).  Several 

other morphologies are also present in lower proportions.     

In the LGN, each lamina possesses a retinotopic map of visual space (Erwin et al., 1999).  

Retinotopy is a key organizing principle of the visual system which maintains ordered “labeled 

line” connections, analogous to somatotopy in the somatosensory system (Tootell et al., 1982; 

Tootell et al., 1998).  In other words, RGC axons transmitting information about adjacent retinal 

points project to LGN neurons adjacent to one another.  However, as with somatotopy, each half 

of the brain (at least in early sensory structures) represents only the opposite half of the external 

world.  Retinotopy divides visual space into left and right hemifields, such that axons carrying 

information from the left half of visual space (i.e., the left nasal retina and right temporal retina) 

project to the right LGN, and axons carrying information from the right half of visual space (i.e., 

the right nasal retina and left temporal retina) project to the left LGN (Fig. 1-3) (Stone et al., 

1973; Chalupa and Lia, 1991).  RGC axons projecting from the contralateral nasal retina cross 

the midline at the optic chiasm and terminate in laminae 1, 4, and 6, while axons from the 

ipsilateral temporal retina terminate in laminae 2, 3, and 5 (Wiesel and Hubel, 1966).  This eye-

specific segregation into layers has been recently confirmed in humans using post-mortem diI 

fluorescent staining (Hevner, 2000).  

Axons originating from LGN neurons project to ipsilateral primary visual cortex in the 

occipital pole of the brain (Fig. 1-3).  This cortical region is also commonly known as V1 or 

striate cortex, due to the thick stripe of Gennari found in the input layer (layer 4) which can be 

seen with the naked eye in cross-section.  Magnocellular LGN layers project primarily to layer 
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4Cα, while parvocellular LGN neurons project to 4Cβ (Hubel and Wiesel, 1972; Florence and 

Casagrande, 1987).   

Furthermore, the distribution of these axons is divided by the horizontal meridian, with 

the upper visual field represented below the calcarine sulcus, and the lower visual field above the 

calcarine sulcus.  Visual cortex both above and below the calcarine sulcus is further divided into 

multiple visual areas, each with its own retinotopic map of visual space.   

 

1.1.2 Visual Cortex 

 The neocortex contains six cellular layers with columnar organization, and is 

approximately 2 mm thick in human V1 (Powell and Mountcastle, 1959; O'Kusky and 

Colonnier, 1982; Mountcastle, 1997).  Neurons present include glutamatergic pyramidal and 

spiny stellate cells, as well as a wide variety of interneurons, which are mostly GABAergic 

(Lund, 1987; Lund et al., 1988; Lund and Yoshioka, 1991; Lund and Wu, 1997).  V1 is 

organized into orientation and ocular dominance columns, meaning that for a given neuron and 

its columnar counterparts, there is a preferential bias for stimuli of a particular orientation 

presented to either the ipsilateral or contralateral eye (Hubel and Wiesel, 1962; Hubel and 

Wiesel, 1968; Hubel and Wiesel, 1969).  Ocular dominance and orientation columns are 

organized orthogonally to each other across V1, and together form retinotopically distributed 

hypercolumns (Hubel and Wiesel, 1977).  Additional organizational features such as cytochrome 

oxidase blobs, thought to be important in the parvocellular color pathway, are also found in V1 

(Livingstone and Hubel, 1982; Livingstone and Hubel, 1984).   

Within V1, there is also an extensive network of long-range horizontal connections.  

These connections can be excitatory or inhibitory, and seem to be present in all layers, linking 

cortical columns with similar response properties (McGuire et al., 1991; Hirsch and Gilbert, 

1991; Bosking et al., 1997).  These connections typically span cortical distances of at least 6-8 

mm, a distance much larger than the minimum discharge field size for V1 neurons (Gilbert, 

1998).  For this reason, it is thought that these connections are likely responsible for shaping 

receptive field surround effects (see 1.1.3 Receptive Fields), whereby stimulation outside of a 

neuron’s receptive field can modulate its response to stimuli within its receptive field (Kapadia et 

al., 1995).  These connections also provide a potential substrate for cortical plasticity.      



   

 6

Much has been made of the observation that certain regions within V1 and the 

neighboring visual area V2 stain heavily for the mitochondrial enzyme cytochrome oxidase (CO) 

(Horton, 1984; Tootell et al., 1984).  Most evidence indicates that magnocellular outputs from 

layer 4Cα primarily project to layer 4B of V1, and then to the CO thick stripes of V2.  Outputs 

from each of these locations can also project directly to other visual areas, including area MT 

which is known to selectively process information about the movement of visual stimuli 

(although MT also receives direct geniculate input) (Sincich et al., 2004).  In contrast, the 

parvocellular outputs from layer 4Cβ project primarily to either the CO patches or interpatches 

of layers 2 and 3 in V1.  These neurons seem specialized to encode either information about 

color or form features of visual stimuli (Livingstone and Hubel, 1987).  Patch neurons then 

project to thin CO stripes in V2, while interpatch neurons project to both pale and thick stripes, 

merging the magnocellular and parvocellular streams (Sincich and Horton, 2002). 

Visual information is transmitted from V1 and V2 to other visual areas as well as to other 

regions of the brain.  These extrastriate visual areas are hierarchically organized and include in 

humans V2d, V3, and V3A dorsally, and V2v, VP, and V4v ventrally (Van Essen et al., 1992; 

Van Essen et al., 2001).  Each extrastriate cortical area contains another retinotopic map of visual 

space, processing increasingly more complex stimulus features with increasingly larger receptive 

fields (Desimone et al., 1985; Maunsell and Newsome, 1987).  In addition, there are extensive 

feedback connections from extrastriate visual areas as well as other parts of the brain to early 

visual cortex, liking a large network of visually responsive cortical regions.  In the macaque, 

cortex that is exclusively or predominantly visually responsive accounts for about 50% of the 

total cortical surface area (Felleman and Van Essen, 1991).  In part because of the greatly 

expanded frontal lobe, this ratio is lower in humans but is still quite substantial (Van Essen et al., 

2001).  Fig. 1-4 illustrates the organization of several of the known early retinotopic visual areas 

in the brain (Tootell and Hadjikhani, 2001).   

  

1.1.3 Receptive Fields 

 The receptive field is perhaps the most important physiological principal of sensation 

(Sherrington, 1906).  Every neuron in the visual sensory system, from the retina to the cerebral 

cortex, has a receptive field tuned for a specific retinal location and set of stimulus properties 
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(Hartline, 1938).  At the neuronal level, receptive fields can be most basically described as 

regions of visual space where the presentation or withdrawal of light affects the rate of action 

potentials (Barlow, 1953).  In V1, receptive fields are often termed minimum discharge fields, 

and average about 2 degrees of visual angle in size (Hubel and Wiesel, 1962).  Furthermore, 

receptive fields are shaped by horizontal connections from neighboring neurons, enabling the 

visual system to function as a change detector.  These connections can span significant cortical 

distances, modulating neuronal firing responses from as far away as 10 degrees of visual angle, 

or 6-8 mm of cortical distance (DeAngelis et al., 1994).   

 Two examples of receptive fields that have already been discussed are the orientation and 

ocular preferences of pyramidal cells in V1 columns.  Ocular dominance is easiest to understand, 

since it is based on segregation of inputs from the separate eyes, which come together to synapse 

on V1 neurons in proportions relatively favoring one or the other eye (Wiesel and Hubel, 1963).  

Orientation preference, however, is an essentially monocular property entirely dependent on the 

summation and lateral inhibition of increasingly more complex receptive fields from the retina to 

the cortex (Hubel and Wiesel, 1962; Eysel et al., 1998; Gillespie et al., 2001).  In addition to 

these static properties, receptive fields can also vary in the temporal domain, allowing visual 

neurons to be sensitive to fast or slow changes, and even motion (Maunsell and Van Essen, 

1983a).   

 Finally, receptive fields generally become larger and more specific for visual features as 

they progress to higher levels of the visual system (Reid and Alonso, 1996).  While a 

photoreceptor is responsive only to illumination of a single visual location, neurons in high 

levels of human visual cortex appear to be responsive to large receptive fields containing highly 

abstracted visual information, such as motion (Tootell et al., 1995; Culham et al., 1999), a 

specific object or face (Ungerleider and Haxby, 1994; Allison et al., 1994; Puce et al., 1996), or 

even to the affect of the face (Allison et al., 2000).  As an example of the abstracted processing 

in higher visual areas, selective lesions to human V2 have been shown to produce little effect on 

visual acuity (unlike V1 lesions), but instead create increased difficulty for detecting a set of 

collinear dots in a random dot background (Merigan et al., 1993).  In contrast, V4v lesions allow 

for the feature detection, but make it almost impossible to discriminate the orientation of the 

collinear dots (Merigan, 1996).  These examples simply illustrate the specificity of primate 

visual areas for processing features of the visual scene. 
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1.2 Normal Development of Spatial Vision 

 As one might imagine, it can be exceptionally difficult to study vision in infants, who 

cannot provide overt feedback or responses.  Therefore, a specialized set of methods have been 

developed for use in young children.  Psychophysical investigations typically use forced-choice 

preferential looking (FPL) with a blinded observer (Fantz, 1965; Atkinson, 2002).  FPL takes 

advantage of the tendency for infants to look at “interesting” stimuli more than stimuli which are 

of less interest (Dobson et al., 1978).  The blinded observer records which of two displays or 

cards an infant looks at, and after many trials, can determine the limits of the child’s vision.  

However, depending on the function being studied, these procedures can be time-consuming and 

of poor reliability, since it is difficult to control for inattention in infants (Daw, 1995).   

Vision researchers also commonly use electrophysiological techniques like visual evoked 

potentials (VEPs) and electroretinograms (ERGs) to quantify neural responses to stimuli 

(Braddick et al., 1986).  These techniques generally yield more reliable results, since success is 

not dependent on sustained attention (Regan, 1989).  However, repeated measures suing FPL and 

electrophysiology do show reasonable agreement.  This section will describe the development of 

several key abilities of spatial vision, as have been determined using FPL and electric potential 

recordings in children. 

 

1.2.1 Sensitive Periods   

An important concept for discussion of development is the critical or sensitive period 

(Lewis and Maurer, 2005).  Visual experience is essential for normal brain development 

(Blakemore, 1976; von Noorden and Crawford, 1979).  For over 40 years, early visual 

deprivation has been associated with abnormalities in adult visual cortex (Wiesel and Hubel, 

1963).  Furthermore, the specific time course of deprivation is important in directing the pattern 

of deficits, since different visual functions are acquired at varying times and rates throughout 

development (Harwerth et al., 1990).  The sensitive period for a visual function refers then to the 

time window for its normal maturation (Harwerth et al., 1986).  Amblyopia develops when the 

sensitive periods for functions of spatial vision are disrupted (Blakemore, 1976; Campos, 1995).  

Two of the most important of these functions, acuity and contrast sensitivity, will now be 

discussed with their sensitive periods.   
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1.2.2 Acuity 

 Acuity is the most basic function of spatial vision.  Optotype acuity is commonly 

measured clinically, usually in the form of the familiar Snellen letters or “tumbling E” forms of 

eye charts.  Optotype charts provide a reliable, fast measure of visual acuity, but can be 

confounded by “crowding” effects of adjacent elements in patients with visual impairments, like 

amblyopia (Stuart and Burian, 1962).  Therefore, most vision scientists prefer to use gratings to 

measure acuity.   

 At birth, grating acuity is quite poor, approximately 40 times worse than that of adults 

(Dobson and Teller, 1978).  However, it improves very rapidly to 8 times worse by six months, 

and finally reaches adult-like levels at around 4 to 6 years of age (Mayer and Dobson, 1982; 

Skoczenski and Norcia, 1999; Maurer and Lewis, 2001).  Most of the developmental 

improvement in grating acuity is thought to be due to maturation of the photoreceptor mosaic in 

the retina (Banks and Bennett, 1988), although refinement of neural connections and receptive 

fields in the LGN and cortex certainly also play a role (Jacobs and Blakemore, 1988).     

 

1.2.3 Contrast Sensitivity 

Contrast sensitivity is defined as the minimum amount of contrast needed to detect the 

presence of a barely visible grating.  More importantly, spatial contrast sensitivity imposes a 

limit on what information is available to the visual system for further processing.  Traditionally, 

sinusoidal gratings with variable contrasts and spatial frequencies have been used to characterize 

contrast sensitivity (Campbell and Robson, 1968).  Sensitivity, defined as the inverse of the 

threshold, is determined over a range of spatial frequencies, typically from approximately 0.5 – 

18 cycles per degree (cpd) to plot the contrast sensitivity function (CSF).  Humans with normal 

vision are best at seeing spatial frequencies in the middle of this range, typically between 1 and 4 

cpd.  A typical CSF is shown in Fig. 1-5 (Campbell, 1983).  Note that the peak contrast 

sensitivity for this subject is centered at 2 cpd, and the x-intercept is extrapolated to 50 cpd.  This 

is the highest resolvable acuity, and is therefore equivalent to grating acuity.     

Like acuity, contrast sensitivity is immature at birth (Norcia et al., 1990).  Compared with 

adults, the newborn visual system requires more contrast and is less sensitive to high spatial 
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frequencies (Atkinson et al., 1977).  Contrast sensitivity then matures in parallel with acuity, 

improving to adult-like levels between 6 and 9 years of age (Bradley and Freeman, 1982; 

Ellemberg et al., 1999; Adams and Courage, 2002).  The normal development of contrast 

sensitivity is  primarily attributed to maturation of the retinal photoreceptors (Wilson, 1988).    
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1.3 Amblyopia 

1.3.1 Clinical Description and Significance 

Amblyopia, often referred to as “lazy eye,” is a common developmental disorder of 

vision, affecting approximately 1-3% of the population (Flom and Neumaier, 1966; Hillis et al., 

1983; Ohlsson et al., 2001; Simons, 2005).  It is clinically defined as decreased visual acuity in 

an otherwise healthy and properly corrected eye (acuities most frequently range from 20/30 to 

20/60).  Reduced visual acuity in the affected eye usually coexists with normal acuity in the 

patient’s other eye (i.e., the fellow eye).   

Amblyopia is often characterized as a disorder of form vision, since the “light sense” 

mediated by the basic retinal mechanisms appears to be intact and normal (Wald and Burian, 

1944; Delint et al., 1998; von Noorden and Campos, 2001; Barrett et al., 2004).  Instead, the 

amblyopic deficit has its basis in the abnormal development of visual areas of the brain in 

response to atypical early visual experience (Campos, 1995; Kiorpes and Movshon, 1996; Grigg 

et al., 1996; Hess, 2001; Barrett et al., 2004).  Since amblyopia results from abnormal neural 

development, it is not correctable in adults with refractive lenses alone.   

There are many impediments to normal visual experience that can result in amblyopia, 

but the two most prevalent etiologies are: 1) unequal interocular refractive error or 2) a deviated 

eye (Cobb and MacDonald, 1978; Vaegan and Taylor, 1979; Daw, 1998).  When the early 

impairment is unbalanced refractive error, the amblyopia is termed anisometropic, whereas 

amblyopia secondary to ocular deviation is termed strabismic.  In some cases, both 

anisometropia and strabismus can be present concurrently.  In addition, an infantile unilateral 

cataract can result in the comparatively severe condition of deprivation amblyopia (von Noorden 

and Maumenee, 1968).  This condition is less prevalent in humans, but common in animal 

models of the disorder which utilize the eyelid suture technique (Hess and Howell, 1977; Bodis-

Wollner, 1980; Bradley and Freeman, 1981; Abrahamsson and Sjostrand, 1988; McKee et al., 

2003).  Regardless of the cause, the key to all types of amblyopia is that they are associated with 

an interruption of normal visual experience early in life, during the critical periods of visual 

development (Burian, 1967; Thomas, 1978; Hess and Jacobs, 1979; Sireteanu and Fronius, 

1990).  Thus, studies of the visual abilities of humans with amblyopia provide an opportunity to 
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understand how early abnormal sensory experience during neural development can affect adult 

brain organization and function. 

Amblyopia is also clinically significant because of its socioeconomic impact.  In addition 

to the cosmetic and social issues faced by an individual with a deviated eye, the impact of the 

visual impairment is even farther reaching.  Lifelong reduced vision affects peoples’ lives in 

many ways, including scholastic progress, recreational activity, and occupational choice (Chua 

and Mitchell, 2004).  Moreover, it is important to realize that individuals with untreated or 

undertreated amblyopia have effectively monocular vision throughout life, so loss of the 

nonamblyopic eye through injury or disease renders them functionally blind.  A Finnish study 

reported that the risk of total blindness in patients with untreated amblyopia is nearly 3 times that 

of the normal population (Tommila and Tarkkanen, 1981).  This increased risk is potentially 

devastating for a person of working age, and could mean the personal loss of thousands or 

millions of dollars of unrealized income, as well as the societal cost of providing care and 

rehabilitation.   

 

1.3.2 Spectrum of Known Visual Deficits 

Prior investigations of human amblyopia have relied heavily on the use of careful 

psychophysical techniques (Levi and Harwerth, 1980; Hess et al., 1981).  These studies have 

consistently revealed that affected eyes of anisometropic and strabismic amblyopes exhibit 

impaired visual acuity and decreased contrast sensitivity, especially at high spatial frequencies 

(Sireteanu and Fronius, 1981; Hess and Pointer, 1985).  Acuity and contrast sensitivity are 

particularly impaired for central vision, regardless of clinical type (Levi and Klein, 1982; Levi 

and Klein, 1985).  However, additional asymmetric acuity and sensitivity deficits have also been 

reported for the peripheral visual fields of strabismic amblyopes, with the nasal retina more 

impaired than the temporal retina for strabismics with inward deviations (i.e., esotropic 

strabismics) (Flom and Bedell, 1985; Kovacs et al., 2000; Sharma et al., 2000).  Furthermore, 

strabismic eyes usually perform worse than anisometropic eyes for letter and vernier acuity 

relative to contrast sensitivity, suggesting additional sources of spatial uncertainty in visual 

processing (Cynader, 1982; Hess, 2001).  Subsequent reports have found that spatial 

discrimination functions are particularly impaired in strabismic amblyopes, including target 
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localization, contour integration, and enumeration of briefly presented targets (Wiesel and Hubel, 

1963; Dews and Wiesel, 1970; Hubel et al., 1976). 

In fact, partial or complete suppression of the amblyopic eye’s input by the fellow eye 

can occur when both eyes are open (Harrad, 1996; Sengpiel and Blakemore, 1996).  As a result, 

stereopsis and depth perception based on binocular disparity cues are almost universally absent, 

forcing the patient to rely on other depth cues, such as texture, shading, size, perspective, and 

superposition (Gibson, 1950; Gibson and Flock, 1962).  For example, normal texture 

segmentation has been found in strabismic amblyopes (Mussap and Levi, 1999).     

 

1.3.3 Animal Models of Amblyopia 

Although anisometropic and strabismic amblyopia seem to represent somewhat different 

pathological conditions, they also share common characteristics at early stages of the visual 

system.  Both types are thought to have their neural basis in primary visual cortex (V1), the first 

level of the visual system where input from the left and right eyes meet (Smith, III et al., 1997).  

Early evidence supporting the cortical pathology came from studying induced deprivation 

amblyopia in young cats and monkeys, primarily via the lid suture technique (Boothe et al., 

1982; Smith, III et al., 1985; Movshon et al., 1987).  These animals were found to have grossly 

normal retinas and lateral geniculate nuclei, but significant alterations in the organization of V1.  

Specifically, the ocular dominance columns of layer IV (revealed using radiolabeling or 

cytochrome oxidase staining techniques) were dramatically shifted toward the unsutured eye, a 

consequence of decreased interocular competition.  As a result, very few cortical neurons were 

able to be effectively driven by the sutured eye, and binocularly responding neurons were only 

sparsely found throughout all layers of visual cortex (Hubel and Wiesel, 1965; Kiorpes and 

Boothe, 1981; Crewther and Crewther, 1990).   

Subsequent animal studies have used less severe manipulations to achieve analogs of 

human anisometropic (Crawford and Harwerth, 2004) and strabismic amblyopia (Kiorpes et al., 

1998; Fenstemaker et al., 2001), and naturally occurring amblyopia has been also been identified 

in monkeys (Kiorpes and Boothe, 1981; Horton et al., 1997).  Like their lid sutured counterparts, 

these animals also have physiological deficits, but they are generally much milder (Candy, 

2000).  Psychophysics in these amblyopic monkeys resembles human results, suggesting that the 
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neural basis of human amblyopia is likely to be similar to the foundation of the disorder in cats 

and monkeys (Kiorpes, 1992).   

Nevertheless, this simplistic view must be taken with caution, as cortical ocular 

dominance shifts have not been found humans with amblyopia.  In amblyopes who were 

monocularly blinded late in life, postmortem investigations using cytochrome oxidase 

histochemistry have found regular ocular dominance periodicity resembling that seen in humans 

without amblyopia (Horton and Hedley-Whyte, 1984; Horton et al., 1990; Horton and Stryker, 

1993; Horton and Hocking, 1996).  Therefore, even though animal models are critical for 

learning more about the mechanisms of amblyopia, the human condition cannot be expected to 

exactly parallel these models.  Other techniques, such as neuroimaging, must be employed for 

exploring the anatomical and functional underpinnings of human amblyopia. 
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1.4 Functional Magnetic Resonance Imaging 

1.4.1 fMRI and the BOLD Response 

Functional magnetic resonance imaging (fMRI) has emerged over the past decade as a 

powerful, noninvasive technique for studying patterns of neural activation in humans (Menon et 

al., 1992; Kwong et al., 1992; Ogawa et al., 1992; Bandettini et al., 1992).  Specific cortical 

systems, typically somatosensory, motor, vision, or memory-related, are currently being studied 

with varied experimental paradigms.  The basis of the fMRI signal is the blood oxygenation 

level-dependent (BOLD) response which arises when cerebral autoregulation causes an increase 

in local blood flow in response to neural activity (Ogawa et al., 1990).  This increase in local 

flow is actually a physiologic overcompensation, so that the relative percentage of deoxygenated 

hemoglobin actually decreases in the local venous vasculature (Fox et al., 1988).  Deoxygenated 

hemoglobin acts as a paramagnetic agent while oxyhemoglobin is diamagnetic, and different 

ratios of these species affect the spins of neighboring water protons (Pauling and Coryell, 1936).  

The relative spin effect is detected by the MR imager, and the image is reconstructed by two-

dimensional Fourier analysis.  fMRI methods are optimized to acquire multiple images of the 

relevant volume very quickly, resulting in a four-dimensional (x, y, z, and t) data set with spatial 

(2-4 mm) and temporal resolution (1-2 s) acceptable for studying the visual cortex.     

The output data in its raw form is an 8-bit grayscale intensity value for each voxel and 

time point.  The BOLD response causes the intensity values of individual voxels in any given 

data set to be representative of the relative blood oxygenation level of the tissue encoded by 

those voxels.  These intensity values are compared with values acquired from a baseline or 

resting condition to determine the ratio, or percentage, of signal change.  Most fMRI methods 

utilize a type of correlative design, which can be applied to either blocks of sustained 

stimulation, or to rapidly presented stimuli with overlapping BOLD responses.  However, a 

notable exception to subtraction is the phase-encoded design, which instead uses Fourier analysis 

and is discussed in much greater detail in subsequent chapters.   
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1.4.2 Retinotopic Mapping 

Much of the fMRI literature falls in the domain of visual neuroscience.  Consequently, 

we have learned quite a lot about the organization of human visual cortex in the last few years.  

One of the most fundamental findings has been the demonstration and visualization of the 

retinotopic organization of multiple visual areas (Fig. 1-4), including V1 and extrastriate areas 

V2, V3, V3A, VP, V4v, and MT (Sereno et al., 1995; DeYoe et al., 1996; Engel et al., 1997).  

These visual areas are comprised of multiple representations of retinotopic visual space, and are 

thought to be responsible for progressively more sophisticated analyses of visual stimuli, 

operating both serially and in parallel (Maunsell and Van Essen, 1983b; Felleman and Van 

Essen, 1991).  In general, ventral visual areas are more sensitive to object features, while dorsal 

visual areas are more sensitive to visual motion and space.  For example, V4v contains neurons 

responsive to complex stimulus features like contours and color (Zeki, 1973; Gallant et al., 

1996), while V3, V3A and MT contain neurons selective for direction and speed of motion 

(Albright, 1984; Tootell et al., 1997; Gegenfurtner et al., 1997).  For this reason, ventral visual 

areas are often referred to as belonging to a ‘what’ pathway of visual processing, while dorsal 

visual areas are often referred to as forming a ‘where’ pathway (Ungerleider and Haxby, 1994).  

It is easiest to study retinotopic organization using techniques for visualizing fMRI results on 

flattened computer models of individual subjects’ cortical surfaces (Fischl et al., 1999; Dale et 

al., 1999).  The retinotopic organization in humans seems to agree with maps derived in monkeys 

from traditional electrophysiological or fMRI recordings (Felleman and Van Essen, 1991; Van 

Essen et al., 2001).  
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1.5 Functional Imaging of Amblyopia 

In recent years, functional neuroimaging has allowed the correlation of physiologic data 

with psychophysics in human observers.  With the advent of positron-emission tomography 

(PET), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI), 

several investigators have examined cortical function in humans with amblyopia and other visual 

disorders.  For example, in addition to amblyopia, functional neuroimaging has also been used to 

study congenital achromatopsia, albinism, and lesions to the optic radiations (Morland et al., 

2001; Baseler et al., 2002).  However, many more studies have been devoted to amblyopia than 

to any other visual disorder. 

 

1.5.1 PET Studies 

All of the PET studies of amblyopia have reported decreased signal in visual cortex with 

amblyopic eye stimulation compared to fellow eye stimulation, regardless of amblyopic subtype 

or whether a metabolic ([18F]-2-deoxyglucose) or perfusion (H2
15O) tracer was used.  This 

suggests that the metabolic rate in visual cortex following amblyopic eye stimulation is relatively 

lower than for the fellow eye.  In addition, these were the first imaging studies to actually find an 

inverse linear relationship between the amblyopic eye acuity deficit and the monocular calcarine 

regional blood flow change (Demer et al., 1997). These findings are consistent with metabolic 

findings showing shifts in the extent of the metabolic marker CO in amblyopic macaque striate 

cortex (Horton et al., 1997).  However, additional reported results are less consistent across 

studies.  Some studies reported less activation of primary visual cortex (V1) by the amblyopic 

than the fellow eye (Demer et al., 1988; Kabasakal et al., 1995).  Others reported similar 

activation of Brodmann’s area (BA) 17 (V1) after stimulation through either eye (Imamura et al., 

1997), with activation differences localized solely to BAs 18 and 19.  Still others reported broad 

signal decreases throughout visual cortex (Choi et al., 2002; Mizoguchi et al., 2005).  Different 

stimuli and viewing conditions further confound comparisons between these studies.   

Methodologically, it is important to note that the temporal resolution of PET is quite 

limited.  Acquisitions are taken with the subject viewing a given stimulus condition for an 

extended period of time, e.g., for several minutes.  This length of time represents a long period 

over which neural activity, assessed as glucose uptake or rCBF changes, is pooled.  Furthermore, 
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the spatial resolution is merely adequate compared with fMRI, typically on the order of 1 cm3 in 

PET studies.  Finally, PET applications can be limited in certain populations, because they 

require intravenous injection of a radioactive tracer compound.  Tracer doses must be carefully 

titrated, limiting the amount of experimental exposure.  Furthermore, the availability of 

radioactive tracer can also be a problem at sites without a cyclotron and radiochemist.  

Therefore, PET is usually of limited use in serial applications, as might be ideal for studying 

normal and abnormal developmental processes. 

 

1.5.2 MEG Studies 

MEG experiments provide complementary information to PET, with much better 

temporal resolution (at the msec level), but greater uncertainty for signal localization (Ueno and 

Iramina, 1990; Mosher et al., 1993; Tomita et al., 1996).  The only reported MEG study of 

amblyopia described evoked responses to 1-2 cpd gratings in strabismics.  Amblyopic eye 

stimulation resulted in signals that were lower in amplitude and delayed relative to fellow eye 

stimulation.  The amount of the delay varied between subjects, but the fellow eye response 

typically peaked at 90% of the amblyopic eye latency.  The maximal evoked responses were 

shifted to lower spatial frequencies in the amblyopic eye than in the normal eye, consistent with 

known psychophysical deficits.  These signals were estimated to arise from the area of the 

V1/V2 border (Anderson et al., 1999).   

 

1.5.3 fMRI Studies 

The superior spatial resolution of fMRI has recently been applied to the study of 

amblyopia.  Briefly, this has allowed quantification of reduced activation extent within 

anatomically specific regions of visual cortex (Goodyear et al., 2000; Algaze et al., 2002; 

Goodyear et al., 2002), while also confirming with more anatomical definition the decreased 

signal magnitudes seen with PET (Barnes et al., 2001; Choi et al., 2001; Lee et al., 2001; Liu et 

al., 2004).  Furthermore, a few of these studies have also compared anisometropic and strabismic 

amblyopia, finding less activation for anisometropes at high spatial frequencies (Choi et al., 

2001), but more impaired responses to binocular stimuli from strabismics (Lee et al., 2001).  A 

more detailed discussion of these results follows. 
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The first fMRI study with amblyopic subjects utilized four subjects with strabismic 

amblyopia and six control subjects (Goodyear et al., 2000).  The subjects were presented gratings 

at a fixed suprathreshold contrast (22%).  Six spatial frequencies were chosen (0.5, 1, 2, 4, 8, and 

12 cpd).  The fMRI experiment was comprised of individual trials using an event-related design, 

where the six spatial frequencies were presented in random order three times each for 3 seconds 

each trial with an interstimulus interval of 20 seconds.  To measure the fMRI response, this study 

used a region-of-interest (ROI) analysis defined as the intersection of an anatomically-defined 

area including all of V1 and some of V2 and a functional mask composed from the union of all 

voxels with significant fMRI responses from any stimulus.   

The results of the Goodyear et al. (2000) experiment showed that the magnitude of the 

fMRI response (% signal change) covaried with the perceived contrast of each grating in both 

normal and amblyopic subjects, regardless of spatial frequency.  Only one of the four amblyopic 

subjects showed a large depression in the high spatial frequency portion of the contrast 

perception curve.  Interestingly, this one subject also showed analogously lower MR signal for 

those stimuli, so the signal magnitude was still predicted by the reduced perceived contrast.  For 

all subjects with amblyopia, the total number of activated voxels meeting the significance 

criterion decreased for amblyopic relative to fellow eye stimulation for all spatial frequencies.  

These findings suggest that the extent of cortical activity is less from amblyopic eye stimulation 

even when the percept is equivalent to that obtained with fellow eye stimulation. 

Unfortunately, the conservative ROI used in this study made it impossible to know the 

full extent of the functional deficit in other visual (or nonvisual) areas.  Furthermore, extrastriate 

areas with less robust activation than V1 may require more trials than were used in this study to 

achieve statistical significance.  This study was also hindered by a small number of participants, 

and the fact that only one of the four amblyopic subjects showed a significantly depressed 

contrast perception function in the amblyopic eye.   

In this study, Goodyear et al. (2000) reported dissociation in strabismic amblyopes 

between the fMRI signal magnitude and total activated voxels.  There are several possibilities for 

the meaning of the decreased MR signal extent.  Since the deficit seen here was primarily one of 

extent and not signal strength, the simplest explanation might be that fewer cortical neurons were 

responding to a given stimulus.  However, even this effect could arise from numerous sources.  

For example, less fMRI activity may reflect an actual reduction in number of cortical neurons 
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that can be stimulated by the amblyopic eye, fewer connections between input and output layers 

of V1, or even feedback effects from other visual areas which actively inhibit V1 neurons from 

responding.  Furthermore, there are also methodological considerations that could have resulted 

in reduced areas of activation, like greater motion for amblyopic eye viewing.  Finally, fMRI 

may not always be able to achieve the spatial resolution necessary to disentangle extent and 

magnitude of BOLD signal, since functional imaging of even the relatively large ocular 

dominance columns is difficult in normally sighted subjects using standard techniques and 

available MR imagers (Menon et al., 1997; Goodyear and Menon, 2001; Cheng et al., 2001).   

The other landmark fMRI study of amblyopia presented both suprathreshold and 

subthreshold grating stimuli to the amblyopic eyes of ten strabismics, but surprisingly did not use 

control subjects (Barnes et al., 2001).  All stimuli were of a constant high contrast level (50%) 

but were chosen such that one grating stimulus was within the “visible” acuity range (4 cpd) 

while the other was “invisible,” above the acuity limit (11-22 cpd, depending on the severity of 

the amblyopic deficit).  This was the first imaging study to attempt retinotopic mapping of 

multiple visual areas in amblyopic subjects.  Retinotopic mapping was conducted in the fellow 

eye to derive visual area boundaries, but was not attempted through the amblyopic eye.   

The “visible” stimulus produced less activation in all subjects in all visual areas when 

viewed through the amblyopic eye compared to the fellow eye, possibly correlated with lower 

perceived contrast of these stimuli through the amblyopic eye, as in Goodyear et al. (2000).  

Interestingly, the decreased activation was not related to the acuity deficit in the amblyopic eye, 

a finding somewhat in conflict with the earlier PET data (Demer et al., 1997). 

This study also demonstrated the novel finding of cortical activity in response to the 

“invisible” amblyopic stimuli in two subjects, localized to the dorsal V3/V3A border.  This result 

deserves mention because it implies residual cortical visual processing in amblyopia, even if the 

visual activity is insufficient to reach conscious perception.  Interestingly, recent reports of 

cortical activity in ‘blindsight’ patients with V1 lesions also show residual processing in dorsal 

extrastriate cortex, including V3 and V3A (Stoerig et al., 1998; Bittar et al., 1999).   

The first fMRI study to directly address the differences between strabismic and 

anisometropic amblyopia used stimuli over a range of spatial and temporal frequencies (0.25 to 2 

cpd and 2 to 16 Hz) (Choi et al., 2001).  Stimuli were high contrast reversing checkerboards, 

varying parametrically in one of the two variable dimensions.  Once again, this group found 
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reduced calcarine activation with amblyopic eye compared with fellow eye stimulation, but no 

attempt was made to localize the activation to individual visual areas outside of V1.  Strabismic 

amblyopes differed from anisometropic amblyopes in the spatial frequency dependence of the 

reduced activity, with the strabismic range extending down to 0.25 cpd while the anisometropic 

range extended only to 1 cpd.  Anisometropic subjects also exhibited significantly less fMRI 

response through the amblyopic eye from 4 to 8 Hz, while the strabismic group showed no 

difference.  Unfortunately, this group did not include any psychophysical measures (e.g., a 

contrast sensitivity function measurement) in their design for intrasubject comparison with the 

fMRI data, so the relationship of the fMRI data to the subjects’ percept is not known.   

Finally, Lee et al. (2001) also compared strabismic and anisometropic amblyopia using 

fMRI, but again without a control population (Lee et al., 2001).  This group stimulated the 

amblyopic and fellow eyes independently and calculated an index of binocularly responding 

voxels within an anatomical region of interest including V1 and some extrastriate cortex.  The 

index was defined as the intersection of voxels responding to stimulation from both eyes divided 

by the union of voxels stimulated by either eye.  The results showed that strabismic amblyopes 

have significantly fewer binocular cortical voxels (17 ± 3% vs. 35 ± 5% for anisometropic 

amblyopes).   

It is remarkable that this effect could be shown using fMRI, since the spatial resolution of 

the technique is not as fine as the size of the ocular dominance columns (ODCs) in V1 (i.e., 

‘typical’ fMRI has a resolution of 3-4 mm, but the ODCs are only 0.5 mm wide).  However, the 

results from this novel technique agree well with available electrophysiology, suggesting that 

binocularity is more impaired in strabismic amblyopia (Kiorpes et al., 1998).  In contrast, 

anisometropic amblyopia seems to be better characterized by loss of high spatial frequency 

channels (Movshon et al., 1987).  Indeed, the anisometropic amblyopes showed less MR signal 

at high spatial frequencies, while the strabismics did not.  This apparent double dissociation 

raises interesting possibilities for future amblyopia studies.   

In summary, the previous neuroimaging literature has informed us that these techniques 

can be used to demonstrate reduced signal strength, extent of activation, and cortical ocular 

dominance and binocularity.  However, none have specifically contrasted activity in the central 

and peripheral visual fields, an interesting omission since the central field is known to be 

particularly impaired in amblyopia while the peripheral field can be normal.  This project aims to 
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investigate the cortical substrates of amblyopia in adults and children, with a specific interest in 

the organization of the central visual field. 
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1.6 Figures 

 

 
 

 
 
 

FIGURE 1-1. CROSS-SECTION OF A HUMAN EYE.  Light enters and is refracted through the cornea, 
and is then focused onto the retina by the lens.  Cones are most concentrated in the fovea, where 
visual acuity is also at the highest level.   
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FIGURE 1-2. NEURONAL TYPES IN THE HUMAN RETINA.  Light is transduced by the photoreceptors 
(i.e., the rods and cones), whose cell bodies are located in the outer nuclear layer.  The encoded 
visual information is synaptically transmitted in the outer plexiform layer from the 
photoreceptors bipolar cells, which in turn synapse on retinal ganglion cells in the inner 
plexiform layer.  Horizontal and amacrine cells make lateral connections in the outer and inner 
plexiform layers.  Ganglion cell axons exiting the retina form the optic nerve.   
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FIGURE 1-3. THE CENTRAL VISUAL PATHWAYS.  Information about visual space is transmitted 
through the contralateral lateral geniculate nucleus to primary visual cortex (V1), where the 
amblyopic deficit is thought to occur.  V1 is the first stage of the visual system where 
information from the eyes is integrated, since the LGN is functionally monocular.  This 
illustration is adapted from another source (Goldstein, 1999). 
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FIGURE 1-4. MULTIPLE RETINOTOPIC AREAS IN VISUAL CORTEX.  V1 is found in the calcarine 
sulcus, and is artificially split at the representation of the horizontal meridian in the flattened 
patch.  Higher visual areas are organized ventrally (V2v, VP, V4v) and dorsally (V2d, V3, V3A) 
from V1.  Motion-sensitive area MT is located laterally, in the posterior temporal lobe.  This 
illustration is adapted from another source (Bear et al., 2001). 
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FIGURE 1-5. THE CONTRAST SENSITIVITY FUNCTION (CSF) HAS AN INVERTED U-SHAPE.  Top. 
Human vision can detect stimuli with characteristics described under the curve.  Bottom. This 
phenomenon is illustrated for the reader.  This illustration is adapted from another source 
(Campbell, 1983). 
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CHAPTER 2: Objectives and Rationales 
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 This investigation was focused on using functional magnetic resonance imaging (fMRI) 

to better characterize the neural basis of amblyopia in humans.  Amblyopia is an important and 

clinically relevant disorder of visual development, which results in significant visual impairment 

for 1-3% of the population.  The experiments in this study were designed to meet three separate 

objectives; the results of these experiments are detailed in Chapters 3, 4, and 5.  This chapter will 

introduce the three objectives and present brief rationales for the experiments.  

 

2.1 Objective 1- To determine the cortical retinotopic organization in children with normal 

vision. 

 Although the retinotopic organization of the visual cortex has been well studied in adults, 

there has been no known study of the cortical retinotopic organization in children.  Visual cortex 

requires visual experience to mature in the first decade after birth, and only reaches the adult 

state between the ends of the first and second decades.  Furthermore, the abnormal 

developmental processes that characterize amblyopia can still be reversed with treatment into the 

second decade.  Functional imaging could be used to evaluate and tailor treatment in children 

with amblyopia.  Therefore, it is important to establish a functional baseline for comparison with 

normal children.  Normal children might have adult-like cortical retinotopic organization, but 

could also be expected to show differences due to developmental lags in neural or hemodynamic 

components. 

 Methodologically, it is also useful to extend adult fMRI techniques to pediatric groups in 

order to develop better age-appropriate paradigms and tasks.  Child acclimation to the scanner 

environment and training for vision and fMRI testing are two hurdles faced by the vision 

scientist who is committed to studying children and visual development using fMRI.  Ideally, the 

lessons learned with older children could be refined and applied to progressively younger 

populations (to a limit), so that vision and plasticity could be studied throughout development.  

Chapter 3 discusses the application of traditional fMRI retinotopic mapping techniques to 

children with normal vision.   
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2.2 Objective 2- To determine the cortical retinotopic organization in adults with amblyopia. 

  Amblyopia is characterized by an impairment of acuity and contrast sensitivity, which is 

particularly acute for central vision.  This impairment has been studied extensively using 

psychophysics, yet physiologic measurements in humans have been limited through the years to 

recordings of evoked potentials from the scalp.  These recordings have provided great insight 

into the functionality of the amblyopic visual system, but have been unable to directly correlate 

this functionality with anatomy.  Recently, functional neuroimaging techniques like positron 

emission tomography (PET) and fMRI have begun to allow investigation of the anatomical 

neural basis for the psychophysical deficits, as well as comparison to well-established animal 

models of amblyopia.  However, no other study has yet examined the cortical organization 

associated with the central visual deficit in amblyopia.  Chapter 4 discusses the monocular 

retinotopic organization found in adults with amblyopia compared with control subjects. 

 

2.3 Objective 3- To determine the cortical retinotopic organization in children with amblyopia. 

 Children with amblyopia are the most clinically relevant of these three groups.  

Treatment of amblyopia is only effective in childhood, while the visual system retains its innate 

plasticity.  Therefore, children with amblyopia are most likely to benefit from the results of this 

study, which could be used to advise better treatment management and to evaluate alternatives to 

the traditional patching therapy.  This represents the first known attempt to systematically study 

the retinotopic organization of visual cortex in children with amblyopia.  Chapter 5 discusses the 

extension of monocular retinotopic mapping to amblyopic children, comparing their results with 

both normal children and amblyopic adults.      
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CHAPTER 3: Retinotopic Organization in 
Children Measured with fMRI 
 
This chapter was published in Journal of Vision, June 18, 2004, 4(6):509-523. 
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3.1 Abstract 

Many measures of visual function reach adult levels by about age 5, but some visual abilities 

continue to develop throughout adolescence.  Little is known about the underlying functional 

anatomy of visual cortex in human infants or children.  We used fMRI to measure the retinotopic 

organization of visual cortex in 15 children aged 7–12 years.  Overall, we obtained adult-like 

patterns for most children tested.  We found that significant head motion accounted for poor 

quality maps in a few tested children who were excluded from further analysis.  When the maps 

from 10 children were compared with those obtained from 10 adults, the magnitude of 

retinotopic signals in visual areas V1, V2, V3, V3A, VP, and V4v was essentially the same 

between children and adults.  Furthermore, one measure of intra-area organization, the cortical 

magnification function, did not significantly differ between adults and children for V1 or V2.  

However, quantitative analysis of visual area size revealed some significant differences beyond 

V1.  Adults had larger extrastriate areas (V2, V3, VP, and V4v), when measured absolutely or as 

a proportion of the entire cortical sheet.  We found that the extent and laterality of retinotopic 

signals beyond these classically defined areas, in parietal and lateral occipital cortex, showed 

some differences between adults and children.  These data serve as a useful reference for studies 

of higher cognitive function in pediatric populations and for studies of children with vision 

disorders, such as amblyopia.  
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3.2 Introduction  

Psychophysical measurements in humans have established that the visual system depends 

extensively on postnatal experience to guide developmental mechanisms and eventually reach a 

mature state.  Although perhaps the most dramatic improvements in performance occur in the 

first year of life, some abilities require many years of visual experience to achieve the adult-like 

state.  For example, some measures of basic vision, such as grating acuity, do not reach adult 

values before age 6.  Temporal contrast sensitivity at high frequencies (20 and 30 Hz) and 

critical flicker fusion frequency are adult-like at age 4, although contrast sensitivity for lower 

temporal frequencies and static gratings matures between ages 4 and 7 (Ellemberg et al., 1999). 

Even later maturation of several visual functions that require global integration across distance in 

the visual field has been recently documented.  For example, texture segregation does not reach 

adult levels until between ages 14 and 18 (Sireteanu, 2000).  Contour integration has been shown 

to have a protracted development when tested with oriented Gabor element textures, and with the 

Ebbinghaus illusion (Kovacs et al., 1999; Kovacs, 2000).  Finally, Vernier hyperacuity 

undergoes a steep improvement during childhood until adult levels are reached at age 14 

(Skoczenski and Norcia, 2002).  

Much less is known about the physiological maturation of the visual system during 

childhood.  One of the few available techniques is noninvasive electrical recording from the 

scalp, and such data indicate ongoing neural development through childhood.  For example, the 

checkerboard onset evoked potential does not obtain its adult form before puberty (Ossenblok et 

al., 1994).  Evoked potentials and visual performance measures sometimes show nice parallels, 

but not always (Regan and Spekreijse, 1986; Tyschen, 1992).  Interestingly, some evidence 

suggests that the responses of visual neurons are often more mature than behavioral measures 

would predict (Kiorpes and Movshon, 2003), although the reasons for this discrepancy are still 

unclear.  

The advent of noninvasive functional neuroimaging (fMRI) provides new opportunities 

to improve understanding of the functional neuroanatomy of humans in health and in disease.  

Although the source of the measured signal is hemodynamic, not neural, it is coupled to neural 

activity (Logothetis et al., 2001) with an impressive spatial (2-4 mm) and temporal (1-2 s) 

resolution.  These techniques can be applied to pediatric populations, and have been done so 
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increasingly (Casey et al., 1995; Kwon et al., 2002; Temple et al., 2003; Turkeltaub et al., 2003).  

Most efforts have focused on cognitive functions, such as reading ability and memory.  The 

majority of such studies provide stimuli through the visual modality.  Therefore, it is important 

to understand the state of maturity of early visual areas in this age range for better interpretation 

of cognitive studies, as well as to directly investigate human visual system development.  

Retinotopic organization of human visual cortex has been mapped using functional 

magnetic resonance imaging (fMRI) in adults. Multiple visual areas have been shown to exist, 

each with its own representation of visual space (Sereno et al., 1995; DeYoe et al., 1996; Engel 

et al., 1997).  This type of mapping of visual cortex is important for several reasons.  1. The 

technique allows for rapid delineation of a large expanse of visual cortex.  2. The boundaries of 

several visual areas can be defined by the representations of the horizontal and vertical meridians 

of visual space.  Such objective boundaries guide the creation of regions of interest that can be 

applied in a statistically independent way to the results of other experiments.  3. By mapping a 

fundamental and continuously changing variable across the cortical sheet, significant information 

can be acquired about intra-areal function.  

These powerful noninvasive methods for mapping retinotopic function have not 

previously been extended to children.  Here we show that visually normal children have 

essentially achieved an adult-like pattern of many retinotopic visual areas mapped with 

functional magnetic resonance techniques, at least by age 9.  However, quantitative differences 

were detected between the adult and child groups in the size of visual areas.  To extend our 

results beyond these well-known areas, we also employed new cortical surface-based methods 

for achieving inter-subject averaging.  Different patterns of activation in parietal and lateral 

occipital cortices were observed.  These data can serve as an important baseline from which to 

compare the retinotopic maps of normal children to those with visual disorders. 
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3.3 Materials and Methods 

3.3.1 Subjects  

We studied 10 adults aged 21 to 30 years (6 male, 4 female) and 15 children aged 7 to 12 

years (7 male, 8 female).  Seven child subjects were less than 10 years and 8 were greater than or 

equal to 10 years.  After excluding from analysis subjects exhibiting significant head motion, 10 

subjects remained, and their ages were 9, 9, 10, 10, 10, 11, 12, 12, 12, and 12 years.  With regard 

to the handedness of our subjects, 9/10 adults were right-handed and 8/10 children were right-

handed.   

Our subjects were recruited from the local community surrounding West Virginia 

University (WVU).  Informed consent was obtained from all subjects in a project approved by 

the WVU Institutional Review Board for the Protection of Human Subjects (protocol #14788).  

 

3.3.2 Cortical Surface Reconstruction  

Surface reconstructions of each subject's cerebral cortex were generated from high-

resolution anatomical images obtained in a General Electric 1.5 Tesla MR scan session separate 

from the retinotopic mapping experiments.  Previously validated techniques (Dale et al., 1999; 

Fischl et al., 1999a) were employed.  Briefly, brain reconstruction was begun by collecting 

whole-head 3D fast spoiled grass gradient echo (FSPGR) scans, optimized for contrast between 

gray and white matter, for each subject.  Specific parameters were fast IR prep (prep  time = 300 

ms), TE = 1.9 ms, flip angle = 20 deg, FOV = 24 cm, axial slices, 256 × 256 matrix, resolution 

0.94 × 0.94 × 1.2 mm.   

The surface reconstructions were created using the FreeSurfer software package available 

at http://www. nmr.mgh.harvard.edu/freesurfer.  Voxels containing white matter in an intensity-

normalized volume were labeled using an anisotropic planar filter.  A region-growing algorithm 

was then used to ensure that each cortical hemisphere was represented by a single connected 

component with no interior holes.  The surfaces of these components were tessellated (~150,000 

vertices), refined against the MRI data using a deformable template technique, and manually 

inspected for topological defects (i.e., departures from spherical topology).  Automated 

http://www.nmr.mgh.harvard.edu/freesurfer
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techniques for optimizing topological correctness while maintaining geometrical accuracy were 

employed (Fischl et al., 2001).  

In a separate step, the cortical surface was computed by expanding the gray/white surface 

by 3 mm and refining it against the FSPGR MR images.  The sampled functional signal included 

most of cortical gray matter, but it was centered just above the gray/white boundary to avoid the 

pial surface where macrovascular fMRI artifacts are greatest, and to ensure that functional 

signals were assigned to the correct sulcal bank.  The surface reconstruction of each subject’s 

brain was "inflated" by an iterative algorithm that reduced local curvature while approximately 

preserving local areas and angles by minimizing metric distortion. 

  Once a cortical surface is reconstructed, it becomes possible to calculate the surface area 

of the entire cortical sheet, or of smaller cortical areas defined as regions of interest (ROI).  

Although the ROIs can be drawn (i.e., defined) on the flattened surface, the ROIs are mapped 

back to the folded cortical surface when measurements are made, avoiding the areal distortion 

created by inflation and flattening.  Measures of surface area are made at the gray/white 

boundary, as this best represents the location of recorded functional signals.  We compute the 

area associated with the polygonal surface model, which is very densely sampled.  The area of 

each triangular vertex is approximately 0.5 mm2.  The area of an ROI is the sum of the area of n 

triangles.  Due to the inherent difficulty of segmentation of white from gray matter, segmentation 

is a potential source of error in the reconstructions.  However, the accuracy of the programs has 

been validated (e.g., by test-retest comparisons) for estimates of cortical thickness (Fischl and 

Dale, 2000; Rosas et al., 2002).  Furthermore, each reconstruction is manually inspected for 

errors.   

 

3.3.3 Functional Magnetic Resonance Imaging  

Subjects were scanned in a GE 1.5 Tesla MR scanner using techniques described 

previously (Mendola et al., 1999).  After a sagittal localizing scan was obtained, a T1-weighted 

inversion recovery sequence (TR = 400 ms) was used to acquire 20 interleaved 4-mm slices with 

0.86 × 0.86 mm in-plane resolution, oriented perpendicular to the calcarine sulcus.  These 

anatomical scans were later used to register the functional scans to the FSPGR slices that were 

used to define the cortical surface. 
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The next step was to acquire multiple functional scans using the same slice prescription 

selected in the anatomical scans, but with 3.44 × 3.44 mm in-plane resolution.  Functional 

signals reflecting neural activity via local oxygen consumption and blood flow were acquired 

(Kwong et al., 1992; Ogawa et al., 1992) using a spiral gradient echo sequence (TE = 40 ms, TR 

= 4000 ms, flip angle = 65 deg, FOV = 22 cm, matrix 64 × 64 (Glover, 1999).  

For the adults, functional scans had a duration of 8 min and 32 s, and 128 time points 

were collected from each slice in all scans.  Four scans of this type were administered in one 

session, two scans for eccentricity and two scans for polar angle.  For the children, functional 

scans had a duration of 4 min and 16 s, and 64 time points were collected from each slice in all 

scans.  Six scans of this type were administered in one session, three scans for eccentricity and 

three scans for polar angle.  The entire scanning procedure typically lasted about 2 hr.   

Head movement (within and between scans) was minimized by the use of one of two 

methods.  Most subjects used a bite bar, in which subjects stabilized their jaw in a rigid, deep 

individual dental impression, mounted in an adjustable frame.  For children who were not 

comfortable using a bite bar, we used a rigid chin cup that greatly restricted movements in all 

planes.  Although we did not monitor eye movements, the good quality of our retinotopic maps 

indicates adequate fixation during the functional scans.  Our use of radial motion and symmetric 

stimuli also helps to minimize translational eye position drifts.   

 

3.3.4 Visual Stimuli   

During the fMRI experiments, the visual stimuli were generated by a Silicon Graphics O2 

computer with an output resolution of 640 x 480 pixels.  The video output was converted to a 60-

Hz interlaced composite S-VHS signal, which served as input to an Epson Powerlite 500c LCD 

projector.  The projector's image passed into the bore of the magnet, and appeared on a paper 

rear-projection screen in front of the subject.  The subjects viewed the screen by looking straight 

up at a mirror placed at an approximately 45-deg angle to both the screen and the subject's line of 

sight.  The stimuli subtended an area of about 25-deg horizontal by 15-deg vertical.  

The cortical representation of retinotopic visual space was mapped with a phase-encoded 

design in which the cardinal axes of space (eccentricity and polar angle) were mapped separately 

(Engel et al., 1994; DeYoe et al., 1996; Engel et al., 1997).  The stimuli consisted of high-
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contrast, chromatic, flickering checkerboard patterns of two specific types.  The “rotating 

wedge” stimulus would sweep through polar angles much like a hand on a clock, and the 

“expanding ring” stimulus mapped eccentricity by starting from the center of the visual field and 

expanding outward (Fig. 3-1).  Eccentricity stimuli traversed space with a logarithmic 

transformation, as has been used previously (Sereno et al., 1995; Tootell et al., 1997).  Both 

stimuli attempted to compensate for the cortical magnification factor by increasing in size as they 

approach the periphery.  These phase-encoded stimuli always used a cycle length of 64 s, which 

corresponds to 8 cycles per scan for adults and 4 cycles per scan for children.  Adults were 

shown 16 cycles of each stimulus type, whereas children were shown 12 cycles.  The lower 

number of cycles was used for the children due to concerns about their stamina for accurate 

fixation and minimal head motion.  However, the number of cycles was equated between groups 

at the subsequent analysis stage by excluding a portion of the adult data.  

A central fixation mark was present at all times for all stimuli.  Subjects were clearly 

instructed to maintain fixation on this mark at all times during an fMRI scan.  Subjects were also 

instructed to perform a task monitoring the appearance of the fixation point to aid fixation 

stability.  The fixation point briefly changed color from white to red with an inter-trial interval 

that randomly ranged from 4-32 s (in 4-s multiples) during the course of an fMRI scan, and the 

subjects pressed a key upon detecting such a change.  The children were able to perform this task 

at a very accurate level (mean = 98% correct).  

 

3.3.5 Statistical Analysis   

3.3.5.1 Individual Subject Analysis   

The functional analysis was completed using the FS-FAST software tools freely available 

at ftp://ftp.nmr. mgh.harvard.edu/pub/flat/fmri-analysis.  A brief description of the processing 

steps follows.  For each subject, raw MR images were first motion-corrected using an iterated, 

linearized weighted least-squares method, through the FS-FAST implementation of the AFNI 

3dvolreg algorithm (Cox and Jesmanowicz, 1999), and then intensity-normalized using the 

average in-brain voxel intensity.  The residual, uncorrectable head motion was measured as the 

root mean square (RMS) difference between motion-corrected output and a target volume 

defined from the middle time point of each scan.  This value was computed for each subject, and 

ftp://ftp.nmr._mgh.harvard.edu/pub/flat/fmri-analysis
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values exceeding a RMS of 60, which corresponded to the grossly observed image artifacts, were 

used as a criterion for exclusion of some of the children (5/15) from further processing.  For the 

remaining 10 subjects, the average corrected motion in all three planes was quantified as the 

vector magnitude of translational motion. 

After the preprocessing steps, a fast Fourier analysis was conducted on the time series of 

each voxel to statistically correlate retinotopic stimulus location with visual cortical anatomy.  

To equate the children and adults for data analysis, only the first 12 cycles were analyzed for the 

adults.  This analysis rejects low frequencies due to subject head motion or baseline drift and 

extracts functional signals in the form of magnitude and phase relative to the stimulus cycle 

frequency (8 or 4 cycles per scan; period = 64 s).  Signal magnitude reflects the degree of 

retinotopic specificity, which can be low due to either a lack of visually induced response or to 

an equal response to all retinotopic locations.  The phase component of the signal was used to 

code retinotopic location. Activation significance (F) values were computed for each voxel by 

using a comparison between the Fourier domain amplitude at the stimulation frequency and the 

average amplitude at other (non-harmonic) frequencies.  For these types of calculations, the 

phase/magnitude data are converted from polar coordinates to the equivalent data in rectilinear 

coordinates (i.e., complex numbers with real and imaginary components).  The F statistic 

accommodates this multivariate analysis.  The F statistic is computed as the sum of the squared 

real and imaginary signal components divided by the noise variance.  Finally, a registration 

procedure within Freesurfer was used to align (in all 3 planes) the T1-contrast anatomical images 

collected in each functional session with the cortical surface model.  The same registration 

matrix was then applied to the functional images to view the results on the cortical surface.  

The data from the paired eccentricity and polar angle scans were combined to yield field 

sign maps.  The field sign maps the polarity of the visual field representation as either similar to 

the actual visual field geometry or mirror symmetrical to it.  The field sign for each cortical area 

was objectively calculated from the vector product of the constituent phase-encoded maps of 

polar angle and eccentricity as in Sereno et al. (1995).  Visual area naming conventions are as 

described in Tootell et al. (1997), and are consistent with previous studies.  The superior portions 

of V1, V2, and V3 contain representations of the contralateral lower visual field, whereas the 

inferior portions of V1, V2, VP, and V4v represent the contralateral upper visual field.  V3A 

represents both the lower and upper contralateral field.  Areas V1, V2, VP, V3, V3A, and V4v 
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are classical retinotopic areas that have been described previously.  We did not attempt to 

explicitly identify retinotopic areas anterior to these areas.  There are additional retinotopic areas, 

including V7 and V8, whose cruder retinotopy has been demonstrated only with high-field 

scanning (Hadjikhani et al., 1998; Tootell et al., 1998a; Wade et al., 2002).  Also, there is still 

debate regarding the appropriate definition of visual areas in this region.  This fringe retinotopy 

region has also been shown to be activated by both left and right visual fields (Tootell et al., 

1998b).  Thus, the current evidence suggests that areas V7 and V8 lie near the end of a 

continuum of decreasing retinotopy and increasing receptive field sizes.   

 

3.3.5.2 Region-of-Interest Analysis  

To generate ROIs specific to a given visual area, patches of flattened cortex that 

corresponded to each retinotopic area were defined based on the retinotopic field sign map for 

each subject (Mendola et al., 1999).  These objectively defined borders were available for visual 

areas V1, V2 (superior and inferior), V3, VP, V3A, and V4v.  The eccentricity range of these 

ROIs was approximately 1-15º visual angle.  Specifically, the vertical eccentricity was 7.5º and 

the horizontal eccentricity was 12.5º, making the maximum (diagonal) eccentricity 15º.  The 

outer extent of the ROI was based on the actual activation present.  Because the resolution of 

these maps is typically too low to measure the extremely high cortical magnification factor in the 

central foveal representation, the ROIs did not include the entire foveal representation.  The 

minimum eccentricity value varied slightly from subject to subject, but was between 1-2 deg for 

most (see Fig. 3-5).  For each subject, the Freesurfer software program was used to draw the 

outline of each visual area for each hemisphere.  In this way, we defined the boundaries of six 

visual areas for the 10 adults and 10 children with interpretable field sign maps.  For visual area 

V2, an ROI was drawn for the superior/dorsal branch and another for the inferior/ventral branch 

(see Fig. 3-2), although the results for these branches were combined in subsequent analysis.  For 

all RO1s except V1, the flattened cortex was used for visualization.  For V1, the inflated cortex 

was used for visualization so that the split along V1 in the flattened view did not interfere with 

definition.  Regardless of the view chosen for visualization, all ROIs exist in native (folded) 

coordinates when measurements are made.  

 

3.3.5.3 Cortical Magnification Factor Analysis  
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To further compare the internal organization of the V1 and V2 retinotopic map in 

children and adults, we computed the cortical magnification function as has been done 

previously by others for adult subjects (Sereno et al., 1995; Engel et al., 1997; Duncan and 

Boynton, 2003).  This first required definition of an approximately iso-polar ROI along the 

representation of the horizontal meridian within V1 for every subject.  This was done by 

applying a filter to the V1 ROI to accept voxels with polar angle phase values at the horizontal 

meridian (90 deg) ± 15 deg.  We then determined the eccentricity phase values of all voxels in 

this ROI.  These voxels were sorted according to distance from a reference point at the occipital 

pole defined in every subject.  The distance was computed as the arc distance along the inflated 

cortical surface in spherical space, allowing us to express distance along the cortical sheet, 

regardless of cortical folding pattern.  The distance of each voxel was then plotted against its 

eccentricity phase value (or the equivalent degrees of visual angle).  Finally, this curve was fit 

with an exponential function that best fit the least square data. Specifically,   

y = y0 ekx,  

where x is the cortical distance and y is the eccentricity.  The process for V2 was equivalent, 

except that the 30-deg filter was centered on oblique polar angles (135 deg for V2v and 45 deg 

for V2d), so as to fall along the center of those areas.  One adult subject and one child subject, 

with poor quality polar angle maps, did not satisfy our criteria of least squares R2 fit greater than 

0.5, and were excluded from this analysis.  

 

3.3.5.4 Across-Subjects Analysis  

Directly averaging fMRI data across subjects is an inherently difficult task, due to the 

differences in the size, shape, and even functional organization of subjects’ individual brains.  

Using common spaces, such as the traditional neurosurgical Talairach space (Talairach and 

Tournoux, 1988) or even more modern versions such as the space defined by 152 adult subjects 

at the Montreal Neurological Institute (Evans et al., 1993), introduces a large amount of spatial 

blurring into the data set.  Typical variability between presumably homologous points in subjects 

is of the order of 1 cm in Talairach space.  Given that individual visual areas have a (flattened) 

width of about 1 cm, such averaging procedures seriously degrade the quality of retinotopic 

maps.  Nonetheless, across-subject averaging remains a desirable goal.  Specifically, to compare 
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the retinotopic maps obtained beyond the 6 defined visual areas in parietal and temporal cortex, 

we need a strategy that does not require ROIs.  

Thus, to compare the adult and child groups, we used a new technique for across-subject 

analysis, adapted to the folding pattern of each subject, which is significantly more accurate.  

Each adult's inflated cortical surface was first registered to a standardized average inflated unit-

sphere based on alignment of gyral and sulcal patterns using techniques described elsewhere 

(Fischl et al., 1999b).  To combine functional data across individuals for a group comparison, F-

value data sets were then resampled into spherical space and subsequently averaged across 

subjects using a fixed-effects model (i.e., F ratio numerator is summed real plus imaginary 

components squared, and denominator is the summed noise variance divided by number of 

subjects).  Extension of these methods to random effects is desirable, but will require accounting 

for multiple comparisons on the surface, and clustering approaches may not be appropriate for 

retinotopic data.  Finally, the average F-value map was painted (via the spherical transformation) 

onto the inflated surface of one adult.  Separate maps were created for the eccentricity and polar 

angle stimulus in each hemisphere.  The entire analysis was subsequently repeated for the group 

of children.  

It should be noted that the standardized spherical template currently available in 

Freesurfer was created with adult brains.  Therefore, the children’s brains require somewhat 

more distortion than the adult’s when placed into spherical space.  To document this, the 

Jacobian determinant of each vertex can be computed to indicate how much the transformation 

expands or shrinks each vertex in the brain (expansion results in values greater than 1, whereas 

contraction produces values less than 1).  For the entire right hemisphere, the mean adult 

variance was between 1 and 1.5, whereas the child variance was 2.1.  Left hemisphere values 

were 1.4 and 2.1. The comparison of variances across groups with a t-test approached 

significance (p = 0.06 and p = 0.05, respectively).   
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3.4 Results  

3.4.1 Individual Phase-Encoded Maps  

Maps of eccentricity and of polar angle were obtained as has been reported previously for 

adult subjects (Sereno et al., 1995).  Eccentricity maps showed the well-known organization, 

with central vision represented at the pole and peripheral vision more anteriorly.  Polar angle 

maps were obtained with vertical meridian representation separating V1 and V2, and horizontal 

meridian separating V2 from V3 and VP.  V3 and VP were separated from V3A and V4v by 

lower and upper vertical meridian, respectively.  Similar maps were obtained from the children.  

To better localize the boundaries between areas, we used the eccentricity and polar angle 

data to compute a field sign map (Sereno et al., 1995).  All adult subjects produced maps of 

sufficient quality to identify the six retinotopic areas described for humans (V1, V2, V3, VP, 

V3A, and V4v).  We obtained interpretable maps in 10 of 15 children, and these maps were 

qualitatively similar to those seen in adult subjects.  An example is shown of one 11-year-old 

subject (Fig. 3-2).  

Observation during the experiments, subjective reports from the children, and head 

motion artifacts indicated that head motion likely contributed to the poor quality of maps in the 

other five subjects.  Four of these subjects were among the youngest children, 7-9 years old.  

These subjects were excluded from further analysis.  

 

3.4.2 Head Motion  

To quantify the head motion in each of the experimental scans, we used the motion-

correction algorithm in AFNI.  For each subject we extracted the average motion in all three 

directions as the vector magnitude of translational motion.  This value ranged from 0.2-0.5 mm 

for adults and 0.3-2.0 mm for children (Fig. 3-3).  Pearson product correlations were performed 

to look for any consistent relation between age and corrected head motion, especially in the 

young group.  We did not find a significant correlation in the child group (R2 = 0.07) or the adult 

group (R2 = 0.34).  
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3.4.3 Region-of-Interest Analysis for Across-Group Comparisons  

Thus far, qualitative inspection of the retinotopic maps from representative children and 

adults did not suggest consistent differences between groups.  However, it is important to be able 

to quantify measures from individual visual areas that can be averaged across subjects to address 

any systematic group differences.  For the 10 adults and 10 children with interpretable field sign 

maps, regions of interest were created for the six visual areas (V1, V2, V3, V3A, VP, and V4v).  

A seventh ROI entitled "All" was defined to include all six visual areas.  These ROIs were used 

to separately extract from our data the average fMRI signal Fourier magnitude of all voxels 

located in each of the six visual areas.  We also directly calculated the surface area of visual area 

ROIs as described in Section 3.3.2.   

 

3.4.3.1 Measures of Signal Magnitude  

The average Fourier magnitude was calculated for all voxels in a given visual area, for 

the left and the right hemispheres separately.  The results are listed in Tables 1 and  2.  Direct 

comparison between evoked fMRI signal in each area for adults and children was performed 

with t-tests.  For the polar angle stimulus, only the right VP was significantly different, having a 

larger value in adults.  In the next section, we consider this difference in relation to the size of 

the visual areas.  

Pearson product correlations were also performed to look for any developmental 

relationship between age and Fourier magnitude, as well as between corrected head motion and 

signal magnitude, especially in the young group.  There were no significant correlations between 

magnitude and head motion for either group.  There were several visual areas that showed a 

significant correlation between magnitude and age within the child group.  However, the 

magnitude was negatively correlated with age, and may be due, in part, to the unusual 

coincidence that four of our youngest children were scanned on the same day.  Also, the areas 

showing this correlation were not consistent between hemi-spheres.  No correlations with age 

were significant for the adult group.  

 

3.4.3.2 Measures of Visual Area Size  
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For each subject in both groups, the size of the six visual areas was analyzed in terms of 

absolute surface area in mm2, and as a relative proportion of the total cortical sheet.  The adult 

group and the child group were then directly compared.  The results are listed in Tables 3 and 4.  

The size of visual areas in both adults and children covers a range of about 400-700 mm2, 

except for V1 and V2, which ranged from 800-1200 mm2.  The results indicated some small but 

significant differences between the adults and children.  Adults showed a slightly larger extent of 

visual areas V2, V3, and V4v in the left hemisphere.  In the right hemisphere, visual areas V2, 

V3, and VP were significantly larger in adults.  In contrast, there was no difference in the extent 

of V1 between groups.  

One concern with the use of an absolute measure of visual area ROI size is that children's 

brains might be globally smaller than adults’ brains.  Hence, we compared cortical surface area 

for the entire neocortical reconstruction of each hemisphere between children and adults.  The 

left and right hemisphere reconstructions yielded a mean measure of 81,734 and 81,128 mm2 for 

the children, and 87,009 and 86,011 mm2 for adults.  The adult's brains were larger than the 

children's brains, but the effect was not significant (p = 0.12 for left hemisphere; p = 0.13 for 

right hemisphere).  Nevertheless, given the obvious developmental trend, a measure of ROI size 

relative to the total neocortical sheet may be a valuable measure (Tables 3 and 4).  Overall, 

individual visual areas range from 0.5-1.5% of the cortical sheet, and all six visual areas 

combined occupy about 5% of the neocortex in one hemisphere.  When the adults and children 

were compared, the results were highly consistent with the comparisons of absolute size in that 

similar extrastriate areas proved to be slightly larger in adults.  The total proportional size of the 

visual areas of both hemispheres in children and adults is shown graphically (Fig. 3-4).  

Pearson product correlations were performed to look for any consistent developmental 

relation between age and surface area, especially in the young group.  However, we found no 

significant correlations for the child or the adult group.   

It is interesting to consider the fact that the mean level of Fourier magnitude did not differ 

between children and adults, yet we observed a correlation between Fourier magnitude and 

children's age.  In contrast, mean areal size did differ between children and adults, yet no 

correlation was found between size and age.  This suggests that the Fourier magnitude measure 

was more variable than areal size, and this is indeed the case.  To document this efficiently, we 

calculated the coefficient of variance (CV) as the SD divided by the mean.  Fourier magnitude 
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measures for children’s visual areas had a CV in the range of 50-55%; adults produced values 

ranging from 35-45%.  Measures of areal size (absolute and normalized) had a CV in the range 

of 15-30% for both children and adults.  

It is well known in the neuroimaging field that magnitude of fMRI signals cannot 

typically be separated from the extent of activation.  However, in the case of phase-encoded 

retinotopy, the situation is different.  Signal magnitude is not directly used to determine the size 

of the visual areas, although a minimal magnitude is required to carry the phase-encoded signals.  

The preceding paragraph certainly documents that these two variables showed different patterns 

in our results.  For a few visual areas, we did observe a significant correlation between Fourier 

magnitude and area size, but these did not dominate the data set and showed no clear 

consistency.  Specifically, for children, normalized area was correlated with magnitude for left 

V4v and right V2 for eccentricity, and right All for polar angle.  For adults, normalized area was 

correlated with magnitude for left VP for eccentricity, and left V4v for polar angle.  

 

3.4.4 Cortical Magnification Function for Across-Group Comparisons  

In addition to measures of Fourier magnitude, our methods provide information about the 

phase of the MRI signal for each voxel within a visual area.  A smooth progression of phase 

values is produced by the eccentricity and polar angle stimuli (the retinotopic map).  An 

important feature of this map is the amount of cortex devoted to representing a unit of visual 

space, and this can be plotted as a cortical magnification function.  We computed the cortical 

magnification function for areas V1 and V2 in children and adults.  For each subject, we plotted 

stimulus eccentricity versus cortical distance from the occipital pole along the horizontal 

meridian in V1.   

The curves from each subject were well fit by exponential functions (R2 > 0.5).  

Moreover, the average adult and children curves were fit with R2 values of 0.94 and 0.96, 

respectively (Fig. 3-5).  The mean fitted exponent was 0.074 for the adults and 0.071 for the 

children.  The two subject groups did not have a different distribution of exponential values.  

This was true both when the fit was done after placing data in 1-deg bins (p = 0.66) and in the 

case of the non-binned data (p = 0.96).  Thus, our data indicate no difference in the precise 
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retinotopic mapping function, although it can be seen that the variance of the child group was 

somewhat greater.  

For V2, we measured the cortical magnification function for both the ventral and dorsal 

branch, V2v and V2d (Fig. 3-6).  The results were similar to those for V1.  Specifically, for V2v 

we obtained R2 values of 0.98 and 0.97 for adults and children.  The mean fitted exponential 

value is 0.073 for the adults and 0.057 for the children.  For V2d, R2 values are 0.96 and 0.92 for 

adults and children.  The mean fitted exponential value is 0.081 for the adults and 0.080 for the 

children.  The two subject groups do not have a different distribution of exponential values for 

V2v (p = 0.66) or V2d (p = 0.99).  With regard to any differences between the exponential 

function for V2v and V2d, there is a significant difference for the children (p = 0.01) with V2d 

showing a steeper slope than V2v.  The same trend is observed in adults.  

 

3.4.5 Cortical Surface Averaging for Across-Group Comparisons  

The parietal, lateral occipital, and temporal cortical regions are not thought to contain 

precise retinotopic maps, but cruder retinotopic biases may, in fact, exist (Malach et al., 2002; 

Hasson et al., 2002).  To compare phase-encoded retinotopic signals in these regions, we could 

not use the ROI strategy because the field sign maps do not extend into these cortices, and thus 

do not provide a method for identifying visual area boundaries.  Using anatomically defined 

ROIs to directly compare children and adults was rejected due to uncertainty regarding 

homologous points in the cortex of these two groups.  The two groups could nevertheless be 

compared by creating maps that show the average activation pattern for all children and for all 

adults.  

Specifically, we used a new technique for performing across-subject averaging (Fischl et 

al., 1999b).  This new solution is based on a spherical surface template, and provides 

significantly improved accuracy over volume-template techniques.  This method uses the cortical 

surface reconstructions that we made for every subject, is based on localizing position relative to 

the 2D cortical sheet, and is adapted to the folding pattern of each individual subject.  We thus 

made across-subject averages of the statistical measure of Fourier magnitude based on the F-

statistic.  Average F-statistic maps were produced for the adult group and the children’s group. 

The results for the eccentricity stimulus indicate a larger extent of signal in the adult subjects in 
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parietal cortex (Fig. 3-7).  Inspection of the individual data revealed that this was a consistent 

trend in the groups, for both hemispheres.  Seven out of 10 adults showed some activation in the 

middle and/or anterior extent of the intraparietal sulcus, whereas only three children passed these 

criteria.   

The results for the polar angle stimulus showed that the children and adults differed in the 

direction of their hemispheric laterality (Fig. 3-8).  The adult group produced more activity in the 

right hemisphere, whereas the children displayed more activity in the left hemisphere.  This 

finding was consistent at the level of individual subjects.  Five adults and six children showed 

asymmetric activation in the direction stated above, with only one child and adult showing the 

opposite.  This one adult was left-handed, but the child was right-handed.  

In contrast to these differences, the maps of Fourier magnitude F-statistic in adults and 

children appeared qualitatively similar in the ventral temporal cortices of both hemispheres (Fig. 

3-9).  
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3.5 Discussion  

The results of this study provide a quantitative comparison of retinotopic mapping in 

adults and children.  Retinotopic organization in children older than 9 years and in adults is 

qualitatively similar, and six classically reported visual areas could be readily identified (V1, V2, 

V3, V3A, VP, and V4v).  Small differences in regional signal magnitude and areal size were 

documented, and suggest some developmental trends.  According to our experience, children 

younger than 9 years may require more training due to greater head motion and less attention to 

task.  Extra training may improve success rates for this group.   

Although motion artifact appeared to be the major determinant of poor fMRI maps in our 

youngest subjects (aged 7 and 8 years), we cannot completely exclude immaturity at the neural 

or hemodynamic levels.  The basic mechanism of image contrast in fMRI is known (called blood 

oxygenation level dependent [BOLD]), but a detailed understanding of the coupling between 

changes in neural activity and changes in blood oxygenation and flow has not yet been achieved.  

It is not known if this mechanism changes during the course of development.  Some results have 

indicated a negative BOLD response in the visual cortex of sedated infants, raising the 

possibility of drastic developmental changes in the BOLD mechanism (Born et al., 1996; Born et 

al., 1998; Yamada et al., 1997).  Possible reasons for differences in the BOLD signal in children 

include higher metabolic rates at rest than in adults, perhaps supporting higher synaptic density 

(Chugani et al., 1988).  However, sedation or sleep may instead be the important variable here.  

Recently, a negative BOLD response was obtained in children and in adults during slow wave 

sleep, as well as in some cases of sedated adults (Born et al., 2002).  Regardless of the precise 

role of these factors in infants and young children, our own results and those of others suggest 

that a positive BOLD response dominates in awake children by age 7-8 (Martin et al., 1999).  

There are several other concerns that apply to the comparison of children and adults with 

fMRI, particularly comparison of magnitude measures.  Many equipment-related factors affect 

the exact magnitude of fMRI signals.  Furthermore, unlike PET, fMRI does not provide absolute 

measures of flow or oxygenation; only relative changes can be detected.  fMRI signal can be 

interpreted only with respect to other "baseline" conditions, which is readily accomplished for 

within-group comparisons (Friston et al., 1996).  However, a comparison between groups relies 
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on the assumption that both the baseline and the experimental brain states are the same 

(Bookheimer, 2000).  

When subjects perform a task during a scan, controlling for task difficulty becomes a 

concern.  If our groups did not perform the same task during the scanning, then it naturally 

follows that differences in brain activation could be independent of developmental state.  In our 

case, it is possible that the children differed in fixation stability or extrafoveal spatial attention.  

However, our fixation task did not involve cognitively difficult reasoning or speeded reactions.  

To reduce the demands on children with regard to sustained vigilance/attention, we administered 

the scans in units of 4 min rather than 8 min.  The adult-like retinotopic maps we obtained from 

the children suggest that they did indeed maintain fixation and attention.  Moreover, for the six 

retinotopic areas, the main effect was the normalized size of several extrastriate areas, and this 

selective topographic effect is unlikely to be due solely to one of these confounds.  

Minimal differences in signal magnitude between children and adults were observed in 

the ROI analysis, so we can probably exclude major group differences due to head position in the 

coil or head motion.  Once we excluded the subjects with gross head motion artifacts, we 

observed no correlation between head motion and Fourier magnitude.  We did, however, find 

that the Fourier magnitude measure was variable in children.  

To compare the organization of primary visual cortex in more detail, we computed the 

cortical magnification function in both children and adults.  We found that the children’s data did 

not differ from the adults’ for V1 or V2.  Our values were highly consistent with those reported 

by previous studies.  For example, the exponent fitted to the V1 data of Engel et al. (1997) was 

0.063 for two adults, and the data from Sereno et al. (1995) is approximately 0.082.  These 

values are close to our value of 0.074 for 10 adults.  Interestingly, the V1 cortical magnification 

factor has been shown to be correlated with behavioral performance on Vernier acuity tasks 

(Duncan and Boynton, 2003).  Given that Vernier acuity does not reach adult levels until age 14, 

the adult-like cortical magnification factor we found for the child group is notable.  This may be 

another example in which development of complex sensorimotor behaviors may lag relative to 

isolated physiological indices (in visual cortex).   

We measured the surface area of retinotopic visual areas in terms of absolute and 

proportional size.  Similar data have recently been reported for absolute size for three visual 

areas in adults only (Dougherty et al., 2003).  These authors obtained mean sizes of 1470, 1115, 



   

 65

and 819 mm for V1, V2, and V3.  The value for V2 is the same as our measurements, although 

our estimates for V1 and V3 are lower.  There are several methodological differences that could 

provide an explanation: cortical flattening techniques, our use of field sign computations, and our 

use of manual versus automatic tracing of visual boundaries.  Nonetheless, all of our methods 

were applied consistently to the adults and children, and should allow meaningful comparison 

between the two groups.  

Our data indicate that extrastriate cortex was measurably smaller in children compared to 

adults.  This result was obtained for both absolute size and percentage of the entire reconstructed 

neocortical sheet, suggesting that gross brain size is not a relevant factor.  Consistently, previous 

literature indicates no significant change in cerebral volume after age 5 (Giedd et al., 1996; Reiss 

et al., 1996).  The idea that extrastriate cortex could mature later than striate cortex is confirmed 

by the results of some previous reports.  Ossenblok et al. (1994) concluded that striate activity 

dominates the checkerboard onset evoked potential of the children aged about 4–8 years, 

whereas extrastriate activity grows later in life.  A posterior-to-anterior maturation gradient is 

also suggested by the few available anatomical studies of children's brains (Garey, 1984; 

Thompson et al., 2000; Sowell et al., 1999).  Nonetheless, the fact that our data showed adult-

like cortical magnification functions in V2 despite its smaller size in children may indicate that 

the overall size difference has limited functional significance.  Future studies of extrastriate 

cortical areas in children may help clarify these issues.  

We performed whole brain across-subject averaging to assess the regional extent of 

retinotopic activity in higher level cortex of the parietal, lateral occipital, and temporal cortex.  

Based on gross anatomical homologies, the eccentricity stimulus results suggest a slight trend 

toward greater activity in parietal lobes of the adults.  However, we cannot easily separate 

fixation task-related activity from a true difference in retinotopy.  Further study of spatial 

perception and attention in children would be warranted.  The most striking difference between 

children and adults was seen for the polar angle stimulus (Fig. 3-8).  However, caution is 

required when interpreting these data, given that we could not directly compare the hemispheres 

of adults and children.  However, we can still see that within the adult group, the right 

hemisphere produced more activity, whereas in the child group, the opposite bias was seen.  

Furthermore, these suggestive differences occur in the absence of differences elsewhere (e.g., 

ventral temporal cortex).  
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There is only a small literature that speaks to hemispheric lateralization during human 

cortical development, but there is evidence that developmental rates do differ between 

hemispheres.  However, no simple left-right gradient is likely to exist, rather, regionally specific 

effects have often been found at different ages (Thatcher et al., 1987; Sowell et al., 2001).  Given 

our lateralized findings with the moving polar angle stimulus, one study that measured cortical 

activity during a form-from-motion task in the left or right hemifield is quite relevant (Hollants-

Gilhuijs et al., 1998).  This cross-sectional ERP study of children and adults concluded that 

"maturation of motion sensitive areas of the extrastriate cortex in children's right hemisphere is 

delayed with respect to that of the homologous regions of the left hemisphere."  The convergence 

of their conclusion with our own is suggestive, although clearly more studies that measure visual 

performance along with brain activity are required.  Finally, it may be relevant that cognitive 

tasks such as analysis of global versus local object structure, when measured with fMRI, do not 

produce the adult-like degree of hemispheric lateralization in many children aged 12-14 years 

(Moses et al., 2002).  

Despite the subtle differences between adults and children we documented here, the 

overall similarity between the groups is evident.  The rather mature visual maps seen in children 

aged between 9 and 12 years contrast with many cognitive functions that mature much later, and 

fMRI is increasingly being employed to study such protracted neurological development.  For 

example, the first pediatric fMRI study focused on immature frontal lobe function as assessed by 

working memory (Casey et al., 1995).  Recent cross-sectional studies of reading (Turkeltaub et 

al., 2003) and visuo-spatial working memory (Kwon et al., 2002) have included extensive 

behavioral measures and document impressive amounts of both age- and performance-related 

change.  The relatively stable retinotopic visual representations during the childhood-

adolescence period may serve as a baseline for comparison to the more protracted development 

of anterior regions.  
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3.6 Conclusions  

In this study, we measured retinotopic organization in children in multiple visual areas 

for the first time.  We demonstrated the feasibility of applying techniques developed for adults, 

with only slight modifications.  The children were not given separate training sessions, although 

the reports of other investigators indicate that this is an effective strategy and could improve the 

success rate even further.  In the future, the fMRI technique, especially with longitudinal designs, 

should contribute greatly to studies of brain development because experiments can be repeated to 

document change over time.  Cortical flattening methods can further facilitate the accumulation 

of data from multiple experiments onto individual maps of visual cortex.  It will be possible to 

compare retinotopic maps in normal children to children with visual disorders and monitor the 

effect of treatment variables over time, an approach that is already revealing neurological effects 

of remediation in children with dyslexia (Temple et al., 2003). 
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3.7 Tables 
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3.8 Figures 

 

 

 
 

 

FIGURE 3-1. DEPICTION OF DYNAMIC ECCENTRICITY AND POLAR ANGLE STIMULI.  Top. The 

eccentricity stimulus was an annular ring that slowly expanded in size.  Three isolated example 

frames are shown.  Bottom. The polar angle stimulus was a wedge that rotated around the 

fixation point.  
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FIGURE 3-2. RETINOTOPIC MAPPING RESULTS FROM ONE CHILD. A. Eccentricity representation is 

shown on a flattened representation of the right occipital pole.  Light and dark grays indicate the 

unfolded gyri and sulci, respectively.  Red, green, and blue indicate the central 1.5-deg, 1.5-5-

deg, and 5-15-deg eccentricity.  The adjacent semicircular logo depicts this color scheme in the 

corresponding left visual field.  B. Polar angle representation is shown in the same subject. As 

indicated in the adjacent logo, red and green indicate the upper and lower vertical meridians, and 

blue indicates the horizontal meridians.  C. Data sets in A and B are combined to yield the field 

sign map that indicates the boundaries of multiple visual areas.  Yellow indicates areas with 

quarter or hemifield representation; blue areas have the opposite field sign (i.e., a mirror-reversed 

map). 
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FIGURE 3-3. COMPARISON OF AVERAGE HEAD MOTION DURING THE FMRI SCANS FOR ADULTS 

AND CHILDREN.  Each data point represents the vector magnitude of translational head motion 

detected by the motion-correction algorithm.  Adults are indicated with blue diamonds, children 

with red squares.  As a population, children produced more movement, but some children were 

indistinguishable from adults.  The thick horizontal black line serves as a reference mark.  
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FIGURE 3-4. COMPARISON OF SIZE OF VISUAL AREAS IN CHILDREN AND ADULTS.  The total 

combined area (as a percentage of the entire cortical sheet) of homologous visual areas in both 

hemispheres is plotted.  A significant difference between groups is indicated with an asterisk.  
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FIGURE 3-5. COMPARISON OF CORTICAL MAGNIFICATION FUNCTIONS IN AREA V1 FOR CHILDREN 

AND ADULTS.  Eccentricity is plotted against cortical distance from the occipital pole along the 

horizontal meridian.  
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FIGURE 3-6. COMPARISON OF CORTICAL MAGNIFICATION FUNCTIONS IN AREAS V2V AND V2D FOR 

CHILDREN AND ADULTS.  Eccentricity is plotted against cortical distance from the occipital pole.  
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FIGURE 3-7. COMPARISON OF ECCENTRICITY SIGNALS IN LATERAL OCCIPITO-TEMPORAL CORTEX 

FOR ADULTS AND CHILDREN.  Top. The yellow-red color scale shows the Fourier magnitude 

measured as an F-statistic averaged across 10 adults and plotted on the lateral view of the 

inflated right and left hemispheres of one representative adult.  The central annular symbol 

indicates the geometry of the eccentricity stimulus.  Bottom. The equivalent data are shown for 

the group of 10 children.  The two groups appear qualitatively similar, except for weak signals 

observed in the parietal cortex of adults that are not visible for the children.   
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FIGURE 3-8. COMPARISON OF POLAR ANGLE SIGNALS IN LATERAL OCCIPITO-TEMPORAL CORTEX 

FOR ADULTS AND CHILDREN.  Top. The yellow-red color scale shows the Fourier magnitude 

measured as an F-statistic averaged across 10 adults and plotted on the lateral view of the 

inflated right and left hemispheres of one representative adult.  The central wedge symbol 

indicates the geometry of the polar angle stimulus.  Bottom. The equivalent data are shown for 

the group of 10 children.  The adults and children differ with respect to which hemisphere shows 

an advantage in the extent of significant signal (highlighted with green arrows).   
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FIGURE 3-9. COMPARISON OF ECCENTRICITY AND POLAR ANGLE SIGNALS IN VENTRAL TEMPORAL 

CORTEX FOR ADULTS AND CHILDREN.  Top. The yellow-red color scale shows the Fourier 

magnitude measured as an F-statistic averaged across 10 adults and plotted on the ventral view 

of the inflated right hemisphere of one representative adult.  The annular or wedge symbols 

indicate when eccentricity or polar angle data are shown.  Bottom. The equivalent data are 

shown for the group of 10 children.  The two groups appear qualitatively similar.  
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CHAPTER 4: Monocular Representation in 
Visual Cortex of Amblyopic Adults Measured 
with fMRI 
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4.1 Abstract 

Amblyopia is a developmental disorder that results in abnormalities in primary visual cortex, 

although the extent of further cortical involvement remains unclear.  This fMRI study directly 

compared the BOLD signals produced by monocular stimulation in 18 adults (6 esotropic 

strabismics, 6 anisometropes, and 6 controls).  Measures were made in three cortical regions-of-

interest (ROIs), individually defined using standard retinotopic mapping techniques in the 

nonamblyopic eye, corresponding to extrafoveal V1, extrafoveal V2, and the foveal 

representation at the occipital pole.  Fixation stability was continuously monitored and found not 

to differ significantly between subject groups.  Overall, results showed depressed fMRI signal 

magnitude for amblyopic eyes compared with fellow eyes in all ROIs, although a few subjects 

did not show this trend.  Assessment of the spatial extent of activation using an ocular 

dominance index revealed significantly larger interocular differences for both strabismics and 

anisometropes compared with controls.  In addition, both amblyopic groups showed fewer 

vertices able to be driven by both eyes.  Analysis of individual phase-encoded retinotopic maps 

obtained from amblyopic eyes revealed fewer vertices in the occipital pole activated by foveal 

stimuli, consistent with known psychophysical losses.  Finally, several amblyopic subjects 

demonstrated the unexpected finding of increased activity in parietal and temporal cortex for the 

amblyopic eye.  We conclude that, even in a heterogeneous population, abnormal early visual 

experience commonly leads to regionally specific cortical adaptations. 
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4.2 Introduction 

Amblyopia, often referred to as “lazy eye,” is the most common visual disorder in 

children (Hillis et al., 1983).  It is defined as visual impairment without ocular lesion, resulting 

instead from abnormal neural development due to atypical early visual experience (Campos, 

1995).  Visual acuity is usually unimpaired in the nonamblyopic eye.     

The two most prevalent amblyogenic factors are unequal interocular refractive error and 

ocular deviation, sometimes presenting concurrently (von Noorden and Campos, 2001).  

Unbalanced refractive error results in anisometropic amblyopia, whereas strabismic amblyopia 

follows ocular deviation.  Less frequently, unilateral cataract can cause deprivation amblyopia 

(Barrett et al., 2004).  The common factor in amblyopia, regardless of etiology, is interruption of 

normal visual experience during critical developmental periods (Daw, 1998).  Consequently, 

studies of amblyopic adults afford an opportunity to understand the effects of early sensory 

impairment on subsequent brain organization and function. 

Earlier investigations of human amblyopia relied upon careful psychophysical testing, 

finding consistently impaired visual acuity and contrast sensitivity in amblyopic eyes 

(Abrahamsson and Sjostrand, 1988; Asper et al., 2000b; Ciuffreda and Fisher, 1987), particularly 

in central vision (Thomas, 1978; Sireteanu and Fronius, 1990).  Furthermore, asymmetric visual 

field deficits have been reported in amblyopes with esotropic (i.e., inward deviating) strabismus, 

with nasal impaired more than temporal retina input (Sireteanu and Fronius, 1981; Hess and 

Pointer, 1985).  The amblyopic deficit is thought to be based in primary visual cortex (V1), 

where monocular inputs are first combined (Cynader, 1982; Hess, 2001; Asper et al., 2000a).  

Animal deprivation models utilizing eyelid suture show grossly normal retinas and lateral 

geniculate nuclei, but dramatic shifts in ocular dominance in V1 layer IV (Wiesel and Hubel, 

1963; Hubel et al., 1976).  Accordingly, few neurons respond to the sutured eye, and binocularity 

is severely impaired.  Subsequent animal studies utilizing models of human anisometropic 

(Movshon et al., 1987) and strabismic (Kiorpes and Boothe, 1981) amblyopia  show milder 

ocular dominance shifts, less severe binocularity losses, and impaired cortical acuity and contrast 

sensitivity for the affected eye (Crawford and Harwerth, 2004; Smith, III et al., 1997).  These 

data match the human psychophysics well, suggesting similar neural substrates.            
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The neuroimaging techniques of positron-emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) have recently expanded the study of human amblyopia.  

PET has shown reduced cerebral blood flow and glucose metabolism in V1 and extrastriate 

cortex for amblyopic eye viewing (Mizoguchi et al., 2005; Demer et al., 1997; Imamura et al., 

1997), and fMRI has been used to quantify reduced activation extent (Goodyear et al., 2000; 

Algaze et al., 2002) and signal magnitude in occipital cortex (Barnes et al., 2001; Liu et al., 

2004).  Furthermore, a few studies have also compared amblyopic subtypes, finding less 

activation at high spatial frequencies for anisometropes (Choi et al., 2001), but more impaired 

binocular responses in strabismics (Lee et al., 2001).  Most studies have not localized deficits to 

specific field locations or visual areas.   

 The present study compared strabismic and anisometropic amblyopes with matched 

controls.  First, we administered psychophysical tests to confirm diagnoses.  We used monocular 

hemifield mapping to examine interocular and between-group metabolic signal differences.  We 

then performed retinotopic mapping, and defined V1, V2, and a foveal region-of-interest.  We 

addressed four hypotheses: 1.) Amblyopic eyes will produce reduced signal magnitude.  2.) 

Ocular dominance will shift toward the fellow eye and binocularity will be impaired.  3.) The 

nasal retina will be more impaired in strabismic amblyopes.  4.) Early visual areas will have 

abnormal representations of central visual space.  We found reduced amblyopic eye signal, 

shifted ocular dominance, and impaired binocularity in amblyopic subjects.  Moreover, we found 

visual field remapping in occipital pole locations that represented foveal space in the fellow eye, 

but parafoveal locations in the amblyopic eye.  Unexpectedly, we also found abnormal activation 

patterns in parietal and temporal cortex of three amblyopes, a potential signature of higher-order 

deficits. 
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4.3 Materials and Methods 

4.3.1 Subjects 

 We studied 18 adult volunteers aged 18 to 35 (13 female, 5 male).  Six were control 

subjects (CTL), six had previously been diagnosed with strabismic amblyopia (STRAB), and six 

had previously been diagnosed with anisometropic amblyopia (ANISO).  Any subject with other 

known or suspected neurological or psychiatric conditions was excluded.  These subjects were 

recruited through public advertisement in the surrounding regions of West Virginia, 

Pennsylvania, and Maryland.  Informed consent was obtained from all subjects (IRB protocol # 

14788), in accordance with the Code of Ethics of the World Medical Association (Declaration of 

Helsinki). 

Our subject groups were matched for mean age (CTL = 25, STRAB = 27, ANISO = 28) 

and mean years of education (CTL = 15, STRAB = 16, ANISO = 15).  All amblyopic subjects 

had a history of patch occlusion treatment during childhood, but the presence of visual 

impairment at the time of testing demonstrates that the deficit was never completely reversed 

(Table 1).  Three of the six strabismic subjects also reported surgical correction of their deviation 

in childhood.   

 All subjects completed a full ophthalmologic exam at the WVU Eye Institute to confirm 

their diagnosis.  Diagnosis of anisometropic amblyopia was assigned on the basis of 1.) 

Interocular refractive difference of hyperopia >= +1.0 diopter, astigmatism >= +1.0 diopter, or 

myopia >= -2.5 diopters; or 2.) History of anisometropia but no history of strabismus or 

strabismus surgery.  Diagnosis of strabismus was made on the basis of a history of strabismus or 

strabismus surgery, but no anisometropia (as defined above).  In clinical practice it is common to 

find that some subjects with amblyopia present with a mixed anisometropic/strabismic diagnosis, 

although little consensus exists regarding additional subtypes.  One of our strabismic subjects 

(S4) had an interocular difference of hyperopia of 2.75 diopters, consistent with a potential 

mixed diagnosis. 

The direction and magnitude of strabismic deviation in our subjects was determined with 

cover-uncover, alternate cover, and prism testing.  All six of our strabismic subjects showed 

inward eye deviations (esotropia) rather than outward deviations (exotropia).  Congenital 

esotropia and exotropia are commonly associated with amblyopia, although it has previously 
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been shown that esotropia has the greater prevalence in Caucasian populations (Ing and Pang, 

1974).  Latent deviations for our subjects ranged from 0-25 prism diopters (Table 1).     

 The ophthalmologic tests also included examination of the fundus with dilation, 

documentation of ductions and versions, autorefraction, and a sensory exam including Snellen 

visual acuity (Lombart Instrument, Norfolk, VA), contrast sensitivity (Lighthouse International, 

New York, NY), Worth 4-dot, stereoacuity (Titmus Optical, Inc., Petersburg, VA), and Ishihara 

color plates (Kanehara and Co., Ltd., Tokyo, Japan).  The results for Snellen visual acuity, 

interocular refractive difference, and the Titmus stereoacuity are given in Table 1.  The Titmus 

stereoacuity test was scored according to highest level of detectable horizontal disparity for the 

Wirt rings or for the Titmus fly.  The crudest stereoacuity measurable with this test is 3500, 

assigned for patients able to perceive disparity only in the Titmus fly illustration.     

 Finally, in order to facilitate comparison of amblyopic and control subjects, individuals in 

the control group were assigned a dominant eye (DE) and a non-dominant eye (NDE) based on 

visual acuity.  We used Snellen acuity was the primary criterion, but in three subjects grating 

acuity was used because Snellen acuity was equal in both eyes.  All amblyopic subjects had 

worse Snellen and grating acuity in their amblyopic eye (AE) than their fellow eye (FE).  In all 

subsequent group analyses, AE was always compared with NDE, and FE with DE. 

 

4.3.2 Psychophysical Testing 

 All psychophysical tests were administered with optical correction.  Translucent plastic 

patches covered the non-testing eye.  All tests included practice trials to ensure that the stimuli 

were visible and the task instructions were adequately understood. 

 

4.3.2.1 Grating Acuity 

Stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 

and MATLAB 5 for Macintosh OS 9 and were displayed on a calibrated high resolution CRT 

monitor (Hitachi Super Scan 812) at 5.9 meters.  For each trial, the subject viewed two 

temporally sequenced screens identified by audible tone, containing either a vertical sinusoidal 

grating (80% physical contrast, subtending 8 degrees of visual angle) or an isoluminant gray 

screen.  One-third of trials were blanks.  When present, grating contrast was ramped-on over 200 
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msec, plateaued for 500 msec, and then ramped-off over 200 msec.  The subject identified the 

grating epoch using a two-alternative forced choice paradigm (2-AFC).  Spatial frequency was 

varied by a staircase procedure that increased spatial frequency following two correct responses 

and decreased spatial frequency after one incorrect response (2-up, 1-down), terminating after 

seven reversals. The acuity threshold was taken as the geometric mean of the last four reversals. 

 

4.3.2.2 Contrast Sensitivity 

 These stimuli were generated as described above, and displayed on a calibrated Apple 

Studio Display LCD monitor at 57 cm.  For each trial, the subject viewed two temporally 

sequenced epochs identified by audible tone, containing either a vertical sinusoidal grating 

(subtending 6 degrees of visual angle, 200 ms duration) or an isoluminant gray screen.  The 

entire trial lasted 2400 ms with an intertrial interval of 1800 ms.  The subject identified the 

grating epoch, using 2-AFC.  An interactive staircase procedure (2-up, 1-down) was used to 

approach the contrast detection threshold (the 71% correct level) at each of five spatial 

frequencies (0.5, 1.0, 2.0, 4.0, and 8.0 cycles per degree), terminating after seven reversals for 

each spatial frequency.  The first three reversals used a step size of 6 dB to rapidly approach 

threshold, while the last four reversals used a 2 dB step size.  The contrast threshold was taken as 

the geometric mean of the last four reversals.     

 

4.3.2.3 Contour Integration 

 Stimuli were displayed on a Silicon Graphics CRT monitor (model GDM-5411).  The 

task was to determine the orientation (i.e., pointing left or right) of a perceived egg-shaped 

contour made up of 15 small aligned Gabor patches embedded in a field of randomly oriented 

patches of identical contrast and spatial frequency (Braun, 1999; Kovacs and Julesz, 1993; 

Chandna et al., 2001; Field et al., 1993; Pennefather et al., 1999; Kovacs et al., 1999).  This test 

was administered using the method of constant stimuli and a 2-AFC paradigm at six levels of 

increasing difficulty (available online at http://zeus.rutgers.edu/~ikovacs/S&P_contour.html).  

Task difficulty increased as a function of increasing orientation jitter of the Gabor patches along 

the contour.   

 

http://zeus.rutgers.edu/~ikovacs/S&P_contour.html
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4.3.3 Cortical Surface Reconstruction  

 Surface reconstructions of each subject’s cerebral cortex were generated from high-

resolution anatomical images obtained in a General Electric 1.5 Tesla scan session prior to the 

fMRI experiments, using the freely available (http://www.nmr.mgh.harvard.edu/freesurfer) 

FreeSurfer software package (Dale et al., 1999; Dale and Sereno, 1993; Fischl et al., 1999; Fischl 

et al., 2001).  Briefly, whole-head 3D Fast Spoiled Grass (FSPGR) gradient echo scans, 

optimized for contrast between gray and white matter, were collected for each subject.  Specific 

parameters were: fast IR prep (prep time = 300 ms), TE = 1.9 ms, flip angle = 20 deg, FOV = 24 

cm, axial slices, 256 x 256 matrix, voxel resolution = 0.94 x 0.94 x 1.2 mm.   

The cortical surface representation was inflated and then flattened by introducing a series 

of cuts to the 3-D surface to isolate the occipital pole (Sereno et al., 1995).  Using this technique, 

the primary relaxation cut corresponds to calcarine sulcus, approximately the horizontal meridian 

representation in V1.  The resulting occipital patch was used for fMRI data display, but all data 

analysis was performed in native space.      

 

4.3.4 Functional Magnetic Resonance Imaging 

4.3.4.1 General Methods 

Subjects were scanned in both a General Electric 3 Tesla MR scanner (Experiment 1) and 

a General Electric 1.5 Tesla MR scanner (Experiment 2), using a visual surface coil (Nova 

Medical, Inc., Wilmington, MA), as has been previously described (Mendola et al., 1999; Conner 

et al., 2004).  After a sagittal localizing scan, a T1-weighted inversion recovery sequence (TR = 

400 ms) was used to acquire 20 interleaved oblique 4 mm slices with 0.86 x 0.86 mm in-plane 

resolution, oriented perpendicular to the calcarine sulcus, beginning at the occipital pole.  These 

anatomical scans were later utilized to register functional data to the cortical surface model.   

The next step was to acquire multiple functional scanning runs using the same slice 

prescription selected in the anatomical scans, but with 1.72 x 1.72 mm (Exp. 1) or 3.44 x 3.44 

mm (Exp. 2) in-plane resolution.  Functional signals reflecting the blood oxygenation level 

dependent (BOLD) contrast were acquired using a spiral gradient echo sequence [TE = 40 ms, 

Flip Angle = 65 deg , TR = 2000 ms (Exp.1) or TR = 4000 ms (Exp. 2)] (Kwong et al., 1992; 

Ogawa et al., 1992; Glover, 1999).    

http://www.nmr.mgh.harvard.edu/freesurfer
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 Head movement (within- and between- scans) was minimized by the use of foam packing 

and adhesive tape around the subject’s head within the MR scanner.  Eye movements were 

monitored using the Sensomotorics iView system in order to ensure fixation stability during the 

functional scans.  The iView system was used to measure gaze position in the stimulated eye, 

and was calibrated using a nine-point display at a screen resolution of 832 x 624 pixels, 

subtending approximately 30 deg horizontal x 23 deg vertical of visual angle.  Accurate 

calibration was not achieved in a minority of subjects (see Results), but most subjects were able 

to have eye tracking throughout both experiments.  The recording rate of the iView camera was 

60 Hz.     

During the MR imaging experiments, the visual stimuli were generated using the 

Psychophysics Toolbox and MATLAB 5 for Macintosh OS 9 on a PowerMac G4 computer with 

dual SVGA display drivers (output resolution = 832 x 624 pixels, 30 deg horizontal x 23 deg 

vertical).  The stimuli were displayed in the scanner using the Avotec SilentVision dichoptic 

projector.  Subjects viewed the images with both eyes open by looking straight ahead into the 

eyepieces, which were placed approximately 1 cm in front of their eyes.  Subjects used the 

eyepieces’ built-in optical correction.  For each functional scanning run, one eyepiece displayed 

the stimulus and fixation target while the other displayed an isoluminant gray screen.  Left and 

right eye stimulation was alternated during each experiment. 

A central fixation mark was present at all times for the fMRI experiments.  Subjects were 

clearly instructed to maintain fixation on this mark throughout the functional scanning.  The 

fixation target was a small arrowhead (0.5 deg) pointing in one of four directions (i.e., up, down, 

left, or right) which randomly changed direction every 4 s.  In order to aid fixation stability and 

maintain attention to the stimulus, subjects were given a task of monitoring and reporting the 

appearance of the fixation point.  Subjects used a fiber-optic button pad with four buttons 

configured in a cross shape to report arrow orientation.   

 

4.3.4.2 Experiment 1: Hemifield Mapping   

 This experiment utilized a blocked design, showing 16 s periods of a high-contrast, 

radially moving wedge in the left or right visual hemifield, alternating with a fixation-only 

condition.  The wedge spanned either 100 degrees (40 degrees from vertical meridian) or 160 

degrees (10 degrees from vertical meridian), and spared the central 0.5 degrees of visual space, 
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where the fixation target was presented (Fig. 4-1 A).  These stimuli were designed to avoid the 

cortical representation of the vertical meridian (the region of visual cortex where the hemifields 

overlap), similar to those used in an earlier study of the ipsilateral visual field representation in 

subjects with normal vision (Tootell et al., 1998).  In this study, we report data from the 

hemisphere contralateral to the stimulated field.  Each scan stimulated only one eye, consisting 

of 8 alternating blocks of hemifield stimulus and fixation, for a total scan length of 256 seconds.  

Eight total runs were collected, two for each combination of wedge size and eye.  The entire 

scanning experiment lasted approximately 2 hours. 

 

4.3.4.3 Experiment 2: Retinotopic Mapping 

The cortical representation of retinotopic visual space was determined using a phase-

encoded design in which the cardinal axes of visual space (eccentricity and polar angle) were 

mapped separately (Engel et al., 1997).  The stimuli consisted of two different high-contrast, 

multi-colored checkerboard patterns.  The “rotating wedge” stimulus sweeps through the polar 

angle dimension like the hand of a clock, while the “expanding ring” stimulus maps eccentricity 

by starting from the center of the visual field and expanding outward (Fig. 4-1 B).  Eccentricity 

stimuli traversed space with a logarithmically increasing rate, as has been used previously 

(Conner et al., 2004; Sereno et al., 1995).  This allowed the eccentricity stimulus to spend a 

greater proportion of the stimulus cycle in the foveal portion of the visual field, approximately 

accounting for cortical magnification from central vision to the periphery.  Both stimuli also 

approximately compensated for the increasing receptive field size by increasing in size as they 

approach the periphery.   

These phase-encoded stimuli used a 64 s cycle, completing eight cycles per scan.  As a 

result, each functional scan took 512 s, collecting 128 time points per functional scan volume.  

Four scans of this type were administered for each eye in one session, two for eccentricity and 

two for polar angle.  Paired clockwise/counterclockwise and expansion/contraction scans were 

used in order to cancel the effects of residual hemodynamic phase delays.  The entire scanning 

protocol for the retinotopic mapping experiment typically lasted about 2 hours. 
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4.3.5 Statistical Analysis 

The functional analysis was completed using the FS-FAST software tools freely available 

at ftp://ftp.nmr.mgh.harvard.edu/pub/flat/fmri-analysis.  Before statistical analysis, raw MR 

images were first motion-corrected to the 64th volume (i.e., the midpoint of 128 volumes) of the 

first run using an iterated linearized weighted least squares method through the FS-FAST 

implementation of the AFNI 3dvolreg algorithm (Cox and Jesmanowicz, 1999).  In addition to 

motion-correcting, this algorithm also provides a sum-of-squares estimate of average head 

motion throughout the fMRI scanning session, which was compared between subject groups for 

both experiments.  The MR volumes were subsequently intensity normalized using the average 

in-brain voxel intensity.  The resulting data sets were then used as inputs for the subsequent 

analysis, which differed for the two experiments.   

 

4.3.5.1 Experiment 1: Hemifield Mapping  

Briefly, the FS-FAST software was used to selectively average the blocks corresponding 

to stimulation of each of the left and right visual hemifields, separately for each eye.  A voxel-

wise F-test computed the significance of the contrast between BOLD signal for each block and 

fixation baseline.  The functional results were then resampled onto individual cortical surfaces, 

producing maps of statistical significance overlaid on inflated or flattened representations of 

individual brains.  This allowed the pattern of significant (p < 0.05) fMRI results to be easily 

visualized for each subject.   

 

4.3.5.2 Experiment 2: Retinotopic Mapping  

Fast Fourier transform analysis was conducted on the time series of each voxel to 

statistically correlate retinotopic stimulus location with visual cortical anatomy.  This analysis 

rejected low frequencies due to head motion or baseline drift and extracted functional signals in 

the form of magnitude and phase relative to the stimulus cycle frequency.  Signal magnitude 

reflects retinotopic specificity, which can be low due to either lack of visually induced response 

or equivalent response to all retinotopic locations.  The phase component of the signal codes 

specific retinotopic location, but is also dependent upon individual hemodynamic delay.  To 

standardize the effect of heterogeneous hemodynamics across subjects, individual maps were 

first optimized with respect to phase for each subject’s fellow (or dominant) eye, and the 

ftp://ftp.nmr.mgh.harvard.edu/pub/flat/fmri-analysis
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resulting phase offset was subsequently applied to the amblyopic eye maps.  For eccentricity 

maps, this consisted of choosing a phase offset that optimally aligned the representation of 

central vision with the occipital pole, resulting in a normal map with a concentric red (foveal), 

blue (parafoveal), and green (peripheral) pattern.  Thus, the fellow eye was established to serve 

as an internal control for each subject.  The data were projected onto flattened representations of 

individual brains using a tricolor code of signal phase, i.e., visual field location.  Finally, data 

from the eccentricity and polar angle scans were combined to create field sign maps for each eye, 

demonstrating visual area boundaries.  The field sign maps’ polarity is either similar or mirror 

symmetrical to the actual visual field geometry, and is defined as the sign of the cross-product 

between receptive field eccentricity and polar angle gradients (Sereno et al., 1994; Sereno et al., 

1995).      

 In order to directly compare eccentricity stimulus magnitude patterns between eyes in 

individual subjects, we further plotted the significance of the F-statistic for each eye onto 

flattened occipital patches.  These significance maps most accurately reflected the consistency of 

cortical activation in eccentricity scans, independent of phase.  We used the Talairach Daemon 

(http://ric.uthscsa.edu/projects/talairachdaemon.html) to describe the location of any cortical 

regions with greater activity for amblyopic than for fellow eyes (Lancaster et al., 2000; Talairach 

and Tournoux, 1988). 

 

4.3.6 Region-of-Interest Analysis 

Field sign maps generated from each subject’s fellow/dominant eye (Exp. 2) were used to 

define retinotopically specific regions-of-interest (ROIs) (Sereno et al., 1995; Engel et al., 1997).  

These objectively determined borders were available for V1 and V2 for all subjects, but further 

visual areas were not definable for most amblyopic subjects.  In addition, a “foveal” ROI (FOV) 

was defined as the region of occipital pole activated by the fellow or dominant eye in the central 

2.5 degrees of visual angle.  ROIs corresponding to extrafoveal V1 and V2 (V1EF and V2EF) were 

defined as the remainder of these areas (i.e., 2.5 to 15 degrees eccentricity) after subtraction of 

FOV.  

For Exp. 1, these ROIs were used to extract BOLD signal magnitudes from the 

hemispheres contralateral to the stimulated hemifield for each experimental condition.  These 

http://ric.uthscsa.edu/projects/talairachdaemon.html
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data were separately extracted for each ROI, wedge size, and eye.  Mean signal magnitudes were 

then compared across diagnoses using a multifactorial, random-effects ANOVA.  Initially, five 

factors were included in this analysis: subject group, ROI, wedge size, stimulated hemiretina 

(nasal vs. temporal), and eye (amblyopic vs. fellow eye or non-dominant vs. dominant eye).  

There were no significant effects of wedge size or hemiretina, so these factors were subsequently 

collapsed across conditions.  Unpaired two-tailed t-tests were then used to directly compare 

amblyopic with control and fellow eyes for each subject group, within each ROI.  For Exp. 2, the 

Fourier magnitude and phase of each vertex was extracted for each eye and ROI for the 

eccentricity stimulus.  The average Fourier magnitudes were compared across diagnoses using a 

multifactorial, random-effects ANOVA with three factors: subject group, ROI, and eye.   

Next, the Fourier phase values were analyzed for differences across groups.  Phase values 

range from -180 to +180, with negative values corresponding to foveal and positive values 

corresponding to peripheral field stimulation.  In order to allow for noise in the phase estimation, 

correct for the phase discontinuity at the end of the eccentricity cycle (i.e., periphery wraps 

around to fovea), and avoid systematic bias in the mean phase estimation, the continuous circular 

phase scale was linearized and recentered to form a bracket around the predicted phase values for 

each ROI (Supplemental Fig. 4-S2 A).  For the foveal ROI, the predicted phase of all vertices is -

180 to -60 (the first third of the stimulus cycle), so phase values in the ROI corresponding to the 

last third of the stimulus cycle (+60 to +180) were assumed to represent offset noise in the phase 

estimation and shifted by -360, to -300 to -180.  This results in an effective range of -300 to +60 

for the foveal ROI.  Similarly, for V1EF and V2EF, the predicted phase of all vertices is -60 to 

+180 (the final two-thirds of the stimulus cycle), so phase values corresponding to the first sixth 

of the stimulus cycle (-180 to -120) were shifted by +360, to +180 to +240, resulting in an 

effective range of -120 to +240 (Supplemental Fig. 4-S1 B).  This recentering procedure allowed 

the use of linear descriptive and comparative statistics for comparing phases across subjects.  

Mean phase was calculated for each ROI and eye in each subject.  Interocular phase differences 

were then calculated (FE - AE or DE – NDE).  Using this method, negative phase differences 

indicate a relative shift of amblyopic eye vertices toward later phase values (i.e., driven by more 

peripheral visual field locations) and vice versa.  These average phase differences were 

compared across diagnoses for each ROI using an unpaired t-test.   
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Finally, we recognized that reduced fixation stability in amblyopic subjects could 

influence our results, leading to possible misinterpretations.  In order to dissociate our results 

from these effects, we performed a correlation analysis for BOLD signal magnitude (Exp. 1) and 

Fourier magnitude and phase (Exp. 2) with fixation stability during the corresponding scans. 

 

4.3.6.1 Interocular ROI Indices 

 For Exp. 1, the ROIs defined above were also used to quantify the difference in fMRI 

response between eyes at the individual subject level.  Two separate indices were defined, using 

only the cortical vertices that were significantly activated (p < 0.05).     

 

Ocular Dominance Index.  The dominance index (DI) was calculated as the difference 

between the number of vertices activated by each eye, divided by the sum of the number of 

vertices activated by each eye, i.e., DI = (FE - AE) / (FE + AE).  Using this calculation, a 

positive DI indicates more vertices activated by the fellow eye, while a negative DI indicates 

more vertices activated by the amblyopic eye.  The non-dominant eye (NDE) and the dominant 

eye (DE) were used in place of AE and FE for control subjects.  The mean DI for each subject 

group was compared with the control group using unpaired t-tests.   

 

Binocularity Index.  A vertex was classified as binocular if monocular stimulation 

through both eyes resulted in significant MR signal.  Therefore, it should be noted that this index 

is not a true measure of binocularity, but rather and estimate of the potential cortical extent of 

binocularity.  The binocularity index (BI) was thus calculated as the intersection divided by the 

union of vertices activated by each monocular stimulation, i.e., BI = (OS ∩ OD) / (OS U OD) 

(Lee et al., 2001).  Unlike Lee et al. (2001), who calculated the binocularity index using voxels 

in a volumetric ROI, our index was calculated using only vertices intersecting the cortical 

surface.  The mean BI for each diagnosis group was compared with the control group using 

unpaired t-tests.   
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4.4 Results 

4.4.1 Psychophysics 

4.4.1.1 Grating Acuity  

Consistent with Snellen acuity (Table 1), grating acuity measures for fellow eyes were 

always better than for amblyopic eyes.  This trend even held true for the control subjects, where 

5/6 eyes classified as dominant had better grating acuity.  Across groups, amblyopic subjects 

tended to have decreased grating acuity in their impaired eyes compared with both controls and 

their fellow eye (CTL-DE = 0.78 min, CTL-NDE = 0.84 min; STRAB-FE = 0.94 min, STRAB-

AE = 1.49 min; ANISO-FE = 0.84 min, ANISO-AE = 1.24 min).  Consistent with previous 

work, amblyopic grating acuity exceeded Snellen acuity (Mayer et al., 1984; Mayer and Fulton, 

1985), which is known to have additional sensitivity to higher-order effects such as crowding 

(Stuart and Burian, 1962; Levi et al., 2002).   

 

4.4.1.2 Contrast Sensitivity 

Contrast sensitivity in the amblyopic eyes of both groups was depressed compared with 

control eyes at 2, 4, and 8 cpd, consistent with the commonly reported higher spatial frequency 

deficit in amblyopia (Bodis-Wollner, 1980; Hess and Howell, 1977; Bradley and Freeman, 1981; 

McKee et al., 2003).  These differences reached significance for anisometropic eyes at 4 cpd 

(CTL-NDE = 39.8 dB, ANISO-AE = 32.5 dB, t = 4.96, p < 0.05), but not at other spatial 

frequencies (Supplemental Fig. 4-S2 A).  No significant differences were seen between contrast 

sensitivity functions for amblyopic vs. fellow eyes or for amblyopic fellow vs. control non-

dominant eyes for either patient group.     

 

4.4.1.3 Contour Integration 

 Contour integration was significantly impaired for strabismic eyes compared with control 

eyes at the first (CTL-NDE = 96%, STRAB-AE = 80%, t = 3.67, p < 0.05), second (CTL-NDE = 

92%, STRAB-AE = 79%, t = 2.93, p < 0.05), third (CTL-NDE = 85%, STRAB-AE = 67%, t = 

4.81, p < 0.01), and fifth (CTL-NDE = 61%, STRAB-AE = 44%, t = 3.85, p < 0.05) difficulty 

levels.  Furthermore, strabismic fellow eyes were also significantly impaired compared with 

control dominant eyes at the third (CTL-DE = 85%, STRAB-FE = 71%, t = 6.24, p < 0.01) and 
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fifth (CTL-DE = 64%, STRAB-FE = 48%, t = 3.34, p < 0.05) difficulty levels (Supplemental 

Fig. 4-S2 B).  The strabismic and fellow eyes did not significantly differ from each other at any 

difficulty level.  These results are consistent with reports of impairments at this task in both 

strabismic and fellow eyes, independent of acuity (Kovacs et al., 2000).     

In contrast, no deficit was found for anisometropic eyes compared with control eyes, 

although an interocular comparison was significant at the third difficulty level (ANISO-FE = 

88%, ANISO-AE = 78%, t = 4.89, p < 0.01), as has been shown elsewhere (Chandna et al., 

2001).  Previous work has suggested that strabismic and anisometropic amblyopia can be 

distinguished based on differences in higher-order visual functions such as vernier acuity and 

contour integration (Levi and Klein, 1982; Levi and Klein, 1985), so a greater impairment in 

strabismics was expected.  Overall, the psychophysical results suggest that our strabismic and 

anisometropic subject groups are comparable to previous studies. 

 

4.4.2 Experiment 1: Hemifield Mapping 

4.4.2.1 Fixation Stability and Head Motion 

In order to provide a single index of fixation during each scan, the standard deviation of 

horizontal gaze position was calculated for each subject.  Vertical gaze position was also 

measured, but was less variable between subjects, consistent with the known pattern of fixational 

eye movements in amblyopes (Westall and Aslin, 1984; Ciuffreda et al., 1980).  Mean gaze 

position variance was calculated from the raw eye position data after filtering for blinks.  The 

means did not significantly differ between amblyopic and control eyes (CTL-NDE = 1.3 deg, 

STRAB-AE = 2.2 deg, ANISO-AE = 2.0 deg), although more variability existed between 

subjects in the amblyopic groups than in the control group (Fig. 4-2).  Also, both amblyopic 

groups displayed a trend for less fixation stability than controls.  Interestingly, two of the 

strabismic subjects actually had better fixation stability when viewing with their amblyopic eye 

(S2 and S4), but all anisometropic subjects had better stability when viewing with their fellow 

eyes.  Control subjects had similar fixation stability in both dominant and non-dominant eyes.  

Review of fixation task response data confirmed that all subjects provided feedback for > 75% of 

the trials, with no significant differences in accuracy between the groups.  Finally, head motion, 
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estimated as the mean vector magnitude of translational motion within each scan, did not differ 

between eyes or groups. 

 

4.4.2.2 fMRI Activation Maps 

 For both wedge sizes and both eyes, stimulation in one hemifield of visual space resulted 

in an increase in fMRI signal in the contralateral visual cortex in every subject, consistent with 

the normal retinogeniculocortical projection.  In 4/6 strabismics and 5/6 anisometropes, a clear 

preference for the fellow compared with amblyopic eye was observable in both hemispheres in 

both the extent and the magnitude of the activation pattern.  However, strabismics S2 and S5 did 

not show this pattern, instead exhibiting stronger activation from the nasal retina than the 

temporal retina of each eye.  Additionally, the mild anisometrope A4 had stronger activation in 

both hemispheres in response to stimulation of the amblyopic than the fellow eye.  In 

comparison, only 3/6 control subjects displayed greater activation for the dominant vs. 

nondominant eye.       

 

4.4.2.3 ROI Analysis of Signal Magnitude 

 The multifactorial ANOVA across groups revealed a main effect of eye, with greater 

mean signal elicited from the fellow/dominant eye (FE/DE = 0.57%, AE/NDE = 0.44%, F = 

23.97, p < 0.0001).  Consistently greater signal was seen for FE or DE in most individual 

subjects as well (Fig. 4-3).  The three exceptions (S2, S5, and A4) were noted above.  At a group 

level, a trend for diminished signal magnitude for the weaker eye (AE/NDE) compared with the 

stronger eye (FE/DE) was present in every case, although none of the individual group level t-

tests of amblyopic vs. fellow eye stimulation were significant (Table 2).  Furthermore, there was 

a trend in every comparison for reduced mean signal magnitude in AE vs. CTL-NDE.  This trend 

was significant for strabismic eyes compared with non-dominant control eyes in FOV (Table 2). 

The comparison of nasal vs. temporal hemiretina did not show any significant 

differences, regardless of ROI, eye, or subject group.  There was not even a consistent trend for 

greater signal magnitude from the nasal or temporal hemiretina across ROIs for any group.  With 

the exception of the two strabismic subjects described above, there does seem to be any support 

for a hemiretinal bias in this group of subjects under the current viewing conditions. 
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Finally, it was important to determine if fixation stability contributed to the signal 

magnitude differences, even though it did not significantly differ between groups.  Thus, we 

tested for linear correlations between fixation stability and BOLD signal.  We did find one 

significant correlation between signal magnitude in FOV and fixation variance for strabismic 

eyes (R2 = 0.92, p < 0.05), so in this case the reduced magnitude for strabismic eyes should be 

viewed with caution.  However, none of the other ROIs (V1EF and V2EF) correlated with fixation 

for strabismics, nor did any of the ROIs for anisometropic subjects.   

 

4.4.2.4 ROI Interocular Indices 

Ocular Dominance Index.  In general, individual strabismic and anisometropic subjects 

showed greater DI relative to control subjects for all ROIs (Fig. 4-4).  The DIs for the control 

subjects were distributed tightly around zero, indicating no consistent ocular dominance, at least 

in number of activated vertices.  In contrast, all but three of the amblyopic subjects showed 

fellow eye dominance, with positive DIs in all ROIs.  Consistent with the ROI magnitude results, 

the exceptions were S2, S5, and A4, each with a DI favoring their amblyopic eye. 

Despite the variability of individual subjects, all three ROIs for both amblyopic groups 

had mean DIs which were significantly more positive than controls (Table 3).  Although DI was 

calculated from signal extent (number of vertices), it also strongly correlated across all subjects 

with an analogously calculated signal magnitude measure in FOV (R2 = 0.74, p < 0.00001), V1EF 

(R2 = 0.73, p < 0.00001), and V2EF (R2 = 0.68, p < 0.0001), thus supporting the known 

relationship between extent of activation and signal magnitude. 

 

Binocularity Index.  A wide range of individual BI values were seen for strabismic and 

anisometropic subjects, overlapping somewhat with the BI distribution for control subjects (Fig. 

4-5).  However, mean BIs for all ROIs of both amblyopic groups trended toward smaller values 

than controls, reaching significance for V1EF and V2EF of the anisometropic group (Table 3).       

 

4.4.3 Experiment 2: Eccentricity Mapping 

4.4.3.1 Fixation Stability and Head Motion 
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 As in Exp. 1, mean horizontal fixation stability did not significantly differ between 

amblyopic and control eyes (CTL-NDE = 3.1 deg, STRAB-AE = 3.7 deg, ANISO-AE = 2.2 

deg).  In fact, one strabismic subject (S5) and three anisometropic subjects (A1, A3, and A4) 

actually had better fixation stability when viewing with their amblyopic than their fellow eye 

(Fig. 4-6).  Review of fixation task response data for this experiment confirmed that all subjects 

provided feedback for > 95% of the trials, with no significant differences in accuracy between 

groups or eyes.  Head motion did not differ between eyes or groups.     

 

4.4.3.2 fMRI Activation Maps 

 Phase-encoded maps of eccentricity are shown for strabismic and anisometropic subjects 

(Fig. 4-7, control subjects are shown in Supplemental Fig. 4-S3).  These individual maps of 

eccentricity are vertically arranged according to a qualitative assessment of departure from the 

normal pattern, with the more abnormal activation patterns placed toward the bottom.  Normal 

eccentricity maps are comprised of a concentrically-organized pattern of red for central vision, 

blue for parafovea/mid-periphery, and green for periphery.  S1 and A1, for example, possess 

eccentricity maps resembling the normal pattern for their fellow eyes.  In general, the amblyopic 

eyes’ maps were always less normal in appearance.  Moreover, subjects near the bottom 

produced grossly abnormal maps, including a lack of concentric organization (S4, S5, S6, and 

A6) and a clearly diminished representation of foveal signals (fewer vertices labeled red for 

nearly all amblyopic eyes to some degree, but strikingly so for strabismics S4, S5, and S6, and 

anisometropes A5 and A6).  These abnormalities usually occurred in concert with fellow eye 

maps which demonstrated a normal pattern of organization, but moderately diminished strength 

of signal.   

 

4.4.3.3 ROI Analysis of Fourier Magnitude 

Similar to Exp. 1, amblyopic eyes also produced lower Fourier magnitudes than either 

fellow or control eyes in most subjects and ROIs (Fig. 4-8).  The exceptions were S6 (FOV), A3 

(V2EF), A4 (FOV), and A6 (FOV, V1EF, and V2EF).  Despite the few exceptions, the 

multifactorial ANOVA for Exp. 2 resulted in a main effect of eye (FE /DE = 2.0, AE /NDE = 

1.3, F = 35.19, p < 0.0001), as well as an interaction of diagnosis and eye (F = 4.74, p < 0.01).  

However, upon separating the diagnoses, this effect remained significant only in V1EF and V2EF 
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of strabismic subjects (Table 2).  Finally, the ANOVA found an additional main effect of ROI 

(FOV = 1.4, V1EF = 1.5, V2EF = 2.0, F = 9.25, p < 0.001), reflective of a trend for greatest 

Fourier magnitude in V2EF in all groups.   

When we compared the amblyopic eyes to control eyes, we found a trend for less Fourier 

magnitude in amblyopic eyes.  Between-group t-tests revealed a significant deficit in V1EF of 

anisometropic eyes (Table 2), but the clear trends suggest that a larger number of subjects would 

result in significant t-test comparisons in more of the ROIs of both amblyopic groups.  Finally, 

Fourier magnitude did not correlate with fixational variance in any group or ROI.    

 

4.4.3.4 ROI Analysis of Eccentricity Phase 

 The results of this quantitative analysis of Fourier signal phase were consistent with the 

qualitative observation that both amblyopic groups demonstrated reduced cortical representations 

of foveal stimuli from their amblyopic compared with their fellow eyes (Fig. 4-9).  Mean phase 

differences between the fellow and amblyopic eyes (FE – AE) in FOV were significantly shifted 

toward more negative values (i.e., greater eccentricities) for both strabismic and anisometropic 

subjects (Table 3).  Notably, neither group differed significantly from controls in V1EF or V2EF.  

Importantly, eccentricity phase did not correlate with fixation stability for either anisometropic 

or strabismic groups, suggesting that this result is relatively insensitive to small eye movements.  

For example, the fellow eye of S5 had the worst fixation stability in the study, yet produced a 

normal eccentricity map.  Finally, there were no significant differences across groups in the 

proportion of recentered vertices, arguing against the potential explanation that the mean phase 

shift is noise-related.  Instead, the preferred eccentricity shift shown here suggests cortical 

remapping, i.e., interocular differences in the strength of representation of visual field locations. 

 

4.4.3.5 fMRI Patterns in Higher-Order Cortex 

 Although the previous ROI analyses allowed quantitative assessment of interocular 

differences in fMRI signal in early retinotopic areas, they do not address the possibility of 

differences in higher-level cortical regions.  Qualitatively, a few subjects’ eccentricity maps 

appeared to have greater signal in parietal and temporal cortical regions for amblyopic than for 

fellow eye stimulation.  We plotted the significance of the F-statistic, and unexpectedly found 

three amblyopic subjects with increased fMRI activation in regions of parietal and temporal 
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cortex for amblyopic compared with fellow eye viewing (Fig. 4-10, summarized with Talairach 

coordinates in Table 4).  This pattern was not seen in any control subjects.  Specifically, the right 

hemisphere of strabismic S4 showed greater activation in the middle segment of the intraparietal 

sulcus (IPS), while S5 demonstrated bilaterally increased activation in the posterior segment of 

the IPS.  Anisometrope A2 also showed more activation in the posterior segment of the left IPS 

and middle segment of the right IPS, combined with increased signal in the fusiform gyrus of the 

right hemisphere.  It should be noted that all three of these subjects had greater activation in all 

retinotopic ROIs when stimulated through the fellow eye (Fig. 4-8), dissociating these high-level 

findings from patterns in lower retinotopic ROIs.  We consider possible explanations for these 

results in the discussion.   

 



   

 106

4.5 Discussion 

We have demonstrated that amblyopia and the associated interruption of early visual 

experience leads to regionally specific abnormalities in neural processing of visual stimuli in 

human subjects.  This is the first study to directly measure retinotopic organization driven by 

amblyopic eyes relative to both fellow and control eyes.  Our study improved upon previous 

work by using a relatively large number of subjects, monitoring fixation, and individually 

defining retinotopic ROIs on the flattened cortical surface.     

 

4.5.1 Fixation Stability 

 Given evidence that fixation stability can be impaired in amblyopia (Westall and Aslin, 

1984), it is an important potential confound.  However, we did not find significantly impaired 

fixation stability in our amblyopes.  Furthermore, fixation task performance was equivalent 

across groups, further supporting our claim that fixation and attention were maintained 

throughout the experiment.  These measurements suggest that impaired fixation does not 

necessarily preclude meaningful fMRI experiments in mild-to-moderate amblyopic subjects.  

Finally, the lack of correlations between fixation stability and fMRI measures in all but one case 

(Exp. 1, STRAB, FOV) provides further argument against eye movements as a confounding 

factor.   

 

4.5.2 Signal Magnitude Deficits 

We report here a main effect of eye for both experiments, despite our stringent inclusion 

of eye dominance in control subjects.  It is notable that acuity-based eye dominance in controls 

was an effective predictor of interocular signal magnitude (Fig. 4-3), a novel result.  We do not 

claim that our method of assigning eye dominance extends to all visual functions, but this 

implementation provided a conservative control for amblyopia.  The main effects of eye were 

apparent as group-level trends for all ROIs of both amblyopic subtypes, consistent with previous 

PET (Demer et al., 1988; Demer et al., 1997; Imamura et al., 1997) and fMRI (Barnes et al., 

2001; Choi et al., 2001; Algaze et al., 2002).  Furthermore, amblyopic eyes showed group-level 

trends for less signal than control eyes.  We found significantly reduced signal magnitude in 
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FOV of strabismic eyes (Fig. 4-3), which appeared to support the hypothesis of impaired central 

vision, but fixation stability predicted this fMRI signal.  However, signal magnitudes in the 

strabismics’ other ROIs did not correlate with eye movements.  One explanation for this 

dissociation is that FOV was more susceptible to small eye movements than V1EF or V2EF, 

presumably due to larger magnification factor in foveal neurons.  Regardless, it is clear that 

future PET or fMRI amblyopia studies should monitor eye movements and consider subject 

training to stabilize fixation.   

 

4.5.3 Shifted Ocular Dominance 

Although human post-mortem cases have not found abnormal ocular dominance column 

(ODC) periodicity (Horton and Stryker, 1993; Horton and Hocking, 1996), two recent 

neuroimaging studies demonstrated ocular dominance shifts in V1 of human amblyopes.  

Goodyear et al. (2002) used high resolution (0.5 x 0.5 x 3 mm) fMRI to image ODCs in six 

strabismic adults (Goodyear et al., 2002), finding a 60/40 dominance ratio in favor of the fellow 

eye.  Alternatively, Liu et al. (2004) demonstrated dominance for the fellow eye in two 

anisometropic amblyopes, but instead constructed ocular dominance histograms (Hubel and 

Wiesel, 1962) using the voxel-wise Student t-statistic for the OS vs. OD contrast (Liu et al., 

2004).  We used a vertex-counting technique similar to Goodyear et al. (2002), but did not 

attempt to resolve individual ODC boundaries.  Like Liu et al. (2004), our method pooled signals 

across multiple ODCs to compute mean ocular dominance in larger cortical regions.  Our results 

agree well with these previous reports.   

  

4.5.4 Impaired Cortical Binocularity 

 Cortical binocularity has been extensively studied in humans with amblyopia using 

psychophysics.  These studies have demonstrated impaired binocular summation, but intact 

inhibition (i.e., suppression or dichoptic masking) in amblyopes (Levi et al., 1980; Harrad and 

Hess, 1992).  Visual evoked potentials (VEPs) have confirmed this dissociation in both 

strabismic and anisometropic amblyopes (Tsutsui and Fukai, 1980; Baitch and Levi, 1988). 

 A recent pair of fMRI papers has added to these physiological results.  Using a 

binocularity index similar to ours, Lee et al. (2001) reported impaired binocularity for strabismic 
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(N = 6) and anisometropic (N = 5) amblyopes in the calcarine region, while Algaze et al. (2002) 

found reduced calcarine binocularity for 5 amblyopic subjects of mixed diagnoses.  We 

improved upon these techniques by using vertices restricted to the cortical surface, in multiple 

visual areas.  We found degraded binocularity in our amblyopes, although not as severe as 

previously reported.  Since we did not use a binocular viewing condition, we instead divided the 

intersection by the union of monocularly driven vertices.  Our index does not account for the 

possibility of interocular suppression under natural viewing conditions, so we potentially 

overestimated binocularity.  Furthermore, we cannot completely rule out interocular suppression 

with our viewing conditions, but our fixation task and stability data suggest that our amblyopic 

subjects were not suppressing the central fixation target, where suppression of the amblyopic eye 

tends to be most severe (Sireteanu, 1982).  Future studies employing other viewing conditions 

(e.g., fellow eye open or closed) could be informative.          

 

4.5.5 Nasotemporal Asymmetry 

Amblyopia psychophysics have shown consistently greater impairments for the nasal 

retina, e.g., visual acuity and luminance detection (Sireteanu and Fronius, 1981), reaction time 

for suprathreshold light detection (Chelazzi et al., 1988), and pursuit eye movements and 

monocular optokinetic nystagmus (OKN) (Tychsen and Lisberger, 1986; Schor and Levi, 1980).  

These findings have been postulated to result from constant, active suppression of input from the 

amblyopic eye’s nasal retina by the foveal region of the fellow eye’s temporal retina under 

binocular viewing conditions (Sireteanu and Fronius, 1990).  We thus hypothesized that nasal 

retina stimulation might result in less fMRI activation.  However, we found no evidence for this 

effect with our current methods.  Future studies of this issue could adopt viewing conditions that 

encourage greater interocular suppression or focus more specifically on the oculomotor system. 

 

4.5.6 Visual Field Remapping 

Rapid reorganization of visual cortex has been demonstrated after focal retinal (Chino et 

al., 1992; Chino et al., 1995) and cortical lesions (Eysel and Schweigart, 1999; Zepeda et al., 

2003), and in one study foveal lesions remapped more quickly and effectively than lesions in 

peripheral retina (Rosa et al., 1995).  Furthermore, the literature is rich with examples of 
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learning-related psychophysical improvements in amblyopia (Levi and Polat, 1996; Polat et al., 

2004) and reorganization in patients with congenital photoreceptor abnormalities and brain 

lesions (Baseler et al., 1999; Baseler et al., 2002).  Therefore, we hypothesized that active 

cortical remapping could occur in the central field representation of early visual areas in 

amblyopia. 

We indeed found significant shifts toward greater preferred eccentricity in FOV of 

amblyopic eyes, indicating that foveal eccentricities in the fellow eye and parafoveal 

eccentricities in the amblyopic eye shared cortical area, reminiscent of the effects of a central 

retinal lesion.  Although amblyopia cannot be equated with retinal denervation, cortical 

reorganization is plausible following years of chronic suppression of foveal input from the 

amblyopic eye under normal viewing conditions.  Moreover, we found no relationship between 

fixation stability and eccentricity remapping, making such an explanation unlikely. 

 

4.5.7 Findings in Temporal and Parietal Cortex 

We observed greater activity for amblyopic than fellow eye stimulation in regions of 

parietal and ventral temporal cortex in three amblyopic subjects (S4, S5, and A2), a pattern not 

seen in any control subjects.  It is notable that this activity was dissociable from effects in 

retinotopic cortex, since all three subjects showed the expected amblyopic eye impairment in V1 

and V2.   

All three subjects had abnormal activity with amblyopic eye stimulation in mid-posterior 

IPS, homologous to monkey lateral intraparietal area (LIP).  This was seen in the right 

hemisphere of S4 and bilaterally in S5 and A2.  We propose two possible explanations.  First, 

this result may reflect an input “bottleneck” to visual cortex.  We have already shown reduced 

V1EF and V2EF activity, but LIP receives diffuse projections from both retinotopic cortex and 

subcortical structures such as the superior colliculus and pulvinar (Lewis and Van Essen, 2000; 

Blatt et al., 1990).  With the depression of input from V1 and V2, disinhibition of subcortical 

pathways could lead to increased LIP activity.  A second possibility is that this activity might 

result from increased attentional effort when viewing with the amblyopic eye (Corbetta and 

Shulman, 2002).  LIP has been termed the “parietal eye field” because of its role in fixation and 

eye movement planning (Cavada, 2001).  Impaired control of ocular motility might require 
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increased vigilence, leading to greater activation in both the LIP and the frontal eye fields (FEF).  

A future study of frontal areas in amblyopia might help validate this hypothesis.     

We also found increased activation in A2 of the right posterior fusiform gyrus of the 

ventral temporal lobe, a region previously implicated in object processing (Malach et al., 1995; 

Lerner et al., 2003) and orientation discrimination (Faillenot et al., 2001).  This increased 

activation might also reflect attentional effort for amblyopic eye viewing and performance of the 

orientation discrimination task.     

Finally, structural abnormalities in very similar regions have been recently described in 

amblyopia.  Statistical analyses have found reduced gray matter volume in the IPS of strabismic 

adults (Chan et al., 2004) and in the IPS and fusiform gyrus of anisometropic and strabismic 

children (Mendola et al., 2005).  The convergence of structural and fMRI results is noteworthy.  

It would be valuable to study these cortical areas in more detail with animal models of 

amblyopia.            

    



   

 111

4.6 Conclusions 

 We conclude that functional abnormalities of visual cortical areas are a prevalent marker 

of human amblyopia.  We used fixation monitoring and retinotopic ROIs, methods that should 

prove useful in further studies of amblyopia.  We replicated the results of others with our BOLD 

signal magnitude measures, but show that these effects are of moderate size when strictly 

compared to normal controls.  Unlike some previous reports, our results do not clearly 

discriminate the two amblyopic subtypes.  Retinotopic mapping of the amblyopic eye showed a 

shift of parafoveal eccentricity representations toward the occipital pole.  Finally, we also found 

novel activation patterns in parietal and temporal cortex in several amblyopic subjects, 

suggesting future avenues of amblyopia research. 
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4.7 Tables 
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4.8 Figures 

 

 

 
 
 

FIGURE 4-1. FMRI STIMULI.  The subject maintained fixation on the central “arrowhead” target.  

Attention was monitored by recording a button-press each time the arrowhead changed 

orientation.  A. The hemifield stimulus, measuring either 100 or 160 degrees, was presented in 

16 s alternating blocks to the left and right hemifields.  B.  The eccentricity stimulus, which 

mapped retinotopic visual space, was presented in paired expansion and contraction scans.   
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FIGURE 4-2. FIXATION STABILITY FOR EXPERIMENT 1.  No significant differences of fixation 

stability are seen for either intergroup or interocular comparisons.  Group mean (open bars) and 

individual data are shown, with saturated colors corresponding to the dominant/fellow eye 

(DE/FE) and lighter shades to the non-dominant/amblyopic eye (NDE/AE).  Calibration error 

resulted in lack of eye tracking data in two strabismics (S5, S6), one anisometrope (A5), and two 

controls (C2, C3).  Error bars show the standard error of the mean. 
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FIGURE 4-3. FMRI BOLD SIGNAL MAGNITUDE FOR EXPERIMENT 1.  Mean BOLD signal 

magnitude is depressed for every intergroup and interocular comparison, although a few 

amblyopic patients do not follow this trend (S2, S5, and A4, see text for details).  There is also a 

consistent trend for less signal magnitude in NDE compared to DE for controls.  Asterisks 

indicate significant intergroup differences.  Other labeling conventions are the same as in Fig. 4-

2.  
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FIGURE 4-4. OCULAR DOMINANCE INDEX BY GROUP AND ROI.  Mean DI is significantly shifted 

toward the fellow eye in all ROIs for strabismic and anisometropic amblyopes.  Labeling 

conventions are the same as in Fig. 4-3.     
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FIGURE 4-5. BINOCULARITY INDEX BY GROUP AND ROI.  Mean BI is depressed in all ROIs for 

strabismic and anisometropic amblyopes.  Labeling conventions are the same as in Fig. 4-3.    
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FIGURE 4-6. FIXATION STABILITY FOR EXPERIMENT 2.  No significant differences of fixation 

stability are seen for either intergroup or interocular comparisons.  Calibration error resulted in 

lack of eye tracking data in two strabismics (S2, S6), one anisometrope (A6), and one control 

(C2).  Labeling conventions are the same as in Fig. 4-3.   
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FIGURE 4-7. ECCENTRICITY MAPS FROM AMBLYOPIC PATIENTS.  Eccentricity maps are shown on 

left and right hemisphere flattened occipital poles for fellow and amblyopic eyes of twelve 

subjects.  These maps are arranged in order from most (top) to least (bottom) normal in 

appearance.  Red, blue, and green indicate the central 0-2.5 deg, 2.5-8.5 deg, and 8.5-15 deg 

eccentricity, respectively (see key in upper left corner).  Note the trend for more organized 

arrangement of colors in the fellow eyes vs. the disorganized patterns in the amblyopic eyes, 

especially within the ROIs.  White outlines show the location of FOV, V1EF, and V2EF for 

strabismic subject S5.  Light and dark gray regions indicate the unfolded gyri and sulci, 

respectively.    
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FIGURE 4-8. FOURIER MAGNITUDE FOR EXPERIMENT 2.  Mean Fourier magnitude is depressed for 

every intergroup and interocular comparison.  Percent symbols indicate significant interocular 

differences.  Other labeling conventions are the same as in Fig. 4-3.   
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FIGURE 4-9. ECCENTRICITY PHASE DIFFERENCE.  Mean interocular phase difference (FE – AE) 

was significantly more negative for both amblyopic groups in FOV.  Labeling conventions are 

the same as in Fig. 4-3.     
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FIGURE 4-10. PARIETAL AND TEMPORAL ACTIVATION IN THREE AMBLYOPIC SUBJECTS.  Increased 

activation was seen in the intraparietal sulcus (IPS, yellow arrows) and fusiform gyrus (FG, 

green arrow) for amblyopic eye stimulation in a subset of subjects.  White outlines demonstrate 

the location of the foveal (FOV), V1EF, and V2EF ROIs for these subjects.  These results are 

summarized with Talairach coordinates in Table 4. 
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FIGURE 4-S1. ECCENTRICITY PHASE CALCULATION FOR EXPERIMENT 2.  Mean eccentricity phases 

were calculated within each ROI (see text).  A. Retinotopic location is assigned a phase and color 

value for eccentricity mapping.  Phase is represented on a continuum from -180 to +180 degrees.  

Linearizing phase introduces a discontinuity, but the imprecision of the phase estimate results in 

ambiguity.  B. Predicted phase values for the foveal (left) and V1/V2 (right) ROIs fall within a 

defined range, but values outside of this range are still found in the ROIs.  Phase values are 

recentered around the predicted range in order to avoid systematic bias in mean phase 

calculation.   
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FIGURE 4-S2. RESULTS FROM PSYCHOPHYSICS TESTING.  A. Contrast sensitivity functions for 

strabismic and anisometropic subjects show deficits in the higher spatial frequency range.  B. 

Contour integration is impaired at all levels for both amblyopic and fellow eyes of strabismic 

subjects. 
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FIGURE 4-S3. ECCENTRICITY MAPS FROM CONTROL PATIENTS.  Eccentricity maps are shown on 

left and right hemisphere flattened occipital poles for dominant and nondominant eyes of six 

subjects.  These maps are arranged in order from most (top) to least (bottom) normal in 

appearance.  Red, blue, and green indicate the central 0-2.5 deg, 2.5-8.5 deg, and 8.5-15 deg 

eccentricity, respectively.  Light and dark gray regions indicate the unfolded gyri and sulci.     
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Visual Cortex of Amblyopic Children 
Measured with fMRI 
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5.1 Abstract 

Amblyopia is a developmental disorder that is known to result in abnormalities in primary visual 

cortex, although characterization of its neural substrates, especially in children, remains 

unexplored.  This fMRI study directly compared the BOLD signals produced by monocular 

stimulation in nine children (3 esotropic strabismics, 3 anisometropes, and 3 controls).  Measures 

were made in two cortical regions-of-interest (ROIs), corresponding to the representation of the 

nonamblyopic eye’s fovea at the occipital pole and to an anatomically defined region of calcarine 

cortex, excluding the foveal ROI.  Fixation stability was monitored in six subjects and was not 

found to correlate with BOLD signal strength.  Overall, results showed depressed fMRI signal 

magnitude for anisometropic eyes compared with fellow eyes in all ROIs.  Strabismic subjects 

showed mildly depressed signal in both eyes compared with controls.  Analysis of individual 

phase-encoded retinotopic maps obtained from amblyopic eyes revealed fewer vertices in the 

occipital pole activated by foveal stimuli, consistent with known psychophysical losses and 

previous results obtained in adults.  These losses were more profound for the anisometropic 

subjects.  We conclude that the development of abnormal visual field organization, as seen in 

adults with amblyopia, has occurred in children ages 10 to 14.   
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5.2 Introduction 

Visual experience is critical for normal brain development.  For over 40 years, early 

visual deprivation has been recognized as a cause of subsequently measured abnormalities in 

visual cortex (Wiesel and Hubel, 1963).  The time course of deprivation is important in directing 

the pattern of deficits, since different visual functions are acquired at varying times and rates 

throughout development.  The time windows for the normal maturation, or pathological 

disruption, of visual functions have been termed sensitive periods (Harwerth et al., 1986).  Most 

sensitive periods for visual development begin in infancy, but plasticity in response to experience 

or insult continues for various lengths of time throughout childhood, depending on the visual 

function (Lewis and Maurer, 2005).  Visual functions with neural substrates at higher levels of 

information processing tend to have more prolonged sensitive periods (Daw, 1994).  

In general, the order of maturation has been shown to progress hierarchically, with 

simpler characteristics of vision developing before more advanced visual abilities.  For example, 

orientation discrimination, an important early function, is already present at birth but continues 

refinement throughout postnatal development (Slater et al., 1988; Chapman et al., 1999; White et 

al., 2001).  Development of grating acuity follows, rapidly improving from approximately 40 

times worse than adults in the newborn to 8 times worse by six months, and reaching adult-like 

levels around 4 to 6 years of age (Mayer and Dobson, 1982; Maurer and Lewis, 2001).  Spatial 

contrast sensitivity matures in parallel with acuity, improving to adult-like levels between 6 and 

9 years of age (Bradley and Freeman, 1982; Ellemberg et al., 1999; Adams and Courage, 2002).  

Finally, stereopsis, a binocular visual function, relies upon the prior establishment of adequate 

monocular acuity and motor control of vergence eye movements (Thorn et al., 1994).  Therefore, 

stereopsis does not appear until between 3 to 4 months of age, but then quickly matures to adult-

like levels (relative to acuity) by about 6 months of age (Birch et al., 1982; Schor, 1985).  Other 

visuo-spatial integration functions continue to mature well into the second decade (Kovacs et al., 

1999; Skoczenski and Norcia, 2002).  Nevertheless, available imaging techniques have 

demonstrated adult-like neural organization in much of visual cortex in children between 10 to 

12 years of age (Conner et al., 2004).   

 Amblyopia (i.e., “lazy eye”) is the most common disorder of visual development in 

humans, affecting 1-3% of the population.  It is clinically defined as reduced visual acuity not 
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due to eye disease and not correctable by refractive lenses.  It is associated with an interruption 

in early childhood of the experience-dependent maturation of visual cortex, usually by visual 

deprivation, strabismus, or anisometropia.  Deprivation by congenital cataract has the most 

severe impact, but is comparatively rare (Birch and Stager, 1996; Maurer et al., 1999).  

Strabismus (misalignment of the eyes) and anisometropia (unequal interocular refractive error) 

are far more common during early visual development, and are likely to lead to amblyopia if 

untreated within the first 1 to 2 years of life (Atkinson et al., 1982; Birch and Stager, 1985).  In 

fact, any impediment to normal pattern vision arising before the end of the first decade can lead 

to milder amblyopic deficits, indicating that cortical plasticity remains until at least this age 

(Vaegan and Taylor, 1979).  However, successful treatment of amblyopia through patching the 

good eye diminishes with increasing age, with the best results achieved before 5 to 7 years 

(Ellemberg et al., 2000; Magnusson et al., 2002).      

Earlier investigations of human amblyopia relied upon careful psychophysical testing in 

adults, consistently finding impaired visual acuity and contrast sensitivity in amblyopic eyes 

(Ciuffreda and Fisher, 1987; Abrahamsson and Sjostrand, 1988; Asper et al., 2000).  Similar 

results for visual acuity and contrast sensitivity have been found in amblyopic children as well 

(Howell et al., 1983; Rogers et al., 1987; Ellemberg et al., 2000).  In adults it has been shown 

that these deficits vary across the visual field, affecting central more than peripheral vision 

(Thomas, 1978; Sireteanu and Fronius, 1990).  In addition, the specific pattern of visual 

impairments has been suggested to depend on clinical subtype, with strabismic but not 

anisometropic adults showing Snellen and vernier acuity impairments which are more severe 

than their grating acuity deficits (Levi and Klein, 1985; Birch and Swanson, 2000).  

Interestingly, strabismic amblyopes also perform more poorly than anisometropes on positional 

acuity, contour integration, and spatial localization tasks (Levi et al., 1999; Kovacs et al., 2000; 

Sharma et al., 2000).  Spatial localization deficits have also recently been confirmed in a group 

of children with strabismic amblyopia (mean age = 7 years) (Fronius et al., 2004).  Nevertheless, 

the neural substrates for these deficits remain unclear.       

Although these behavioral studies of human amblyopia have provided vital information 

for guiding clinical decisions, studies using animal models are also quite useful because they 

present a more controlled opportunity for investigating the neural basis of amblyopia (Mitchell 

and MacKinnon, 2002).  The visual deficits seen in adult monkeys with induced amblyopia are 
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similar to the acuity, contrast sensitivity, and stereopsis losses seen in humans (Harwerth et al., 

1983; Smith, III et al., 1985; Kiorpes et al., 1987).  Electrophysiology in the primary visual 

cortex (V1) of adult amblyopic monkeys has shown impaired contrast sensitivity and 

binocularity at the level of single neurons (Kiorpes et al., 1998).  However, these techniques 

have not yet been applied to young animals still within the sensitive periods of visual 

development.   

Fewer techniques for measuring neural activity in humans are available, but data are 

consistent with the information from animal models.  The pattern reversal visual evoked 

potential (VEP) is commonly used to objectively assess acuity and contrast sensitivity in children 

otherwise unable to provide reliable feedback (Norcia et al., 1990; Skoczenski and Norcia, 

1999).  Specifically, in both adults and children with amblyopia, the P1 waveform of the VEP 

consistently has a longer latency and attenuated amplitude for the amblyopic eye compared with 

its fellow eye (Levi and Harwerth, 1978; Sokol, 1983; Henc-Petrinovic et al., 1993).  Some 

differences between strabismic and anisometropic amblyopia have also been described, 

specifically that strabismics suffer a selective high spatial frequency deficit while anisometropes 

are impaired across the frequency range (Campos et al., 1984).  Despite the usefulness of this 

data, these techniques are unable to provide detailed information for spatially localizing the 

source of the signal deficit within visual cortex. 

In contrast, neuroimaging tools like positron-emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) are able to localize signals within the brain, and have 

recently begun providing additional physiologic data from adults with amblyopia.  PET has 

shown reduced cerebral blood flow and glucose metabolism in V1 and extrastriate cortex for 

amblyopic eye viewing (Demer et al., 1997; Imamura et al., 1997; Mizoguchi et al., 2005), while 

fMRI has been used to quantify reduced activation extent (Goodyear et al., 2000; Algaze et al., 

2002) and signal magnitude in occipital cortex (Barnes et al., 2001; Liu et al., 2004).  One recent 

fMRI study has extended these findings, showing abnormal cortical representation of visual 

space through the amblyopic eye of adult strabismic and anisometropic amblyopes (I. Conner, J. 

Odom, T. Schwartz, and J. Mendola, submitted).  In these patients, visual field remapping is seen 

in early visual cortical areas for the amblyopic eye, such that occipital regions which map the 

foveal visual field of the fellow eye respond instead to parafoveal simulation when driven by the 

amblyopic eye.  In addition, we also found abnormal activation of regions of parietal and 
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temporal cortex for amblyopic eye viewing, suggesting atypical higher-order visual processing.  

These regionally specific abnormalities suggest that the visual field representation for the 

amblyopic eye might be functionally remapped through abnormal visual development in 

childhood.  

Despite the progress that has been made in neurologically characterizing amblyopic 

adults with these imaging techniques, children with amblyopia have been rarely studied.  One 

recent anatomical study using MRI voxel-based morphometry (VBM) showed reduced gray 

matter volumes in visual cortex for both adults and children with amblyopia (Mendola et al., 

2005).  Compared with control children, amblyopic children had less gray matter in calcarine and 

paracalcarine cortex, the medial and lateral parieto-occipital junction, and ventral temporal 

cortex.  Thus, these children might be expected to show fMRI abnormalities in these regions, 

similar to those documented in adults.  To date, no functional imaging studies have focused 

exclusively on amblyopic children, although one fMRI study including both children and adults 

found reduced cortical binocularity for strabismics and high spatial frequency deficits for 

anisometropes (Lee et al., 2001).  However, this study did not separate their subjects for analysis 

by age, instead reporting only subtype-related differences. 

The present study used monocular stimulation methods, similar to those previously used 

in adults, to study visual cortex in children (10 to 14 years old) with strabismic and 

anisometropic amblyopia.  First, we used contrast sensitivity and contour integration 

psychophysics to demonstrate that the visual abilities of our children were similar to amblyopic 

children in other behavioral studies, as well as our previous group of amblyopic adults.  Then, 

we used standard retinotopic mapping fMRI techniques to measure the cortical representation of 

visual field eccentricity.  We hypothesized that amblyopic children in this age range would show 

the pattern of reduced fMRI activity and shifted receptive fields as reported in adults.  We found 

that our amblyopic children did display this pattern, consistent with the hypothesis.                   
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5.3 Materials and Methods 

5.3.1 Subjects 

 We studied 9 pediatric volunteers aged 10 to 14 (6 female, 3 male).  Three were control 

(CTL) subjects, three had previously been diagnosed with strabismic (STRAB) amblyopia, and 

three had previously been diagnosed with anisometropic (ANISO) amblyopia (Table 1).  

Subjects with other known or suspected neurological or psychiatric conditions were excluded.  

These subjects were recruited through referral from the WVU Eye Institute from surrounding 

regions of West Virginia, Pennsylvania, and Maryland.  Informed assent and consent was 

obtained from all participants and their parents or guardians (IRB protocol # 14788), in 

accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). 

Our subject groups were matched for mean age (CTL = 13, STRAB = 11, ANISO = 12) 

and mean parents’ years of education (CTL = 15, STRAB = 13, ANISO = 14).  All were right-

handed.  All amblyopic subjects had a history of occlusion treatment, i.e., patching, during 

childhood, but the presence of visual impairment at the time of testing in most subjects 

demonstrates that the deficit was never completely reversed (Table 1).     

 All subjects completed a full ophthalmologic exam at the WVU Eye Institute to confirm 

their diagnosis.  Diagnosis of anisometropic amblyopia was assigned on the basis of 1.) 

Interocular refractive difference of hyperopia >= +1.0 diopter, astigmatism >= +1.0 diopter, or 

myopia >= -2.5 diopters; or 2.) History of anisometropia but no history of strabismus or 

strabismus surgery.  Diagnosis of strabismus was made on the basis of a history of strabismus or 

strabismus surgery, but no anisometropia (as defined above).   

The direction and magnitude of strabismic deviation in our subjects was determined with 

cover-uncover, alternate cover, and prism testing.  All of our strabismic subjects had a history of 

inward eye deviations (esotropia) rather than outward deviations (exotropia).  Congenital 

esotropia and exotropia are both commonly associated with amblyopia, although it has 

previously been shown that esotropia has the greater prevalence in Caucasian populations (Ing 

and Pang, 1974).  Latent deviations for our subjects ranged from 0-20 prism diopters (Table 1).     

 The ophthalmologic tests also included examination of the fundus with dilation, 

documentation of ductions and versions, autorefraction, and a sensory exam including Snellen 

visual acuity (Lombart Instrument, Norfolk, VA), contrast sensitivity (Lighthouse International, 
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New York, NY), Worth 4-dot, stereoacuity (Titmus Optical, Inc., Petersburg, VA), and Ishihara 

color plates (Kanehara and Co., Ltd., Tokyo, Japan).  The results for Snellen visual acuity, 

interocular refractive difference, and Titmus stereoacuity are shown (Table 1).  The Titmus 

stereoacuity test was scored according to highest level of detectable horizontal disparity for the 

Wirt rings or for the Titmus fly.  The crudest stereoacuity measurable with this test is 3500 arc-

sec, assigned for patients able to perceive disparity only in the Titmus fly illustration.   

 

5.3.2 Psychophysical Testing 

 All psychophysical tests were administered separately for the amblyopic (AE) and fellow 

(FE) eyes using individual optical correction.  Translucent plastic patches covered the non-

testing eye.  All tests included practice trials to ensure that the stimuli were visible and the task 

instructions were adequately understood. 

 

5.3.2.1 Contrast Sensitivity 

 Stimuli were generated using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 

for MATLAB 5 in Macintosh OS 9, and were displayed on a calibrated Apple Studio Display 

LCD monitor at 57 cm.  For each trial, the subject viewed two temporally sequenced epochs 

identified by audible tone, containing either a vertical sinusoidal grating (subtending 6 degrees of 

visual angle, 200 ms duration) or an isoluminant gray screen.  The entire trial lasted 2400 ms 

with an intertrial interval of 1800 ms.  The subject identified the grating epoch, using 2-AFC.  

An interactive staircase procedure (2-up, 1-down) was used to approach the contrast detection 

threshold (the 71% correct level) at each of five spatial frequencies (0.5, 1.0, 2.0, 4.0, and 8.0 

cycles per degree), terminating after seven reversals for each spatial frequency.  The first three 

reversals used a step size of 6 dB to rapidly approach threshold, while the last four reversals used 

a 2 dB step size.  The contrast threshold was taken as the geometric mean of the last four 

reversals.     

 

5.3.2.2 Contour Integration 

 Stimuli were displayed on a Silicon Graphics CRT monitor (model GDM-5411).  The 

task was to determine the orientation (i.e., pointing left or right) of a perceived egg-shaped 
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contour made up of 15 small aligned Gabor patches embedded in a field of randomly oriented 

patches of identical contrast and spatial frequency (Field et al., 1993; Kovacs and Julesz, 1993; 

Kovacs et al., 1999; Pennefather et al., 1999; Braun, 1999; Chandna et al., 2001).  This test was 

administered using the method of constant stimuli and a 2-AFC paradigm at six levels of 

increasing difficulty (available online at http://zeus.rutgers.edu/~ikovacs/S&P_contour.html).  

Task difficulty increased as a function of increasing orientation jitter of the Gabor patches along 

the contour.   

 

5.3.3 Cortical Surface Reconstruction  

 Cortical surface reconstructions were generated from individual high-resolution 

anatomical images obtained in a General Electric 1.5 Tesla scan session prior to the fMRI 

experiments, using the freely available (http://www.nmr.mgh.harvard.edu/freesurfer) FreeSurfer 

software package (Dale and Sereno, 1993; Fischl et al., 1999; Dale et al., 1999; Fischl et al., 

2001).  Briefly, whole-head 3D Fast Spoiled Grass (FSPGR) gradient echo scans, optimized for 

contrast between gray and white matter, were collected for each subject.  Specific parameters 

were: fast IR prep (prep time = 300 ms), TE = 1.9 ms, flip angle = 20 deg, FOV = 24 cm, axial 

slices, 256 x 256 matrix, voxel resolution = 0.94 x 0.94 x 1.2 mm.   

The cortical surface representation was inflated and then flattened by introducing a series 

of cuts to the 3-D surface to isolate the occipital pole.  Using this technique, the primary 

relaxation cut corresponds to calcarine sulcus, approximately the horizontal meridian 

representation in V1 (Sereno et al., 1995).  The resulting occipital patch was used for fMRI data 

display, but all data analysis was performed in native space.      

 

5.3.4 Functional Magnetic Resonance Imaging 

5.3.4.1 General Methods 

Subjects were scanned in a General Electric 1.5 Tesla MR scanner using a visual surface 

coil (Nova Medical, Inc., Wilmington, MA), as has been previously described (Mendola et al., 

1999; Conner et al., 2004).  After a sagittal localizing scan, a T1-weighted inversion recovery 

sequence (TR = 400 ms) was used to acquire 20 interleaved oblique 4 mm slices with 0.86 x 0.86 

mm in-plane resolution, oriented perpendicular to the calcarine sulcus, beginning at the occipital 

http://zeus.rutgers.edu/~ikovacs/S&P_contour.html
http://www.nmr.mgh.harvard.edu/freesurfer
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pole.  These anatomical scans were later utilized to register functional data to the cortical surface 

model.   

The next step was to acquire multiple functional scanning runs using the same slice 

prescription selected in the anatomical scans, but with 3.44 x 3.44 mm in-plane resolution.  

Functional signals reflecting the blood oxygenation level dependent (BOLD) contrast were 

acquired using a spiral gradient echo sequence (TE = 40 ms, Flip Angle = 65 deg , TR = 4000 

ms) (Kwong et al., 1992; Ogawa et al., 1992; Glover, 1999).    

 Head movement (within- and between- scans) was minimized by the use of foam packing 

and adhesive tape around the subject’s head within the MR scanner.  Eye movements were 

monitored using the Sensomotorics iView system in order to ensure fixation stability during the 

functional scans.  The iView system was used to measure gaze position in the stimulated eye, 

and was calibrated using a nine-point display at a screen resolution of 832 x 624 pixels, 

subtending approximately 30 deg horizontal x 23 deg vertical of visual angle.  Accurate 

calibration was not achieved in all subjects (see Results), but most subjects were able to have eye 

tracking throughout the experiment.  The iView camera recorded at 60 Hz.     

During the MR imaging experiments, the visual stimuli were generated using the 

Psychophysics Toolbox and MATLAB 5 for Macintosh OS 9 on a PowerMac G4 computer with 

dual SVGA display drivers (output resolution = 832 x 624 pixels, 30 deg horizontal x 23 deg 

vertical).  The stimuli were displayed in the scanner using the Avotec SilentVision dichoptic 

projector.  Subjects viewed the images with both eyes open by looking straight ahead into the 

eyepieces, which were placed approximately 1 cm in front of their eyes.  Subjects used the 

eyepieces’ built-in optical correction.  For each functional scanning run, one eyepiece displayed 

the stimulus and fixation target while the other displayed an isoluminant gray screen.  Left and 

right eye stimulation was alternated during each experiment. 

A central fixation mark was present at all times for the fMRI experiments.  Subjects were 

clearly instructed to maintain fixation on this mark throughout the functional scanning.  The 

fixation target was a small arrowhead (0.5 deg) pointing in one of four directions (i.e., up, down, 

left, or right) which randomly changed direction every 4 s.  In order to aid fixation stability and 

maintain attention to the stimulus, subjects were given a task of monitoring and reporting the 

appearance of the fixation point.  Subjects used a fiber-optic button pad with four buttons 

configured in a cross shape to report arrow orientation.   
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5.3.4.2 Retinotopic Mapping 

The cortical representation of retinotopic visual space was determined using a phase-

encoded design in which the eccentricity domain of visual space was mapped (Engel et al., 

1997).  The stimulus consisted of a high-contrast, multi-colored checkerboard “expanding ring,” 

which mapped eccentricity by starting from the center of the visual field and expanding outward 

(Fig. 5-1).  Eccentricity stimuli traversed space with a logarithmically increasing rate, as has 

been used previously (Sereno et al., 1995; Conner et al., 2004).  This allowed the stimulus to 

spend a greater proportion of the cycle in the foveal portion of the visual field, approximately 

accounting for decreasing cortical magnification from central vision to the periphery.  Both 

stimuli also approximately compensated for the increasing receptive field size by increasing in 

size as they approach the periphery.   

These phase-encoded stimuli used a 64 s cycle and completed eight cycles per scan, as in 

the previous study of adults with amblyopia.  As a result, each functional scan took 512 s (8 min 

32 s), collecting 128 time points per functional scan volume.  Four scans of this type were 

administered in one session, two each eye.  Paired expansion/contraction scans were used in 

order to cancel the effects of residual hemodynamic phase delays.  The entire retinotopic 

mapping experiment typically lasted about 1 hour. 

 

5.3.5 Statistical Analysis 

The functional analysis was completed using the FS-FAST software tools freely available 

at ftp://ftp.nmr.mgh.harvard.edu/pub/flat/fmri-analysis.  Before statistical analysis, raw MR 

images were first motion-corrected to the 64th volume (i.e., the midpoint of 128 volumes) of the 

first run using an iterated linearized weighted least squares method through the FS-FAST 

implementation of the AFNI 3dvolreg algorithm (Cox and Jesmanowicz, 1999).  In addition to 

motion-correcting, this algorithm also provides a sum-of-squares estimate of average head 

motion throughout the fMRI scanning session, which was compared between subject groups for 

both experiments.  The MR volumes were subsequently intensity normalized using the average 

in-brain voxel intensity.  The resulting data set was then used as input for the subsequent Fourier 

analysis.   

ftp://ftp.nmr.mgh.harvard.edu/pub/flat/fmri-analysis
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Fast Fourier transform analysis was conducted on the time series of each voxel to 

statistically correlate retinotopic stimulus location with visual cortical anatomy.  This analysis 

rejected low frequencies due to head motion or baseline drift and extracted functional signals in 

the form of magnitude and phase relative to the stimulus cycle frequency.  Signal magnitude 

reflects retinotopic specificity, which can be low due to either lack of visually induced response 

or equivalent response to all retinotopic locations.  The phase component of the signal codes 

specific retinotopic location, but is also dependent upon individual hemodynamic delay.  To 

standardize the effect of hemodynamics across subjects, individual maps were first optimized 

with respect to phase for each subject’s fellow (or dominant) eye, and the resulting phase offset 

was subsequently applied to the amblyopic eye maps.  This consisted of choosing a phase offset 

that optimally aligned the representation of central vision with the occipital pole, resulting in a 

normal map with a concentric red (foveal), blue (parafoveal), and green (peripheral) pattern.  

Thus, the fellow eye was established to serve as an internal control for each subject.  The data 

was projected onto flattened representations of individual brains using a tricolor code of signal 

phase, i.e., visual field location (Sereno et al., 1994; Sereno et al., 1995).        

 In order to directly compare eccentricity stimulus magnitude patterns between eyes in 

individual subjects, we further plotted the significance of the F-statistic for each eye onto 

flattened occipital patches.  These significance maps more accurately show the regional strength 

of cortical activation in eccentricity scans, independent of phase.   

 

5.3.6 Region-of-Interest Analysis 

Two sources of information were used to create regions-of-interest (ROIs) for 

quantitative analysis.  First, the eccentricity mapping data from the fellow eye, or the right eye 

for controls, was used to define a functional ROI for the region of the occipital pole driven by the 

central 2.5 degrees of eccentric visual angle.  This ROI, corresponding to the foveal (FOV) 

portion of the visual field, was hypothesized to possess abnormal retinotopic organization.  For 

comparison, a separate anatomically defined region was created for the calcarine sulcus and its 

bounding gyri, extending anteriorly to the parieto-occipital sulcus and posteriorly to the occipital 

pole.  A third ROI was created by subtracting the foveal ROI from the calcarine ROI.  This 
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resulted in a separate ROI corresponding to the extrafoveal (ExFOV) calcarine cortex (i.e., > 2.5 

degrees eccentricity).   

The FOV and ExFOV ROIs were used to extract the Fourier magnitude and Fourier 

phase of the BOLD signal at each vertex, for each eye and ROI.  Phase values range from -180 to 

+180, with negative values corresponding to foveal and positive values corresponding to 

peripheral field stimulation.  In order to allow for noise in the phase estimation, correct for the 

phase discontinuity at the end of the eccentricity cycle (i.e., periphery wraps around to fovea), 

and avoid systematic bias in the mean phase estimation, the continuous circular phase scale was 

linearized and recentered to form a bracket around the predicted phase values for each ROI.  For 

the foveal ROI, the predicted phase of all vertices is -180 to -60 (the first third of the stimulus 

cycle), so phase values in the ROI corresponding to the last third of the stimulus cycle (+60 to 

+180) were assumed to represent offset noise in the phase estimation and shifted by -360, to -300 

to -180.  This results in an effective range of -300 to +60 for the foveal ROI.  Similarly, for EF, 

the predicted phase of all vertices is -60 to +180 (the final two-thirds of the stimulus cycle), so 

phase values corresponding to the first sixth of the stimulus cycle (-180 to -120) were shifted by 

+360, to +180 to +240, resulting in an effective range of -120 to +240.  This recentering 

procedure allowed the use of linear descriptive statistics for comparing phases across subjects.  

Mean phase was calculated for each ROI and eye in each subject.  Interocular phase differences 

were then calculated (FE - AE or OS - OD).  Using this method, negative phase differences 

indicate a relative shift of amblyopic eye vertices toward later phase values (i.e., driven by more 

peripheral visual field locations) and vice versa.   
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5.4 Results 

5.4.1 Psychophysics 

5.4.1.1 Contrast Sensitivity 

Contrast sensitivity in the amblyopic eyes of both groups was depressed at higher spatial 

frequencies (i.e., 2, 4, and 8 cpd) compared with control eyes (Fig. 5-2 A).  This result is 

consistent with the commonly reported contrast sensitivity deficit in amblyopia (Hess and 

Howell, 1977; Bodis-Wollner, 1980; Bradley and Freeman, 1981; McKee et al., 2003).       

 

5.4.1.2 Contour Integration 

 For strabismics, both the amblyopic and fellow eyes were impaired at low difficulty 

levels (Fig. 5-2 B), consistent with reports of impairments at this task in both strabismic and 

fellow eyes, independent of acuity (Kovacs et al., 2000).  In contrast, only amblyopic eyes of 

anisometropes were impaired at this task, as has been shown elsewhere (Chandna et al., 2001).  

Previous work has suggested that strabismic and anisometropic amblyopia can be distinguished 

based on differences in higher-order visual functions such as vernier acuity and contour 

integration (Levi and Klein, 1982; Levi and Klein, 1985), so greater impairments in strabismics 

were expected.  Overall, these results show that our strabismic and anisometropic subject groups 

are comparable to previous studies. 

 

5.4.2 Retinotopic Mapping 

5.4.2.1 Head Motion and Fixation Stability 

 A major concern in any functional neuroimaging experiment is subject cooperation, but 

this is particularly true when studying children.  Previous neuroimaging work has shown that 

head motion is a potential confound with children (Conner et al., 2004).  In the setting of 

impaired vision, it was especially important to ensure that head movements were no greater in 

amblyopes than in controls.  To address this concern, we averaged the translational distance of 

the head from its original position for each time point of each scan to calculate the mean 

translational distance across scans for each subject.  We found that mean across-scan 

translational head motion was equivalent across groups (CTL = 2.2 mm, STRAB = 2.6 mm, 
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ANISO = 1.7 mm).  This showed that the amblyopic children did not move in the scanner more 

than the control children.   

Next, we wanted to determine if there were differences in fixation behavior between the 

amblyopic and control subjects, as poor fixation could also confound the interpretation of any 

fMRI differences.  To achieve this goal, we used the iView eye tracking system to measure 

ocular movements during each fMRI experiment.  Mean horizontal fixation variance was chosen 

to assess fixation because it is more variable than vertical fixation in strabismus (Westall and 

Aslin, 1984).  However, we were not able to collect fixation data from all subjects, primarily due 

to failures in the eye tracker calibration software.  In these cases, it was important to also use the 

fixation task accuracy to assess fixation and attention.  All subjects provided feedback for > 80% 

of these trials. 

For the anisometropes, we were able to monitor fixation in two subjects.  Data from these 

subjects, A1 and A3, closely matched two control subjects, C2 and C1 (Fig. 5-3 A), and was in 

the same range as fixation stability reported previously in adults.  Interestingly, our subject with 

the poorest amblyopic eye acuity and largest interocular refractive difference, A3 (Table 1), also 

had quite poor fixation task accuracy for amblyopic eye viewing (Fig. 5-3 B).  However, fixation 

stability from A3 was nearly identical to C1, so poor acuity rather than fixation stability seems to 

explain this subject’s task results.   

For the strabismics, we were unable to monitor fixation in any amblyopic eye.  Given the 

aforementioned concern regarding the potential confound of poor fixation, this certainly hampers 

our interpretation of fMRI data from strabismics.  However, we were able to collect task 

performance data from two of our strabismics, S2 and S3, which was indistinguishable from 

control subjects’ data (Fig. 5-3 B).  Although it would have been preferable to confirm fixation 

in these subjects, their high level of task performance demonstrates that they discriminated and 

attended to the target, making large errors of fixation stability unlikely.  Nevertheless, 

experimental eye tracking remains the standard, and should continue to be attempted in future 

experiments. 

 

5.4.2.2 fMRI Activation Maps 

 Phase-encoded maps of eccentricity are shown for strabismic and anisometropic subjects 

(Fig. 5-4).  These individual maps of eccentricity are vertically arranged according to a 
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qualitative assessment of departure from the normal pattern, with the more abnormal activation 

patterns placed toward the bottom.  Normal eccentricity maps are comprised of a concentrically-

organized pattern of red for central vision, blue for parafovea/mid-periphery, and green for 

periphery.  S1 and A1, for example, possess eccentricity maps resembling the normal pattern for 

their fellow eyes.  In general, the amblyopic eyes’ maps were always less normal in appearance.  

Many of the amblyopic eye maps were grossly abnormal, including a lack of concentric 

organization and a clearly diminished representation of foveal signals.  These abnormalities 

usually occurred in concert with fellow eye maps which demonstrated a normal pattern of 

organization, but moderately diminished strength of signal. 

 Significance maps (p < 0.05) for the Fourier signal magnitude were also plotted for each 

subject, independent of phase information (Fig. 5-5).  With the exception of the mild 

anisometropic subject A1, all amblyopes had decreased signal magnitudes for both eyes 

compared with controls.  It is interesting to note here that A1 had the smallest interocular 

refractive difference as well as nearly normal stereoacuity, which is a sensitive marker of 

amblyopia when impaired (Table 1).     

 

5.4.2.3 ROI Analysis of Fourier Magnitude 

The results of ROI analysis in the calcarine cortex were consistent with the qualitative 

results described above.  Mean signal was less for amblyopic compared with fellow eyes in both 

ROIs for anisometropic subjects.  In contrast, signal magnitudes in strabismic ROIs were low but 

similar in both eyes (Fig. 5-6).   

In a separate analysis, we examined whether Fourier magnitude varied as a function of 

either fixation stability or task accuracy.  Since there were only three subjects in each group and 

a significant number of missing data for both fixation stability and accuracy, we performed a 

Pearson correlation with signal magnitude for each measure across all subjects and eyes.  We did 

not find a significant correlation between signal magnitude and either fixation stability (FOV: R2 

= 0.13, p = 0.31; ExFOV: R2 = 0.09, p = 0.41) or task accuracy (FOV: R2 = 0.07, p = 0.40; 

ExFOV: R2 = 0.04, p = 0.50).      

 

5.4.2.4 ROI Analysis of Eccentricity Phase 
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 Strabismic and anisometropic amblyopes both had negative interocular phase differences 

in FOV (FE-AE, Fig. 5-7).  A negative interocular phase difference indicates that, in this ROI, 

the amblyopic eye preferred eccentricities from more peripheral visual field locations, compared 

with the fellow eye.  This result is consistent with the observation that both amblyopic groups 

demonstrated reduced cortical representations of foveal stimuli from their amblyopic compared 

with their fellow eyes (Fig. 5-4).  These results parallel the findings in a previous retinotopic 

mapping study of adults with amblyopia (I. Conner, J. Odom, T. Schwartz, and J. Mendola, 

submitted).  Unexpectedly, the strabismic children had a large positive interocular phase 

difference in ExFOV, indicating that the strabismic eye abnormally preferred less peripheral 

visual field locations in ExFOV, compared with the fellow eye.  Thus, we found a shift in 

strabismics toward preference for parafoveal stimulation, at the expense of both the central and 

peripheral visual field representations.  Some previous studies have shown some impairment of 

peripheral as well as central vision in strabismics (Thomas, 1978; Katz et al., 1984).  However, 

further experiments are clearly needed to confirm these results. 
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5.5 Discussion 

 We have demonstrated that visual cortex in the brains of children with amblyopia 

contains an abnormal representation of the visual field.  This result is in agreement with our 

previous study of adults with amblyopia, in which we found decreased mapping of foveal field 

locations and enhanced representation of parafoveal locations for the amblyopic eye.  This is one 

of the few known fMRI studies of amblyopia in children, with important implications for 

monitoring and treating this critical visual disorder.       

 

5.5.1 Psychophysics 

 In order to show that our subject groups were comparable to those in other behavioral 

studies of amblyopia, we first conducted some limited psychophysical testing.  In addition to the 

clinical assessment of vision, we also collected contrast sensitivity and contour integration data.  

We found acuity, contrast sensitivity, and contour integration deficits that were similar to those 

found in amblyopic adults (I. Conner, J. Odom, T. Schwartz, and J. Mendola, submitted).   

Threshold contrast sensitivity is commonly used to characterize amblyopia in 

psychophysics studies.  When contrast sensitivity has been studied across a range of ages in 

normal children, the various studies agree that that adult-like levels are reached in normal 

children sometime between six (Ellemberg et al., 1999) and eight or nine years of age (Bradley 

and Freeman, 1982; Adams and Courage, 2002).  Since our subjects were all at least 10 years 

old, we expected and found adult-like contrast sensitivity for our controls.  For children with 

amblyopia, prior work has shown an impairment of contrast sensitivity at high spatial 

frequencies, which persists even while acuity improves with patching therapy (Lundh and 

Lennerstrand, 1983; Rogers et al., 1987).  We found similar results in our amblyopic children.  

Finally, the literature has suggested that strabismics and anisometropes may differ with respect to 

contrast sensitivity, with strabismics suffering more severe acuity losses relative to their contrast 

sensitivity deficits than anisometropes (Abrahamsson and Sjostrand, 1988).  We do not see this 

trend in our data; however, this effect would likely require a larger sample to become evident. 

It has been proposed that spatial contour integration continues its development in children 

with normal vision until at least midway through the second decade (Kovacs et al., 1999).  

Although the children we studied are nearing this age of maturity, we still found worse 
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performance at the mid-level difficulties in our control children than we did in adults with 

normal vision.  Performance was further reduced at all difficulty levels in both eyes of 

strabismics and in the amblyopic eye of anisometropes, consistent with previous reports (Kovacs 

et al., 2000).  Notably, our results for anisometropic children are in close agreement with a prior 

study of 19 children with anisometropic amblyopia (Chandna et al., 2001).  Before Chandna et 

al., it had been thought that spatial integration in anisometropic amblyopia was unaffected (Hess 

and Demanins, 1998), but our findings confirm that there is a detectable deficit, at least in 

children.  Coupled with our other psychophysical results, this shows that our amblyopic subjects 

were comparable to others cited in the literature, and therefore comprise a representative 

presentation of amblyopia in children of this age range.         

 

5.5.2 Fixation Stability 

 Fixation must be adequately maintained in fMRI studies of vision, particularly for 

investigating retinotopic organization.  Amblyopic patients might be expected to have increased 

difficulty maintaining fixation, as has been noted previously (Westall and Aslin, 1984).  We 

included eye tracking in our experimental design to address this concern, but unfortunately we 

were unable to collect eye movement data for a significant proportion of our subjects.  However, 

we did collect other data strongly supporting our claim that the fMRI retinotopic mapping data is 

not confounded by inadequate fixation. 

 First, we measured mean across-scan translational head motion in the MRI volumes.  In 

prior work, we have used this measure to show that young children have greater head motion, 

which can be a confound for retinotopic mapping (Conner et al., 2004).  In the current study, we 

did not find consistent differences in head motion between groups, demonstrating that all 

subjects cooperated well with the scanning procedure.   

Next, we measured responses for a fixation task that was performed throughout all fMRI 

experiments.  Children in both amblyopic groups and controls performed this task with 

equivalent accuracy, showing that our subjects were paying attention to the stimulus.  If subjects 

had not maintained foveal viewing of the small fixation target, then their response accuracy 

should have suffered.  Therefore, given the available data, we conclude that the subjects in this 

study were able to lie still in the scanner, and maintained an adequate level of attention to the 



   

 156

task.  Although these data do not prove flawless fixation, they strongly suggest that the children 

were compliant with the experimental procedure as a whole.  

 Anecdotally, we actually present indirect evidence that the fixation task accuracy might 

predict our retinotopic mapping results better than fixation.  Despite fixating as well as control 

subject C1, anisometrope A3 produced a much poorer eccentricity map.  However, amblyopic 

eye acuity, interocular refractive difference, and fixation task accuracy for A3 were by far the 

worst compared with all other subjects.  At least in this case, the poor fixation task accuracy 

seems to reflect the large acuity deficit and is likely responsible for the poor quality of the 

eccentricity map. 

     

5.5.3 fMRI in Children 

 Aside from the methodological issues just discussed (i.e., fixation, head motion, and 

attention), controversy remains whether identical imaging methods used in adults and children 

yield truly comparable results.  The developmental literature using fMRI is rapidly growing, 

exploring such diverse areas as selective attention (Booth et al., 2004), language representation 

(Wood et al., 2004), object recognition (Gathers et al., 2004), and reward circuitry (May et al., 

2004).  In addition, studies are using fMRI to study abnormal developmental processes, such as 

attention deficit hyperactivity disorder (Booth et al., 2005), dyslexia (Temple et al., 2001), and 

autism (Brambilla et al., 2004).  However, there remain some significant potential confounds for 

interpreting the developmental literature. 

 First, adult and pediatric brains are not anatomically or physiologically identical.  For 

example, it is well known children’s brains have greater synaptic density and less myelination 

than adults’ brains (Gaillard et al., 2001).  Congruent with this idea, initial fMRI studies in 

infants reported negative activations, opposite of signals found in adults (Yamada et al., 1997; 

Born et al., 1998).  However, these effects were likely specific to the infant brain, as subsequent 

studies have reported more similar activation patterns in older children and adults (Kang et al., 

2003).  Furthermore, comparisons of the gross neuroanatomy of the brains of children and adults 

have not found differences large enough to affect fMRI comparisons (Burgund et al., 2002).  

Finally, in our previous study of children with normal vision, we found adult-like retinotopic 

organization in visual cortex (Conner et al., 2004).  In summary, some controversy has existed in 
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comparing fMRI data from pediatric and adult subjects, but recent studies have strongly 

suggested that the fMRI BOLD response is functionally mature by the ages examined in the 

current study.         

 

5.5.4 Visual Field Remapping 

In a group of adults with amblyopia, we previously demonstrated cortical receptive field 

remapping at the occipital pole of the brain (I. Conner, J. Odom, T. Schwartz, and J. Mendola, 

submitted).  This significant shift in the visual field representation was found for both strabismic 

and anisometropic amblyopes, providing a neural characterization of the well-known amblyopic 

central visual field deficit.  This selective psychophysical deficit of central vision has been 

repeatedly demonstrated in amblyopic adults (Thomas, 1978; Katz et al., 1984), but has thus far 

remained unreported in children with amblyopia.  The current study also did not compare acuity 

or contrast sensitivity measures in central and peripheral visual fields in children, but these 

measures would certainly complement the present results.  Instead, the current study sought to 

address whether the shift in visual field representation seen in adults could be found in children 

with amblyopia.     

Eccentricity maps from children’s amblyopic eyes did indeed show abnormal 

organization.  In general, maps from strabismic eyes had an overrepresentation of parafoveal and 

peripheral visual field eccentricities, consistent with the results from the adult study.  However, 

maps from anisometropic eyes were primarily characterized by decreased signal, possibly 

because acuity was more impaired in the anisometropic children than in the strabismic children.  

However, it is also important to recognize the range of results.  For example, the strabismic eye 

of subject S1 has a better organized eccentricity map than the right eye (OD) of control subject 

C1.  Thus, these results suggest that the eccentricity mapping function behaves along a 

continuum, with some overlap between the control and amblyopic groups.  Nevertheless, these 

results are compelling in conjunction with the previous adult study, showing that visual field 

remapping is measurable even in children whose visual systems are not yet completely mature. 
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5.5.5 Implications for Treating Amblyopia 

 Amblyopia treatment is known to be most successful when started early in life, preferably 

within the first two years.  Unfortunately, diagnosis is imperfect in very young children.  By the 

end of the first decade (as in the current study), the prospects for any improvement from patching 

therapy are lessening, but some improvement is still possible (Mohan et al., 2004; Pediatric Eye 

Disease Investigator Group, 2004).  However, this is the first known investigation of retinotopic 

organization in children of any age with amblyopia. 

 The next logical step will be to extend these methods and lessons to younger children.  

We have established in this and previous studies that the retinotopic organization in visual cortex 

is adult-like for both normal and amblyopic children in this age range, so it will now become 

important to determine at what developmental stage the normal and amblyopic brains diverge 

from one another.  Ideally, this work could be conducted in a cohort of children from diagnosis, 

through treatment, ending in adolescence or adulthood.  With this information, fMRI could be 

used similarly to VEPs to improve diagnosis.  Furthermore, the similarity of fMRI results we 

found in adults and children with amblyopia suggests that data from adults may be relevant to 

children, who have greater plasticity (I. Conner, J. Odom, T. Schwartz, and J. Mendola, 

submitted).   

In addition, these techniques could be used to help pediatricians and ophthalmologists 

tailor patching regimens to achieve optimal results, objectively monitoring treatment efficacy 

while avoiding overpatching, which can in some cases lead to amblyopia of the better eye.  

Clinicians could also use this retinotopic mapping technique to help evaluate prospective new 

amblyopia treatments aimed at prolonging or reopening the sensitive period of visual plasticity in 

older children and adults.  Electrophysiological and biochemical studies in animal models of 

induced amblyopia have helped to refine the concept of the sensitive period and to explore the 

genetics and molecular mechanisms underlying cortical plasticity (Hensch, 2004).  So far, a 

complex interplay of long-term depression (Heynen et al., 2003), local excitatory-inhibitory 

circuitry (Fagiolini et al., 2003; Fagiolini et al., 2004), and extracellular matrix regulation 

(Pizzorusso et al., 2002) has been implicated in the cortical plasticity underlying the sensitive 

period.  Pharmacologic and behavioral therapies aimed at manipulating these processes during 

the innate window of plasticity, or even reopening the sensitive periods for visual development, 

are likely in the future. 
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For example, behavioral learning methods have shown vision improvement even in adults 

with amblyopia (Li and Levi, 2004; Polat et al., 2004), although it is not clear at what stage of 

the visual system this plasticity is taking place.  Other investigators have also shown visual 

improvements with pharmacologic interventions, most prominently levodopa (Chatzistefanou 

and Mills, 2000; Pandey et al., 2002).  Some progress has already been made toward 

characterizing the effect of levodopa in amblyopic visual cortex, but thus far is inconclusive, 

alternately finding both enhanced (Yang et al., 2003) and unexpectedly reduced  fMRI activation 

(Rogers, 2003).  Further studies are warranted, perhaps building upon the results described in 

this and our previous study of amblyopic adults.   

 



   

 160

5.6 Conclusions 

 We conclude that functional abnormalities of visual cortical areas are a prevalent marker 

of human amblyopia, even in children.  We used fixation monitoring and an attentional task to 

measure cooperation, methods that should prove useful in further studies of amblyopia.  

Furthermore, we replicated the results from a previous study in amblyopic adults.  In both adults 

and children with amblyopia, retinotopic mapping of the amblyopic eye showed a shift of 

parafoveal eccentricity locations toward the occipital pole.  This data represents another step 

toward understanding the neural substrates of amblyopia in human subjects.  In the future, these 

techniques could be used to monitor treatment as vision improves, although it remains uncertain 

whether the cortical organization would ever really return to “normal” under these 

circumstances.  Future studies should attempt to investigate younger children, for whom 

successful treatment is more likely because of greater cortical plasticity. 
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5.7 Tables 
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5.8 Figures 

 

 

 
 

FIGURE 5-1. FMRI STIMULI.  The subject maintained fixation on a central “arrowhead” target.  

Attention was monitored by recording a button-press each time the arrowhead changed 

orientation.  The eccentricity stimulus was presented separately to each eye in paired 

expansion/contraction scans.  See Methods for further details. 
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FIGURE 5-2. PSYCHOPHYSICAL TESTING.  A. Contrast sensitivity was depressed in strabismic and 

anisometropic amblyopes at high spatial frequencies.  B. Contour integration was impaired for 

amblyopic and fellow eyes in strabismics, but for amblyopic eyes only in anisometropes. 
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FIGURE 5-3. FIXATION STABILITY AND RESPONSE ACCURACY.  A. Fixation stability was similar 

across groups for the monitored subjects.  B. Fixation task response accuracy was high for most 

subjects, regardless of eye used.  Group mean (open bars) and individual data are shown, with 

saturated colors corresponding to the fellow eye (FE) and lighter shades to the amblyopic eye 

(AE).  The right eye (OD) in control subjects is used for comparison with amblyopic eyes. 
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FIGURE 5-4. ECCENTRICITY MAPS FROM SIX AMBLYOPIC AND THREE CONTROL CHILDREN.  

Eccentricity maps are shown on left and right hemisphere flattened occipital poles for fellow and 

amblyopic eyes of the six patients and three controls.  These maps are arranged in order from 

most (top) to least (bottom) normal in appearance.  Red, blue, and green indicate the central 0-

2.5 deg, 2.5-8.5 deg, and 8.5-15 deg eccentricity, respectively.  Note the trend for more 

organized arrangement of colors in the fellow eyes vs. the disorganized patterns in the amblyopic 

eyes.  Light and dark gray regions indicate the unfolded gyri and sulci, respectively. 
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FIGURE 5-5. SIGNIFICANCE MAPS FROM SIX AMBLYOPIC AND THREE CONTROL CHILDREN.  The 

significance of the Fourier signal is plotted for comparison across subjects (0.0001 < p < 0.05).  

Most amblyopic brains have less signal compared with controls, as well as for amblyopic eye 

compared with fellow eye stimulation.   
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FIGURE 5-6. FOURIER SIGNAL MAGNITUDE IS DEPRESSED FOR AMBLYOPIC EYE VIEWING.  Mean 

Fourier magnitude is depressed for amblyopic compared with control and fellow eyes, except for 

FOV in strabismics, which have equivalent interocular signal. 
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FIGURE 5-7. ECCENTRICITY PHASE IS SHIFTED FOR AMBLYOPIC SUBJECTS.  Mean interocular 

phase difference was negative for both amblyopic groups in FOV, but positive for strabismics in 

ExFOV. 
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6.1 Summary and Significance of the Current Project 

 Amblyopia is a common developmental disorder of vision, affecting from 1-3% of the 

population (Flom and Neumaier, 1966; Hillis et al., 1983; Ohlsson et al., 2001; Ohlsson et al., 

2003).  It is associated with an obstruction to normal vision early in postnatal development, and 

can lead to irreversibly impaired vision in one eye if not detected and treated early in life (von 

Noorden and Campos, 2001).  Binocular vision, characterized by stereopsis and depth 

perception, is universally absent in amblyopia.  This has the potential to influence career and 

recreational choices, and these lost opportunities can have a significant social and economic 

impact throughout a person’s life (Chua and Mitchell, 2004).  In addition, the incidence of 

functional blindness due to loss of the good eye is at least three times greater for patients with 

amblyopia (Tommila and Tarkkanen, 1981).  For these practical and clinical reasons, amblyopia 

is an important and relevant disorder for study. 

 More broadly, amblyopia serves as a useful example of neural plasticity in humans.  As 

first noted by Hubel and Wiesel in kittens, eyelid suture during early development resulted in 

dramatic anatomical and physiological abnormalities in visual cortex (Wiesel and Hubel, 1963).  

This form of monocular deprivation (an analog of the condition that occurs in humans with a 

congenital cataract) resulted in shifted ocular dominance in primary visual cortex, the first site in 

the visual system where input from the two eyes is combined (Hubel et al., 1977).  Analogs of 

other forms of human amblyopia have also found similar results (Hubel and Wiesel, 1965).  

Evidence that these changes were rooted in competition of monocular inputs at the cortical 

synaptic level was provided with the finding that early binocular deprivation did not lead to 

ocular dominance shifts, and in fact was associated with a much faster and more complete 

recovery (Wiesel and Hubel, 1965a; Wiesel and Hubel, 1965b).  Furthermore, these experiments 

led rapidly to the concept of the critical or sensitive period for plasticity, as it was found that the 

timing of deprivation, in terms of both onset and duration, was important for dictating the extent 

of deficits seen (Hubel and Wiesel, 1970; Daw et al., 1978; Teller and Boothe, 1979; Olson and 

Freeman, 1980).  These findings led directly to the current clinical practice of diagnosing and 

treating human amblyopia as early in life as possible (Mitchell and MacKinnon, 2002). 

 In the current project, I aimed to bridge the gap between two different fields of amblyopia 

research.  First, the animal studies in the tradition of Hubel and Wiesel have taught us much 
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about the mechanisms of cortical plasticity and amblyopia, but have largely been restricted to 

investigating young animals, in which the opportunities for plasticity are still optimal.  In 

contrast, most studies of human amblyopia, especially using neuroimaging techniques, have 

focused on adults.  This discrepancy has not been due to short-sightedness, as adults are typically 

more cooperative, easier to study, and able to give full consent for participation in fMRI studies.  

However, if we hope to use the knowledge we gain from studying human amblyopia to improve 

treatment, the next logical step is to refine and apply the techniques to children, who are most 

likely to benefit from these advances with their greater cortical plasticity. 

 Since amblyopia manifests in animal models as an anatomical defect of visual cortex 

organization, we aimed to characterize the organization of visual cortex in children with 

amblyopia.  However, few techniques have been described for imaging individual ocular 

dominance columns in humans (Goodyear and Menon, 2001; Goodyear et al., 2002), and their 

results remain controversial, so I chose to study the larger organizational principle of retinotopy.  

To date, retinotopy has been well studied in adults (Sereno et al., 1995; Engel et al., 1997; 

Tootell et al., 1997), but not in any known study of children.  Therefore, I began by studying 

retinotopic organization in children with normal vision, finding similar organization as in adults, 

except for measurably smaller extrastriate cortical areas in children (Chapter 3).   

 Next, I studied adults with amblyopia using similar retinotopic mapping techniques 

(Chapter 4).  I found shifted cortical ocular dominance and reduced cortical binocularity, 

consistent with the animal literature.  More significantly, I also found reduced representation of 

the central visual field of the amblyopic eye.  This novel and provocative result has potential 

implications for monitoring and treating amblyopia, as it represents the first report of abnormal 

cortical organization in amblyopia using neuroimaging techniques.  Finally, I studied a small 

group of children with amblyopia and found abnormal retinotopic organization in visual cortex 

which was similar to the pattern seen in amblyopic adults (Chapter 5). 

 The abnormal organization of visual cortex at the occipital pole found here in people with 

amblyopia is the most significant finding of the current project.  Although it is possible that this 

visual field remapping is a reflection of abnormal thalamocortical projections, this seems 

unlikely since previous studies have found that the LGN is functionally normal in amblyopia.  

Furthermore, the normal spread of thalamocortical afferents to V1 is limited to about 2 mm 
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(Ferster and LeVay, 1978), and would not be expected to sprout collateral projections over a far 

enough distance to account for the effect seen here.   

Rather than a bottom-up explanation for this phenomenon, horizontal connections within 

V1 are more likely to underlie the visual field reorganization.  Electrophysiological studies in 

cats and monkeys have shown that binocular retinal lesions placed to interrupt a specific visual 

field location result in silent regions within the LGN, but restored visual activity over large spans 

of visual cortex after several months of recovery (Darian-Smith and Gilbert, 1995).  The neurons 

within the initially deprived cortex (termed the lesion projection zone, LPZ) learn to represent 

field locations adjacent to the retinal lesion, even though they can be located between 5 and 10 

mm away from neurons normally corresponding to that receptive field (Kaas et al., 1990; Gilbert 

and Wiesel, 1992).  Long-range horizontal connections span enough cortical distance to account 

for this effect (Gilbert, 1998; Levitt and Lund, 2002), and one recent study has shown that kainic 

acid injection in locations surrounding the deafferented cortex deactivates neurons at both the 

injection site and the corresponding location in the LPZ, implicating horizontal corticocortical 

connections as the key input to the LPZ (Calford et al., 2003).  

 In fact, it has also been shown using induced artificial scotomas that correlated firing 

increases in pairs of layer 2/3 neurons separated by several millimeters in primary visual cortex, 

suggesting strengthened horizontal connections (Das and Gilbert, 1995).  The mechanisms of this 

effect are still being explored, but probably reflect an altered balance of excitation and inhibition 

in these long-range lateral connections.  Perhaps the loss of feedforward input to V1 under these 

conditions leads to less activity in local inhibitory circuits, unmasking excitatory input from 

horizontal connections (Hirsch and Gilbert, 1993).  Some evidence suggests that these unmasked 

connections are further strengthened through the sprouting of new axonal boutons (Darian-Smith 

and Gilbert, 1994). 

 It is possible that similar mechanisms are involved in the visual field remapping found in 

this project.  Under conditions of chronic input suppression of the weak eye in amblyopia, the 

lack of feedforward projections from input layers of V1 to layer 2/3 could potentially lead to 

unmasking of lateral excitatory inputs.  The mean visual field shift shown in the current study 

was approximately 2.5 degrees of visual angle in the adult amblyopes, much less than the nearly 

10 degrees of remapping seen in earlier animal studies with retinal lesions (DeAngelis et al., 

1994; Li and Li, 1994).  Since amblyopia is a developmental disorder with its origins during 
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peak plasticity in early life, it could be expected that even greater amounts of adaptive remapping 

might be possible. 

 Finally, it is also possible that the reorganization seen here has resulted from top-down 

feedback from extrastriate visual areas into foveal cortex.  Several studies have found activation 

of visual cortex in blind subjects performing nonvisual tasks, such as Braille reading (Burton et 

al., 2002).  It has even been suggested that this effect in blind subjects is subject to a critical 

period, with little cross-modal reorganization seen if the onset of blindness was later than 16 

years old (Sadato et al., 2002).  Therefore, it is likely that both horizontal and top-down inputs 

are contributing to the reorganization of visual cortex reported here. 

 These studies are novel because they represent the first known attempt to study 

retinotopic organization in adults and children with amblyopia.  This is significant because 

retinotopic mapping is one of the primary fMRI techniques used by vision scientists for studying 

the visual brain.  Future neuroimaging studies of amblyopia, especially in children, will be 

informed by and build upon the current study.   
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6.2 Comparisons with Previous Studies 

 This section will address comparisons between aspects of the current study and those that 

have preceded it.  We will deal first with comparisons to other neuroimaging studies in children 

(Chapter 3), and then move on to comparisons with other studies of amblyopia in adults (Chapter 

4).  Finally, we will briefly address the significance of our study of children with amblyopia with 

respect to Chapters 3 and 4, as well as the very limited external neuroimaging data available for 

amblyopic children (Chapter 5). 

First, we must address the feasibility of comparing fMRI studies in children and adults 

(Chapter 3).  The basic mechanism of the BOLD response in fMRI is known, but a detailed 

understanding of the coupling between changes in neural activity and changes in blood 

oxygenation and flow is still being developed (Logothetis, 2003; Logothetis and Wandell, 2004).  

Furthermore, we do not know precisely how this mechanism changes during the course of 

development.  As noted in Chapters 3 and 5, early studies of the BOLD response in infants found 

negative signals, raising the possibility of dramatic developmental changes in the BOLD 

mechanism (Born et al., 1996; Yamada et al., 1997; Born et al., 1998).  However, these effects 

were likely specific to the infant brain, as subsequent studies have reported more similar 

activation patterns in older children and adults (Martin et al., 1999; Kang et al., 2003; Wenger et 

al., 2004).  In addition, a negative BOLD response was recently obtained in children and adults 

during slow wave sleep, as well as in some cases of sedated adults (Born et al., 2002a; Born et 

al., 2002b), suggesting that sleep or sedation may have been the key factor in these early studies. 

 As noted in Chapter 5, fMRI is now being used and widely accepted to investigate a wide 

range of normal and abnormal developmental processes in children.  This literature is rapidly 

growing, exploring such diverse topics in normal development as selective attention (Booth et 

al., 2003), language representation (Poldrack et al., 2001; Joseph et al., 2001; Booth et al., 2001; 

Booth et al., 2004; Wood et al., 2004), object recognition (Joseph and Farley, 2004; Gathers et 

al., 2004), and reward circuitry (May et al., 2004), as well as developmental pathologies such as 

attention-deficit hyperactivity disorder (Sowell et al., 2003; Booth et al., 2005), dyslexia (Temple 

et al., 2001; Temple et al., 2003), and autism (Brambilla et al., 2004).  This widespread 

acceptance of fMRI techniques applied to children further supports our novel use of retinotopic 

mapping techniques which were developed in adults to pediatric populations. 
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    In our study of children with normal vision (Conner et al., 2004), we found no 

difference in cortical magnification functions between children and adults, and our values were 

highly consistent with those reported for adults in previous studies (Sereno et al., 1995; Engel et 

al., 1997).  However, we did find smaller extrastriate cortical areas in children compared with 

adults.  We obtained this result for both absolute size and percentage of the entire reconstructed 

neocortical sheet, suggesting that gross brain size is not a relevant factor, a finding consistent 

with  previous literature indicating no significant change in cerebral volume after age 5 (Giedd et 

al., 1996; Reiss et al., 1996).  Previous reports agree that extrastriate cortex may develop more 

slowly than striate cortex, showing that striate activity dominates the checkerboard-onset evoked 

potential of the children aged about 4–8 years, whereas extrastriate activity matures later in 

development (Ossenblok et al., 1992; Ossenblok et al., 1994).  A few anatomical studies of 

children’s brains also suggest a posterior-to-anterior maturation gradient (Garey, 1984; Sowell et 

al., 1999; Thompson et al., 2000), as does a recent VBM study which found reduced extrastriate 

gray matter in children but not adults with amblyopia, which also suggests a developmental 

delay in the maturation of these areas (Mendola et al., 2005).   

 In our next study (Chapter 4), we first found less activation in visual cortex for amblyopic 

eye stimulation compared with fellow or control eyes, consistent with many previous PET 

(Demer et al., 1988; Demer et al., 1997; Imamura et al., 1997; Choi et al., 2002; Mizoguchi et al., 

2005) and fMRI reports (Barnes et al., 2001; Choi et al., 2001; Algaze et al., 2002; Lerner et al., 

2003; Liu et al., 2004).  Interestingly, human post-mortem investigations have not found 

evidence for abnormal anatomical ocular dominance column periodicity (Horton and Stryker, 

1993; Horton and Hocking, 1996), but two recent fMRI studies have demonstrated functional 

ocular dominance shifts in V1 of human amblyopes, consistent with our results in V1 and V2 

(Goodyear et al., 2002; Liu et al., 2004).  Furthermore, a recent pair of fMRI papers have also 

shown reduced indices of cortical binocularity, similar to our findings (Lee et al., 2001; Algaze 

et al., 2002).   

Most significantly, we reported the completely novel result of abnormal retinotopic 

organization in our adult amblyopes.  We hypothesized that the central visual field deficit seen in 

amblyopia (Thomas, 1978; Katz et al., 1984) would be reflected as a decreased cortical 

representation of central field locations for the amblyopic eye, but did not fully expect the 

magnitude of shifted organization that we found.  Rapid reorganization of visual cortex has been 
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demonstrated in young animals after focal retinal (Chino et al., 1992; Chino et al., 1995) and 

cortical lesions (Eysel and Schweigart, 1999; Zepeda et al., 2003), but since amblyopia is a 

slowly developing disorder with no acute lesion, it would be difficult to precisely predict the 

outcome of the visual field mapping experiment.  However, this new finding holds much promise 

as an objective marker of the degree of cortical receptive field mismatch between the amblyopic 

and fellow eyes, and could potentially be used to customize and monitor treatment in children 

and young adults.   

 Although this is the first demonstration of abnormal retinotopic organization in 

amblyopia, a few other studies have examined retinotopic organization in age-related macular 

degeneration (AMD).  The fovea is usually most affected in AMD, resulting in a substantial 

central scotoma.  Although AMD occurs late in life compared with amblyopia, it is a useful 

analog of the retinal lesion studies in animals discussed in the previous section.  However, the 

results from these neuroimaging studies of AMD are mixed.  The first study mapped retinotopy 

in one patient (60 years old) with recent-onset AMD (< 3 years), and found a region of ‘silent’ 

visual cortex corresponding to the central scotoma (Sunness et al., 2004).  In contrast, a later 

study found significant reorganization in two patients with much longer-term AMD (> 20 years), 

with normally foveal cortex responding instead to more peripheral visual field locations (Baker 

et al., 2005).  Clearly, the difference here seems to be the length of the deprivation, with cortical 

reorganization occurring only with years of abnormal visual experience.  Interestingly, the effect 

seen in Baker et al. (2005) occurred in adults years past their visual critical periods, suggesting 

that some remapping is possible even after the critical period plasticity has waned.   

 Finally, our study of retinotopic organization in children with amblyopia is the first of its 

kind (Chapter 5), and is therefore difficult to compare the results with other previous studies.  

However, we did find a similar pattern of organization in these children (ages 10 to 14) to the 

pattern we found in amblyopic adults (I. Conner, J. Odom, T. Schwartz, and J. Mendola, 

submitted), suggesting that the visual system has reached functional maturity by this age, at least 

as is detectable using the current techniques.  It will be important to try extending these 

techniques to younger children, who would be expected to have greater remaining plasticity and 

the greatest likelihood of benefit from these findings.      

 

 



   

 185

 

6.3 Directions for Future Study 

 The most obvious direction for future study will be to extend these visual field mapping 

techniques to younger children in order to elucidate the timeline of the remapping phenomenon 

seen in adults (Chapter 4) and older children (Chapter 5).  Ultimately, studying the postnatal 

development of the visual system as a model of plasticity using neuroimaging could provide as 

much information on a macroscopic level as animal studies have at the microscopic level.  It 

would be fascinating to follow visual development longitudinally through the critical periods for 

orientation, ocular dominance, disparity tuning, etc. (Lewis and Maurer, 2005). Furthermore, the 

lessons from normal development could then be used to evaluate and tailor treatments designed 

to extend or reopen the critical periods. 

 Of course, a critical intermediate step might be to study the postnatal development of 

vision using fMRI in other species which are better characterized physiologically, like cats and 

monkeys, and then to correlate those findings with the known electrophysiology.  Animal models 

have similar advantages in neuroimaging as in other fields, in that they can be used in more 

controlled experimental manipulations, including extremely high-field MR scanners capable of 

much more detailed spatial resolution than the clinical scanners available for use with human 

subjects.  

Finally, it is important to note that the current study has only aimed to characterize the 

neurological impairment in amblyopia and to provide a set of tools for use in future studies.  

Much work remains to clarify the genetics and molecular biology of amblyopia, and then to 

develop more effective treatments for use in children and adults (Michaelides and Moore, 2004).  

Amblyopia is a complicated disorder, in which it can be difficult to separate the causes from the 

effects (Barrett et al., 2004).  Early studies such as our investigation of the nature of amblyopic 

human brains will provide an initial baseline for evaluating future treatments (Bacal, 2004).     
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6.4 Conclusions 

 In conclusion, we have measured retinotopic organization in children in multiple visual 

areas and in adults and children with amblyopia for the first time.  In the process, we 

demonstrated the feasibility of applying retinotopic mapping techniques developed for adults in 

children, with only slight modifications.  It will now be possible to compare retinotopic maps in 

normal children to children with visual disorders and monitor the effect of treatment variables 

over time, an approach that is already revealing neurological effects of remediation in children 

with dyslexia (Temple et al., 2003).  In addition, we also demonstrated the use of monocular 

retinotopic mapping in amblyopia, integrating fixation and feedback response monitoring in 

order to assure adequate attention and stimulus delivery.  As a result, we found evidence for 

cortical visual field remapping in amblyopia, an effect supported by the psychophysical literature 

but which had not been described using neuroimaging techniques.  Finally, we began the work of 

applying fMRI techniques to children with amblyopia, in whom the benefits of knowledge 

resulting from these studies are most likely to accrue.  Our results suggest that further study will 

be necessary in younger children, both with and without amblyopia, in order to better understand 

the neural mechanisms of human neural development, plasticity, and amblyopia.     
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