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1 EXECUTIVE SUMMARY 

Applied Science Associates (ASA) was contracted by the Casco Bay Estuary Partnership (CBEP) to prepare 
a report reviewing the state of knowledge of circulation in Casco Bay, discussing relevant hydrodynamic 
modeling approaches and supporting observation programs. A summary of the final report of this study 
(the present document) was presented at a two day, Casco Bay Circulation Modeling Workshop held on 
May 18-19, 2011 at the Eastland Park Hotel, Portland, Maine. At the conclusion of the workshop a brief 
consensus summary was prepared and provided in this report.  
 
The review identified four efforts focused on modeling the circulation of Casco Bay and the adjacent 
shelf waters. These included the following: Pearce et al (1996) application of the NOAA Model for 
Estuarine and Coastal Circulation Assessment (MECCA) model (Hess, 1998) (funded by CBEP); True and 
Manning’s (undated) application of the unstructured grid Finite Volume Coastal Ocean Model (FVCOM) 
model (Chen et al, 2003);  McCay et al (2008) application of ASA’s Boundary Fitted Hydrodynamic Model 
(BFHYRDO), and Xue and Du(2010) application of the Princeton Ocean Model (POM) (Mellor, 2004). All 
models were applied in a three dimensional mode and featured higher resolution of the inner bay than 
of the adjacent shelf. Pearce et al (1996), True and Manning (undated), and Xue and Du (2010) models 
were forced by larger scale models of circulation in the Gulf of Maine: Pearce et al (1996) by the DENS 
predictions (Suscy et al, 1994), True and Manning (undated) by Dartmouth College finite element Gulf of 
Maine circulation model (Lynch et al, 1996), and Xue and Du (2010) by the Gulf of Maine of Ocean 
Observing System (GoMOOS) Forecasting System (Xue et al, 2005). McCay et al (2008) model was 
restricted to tidal forcing only and driven from a global tidal data base Pearce et al (1996), True and 
Manning (undated), and McCay et al (2008) focused on tidal circulation, although the first two did 
selected but limited simulations for wind and density forced flows. All three validated their models with 
water level data and the limited observations of tidal currents available at the time. Xue and Du (2010) 
effort was focused on modeling the dynamics of the Androscoggin- Kennebec River plume during a 
spring freshet. Validation was performed using data provided by the ECOHAB program (Janzen et al, 
2005).  Pearce et al (1996) and Xue and Du (2010) have demonstrated that inclusion of wetting and 
drying boundary conditions are necessary to understand the tidal circulation in the inner bay and the 
dynamics of Androscoggin- Kennebec River plume. Progress in modeling has been hampered by the lack 
of adequate field data and a long term, sustained support for this effort. 

Field observations in Casco Bay and adjacent coastal waters have included routine measurements at 
selected sites and projects directed at specific management questions. In the former category NOAA 
National Ocean Service (NOS) operates the tidal water level station in Portland, ME and the National 
Data Buoy Center (NDBC) supports operation of a meteorological and wave observation buoy just off 
Cape Elizabeth. The US Geological Survey (USGS) makes routine stream gauging stations on all the major 
rivers discharging into Casco Bay and adjacent coastal waters, although availability is dependent on 
funding considerations. The University of Maine, Physical Oceanographic Group has periodically 
deployed buoys at the mouth of the bay and in the inner harbor providing meteorological, wave, 
current, and hydrographic data. These deployments have been short to mid term and dependent on 
year to year funding. There have been two major measurement programs, led by scientists from the 
University of Maine, that have resulted in a substantial collection of data to support studies of 
circulation in the bay: ECOHAB-GOM (Ecology and Oceanography of Harmful Algal Blooms—Gulf of 
Maine) (2004-2005), and MOSAC/DEP (Maine Oil Spill Advisory Committee and the Maine Department 
of Environmental Protection (2004-2006). The goal of ECOHAB was to better understand the transport 
processes linking harmful algal bloom source regions with areas where toxic blooms occur. The data 
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collection program consisted of conductivity, temperature, and depth transects and the deployment of 
three moorings (salinity, temperature and currents). The main goal of the MOSAC project was to 
observe the tidal and non-tidal circulation and exchange processes in Casco Bay, with emphasis on the 
transport and exchange through three main channels separating the interior and outer Bay. Three 
acoustic Doppler current profilers (ADCPs) were deployed in the three main channels leading into the 
bay: Portland Channel, Hussey Sound, and Broad Sound. In addition, near-surface and near-bottom 
temperature and salinity sensors were also deployed on the moorings.  CTD surveys were also 
conducted throughout the study (Apr, May and Aug 2004) to collect climatology data along the 
boundary separating the Bay and the adjacent shelf. In addition, short term (tidal cycle) ADCP 
measurements were made across the three entry channels to characterize the vertical and lateral 
variability of the tidal currents. The data for the ECOHAB study has been published (Janzen et al, 2005) 
and was used by Xue and Du (2010) in their modeling study. The data from the MOSAC study has not 
been released pending completion of scientific papers by the project principal investigators. This data 
should be very useful to advance circulation modeling of the Casco Bay system since it provides critical 
data on exchange between the inner bay and adjacent shelf waters. 

Based on the field observations and modeling programs to date, there is a reasonable understanding of 
the broad scale tidal dynamics of the system, particularly the inner harbor. Model validations have been 
performed using water level data and short term current time series at selected stations. Model 
predicted horizontal and vertical structure of the flows, particularly in key passages, has not been 
validated since data was not available at the time of the studies. The impact of wetting and drying on 
tidal exchanges between the inner and outer harbor also remains on open question.  

Recent field data from ECOHAB (Janzen et al, 2005) and modeling studies (Xue and Du, 2010) have 
helped elucidate the role of wind and freshwater discharge on the dynamics of the Androscoggin- 
Kennebec River plume and circulation on the eastern end of Casco Bay. The impact on circulation in the 
remainder of the bay has not been addressed in any detail.  Once data is released from the MOSAC 
study it will be possible to begin to address this question. Cross shelf exchanges between offshore 
waters and Casco Bay have been shown to be important in addressing critical management questions. 
These are just starting to be addressed by the circulation modeling studies. 
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5 INTRODUCTION AND STUDY OBJECTIVES 

In 1990, Casco Bay was designated an “estuary of national significance” and included in the U.S. 
Environmental Protection Agency’s (EPA) National Estuary Program (NEP), established in 1987 to protect 
nationally significant estuaries threatened by pollution, development, or overuse. As a result of this 
designation, the Casco Bay Estuary Partnership (CBEP) (http://www.cascobay.usm.maine.edu/) was 
formed with the mission of preserving the ecological integrity of Casco Bay, while ensuring compatible 
human uses of the Bay’s resources through public stewardship and effective management.  
 
This mission is being accomplished through a community-based, cooperative effort that involves 
concerned citizens, local governments, business and industry, state and federal agencies, and academic 
and research institutions.  
 
The goals of the CBEP include:  

• Protecting and restoring fish and wildlife habitats.  
• Decreasing pollution from storm water and combined sewer overflows.  
• Improving water quality to restore and sustain open clam flats and protect swimming beaches.  
• Reducing toxic pollution.  
• Promoting informed and responsible stewardship.  

 
A program of environmental monitoring supports this work and tracks progress towards meeting these 
goals. 
  
In 1996, Pearce et al (1996) developed a model of the circulation in Casco Bay to provide a better 
understanding of the circulation of the bay and to address the key management goals of CBEP. The 
results of that modeling effort were incorporated into the 1996 Casco Bay Plan. Subsequently, other 
models and modeling approaches have been applied in Casco Bay and the larger Gulf of Maine by other 
groups funded by a variety of other programs (see review in Section 3). 
  
CBEP has recently identified the need to improve their understanding of circulation in Casco Bay in order 
to address a variety of water quality and habitat-related management questions, including:  

•  nutrient transport, (e.g., the fate and transport of nutrients from wastewater treatment plant 
outfalls and other sources and how they influence offshore nutrient concentrations; how bay 
waters are flushing; how riverine waters are circulated in Casco Bay)  

• oil spill transport, (e.g., how a plume of spilled oil would travel and disperse; effects of current 
and winds; response of heavy versus light oil)  

• larval distribution, (e.g., factors influencing clam set and distribution of lobster larvae; invasion 
pathways)  

• harmful algal blooms (HAB), (e.g., factors influencing the local distribution of HABs; role of  
upwelling in cyst movement)  

 
In pursuit of this goal, CBEPwill host a Casco Bay Circulation Observation and Modeling workshop on 
May 18 and 19, 2011. The workshop will bring together modelers, observationalists, and resource users 
to clarify the specific types of data and model(s) needed to address key management issues.  
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In preparation for this workshop and to follow-up on the results of the workshop, the Casco Bay Estuary 
Partnership (CBEP) solicited proposals and awarded a contract to Applied Science Associates (ASA) to 
develop a report reviewing and assessing the state of knowledge of circulation in Casco Bay, discussing 
relevant hydrodynamic and other modeling approaches, and identifying available data sets relevant to 
circulation. A PowerPoint presentation that summarizes the report was presented at the Casco Bay 
Circulation Observation and Modeling Workshop. In addition, a post-workshop summary was prepared 
and included in this document. 
 
Section 2 provides an overview of Casco Bay, its watershed, and the adjacent waters of the Gulf of 
Maine. A review of the recent observations and circulation models applied to the bay is presented in 
Section 3. Section 4 provides an evaluation of the models and recommends a strategy for moving 
forward. This section also presents a sense of the state of development of our understanding of the 
circulation in the bay. A summary of the workshop and its final recommendations are provided in 
Section 5. Study conclusions are given in Section 6. Appendix A provides a bibliography, including 
abstracts for key reference material, Appendix B a list of data sets, and Appendix C the workshop 
materials including, goal, agenda, list of participants and summary of findings.  
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6 DESCRIPTION OF THE CASCO BAY SYSTEM AND MANAGEMENT NEEDS  

Casco Bay is a 40 km long by 20 km wide tidal estuary located on the south western Maine coast (Figure 
1). The bay is bounded by Cape Small to the northeast and Cape Elizabeth to the southwest. Water 
depths range from 3 m to 50 m, with an average of 24 m.  The Harpswell Neck peninsula separates 
Casco Bay into eastern and western regions. The bay is open to the coastal ocean to the southeast and 
includes a large number of small islands and interconnected passages. The bay has three main passages 
for transport of water from the outer to the inner bay:  Hussey Sound, Luckse Sound, and Broad Sound. 
There is also a channel that links New Meadows River to the outer bay and Portland Channel that links 
Portland Harbor to the outer bay.   The near coastal waters from Yarmouth northeast to the upper 
reaches of Maquoit and Middle Bays are generally less than 3 m in depth, and experience extensive 
flooding and drying given the fact that the mean tidal range in the area is comparable to the water 
depth.   
 
The Casco Bay watershed is comprised of five sub-water sheds including Sebago Lake;  the Presumpscot, 
Royal, and the Fore Rivers; and the coastal watersheds and encompasses about 2554 sq km. The 
western side of the bay receives freshwater input from the Royal and Presumpscot River (annual 
average – 40 m3/sec) while the eastern side receives freshwater from the Kennebec and Androscoggin 
River (annual average – 300 m3/sec). This water discharges just east of Cape Small, immediately but 
outside the Casco Bay watershed.  The freshwater input has a strong seasonal variation with the largest 
flows in the spring freshet (March- June). The peak flows can be substantial. Table 1 shows the 
estimated peak flows for 2, 10, 50, and 100 yr return periods. Peak flows for the dominant Kennebec 
River can reach 1000s of m3/sec during the spring.  

 

 
 
Figure 1 Casco Bay study area with names of key geographic features. 
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Table 1  Estimate peak flows for rivers discharging into Casco Bay, 2, 10, 50 and 
100 yr recurrence intervals 

Source: Hodgkins (1999) 
     

   

Flow rates 
(m3/sec) 

  

   
year recurrence interval 

 

   
2 10 50 100 

River Station Number 
     

       Presumpscot 1064118 
 

150 280 446 534 

Royal  1060000 
 

107 194 280 318 

Kennebec 1049205 
 

1700 3200 4370 4820 

Androscoggin 1059000 
 

1090 1650 2100 2280 

Sheepscot 1038000 
 

57 108 165 192 

 
 

 
Figure 2 Casco Bay watershed and sub-watersheds (CBEP Plan, 2006) 

 
The circulation in the bay is dominated by the semi-diurnal tides (M2) (Pearce et al, 1996, True and 
Manning, undated). Given the small spatial extent of the system, the variation in tidal range (mean - 
2.78 m) and phase throughout the system is quite small (cm and minutes). The tidal currents on the 
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other hand are quite complicated and vary considerably in strength (Parker, 1982) given the complex 
topography of the island and channel system and the flooding and drying of the eastern portion of the 
system, particularly Maquoit and Middle Bays.  
 
The waters immediately offshore of the bay are primarily driven by the freshwater discharges from 
Kennebec and Androscoggin Rivers and those further to the east (Kistner and Pettigrew, 1999; Kaefer, 
2005; Xue and Du, 2010) and the local winds. Winds in the area are predominantly from the west with 
strongest winds from the west to north segment and the most frequent from the south to southwest 
(Figure 3). Janzen et al (2005) observed that the tidal variance of the inner shelf adjacent to the bay is 
weak, and that the across-shelf current is highly coherent and in phase with the along-shelf wind stress. 
Although tidal current variance increases as one advances into the bay, non-tidal currents account for 
30–40% of the across-shelf current variance at the bay entrance.  The across-shelf structure of the 
Kennebec plume is significantly influenced by along-shelf wind forcing where upwelling-favorable winds 
result in widening of the plume as far offshore as 50 km, and down-welling favorable winds narrow the 
plume to within 10 km of the coast (Fong et al., 1997; Geyer et al., 2004; Janzen et al, 2005).(Upwelling 
favorable winds blow toward the northeast and downwelling favorable winds to the southwest)  Further 
offshore the flow is impacted by the western Maine coastal current (WMCC) (Lynch et al, 1997; Geyer et 
al 2004; Vermersch et al, 1979: and Churchill et al, 2005).  Because the Bay is wide open to the Gulf of 
Maine, the circulation within the Bay can be affected by offshore winds, fresh water runoff from the 
Kennebec-Androscoggin Rivers, especially during the spring freshet, and dynamics of the nearby 
western Maine coastal current(WMCC). 
 

 
 

 
Figure 3 Wind rose from US Army Corp of Engineers Wave Information Study(WIS) hindcast (1980-
1999), Station 63035 at the mouth of Casco Bay. 
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7 MANAGEMENT DRIVERS  

The need to understand the circulation in the bay is driven by the following major environmental issues. 
The list is representative but not inclusive. It is also important to keep in mind that ecosystem based 
management of the bay is not possible without an understanding of the circulation in the system. 
 
Oil spill transport and fate:  
Portland, Maine is the major oil terminal in Maine and one of the largest in the northeast  and as a result 
experiences substantial oil vessel transport.  Accidental releases of oil in the Bay and Portland Harbor 
may be transported throughout the bay and into the adjacent shelf waters. Spill response is substantially 
improved if data is available to estimate likely oil transport paths and rates.  This information is also very 
useful in understanding the long term transport and environmental impact of spills. 
 
Harmful algal blooms: 
The Casco Bay region often experiences shellfish toxicity during the spring and early summer 
(April–June), with high abundances of Alexandrium fundyense occurring in eastern Casco Bay (Battelle, 
2010; Anderson et al, 2005; Doucette et al, 2005).  Keafer et al. (2005) found that the high abundances 
of A. fundyense in Casco Bay are contiguous with coastal populations observed within the Kennebec and 
Penobscot River plumes and the WMCC, implicating shelf waters as the source for toxic blooms in Casco 
Bay. Across-shelf surface transport induced by downwelling-favorable wind is thought to be the 
mechanism responsible for transporting populations of A. fundyense from the shelf to eastern Casco Bay 
(Keafer et al., 2005). 
 
Larval transport and distribution: 
Models and observations (Brooks, 2009) show that planktonic lobster larvae are carried southwestward 
in the Maine coastal current the inner limb of an anti-clockwise upper-level circulation that develops in 
the Gulf in the summer.  The coastal current connects hatching regions near the mouth of the Bay of 
Fundy with near-shore environments suitable for larval settlement and development in the central and 
southern coastal Gulf of Maine. The central coast area is noted for consistently high densities of settled 
and juvenile lobsters  The high densities may be associated with a shoreward ‘‘back-eddy’’ that can form 
when the coastal current deflects offshore over a shallow submarine ridge off Penobscot Bay. Pre 
settlement larvae, whether from offshore or from local hatching, must remain in shallow near-shore 
environments to survive, so the near-shore circulation plays a critical role in determining the health and 
distribution of the lobster fishery.  
 
Sea level rise: 
As with all coastal areas in the Gulf of Maine, climate change will induce water level increases in Casco 
Bay. Greenberg et al (2011) have estimated that the combined effects of present day sea level rise, 
climate induced sea level rise, and the expanded tidal range they induce, will produce a significant 
increase in the high water level. This will be much greater than that found when considering climate 
induced sea level changes in isolation. They estimate increases of 0.4 m (2055) to 0.7 m (2100) of 
increase in high water at Portland, ME. 
 
Nutrient transport: 
The fate and transport of nutrients and contaminants from wastewater treatment plant outfalls, riverine 
input, and storm drainage systems can have a significant impact on marine water quality (nutrients, 
dissolved oxygen, toxics, et others). The concentrations of these contaminants and their impacts are 
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closely related to the loading and the rate at which bay waters are flushed and the patterns of 
circulation in the bay.   

8 CIRCULATION IN CASCO BAY AND ADJACENT GULF OF MAINE WATERS 

This section gives an overview of observations and circulation modeling investigations that have been 
performed in Casco Bay and nearby coastal waters over the past two decades. Each is presented in a 
separate section.  
 
Observations 
A brief summary of the observations that are currently available for use for model calibration and 
verification are provided below. A summary table of the data, providing specifics on the source, 
location, and data type and references or web site addresses, is provided in Appendix B. The data sets 
are broken into two major groups: (1) routine time series measurements made by federal government 
or other organizations at one or more locations and (2) measurement programs associated with a 
particular field observation program or project. The naming convention follows the source of the data 
or the name of the measurement program. 
 
Routine Time Series Measurements:  

NOAA NOS COOPS: maintains a water level station at Portland, ME (1910 to present). 
The station provides real time water level and air and water temperature data. 

 

NOAA NDBC: operates an offshore meteorological buoy (44007) just southwest of Casco 
Bay (off Elizabeth Pt). The data includes meteorological observations and surface waves. 
 
University of Maine, Gulf of Maine Observing System operated a buoy  C at the mouth 
of Casco Bay from 2002 to 2009 and at DO2 in Lower Harpwell Sound from 2008 to 
present. The later is supported by Bowdoin College. The buoys collect(ed) 
meteorological, wave and ocean current data. Figure 4 shows a photo of the buoy and 
the configuration of the instrumentation. 
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Figure 4 Photograph (left) of University of Maine buoy, D02, in Harpswell Sound and its 
instrumentation configuration (right). 
(http://gyre.umeoce.maine.edu/data/gomoos/buoy/schematics/D0205.gif) 

 

USGS Stream Gauging: USGS operates a network of stream gauges for rivers in Maine. 
Data is available on a daily averaged basis for the Kennebec, Androscoggin, Sheepscot, 
and Presumpscot Rivers. No data is available for the Royal River. For the larger rivers 
data is available at various upstream locations  from the discharge point to the coastal 
ocean. 

 

Field Observation Programs: 
 

Parker (1982), as part of an oil spill study, took short term (tidal cycle) measurements of 
the tidal currents at over 25 locations in western Casco Bay. The data set is quite limited 
and only available in Parker’s report.  
 
ECOHAB-GOM (Ecology and Oceanography of Harmful Algal Blooms—Gulf of Maine), 
University of Maine, (Janzen et al, 2005) performed a study to better understand the 
transport processes linking A. fundyense source regions with areas where toxic blooms 
occur. Janzen et al (2005) summarizes the work done for the Casco Bay region. The data 
collection program consisted of conductivity, temperature, and depth (CTD) transects 
and the deployment of three moorings (MD1, MD2, and MD3) (salinity, temperature 
and currents). Data from the Portland, ME water level gauge and the NOAA 40007 buoy 
(meteorology) were also used. Figure 5 shows the CTD transects and the mooring sites.  
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Figure 5 Location of CTD transect (open circles) and moorings sites (squares marked M1, M2, and 
M3)  for the ECOHAB study (Janzen et al, 2005). 
 

MOSAC/DEP (Maine Oil Spill Advisory Committee and the Maine Department of 
Environmental Protection (2004-2006)  

(http://gyre.umeoce.maine.edu/cjanzen/DEP-MOSAC.html) 

Janzen and Pettigrew (2006) 

The main goal of this study was to observe the tidal and non-tidal circulation and exchange 
processes in Casco Bay, with emphasis on the transport and exchange through three main 
channels separating the interior and outer Bay. Three acoustic Doppler current profilers 
(ADCPs) were deployed from March 20, 2004 to January 1, 2005in the three main channels 
leading into the bay: Portland Channel, Hussey Sound, and Broad Sound. In addition, near-
surface and near-bottom temperature and salinity sensors were also deployed on the 
moorings.  CTD surveys were also conducted throughout the study (Apr, May and Aug 2004) to 
collect climatology data along the boundary separating the Bay and the adjacent shelf. In 
addition, short term (tidal cycle) ADCP measurements were made across the three entry 
channels to characterize the vertical and lateral variability of the tidal currents (May and Nov 
2004). Figure 6 shows the transect lines and mooring sites for the study. 

http://gyre.umeoce.maine.edu/cjanzen/DEP-MOSAC.html
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Figure 6 MOSAC/DEP CTD transects and mooring sites in key passages between outer and inner 
Casco Bay (Janzen and Pettigrew, 2006) 

US Army Corp of Engineers, Wave Information Study (WIS) http://chl.erdc.usace.army.mil/wis. 

The US Army Corp of Engineers, Wave Information Study (WIS) has performed hindcasts of wind 
and wave conditions at virtual stations located along the coast of the US. The hindcasts, 
assimilated available data, and were performed from 1980 to 1999 for the Atlantic coast.  
Predictions were validated with observations to the extent available.  Figure 7 shows the 
location of hindcast stations in the vicinity of Casco Bay. Location verification used data from 
buoy 44007. Time series data from all stations can be downloaded from the WIS web site. 

 

 

http://chl.erdc.usace.army.mil/wis
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Figure 7 US Army Corp of Engineers, Wave Information Study(WIS) hindcast sites in the vicinity of 
Casco Bay (http://frf.usace.army.mil/wis2010/hindcasts.shtml?dmn=atl) 

Casco Bay Nutrients and Hydrography, David Townsend, University of Maine, 2001-Present, 
http://grampus.umeoce.maine.edu/gomoos/gomoos.htm 

The University of Maine’s School of Marine Sciences and the Friends of Casco Bay have teamed up to 
monitor nutrient conditions in Casco Bay.  They have established and maintained a long-term first-in-
the-Gulf-of-Maine time series in order to document any future changes in water quality in Casco Bay 
and/or its source waters. 

The joint program began in the winter of 2000, with initial funding from GoMOOS (the Gulf of Maine 
Ocean Observing System) and the University of Maine.  The program continues today under NERACOOS 
(the Northeast Regional Association of Coastal Ocean Observing System).  Sampling is conducted by the 
staff at the Friends of Casco Bay, located on the campus of Southern Maine Community College (SMCC) 
in South Portland, Maine.  The nutrient analyses are performed in D.W. Townsend's laboratory at the 
University of Maine, which also hosts the data server.   

Water samples are collected from stations in Casco Bay (Figure 8) with measurements of temperature 
and salinity taken concurrently.  Samples are analyzed for concentrations of the dissolved inorganic 
nutrients Nitrate+Nitrite (NO3+NO2) (total nitrogen was added in 2007), Phosphate (PO4), Silicate 
(Si(OH4), and Ammonium (NH4).  

Daily samples are collected off the Southern Maine Community College dock in South Portland, Maine 
(labeled SMCC), while other stations are sampled on a weekly or bi-weekly schedule. The data is 
available on line at http://grampus.umeoce.maine.edu/gomoos/stnmap.htm. 

 

Figure 8 Casco Bay nutrient and hydrography sampling stations. 

 

file:///C:/Users/Malcolm%20Spaulding/AppData/Local/Temp/Temp1_Draft%20final%20report(v2).zip/(http:/frf.usace.army.mil/wis2010/hindcasts.shtml%3fdmn=atl)
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Numerical Circulation Models 

Based on a review of the literature, input from CBEP staff, and professional contacts of the author a 
number of numerical circulation models that have been applied to Casco Bay during the past two 
decades were identified. Presented below is brief summary of each model and its application. The 
summary identifies the model used, the application specifics to the extent they were provided, an 
overview of model verification and validation and key findings or results of the model application.  
References to the model and the paper or report summarizing the application are provided. 
 
Prior to this presentation it is important to put the local efforts for Casco Bay into a regional context. To 
that end a very brief review of basin scale circulation models that are currently operational in a forecast 
mode or have been applied to the Gulf of Maine system are reviewed first. In selected cases output 
from these larger domain models are used to force circulation models for Casco Bay. 
 
Northeast Coastal Ocean Forecasting System, operated by the University of Massachusetts at 
Dartmouth ( C. Chen, SMAST and R. Beardsley, WHOI) 
http://fvcom.smast.umassd.edu/research_projects/NECOFS/Forecast_Hindcast/index.html 
 

The Northeast Coastal Ocean Forecast System (NECOFS) is an integrated atmosphere-ocean model 
system designed for the northeast US coastal region covering a computational domain (study area) 
from the south of Long-Island Sound to the north of the Nova Scotian Shelf. The system includes 1) 
meso-scale meteorological models WRF (Weather Research and Forecasting model) and MM5 (fifth-
generation NCAR/Penn State non-hydrostatic meso-scale model); 2) the unstructured (triangular 
shaped) grid Finite-Volume Coastal Ocean Model with configuration for the Gulf of Maine/Georges 
Bank /New England Shelf (FVCOM-GOM); 3) the unstructured grid surface wave model (FVCOM-
SWAVE) modified from SWAN; 4) FVCOM-based unstructured grid sediment model and 5) 
generalized biological models. At the current stage, the forecast system is built based on WRF, MM5 
and FVCOM. The model provides routine forecasts for the NE coastal waters. The data is also 
distributed via Northeast Regional Association for Coastal Ocean Observing (NERACOOS, 
nearacoos.org) or at the NECOFS web site. Figure 9 shows an example for model predictions of 
currents and surface salinity for March 8, 2011. The model captures the basic shape of Casco Bay but 
none of the details (islands).  
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Figure 9 Current predictions overlaid on surface salinity for March 8, 2011 for the Gulf of Maine 
from NECOFS (http://neracoos.org/projects/necofs.html) 
 
Gulf of Maine of Ocean Observing System (GoMOOS) Forecasting System (H. Xue, University of 
Maine, Marine Sciences) 

http://rocky.umeoce.maine.edu/GoMPOM/ 

 

Xue et al (2005) have developed an operation forecasting model for the Gulf of Maine, Georges Bank 
and Scotian Shelf system. The Princeton Ocean Model (POM) (Mellor, 2004) is used and solves the 
three dimensional, fully nonlinear, free surface, finite difference ocean model with Mellor and 
Yamada turbulence closure scheme. The model has a horizontal resolution of 3 to 5 km and a vertical 
resolution of 22 levels. The model is forced by the principal semi and diurnal tidal constituents on the 
open boundary and river flows. The surface forcing (heat, moisture, and momentum fluxes) is 
provided by the National Center for Environmental Prediction (NCEP) Eta meso-scale atmospheric 
model, with a spatial resolution of 32 km. Sub-tidal forcing from the open ocean is interpolated from 
the National Center for Environmental Prediction (NCEP) Regional Ocean Forecasting System (ROFS). 
Operational forecasts have been performed since 2001. Figure 10 shows the predicted surface 
currents and salinity for March 8, 2011.  The model grid resolution is too coarse to represent the 
Casco Bay study area but can be useful in providing boundary condition data for a higher resolution 
model of the bay (Xue and Du, 2010).  

 

 

http://fvcom.smast.umassd.edu/research_projects/NECOFS/Forecast_Hindcast/FIGURES/FVCOM_GOM2/GOM/SAL/hqv0000.jpeg
http://neracoos.org/projects/necofs.html
http://rocky.umeoce.maine.edu/GoMPOM/
http://fvcom.smast.umassd.edu/research_projects/NECOFS/Forecast_Hindcast/FIGURES/FVCOM_GOM2/GOM/SAL/hqv0000.jpeg
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Figure 10 Current and salinity forecast for March 8, 2011, 19:00 from the Gulf of Maine Forecasting 
system (GoMOOS). 

 
Dartmouth College Numerical Modeling Laboratory  

http://www-nml.dartmouth.edu/circmods/gom.html (Dan Lynch, Dartmouth College) 

Lynch et al. (1996) have developed a state-of-the-art finite-element circulation model (QUODDY) and 
applied it to a wide number of applications including the Gulf of Maine. The model is three-dimensional 
with a free surface, partially mixed vertically, and fully nonlinear. It transports momentum, heat, salt, 
and two turbulent variables in tidal time. Both barotropic (surface pressure gradient) and baroclinic 
(density) motions are resolved in tidal time.  Vertical mixing is represented by a level 2.5 turbulence 
closure model and horizontal mixing is represented by a mesh (grid)- and shear-dependent eddy 
viscosity. Variable horizontal resolution is achieved with unstructured meshes of conventional linear 
triangles. In the vertical, a general terrain-following coordinate system is used, with a flexible, non-
uniform vertical discretization. This allows continuous vertical tracking of the free surface and proper 
resolution of surface and bottom boundary layers.  

The model has been applied to the Gulf of Maine, Georges Bank area and to the coast of the Gulf of 
Maine among others. Holboke and Lynch (1996) show an application to the Maine coastal current 
(Figure 11). The upper panel shows the model grid while the lower gives the model predicted residual 
current over the spring simulation period.  The resolution of Casco Bay is much higher than NECOFS and 
GoMOOS systems, described above, but still doesn’t resolve the islands and associated inter island 
transport paths. 

http://www-nml.dartmouth.edu/circmods/gom.html
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Figure 11 Finite element model mesh and model predicted residual (integrated over time)currents 
for spring for a coastal Maine application (Holboke and Lynch, 1996) 
 
Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, 
Canada (Greenberg et al, 2011) 

 
Greenberg et al (2011) report on the application of  T-UGOm (Toulouse Unstructured Grid Ocean model, 
Pairaud et al. 2008) to the Bay of Fundy, Gulf of Maine system. This is a flexible, fully non-linear, three-
dimensional, finite-element model in spherical-polar coordinates. The model is employed in a two 
dimensional barotropic mode solving the wave equation as in Lynch et al. (1996) with the wetting and 
drying of inter-tidal areas following Greenberg et al. (2005). The model mesh covers the full resonant 
domain plus the adjacent continental shelf and deep sea (Figure 12). It has 14070 nodes, 26251 
elements and maximum/mean/minimum node separation of 53.3 km/5.4 km/170 m. 
 
The broad outline of the Casco Bay area is included in the model but not the details.  
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Figure 12 Greenberg et al (2011) finite element model mesh used in tidal regime computations. 
There is higher resolution in shallow areas, in areas with steep gradients and in the Upper Bay of 
Fundy. The bathymetry color scale is in meters. 

 

9 CIRCULATION MODELS OF CASCO BAY 

University of Maine (Pearce et al, 1996) 
Source of Support: Casco Bay Estuary Partnership (CBEP) 
 
Pearce et al (1996) (also see Gong, 1995) applied the NOAA, Model for Estuarine and Coastal 
Circulation Assessment (MECCA) a three dimensional, time dependent prognostic hydrodynamic model 
developed by Hess (1989) to Casco Bay with support from the CBEP. The model, which includes the 
ability to address flooding and drying, employs a rectangular horizontal grid and a sigma representation 
of the vertical structure.  (A sigma system in the vertical  assumes that the coordinate system follows 
the free  surface elevation and bottom terrain.  In its simplest form the number of grids in the vertical 
at each horizontal location are the same.) The model was applied to the area shown in Figure 13, 
encompassing the entire bay plus the adjacent offshore waters (to water depth of 80 m). The study 
area was represented by a 600 m square grid with 10 levels in the vertical. A finer resolution model 
(250 m, 10 levels in the vertical) was applied to Maquoit and Middle Bays to capture the important 
flooding and drying boundary conditions in these bays.  The model was forced on the open boundary 
(Figure 13) by the M2 tide elevation derived from the application of the 3DENS model to entire Gulf of 
Maine (Sucsy et al, 1991, 1993). The model to observed root mean square (RMS) error for the 
amplitude and phase of semi diurnal tide was 7.9 cm and 6 deg, respectively when compared to about 
50 stations in the Gulf of Maine. The density field at the open boundary was specified based on 
hydrographic data collected during 1992 and 1993 and the river flow for Kennebec was specified as a 
constant value based on observations. The salinity of the river flow was set to 1 ppt. 
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Figure 13 Pearce et al (1996) model domain for Casco Bay and adjacent coastal waters. 
 

Model predicted amplitudes and phases (relative to Portland, ME) were compared to tidal ranges and 

phases at 11 NOAA tidal table stations within the bay. The predicted ranges were about 93% of those 

observed and the phases different by numbers of minutes. At Portland, the model predicted values were 

1.27 m with a phase of 104 deg compared with observed values of 1.33 m and 103 deg. Model predicted 

currents for flood and ebb are shown in Figure 14 ( flood upper and ebb lower). 

 

Tidal simulations of the currents (Figure 14) were compared to six short term (tidal cycle) measurements 

near the surface and four near the sea bed made by Parker (1982). The predictions were consistent with 

the observations but no quantitative measure was provided. Simulations were performed of the density 

induced flows from the Kennebec River discharges. Comparisons were made to hydrographic data 

collected in 1992 and 1993. The predictions were broadly consistent with the observations but the 

model appeared to over predict vertical mixing. 
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Figure 14 MECCA predicted flood (upper) and ebb (lower) model predicted tidal currents for Casco 
Bay (Pearce et al, 1996). 

 
Simulations were performed for constant winds from various directions and showed wind driven 

transport in the direction of wind forcing at the surface and compensatory flows at depth which were 

dependent on location. No comparison to observations was made since no data were available. 

Recently Brooks (2009) applied MECCA to adjacent Booth Bay Harbor area to study harbor circulation 

and lobster retention rates as a function of different wind forcing fields.  

Norwich University (Ernest True, Norwich University and James Manning, NEFSC)  
Source of support: Institution, self 

http://casconorwich.org/pages/cascobay.html  
  

http://casconorwich.org/pages/cascobay.html
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True and Manning (undated) report the application of a prognostic, unstructured grid, finite-volume, 

free surface, three dimensional primitive equation coast and estuarine model, FVCOM, (Chen et al, 

2003) to Casco Bay, from Cape Elizabeth to Cape Small. The bay was represented by a high resolution, 

triangular unstructured mesh of 21,245 nodes and 38,762 triangles.  The vertical structure is 

represented by 9 equally spaced levels at each nodal depth. The model included flooding and drying 

boundary conditions. The shoreline and islands were represented by grids with spacing of 150 m or less, 

and generally at intervals of 450 m along the curved outer boundary. The bottom topography was from 

the National Geophysical Data Center (NGDC) U.S. Coastal Relief Model. The focus of the model 

application was to investigate the Spring circulation, with particular attention given to possible paths 

that move A. fundyense into and out of the Bay. Simulations were performed to separately study the 

influences of wind, tide, and Kennebec/Androscoggin river intrusion. 

 

The triangular mesh for this study is embedded in a larger Gulf of Maine g2s.5b mesh (Lynch et al., 1993, 

and Naime et al., 1994). The g2s.5b mesh was used to create a set of bimonthly climatologies (mean 

conditions for the period) by Naimie et al (1994). Since the emphasis of this study is on the spring 

circulation, the model was initialized with tidal (M2 only) elevations interpolated at the open boundary 

from Naimie's May-June bimonthly climatologies.  Model predictions were compared with observed M2 

amplitude and phase at the Portland tide gauge and four subordinate tide locations whose harmonics 

are known. The model predicted elevations slightly underestimated the M2 constituent at each location. 

The model predicted elevation at the Portland tide gauge was about 4 cm below the observed level, a 

percent error of 3%. At the other four locations, South Harpswell, Small Point, Cundy Harbor and Great 

Chebeague Island, the percent errors were 2.0, 2.8, 1.9, and 3.0 respectively. No comparisons of model 

predicted to observed currents are provided. Predicted currents for flood and ebb are shown in Figure 

15.  

When only tidal forcing is applied, flow is predicted through the major channels into (flood) and out 

of(ebb) the inner bay with volume transports proportional to the cross sectional areas of the channels. 

The tidal flows generally show little change in direction with depth. In the absence of tidal forcing and a 

steady wind from the northeast a counterclockwise circulation sets up in the bay, with flow mainly 

entering the inner bay through Broad Sound and exiting through Portland Channel. A reverse flow is 

observed along the bottom layers just south of Broad Sound.  When a northeast wind is superimposed 

on the flood tide to create an across shelf down-welling favorable event, the flow on the ebb tide 

produces a strong current on the order of 60 cm/s flowing out of Portland Channel.  

A tracer tracking module in FVCOM was used to simulate the injection of a dye at the mouth of the 

Kenebec river, which was subsequently tracked for eight days. In the presence of tidal forcing and a 

wind field that simulates the northeaster of May 7-8, 2005, the dye patch penetrates and disperses well 

into the eastern portion of Casco Bay, suggesting a surface layer conveyance for plankton species 

throughout the eastern region of the Bay. 
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Figure 15 Norwich University FVCOM model predictions of wind and tidal induced circulation in 
Casco Bay, flood (upper panel) and ebb (lower panel), western ( left) and eastern ( right) side of 
the bay. 
 
University of Maine, Marine Sciences (Xue and Du, 2010) 
Source of support: NASA Grant NNX08AC27G and NOAA Grant NA04NOS4780271 

 
Xue and Du (2010) applied the Princeton Ocean Model(POM) (Mellor, 2004), a three dimensional, fully 

nonlinear, free surface, finite difference ocean model with Mellor and Yamada turbulence closure 

scheme, to the Kennebec and Androscoggin (K–A) river estuary and adjacent Casco Bay. The model 
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included a wetting and drying algorithm (Oey; 2005, 2006).  This is the same model used by Xue et al 

(2005) for the Gulf of Maine nowcasting and forecasting system (3-5 km resolution) described earlier. 

The primary focus of the study was to understand the influence of the river discharge, wind, and the 

southwestward flowing Western Maine Coastal Current (WMCC) on the regional circulation and water 

properties. The model domain includes 285×274 curvilinear grid points in the horizontal, with a 300 m 

resolution near the shoreline (Fig. 16). There are 22 vertical sigma levels with higher resolution near the 

surface and the bottom.  Open boundaries conditions to the east, west, and south were derived from 

the Gulf of Maine nowcast/forecast system. Simulations were performed from April 2004 to December 

2005. The observed wind at Gulf of Maine Buoy C and the National Center for Environmental Prediction 

North American Master Grid predicted heat fluxes were used as the surface forcing. Daily discharges of 

the Kennebec and Androscoggin rivers were obtained from USGS gauge stations in North Sydney and 

Auburn, ME (stations 01048265 and 01059000), respectively.  

 

 
 
Figure 16 Casco Bay and K-A study area including the POM grid (every 10 grids are shown).White 
lines are used to illustrate the alongshore (L1 and L2) and cross shore (L3) plume directions. The 
intersection (O) is where the thickness of the plume is calculated The locations of Gulf of Maine 
buoy C and the cruise transect data (CT4 and CT5) are shown. The magenta shaded area indicates 
the intertidal area and the yellow line the land-sea boundary in the absence of flooding and drying.  
(Figure 1; Xue and Du, 2010) 
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Key findings of the study include: 

 
 Model results agree favorably with the moored and shipboard observations of velocity, 

temperature, and salinity.  

 The calculated plume thickness suggests that the K–A plume is surface trapped with its 
horizontal scales correlating well with the volume discharge of the rivers.  
 

 Directional spreading of the plume is affected by the wind, with the upwelling favorable 
wind transporting the plume water offshore. Both the wind and the tide also enhance 
mixing in the plume.  

 Inclusion of a wetting-and-drying scheme appears to enhance the mixing and 
entrainment processes near the estuary (Figure 17). The plume becomes thicker near 

the mouth of the estuary, the outflow velocity is weaker, and the radius shrinks. 

 Using wetting and drying results in noisier results in both shallow Casco Bay and on the 
shelf. It is speculated that it has important implications for not only intertidal areas but 
for the river plume interacting with the coastal current. 
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Figure 17 The surface salinity and currents at 24:00 UTC on 4 April 2005 in the run without the 
wetting and drying (upper) and in the run with the wetting and drying (lower) (Figure 9; Xue and 
Du, 2010) 

 
Applied Science Associates, Inc (ASA) Spill Model Data Base (McCay et al, 2008) 
Source of funding: Florida Light and Power 
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ASA prepared simulations of the two dimensional, vertically averaged tidal circulation in Casco Bay as 

part of an effort to develop data bases for input to a spill modeling study for Florida Light and Power 

(McCay et al, 2008). ASA’s boundary-fitted grid hydrodynamic model was used to perform the 

simulations and forced by the major harmonic constituents (M2, S2, N2, K1, and O1) derived from the 

Global Ocean Tidal Model (TPOX5.1).  River flows (10 yr return period) for Presumpscot, Royal, 

Kennebec/Androscoggin and Sheepscot Rivers were also included in the forcing 

The grid system (220x160 segments with 15513 water cells) was designed to provide adequate 

resolution in the outer Casco Bay and fine resolution in the vicinity of Portland and Cousins Island, while 

allowing for a domain extending to shelf with large cell sizes.  Grid sizes ranged from about 125 m in 

Casco Bay to about 1 km on the shelf (Figure 18).   

Water level predictions at Portland, ME compared very well with the observations (http://www.co-

ops.nos.noaa.gov/) for the May 2007 simulation period.  The root mean square error between observed 

and model-predicted surface elevations was 3.2%.  The observed and model predicted surface 

elevations showed an excellent correlation coefficient of 0.992.  

The model-predicted M2 harmonic principal current amplitudes and phases showed good comparison 

with observations (Janzen et al., 2005) at two stations in eastern Casco Bay (Figure 5). The principal 

current amplitudes are within 3.1 cm/s and the phase within 21  of the observations.  

 

http://www.co-ops.nos.noaa.gov/
http://www.co-ops.nos.noaa.gov/
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Figure 18 ASA boundary fitted hydrodynamic model grid for the Casco Bay domain (upper) and 
interior of the bay (lower). 
 
NOAA National Ocean Service (NOS), Office and Response and Restoration (ORR) Spill Response 
Model – Gnome 
Source of funding: NOAA ORR 
 

http://response.restoration.noaa.gov/resource_resourcetopic.php?RECORD_KEY%28resourcet
opics%29=resourcetopic_id&resourcetopic_id(resourcetopics)=33 
 
NOAA ORR has an application of their spill response model system, GNOME, available on line for the 

Casco Bay area. The on-line application includes case examples, location files for input to GNOME (spill 

model) and a user’s manual. 

The Casco Bay application uses one current pattern to simulate tidal circulation. The tidal current 

pattern is scaled to the tides in the Portland Harbor entrance southwest of Cushing Island (43.63°N, 

70.21°W). The application does not consider wind forced currents. All current patterns were created 

with the NOAA Current Analysis for Trajectory Simulation (CATS) hydrodynamic application. The model 

does not consider flooding and drying of coastal areas. The model is calibrated as appropriate to address 

conditions that occur as a given spill event under consideration evolves. 

  

http://response.restoration.noaa.gov/resource_resourcetopic.php?RECORD_KEY%28resourcetopics%29=resourcetopic_id&resourcetopic_id(resourcetopics)=33
http://response.restoration.noaa.gov/resource_resourcetopic.php?RECORD_KEY%28resourcetopics%29=resourcetopic_id&resourcetopic_id(resourcetopics)=33
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10 EVALUATION OF ABILITY OF EXISTING CIRCULATION MODELS TO ADDRESS 

MANAGEMENT GOALS 

Casco Bay Models: 

Four well known three dimensional (3-D) hydrodynamic dimensional models (POM, MECCA, FVCOM, 

and BFHYRDO) have been applied to Casco Bay and adjacent shelf study area. These models are all well 

documented and have been used extensively for studying estuarine and shelf circulation. Both POM and 

FVCOM are the basis for NE coastal ocean nowcasting and forecasting systems; POM used by Xue et al 

(2005) and FVCOM (Northeast Coastal Ocean Forecasting System (NECOFS) employed by Chen et al 

(2003). MECCA is a model supported by NOAA that has experienced relatively limited use outside of 

NOAA.  BFHYDRO is a proprietary model that has seen wide spread use in supporting environmental 

assessment problems throughout the world.  All four models have the ability to address flooding and 

drying. The NOAA CATs model is a much simpler model and designed for rapid application and use in 

spill emergencies. It is not comparable to the other four and not suitable for understanding the 3D 

circulation in the system.  Of the four core models POM, FVCOM and BFHYDRO are the most widely used 

and MECCA the least. Other widely available three dimensional hydrodynamic models include ROMS, 

ADCIRC, and could readily be used for the study area. 

Summary: POM, FVCOM, BFHDYRO, as well as ROMS, and potentially others are all suitable for 

application to the bay.  

 

Model Domain and Resolution (Horizontal and Vertical): 

All model applications to the Casco Bay region have recognized the importance of simultaneously 

incorporating detailed resolution in Casco Bay with its complex system of islands and coastline and the 

adjacent shelf waters. Most models have also been extended to the northeast and explicitly including 

the discharge of the Kennebec and Androscoggin Rivers. This is critical for understanding the circulation 

in eastern Casco Bay and the dynamics of the river plume as it interactions with the  bay and the coastal 

current. Most models feature curvilinear or unstructured grids (except MECCA) and can readily allow 

variable grid sizes throughout the study domain. Grid sizes have typically ranged from 100s m in Casco 

Bay to 0.5 to several km on the shelf. Models for the Gulf of Maine typically have grid sizes on the order 

of a 3 or 6 km. The vertical resolution of the models (when the models are applied in 3 D mode) has 

varied from 10 to 22 levels in the vertical. The number of levels selected is based on a balance between 

the ability to resolve the key oceanographic features of interest (e.g. stratification of a river plume) and 

the computational costs. Higher vertical resolutions are required to represent river plume dynamics 

than for tidally induced flows.   

Summary: The model domain for any Casco Bay circulation model should include the entire inner bay, 

extend offshore to at least the 80 m isobath, and at a minimum extend to the east to include the 

Kennebec-Androscoggin River discharges. The horizontal resolution should be higher in the inner bay 

and in the vicinity of the river discharge (100s m) and coarser offshore (0.5 km). The vertical resolution 
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should be sufficiently high to represent the key oceanographic features under study, highest for river 

plume dynamics and lower for tidal processes. Model sensitivity studies to number of levels should be 

performed to validate vertical resolution selection. 

 

Wetting and Drying: 

Simulations by Pearce et al (1996) and Xue and Du (2010) have included wetting and drying boundary 

conditions while those by True and Manning (undated) and McCay et al (2008) have not. Model 

performance for tidal elevation seems not to be adversely impacted. The lack of any current time series 

data for the bay precludes making any conclusion on its impact on the current and flow fields. Xue and 

Du (2010) have illustrated that inclusion of the wetting and drying has very important implications not 

only for intertidal flows but also for river plume dynamics. 

Summary: Given the large tidal range and the extensive area subject to inundation and the modeling 

studies of Xue and Du (2010) it seems prudent to incorporate flooding and drying boundary conditions 

into any future modeling study of the bay. Systematic testing of model predictions with and without 

wetting and drying will help to elucidate the role this process plays in bay and coastal circulation. 

 

Specification of Open Boundary Conditions: 

Specification for the open boundary conditions for modeling of Casco Bay is intimately linked with 

selection of the model domain. In the modeling studies reviewed here, the forcing has been provided by 

larger domain models covering the entire Gulf of Maine (and beyond) (Pearce et al, 1996 (see Suscy et 

al, 1993); Xue and Du, 2010; and True and Manning (undated)).  Tidal data bases have been employed 

when applications are restricted to tidal circulation only (McCay et al, 2008). Given the mixed, but 

predominantly semi-diurnal tides, the key tidal constituents have included the M2, S2, N2, K1, and O1 

components. 

Summary: The open boundary conditions for tidal simulations of the bay can either be based on tidal 

models of the Gulf of Maine or tidal data bases for the key constituents noted above. For wind and 

density-included flows the most appropriate forcing is from a basin wide model. Great care needs to be 

exercised in linking the models to make sure the forcing of both is dynamically consistent. Careful 

consideration must also be given to determining whether the model domain for the Casco  Bay is driven 

by the larger scale flows or two way interaction is required; the larger the model domain (on to the 

shelf) the less important the issue of two way interaction.  
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Atmospheric Forcing:   

For the tidal simulations no atmospheric forcing is required. For wind and density induced simulations 

wind data from NOAA Buoy 44007 or University of Maine, Buoy C have been used. Atmospheric heat 

fluxes have been specified by national data bases (National Center for Environmental Prediction 

North American Master Grid) (Xue and Du, 2010). 

Summary: Data from the NOAA 44007 buoy are likely to be available for the foreseeable future and 

should be adequate to represent the wind forcing. Buoy C was removed in 2009 and is unlikely to be 

replaced any time soon. Use of the national data bases to specify atmospheric fluxes seem reasonable 

and appropriate for most planned applications. 

 

River Forcing: 
When models are applied to study tidal forcing mean river flows are used. When river induced flows are 

important (Xue and Du, 2010) data from the USCG stream gauging stations are employed. These stations 

are sufficiently close to the river mouth to preclude the need for corrections for the watershed below 

the stream gauge. 

Summary: Data from the USCG river gauges should be adequate for most model simulations. The 

operation of these gages however has been subject to budget constraints so care should be taken to 

make sure this data will be available. 

 

Model Calibration and Verification:  

As is typical of most areas where tidal currents dominate, model verification has been more extensive 

for tidal circulation than for wind and density induced forcing. Pearce et al (1996), True and Manning      

(undated) and McCay et al (2008) show comparisons of model predictions to water levels at the NOAA 

Portland, ME station. This is the only long term water level station in the bay. Model predictions are in 

good agreement with observation (a few percent) at this site. Pearce et al (1996) show comparisons to 

other NOAA Tidal Table stations in the bay. The difference in phase and amplitude between these and 

the Portland station is very small (9 cm in range and 12 min in phase) and the model is unable to resolve 

the differences. True and Manning show comparison to four other sites with comparable results to 

predictions at Portland. McCay et al (2008) show comparisons of model predicted currents to data 

collected in eastern Casco Bay by Janzen et al (2005) while Pearce et al (1996) show comparisons to very 

short term ( one or several tidal cycles) observations collected by Parker (1982)throughout the bay.   The 

model predicts speeds that are comparable with the observations.  It is important to note that detailed 

model data comparison, particularly for the currents, was not possible since the available data sets at 

the time of the modeling studies were very limited. 
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Simulations of wind and river forced flows have typically been done by each modeling study (True and 

Manning, undated; Pearce et al, 1996)) to show some of the implications of these types of calculations.  

The most common studies were to look at the impacts of up and down welling favorable winds and river 

flows including the critical freshet flows. No attempts were made to validate model predictions with 

observations. Xue and Du (2010) however focused simulating the behavior of the Kennebec – 

Androscoggin River plume and performed extensive comparisons to observations from buoy C and to 

selected hydrographic transects in the vicinity of the plume (Janzen et al, 2005). Their work showed that 

model predictions were consistent with observations. The recent data collected by Janzen and Pettigrew 

(2006) in the MOSAC program has not been released and hence has not been available for use in 

validating circulation models. 

Summary:  The available models have shown a reasonable ability to predict tidal water levels at Portland 

and give predictions of the currents that are consistent with the meager observations. Predictions of 

river plume dynamics are consistent with the limited data sets available and illustrated the importance 

of these processes in eastern Casco Bay. Model verification is limited by the lack of high quality time 

series data for the currents and salinity and temperatures at key points in the bay and adjacent shelf 

waters.  

 

Observations Available to Support Modeling Studies 

The observational program for Casco Bay has evolved in what is a well known, episodic pattern;  

consistent with other estuarine programs. Observation programs are typically driven by a combination 

of a clearly defined need to address a key management problem and the resources made available by 

some organization in support of this activity. The activities are sometimes driven directly by estuarine 

management programs ( e.g. CBEP) but more often by researchers in the area interested in coastal 

observations and modeling and how these can be brought together to address key environmental 

issues. Key funders of observation programs in Casco Bay have been University of Maine Sea Grant 

Program, State of Maine Department of Environmental Protection, NSF, EPA, NASA, NOAA, and ONR. 

The sources of support are typically a direct function of the funding network for the investigators that 

perform the work. 

There has been an evolving and iterative process between modeling and field observations to advance 

understanding of circulation and the transport processes in the bay. The advancement has historically 

been limited by the funds available to support the work.  Advancement of modeling of the bay is 

currently limited by the meager observations available to describe the bay circulation.   
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11 OVERVIEW OF CIRCULATION WORKSHOP: GOALS, RESULTS, AND 

RECOMMENDATIONS. 

  

CBEP hosted a 2 day, Casco Bay Circulation Observation and Modeling Workshop, May 18-19, 

2011 to bring together a selected group of coastal scientists and resource managers to discuss 

circulation in Casco Bay and the surrounding waters. Understanding of circulation in Casco Bay 

is necessary to address a variety of water quality and habitat-related questions.  Coastal and 

near shore circulation patterns influence transport mechanisms with direct management 

implications including movement of nutrients and pollutants including oil, distribution of 

shellfish larvae, pathways of invasion of non-native species, and the spatio-temporal dynamics 

of harmful algal blooms, such as red tide.  

The goals of the workshop were: 

(1) to bring together managers and scientists with an interest in hydrodynamics of Casco 

Bay to review the  current state of the science regarding Casco Bay's Circulation, and 

(2) to identify key data collection, modeling, communications or other actions that could 
enhance understanding of Casco Bay circulation patterns and facilitate use of that 
understanding to improve coastal management 
 

Presentations were made by regulators and resource managers and experts in the areas of 

observations and modeling of the circulation and transport of material in the bay and adjacent 

coastal waters. A presentation of this study was provided as well.  The workshop agenda and 

list of participants are provided in Appendix C. The attendees included a broad array of experts 

including modelers, observationalists, and resource users with an interest in the bay.  

Presentations made at the workshop are provided at the CBEP web site, to the extent they 

were made available by the presenter. A detailed summary of the workshop was prepared by 

Curtis Bohlen, Director CBEP and is provided there as well. The goal of this section is to provide 

a succinct summary of the workshop and its key results. This begins with a synopsis of the 

workshop organization and concludes with a succinct summary (bullet form) of the principal 

results.  

 

Organization Synopsis 

The workshop began with introductions and overview of workshop goals by Curtis Bohlen, 

Director CBEP; Paul Anderson, Director, Maine Sea Grant Program; and Joe Payne, Casco Bay 

Keeper. The author then gave an overview of the present study to set the stage for the 
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workshop. This was followed by presentations on the needs for circulation information for key 

management issues for the bay including oil and chemical spills -Glen Watabayashi, NOAA NOS 

Office of Response and Restoration; nutrients - Chris Deacutis, Narragansett Bay Estuary 

Program; harmful algal blooms/red tides - Don Anderson - Woods Hole Oceanographic 

Institution; and larval transport of clams and lobsters- Rick Wahle, Darling Marine Center, 

University of Maine. The first day was concluded by a discussion of implications of user needs 

for Casco Bay circulation research effort facilitated by Paul Anderson.   

The first session of the second day was organized as a panel discussion but was dominated by 

presentations by key researchers on their work on Casco Bay observational programs or 

modeling including Carol Janzen, Sea Bird Electronics, Inc.; Ernest True, Norwich University; and 

Huijie Xue and Bryan Pearce, University of Maine, Orono. The remainder of the meeting 

focused on facilitated, open discussions on the following topic area questions 1: What are the 

most important purposes and design attributes for a new circulation model for Casco Bay? 2.  

What data is needed to inform the model during development and future data assimilation? 3. 

What model outputs will be most valuable to the user community and what formats should be 

explored to ensure utility of these products? 4:  What are the steps that must be taken to 

implement the Casco Bay circulation research program? These wide ranging discussions were 

facilitated by Paul Anderson. The workshop closed with a wrap up by Paul Anderson and Curtis 

Bohlen, summarizing what they heard and the next steps to be taken by CBEP. 

Below is a high level summary of the key areas of consensus achieved at the workshop. They 

are divided into major categories addressing management drivers, modeling and observations. 

 

Key Management Drivers 

 The key management drivers for Casco Bay are HABs, oil and chemical spills, larval 
transport and fate, nutrient and dissolved oxygen. Impact of pollutants on clam flats 
from non point source contamination and sea level rise appear to be of secondary 
importance. 

 Understanding the physical transport and the associated circulation modeling is one of 
the building blocks of a predictive framework that needs to be developed to address the 
management issues of concern. The other major component is the ability to model the 
transport and fate of material release into the coastal waters. The details of the 
transport model are highly dependent on the problem of interest. The output necessary 
from the hydrodynamic model needed as input to the transport model include the three 
dimensional currents and dispersion coefficients, sea surface elevation variations, and 
atmospheric forcing fields including wind and heat fluxes versus time. 
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Circulation Modeling: History, Attributes, Validation, and Assessment 

 There is a rich history of circulation modeling in Casco Bay and adjacent Gulf of Maine 
waters. Model applications have included finite difference, finite element and finite 
volume methods by a number of independent investigators. Model applications have 
typically been driven by management needs or to enhance our understanding of coastal 
circulation. The sources of funding for these efforts have been equally diverse. 

 Circulation models selected for use in Casco Bay should have the following major 
attributes: 

o 3 (or 2 D), structured or unstructured grid, solving 3-the D primitive equations, 
including wetting and drying boundary. 

o Domain: Casco Bay, adjacent shelf (80 m) and river discharge from Androscoggin 
and Kennebec Rivers. 

o Resolution: 150 m inner bay, 500 m to 3 km offshore; 10 to 20 levels depending 
on application. 

o Boundary conditions: USGS stream forcing, NOAA atmospheric forcing, large 
domain model for Gulf of Maine or data based estimates, depending on 
application.  Great care should be exercised in the coupling of circulation models 
for Casco Bay with those for the nearby shelf area. Preference is given to 
modeling strategy that feature two way coupling. 

o Source: There is a preference for open source models, as the user community is 
larger and the potential for sharing insight in model applications larger. 

 In applying and validating circulation models for the bay there should be a series of 
simulations performed to assess the sensitivity of the model to grid size, with particular 
emphasis on the resolution around key coastal features (narrow passages between 
islands, deep channels, complexity bathymetry, river plume discharges, etc.). The 
sensitivity studies should address both horizontal and vertical grid resolution. Additional 
sensitivity to open boundary conditions and atmospheric forcing would also be prudent. 

 Based on the current generation of models and their application an assessment of the 
state of modeling based on forcing is as follows: 

 Tides- Good understanding of surface elevation response, more limited for  basin wide 
currents, particularly in the transition to inner bay regions and the role of wetting and 
drying. 

 Winds- Limited insight from models but no comparisons to data, no analysis of role of 
wind on exchange between inner and outer bay.  

 Density (river discharge)- Initial understanding of role of Androscoggin -Kennebec River 
plume and impact on  near shore circulation, insight into role of wetting and drying on 
plume dynamics, limited insight into impact on circulation in Casco Bay, particularly on 
western side, or offshore. 

 NOAA has recently published a new high resolution bathymetric data set for the bay 
(Portland, ME 1/3 arc-second MHW DEM from NGDC, 
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http://www.ngdc.noaa.gov/dem/squareCellGrid/download/606) (Lim et al, 2009). This 
new data set should be used in the next generation of circulation models.  

 To facilitate the widest use possible (and to the extent achievable under funding constraints), 
model predictions should be provided in netCDF (Network Common Data Form) format via a 
THREDDS (Thematic Real time Environmental Distributed Data Services) server. This is 
particularly critical for applications to real time problems such as oil and chemical spills. The 
Northeast Regional Association for Coastal Ocean Observing (NERACOOS) might provide a 
convenient, low cost mechanism to allow access to the model data. 

 For most model application hindcast studies are adequate to meet user needs. The 
exception is for spill and HABS modeling where forecasting is of critical importance. 

 
Modeling and Data Collection Programs  

 

 Modeling and data collection programs should be carefully integrated to answer key 
management questions. 

 Modeling programs should be designed so that confidence builds with time in the 
model’s predictive performance and the scope of its applicability. 

 Funding for modeling and data collection programs has historically come from many 
independent sources (NOAA Sea Grant, CBEP, MOSAC/DEP, NSF, NASA, etc) with the 
most significant funding coming to address specific management issues. This pattern is 
likely to continue into the foreseeable future. The CBEP should work to facilitate 
collaboration and leveraging resources from investigators to continue the evolution of 
understanding of the bay circulation.  

 
Observation Programs 

 Observation programs in Casco Bay have historically been driven by a variety of 
management and science needs or interests. The available data sets tend to be limited 
number of time series at point locations (buoys, water level stations, river discharge and 
stage, etc) or major field programs focused on system wide behavior but from more 
limited periods of time (ECHOHAB and MOSAC/DEP). There is a concern that some of 
the key data that is typically relied upon by modelers and observationalists to be 
available for model applications and in support of field programs (e.g. river flows and 
stage, offshore buoy data for winds and waves) is not or will not be available in the 
future due to funding constraints for those operating the data collection systems. 
Design of field programs and associated modeling will need to carefully assess data 
availability from these sources and plan appropriately.  

 Researchers from the University of Maine (Janzen et al.) performed a major field 
program to collect data to observe the tidal and non-tidal circulation and exchange 
processes in Casco Bay, with emphasis on the transport and exchange through three 
main channels separating the interior and outer bay.  This effort was sponsored by 
MOSAC/DEP (Maine Oil Spill Advisory Committee and the Maine Department of 
Environmental Protection (2004-2006). The field program was completed in 2005. The 
data has yet to be publically released pending publication of the results by the principal 
investigators. This data set would be very useful to enhance understanding of circulation 
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in the bay. The principal investigators should be encouraged to complete their analysis 
and publication and release the data for others to use.  

 A comprehensive field program would be necessary to significantly advance 
understanding of the circulation in the Casco Bay and ECOHAB and MOSAC/DEP efforts 
undertaken by Janzen et al. with a focus on understanding the role of cross and along 
shelf exchange processes within and on the bay shelf. The field program would need to 
include: 

o  River flow data for Kennebec and Androscoggin and other rivers discharging to 
Casco Bay; 

o Meteorological data from NOAA 44007 buoy; 
o Water level data from NOAA Portland station; 
o Moored ADCP and CTD data for major passages between inner and outer bay; 
o Cross and along shelf offshore, CTD survey of shelf area with concentration of 

sampling in vicinity of Kennebec and Androscoggin River discharge and eastern 
Casco Bay; 

o Towed ADCP and CTD measurements along selected transect lines in major 
passages, inner harbor and the adjacent shelf 

Sampling must be frequent enough to resolve tidal cycle time scales, and the sampling 
period should capture pre, during, and post spring runoff conditions, and the ice free period. 
Janzen and Xue provide more detailed information that will be useful in designing the field 
program particularly to coupling between the inner and outer bay and with respect to the 
role of eddies and gyres in the inner bay region. 

 A comprehensive field program will prove to be difficult to support based on funding 
from a single funding source or project.  CBEP resources will need to be combined with 
funding via MOSAC, Sea Grant, and other sources.  Fundraising should be based in part 
on development of a strategic plan for short and long term goals of a comprehensive 
research program. 

 In modeling the wind driven circulation in the bay it has been assumed that the spatial 
variability in the wind field is limited. Recent work by H. Xue suggests that winds at 
Hussey Sound show high correlations with those from NDBC data (Station 44007) but 
often with significant differences in wind direction. Improved information on near shore 
winds may improve circulation model performance and will be important for forcing of 
oil spill model 
 
   

Based on the above assessment the priorities and potential follow-up actions for the CBEP are as 

follows: 
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PRIORITIES FOR CBEP 
(PREPARED BY CURTIS BOHLEN, DIRECTOR CBEP) 

 

1. Enhancing communications among modelers and data providers by providing a "clearing house" or 
"one stop shop" for data and information; 

2. Continuing to improve our understanding of the needs of  potential "user communities"; 
3. Developing a strategic plan for circulation modeling and the associated field program (The plan 

should identify the study components, the sources of funding, and the schedule.); 
4. Facilitating coordination of data collection efforts that address key hydrodynamic questions. 

POTENTIAL FOLLOW UP ACTIONS 

DATA ACTIONS 

1. Evaluate existing river discharge data from within Casco Bay and determine whether it is 
sufficient to drive hydrodynamic models, especially during rare high-rainfall events or seasons 

a. If necessary, improve river discharge data via funding of flow extension studies or 
support for river gauges (~ $20,000 for gauge, about the same for flow extension study) 

2. Fund observation and modeling of inshore wind (and possibly other weather – precipitation and 
heat flux) 

DATA COLLECTION TASKS 

1. Consider establishing a coordinated collection of mooring – based "observatories" that could be 
rotated among locations to facilitate process-oriented studies. 

a. Incorporate ACDP and CTD data 
b. Initially focus deployments on key process questions: 

 Stratification in the inner bay 

 Exchange between the inner and outer bay 

 Exchange between northern and southern Bay 
2. In the interim: 

a. Facilitate studies to better understand net flux into and out of the Inner Bay 
b. Facilitate studies to characterize exchange within the inner Bay, especially between the 

northern and southern basins through the channel between Littlejohn and Chebeague 
Islands 

SENSITIVITY ANALYSIS ACTIONS 

1. Carry out studies on sensitivity of existing models to grid size, inputs (forcings and boundary 
conditions) and model parameters. 

a. Examine value of higher resolution / higher precision data on physical drivers: 
i. Bathymetry and intertidal topography 

ii. Inshore weather – wind, precipitation and heat flux 
iii. River inflow; 

b. Study how specification of large scale (outer boundary) processes influences circulation 
in Casco Bay.  

c. Study effects of higher model resolution on model output; 
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d. Study influence of other processes, such as winter ice and heating from wetting of warm 
intertidal flats. 

COORDINATION ACTIONS 

a. In consultation with regional experts, develop a strategic plan to support continued 
progress in understanding circulation in Casco Bay.  The strategic plan should include 
evaluation of short term (process oriented) and long term (monitoring) data collection 
needs as well as identify goals for continued development of Casco Bay circulation 
models.  The Plan will develop a schedule for implementation and specify funding 
sources and a funding strategy. 

2. Develop information clearinghouse / "one stop shop" to ensure that the community knows what 
resources already exist 

a. Existing models and model products 
b. Data sources 

i. Coordinate distribution of data and model products with NERACOOS. 
ii. Beware of liability –  provide links, don't serve data 

c. People 

 Modelers 

 Labs with measuring equipment 

 People with skill to produce derived products from model output 
3. Set up working groups for specific application areas to identify model performance 

requirements (Overlap of needs provides the structure of a "utility" model) 
a. Oil Spill 
b. Alexandrium 
c. Larval transport 
d. Nutrients 
e. Clam flat closures 
f. Other? 

4. Hold regular meetings to encourage collaboration  
a. Bring modelers and oceanographers together (with managers?) 

i. Share recent advances 
ii. Identify emerging priorities 

iii. Coordinate deployment of data collection assets 
5. Help managers understand what models can (and cannot) do 

a. Workshops, classes, white papers etc. 

b. Hold an exercise with modelers and end users to demonstrate whether / how existing 
models can (or cannot) meet user needs. 

 
 

 

12 CONCLUSIONS 

There have been a variety of circulation models and observation programs performed in Casco Bay and 

adjacent coastal waters through the past 15 yrs in support of a variety of management goals. The major 

observation and modeling programs have been summarized earlier in the report. Presented below is a 

summary of the current state of our understanding of the circulation based on the observations and 
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modeling investigations. To facilitate presentation the results are presented by the principal forcing 

mechanism.  

Tides 

Simulations by Pearce et al (1996), True and Manning (undated), and McCay et al (2008) have all shown 

the ability to reproduce the very limited tidal elevation variations across the bay. The tides are primarily 

semi-diurnal and can be adequately represented by either tidal constituent data bases or external tidal 

models at the open boundaries. The model applications also show reasonable agreement with the 

limited current data that were available at the time of the simulation. The impact of wetting and drying 

boundary conditions from Yarmouth northeast to the upper reaches of Maquoit and Middle Bays was 

included in the work of Pearce et al (196) and Xue and Du (2010)  but not in True and Manning 

(undated) and McCay et al (2008). There was little impact observed in the predictive performance of the 

models for tidal elevations in the bay. The impact on currents is unknown since no data sets were 

available in the vicinity of the inner harbor. ADCP data recently collected by Janzen and Pettigrew (2006) 

for the major passages would be useful to help better understand the role of wetting and drying has on 

the tidal exchange between the inner and outer harbor. 

 

Wind  

Pearce et al (1996) performed simulations for constant winds from various directions and showed wind 

driven transport in the direction of wind forcing at the surface and compensatory flows at depth. The 

later were dependent on location. No comparison to observations was made since no data were 

available. Simulations were performed by True and Manning (undated) for several wind driven flows 

cases and broad scale patterns were summarized (e.g. northeast winds result in counter clockwise flows 

in the bay with corresponding increasing flow speeds in the major passages between the islands). No 

data were available to validate these predictions. Once again the ADCP data collected by Janzen and 

Pettigrew (2006) would be useful here. Work by Janzen et al (2005) and Xue and Du ( 2010) have shown 

that winds have a very important impact on the on- offshore transport from the bay and on the 

Kennebec River plume dynamics 
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Density Induced 

Simulations were performed of the density induced flows from the Kennebec River discharges by Pearce 

et al (1996). Comparisons were made to hydrographic data collected in 1992 and 1993. The predictions 

were broadly consistent with the CTD observations but the model appeared to over predict vertical 

mixing. Xue and Du (2010) performed simulations of a spring freshet and compared the predictions to 

Janzen et al (2005) data sets. The simulations showed that:   

 
 

 The calculated plume thickness suggests that the K–A plume is surface trapped with its 
horizontal scales correlating well with the volume discharge of the rivers.  

 

 Directional spreading of the plume is affected by the wind, with the upwelling favorable 
wind transporting the plume water offshore. Both the wind and the tide also enhance 
mixing in the plume.  

 Inclusion of a wetting-and-drying scheme appears to enhance the mixing and 
entrainment processes near the estuary. The plume becomes thicker near the mouth of 

the estuary, the outflow velocity is weaker, and the radius shrinks. 

 Using wetting and drying results in noisier results in both shallow Casco Bay and on the 
shelf and it is speculated that it has important implications for not only intertidal areas 
but for the river plume interacting with the coastal current. 
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14 APPENDIX A:  ABSTRACTS FOR KEY REFERENCES 

 
Abstracts for key references either as determined by this review or provided by respondents to the 
questionnaire are provided below.  

 
Anderson, D.M., B. A. Keafe, W. R. Geyer, R. P. Signell, and T. C. Lode, 2005. 
Toxic Alexandrium blooms in the western Gulf of Maine: The plume advection 
hypothesis revisited Limnol. Oceanogr., 50(1), 2005, 328–345. 
The plume advection hypothesis links blooms of the toxic dinoflagellate Alexandrium fundyense in the western 
Gulf of Maine (GOM) to a buoyant plume derived from river outflows. This hypothesis was examined with cruise 
and moored-instrument observations in 1993 when levels of paralytic shellfish poisoning (PSP) toxins were high, 
and in 1994 when toxicity was low. A coupled physical–biological model simulated hydrography and A. fundyense 
distributions. Initial A. fundyense populations were restricted to low-salinity nearshore waters near Casco Bay, but 
also occurred in higher salinity waters along the plume boundary. This suggests two sources of cells—those from 
shallow-water cyst populations and those transported to shore from offshore blooms in the eastern segment of the 
Maine coastal current (EMCC). Observations confirm the role of the plume in A. fundyense transport and growth. 
Downwelling-favorable winds in 1993 transported the plume and its cells rapidly alongshore, enhancing toxicity 
and propagating PSP to the south. In 1994, sustained upwelling moved the plume offshore, resulting in low toxicity 
in intertidal shellfish. A. fundyense blooms were likely nutrient limited, leading to low growth rates and moderate 
cell abundances. These observations and mechanisms were reproduced by coupled physical–biological model simulations. 
The plume advection hypothesis provides a viable explanation for outbreaks of PSP in the western GOM, 
but should be refined to include two sources for cells that populate the plume and two major pathways for transport: 
one within the low-salinity plume and another where A. fundyense cells originating in the EMCC are transported 
along the outer boundary of the plume front with the western segment of the Maine coastal current. 
 

 
Brooks, D., 2009. Circulation and dispersion in a cancellate coast: The rivers, bays and estuaries of 
central Maine, Estuarine, Coastal and Shelf Science, 83, pp. 313–325. 
The glacially carved central coast of Maine is incised by river systems with interconnecting channels, 
offshore-trending submarine ridges, and narrow passages between nearshore islands and headlands. The 
tidal range exceeds 3 m, leading to complex and vigorous circulation patterns with strong flows in 
narrow channels, near river mouths, and between islands. The spongiform coastal morphology allows 
enhanced exchange between offshore waters, estuaries and internecine bays, resulting in rapid dispersal 
of nutrients, larvae and contaminants throughout the region. A fine-grid numerical circulation model has 
been used to examine the influences of the tides, river flows and winds on the dispersion of lobster 
larvae and pollutants in the nearshore and riverine environment. This paper describes the model 
application, presents a few salient features of the circulation patterns, and examines some implications 
for the coastal environment. For example, under realistic tides and variable southwest summer winds, 
about 80% of neutral near-surface particles introduced near the offshore islands (a proxy for stage IV 
lobster larvae from offshore sources) remain within a few km of the islands over a two-week period. On 
the other hand, a persistent, periodic sea breeze can remove more than two-thirds of the particles from 
the domain over the same period. Tidal mixing disperses pollutants entering the upper Kennebec River 
to the offshore and through internecine passages in about one week. 

 
Geyer, W.R., Signell R.P., Fong, D.A., Wand, J., D. Anderson, M. Keafer, B.A., 2004. The freshwater 
transport and dynamics of the western Maine coastal current. Continental Shelf Research 24:  
1339-1357.  
Observations in the Gulf of Maine, USA, were used to characterize the freshwater transport, temporal variability and 
dynamics of the western Maine coastal current. These observations included moored measurements, multiple 
hydrographic surveys, and drifter releases during April–July of 1993 and 1994. There is a strong seasonal signal in 
salinity and along-shore velocity of the coastal current, caused by the freshwater inputs of the rivers entering the 
western Gulf. Surface salinity within the coastal current during the spring freshet is typically 2 psu below ambient, and 
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along-shore currents in the surface layer are directed southwestward at speeds of 0.10–0.20ms_1, occasionally reaching 
0.50ms_1. The plume thickness is typically 10–20m in water depths of 50–100 m, thus it is well isolated from the 
bottom over most of its areal extent. The along-coast freshwater transport within the plume varies considerably due to 
variations in wind stress, but on time scales of weeks to months it follows the variations of riverine input, with a time lag 
consistent with the advective velocity. Less than half of the transport of the coastal current is explained by the baroclinic 
gradient; the barotropic forcing associated with the larger-scale dynamics of the Gulf of Maine accounts for about 60% 
of the transport. The volume of freshwater transport in the coastal current exceeds the local riverine input of fresh water 
by 30%, suggesting a significant contribution of freshwater transport from the St. John River, 500 km northeastward. 
The measurements within the western Maine coastal current, however, indicate a significant decrease in the baroclinic 
transport of fresh water along the coast, with an e-folding scale of approximately 200 km. 

 

Gustafsson. O., Ken O. Buesselers, W. Rockwell Geyer, S. Bradley Moran, Philip M. Gschwend, 1998. 
An assessment of the relative importance of horizontal and vertical transport of particle-reactive 
chemicals in the coastal ocean, Continental Shelf Research 18,  805-829 
A two-dimensional transport and scavenging model has been developed and applied to 
a limited set of 238UÐ234Th disequilibria data in order to examine the relative significance of 
horizontal versus vertical removal of chemicals in coastal waters. During an intense scavenging 
episode in September 1993 ('95% 238UÐ234Th disequilibrium), vertical scavenging was found 
to be more important than horizontal transport in both Inner and Outer Casco Bay, Gulf of 
Maine. However, in May 1994 the two-dimensional model suggested that onshore horizontal 
dispersion of 234Th was substantial. Recognition of this horizontal flux required us to increase 
the net vertical scavenging flux in Inner Casco Bay by a factor of three over that obtained based 
only on the local 238UÐ234Th disequilibrium. The radionuclide (210Pb94, 234Th94, 7Be) record of 
the underlying sediments provided supporting evidence for onshore horizontal transport of 
chemicals. The highest sedimentary inventories for all three radio-nuclides were found at the 
stations nearest to the coast. As anticipated from their relative particle-affinities, the regional 
boundary-scavenging ÕÕ indicator 7Be/234Th94 was highest at the coastal boundary. The application 
of the two-dimensional 234Th-based transport model to assess the distributional fate of 
other chemicals was demonstrated for Casco Bay using simultaneously measured polycyclic 
aromatic hydrocarbons (PAHs). Based on limited PAH data, the model results suggest that 
about half of the pyrene and benzo[a]pyrene introduced to Portland Harbor, ME may be 
settling locally and that the remainder is exported to offshore locations. The approach 
introduced here, coupling information on particle-mediated vertical scavenging, chemical phase 
distribution, and tide-induced horizontal dispersion, should provide a useful mechanistic 
framework for elucidating quantitatively the dispersal of a wide range of geochemically and 
environmentally important chemicals in the coastal ocean. 

 
He, R., D. J. McGillicuddy, D. R. Lynch, K. W. Smith, C. A. Stock, and J. P. Manning, 2005. Data 
assimilative hindcast of the Gulf of Maine coastal circulation, J. Geophys. Res., 110, C10011, 
doi:10.1029/2004JC002807. 
A data assimilative model hindcast of the Gulf of Maine (GOM) coastal circulation during an 11 day field survey in 
early summer 2003 is presented. In situ observations include surface winds, coastal sea levels, and shelf 
hydrography as well as moored and shipboard acoustic Doppler D current profiler (ADCP) currents. The hindcast 
system consists of both forward and inverse models. The forward model is a three-dimensional, nonlinear finite 
element ocean circulation model, and the inverse models are its linearized frequency domain and time domain 
counterparts. The model hindcast assimilates both coastal sea levels and ADCP current measurements via the 
inversion for the unknown sea level open boundary conditions. Model skill is evaluated by the divergence of the 
observed and modeled drifter trajectories. A mean drifter divergence rate (1.78 km d_1) is found, demonstrating 
the utility of the inverse data assimilation modeling system in the coastal ocean setting. Model hindcast also 
reveals complicated hydrodynamic structures and synoptic variability in the GOM coastal circulation and their 
influences on coastal water material property transport. The complex bottom bathymetric setting offshore of 
Penobscot and Casco bays is shown to be able to generate local upwelling and downwelling that may be important 
in local plankton dynamics. 
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Janzen, C., J. H. Churchill, N. Pettigrew. 2005. Observations of exchange between eastern Casco Bay 
and the western Gulf of Maine. Deep Sea Research II, 52: 2411-2429  
Exchange of water between eastern Casco Bay and the adjacent Gulf of Maine shelf is examined to 
assess the circulation processes that impact the distribution and occurrence of a toxic dinoflagellate, 
Alexandrium fundyense, in eastern Casco Bay. Over the inner shelf adjacent to the bay, tidal variance is 
weak, and the across-shelf Current is highly coherent and in phase with the along-shelf wind stress. 
Although tidal current variance increases as one advances into the bay, non-tidal currents account for 
30-40% of the across-shelf current variance at the bay entrance. Between the shelf and the bay interior 
is a transition region, where the circulation response to wind forcing changes as the wind adjusts to the 
changing orientation of the shoreline. Far from shore, the overall large-scale coastline orientation 
dominates the wind-driven response, but within a few internal Rossby radii, the local coastline clearly 
dominates the flow patterns and across-shelf wind becomes locally shore-parallel inside the bay. Within 
the bay interior, the across-shelf wind is highly coherent and in phase with the near-surface subtidal 
across-shelf current. The Kennebec River north of the study area supplies freshwater to eastern Casco 
Bay in all seasons. A pool of low-density, relatively fresh water at the entrance to the bay sets up an 
across-shelf density gradient that is reversed from a typical estuary, and likely contributes to the mean 
surface on-shelf transport in this region. Surface-drifter trajectories observed over the course of the 
study suggest that both the across-shelf wind and the across-shelf density gradient are important in 
driving surface up-bay transport and in the retention of surface-dwelling organisms in eastern Casco 
Bay. (c) 2005 Elsevier Ltd. All rights reserved.  
 
McGillicuddy D.J., Jr, D.M. Anderson, D.R. Lynch, D.W. Townsend, 2005. 
Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the 
Gulf of Maine: Results from a physical–biological model, Deep-Sea Research II 52 (2005) 2698–2714. 
Observations of Alexandrium fundyense in the Gulf of Maine indicate several salient characteristics of 
the vegetative cell distributions: patterns of abundance are gulf-wide in geographic scope; their main 
features occur in association with the Maine Coastal Current; and the center of mass of the distribution 
shifts upstream from west to east during the growing season from April to August. The mechanisms 
underlying these aspects are investigated using coupled physical–biological simulations that represent 
the population dynamics of A. fundyense within the seasonal mean flow. A model that includes 
germination, growth, mortality, and nutrient limitation is qualitatively consistent with the observations. 
Germination from resting cysts appears to be a key aspect of the population dynamics that confines the 
cell distribution near the coastal margin, as simulations based on a uniform initial inoculum of vegetative 
cells across the Gulf of Maine produces blooms that are broader in geographic extent than is observed. 
In general, cells germinated from the major cyst beds (in the Bay of Fundy and near Penobscot and 
Casco Bays) are advected in the alongshore direction from east to west in the coastal current. Growth of 
the vegetative cells is limited primarily by temperature from April through June throughout the gulf, 
whereas nutrient limitation occurs in July and August in the western gulf. Thus the seasonal shift in the 
center of mass of cells from west to east can be explained by changing growth conditions: growth is 
more rapid in the western gulf early in the season due to warmer temperatures, whereas growth is 
more rapid in the eastern gulf later in the season due to severe nutrient limitation in the western gulf 
during that time period. A simple model of encystment based on nutrient limitation predicts deposition 
of new cysts in the vicinity of the observed cyst bed offshore of Casco and Penobscot Bays, suggesting a 
pathway of re-seeding the bed from cells advected downstream in the coastal current. A retentive gyre 
at the mouth of the Bay of Fundy tends to favor re-seeding that cyst bed from local populations. 
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Pearce, B., N. Pettigrew, and B. Gong. 1996. Casco Bay Circulation Modeling, Casco Bay Estuary 
Program.  

No abstract in report. 

Sankaranarayanan, S. and Deborah French McCay, 2003. Three-dimensional modeling of tidal 
circulation in Bay of Fundy, Journal of Waterway, Port, Coastal, and Ocean 
Engineering, Vol. 129, No. 3, pp. 114-123. 
A three-dimensional 3D hydrodynamic model application to the Bay of Fundy was performed using a boundary-
fitted coordinate hydrodynamic model. Because the Saint John River and Harbour area were of interest for this 
study, a very fine grid with a resolution range of 50–100 m was used in the Saint John Harbour region, while a grid 
resolution of about 2–3 km was used in the Bay of Fundy. The model forcing functions consist of tidal elevations 
along the open boundary and fresh water flows from the Saint John River. The model-predicted surface elevation 
compares well with the observed surface elevation at Saint John and the root mean square error in the model-
predicted surface elevation for a 60-day period is found to be 4%. The amplitudes and phases of the major tidal 
constituents at 24 tidal stations, obtained from a harmonic analysis of a 60-day simulation, compares well with the 
observed data obtained from Canadian Hydrographic Survey. The predicted harmonic amplitudes and phases of 
the M2 tidal constituent are, respectively, within 20 cm and 7° of the observed data. The counterclockwise gyre 
observed in the body of Bay of Fundy is reproduced in the model. 
 

True, E. and J. Manning, 2011, Modeling Wind and Tidal Circulation in Casco Bay, Maine: 
a preliminary study, Norwich University, Northfield, Vt. 
One of the most important coastal regions along the 3500 mile coast of Maine is Casco Bay, 
which covers approximately 229 square miles with hundreds of islands, islets and exposed ledges. 
Casco Bay includes the entrance to Portland Harbor at the western corner of the Bay. Commercial 
fishing, aquaculture farms, recreational activities and imports and exports of numerous commodities 
through Portland Harbor make this bay one of the busiest regions on the Maine coast. There is 
speculation that the red tide occurrences within the Bay are due to germination of local cysts or 
intrusion from offshore waters, or both. The purpose of this study is to offer a preliminary investigation of the 
general circulation of the waters in the Bay by applying a finite volume numerical coastal model (FVCOM) that 
incorporates bathymetry, tidal forcing, wind stress and river discharge from the Kennebec/Androscoggin River east 
of the Bay. The horizontal resolution of coastline and island boundaries used in the study is sufficient 
to capture small eddy production and decay, and identify local circulation dynamics. The focus is on 
the Spring circulation, with particular attention given to possible paths that move A. fundyense into and 
out of the Bay. The influences of wind, tide, and Kennebec/Androscoggin river intrusion are examined 
separately. The Portland Channel, Hussey Sound, Luckse Sound and Broad Sound provide four 
pathways for the exchange of water between the inner and outer regions of the Bay. 
With a steady wind from the northeast, and no tidal forcing, a counterclockwise circulation sets 
up, with flow mainly entering the inner bay through Broad Sound and out through Portland Channel. A 
reverse flow is observed along the bottom layers just south of Broad Sound. When only tidal forcing is 
applied, there is flow through all channels into the inner bay during flood tide, with volume transports 
more in proportion to the size of the channels. The tidal flows generally show little change in direction 
with depth. When a northeast wind is superimposed on the flood tide to create an across shelf 
downwelling favorable event, the flow on the ebb tide produces a strong current on the order of 60 
cm/s flowing out of Portland Channel. Volume transports through the major channels are presented for 
comparisons. The influence of the Kennebec/Androscoggin River discharge on the circulation in Casco Bay 
is given a very preliminary study. A tracer-tracking module in FVCOM is used to simulate the 
injection of a dye at the mouth of the river, which was subsequently tracked for eight days. In the 
presence of tidal forcing and a wind field that simulates the northeaster of May 78 
2005, the dye patch penetrates and disperses well into the eastern portion of Casco Bay, suggesting a surface layer 
conveyance for plankton species throughout the eastern region of the Bay. 
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Xue, Huije. 2008. Connectivity of lobster populations in the coastal Gulf of Maine. Part I. Circulation 
and larval transport potential. Ecological Modelling. 210, 193-211.  
The remarkable increase of Homarus Americanus (lobster) abundance in recent years has resulted in record 
landings throughout the states and provinces along the perimeter of the Gulf of Maine. A considerable amount of 
data on various life stages of lobsters has been collected for research, management and conservation purposes 
over the past 15 years. We have used these data sets to develop models that simulate lobster populations from 
newly hatched larval stage through settlement and recruitment to the fishery. This paper presents a part of the 
synthesis study that focuses on the early life history of lobsters. A coupled biophysical individual based model was 
developed that considers patterns of egg production (abundance, distribution and timing of hatch), temperature-
dependent larval growth, stage-explicit vertical distributions of larvae, and mortality. The biophysical model was 
embedded in the realistic simulations of the physical environment (current and temperature) from the Gulf of 
Maine Nowcast/Forecast System. The predominant direction of larval movement follows the cyclonic Gulf of 
Maine Coastal Current (GMCC). Results show relatively low accumulation of planktonic stages along the eastern 
Maine coast and high accumulation along the western Maine coast. In years when the eastern branch of the 
GMCC turns offshore southeast of Penobscot Bay, more particles accumulate downstream of the branch point. 
Interannual variability is also apparent in development times that vary as a function of year-to-year water 
temperature variation. The larval stages tend to remain relatively near shore, but the final planktonic stage (the 
postlarva) resides near the sea surface, and the prevailing southwesterly winds in summer cause eastward and 
offshore drift of postlarvae. Thus, more settlement might take place earlier in the potentially long postlarval 
stage, and the timing and strength of the southwesterly winds are important in determining the population of 
potential settlers. 
 

 

Xue, H., F. Chai and N. Pettigrew, 2000. A model study of the seasonal circulation in the Gulf of Maine. 
2000. Journal of Physical Oceanography. 1111-1135.  
The Princeton Ocean Model is used to study the circulation in the Gulf of Maine and its seasonal transition 
in response to wind, surface heat flux, river discharge, and the M2 tide. The model has an orthogonal-curvature 
linear grid in the horizontal with variable spacing from 3 km nearshore to 7 km offshore and 19 levels in the 
vertical. It is initialized and forced at the open boundary with model results from the East Coast Forecast System. 
The first experiment is forced by monthly climatological wind and heat flux from the Comprehensive Ocean 
Atmosphere Data Set; discharges from the Saint John, Penobscot, Kennebec, and Merrimack Rivers are added 
in the second experiment; the semidiurnal lunar tide (M2) is included as part of the open boundary forcing in 
the third experiment. It is found that the surface heat flux plays an important role in regulating the annual cycle of 
the circulation in the Gulf of Maine. The spinup of the cyclonic circulation between April and June is likely caused 
by the differential heating between the interior gulf and the exterior shelf/slope region. From June to December, 
the cyclonic circulation continues to strengthen, but gradually shrinks in size. When winter cooling erodes the 
stratification, the cyclonic circulation penetrates deeper into the water column. The circulation quickly spins 
down from December to February as most of the energy is consumed by bottom friction. While inclusion of 
river discharge changes details of the circulation pattern, the annual evolution of the circulation is largely 
unaffected. On the other hand, inclusion of the tide results in not only the anticyclonic circulation on Georges 
Bank but also modifications to the seasonal circulation. 
 
 

Xue, H. and Y. Du, 2010. Implementation of a wetting-and-drying model in simulating 
the Kennebec–Androscoggin plume and the circulation in Casco Bay, Ocean Dynamics, 
60:341–357. 
A high-resolution coastal ocean model was developed to simulate the temporal/spatial variability of the 
Kennebec–Androscoggin (K–A) river plume and the circulation in Casco Bay. The model results agree favorably 
with the moored and shipboard observations of velocity, temperature, and salinity. The surface salinity gradient 
was used to distinguish the plume from the ambient coastal water. The calculated plume thickness suggests that 
the K–A plume is surface trapped. Its horizontal scales correlate well with Q0.25, where Q is the volume discharge 
of the rivers. Directional spreading is affected by the wind with the upwelling favorable wind transporting the 
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plume water offshore. Both the wind and the tide also enhance mixing in the plume. The inclusion of a wetting-
and-drying (WAD) scheme appears to enhance the mixing and entrainment processes near the estuary. The plume 
becomes thicker near the mouth of the estuary, the outflow velocity of the plume is weaker, and the radius of the 
river plume shrinks. The flow field in the model run with the WAD is noisier, not only in shallow areas of Casco Bay 
but also in the plume and even on the shelf. We speculate that the WAD processes can affect much larger areas 
than the intertidal zones, especially via a river plume that feeds into a coastal current. 
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15 APPENDIX B: LIST OF DATA SETS AVAILABLE TO SUPPORT MODEL CALIBRATION 

AND VALIDATION STUDIES 

 
Table B-1 summarizes the major data sets that have been identified as part of this review effort. For 

each data set the source, type, coverage/location, web site, and references are identified. For data sets 

that are routinely available from government web sites all relevant information is provided in the table. 

For data sets that were gathered as part of a particular measurement campaign a brief summary is 

provided below. For each either a web site that describes the program or a report or paper that 

summarizes the effort is provided. In order to be included in the list the data needed to be identified by 

one of the participants in the Casco Bay community list, one of the participants in the workshop, or a 

professional colleague identified during the process of preparing this report. In addition the data set had 

to be publically available and quality controlled.  

NOAA National Geodetic Data Center (NGDC)  

NOAA has recently published a new high resolution bathymetric data set for the bay (Portland, ME 1/3 

arc-second MHW DEM from NGDC, http://www.ngdc.noaa.gov/dem/squareCellGrid/download/606). 

(Lim et al, 2009).This data set should provide substantial improvements in representing the bathymetry 

in the inner bay in particular. 

NOAA Northeast Fisheries Science Center (NEFSC) 

Point of Contact: Jim Manning, NOAA NEFSC, james.manning@noaa.gov 

NEFSC maintains an archive of drifter data for the US coastal waters.  The data is accessible via 

http://www.nefsc.noaa.gov/epd/ocean/MainPage/. One can search either by geographic area, 

year, or drifter number. There are a few short term (several semi diurnal tidal cycles) of data available 

for the Casco Bay area. Southern Maine Community College and Bowdoin College both post their drifter 

data collected in the area to the NEFSC web site. 

NEFSC also operates Environmental Monitors on Lobster Traps (Emolt) program and maintains a data 

base of observed bottom temperatures from traps deployed by individual lobsterman. The data is 

accessible via http://www.nefsc.noaa.gov/epd/ocean/MainPage/emolt.html 

University of Maine, ECOHAB-GOM (Ecology and Oceanography of Harmful Algal Blooms—Gulf of 
Maine) (Janzen et al, 2005) 
 

ECOHAB (1998) was a study designed to understand the dynamics of the toxic dino-flagellate 

Alexandrium fundyense in the Gulf of Maine (GOM). A key objective of the project was to 

better understand the transport processes linking A. fundyense source regions with areas where toxic 

blooms occur. Janzen et al (2005) summarizes the work done for the Casco Bay region. The data 

collection program consisted of CTD transects and the deployment of three moorings (MD1, MD2, and 

MD3) (salinity, temperature and currents). Data from the Portland, ME water level gauge and the NOAA 

40007 buoy (meteorology) were also used.  

http://www.ngdc.noaa.gov/dem/squareCellGrid/download/606
mailto:james.manning@noaa.gov
http://www.nefsc.noaa.gov/epd/ocean/MainPage/
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Maine Oil Spill Advisory Committee and the Maine Department of Environmental Protection 
(MOSAC/DEP Project - 2004-2006)  

(http://gyre.umeoce.maine.edu/cjanzen/DEP-MOSAC.html) 
Janzen and Pettigrew(2006) 
 

1. The main goal of this study was to observe the tidal and non-tidal circulation and 
exchange processes in Casco Bay, with emphasis on the transport and exchange through 
three main channels separating the interior and outer Bay. Specific objectives are to:  
Measure long-term, continuous time series of current, temperature/salinity at key areas 
of exchange in Casco Bay;  

2. Characterize the variability of the Western Maine Coastal Current (WMCC) and its 
interaction with Casco Bay current measurements;  

3. Generate observational data that can be used for comparison with output from 
trajectory models used by spill responders.  

 

Three acoustic Doppler current profilers (ADCPs) were deployed in three main channels leading into the 

bay: Portland Channel, Hussey Sound, and Broad Sound. In addition, near-surface and near-bottom 

temperature and salinity sensors were also deployed on the moorings.  CTD surveys are also being 

conducted throughout the study to collect climatology data along the boundary separating the Bay and 

the adjacent shelf. In addition short term ( tidal cycle) ADCP measurements were made across the three 

entry channels to characterize the vertical and lateral variability of the tidal currents. This data set is not 

currently available to the public since the principal investigators have not finished their analysis of the 

data.  

 

http://gyre.umeoce.maine.edu/cjanzen/DEP-MOSAC.html
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16 APPENDIX C: WORKSHOP GOALS, AGENDA, AND LIST OF PARTICIPANTS 

 
The workshop goals, agenda and list of participants is provided below. 
 

Casco Bay Circulation Workshop Details and Agenda 
May 18 and 19, 2011 
Eastland Park Hotel 

157 High Street, Portland, ME 04101-2814 
(207) 775-5411, http://www.eastlandparkhotel.com/ 

 
The Casco Bay Estuary Partnership (CBEP) is hosting a workshop to bring together a small group of coastal 
scientists and resource managers to discuss circulation in Casco Bay and the surrounding waters. The 
purpose of the workshop is to clarify types of data and models needed to better address management 
issues. The results of the workshop will guide CBEP's expanding efforts in this area for the next several 
years.  
 
Understanding of circulation in Casco Bay is necessary to address a variety of water quality and habitat-
related questions. Coastal and near shore circulation patterns influence transport mechanisms with direct 
management implications including movement of nutrients and pollutants including oil, distribution of 
shellfish larvae, pathways of invasion of non-native species, and the spatio-temporal dynamics of harmful 
algal blooms such as red tide.  
 
Applied Science Associates will be presenting a report that summarizes past circulation studies in Casco 
Bay, relevant hydrodynamic and other modeling approaches, and available data sets relevant to 
circulation modeling in Casco Bay. The draft report will be e-mailed to meeting participants before the 
meeting. It is intended to provide a starting point for in depth discussion of needs and opportunities that 
will occur at the workshop.  
 
The goal of the workshop will be to identify key data collection, modeling, visualization or other actions 
that could enhance understanding of Casco Bay circulation patterns and facilitate use of that 
understanding to improve coastal management.  
 
To achieve this goal, workshop participants will:  

Characterize the needs of resource managers for information or model output regarding 
circulation in Casco Bay  
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Identify key data or other needs that limit the ability of models to address scientific or 
management needs  

Help determine the scope of modeling efforts sufficient to address management and scientific 
needs by clarifying model design features such as geographic extent, boundary conditions and 
seasonal coverage needed to address those needs  

 
A post-workshop summary document will be produced and released through CBEP.  

 
For further information  
Curtis Bohlen  
Director, Casco Bay Estuary Partnership  
University of Southern Maine, Muskie School of Public Service  
Wishcamper Center, 34 Bedford St.  
Portland, ME 04104-9300  
(207) 780-4820 
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List of Workshop Attendees: 
 

First Name Last Name Organization 

Don Anderson Woods Hole Oceanographic Institution 

Paul Anderson University of Maine 

John Annala Gulf of Maine Research Institute 

Bob Beardsley Woods Hole Oceanographic Institution 

Curtis Bohlen Casco Bay Estuary Partnership 

Damian Brady University of Maine 

Matt Craig Casco Bay Estuary Partnership 

Mercuria Cumbo MEDMR Lamoine WQ Lab 

Joseph Cunningham University of New Hampshire 

Chris Deacutis University of Rhode Island Coastal Institute 

Mike Doan Friends of Casco Bay 

Angela DuBois Maine Dept. of Environmental Protection 

Diane Gould US EPA Region 1 

David Greenberg Department of Fisheries and Oceans 

Christopher Heinig MER Assessment Corporation 

Tim Hendrix Portland Pipe Line Corporation 

Carol Janzen Sea-Bird Electronics, Inc. 

Nancy Kinner University of New Hampshire 

Steve Lehmann NOAA SSC 

Scott Libby Battelle Environmental Solutions 

Matthew Liebman US EPA Region 1 

Jim Manning NOAA 

Ginger McMullin Maine Dept. of Environmental Protection 

Denis Nault Maine Dept. of Marine Resources 

Joe Payne Friends of Casco Bay 

Bryan Pearce University of Maine 

Erin Pelletier Gulf of Maine Lobster Foundation 

Neal Pettigrew University of Maine 

Tom Shyka NERACOOS 

Greg Sinnett University of Maine, graduate student 

Alison Sirois Maine Dept. of Marine Resources 

Malcolm Spaulding Applied Science Associates 

Brian Tarbox Southern Maine Community College 

Elliott Thomas Maine Commercial Fishing Safety Council 

Ernest True Norwich University 

Rick Wahle University of Maine 

Glen Watabayashi NOAA 

Huijie Xue University of Maine 
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