
Typechecking XQuery: A Prototype in ASF+SDF

Verificação de Tipos de XQuery: Um Protótipo em
ASF+SDF

Sandra M. Venske
DECOMP–UNICENTRO, Guarapuava, PR

ssvenske@unicentro.br

Martin A. Musicante
DIMAP–UFRN, Natal, RN

mam@dimap.ufrn.br

Abstract: Semistructured data (particularly XML) are the standard data
representation for information exchange in the world-wide web. A number of query
languages for XML has been proposed. Most of them follow the style of SQL.
One of these languages is XQuery. In this work, we propose the construction
of a prototype for the static type analysis of XQuery programs. The prototype
implements XQuery operational semantics, in a way that is close to that proposed
by the W3C. The implementation was built using the ASF+SDF meta-environment.
The prototype described here is a first step in the construction of a practical XML
query language laboratory, in which different semantics for commands may be tested.

Key words: Operational Semantics; XQuery; Type Systems.

Resumo: Dados semi-estruturados, e em particular XML, têm se destacado como
padrão de representação de dados na world-wide web. Para realizar consultas
a documentos (ou bancos de dados) semi-estruturados, têm sido idealizadas
linguagens de consulta. Estas linguagens seguem, em geral, o estilo da linguagem
SQL. Uma destas linguagens é XQuery. Neste trabalho, propõe-se a construção de
um protótipo para a verificação estática de XQuery, com base na sua semântica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Centro Oeste do Paraná (UNICENTRO): Revistas eletrônicas

https://core.ac.uk/display/230455458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

248 Revista Ciências Exatas e Naturais, Vol. 8, no2, Jul/Dez, 2006

operacional, usando o meta-ambiente de programação ASF+SDF. Para isto,
implementou-se um protótipo, que poderá ser usado como laboratório de teste de
novas caracteŕısticas a serem adicionadas à linguagem.

Palavras-Chave: Semântica Operacional; XQuery; Sistema de Tipos.

1 Introduction

Semistructured data [Buneman, 1997], particularly XML [Bray et al., 2000] is
the standard data representation for information exchange in the world-wide web.

Trees or graph structures can be used to represent semistructured data. XML is
a language for the textual description of these trees. The information contained by
XML documents can be queried, in order to construct new documents.

There are many query languages for XML. These languages follow, in general,
the style of SQL [Groff and Paul N, 1999]. XQuery [Boag et al., 2002] is one of such
languages.

In this work, we describe a prototype for the static type analysis of XQuery
programs. Our prototype is based on the operational semantics of the language, as
it is being proposed by the W3C [Draper et al., 2002]. For this task, we have used
the ASF+SDF meta-environment [van den Brand et al., 2001].

In section 2 we describe XML and XQuery. Section 3 briefly describes
Operational Semantics and the ASF+SDF meta-environment. In section 4 we
present our XQuery static typing prototype, constructed using the ASF+SDF
meta-environment. Finally, section 5 is devoted to the conclusions and contributions
of our work.

2 XML and XML Query Languages

In this section we present XML and XQuery.

The Extensible Markup Language (XML) [Abiteboul et al., 2000]is a language
specified by the World Wide Web Consortium (W3C) group for data interchange
between two or more data sources on the Web.

XML is a language for semistructured data representation and, consequently, it
can represent different kinds of information, derived from different sources. XML
query languages must encompass this flexibility.

Among the query languages projected for XML it can be
mentioned LOREL [Abiteboul et al., 1997], XML-QL [Deutsch et al., 1999],
XML-GL [Ceri et al., 1999], XSL [Schach et al., 1998], XQL [Robie et al., 1998]
and XQuery [Boag et al., 2002].

XQuery [Boag et al., 2002] is a XML query language derived from an XML
query language called Quilt [Chamberlin et al., 2001]. XQuery is a strongly typed

VENSKE, S.M.G.S.; MUSICANTE, M.A. 249

language; processing a query involves a static typing phase and a dynamic evaluation
phase. XQuery has the expressions as its basic block. XQuery is a functional
language and it allows expressions to be nested.

The expressions have results. The information that can affect these results
is called the expression context. The expression context has two components
[Boag et al., 2002]: the Static Context is defined as all information that is available
during static analysis of the expressions, prior to its evaluation (also called static
environment). The Evaluation Context is defined by the information that is available
at the time the expression is evaluated (also called dynamic environment).

XQuery uses a type system based on XML Schema [Fallside, 2001,
Biron and Malhotra, 2001]. XQuery expressions can be: primary, path, sequence,
arithmetic, comparison, logical, constructors, FLWR (for, let, where, return),
sorting, conditional, quantified, on datatypes and validation expressions.

The description of each of these constructions is beyond the scope of this article.
For more information about XQuery, the reader is referred to [Boag et al., 2002].

The description of XQuery includes two levels of the language: XQuery and
XQuery Core. The second one is a restriction of the first, capturing all the basic
features of XQuery. Each command in XQuery can be expressed by one or more
commands in XQuery Core.

3 Operational Semantics and ASF+SDF

In this section we present some basic concepts of operational semantics as well as
some notions about the ASF+SDF meta-environment. Our prototype for the static
type checking of XQuery was implemented using the meta-environment.

3.1 Operational Semantics

The formal description of languages is an area of intensive research, that
contributes for the improvement of software tools, by the mathematical manipulation
of program and languages.

Among the different approaches for the semantics of programming languages,
we can mention Denotational Semantics [Schmidt, 1986, Watt, 1991], Action Se-
mantics [Mosses, 1992] and Operational Semantics [Winskel, 1993] formalism. In
these formalisms program behavior can be compositionally defined by describing
the behavior of its parts: commands, declarations, expressions, among others.

In this work we use an existing operational semantics of XQuery to specify and
implement a prototype of part of the language. The operational semantics shows
how the programming language programs behave. To construct an operational
definition of a language is to construct a set of rules to establish the behavior
of each phrase of the language. These rules are commonly given by the inductive

250 Revista Ciências Exatas e Naturais, Vol. 8, no2, Jul/Dez, 2006

definition of a transition relation. The formalism known as transition semantics is an
operational formalism that defines a step relation between phrases of the language.
The semantics of a program is given by the reflexive and transitive closure of this
relation.

Our work is concerned with the static semantics of XQuery (those steps to be
taken before the program is run, in order to check if it is well typed).

3.2 ASF+SDF Meta-environment

ASF+SDF [van den Brand et al., 2001, Brand and Klint, 2003] is an interactive
development environment for the automatic generation of interactive systems for
manipulating programs, specifications, or other texts written in a formal language.
ASF+SDF combines two formalisms: Algebraic Specification Formalism (ASF) and
Syntax Definition Formalism (SDF) [Heering et al., 1992]. The system receives the
syntax and semantics of a language and produces an environment for it.

ASF is based on the notion of a module consisting in a signature
defining the abstract syntax of functions and a set of conditional equations
defining their semantics. SDF allows the definition of concrete (lexical and
context-free [Aho et al., 1988]) and abstract syntax of prototype language and
defines a translation from text strings to abstract syntax trees. The two formalisms
allow ASF+SDF to integrate definitions of syntax and semantics in a modular
specification.

The structure of a module is [Brand and Klint, 2003]:

module <ModuleName>

<ImportSection>*

<ExportOrHiddenSection>*

<Grammar>

equations

<ConditionalEquation>*

A module consists of a module header (with the module name), followed by
a list of zero or more import sections, followed by zero or more hidden or export
sections and an optional equations section that defines conditional equations. The
import section imports one or more external modules that are needed according to
the specification. The export section makes all entities in the section visible to other
modules. The hidden section makes all entities in the section local to the module.

4 The Prototype

In this section we present the prototype constructed using ASF+SDF
meta-environment, based on the operational semantics of XQuery language.

VENSKE, S.M.G.S.; MUSICANTE, M.A. 251

The version of the formal semantics for the XQuery Core language used in
this work is given in [Draper et al., 2002]. The formal definition has two hundred
and three rules of static type analysis and fifty four rules of dynamic evaluation.
There are both rules specified in textual form and in the form of tables. In order
to implement a prototype based on this definition, each one of the syntactic and
semantics rules was adapted to be implemented in ASF+SDF. The implementation
of the rules is faithful to the original semantic definition in [Draper et al., 2002].

Each of the original semantic rules for XQuery Core had to be adapted for the
implementation, in order to respect the rigid syntactic and semantic restrictions of
the meta-environment.

An XQuery Core program is the result of the application of normalization
techniques to a XQuery program. These rules have been defined
in [Draper et al., 2002]. After normalization, XQuery (core) programs become more
compact than the original ones, as well as non redundant.

During our implementation, some small inconsistencies and problematic aspects
of the operational semantics of XQuery were found, ranging from inconsistent
syntactic definitions to incomplete semantic rules. We provide an analysis of these
problems in section 5.

Our prototype has sixteen modules, as illustrated in Figure 1. Each of these
modules is described as follows:

• Layout: defines the syntax for comments and blank space in XQuery programs.

• TerminalsSyntax: contains the syntax of XQuery core terminals.

• XQueryCoreSyntax: contains the syntax of the XQuery Core language.

• TypeSystem: contains the syntax of types.

• SubTypes: contains the syntax and semantic rules for subtyping.

• PrimeTypes: contains the syntax and semantics of prime types in XQuery.

• TypeInteger: contains the syntax and semantics of integer types, adapted
from [Brand and Klint, 2003].

• TypeBoolean: contains the syntax and semantics of boolean types adapted
from [Brand and Klint, 2003].

• StatEnvironment: contains the (static) inference rules needed to construct the
static environment of the program being checked.

• DynEnvironment: contains the inference rules need to construct the dynamic
environment of the program being checked.

252 Revista Ciências Exatas e Naturais, Vol. 8, no2, Jul/Dez, 2006

• FunctionOnQNames: contains the implementation of the some extra functions
used in the static type analysis. Its definition follows the specification
in [Malhotra et al., 2002].

• CastingTable: contains the implementation of cast tables that are used during
the static type analysis of cast expressions and expressions of sequence types.
Its definition follows the specification in [Malhotra et al., 2002].

• Auxiliary Judgments: contains (auxiliary) judgments that are necessary
during the static type analysis of path expressions. As some of these rules
use the dynamic environment, this environment was added to our prototype.

• Auxiliary Rules: contains the implementation of the local type environment.
This environment is used only in the static type analysis of path expressions.

• SeqTypesNormalization: contains the implementation of the normalization of
sequence types, used during the static type analysis of FLWR expressions.

• XQueryStaticTyping : is the main module of our prototype. It contains the
description of syntax and semantics necessary to type check XQuery core
expressions.

Let us now present a part of original definition of syntax and semantics of XQuery
Core, as appears in [Draper et al., 2002]. Our adaptation of them to be implemented
in ASF+SDF is given as well.

The formal specification of for expressions, according [Draper et al., 2002], is
given as:

statEnvs ⊢ Expr1 : Type ;
statEnvs[varType(V ariable1 : prime(Type1))]

⊢ Expr2 : Type2

statEnvs ⊢ for V ariable1 in Expr1 return Expr2 :
Type2.quantifier(Type1)

statEnvs ⊢ Expr1 : Type ;
Type0 = [SequenceType]sequencetype ;

Type1 <: Type0 ;
statEnvs[varType(V ariable1 : prime(Type1))]

⊢ Expr2 : Type2

statEnvs ⊢ for SequenceType V ariable1 in Expr1

return Expr2 : Type2.quantifier(Type1)

The versions of these rules, when expressed in the syntax of the ASF+SDF
meta-environment are:

VENSKE, S.M.G.S.; MUSICANTE, M.A. 253

Figure 1: Architecture of the prototype.

[for-1] typecheck(E1, statEnvs) = T1,

insert($ Var1 --> prime(T1)) in

VT of statEnvs = statEnvs1,

typecheck(TExpr, statEnvs1) = T2

===

typecheck(for $ Var1 in E1 return TExpr,

statEnvs) = T2.quantifier(T1)

[for-2] typecheck(E1, statEnvs) = T1,

T0 = normSeqT(SeqT),

subtype(T1, T0, statEnvs) = true,

insert($ Var1 --> prime(T1)) in

VT of statEnvs = statEnvs1,

typecheck(TExpr, statEnvs1) = T2

===

typecheck(for SeqT $ Var1 in E1 return TExpr,

statEnvs) = T2.quantifier(T1)

[default-for] typecheck(For, statEnvs) = static error

We defined (meta) variables in ASF+SDF that correspond to objects in the XQuery

254 Revista Ciências Exatas e Naturais, Vol. 8, no2, Jul/Dez, 2006

specification. These (meta) variables are identified by capitalized words in the
ASF+SDF specification and correspond to expressions, variables, types, static
environment, among others. We have defined them by using the same patterns
as in the original definition of the XQuery core language.

The [for-1] rule is used when a sequence type SeqT is not present. Initially,
the first expression E1 is verified. The function insert, that adds pairs to
static environment, is used to insert the variable of the for expression into the
environment’s component var-type (VT). This variable is mapped to the prime type
of expression E1. Finally, the expression result type is verified. The resulting type
of the for expression is given as T2.quantifier(T1).

The [for-2] rule is applied when a sequence type SeqT is present. Essentially,
there are two differences between this rule and [for-1]. The first is the
normalization function call to the sequence types variable (normSeqT(SeqT)). The
second difference is that the subtype relation must be verified between the type of
first expression E1 and the result type T0 of the normalized one. The resulting type
of the for expression is given by T2.quantifier(T1).

In the case in which no rule can be applied, the [default-for] rule is used,
returning a static typing error.

The other static rules of XQuery Core were defined in the meta-environment in
a similar way.

An example of use of our prototype including the results that it provides is now
shown. Let us suppose that we have a program containing a for expression to be
checked. In order to verify it, we use the function typecheck, which takes two
arguments: a program phrase and a (static) environment containing the types of
all the known variables and functions. This can be expressed in our prototype as
follows:

typecheck(

for $b in

(if (eq($v1,$v2)) then $v1 else $root)

return $dot,

[],[],[],[],[],

[($dot --> xs:decimal) ($b --> xs:integer)

($root --> xs:decimal) ($r --> xs:string)

($v1 --> xs:decimal) ($v2 --> xs:decimal)],

[((eq) --> define function eq(xs:decimal, xs:decimal)

returns xs:boolean)],

[]

)

As it can be seen, the static environment has eight components (lists). Each of
these lists corresponds to each of the components for static environments specified
in [Draper et al., 2002].

VENSKE, S.M.G.S.; MUSICANTE, M.A. 255

The result type for this phrase, returned by type checking function is:

[xs:decimal.quantifier(xs:decimal)]

The results presented by our prototype are incomplete. We have the intention
of update our prototype, in accordance with the new versions of the XQuery formal
specification.

5 Conclusions

Our experience in developing a prototype for the XQuery core language has
shown that the static operational semantics defined for the language can be used as
a base for the implementation of the typechecker. However, our implementation
also pointed to some omissions and problematic issues in the working draft
specification [Draper et al., 2002]. Amongst them, it can be mentioned:

• An error value needs to be included to the production of non-terminals Value
and Type in the language’s grammar. The error value is used but not defined
in the specification.

• The non-terminal Wildcard should be added to the production rules of Ele-
mentName and AttributeName. Wildcards are used but not defined by these
rules in the specification.

• Unification of occurrence indicators. The XQuery type system and
the XQuery normalized grammar declare two different non-terminals for
occurrence indicators. These definitions are very similar and produced parsing
ambiguities.

• Inclusion of non-terminals AttributeAll and ElementContent to the XQuery
type system. These non-terminals have production rules, but they do not
belong to the right-hand side of any grammatical rule of the language We
have included them to the productions of ItemType.

• The sort LetExpr should be included in the XQuery Core grammar. Currently
there are no grammar rules associated to the Let expression.

• The rule defining node tests has a problem that needs to be fixed. The original
rule is:

QName2 = Prefix2 : LocalPart2 ;
xf : get − namepace − uri(QName1) =

statEnvs.varType(Prefix2) ;
xf : get − local− name(QName1) = LocalPart2

statEnvs ⊢ element,

QName2 on element QName1 {Type} :
element QName1 {Type}

256 Revista Ciências Exatas e Naturais, Vol. 8, no2, Jul/Dez, 2006

This rule establishes a comparison between the value returned by
xf:get-na-

mepace-uri and the result of search in the statEnvs.varType environment
using the lookup function. This equality never will be true since the varType

environment maps variable names to their static types while get-namespace-

uri returns a URI. The correct environment to be used; in this case is
statEnvs.namespace. This alteration was implemented in our prototype.

The adaptation of the original operational semantics rules of XQuery Core
to the ASF+SDF meta-environment was a demanding task, due to the fact that
language specification does not have the immediate implementation as one of its
main concerns. On the other hand, the study of the formal semantics specification
proved to be very useful to enhance our understanding of the language. Our next
activity in this project is to keep our prototype up-to-date with the new versions
of the specification as well as to develop the prototype for the dynamic aspects of
XQuery.

References

[Abiteboul et al., 2000] Abiteboul, S., Buneman, P., and Suciu, D. (2000). Data
on the Web - From Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers.

[Abiteboul et al., 1997] Abiteboul, S., Quass, D., McHugh, J., Widom, J.,
and Wiener, J. L. (1997). The Lorel query language for semistruc-
tured data. International Journal on Digital Libraries, 1(1):68–88.
citeseer.nj.nec.com/article/abiteboul97lorel.html.

[Aho et al., 1988] Aho, A., Sethi, R., and Ullman, J. D. (1988). Compilers: prin-
ciples, techniques, and tools. Addison-Wesley.

[Biron and Malhotra, 2001] Biron, P. V. and Malhotra, A. (2001). XML Schema
Part 2: Datatypes. Technical report, W3C World Wide Web Consortium.
www.w3.org/TR/2001/REC-xmlschema-2-20010502.

[Boag et al., 2002] Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D.,
Robie, J., Simeon, J., and Stefanescu, M. (2002). XQuery 1.0: An XML
Query Language. Working draft, W3C World Wide Web Consortium.
www.w3.org/TR/2002/WD-xquery-20020430.

[Brand and Klint, 2003] Brand, M. G. J. V. D. and Klint, P. (2003). Asf+sdf
Meta-Environment User Manual - Revision 1.134. Technical

VENSKE, S.M.G.S.; MUSICANTE, M.A. 257

report, CWI Centrum voor Wiskunde en Informatica, Amsterdam.
www.cwi.nl/projects/MetaEnv/meta.

[Bray et al., 2000] Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E.
(2000). Extensible Markup Language (XML) 1.0. Technical report, W3C
World Wide Web Consortium. www.w3.org/TR/2000/REC-xml-20001006.

[Buneman, 1997] Buneman, P. (1997). Semistructured data. In 16th
ACM Symposium on Principles of Database Systems, pages 117–121.
citeseer.nj.nec.com/buneman97semistructured.html.

[Ceri et al., 1999] Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S.,
and Tanca, L. (1999). XML-GL: A Graphical Language for Querying and
Restructuring XML Documents. In Sistemi Evoluti per Basi di Dati, pages
151–165. citeseer.nj.nec.com/ceri99xmlgl.html.

[Chamberlin et al., 2001] Chamberlin, D., Robie, J., and Florescu, D.
(2001). Quilt: An XML Query Language for Heteroge-
neous Data Sources. Lecture Notes in Computer Science, 1997.
citeseer.nj.nec.com/chamberlin00quilt.html.

[Deutsch et al., 1999] Deutsch, A., Fernandez, M., Florescu, D., Levy, A.,
and Suciu, D. (1999). A query language for XML. Com-
puter Networks (Amsterdam, Netherlands: 1999), 31(11–16):1155–1169.
citeseer.nj.nec.com/deutsch98query.html.

[Draper et al., 2002] Draper, D., Fankhauser, P., Fernadez, M., and
Malhotra, A. (2002). XQuery 1.0 and XPath 2.0 Formal Se-
mantics. Working draft, W3C World Wide Web Consortium.
www.w3.org/TR/2002/WD-query-semantics-20020816.

[Fallside, 2001] Fallside, D. C. (2001). XML Schema Part 0:
Primer. Technical report, W3C World Wide Web Consortium.
www.w3.org/TR/2001/REC-xmlschema-0-20010502.

[Groff and Paul N, 1999] Groff, J. R. and Paul N, W. (1999). SQL: The Complete
Reference. Osborne McGraw-Hill.

[Heering et al., 1992] Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J.
(1992). The Syntax Definition Formalim SDF - reference manual.
ftp.cwi.nl/pub/gipe/reports/SDFmanual.ps.Z.

258 Revista Ciências Exatas e Naturais, Vol. 8, no2, Jul/Dez, 2006

[Malhotra et al., 2002] Malhotra, A., Melton, J., Robie, J., and Walsh,
N. (2002). XQuery 1.0 and XPath 2.0 Functions and Op-
erators. Technical report, W3C World Wide Web Consortium.
www.w3.org/TR/2002/WD-xquery-operators-20020816.

[Mosses, 1992] Mosses, P. D. (1992). Action Semantics. In Action Semantics.
Cambridge University Press.

[Robie et al., 1998] Robie, J., Lapp, J., and Schach, D. (1998). XML
Query language(XQL). In Query Languages Workshop (QL98).
www.w3.org/TandS/QL/QL98/pp/xql.html.

[Schach et al., 1998] Schach, D., Lapp, J., and Robie, J. (1998). Query-
ing and Transforming XML. In Query Languages Workshop (QL98).
www.w3.org/TandS/QL/QL98/pp/query-transform.html.

[Schmidt, 1986] Schmidt, D. A. (1986). Denotational Semantics: A Method-
ology for Language Development. Allyn Bacon.

[van den Brand et al., 2001] van den Brand, M., van Deursen, A., Heering, J.,
de Jong, H. A., de Jonge, M., Kuipers, T., Klint, P., Moonen, L., Olivier, P. A.,
Scheerder, J., Vinju, J. J., Visser, E., and Visser, J. (2001). The ASF+SDF
Meta-environment: A Component-Based Language Development En-
vironment. In Computational Complexity, pages 365–370.

[Watt, 1991] Watt, D. (1991). Programming Language Syntax and Seman-
tics. Prentice Hall International (UK).

[Winskel, 1993] Winskel, G. (1993). The Formal Semantics of Programming
Languages: An Introduction. Foundations of Computing Series. MIT Press.

