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ABSTRACT

Lead-Time Quotation by Synergistically Modeling Real and Simulation Data

Hoda Sabeti

The ability to quote a competitive and reliable lead time for a new order is a key competitive advan-
tage for manufacturers and plays a significant role in customer acquisition and satisfaction. Upon
the arrival of a customer’s order, it is critical to accurately predict the flow time (the time needed
to complete that job) and quote its lead time accordingly. Quoting a precise and reliable lead time
requires a good prediction for the flow time of a new order. A new job’s flow time through the sys-
tem depends on the complex shop-floor status upon its arrival and is also subject to uncertainties in
manufacturing processes such as stochastic processing times and random machine failures. Hence,
it is challenging to provide high-quality flow time estimation for a new order at its arrival time.

This research focuses on quantifying the dependence of the flow time upon observed job shop
status variables, the size of a new order, and the arrival rate of future orders. An iterative fitting
procedure based on stochastic kriging with qualitative factors, is developed to synergistically model
simulation and real manufacturing data, for the prediction of a new order’s flow time. The fitting
procedure aims at exploiting the strengths of both simulation data, which can be well designed, and
real data, which are observed from manufacturing, to achieve a high-quality prediction model of
flow time.
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Chapter 1

Introduction

1.1 Background

The ability to quote a competitive and reliable lead time for a new order is a key competitive advan-

tage for manufacturers and plays a significant role in customer acquisition and satisfaction. In this

study, lead time is defined as the difference between the promised due date of an order (or job) and

its arrival time [2]. Quoting a precise and reliable lead time requires a good prediction for the flow

time of a new order, the time it takes for a job to traverse through a manufacturing process [3].

A new job’s flow time through the system depends on the complex shop-floor status upon its ar-

rival and is also subject to uncertainties in manufacturing processes. Various sources of uncertainty

affect the make to order (MTO) manufacturing environments and distinguish it from make to stock

(MTS) firms [4]. Upon the arrival of a new order, some previous orders are still being processed in

the manufacturing system, and some unfinished jobs are still queueing in front of stations at some

stage of their processing sequence. Besides, some job shop features (e.g. random machine failure,

random processing times, etc.) affect the flow time of a new order. Hence, the flow time of a new

job depends on inherent uncertainties of the manufacturing system and the current status of the shop

floor and cannot be predicted with exactness and it is challenging to provide high-quality flow time

estimation for a new order at its arrival time.

In the literature, two types of approaches have been used for flow time estimation: analytical

and numerical approaches. On the analytical side, a range of queueing models have been developed

([5, 6, 7, 8, 9]). Analytical models rely on restrictive assumptions such as the Markovian property,
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and fall short in capturing the realistic features of manufacturing processes.

The majority of numerical approaches employ either real or simulation data to develop a sur-

rogate model approximating the functional relationship between the expected flow time and the

various shop-status factors ([10, 11, 12, 13]). These surrogate models include classic linear regres-

sion ([14, 15, 16, 17, 18]) as well as powerful models such as neural network ([16, 19, 20]).

In this stream of numerical work, [1] is the first paper that takes an experimental design ef-

fort based on discrete-event simulation of manufacturing: Simulation experiments are designed to

provide a good coverage of the input space spanned by the typically large number of quantitative

and qualitative factors depicting shop floor status. Good design of experiments is critical to the

quality of the fitted prediction model for flow time, especially when the input space is large and

complex. However, for the planning and control of manufacturing, experimental design can only be

performed on simulation models, which is high-fidelity but nevertheless deviates somewhat from

the real-world system. With increased capability to track and monitor manufacturing processes,

more and more real data will be available for decision making. In contrast to simulation data, real

data unquestionably reflects the actual behavior of the manufacturing system being investigated, but

are not subject to experimental design.

To take advantage of both simulation and real data, this work adapts the stochastic kriging

with qualitative factors (SKQ)[21] and develops an SKQ-based iterative procedure to synergisti-

cally model simulation and real data, aiming at exploiting the strengths of both types of data to

achieve a prediction model of the high quality. Stochastic kriging with qualitative factors (SKQ) is

highly flexible and able to provide an accurate approximation of practically any continuous response

surfaces [21, 22, 23, 24] without requiring a presumed functional form as traditional nonlinear re-

gression does [21, 25].

1.2 Research Objective

In this dissertation, we studied the problem of quoting lead time for randomly arriving customer

orders to a manufacturing system and developed a method to synergistically model both simulation

based data and real-time manufacturing actual data to obtain a high-quality prediction of flow time

and lead time quotation. This research focuses on quantifying the dependence of the flow time
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upon observed job shop status variables, the size of a new order, and arrival rate of future orders.

The problem includes a variety of manufacturing systems with different features and conditions like

machine failure, batch processing, multiple workstations, re-entrant flows, and multiple type job

flows, etc.

A SKQ-based iterative procedure is developed for estimating the flow time and quoting lead

time. To provide high-quality lead time quotation, we characterize the flow time of a job by model-

ing not only the first but also the second moment characteristics of flow time as a function of shop

status variables. Based on flow time’s first two moments, we estimate its percentiles, which enables

real-time due date quotation with a desired service level.

The proposed method has been applied to a scaled-down manufacturing system. The quality

of the models has been evaluated regarding commonly used performance criteria, based on well-

designed validation data set.

1.3 Contribution of the Research

As will be discussed in Chapter 2 and 3, the existing SKQ ([21]) is able to model the variability

arising from quantitative as well as qualitative factors, and the heterogeneous variability of random

errors. However, the SKQ estimation requires the target data to have multiple replications at each

factor setting, which is needed for the estimation of heterogeneous error variances. In this study,

we adapted the intrinsic (random error) variance structure and developed an iterative procedure to

enable the fitting of SKQ to a non-replicated or partially non-replicated data set. The iterative SKQ

is adapted to estimate both the mean and variance of flow time.

Moreover, real data availability is limited to settings observed from a manufacturing process.

There is no control on the design of observed settings, and typically there are no replications avail-

able. On the other hand simulation data can be generated in designed settings with replications.

Iterative SKQ can pool information from both read and simulation data for the improved estimation

of flow time.

Appendix 5.1 provides more detailed comparison between this work and the most related liter-

ature.
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1.4 Statement of the Research problem

To assist the lead time quotation upon the arrival of a new order, prediction models that quantify

the dependence of flow time characteristics (i.e., mean and variance) upon the various shop-status

factors, will be estimated from the ensemble of two types of data:

• Discrete-event simulation data, which can be designed to provide a good coverage in the

design/input region and to include adequate replications at each design point.

• Real data from a manufacturing system, which cannot be controlled at the level of experimen-

tal design and are typically non-replicated.

Table 1.1: Original variables.

Type Variables in XORG
Number of variables

in the example system

SVs.A: The number of jobs at each buffer including
22those being processed and those waiting to be

processed by the station

Job Shop

SVs.B: The status (busy or idle) of each server. 11

Status Variables(SVs) SVs.C: The elapsed processing time at each busy server. 11

SVs.D: The status (up or down) of each server that is
2

subject to random failures.

SVs.E: The elapsed down time for a currently down server. 2

SVs.F: The elapsed up time for a currently up server. 2

SVs.G: The batch size currently being processed at a batch
2

processing server, if that server is busy at the moment.

Order Size The size of a newly arrived order 1

Future Orders The forecasted arrival rate of future orders 1

The target manufacturing system may involve features such as random processing times, ma-

chine failures, batch processing, re-entrant flows, etc. As detailed in [1], the original predictive

factors can be divided into three categories: (a) the shop status variables (SVs), (b) the size of a

new order, and (c) the arrival rate of future orders, which can be obtained from forecasting models.

A scaled-down manufacturing system is considered as the example system in this paper, with the

detailed configurations given in Appendix 5.2 for readers’ convenience. For this example system,
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the original factors and factor numbers are provided in Table 1.1. The concept of buffers by [26] is

used to define SVs. That is, for all the jobs that are in the same step of their production sequence, a

virtual location called buffer is considered.

Due to the typically large number of factors included in Table 1.1, a preliminary analytical

analysis is used to (Appendix 5.4) to find a smaller set of important variables, which can be classified

as WIP and non-WIP variables. Table 1.2 provides for the example system the WIP and non-WIP

variables as well as the additional qualitative factor zS introduced in this work: data source, which

could be simulation or real data. The variables in Table 1.2 constitute the vector w, which serves as

the input of the SKQ model. Based on both simulation and real data, SKQ is to be fitted quantifying

the expected flow time as a function of w.

Table 1.2: List of input variables in w.

Type Variables in w Number of variables
in the example system

WIP Variable xWIP stage WIP variables a subset of SVs.A 8

zB the busy or idle status of important servers, which constitute
4

a subset of SVs.B

xC the elapsed processing times at important busy servers, which
4

constitute a subset of SVs.C

Non-WIP Variables

zD the status (up or down) of important servers subject to random
1

failures, which constitute a subset of SVs.D

xE the elapsed down times for important down servers, which
1

constitute a subset of SVs.E

xF the elapsed up time for each important up server, which
1

constitute a subset of SVs.F

xG the batch sizes being handled by important busy servers involving
0

batch processing, which constitute a subset of SVs.G

xO the size of a newly arrived order 1

xR the forecasted arrival rate of future orders 1

zS the source of data 1

In our first step, we develop a model to obtain a high-quality prediction of mean flow time. To

provide high-quality lead time quotation, we also model the variance of flow time as a function of

shop status variables. Finally, a distribution is fitted based on the mean and variance estimates. This

fitted distribution is used to quote the lead time.
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1.5 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss the iterative

frame work based on SKQ models to estimate mean flow time. The dual modeling to estimate the

variance where the replications are not available is detailed in Chapter 3. In Chapter 4, the flow time

distribution is quantified and estimated. Finally, Chapter 5 includes the summary and conclusions.

6



Chapter 2

Mean Estimation

For the estimation of mean flow time, an iterative method is developed based on stochastic kriging

with qualitative factors(SKQ) to model both simulation and real manufacturing data. In Section 2.1,

a review of related work is provided. Methods for the modeling of mean flow time are detailed in

Section 2.2. In Section 2.3, the estimation results are evaluated.

2.1 Literature Review

Kriging (also known as Gaussian process regression)is highly flexible and able to provide an accu-

rate approximation of practically any continuous response surfaces [21, 22, 23, 24] without requiring

a pre-assumed functional form as traditional nonlinear regression does [21, 25].

In this stream of work, Ankenman et al. [22] developed stochastic kriging, which models both

intrinsic uncertainty and the extrinsic uncertainty. Qian et al. [27] developed deterministic kriging

with both qualitative and quantitative factors. Wang et al. [21] developed stochastic kriging with

qualitative factors (SKQ), which models the variability arising from quantitative factors, qualitative

factors, and heterogeneous random errors.

A range of research efforts have been devoted to developing kriging-based methods for modeling

data of different fidelity levels [28][29] [30] [31] [32]
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2.2 Methodology

2.2.1 Iterative Procedure for Stochastic Kriging with Qualitative Factors (SKQ)

The SKQ developed in [21] is able to model the variability arising from quantitative as well as

qualitative factors, and the heterogeneous variability of random errors. However, the SKQ estima-

tion requires the target data to have multiple replications at each factor setting, which is needed

for the estimation of heterogeneous error variances. In this study, we adapted the intrinsic (ran-

dom error) variance structure and developed an iterative procedure to enable the fitting of SKQ to a

non-replicated or partially non-replicated data set.

The data are represented as

{(wi,Y j(wi)); i = 1,2, . . . , I; j = 1,2, . . . ,n(wi)}, (2.1)

with a total of I distinct factor settings. The ith setting wi = (x>i ,z>i )> includes the specified levels

for the quantitative factors xi and the qualitative factors zi. At wi, the number of replications n(wi)

is greater than or equal to 1, and n(wi) = 1 corresponds to the factor settings with no replications.

Without loss of generality, the data (2.1) is arranged into two subsets

{(wi,Y j(wi)); i = 1,2, . . . ,K; j = 1,2, . . . ,n(wi)> 1}
⋃
{(wi,Y (wi)); i = K +1,K +2, . . . , I}.

(2.2)

The replicated subset includes K (0 ≤ K ≤ I) distinct factor settings with multiple replications

n(wi)> 1, and at each of the rest I−K factor settings, there is only a single replication.

The SKQ model is written as

Y j(w) = E[Y (w)]+ ε j(w) = Y(w)+ ε j(w) (2.3)

= f(w)>β +M(w)+ ε j(w), (2.4)

quantifying the dependence of the continuous response Y (w) upon the factors w = (x>,z>)>

including the d quantitative factors x = (x1,x2, . . . ,xd)
> ∈ Rd and the L qualitative factors z =

(z1,z2, . . . ,zL)
>. In (2.4), f (w) is a vector of known functions of w, and β is a vector of unknown
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coefficients. In this work, we set f (w)T β = β0, which is usually adequate for kriging-based model-

ing. M(w) represents a mean-zero stationary Gaussian process, which seeks to describe the extrinsic

variability [22]. ε j(w) denotes the random error variability, and is referred to as the intrinsic vari-

ability [22]. The random errors ε1(w), ε2(w), . . . , are assumed to be independent and identically

distributed with mean zero.

2.2.2 Extrinsic Variance Structure

The extrinsic variability model is inherited from [27], and reviewed as follows. The covariance of

M(w) can be written as

Cov[M(w),M(w′)] = δ
2 ·Corr[M(w),M(w′)] = δ

2 ·

[
L

∏
`=1

τ
(`)
z`,z′`

]
·K(x,x′), (2.5)

where δ 2 is the variance of the Gaussian process. The correlation Corr[M(w),M(w′)] is decomposed

into two parts: ∏
L
`=1 τ

(`)
z`,z′`

and K(x,x′). For SKQ estimation, functional forms need to be specified

for both parts. The correlation across different settings of x is represented by K(x,x′), which can

take a range of functional forms in the literature [33, 27]. A popular function is the exponential

correlation function

K(x,x′) = exp

{
d

∑
h=1
−θh|xh− x′h|p

}
(2.6)

with θ = (θ1,θ2, . . . ,θd) being unknown parameters.

In (2.5), the term ∏
L
`=1 τ

(`)
z`,z′`

models the correlations across different categories of qualitative factors,

and the vector Φ = (θ1,θ2, . . . ,θd) denotes the unknown parameters involved in the cross-category

correlation model. Potential functional forms for τ
(`)
z`,z′`

are given in [21]. Isotropic (or exchangeable)

correlation functions (EC) is one of the common correlation functions:

τ
(l)
zl ,z′l

= exp{−φ
(l)I(zl 6= z′l))}; l = 1,2, . . . ,L (2.7)

In (2.7), φ = φ (l); l = 1,2, . . . ,L represents the set of unknown parameters to be estimated; and I[A]

is an indicator function that takes the value of 1 if event A is true and 0 otherwise.

Given the data (2.1) collected at I distinct settings, the I× I variance-covariance matrix ΣM is
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defined as

ΣM = δ
2 ·R(θ ,Φ) (2.8)

= δ
2 ·

 1 Corr[M(w1),M(w2)] ··· Corr[M(w1),M(wI)]
Corr[M(w2),M(w1)] 1 ··· Corr[M(w2),M(wI)]

...
...

. . .
...

Corr[M(wI),M(w1)] Corr[M(wI),M(w2)] ··· 1

 , (2.9)

where R(θ ,Φ) denotes the correlation matrix with each element being a correlation. Each ele-

ment correlation can be decomposed into two parts as explained above, and involves the unknown

parameters θ and Φ. For an arbitrary w0, the I×1 vector ΣM(w0, ·) is defined as

ΣM(w0, ·) = δ
2v(w0,θ ,Φ) = δ

2



Corr[M(w0),M(w1)]

Corr[M(w0),M(w2)]

...

Corr[M(w0),M(wi)]


, (2.10)

where v(w0,θ ,Φ) is a correlation vector involving w0, θ and Φ.

2.2.3 Intrinsic Variance Structure

The variance of the random error at w is denoted as Var[ε(w)]. Let Σε be the I× I intrinsic variance

matrix. Under the i.i.d. assumption for random errors, Σε for the data (2.2) is a diagonal matrix

Σε = diag{Var[ε(w1)]

n(w1)
, . . . ,

Var[ε(wK)]

n(wK)
,Var[ε(wK+1)], . . . ,Var[ε(wi)]}. (2.11)

A similar model without an intrinsic variance structure can be considered as an deterministic

kriging model (DKQ) with quantitative factors. This family of models were introduced by [27].

2.2.4 Integrative Estimation of Replicated and Non-replicated Data

Recall that the stochastic response on replication j at design point w was modeled as follows:

Y j(wi) = β0 +M(wi)+ ε j(wi) (2.12)

Here the objective is to build a model to predict the response Y(w0) = β0 +M(w0) at a desired
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point w0 using both replicated data and non-replicated data. The Gaussian process regression esti-

mation and inference require the following assumptions:

Assumption 1:

The random field M is a stationary Gaussian random field, and ε1(w), ε2(w), . . . , are i.i.d. N(0,Var[ε(wi)]),

and independent of M.

Stationary Gaussian random field assumption for M is a standard assumption based on [34] and

[22]. Since the response is the summation of individual product process times in the manufacturing

example, the normality of ε j(wi) is anticipated [22]. In K replicated data points, the sample average

of the responses at wi, Y j(wi), across the n(wi) replications follows as:

Y (wi) =
1

n(wi)

n(wi)

∑
j=1

Y j(wi) for i = 1, . . . ,K. (2.13)

And Y = (Y (w1),Y (w2), . . . ,Y (wK))
> denotes the vector of sample average at replicated

points. Similarly, the sample average error follows as:

ε(wi) =
1

n(wi)

n(wi)

∑
j=1

ε j(wi) for i = 1, . . . ,K (2.14)

And ε = ((ε(w1)),(ε(w2), . . . ,(ε(wK))
> denotes the vector of sample average errors. In real data

points, there is only one observation at each point. The vector of observed responses at wi follows

as:

Yobs = (Y (wK+1),Y (wK+2), . . . ,Y (wi))
> for i = K +1, . . . , I (2.15)

And let the vector of observed errors denoted by

εobs = ((ε(wK+1)),(ε(wK+2), . . . ,(ε(wI))
> for i = K +1, . . . , I (2.16)

Theorem 1:

(Y(w0),Y ,Yobs)
> is multivariate normal with constant mean vector β01I+1, and following variance-
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covariance matrix:  δ 2 R(w0, .;θ ,φ)

R(w0, .;θ ,φ) Σε +ΣM

 (2.17)

Proof: Under Assumption 1 and model (2.12), (Y(w0),Y ,Yobs)
> is multivariate normal.

Within replicated data:

Cov[Y j(wi),Yl(wh)] = Cov[M(wi)+ ε j(wi),M(wh)+ εl(wh)]

=


δ 2 +Var[ε(wi)] i = h, j = l

δ 2 i = h, j 6= l

δ 2R(wi,wh;θ ,φ) i 6= h

(2.18)

Within non-replicated data:

Cov[Y (wi),Y (wh)] = Cov[M(wi)+ ε(wi),M(wh)+ ε(wh)]

=

 δ 2 +Var[ε(wi)] i = h

δ 2R(wi,wh;θ ,φ) i 6= h
(2.19)

Between predicted response and replicated data:

Cov[Y(w0),Y j(wi)] = Cov[M(w0),M(wi)+ ε j(wi)] = δ
2R(w0,wi;θ ,φ) (2.20)

Between predicted response and non-replicated data:

Cov[Y(w0),Yobs(wi)] = Cov[M(w0),M(wi)+ ε(wi)] = δ
2R(w0,wi;θ ,φ) (2.21)

Since the ε j(wi) are independent across replications and design points, averaging the n(wi)

replications at design point wi only affects

Cov[Y (wi),Y (wh)] = Var[Y (wi)] = δ
2 +

Var[ε(wi)]

n(wi)
(2.22)
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Therefore, following holds:


Y(w0)

Y

Yobs

= MVN[β01I+1,

 δ 2 R(w0, .;θ ,φ)

R(w0, .;θ ,φ) δ 2R(wi,w j;θ ,φ)+Diag{Var[ε(wi)]
n(wi)

,Var[ε(wi)]}

]. (2.23)

where 1I+1 is a A1 vector of ones. Considering the definition of Σε and ΣM in (2.8) and (2.11)

respectively, the variance-covariance matrix can be shown as:


Y(w0)

Y

Yobs

= MVN[β01I+1,

 δ 2 R(w0, .;θ ,φ)

R(w0, .;θ ,φ) ΣM+Σε

]. (2.24)

Since (Y(w0),Y ,Yobs)
> is multivariate normal , the following stochastic predictor can be used

to estimate the expected response at point w0 [21, 22, 34].

Ŷ(w0) = β0 +ΣM(w0, .)
>[ΣM+Σε ]

−1(Y −β01I)) (2.25)

According to [21] and [22] it can be shown that (2.25) is the best linear unbiased estimator for

Y(w0).

2.2.5 Iterative Procedure for Model Estimation

In the data set (2.2), the vector of sample averages for replicated data is denoted as

Y = (Y (w1),Y (w2), . . . ,Y (wK))
> (2.26)

with

Y (wi) =
1

n(wi)

n(wi)

∑
j=1

Y j(wi) i = 1, . . . ,K. (2.27)

Where Y j(wi) is the observed response from the jth replication at wi.

The vector of single observations for non-replicated data is written as

Yobs = (Y (wK+1),Y (wK+2), . . . ,Y (wi))
> (2.28)
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The random vector Y = (Y
>
,Y >

obs)
> follows multivariate normal (MVN) distribution

Y ∼MVN[β01I,ΣM+Σε ] (2.29)

The log-likelihood function with respect to the unknown parameters (β0,δ ,θ ,φ) is thus written as:

lnL(β0,δ
2,θ ,φ)=− ln[(2π)

I
2 ]− 1

2
ln[|δ 2R(θ ,φ)+Σε |]−

1
2
(Y −β01I)

>[δ 2R(θ ,φ)+Σε ]
−1(Y −β01I).

(2.30)

Since the data set (2.2) involves non-replicated data, some variance components in Σε (correspond-

ing to the non-replicated data) cannot be straightforwardly estimated and replaced by their sample

variances. To circumvent that, we adapted the SKQ estimation/inference in [21] into the following

iterative procedure for SKQ fitting of both replicated and non-replicated data.

Stage 1: Obtain an estimate of the intrinsic variance matrix Σε .

• For replicated data, estimate Var[ε(wi)] (i = 1,2, . . . ,K) by

V̂ar[ε(wi)] =
1

n(wi)−1

n(wi)

∑
j=1

(Y j(wi)− (Y (wi))
2. (2.31)

• For non-replicated data, set V̂ar[ε(wi)] = v0 for i = K +1, . . . , I. The initial variance estimate

v0 can be set as the median of the sample variances {V̂ar[ε(wi)]; i = 1,2, . . . ,K}.

• Assemble { V̂ar[ε(wi)]
n(wi)

; i = 1,2, . . . ,K} and v0 to obtain the initial estimate Σ̂ε .

Stage 2: Estimate the hyperparameters by solving the maximum likelihood problem. Replace Σε

by Σ̂ε in (2.30), and maximize the log-likelihood function with respect to (β0,δ ,θ ,φ), which can

be achieved in two steps.

• Given δ ,θ and φ , the maximum likelihood estimate (MLE) of β0 is derived from

∂ lnL(β0,δ
2,θ ,φ)

∂β0
= 0, (2.32)
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and expressed as

β̂0(δ
2,θ ,φ) = (1T

I [δ
2R(θ ,φ)+ Σ̂ε ]

−11I)
−1(1T

I [δ
2R(θ ,φ)+ Σ̂ε ]

−1Y ) (2.33)

• Substitute β̂0(δ
2,θ ,φ) into (2.30) and maximize

lnL(δ 2,θ ,φ) =− ln[(2π)
I
2 ]− 1

2
ln[|δ 2R(θ ,φ)+ Σ̂ε |]

− 1
2
(Y − β̂0(δ

2,θ ,φ)1I)
T [δ 2R(θ ,φ)+ Σ̂ε ]

−1(Y − β̂0(δ
2,θ ,φ)1I) (2.34)

with respect to (δ 2,θ ,φ).

Stage 3: With the MLE (β̂0, δ̂ 2, θ̂ , φ̂), estimate the expected responses at the non-replicated factor

settings as

Ŷ(wi) = β̂0 + δ̂
2
ν(wi, θ̂ , φ̂)

T [Σ̂M + Σ̂ε ]
−1(Y − β̂01I)). (2.35)

Stage 4: Update the variance estimates for non-replicated data.

• Based on the estimates obtained from (2.35), calculate the squared residuals:

ê2(wi) = (Y (wi)− Ŷ (wi))
2 i = K +1,K +2, . . . , I (2.36)

• Update the estimate Σ̂ε by replacing its non-replicated components by ê2(wi) for i = K +

1, . . . , I.

• Repeat Stages 2-4 until there is no significant changes in the parameter estimates (β̂0, δ̂ 2, θ̂ , φ̂).

2.3 Empirical Results

To demonstrate the information-pooling effects of SKQ, a simulation-based case study is designed

as follows. Two DES models were coded in Microsoft Visual C++. They share the same configu-

ration of a scaled-down manufacturing system, and only differ in some processing-time parameters

at certain workstations. The DES model specified in Appendix 5.3 will be referred to as DES Real
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representing the target real system, and DES Real is used to generate data mimicking system ob-

servations that cannot be designed with control but are real. The DES model detailed in Appendix

5.2 will be referred to as DES Sim, which serves as the high-fidelity simulation model of the “real

system” DES Real while slightly deviating from the reality . Experimental design strategies are

applied to DES Sim for the collection of well-designed data.

The preliminary analytical analysis by [35] is first performed to identify w, a set of relatively

important variables. In this case, w includes 16 quantitative and 6 qualitative variables.

2.3.1 Estimation Data (ED)

The estimation data set includes two subsets: ED Real and ED Sim, which are described as follows.

ED Real: a data set which is typically obtained from observing or tracking a real system. 32

distinct points were generated in the space of w following some random scheme. At each

point, a single simulation run was carried out to obtain a CT observation.

ED Sim: a data set resulting from simulation experiments. The simulation design points are two

folds. First, the well-designed 120 distinct points generated in the space of w following the

experimental design method developed by [1], which seeks to optimize the D-criterion while

providing a decent coverage of the design space. This part of the simulation data gather-

ing can be performed off-line before receiving the orders. The second part of the simulation

design points are real design points observed in ED Real. At each design point, multiple

replications were performed to enable the estimation of heterogeneous variance. The num-

ber of replications at a design point was determined by the two-stage process following [1]

method, and ranges from 50 to 400 among the 120 design points.

For the estimation data sets the WIP levels are 15,30,45, and 60. The future orders arrival rate

xR takes three levels, which correspond to a steady-state real system utilization of 75%, 80%, and

90%, respectively. With selected utilization rates, the arrival rates are 0.129, 0.136, and 0.150 orders

per hour. Table 5.4 shows the level or other Non-WIP variables.

16



2.3.2 Validation Data (VD)

The goal is to obtain a prediction model relating the mean CT to w for the target system, DES Real.

Thus, DES Real was used to generate the VD, for the evaluation of fitted models. A total of 2400

check points were generated in the w space providing a dense and fairly even coverage of the design

space. The WIP levels are 20, 25, 35, 40,50, and 55 which creates checking points all different from

the points in ED Real or ED Sim. The arrival rates of future orders are 0.129, 0.136, and 0.150

orders per hour which is equivalent to 75%, 80%, and 90% utilization rate, respectively. At a check

point w, 1000 replications were carried out, from which a highly accurate estimate of the mean FT

can be obtained and denoted as YT (w). YT (w) is considered as nearly free of errors and serves as

the “true” expected FT for the assessment of prediction models.

2.3.3 Model Evaluation Criteria

The quality of a prediction model is evaluated by the deviations of its estimated responses from their

true values. With the ”true” expected FT YT (w) obtained from the VD, the following two criteria

are employed here for model assessment.

The mean absolute percentage error (MAPE):

MAPE =
100%
2400

2400

∑
i=1
| Ŷ(wi)−YT (wi)

YT (wi)
| (2.37)

The estimated root mean squared error(ERMSE):

ERMSE =

√
1

2400

2400

∑
i=1

(Ŷ(wi)−YT (wi))2 (2.38)

In (2.37) and (2.38), Ŷ(wi) is the estimated mean FT at a check point wi .

2.3.4 Comparison of Modeling Methods

Three prediction models are respectively obtained through three different venues.

• Iterative SKQ on ED Real and ED Sim: The iterative SKQ procedure (Section 2.2.5) was

applied to model the data ensemble of ED Real and ED Sim with the predictors being w
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including the qualitative variable that has two categorical levels, Real or Simulation.

• Iterative SKQ on ED Real: On ED Real alone, the iterative SKQ procedure was applied with

the predictors being w excluding the qualitative variable for real or simulation data.

• Regression on ED Real: On ED Real alone, the linear regression by [1] was applied with the

predictors being w excluding the qualitative variable for real or simulation data.

To statistically compare these three approaches, 100 macro-replications were performed. For

each macro-replication, design points for ED Sim and observation points for ED Real were regen-

erated following the schemes as briefed in 2.3.1, and simulation runs were carried for data collection

using a different random stream; with the obtained ED Sim and ED Real, all three approaches were

applied respectively. Thus, each of the three approaches leads to 100 fitted models (e.g., regression

models), and 100 MAPEs and ERMSEs (2.3.3).

Figure 2.1(a) and (b) display the MAPE and ERMSE box plots respectively for the three ap-

proaches. Each box is plotted from the 100 MAPEs or ERMSEs for the corresponding approach.

The medians of the boxes are also given in Table 2.1. Clearly, by borrowing information from the

well-designed simulation data ED Sim, the iterative SKQ achieves the fitted models of the small-

est deviations and most consistent performance, which are evident from the lowest and narrowest

boxes for “Iterative SKQ on ED Real and ED Sim” in Figure 2.1. From the same scarce “real” data

ED Real, the iterative SKQ leads to better fitted models than the regression method with boxes of

close heights (medians) and substantially narrower boxes and whiskers. The medians of the MAPEs

and ERMSEs obtained from these three approaches are given in Table 2.1

Table 2.1: Medians of MAPEs and ERMSEs from macro-replications for mean models, WIP level
[15 60]

Method MAPE ERMSE

Iterative SKQ on ED Real and ED Sim 15.76% 1255.8
Iterative SKQ on ED Real 37.30% 2784.4
Regression on ED Real 30.31% 2479.2

As we will discuss in next chapter, the variance model works better under lower levels of WIP,

So we decreased the WIP level into a range of [15 42]. Table 2.2 shows the MAPEs and ERMSEs

for the new WIP levels. All methods are more stable in the narrower WIP levels.
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Figure 2.1: Comparison of mean models quality for WIP level [15 60].
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Figure 2.2: Comparison of mean models quality for WIP level [15 42].
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Table 2.2: Medians of MAPEs and ERMSEs from macro-replications for mean models, WIP level
[15 42].

Method MAPE ERMSE

Iterative SKQ on ED Real and ED Sim 11.60% 768.8
Iterative SKQ on ED Real 29.15% 1768.9
Regression on ED Real 22.90% 1512.5
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Chapter 3

Variance Estimation

In this research, not only the first but also the second moment of the flow time is of interest. The

flow time variance is particularly important to ensure the reliability of a quoted lead time. To

provide high-quality lead time quotation, we model both the mean and variance of flow time as a

function of the shop status variables. In this chapter we use a dual modeling frame work based on

kriging method to estimate the mean and variance simultaneously. Both simulation and real data

are integrated to improve the fitting of the target response surface for the real system.

The remainder of this chapter is organized as follows. Section 3.1 provides a review of the most

related work. An iterative procedure to model the heteroscedastic variance is given in Section 3.2.

In Section 3.3, the methods are evaluated via empirical results.

3.1 Literature Review

To model the response variance as a function of independent variables, usually multiple replica-

tions are required to provide variance estimates at various factor settings [22]. In the absence of

replications, two main approaches have been developed in the literature for variance modeling:

difference-based methods and resampling methods.

3.1.1 Difference-based Methods

Difference-based method estimates variances based on squared residuals from an initial fit of the

mean model: a mean model is fitted first, and then the variance model is built on the residuals
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obainted from the estimated means and observations.

In this stream of work, Carroll [36] considered a dual model with a parametric mean function

and a kernel regression variance model. The author studied a linear model for the mean with one

regressor and suggested using squared residuals from the means to fit the variance model.

Gasser et al.[37] considered the accuracy of the mean model and its effect on the variance model

in the dual modeling structure. They used nonparametric models for both mean and variance, and

proposed a variance estimate which is independent of the fitted mean model. The variance estimates

are pseudo residuals calculated from neighbor design points.

Muller and Stadtmuller[38] extended the approach presented by Gasser et al. [37]. They sug-

gested a new difference-based scheme and estimated the local variances using several neighbor-

hood design points. They considered a set of weights for each neighborhood design point. Later,

Muller[39] expanded their previous work and considered quadratic forms for variance models.

Hall and Carroll[40] also studied the problem of estimating the variance function in regression

problems. They declared that “such estimation requires simultaneous estimation of the mean and

variance functions”. They also considered nonparametric models for both mean and variance and

discussed the effect of not knowing the mean function on the estimation of variance. They used

squared residuals from the mean function to fit the variance function.

Herrmann[41] provided a dual nonparametric modeling for mean and variance. A new band-

width selector with local variable bandwidth kernel estimators are proposed to include heteroscedas-

ticity. They used a simulation study to evaluate the proposed method. Fan and Yao[42] also modeled

the dual problem with nonparametric model for both mean and variance function. They also used

residuals from the mean model and estimated the variance model by using local polynomial smooth-

ing of the squared residuals. They evaluated the proposed method with financial time series data.

Opsomer et al. [43] presented an iterative procedure for dual modeling. They assumed a linear

model for the mean and kriging variance model. Brown et al. [44] considered a dual modeling prob-

lem with Gaussian nonparametric regression for both mean and variance models. They proposed a

class of difference-based kernel estimators for the variance model.

Wang et al. [45] also considered the mean and variance modeling in nonparametric regression.

They studied the effect of mean model on the estimation of the variance model. Nonparametric

models were considered for both mean and variance, and the minimax rate of convergence was
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derived. They showed that the residual-based estimator performed better than the difference estima-

tor when the mean function is very smooth. However, when the mean function is not smooth, the

difference-based estimator is significantly better.

Cai et al. [46] expanded Wang et al.’s [45] work and proposed a wavelet thresholding approach

to adaptive variance modeling in the heteroscedastic nonparametric regression model. Robinson et

al. [47] proposed a semi-parametric dual modeling approach to simultaneously model the mean and

variance when no replication is available. Their semi-parametric dual modeling approach combines

a nonparametric fit for the mean component and a parametric fit for the squared residuals to model

the variance.

Marrel et al. [48] applied a joint mean and variance modeling framework for heteroscedastic

data. They started with a homoscedastic model for the mean followed by the iterative method of

Robinson et al. [47]. Gaussian process regression was used for modeling both mean and variance.

In their study, variable settings are controllable for sampling data. The authors used all the possible

experiments to cover more space instead of having replications.

Navaee et al. [49] presented a dual semi-parametric modeling approach. The proposed dual

model robust regression (DMRR), is robust against user misspecification of the mean variance mod-

els. They started with fitting a nonparametric model to variance using replicated data. Next, an ex-

pected weighted least square technique is applied to model. Finally the residuals of the fitted mean

model are used to build the robust mean model.

3.1.2 Resampling Methods

The second stream of approaches employs resampling methods to estimate variance in dual mod-

eling. Goldberg et al. [50] used a GP regression to model the mean and another independent GP

to model the logarithms of noise levels. They applied a Markov chain Monte Carlo method and

simulated a sample based on the predictive distribution of the mean model. The sample is used to

estimate the noise level at each point and fit the GP model for the noise level.

Le et al. [51] followed Goldberg et al. [50] and presented an algorithm for dual modeling.

They applied nonparametric regression model and suggested a method to maximize the posteriori

estimation of the exponential parameters.

Kersting et al. [52] proposed a framework similar to Goldberg et al. [50]. They introduced
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a dual model framework with Gaussian process regression models for both mean and variance.

In their method, first a homoscedastic Gaussian Process regression was fitted for the mean model

(GP1) and sample data were simulated based on the predictive distribution. However, to avoid the

significant computational cost of Markov chain Monte Carlo, they used a most likely value of the

variance at each point. The simulated data set was used to estimate an empirical noise level at each

point and fit a second GP2 model for it. Finally a combined GP (GP3) was fitted using the GP2 to

predict the logarithmic noise levels. This process was repeated until convergence.

Boukouvalas and Cornford[53] developed a method based on Kersting et al. [52] to perform the

dual Gaussian Process regression on computer data with replicated observations at some selected

points. They made some corrections to remove the bias due to the log transformation in Kersting et

al. [52].

Titsias and Lazaro[54] improved Kersting et al. [52] and presented a non-standard variation

estimation to enable inferences in heteroscedastic GPs. Their framework applies Bayesian approach

and maximizes an analytically tractable lower bound on the exact marginal likelihood.

3.2 Methodology

As discussed in Chapter 2.2.5, the SKQ developed in Wang et al. [21] is able to model the variability

arising from quantitative as well as qualitative factors, and the heterogeneous variability of random

errors. However, the SKQ estimation requires the target data to have multiple replications at each

factor setting. In this Chapter we use resampling and difference based methods and extend the

framework developed in Chapter 2.2.5 for both mean and variance modeling.

3.2.1 Resampling-based Variance Estimation

Employing resampling, an iterative procedure is adapated to model the mean and variance of flow

time. In this procedure, an initial SKQ is trained based on the available data. Next, the predictive

distribution of the current Gaussian Process is used for resampling and subsequent variance esti-

mation. Herein, we extend Kersting et al. [52] work to a multi data source environment. First,

the developed method in Chapter 2 is applied to infuse two sources of data and estimate the mean

model. Then a resampling process is applied to generate a resample for the real system. Finally,
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a new kriging model is fitted for the variance based on the new sample generated. We also follow

] Boukouvalas and Cornford[53] corrections to estimate the log transformation bias. The iterative

procedure developed in Section 2.2.5 is adapted as follows.

Stage 1: Obtain an estimate of the intrinsic variance matrix Σε as in Section 2.2.5

Stage 2: Estimate the hyperparameters by solving the maximum likelihood problem. Replace Σε

by Σ̂ε in (2.30), and maximize the log-likelihood function with respect to (β0,δ ,θ ,φ).

Stage 3: With the MLE (β̂0, δ̂ 2, θ̂ , φ̂), estimate the expected responses at the non-replicated factor

settings as

Ŷ(wi) = β̂0 + δ̂
2
ν(wi, θ̂ , φ̂)

T [Σ̂M + Σ̂ε ]
−1(Y − β̂01I)). (3.1)

The mean squared error (MSE) also can be obtained as in [21]:

M̂SE[Ŷ(wi)] = δ̂
2
ν(wi, θ̂ , φ̂)

T [Σ̂M + Σ̂ε ]
−1

ν(wi, θ̂ , φ̂)+η
2(1T

I [Σ̂M + Σ̂ε ]
−11I)

−1 (3.2)

where

η = 1−1T
I [Σ̂M + Σ̂ε ]

−1
ν(wi, θ̂ , φ̂)δ̂

2 (3.3)

Stage 4: For each non-replicated data point,

• Randomly sample new data points from the normal distribution

N(Ŷ(wi),M̂SE[Ŷ(wi)]+ Σ̂ε) (3.4)

The new resampled data are represented as:

{(wi,Ys(wi)); i = K +1,K +2, . . . , I;s = 1,2, . . . ,Sp} (3.5)

• Update the variance estimates for non-replicated data based on the estimator suggested by
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[52]

ê2(wi) =
1
Sp

Sp

∑
s=1

(Ys(wi)−Yobs)
2

2
. i = K +1,K +2, . . . , I (3.6)

• Take the logarithm of the sample variances (for both simulation and real systems) and add the

bias corrections suggested by [53]

r(wi) = log(S2
i )+(d +dlog(2)−Ψ(d/2))−1 (3.7)

where S2
i is the sample variance. For replicated data, the sample variance ,V̂ar[ε(wi)], is

calculated as in (2.31). For non-replicated data ,S2
i , is ê2(wi) as in (3.6). In (3.7), d is the

number of samples, and the Ψ digamma function.

Stage 5:

• Fit a deterministic kriging model (DKQ) [27] with qualitative factors to the variance data set

{(wi,r(wi)); i = 1,2, . . . , I} (3.8)

• Update the estimate Σ̂ε by replacing its non-replicated components by ê2(wi) for i = K +

1, . . . , I.

• Repeat Stages 2-5 until there is no significant changes in the DKQ parameter estimates.

3.2.2 Difference-based Variance Estimation

In this section, we employ difference-based methods [36, 37, 38, 55] for variance estimates in the

iterative procedure for dual modeling of flow time. The iterative procedure developed in Section

2.2.5 is adapted as follows.

Stage 1: Obtain an estimate of the intrinsic variance matrix Σε as in section 2.2.5.

Stage 2: Estimate the hyperparameters by solving the maximum likelihood problem as explained

in 2.2.5.

Stage 3: With the MLE (β̂0, δ̂ 2, θ̂ , φ̂), estimate the expected responses at the non-replicated factor

settings as in (2.35).

Stage 4: For each non-replicated data point,
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• Based on the estimates obtained from (2.35), calculate the squared residuals:

ê2(wi) = (Y (wi)− Ŷ (wi))
2 i = K +1,K +2, . . . , I (3.9)

• Take the logarithm of the estimated variance (both simulation and real data).

p(wi) = log(Ti
2) (3.10)

where T 2
i is the estimated variance. For replicated data, the estimated variance ,V̂ar[ε(wi)], is

calculated as in (2.31). For non-replicated data ,T 2
i , is ê2(wi) as in 3.9.

Stage 5:

• Fit a deterministic Kriging model with qualitative factors to the variance data set

{(wi,p(wi)); i = 1,2, . . . , I} (3.11)

• Update the estimate Σ̂ε by replacing its non-replicated components by ê2(wi) for i = K +

1, . . . , I.

• Repeat Stages 2-5 until there is no significant changes in the DKQ parameter estimates.

3.3 Empirical Results

To assess the variance estimation procedures, the case in Chapter 2 was used: two DES models ,

DES Real and DES Sim, representing the real and simulation systems respectively. The estimation

data (ED) set in 2.3.1 was used in this chapter, and the validation data (VD) set in 2.3.2 has been

expanded to include the “true” variances at check points. Based on what is recommended in [21],

the resampling size was set as Sp= 999.

3.3.1 Comparison of Variance Estimation Results

The variance estimation results obtained from the following scenarios are compared.
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• Iterative RS on ED Real and ED Sim: The iterative resampling procedure for variance model

(Section 3.2.1) was applied to model the data ensemble of ED Real and ED Sim with the

predictors being w including the qualitative variable for real or simulation data.

• Iterative DB on ED Real and ED Sim: The iterative difference-based procedure for variance

model (Section 3.2.2) was applied to model the data ensemble of ED Real and ED Sim with

the predictors being w including the qualitative variable for real or simulation data.

• Iterative RS on ED Real: On ED Real alone, the iterative resampling procedure was applied

with the predictors being w excluding the qualitative variable for real or simulation data.

• Iterative DB on ED Real: On ED Real alone, the iterative difference-based procedure was

applied with the predictors being w excluding the qualitative variable for real or simulation

data.

To compare the variance estimation results in a statistical manner, 100 macro-replications were

performed. These macro-replications follow the schemes as briefed in 2.3.1. Simulation runs were

carried for data collection using a different random stream. Each of the four scenarios above leads

to 100 fitted models and 100 MAPEs and ERMSEs. In this chapter, the same equations (2.37 and

2.38) are used to calculate MAPE and ERMSE to measure the deviations of the estimated standard

deviations from their true values.

Figure 3.1(a) and (b) display the MAPE and ERMSE box plots for the four scenarios. Each box

is plotted from the 100 MAPEs or ERMSEs for the corresponding scenario. As can be seen from

the box plots, including simulation data in the modeling of real system’s variance modeling im-

proves the quality of the estimation results substantially. The medians of the MAPEs and ERMSEs

obtained from these scenarios are given in Table 3.1

Figure 3.2 plots the estimated standard deviations resulting from ”Iterative RS on ED Real and

ED Sim” scenario and their “true” values against the index of the check points (horizontal axis).

The check points are roughly sorted based on their WIP levels of the validation set. From the “true”

plots, it can be seen that the standard deviations vary widely over the check-point region, from about

200 to 1100. The standard deviation estimates are not able to capture the drastic changes throughout
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(b) ERMSE box plots.

Figure 3.1: Comparison of variance estimation results using ED over different scenarios.
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Table 3.1: Medians of MAPEs and ERMSEs from macro-replications for variance models using
ED.

Method MAPE ERMSE

Iterative RS on ED Real and ED Sim 36.88% 161.1
Iterative DB on ED Real and ED Sim 39.22% 218.0
Iterative RS on ED Real 83.17% 413.1
Iterative DB on ED Real 94.65% 452.1

the check settings, and only show a slightly increasing trend along the point index (over the WIP

range).
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Figure 3.2: True and estimated standard deviations using ED over WIP

Considering the limitation of the model for the WIP levels, we generate a new Estimation

Data set for both simulation and real system. In the new estimation data set NewED Sim and

NewED Real, the same scheme was employed to generate design points with pre-specified WIP

range being [15,42], instead of [15 60].

Boxplots (Figure 3.4) also show that the predictions are more accurate within new data sets,

however the standard deviation is still underestimated. Table 3.2 shows the numerical results of the

evaluation of different methods using fitting by NewED Sim and NewED Real and estimated with
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the new validation data set.
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Figure 3.3: True and estimated standard deviations using NewED over WIP

Table 3.2: Medians of MAPEs and ERMSEs from macro-replications for variance models using
NewED .

Method MAPE ERMSE

Iterative RS on NewED Real and NewED Sim 23.01% 103.9
Iterative DB on NewED Real and NewED Sim 38.13% 165.7
Iterative RS on NewED Real 85.03% 315.4
Iterative DB on NewED Real 95.66% 347.9
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Figure 3.4: Comparison of variance estimation results using NewED over different scenarios
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Chapter 4

Quoting Lead Time

In the previous chapters, statistical procedures were developed to quantify the flow time characteris-

tics (mean and variance) as a function of the predictor variables w. To quote lead time with desired

service level, percentile estimates of flow time are needed. Thus, in this chapter, a distribution is

fitted based on the mean and variance models, and will be used to provide percentile estimates for

lead time quotation.

In this work, both normal and gamma are considered as potential distribution families for flow

time [22, 14]. Normal distribution is widely used to model continuous quantities with mean and

standard deviation characteristics. Gamma is a highly flexible distribution suitable to model flow

time in manufacturing [14], and has been adopted in a range of lead-time modeling work [56, 57,

58, 59, 6, 1].

4.1 Flow Time Distribution

Normal and Gamma distributions are used to model flow time. Gamma distribution’s probability

density function is:

g(y;α(w),β (w)) =
1

Γ(α(w))β (w)α(w)
yα(w)−1 exp(− y

β (w)
)y > 0, (4.1)

where α is the shape parameter, β the scale parameter. As shown in (4.1), the distribution param-

eters are dependent on the predictor variables w. The relationship among the predictor variables w
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and the flow time distribution is quantified in two steps.

• First, the developed methods in the previous chapters are used to predict mean and variance

of the flow time for a new item upon its arrival (at setting w).

• Second, the predicted mean and variance are employed to estimate the gamma distribution

parameters as follows [1]:

α(w) =
[Ê[Y(w)]]2

V̂ar[Y(w)]
(4.2)

β (w) =
V̂ar[Y(w)]

Ê[Y(w)]
, (4.3)

where Ê[Y(w)] and V̂ar[Y(w)] denote the estimated mean and variance of the flow time, respec-

tively. For the normal distribution the estimated mean and variance of the flow time , Ê[Y(w)] and

V̂ar[Y(w)], can be used to specify the distribution directly.

To quote the lead time for an order upon its arrival with a desired service level, say 95%, the

status variables of the job shop is observed and fed to the mean and variance models of flow time.

With the mean and variance esitmates, the gamma distribution parameters are calculated by (4.2)

and (4.3). The fitted distribution renders percentile estimates of flow time, which serves as the lead

time quoted for a desired service level.

4.2 Empirical Results for Lead Time Quotation

In this section, we estimate the distributions using the New Estimation Data Set (NewED) and New

Validation Data Set (NewV D) (as in 3.3.1). The target service level is set as 95%. The lead time is

quoted as the 95th percentile estimates of the flow-time distribution.

4.2.1 Model Evaluation Criteria

At each check point, a realization of the new job’s flow time is denoted as Y ∗
j ( j = 1,2, . . . ,2400),

and the quoted lead time l j ( j = 1,2, . . . ,2400). The lead time quoted by the approach here is

evaluated based on the following metrics.
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• Achieved service level, which is calculated as

1
2400

∗
2400

∑
j=1

I(Y ∗
j ≤ l j), (4.4)

where I is the indicator function.

• Mean absolute percent error, which is calculated as

1
2400

∗
2400

∑
j=1

|Y ∗
j − l j|
Y ∗

j
. (4.5)

• Mean earliness, which is calculated as

1
2400

∗
2400

∑
j=1

Max(0, l j−Y ∗
j ). (4.6)

• Mean tardiness, which is calculated as

1
2400

∗
2400

∑
j=1

Max(0,Y ∗
j − l j). (4.7)

• Mean missed due date, which is calculated as

1
2400

∗
2400

∑
j=1
|Y ∗

j − l j|. (4.8)

• Mean of the lead time quoted, which is calculated as

1
2400

∗
2400

∑
j=1

l j. (4.9)

4.2.2 Evaluation of Lead-Time Quotation

The two approaches below were applied and used to quote lead times.

Iterative DB on NewED Real and NewED Sim: The iterative difference-based procedure for vari-

ance model (Section 3.2.2) was applied to model the data ensemble of NewED Real and
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NewED Sim with the predictors being w including the qualitative variable for real or simula-

tion data.

Iterative RS on NewED Real and NewED Sim: The iterative resampling procedure for vari-

ance model (Section 3.2.1) was applied to model the data ensemble of NewED Real and

NewED Sim with the predictors being w including the qualitative variable for real or simula-

tion data.

The new estimation data sets (NewED Real and NewED Sim with WIP range of 15 to 42) and

the new validation data set were to used in the evaluation.

Table 4.1: Evaluation of quoted lead times in terms of the performance metrics.
Gamma Distribution Normal Distribution

Iterative DB on Iterative RS on Iterative DB on Iterative RS on
NewED Real and NewED Real and NewED Real and NewED Real and

NewED Sim NewED Sim NewED Sim NewED Sim

Achieved service level 0.93076 0.9614 0.92939 0.95958
Mean absolute percent error 0.21242 0.24128 0.2105 0.23842
Mean earliness(Minutes) 976.53 1115 966.58 1101.2
Mean tardiness(Minutes) 16.209 8.1413 16.524 8.5289
Mean missed due date(Minutes) 993.81 1124.1 986.54 1110.8
Mean of the lead time quoted(Minutes) 5619.6 5770.2 5610.2 5755.9

Table 4.1 compares the two approaches in terms of the six performance metrics with the target

service level being 95%. Compared to the difference-based approach, the resampling-based ap-

proach tends to quote longer lead times (longer mean quoted lead time), resulting in higher service

levels (slightly higher than the target), longer mean earliness, and shorter mean tardiness. The table

does not show significant differences between Normal and Gamma distributions.
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Chapter 5

Summary

In this work, statistical procedures were adapted to assist lead time quotation of a new customer’s

order upon its arrival. The kriging-based modeling procedure integrates well-designed simulation

data and observed real data to achieve models of improved quality for the estimation of both mean

and variance of flow time. Built on the mean and variance models, the flow time distribution is fitted

rendering percentile estimates which can be used for lead time quotation with desired service levels.

Through simulation studies, it has been shown that well-designed simulation data, though devi-

ates somewhat from the real-world system, help to substantially improve the modeling of the real

system’s behavior. The iterative procedures in this work are able to achieve accurate mean flow time

models when synergistically modeling replicated simulation and non-replicated real data. However,

the variance models generated by the procedures fall short in capturing the drastic changes in flow

time variance for the real system, even when the non-replicated real data are supplemented with

replicated simulation data.

The design of simulation experiments carried in this work was developed in Li et al. [1] for

linear regression of simulation data alone. An immediate next step is to develop experimental

design methods for simulation experiments particularly tailored to the modeling of both simulation

and real data.
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Appendix

5.1 Comparison with the most related literature

The following table shows the contribution of this research and compares it to most related work.

Table 5.1: Most related literature
Source Method Data Source Data Type

Li et al. [1] Regression methods with some Pre-
assumed functional forms

Simulation data of a scaled-down semi-
conductor manufacturing system

Replicated

Ankenman et al. [22] Stochastic kriging with only quantitative
factors

Simulation data of a scaled-down semi-
conductor manufacturing system

Replicated

Qian et al. [27] Kriging with both quantitative and qual-
itative factors

Real Data for modeling the thermal dis-
tribution of a data center

The model is not
stochastic

Wang et al. [21] Stochastic kriging with both quantitative
and qualitative factors

Synthetic data based on known func-
tions

Replicated

Marrel et al. [48] Gaussian process regression for model-
ing both mean and variance

Variable settings are controllable for
sampling data from a single source

Non-replicated

This research Stochastic kriging with both quantitative
and qualitative factors

Simulation and Real data Both non-replicated
and replicated

5.2 Configuration of the Example System

In the example system investigated in this paper, customer orders arrive to the system is a homo-

geneous compound Poisson process with a rate ranging within [0.129,0.150] per hour. Order size

(i.e., the number of jobs requested by customer) distribution is discrete uniform with possible values

being 1, 2, and 3. There are 22 processing steps for each job through 10 workstations. Figure 5.1

shows the sequence of required processing steps and the stations that a job has to visit.

As shown in Figure 5.1, Stations 1, 4, 5, 6 and 7 are revisited by jobs. Table 5.2 provides for

each station the number of machines available, batch processing size, mean and standard deviation

of the processing time (Mean PT and Stdev PT), and whether or not the machines are subject to

random failures. Based on Figure 5.1 and Table 5.2, this manufacturing system involves major fea-
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Figure 5.1: Job processing sequence and important workstations.

tures present in real semiconductor fabrication system: re-entrant flows (revisited stations), machine

failures, and batch processing. The processing time at each machine follows a log-normal distri-

bution. Machines at Stations 3 and 7 are subject to random failures. At Station 3, time to failure

(TTF) follows a gamma distribution with parameters (α,β ) = (3600,1), and time to repair (TTR)

has (α,β ) = (600,1.5) for a gamma distribution. At Station 7, both TTF and TTR follow gamma

distribution with the distribution parameters (α,β ) = (720,1) and (α,β ) = (120,1.5), for TTF and

TTR respectively. Besides, Stations 1 and 2 involve batch processing. The maximum and minimum

batch sizes allowed for these two stations are 4 and 2.

Table 5.2: Configuration of the Example System.
Station index # 1 2 3 4 5 6 7 8 9 10

# of machines 1 1 1 2 1 1 1 1 1 1
Batch size (min/max) 2/4 2/4 1 1 1 1 1 1 1 1
Failure No No Yes No No No Yes No No No
Mean PT (min) 78 255 145 63 40 45 37 185 80 82
Stdev PT(min) 8 16 7 4 3 4 4 12 6 7

5.3 Configuration of the System for “Real” Data

The “real” system follows the same configuration as the one in Appendix 5.2, and its parameters are

provided in Table 5.3.

Table 5.3: Configuration of each workstation for collecting real data (time units: min).
Station index # 1 2 3 4 5 6 7 8 9 10

# of machines 1 1 1 2 1 1 1 1 1 1
Batch size (min/max) 2/4 2/4 1 1 1 1 1 1 1 1
Failure No No Yes No No No Yes No No No
Mean PT (min) 70 235 135 56 30 25 35 160 54 54
Stdev PT(min) 7 16 7 4 2 2.4 4 12 4 5
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5.4 Preliminary Analysis

In this section we review the preliminary analysis based on [1, 35].Queueing theory and empirical

experience assert that a manufacturing systems performance is mainly affected by a small number

of important workstations (IWs) which most limit the job flows [60]. The preliminary analytical

analysis is used to obtain a smaller set of predictor variables, w, that have a more significant impact

on flow time and are more possibly to be a major predictor. Usually, stations with high utiliza-

tion rate are considered as IWs and we can use analytical methods to find high utilized stations.

Assuming the arrival rate of jobs is λ and the utilization of each station is ϕ j(λ ); i = 1,2, . . ., let

ϕmax(λ ) = Maxϕ j(λ ), and ϕ j(λ )/ϕmax(λ ) turns out to be a constant ratio. According to the rule of

thumb adopted by [1] if ϕ j(λ )/ϕmax(λ ) > 0.8, then station j is considered as highly utilized. Ap-

plying the analytical method by [35] on the example system shows that highly utilized stations are

3, 4, and 8 and considered as important workstations (IWs). For all the jobs that are in the same step

of their production sequence, a virtual location called buffer is considered [26]. The buffers involve

with IWs are referred as important buffers (IB). IBs include: B2,B3,B6,B10,B13,B16,B17,andB21

which are represented in 5.1 as shaded boxes. A server associated with IWs is considered as an im-

portant server (IS). The predictor variables w can be determined based on identified IBs and ISs.

As mentioned before XORIG Includes: a. The shop status variables SVs; b. The size of a newly

arrived order; and c. The arrival rate of future orders and predictor variables w can be derived

from XORIG. For illustration, we divide variables into work in process (WIP) variables and non-

WIP variables. First consider the WIP variables. In the example system, instead of the number

of jobs at each buffer (SVs.A in XORIG), a set of stage WIP is included in w. Each stage involves

the steps bounded by the IBs in a job sequence. In the example system, there are eight stages

bounded by IB = [B2,B3,B6,B10,B13,B16,B17,B21]. The stage WIP variables are denoted as

xWIP = {xWIP
1 ,xWIP

2 , ,xWIP
S }, where S is the number of stages and xWIP

S the number of jobs in the sth

stage. Based on the stage WIP definition, the 1st stage WIP, xWIP
1 , counts the number of jobs yet

to be processed by the station at the first IB B2; the sth (s = 2,3, . . . ,S) stage WIP xWIP
S counts the

number of jobs between the (s-1)th and sth IB, including those being processed at the (s-1)th IB

and excluding those being processed at the sth IB. The number of jobs that have been processed by

the station at the last IB are not considered as part of the stage WIP variables. The variables xWIP
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are important because they indicated the shop congestion, and are found to be the most important

factors in flow time prediction [61].

5.5 Design of Simulation Experiments and Collecting Data

In this study due to the similarity of the research problems, we used the design of experiment method

suggested by [1]. This method will be briefly discussed in this section. After designing the experi-

ments, the simulation model will be used to collect the data. Duo to the large number of predictor

variables, DOE for the flow time model is challenging. Besides predictor variables include different

types of variables like qualitative variables, continuous quantitative, and discrete quantitative vari-

ables. Furthermore, a design in the space of w is not sufficient to specify the experimental condition

of a simulation run which is represented as XORIG. Hence, a design in the space of w has to be

converted to one in the space of XORIG. An overview of the DOE procedure suggested by [1] is

presented in Figure 5.2. We apply this procedure sequentially in this study.

The first four steps of the procedure (Figure 5.2) involve the design experiments in the space

of w. For WIP variables, [1] selected four levels of the total WIP, Q, and for each level generated

design points for all xWIP variables. They suggest that the lower and upper bounds, QL and QU, can

be chosen based on the observed limits for real or simulation systems. [1] employed the uniform

design algorithm for mixtures developed by [62] to find a vector of the proportions of the total WIP

and generate candidate design points in the space of xWIP. In non-WIP, [1] applied a mixed-level

fractional factorial design [63] with several (typically two or three) levels selected for each variable.

The mixed-level fractional factorial design method is used to obtain a resolution-IV design for non-

WIP variables where each variable has a lower level (LL), high level (HL), and possibly a medium

level (ML). Table 5.4 specifies the levels for non-WIP variables.

In Step 3, [1] implemented the cross array method [63] to generate candidate design points

in the joint space of w = (xWIP,xnon−WIP). The cross array method provides a candidate pool

for D-optimal design in step 4. At each level of WIP, D-optimal method finds K/4 points that

Maxw = |w′w| . Consequently, with four total WIP levels, K design points in the space of w are

generated by the procedure. For simulation data, multiple replications are required at each design

point to quantify the relationship between flow time and independent variables. In step 5, [1] applied
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Table 5.4: Levels of non-WIP variables.
Variable Notation Variable Levels

zBi Two levels with LL and HL corresponding to the idle and busy status of server i.

xCi
Three levels with LL being 0, HL the 95th percentile of the distribution for server i
processing time, and ML the average of LL and HL.

zDi Two levels with LL and HL corresponding to the down and up status of server i.

xEi
Three levels with LL being 0, HL the 95th percentile of the distribution for server i repair
time, and ML the average of LL and HL.

xFi
Three levels with LL being 0, HL the 95th percentile of the distribution for server i time
between failure, and ML the average of LL and HL.

xGi Multiple levels with each one corresponding to a batch size allowed by server i.

xO

Multiple (typically two) levels can be selected based on the distribution of the order size
xO. xO follows a discrete uniform distribution over the range [xL

O,x
U
O ] = [1,3], and its LL,

ML, and HL are set as minimum, average, and maximum of the distribution, respectively.

xR

In this work, the future orders arrival rate xR takes three levels, which correspond
to a steady-state system utilization of 75%, 80%, and 90%, respectively. With selected
utilizations, the arrival rates can be determined using the queueing analytical analysis,
and for the example system, they turn out to be 0.129, 0.136, and 0.150 orders per hour.

the precision of the mean estimate, Ê[Y (wk)], to obtain number of replications at each point, nk,

using a two-stage framework [64]. Where:

Ê[Y (wk)] =
1

nk(0)

nk(0)

∑
j=1

Y j(wk) (5.1)

Stage 1:

At the first stage, [1] performed a relatively small number of simulation runs, nk(0), to collect initial

data. They suggest to choose the number of initial runs based on the recommendations of [64]

and for the example problem they used nk(0) = 50. However, design points in the w space only

involve important non-WIP variables and stage-WIP variables. To run the simulation model, all the

experimental condition (XORIG) is required. So, for each design point in the w space, [1] used the

design conversion process (discussed later in this section) to generate nk(0) points in the space of

XORIG. These nk(0) points in XORIG space corresponds to replications at the w space. Based on the

initial data gathered by nk(0) replications, [1] calculated the mean estimate Ê[Y (wk)] and estimated

variance of Y (wk), at each design point as:

V̂ar[Y (wk)] =
1

nk(0)

nk(0)

∑
j=1

(Y j(wk)− Ê[Y (wk)])
2 (5.2)
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The standard error of Ê[Y (wk)] is estimated as:

SE{Ê[Y (wk)]}=

√
V̂ar[Y (wk)]

nk
(5.3)

Denoting p% as the user-specified precision level, the condition below is used to obtain nk:

SE{Ê[Y (wk)]}
Ê[Y (wk)]

=

√
V̂ar[Y (wk)]

nk

Ê[Y (wk)]
≤ p% (5.4)

Which leads to estimate the number of replications at each point as:

nk =
V̂ar[Y (wk)]

(p%Ê[Y (wk)])2
(5.5)

In this research, we set p% = 1.5% as [1].

Stage 2:

After determining nk for each design point, extra nk− nk(0) runs are performed. Then the design

conversion process it applied to obtain nk − nk(0) points in the XORIG space. The final data set

including K data points, obtained from design of experiment and simulation model is denoted as:

{(wk,Y j(wk));k = 1,2, . . . ,K, j = 1,2, , . . . ,n(wk)} (5.6)

Next, a design conversion process is used by [1] to generate nk points in the space of XORIG based

on a point in w space. [1] declared that different process can be used to generate points in XORIG

because only the important variables in w are used to predict flow time. In their proposed method

they mentioned two issues to be solved. First, the number of jobs at each buffer considering variables

in wk. Particularly, for a stage s, the given XWIP needs to be allocated to each buffer within that

stage. [1] used the uniform design mixtures by [62] to find nk distinct mixtures and used them

to allocate XWIP into buffers. The second issue is non-WIP variables associated with unimportant

stations. Considering SVs.A are already specified, SVs.B in XORIG can be determined. The station

is busy if the WIP is not zero. For the unimportant SVs.C variables, if the server is busy according

to the SVs.A, then set the elapsed processing time as the servers mean processing time. For the

unimportant SVs.DF variables, set the status of unreliable servers to be up and the elapsed up time
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the servers mean time between failures. For the unimportant SVs.G variables, if the batch processing

server is busy according to the SVs.A, then set its batch size as the minimum [1].

Finally, the simulation model for the system is coded in Microsoft Visual C++. The simulation

experiments are carried out following the DOE method mentioned before to develop the models and

quantify the dependence of flow time distribution upon the predictor variables w. For each simula-

tion run, XORIG is specified according to the DOE : a simulation run is initiated with a designed shop

status and a newly arrived order of a designed size at time 0; as the simulation proceeds, orders are

fed into the system at the designed arrival rate; the simulation run is terminated once the new order

generated at time 0 is completed, and its flow time is recorded.
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For each of the 4 level s of the total WIP, construct a D-Optimal design for the flow time model 

estimation following Step 2 – 4:  

 

 

 

 

 

 

 

 

Combine the four D-Optimal designs (corresponding to four total WIP levels) as the final DOE in the 

w space, the space of predictor variables for flow time 

INPUTS 

 A discrete-event simulation (DES) model representing the manufacturing system of interest, along with the 

variable sets 𝑋𝑂𝑅𝐼𝐺 ,  and w 

 Pre-specified number of distinct design points K in the w space; the range of total WIP (work in process) 

denoted as [QL,QU], the range of customer order size [𝑥𝑜
𝐿,𝑥𝑜

𝑈] 

Step 1: Select 4 evenly-spaced levels for the total WIP 

Step 2a: In the subspace spanned by WIP 

variables 𝑥𝑊𝐼𝑃, generate a set of candidate 

design points  

Step 2b: In the subspace spanned by non-WIP 

variables, generate a set of candidate design 

points 

Step 3: Applying cross-array method to obtain a large set of candidate design points in the joint 

space of  𝑥𝑊𝐼𝑃 and non-WIP variables, i.e., the space of w 

Step 4: At each of the 4 total WIP level, search for the D-optimal design with K/4 points in the w 

space, based on the large set of candidate design points obtained from the previous step 

Step 5: For each of K design points in the w space, determine the number of simulation replications at that 

design point, and convert the design in the w space to one in the space 𝑋𝑂𝑅𝐼𝐺 

OUTPUTS 

 The design in the w space including K design points { 𝒘𝒌; k= 1, 2, …, K}; and the number of simulation 

replications {𝑛𝑘; k=1 , 2, …, K} assigned to each design point  

 The converted design in the 𝑋𝑂𝑅𝐼𝐺 space (with  𝑛𝑘
𝐾
𝑘=1  simulation runs) corresponding to the design in the 

w space  

 

Figure 5.2: The design of experiments procedure suggested by [1].
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