
Graduate Theses, Dissertations, and Problem Reports 

2002 

Geospatial and statistical foundations for streamflow synthesis in Geospatial and statistical foundations for streamflow synthesis in 

West Virginia West Virginia 

Annie J. Morris 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Morris, Annie J., "Geospatial and statistical foundations for streamflow synthesis in West Virginia" (2002). 
Graduate Theses, Dissertations, and Problem Reports. 1560. 
https://researchrepository.wvu.edu/etd/1560 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1560?utm_source=researchrepository.wvu.edu%2Fetd%2F1560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Geospatial and Statistical Foundations for Streamflow Synthesis in West 
Virginia 

 
 
 
 
 

Annie J. Morris 
 
 
 
 

Thesis submitted to the  
Eberly College of Arts and Sciences at  

West Virginia University in partial fulfillment  
of the requirements for the degree of  

 
 
 

Masters of Science  
In  

Geology 
 
 
 

 
 

Joseph J. Donovan, chair 
Michael Strager 
Patricia Miller 

 
Department of Geology and Geography 

 
Morgantown, West Virginia 

2002 
 
 
 

Key Words: Streamflow Prediction, Principal Component Analysis 



 

  

 
Abstract 

Geospatial and Statistical Foundations for Streamflow Synthesis in West Virginia 
 

Annie J. Morris 
 

 Streamflow values must be synthesized for locations where flow measurement 
stations, in applications such as the West Virginia SWAP program, are lacking or where 
only intermittent measurements are available (West Virginia Department of Health and 
Human Resources, 1999). This research describes an effort to improve upon the current 
synthetic streamflow model by incorporating geomorphic, geologic, and hydrogeologic 
measurements. Principal components analysis (PCA) was used to derive a set of master 
variables that characterize stream flow in West Virginia based on historical data from 29 
watersheds. The relationships between variables affecting stream flow were also analyzed 
using cluster and correlation analysis to derive an optimum set of variables for predicting 
stream flow in the state. Based on this analysis, there are two categories of watersheds in 
West Virginia. The first is strongly correlated to climatic variables: precipitation, 
temperature, elevation, and groundwater recharge. The second is strongly correlated to 
two geomorphic variables; watershed slope, and percentage of forested area. The spatial 
distribution of the watershed groupings shows that watersheds dominated by the climatic 
component are located along the Allegheny Front while watersheds dominated by the 
geomorphic component are located in the Allegheny plateau and Valley and Ridge 
physiographic provinces. 
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Introduction 

  

Synthesis of stream flow rates is practiced in a number of applications.  Many 

regulatory agencies require stream flow measurements or estimates to regulate pollutant 

discharges and to prepare for potential pollutant spills into streams. Infrequently, 

however, are locations of interest at U.S. Geological Survey gauging stations. Therefore, 

to generate modeled or “synthetic” estimates of flow at such data-poor locations, it is 

common practice to estimate flows from surrogate data. One such approach is to perform 

multivariate regression analysis on historical climatic and stream flow data to estimate 

flow. The current regression-based model for estimating stream flow used by the West 

Virginia Bureau of Public Health (WVBPH) in the Source Water Area Protection 

(SWAP) program is a model of the formula: 

Flow = 1232 + 0.00304 A – 23.6 Tmax + 0.338 Ss                                                (1) 

where A = catchment area (acres), Tmax = maximum temperature (�F), and Ss = stream 

slope (Spatial Analytics, LLC, 2000). 

A multivariate analysis was performed on 13 watersheds in West Virginia using 

combinations of these variables along with Tmin (minimum temperature), P (mean annual 

precipitation), and Sw (watershed slope) (Spatial Analytics, LLC, 2000). The goal of the 

analysis was to determine the best predictors for stream discharge in West Virginia. 

Statewide, the variable set in equation (1) (A, Tmin, and Ss) yielded the highest correlation 

of all possible combinations. A regression analysis was then run using these three 

variables within each stream basin in order to derive local values for regression 

parameters.  
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The cited analysis neglected several factors that may be relevant in West Virginia. 

Variables for groundwater recharge, geology soil, land use/vegetation characteristics, or 

elevation were not included in this study. This is despite the fact that elevation correlates 

strongly with both temperature and precipitation at many locations of the state. On 

average, temperature decreases 6.5�C for each kilometer increase in elevation, and the 

upward motion of air moving across areas of high elevation causes condensation of 

moisture in the atmosphere (Trentwartha , 1980).  Thus higher elevations tend to be 

cooler and wetter. 

Understanding the water budget is an essential first step in estimating streamflow. 

When precipitation falls to the ground, it is either used by vegetation, infiltrates below the 

surface of the earth, or runs off to streams and rivers (Figure 1). Water above the surface 

can be intercepted by trees or evapo-transpired. It can also fall directly on a stream or 

river, or it can fall on the ground and run off to rivers and stream. When water infiltrates 

through the vadose zone, it also has the opportunity to evapo-transpire and be used by 

vegetation. The remaining water infiltrates to the phreatic zone to become part of the 

groundwater. There can also be evapo-transpiration from the phreatic zone. Eventually, 

groundwater discharges to streams and rivers becoming base flow. By calculating a mass 

balance of the water budget, the following water budget can be derived (Dunne and 

Leopold, 1978): 

P = I +AET + OF +�SM + �GWR + GWR                                                    (2) 

Where P = precipitation, OF = overland flow, I = interception, AET = actual 

evapotranspiration, �SM = change in soil moisture, �GWS = change in groundwater  
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Figure 1 – Water budget, after Dunne and Leopold, 1978: Where P = precipitation, OF = 
overland flow, I = interception, AET = actual evapotranspiration, �SM = change in soil 
moisture, �GWS = change in groundwater storage, and GWR = groundwater runoff 
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storage, and GWR = groundwater runoff. Changes in soil moisture and groundwater 

storage can be attributed to evapotranspiration in the vadose and phreatic zones.  

While direct precipitation and runoff contribute to stream flow, groundwater 

discharge also plays an important role. The role of groundwater is especially important 

during low-flow seasons or droughts. The base flow of a stream is groundwater 

discharge, by definition (Keller, 1988). 

Geology influences the proportions of runoff vs. infiltration, and the rate of runoff 

to streams. Local permeability of rocks or sediment beneath streams may influence the 

amount of groundwater loss or gain (Dunne and Leopold, 1978). The geomorphic 

character of drainage basins may also affect surface flow. Elongate drainage basins with 

straight channels tend to transfer runoff to streams far faster than equant drainage basins, 

leaving little time for infiltration or evapotranspiration (Keller, 1988). Geology may also 

influence runoff amounts by the types of soils that evolve from local parent material. 

More clay-rich soils (as derived from shale) may induce high runoff and less groundwater 

recharge (Dunne and Leopold, 1978). Soils with high permeability allow more rapid 

infiltration.  

Land use, soil type, and vegetation cover all play a large role in how much water 

is delivered to a stream during a precipitation event, yet these variables were not included 

in the WVBPH analysis. A site-specific analysis in the midwestern United States showed 

that 49% of a precipitation event falling on barren land will run off and 51% will either 

infiltrate or evapotranspire (Dunne and Leopold, 1978). In contrast, less than 1% of a 

precipitation event will run off in a forested region of the midwestern United States 

(Dunne and Leopold, 1978). Despite the high percentage of forestation in West Virginia, 
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there are local unforested areas due to urbanization, agriculture, and mining. These areas 

may have a much higher runoff rate than forested areas. This potential for large 

differences in runoff rates warrants further analysis of the impact of land use and 

vegetation type on stream flow.  

These variables (precipitation, land use, vegetation, soils, underlying geology and 

groundwater recharge rate) also affect stream flow and should not be ignored in the 

synthesis of streamflow. The challenge, however, is to determine the optimum selection 

and quantification of these variables of available, as well as the necessary data 

distillation.  

Relevant Prior Investigations 

In a study of relationships between flow and several geomorphic variables for 

small watersheds in Kentucky, Haan and Read (1970) generated a predictive flow 

equation for estimation of mean annual runoff. This analysis used multiple regression to 

derive a prediction equation employing the following variables; stream discharge, mean 

annual rainfall, drainage basin area, average land slope, axial basin length, perimeter, 

basin diameter (the largest circle that fits within the basin), basin shape factor, stream 

frequency and a relief ratio (Haan, 1977). Using these data, a PCA was performed on all 

variables except drainage basin area in order to reduce them to components for use as 

independent variables (Haan, 1977). It was assumed that mean annual rainfall was an 

independent variable and mean annual runoff was the only dependent variable. Using the 

PCA results, a multiple regression analysis was performed to create a flow prediction 

equation (Haan, 1977). 
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 A similar study was performed by Benson (1962b) on factors that influence floods 

in humid regions of diverse terrain. Data from the humid New England Region, where the 

historical climate record is long and spatially uniform, was used for this study. The author 

split these variables into two types, topographic and meteorologic. Topographic variables 

included drainage area, channel slope, profile curvature, shape factors, storage area, 

altitude index, stream density, soils, cover, land use, and urbanization (Benson, 1962b). 

Meteorologic variables were rainfall, snowfall, and temperature (Benson, 1962b). Based 

on a correlation analysis the author found that drainage area, channel slope, storage, 

rainfall intensity, temperature, and an orographic factor were most influential on floods in 

New England.  

 Benson (1964d) compared annual peak discharges to a number of hydrologic 

factors in the western Gulf of Mexico basin. Similar to Benson (1962b), drainage area, 

channel slope, altitude, length of basin, a shape factor, channel geometry, mean annual 

rainfall, and mean annual snowfall were used in multiple regression analysis. Benson 

added variables for stream order, soil, geology, orientation, forested area, basin rise, 

rainfall intensity, thunderstorm days, water content of snow, winter temperature, spring 

temperature, wind, evaporation, and a monthly runoff ratio. Benson’s analysis showed 

that discharge was best correlated with drainage basin area, channel slope, storage, 

rainfall intensity, channel length, ratio of runoff to precipitation during the month of peak 

annual discharge, and number of thunderstorm days. 

A procedure for estimating annual streamflow was developed for the unglaciated 

Allegheny Plateau Division by Brakenseik (1961). The variables mean annual 
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streamflow, mean annual precipitation, watershed area, perimeter, length of principal 

watercourse, and maximum relief were used to create the equation  

Qt = Q(1 +CVq K)                                                                                       (3) 

where Qt is the predicted annual stream flow, Q is the average annual streamflow, CVq is 

a variability parameter for annual streamflow, and K is the standard normal deviate for a 

probability level of (1/T). The streamflow variability parameter is the coefficient of 

variation associated with an appropriate record of annual precipitation.  

This study created a predictive equation using the variables: watershed area, perimeter, 

relief ratio, and annual average precipitation. It was found that either watershed area or 

watershed perimeter, along with precipitation, best predicted average stream flow.  

Q = 0.01334 P-1.915A0.026                                                                             (4) 

were Q is the average streamflow, P is the average precipitation, and A is the watershed 

area. Their data set yielded an R2 of 0.86.  

Diaz and others (1968) applied principal components analysis (PCA) and factor 

analysis to annual precipitation and runoff data for fourteen small agricultural watersheds 

in Ohio and seven watersheds in Texas. PCA was used to establish an orthogonal set of 

variables from the original data. The ratio of runoff to precipitation was used as the 

dependent variable, while drainage basin area, soil type, internal drainage, degree of 

erosion, land capability class, cultural practices, and drainage basin slope were chosen as 

independent variables. Factor 1 accounted for 45.5 % of the variance and determined that 

the greatest variation of the runoff/ precipitation ratio had the largest covariance with 

watershed area. Factor 2 only accounted for 12.9% of the variance and was associated 

with watershed slope. For Texas watersheds, the greatest variance (Factor 1) was due to 
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the soil type. Factor 2 was associated with cultural practices while Factor 3 was 

associated with land capability. These three factors accounted for 97.5% of the total 

variation in the data set. The use of PCA in this study showed the effect of several 

geomorphic factors on stream flow.                                                                                                                                      

Haan and Allen (1972) performed a study comparing multiple regression and 

PCA regression for predicting stream flow. Eight geomorphic variables were collected 

for 13 small agricultural watersheds in Kentucky. These variables were area, land slope, 

axial length, perimeter, diameter of largest circle that can be drawn completely within the 

watershed, a dimensionless shape factor, streams per square mile, relief ratio, and mean 

annual precipitation. Results showed that area, slope, shape, and stream frequency were 

the most important variables for predicting streamflow. This study suggests that PCA 

should be used to extract the important variables for describing a system (Haan and 

Allen, 1970). 

Geographic Information Systems 

Geographic Information Systems (GIS) are a computer-based system that enters, 

stores, manages, analyzes, and displays spatial, and associated nonspatial data (Davis, 

1996). These systems are composed of software, data, hardware and organization and 

people. The combination of these components allows for visualization of spatial data, and 

the creation of spatial models. This study used the ESRI software ArcView GIS 3.2 for 

data collection and spatial analysis.  

 Spatial analysis, among the most important applications of GIS, requires logical 

connection between attribute data and map features. Two types of operations can be 

performed within spatial analysis: (1) spatial queries and (2) the generation of new data 
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sets from the original data. To accomplish this, ArcView GIS 3.2 utilizes spatial data of 

one of two types: vector or raster. Vector data are points, lines, or polygons, all composed 

of a location and a direction. Raster data is composed of regularly spaced cells arranged 

in rows and columns, called “grids”. Each cell has a uniform size and is assigned a value 

according to the data that is being analyzed. To perform calculations on raster data, the 

Spatial Analyst extension must be used, a tool kit for understanding and analyzing spatial 

data. It allows the user to perform analysis on and between multiple data layers. The 

Spatial Analyst functions used in this study were map query, find distance, summarize 

zones, map algebra, cell statistics, derive slope, fill sinks, flow direction, and watershed.  

 A customized ArcView GIS interface called Watershed Characterization and 

Modeling System 2.8 (WCMS) was created by the Natural Resource Analysis Center 

(2001) for the West Virginia Division of Environmental Protection (WVDEP). WCMS 

combines a wide variety of spatial data layer and water quality modeling components, 

along with watershed delineation, determination of average flow conditions, and tracking 

overland flow capabilities. This interface was created to facilitate access to West Virginia 

watershed data.  

 One of the tools available in WCMS is the watershed delineation tool. This tool 

defines the upstream watershed from any point on a stream by using several Spatial 

Analyst functions. First, raw DEMs are converted to ARC GRID format. Then, all sinks 

in the grid are filled. This is done in order to remove imperfections in the data and enable 

flow direction to run properly (Perez, 2000). Then a flow direction grid is created using 

the flow direction function to show the direction of flow from each cell in the elevation 

grid to its steepest down slope neighbor. Finally, the Watershed function is performed 
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using a user defined point. The Watershed function returns the upstream drainage area 

based on the flow direction grid from the user-defined point (Jenson and Domingue, 

1988). 

Purpose 

 The purpose of this study is to improve the understanding of the interaction 

between variables used for generating synthetic stream flow in West Virginia by 

incorporating appropriate variables for geomorphic, climatologic, and geologic 

characteristics. Data from 29 gauging stations, with at least thirty years of continuous 

record, will be used to develop this dataset. Potential applications include improved 

delineation of Zones of Critical Concern (ZCC) in source-water analysis by West 

Virginia or other states. ZCCs are areas within 1000 ft one each bank of a principal 

stream an d a 5 hour travel time upstream of a water intake (West Virginia Department of 

Health and Homan Resources, 1999). 

Objectives  

The first objective of this study is to choose optimum variables for predicting 

streamflow in West Virginia. This will be based on previous research and availability of 

data for West Virginia. The second objective is to use statistical analysis, including 

correlation analysis, PCA, and cluster analysis, to define the optimum quantification of 

these variables for predicting streamflow in West Virginia. Finally, spatial analysis will 

be used for the visualization and interpretation of the results of the statistical analysis. 
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Methodology 

Dependent Variables 

Stream flow 

 Monthly average stream flow records were collected from 29 USGS gauging 

stations throughout the state (Figure 2). Gauging stations were chosen based on three 

criteria. First, to avoid redundancy, the drainage basin for one station could not overlap 

that of another station used in this study. The second criterion was that the stations were 

not below a dam. The third criterion was that record length for flow matched or exceeded 

the record length for precipitation and temperature (1960 to 1990). Only twenty stations 

were acceptable under all three criteria, although many gauges in the state met the only 

the first two criteria. To maximize the size of the data set, the assumption was made that 

long term climatic averages could be used (Table 1). Stations were chosen with periods 

of records as close to that for climatic data as possible. 

Independent Variables 

Spatial Variables 

Watershed Delineation 

 Watersheds were measured and employed as drainage areas upstream from each 

gauging station. This area was found using a 30-meter Digital Elevation Model (DEM) 

and the Watershed Characterization and Modeling System (WCMS) version 2.8 (Natural 

Resource Analysis Center, 2001). The DEM used in this study is part of the National 

Elevation Dataset of 1999 created by the U.S. Geological Survey. It uses 30 m cells and 

has been corrected to fill areas where there were inaccuracies between adjacent 7 1/2-

minute quads. WCMS was used to delineate the upstream drainage basins for each of the  
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Figure 2 – Location of associated studied watersheds and USGS gauging stations 
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 Table 1 - USGS Gauging stations used in this study 

ID STATION NAME RECORD 
1604500 PATTERSON CREEK NEAR HEADSVILLE, WV 1939-1995 
1605500 SOUTH BRANCH POTOMAC RIVER AT FRANKLIN, WV 1941-1995 
1606000 N F SOUTH BR POTOMAC R AT CABINS, WV 1941-1980 
1608000 SO FK SOUTH BRANCH POTOMAC R NR MOOREFIELD, WV 1929-1995 
1611500 CACAPON RIVER NEAR GREAT CACAPON, WV 1923-1995 
1616500 OPEQUON CREEK NEAR MARTINSBURG, WV 1948-1995 
3051000 TYGART VALLEY RIVER AT BELINGTON, WV 1908-1995 
3052000 MIDDLE FORK RIVER AT AUDRA, WV 1943-1995 
3053500 BUCKHANNON RIVER AT HALL, WV 1916-1995 
3061500 BUFFALO CREEK AT BARRACKVILLE, WV 1908-1995 
3062400 COBUN CREEK AT MORGANTOWN, WV 1966-1994 
3065000 DRY FORK AT HENDRICKS, WV 1941-1993 
3066000 BLACKWATER R AT DAVIS, WV 1922-1995 
3069000 SHAVERS FORK AT PARSONS, WV 1911-1993 
3114500 MIDDLE ISLAND CREEK AT LITTLE, WV 1916-1995 
3155500 HUGHES RIVER AT CISCO, WV 1929-1994 
3182500 GREENBRIER RIVER AT BUCKEYE, WV 1930-1995 
3185000 PINEY CREEK AT RALEIGH, WV 1952-1982 
3186500 WILLIAMS RIVER AT DYER, WV 1930-1995 
3187500 CRANBERRY RIVER NEAR RICHWOOD, WV 1945-1995 
3189000 CHERRY RIVER AT FENWICK, WV 1930-1982 
3190400 MEADOW RIVER NEAR MT. LOOKOUT, WV 1967-1995 
3200500 COAL RIVER AT TORNADO, WV 1909-1995 
3202400 GUYANDOTTE RIVER NEAR BAILEYSVILLE, WV 1969-1995 
3204500 MUD RIVER NEAR MILTON, WV 1939-1980 
3206600 EAST FORK TWELVEPOLE CREEK NEAR DUNLOW, WV 1965-1995 
3213000 TUG FORK AT LITWAR, WV 1931-1984 
3213500 PANTHER CREEK NEAR PANTHER, WV 1947-1986 
3194700 ELK RIVER BELOW WEBSTER SPRINGS,  WV 1909-1916 
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gauging stations used in this study (Figure 2). In ArcView, the resulting temporary 

shapefiles were converted to permanent shape files for vector calculations and to grids 

with 30m cells for raster calculations. Drainage basin area was calculated using WCMS 

(Table 2). 

Elevation (Emax, Emin, Emean, ESD, and Erange) 

 Elevation of each watershed was determined using ArcView from the DEM. The 

analysis was masked to the extent of each watershed. The map calculator was used to 

multiply a grid of each watershed by the DEM, creating an output DEM the same size as 

the input watershed with a 30 m cell size. Statistics were then calculated on the value 

field of this grid’s attribute table, yielding the maximum elevation, minimum elevation, 

mean elevation, change in elevation, and the standard deviation of the elevation (Table 

2).  

Stream Length (L)  

 Stream length was calculated as the length of all contributing streams in each 

watershed. Previous studies calculated stream length as the length of the mainstem 

however, in this case, distinguishing the mainstem from tributaries in this study was 

impractical due to the extremely dendritic nature of several of the small watersheds, with 

numerous long tributaries. 

 For length calculation, the select by theme tool was applied to all stream 

centerlines within each watershed. The stream centerlines consists of the centerline of 

each stream represented by numerous stream segments mapped a 1:100,000 National 

Hydrography Dataset (NHD) compiled by the USGS.  Portions of the shapefile were 

updated to 1:24,000 scale as an intermediate product before the 1:24,000 scale NHD was 

available. All the stream centerline segments that were completely contained within each  
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 Table 2 - Geomorphic Variables  

Watershed          
 A L Ss Ws Emax Emin Emean Erange Esd 
          

Blackwater River 86 170059.16 0.3 6.08 1347 923 1133 424 121
Buckhannon River 277 718368.84 1.4 11.5 1199 412 805 787 226
Buffalo Creek 115 260493.11 1.5 13.39 578 270 394 248 71
Cacapon River 677 1360389.57 2.7 10.78 1026 139 584 887 256
Cherry River 150 289923.32 5.5 13.35 1373 636 1005 737 213
Coal River 862 1628308.75 1.4 20.4 1069 167 616 902 259
Cobun Creek 11 24432.26 1.1 9.86 676 270 473 406 118
Cranberry River 80 152024.54 3.2 14 1400 650 1025 750 217
Dryfork 345 656574.15 1.9 14.24 1466 575 989 951 274
East Fork Twelvepole 39 72039.67 1.6 17.72 559 220 384 339 95
Elk River 266 486888.09 5 17.57 1498 304 896 1185 342
Greenbrier River 540 794243.6 0.6 14.44 1484 632 1059 852 246
Guyandotte River 306 7518883.21 4.9 18.12 1084 347 716 737 213
Hughes River 452 1133355.81 1.9 13.4 429 182 305 247 71
Meadow River 365 743383.31 0.2 11.99 1328 373 851 955 276
Middle Fork River 149 373967.79 4.4 12.23 1171 520 846 651 188
Middle Island Creek 458 986810.07 1.1 15.01 506 189 346 317 91
Mud River 256 516758.817 0.8 14.35 512 172 340 307 97
N Fork S Br Potomac 314 560115.48 4.9 20.13 1481 381 900 1163 336
Opequon Creek 272 483326.06 2.3 4.1 506 106 304 400 115
Panther Creek 31 71144.77 5.1 19.7 731 312 521 419 119
Patterson Creek 219 6393.73 2.4 10.84 519 195 355 324 93
Piney Creek 52 108489.73 1 11.14 1041 635 838 406 118
S fork S Br Potomac 283 517354.54 4.7 18.27 1329 261 793 1068 308
Shavers Fork 214 385162.23 5 14.47 1490 0 933 1490 288
So Branch Potomac 182 236136.82 1 13.11 1391 520 953 871 250
Tug Fork River 504 1060948.1 1 20.35 1046 263 662 783 222
Tygart River 408 965539.13 2.2 13.63 1469 501 985 968 280
Williams River 128 142337.37 1.1 14.52 1437 664 1049 773 222
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watershed were selected. Stream centerlines were used because the length of the right and 

left bank of a river can vary. The vector stream centerline shapefile was clipped using the 

geoprocessing wizard to include only stream centerlines within each watershed boundary. 

Field statistics were then performed on the length field in the attribute table. The results 

are shown in Table 2 as total stream length. 

Stream Slope (SS) 

 The stream slope for each watershed, except North Fork of the South Branch of 

the Potomac, South Fork of the South Branch of the Potomac, South Branch of the 

Potomac, and Opequon Creek, was found by analysis of a stream slope grid found in 

WCMS. The stream slope grid was developed from a raster version of the stream 

centerline shape file, with each cell containing an interpolated elevation value from the 

DEM. Then stream reaches were defined as the segment of a stream that begins either at 

the headwater or the confluence of two streams and ends at the next confluence of two 

streams. The slope was then calculated for each stream reach as the change in elevation 

over the stream length. Each stream reach has the same slope value (Natural Resources 

Analysis Center, 2000). In order to calculate the average stream slope of each watershed 

in this study, a grid of each watershed was multiplied by the stream slope grid. Field 

statistics were performed on the resulting attribute tables. The median stream slope for 

each watershed was taken from these statistics (Table 2).  

Because the headwaters of North Fork of the South Branch of the Potomac, South 

Fork of the South Branch of the Potomac, South Branch of the Potomac, and Opequon 

Creek are in Virginia, the above method for finding stream slope could not be used, as the 

stream slope grid is only available in West Virginia. For streams with headwaters in 

Virginia, stream slope was calculated as the change in elevation divided by the length of 
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the mainstem of the stream (Table 2). Mainstem length was found by selecting the stream 

centerline segments along the mainstem, then summing their lengths. The change in 

elevation was calculated from the DEM. The high and low elevations along the mainstem 

of the stream or river were found by using the identification tool with the DEM active. 

The slope was then calculated by dividing the change in elevation by the stream length. 

Steepness Index (Sw) 

 GIS was used to calculate the average slope within each watershed. The calculate 

slope function in Spatial Analyst was used to creates a 30m grid of the average slope in 

the study area from a 30m DEM (Figure 3). ArcView calculates slope by identifying the 

maximum rate of change from each cell to its neighbors. The output grid values express 

slope in degrees. The map calculator was used to multiply a grid of each watershed by the 

grid of the slope with an analysis mask of each watershed. The result was a grid of the 

slope within each watershed. The summarize zones tool was then used to determine the 

average slope within each watershed (Table 2). 

Geologic Variables 

Land Use / Land Cover (F) 

 The land use/ land cover (LULC) variable was calculated from the Gap LULC 

grid. This grid was created by the Natural Resources Analysis Center (NRAC) at West 

Virginia University from 1:50,000 scale base maps (Figure 4). The LULC grid was 

multiplied by a grid of each watershed. The resulting attribute table for each watershed 

was used to calculate the percent forested area. This was done by summing the number of 

cells representing the 15 forest classes, then dividing this sum by the total number of cells 

in each watershed (Table 3). 
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Figure 3 - %Slope of land surface derived from Digital Elevation Model 
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Figure 4 – Land use/ land cover data for West Virginia 
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Table 3 - Geologic Variables 

       
 %F R S S G L/W 
       

Blackwater River 71 22.5 c 3 3.34 0.4705 
Buckhannon River 81 21.4 c 3 1.13 3.667 
Buffalo Creek 85 21.4 b 2 1.13 2.1845 
Cacapon River 85 8.7 c 3 1.26 4.2003 
Cherry River 97 27.8 c 3 3.34 0.9403 
Coal River 93 11.9 d 4 3.34 2.2263 
Cobun Creek 82 21.4 c 3 1.13 4.2212 
Cranberry River 97 31.6 c 3 3.34 3.6107 
Dry Fork 89 21.4 c 3 0.4 2.7259 
East Fork Twelvepole 97 12.4 c 3 3.34 3.5389 
Elk River 95 23.9 c 3 1.13 5.815 
Greenbrier River 88 21.1 c 3 3.34 3.6836 
Guyandotte River 94 14.5 c 3 1.13 1.624 
Hughes River 83 7.1 b 2 1.13 1.3853 
Meadow River 84 20.6 c 3 3.34 2.7506 
Middle Fork River 94 24.5 c 3 3.34 4.8624 
Middle Island Creek 87 8 b 2 1.13 1.9023 
Mud River 91 11.9 d 4 1.13 1.7573 
N Fork S Br Potomac 88 11 c 3 6.45 6.3809 
Opequon Creek 36 9.8 b 2 0.46 2.7001 
Panther Creek 99 11.1 b 2 3.34 1.6779 
Patterson Creek 97 7.3 c 3 6.45 2.7997 
Piney Creek 80 11.9 c 3 3.34 0.4994 
S Fk S Br Potomac 89 9 c 3 3.34 14.9865 
Shavers Fork 96 24.8 c 3 6.45 7.7616 
S Branch Potomac 73 11.6 b 2 1.26 2.2989 
Tug Fork 96 11.3 b 2 3.34 1.365 
Tygart River 74 15.4 c 3 0.4 5.7814 
Williams River 97 26.4 c 3 3.34 2.7285 
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 Groundwater Recharge (R) 

Kozar and Mathes(2001) published mean ground-water recharge rates estimated 

from stream flow data at 41 West Virginia gauging stations. Recharge rates were 

calculated by using the recession-curve displacement method (Rorabaugh, 1964). The 

study did not incorporate evaporation or transpiration into the recharge model. Twenty-

three of the gauging stations used by Kozar and Mathes (2001) were in the watersheds 

used in this study. The values calculated by Kozar and Mathes (2001) were used as the 

recharge value for those watersheds (Table 3).  

 Kozar and Mathes derived 41 spatially-averaged recharge estimates from six large 

river basins that “share similar geologic, topographic, and climatalogical settings” (Kozar 

and Mathes, 2001). Kozar and Mathes did not use any stations on the Buckhannon River, 

Buffalo Creek, Cobun Creek, Mud Creek, or Dry Fork in their study.  As an estimate of 

recharge for these stream basins, the average values for the large river basins ( Potomac, 

Little Kanawha, Ohio tributaries, Monongahela  , Kanawha (western portion), Kanawha 

(eastern portion), Tug, Twelvepole and Guyandotte basins were employed (Table 3). It is 

recognized that use of average data for some watersheds and calculated data for others 

introduces some inconsistency into the data set.  

Soils (S) 

 Soils data for the study area were obtained from the State Soil Geographic 

(STATSGO) database for Virginia and West Virginia. This data set consists of digital soil 

maps originally generated by the National Cooperative Soil Survey (STATSGO 

Metadata) These maps are at a 1:250,000 scale and are in the form of shape files. The  
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Figure 5 – Hydraulic rating of soils: A = high infiltration capability, B = moderate 
infiltration capability, C = low infiltration capability, D = very low infiltration capability 
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soils maps for both states were merged using the merge theme command in the ArcView 

geoprocessing wizard. 

 A polygon of each watershed was clipped from the soils shapefile using the 

geoprocessing wizard, then converted to a grid. Once each grid was complete, the legend 

was set to display the attribute hydraulic rating (Figure 5). The hydraulic rating of a soil 

is a classification system from A to D based on the soil’s infiltration capacity. According 

to the National Cooperative Soil Survey (1976), 

“Hydrologic soil groups . . . Refers to soils grouped according to their runoff-
producing characteristics. The chief consideration is the inherent capacity of soil 
bare of vegetation to permit infiltration. The slope and the kind of plant cover are 
not considered, but are separate factors in predicting runoff. Soils area assigned to 
four groups. In group A are soils having a high infiltration rate when thoroughly 
wet and having low runoff potential. They are mainly deep, well drained, and 
sandy or gravelly. In group D, at the other extreme are soils having a very slow 
infiltration rate and thus a high runoff potential. They have a claypan or clay layer 
at or near the surface, have a permanent high water table, or are shallow over 
nearly impervious bedrock or other material. A soil is assigned to two hydrologic 
groups if part of the acreage is artificially drained and part is undrained.” 

Statistics were performed on the hydraulic rating field of the attribute table to determine 

the majority rating for each watershed.  

 As nominal data can not be used in PCA, a data conversion to ordinal scale was 

performed. The hydraulic rating for each watershed was assigned a value 1 for Hydraulic 

rating A (minimum runoff yield) through 4 for Hydraulic rating D (maximum runoff 

yield) was assigned a 1 because this conversion gives ordinal values that can be used in 

PCA. Non-ratio data cannot be normally distributed unless the number of cases is very 

large. 

Geology (G) 

 To derive quantitative variables for geology in West Virginia and Virginia, a 

digital version of the 1:250,000 State Geologic Map (West Virginia Geological and 
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Economic Survey, 1968) found in WCMS was used.  In 1998 the WV Department of 

Environmental Protection digitized the map. A new attribute field was created for this 

study integrating group and formation names (Figure 6).  

 A shale-to-sandstone ratio was calculated for each of the categories shown in 

Table 4 using the bedding thickness of each lithology from county reports. The location 

used for each formation was one of the watersheds in this study (Figure 6). The average 

value of sandstone to shale was calculated using the summarize-by-zones tool in 

ArcView.  

Shape Factor (L/W) 

 The length to width ratio (L/W) was calculated by using the measure distance tool 

in ArcView. First the median length was calculated, then the median width. The width 

was measured upstream of where the watershed tapers to its outlet. Length was measured 

from the outlet to the headwaters. Then median length was divided by median width as a 

measure of basin shape factor (Table 3). 

Climatic Variables 

 
Temperature (Tmax, Tmin) 

 
 Temperature data for the study area was obtained from ZedX (2001), a 

compilation of climatological data from 1960 - 1990 from climatological station records 

compiled by the National Climatic Data Center (NCDC). An algorithm was created to 

transform climate data  for 1960-1990, including average maximum temperature (Tmax), 

average minimum temperature (Tmin), and mean annual precipitation (Pmean),  to find  
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Figure 6 – Modified geologic map for West Virginia 
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Table 4 - Conversion of geology to shale/sandstone ratio 

   
   

Geologic Age Range Map Unit Shale/Sandstone 
Upper Penn      Dunkard - Conemaugh 1.13 
Lower Penn Pottsville – Allegheny 3.34 

Mississippian Bluestone - Pocono 0.4 
Devonian Hampshire - Marcellus 6.45 
Dev/Sel Oriskany - Tuscarora 1.26 

Cam/Ord Stonehenge - Weverton 0.46 
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monthly and annual average temperaturesfor stations across West Virginia and Virginia.  

These data were then gridded to approximately one square kilometer cell size.  

Figures 7 and 8 show the annual Tmin and Tmax, respectively, for the study area 

from 1960-1990. Analysis masks of each watershed were used in the calculation of Tmax 

and Tmin, and the output grid was set to have a cell size equal to the cell size of the 

original temperature grids. A grid of each watershed multiplied both the Tmax grid and the 

Tmin grids. Then field statistics were performed on the value field in the attribute table of 

each output grid. The statistics returned the average Tmax and Tmin for each watershed 

(Table 5).  

Precipitation (Pmean, PSD) 

 The precipitation data used in this study was also taken from ZedX (2001) as 30 

year averages (1960 to 1990) interpolated across the state (Figure 9). Similar to the 

temperature data, the average monthly precipitation from climatalogical stations were 

averaged to create the annual average precipitation (Pmean) (ZedX, 2001) 

The precipitation grid was multiplied by a grid of each watershed. The result was 

a precipitation grid for each watershed. Statistics were performed on the value field of the 

attribute tables to calculate the Pmean and the standard deviation of the annual average 

precipitation (PSD). 

Correlation Analysis 

 The covariance between variables is a measure of their joint variation  about a 

common bivariate mean (Davis, 1986). In order to compare the two variables, the 

correlation coefficient, a measure of the strength of this covariance, is calculated by the 

cross-variation of variables (Davis, 1986). A correlation coefficient of +1 indicates a 

perfectly-linear positive relationship, whereas a correlation of –1 indicates a perfectly- 
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Figure 7 – Average annual minimum temperature 
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Figure 8 – Average annual maximum temperature 
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Figure 9 – Average annual precipitation 
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Table 5. - Temporal Variables 

 
 Tmax Tmin Pmean Psd 

 
Blackwater River 53.9 36 53.97 1.95
Buckhannon River 58.3 38.1 47.99 3.54
Buffalo Creek 61.6 39.4 42.35 0.34
Cacapon River 59.8 38.7 44.3 1.94
Cherry River 57.5 37.6 54.12 2.95
Coal River 62.6 40.8 46.46 2.56
Cobun Creek 60.5 38.6 43.76 1.46
Cranberry River 56.3 37.4 55.27 2.89
Dry Fork 55.8 36.6 52.45 3.62
East Fork Twelvepole 64.9 41.8 44.18 0.47
Elk River 57.5 38.4 51.85 4.18
Greenbrier River 56.3 37.4 55.27 2.89
Guyandotte River 61.9 40.3 48.63 2.37
Hughes River 63 40.7 42.24 0.41
Meadow River 58.8 38.6 50.99 3.34
Middle Fork River 58.2 37.5 48.53 2.54
Middle Island Creek 62.3 40 42.11 0.6
Mud River 64.7 41.8 43.44 0.63
N Fork S Br Potomac 57.7 36.8 49.63 4.09
Opequon Creek 57.7 36.8 49.63 1.5
Panther Creek 64.6 41 46.88 0.75
Patterson Creek 62.4 40.1 42042 0.42
Piney Creek 61.1 39.7 49.84 1.85
S Fk S Br Potomac 63.6 37.7 46.22 2.69
Shavers Fork 55.7 36.8 54.19 4.77
S Branch Potomac 59.2 37.1 48.92 2.45
Tug Fork 63.1 40.9 46.1 1.93
Tygart River 56.4 37.1 49.98 4.07
Williams River 56.5 37.3 54.88 3.36
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linear inverse relationship (Davis, 1986). Variables may be strongly correlated in a 

nonlinear way but have a low correlation coefficient.  

Principal Component Analysis 

 PCA is a multivariate technique used to remove or filter intercorrelation between 

variables. Its objective is to transform the original variables into an identical number of 

uncorrelated or orthogonal components called eigenvectors (Haan, 1977). The number 

ofeigenvectors is equal to the number of original variables . These eigenvectors have 

eigenvalues, which are measures of their relative strength. An eigenvector with a high 

eigenvalue accounts for a large portion of the variance in the data set.   The eigenvalues 

also are normalized to the sum of the number of original variables. 

 Each variable used in the analysis has a loading on each eigenvector. These 

loadings can be used to attach physical significance to the components. If a particular 

component is highly correlated with 1, 2, or 3 variables, then the component is a 

reflection of these variables (Haan, 1977). The sign of the loading indicates the 

relationship between each variable and the vector. For example, as elevation increases, 

temperature decreases. These two variables are strongly, but inversely, correlated. Both 

variables might display a high loading on the same eigenvector but with opposite signs. 

Observations are also given scores on eigenvectors. Analogous to the loadings, 

observations with high scores on an eigenvector are strongly influenced by that 

eigenvector. 

PCA was chosen for this study because of the expected strong intercorrelation 

between variables that influence stream flow. The goal of the PCA is to create a short list 

of eigenvectors (2-5) that are independent (orthogonal) of one another but contain most 
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of the covariance information in the original dataset.  These data may then be used in a 

regression analysis, as has been done many times in investigations of factors affecting 

streamflow. For example, McCuen and Snyder (1986) compared monthly runoff and 

precipitation to streamflow. PCA was performed first to remove the correlation between 

runoff and precipitation, then regression was performed to relate the resulting 

eigenvectors to streamflow.  

This study did not include rotation of the eigenvectors, which involves moving 

the component axes (i.e., changing the eigenvector loadings) such that each variable has a 

factor loading near either zero or one (Davis, 1986). This causes the maximization of the 

variance on the factors but as a result they are no longer orthogonal (Davis, 1986). While 

PCA may produce eigenvectors with less total variance than the rotation techniques, it is 

an objective and unique analysis that require no operator intervention except for selection 

of appropriate input variables 

Cluster Analysis 

 Cluster analysis is a technique to classify objects into groups on categories so that 

the relationships between the objects will be revealed (Davis 1986). First, the correlation 

coefficient is calculated for use as a similarity measure (Davis, 1986). Observations with 

the highest similarity area clustered first. When two observations are connected, that 

means that they have the highest correlations with each other (Davis, 1986). Once two 

observations are clustered, their correlation is averaged with all other observations in the 

analysis (Davis, 1986). A dendrogram is usually produced for visualizing the results of 

the cluster analysis. This is a tree diagram that shows the linkages and similarities of the 

observations. 



 

 

34

 

Results 

Correlation Analysis 

 The variables chosen in this study include five measures of elevation, two 

measures of slope, two measures of temperature, and two measures of precipitation. 

Because they are multiple measures of similar phenomena, there is undesired correlation 

within the dataset. It was therefore necessary to screen these variables and determine the 

optimum measure for each category to predict streamflow. To examine correlation, a 

correlation matrix (Table 6) was used. 

 In the unaltered dataset, annual discharge (Q) has a high positive correlation with A, 

Erange, ESD, and PSD. There is a slight positive correlation between annual discharge, S, 

Emin, Emax, L, and Pmean. Q has low correlation with Tmin, F, R, and Emin. 

 Understandably, the two temperature variables are highly correlated with each 

other, and correlate similarly with every other variable except Q. This covariation 

suggests that only one measure of temperature need be retained. Tmax and Tmin show 

moderate to strong negative correlation with Pmean, PSD, R, Emax, Emin, Emean, Erange, and 

ESD. These variables also display moderate to strong positive correlation with Sw. TMax 

and TMin exhibit low correlation with A, L, SS, and S.  

 Pmean shows a strong positive correlation with, PSD, R, Emax, Emean, Emange, and, 

ESD, and has moderate correlation with S, and SS. Pmean has low correlation with F, A, and 

Sw. PSD show similar behavior to Pmean, correlating strongly with R, Emax, Emean, Emange, 

and, ESD and moderately with PSD A, Sw, Ss, and S. Since both measures of precipitation 

are strongly correlated, only one need be retained. F has a strong correlation with only SW 

and moderate correlation with SS, S, and Erange. Emean is strongly correlated with all of the  
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Table 6- Correlation Analysis 

     
 Q Tmax Tmin Pmean Psd F R A L Ss Sw Emax Emin Emean Erange Esd S 

Q 1    
Tmax -0.252 1   
Tmin -0.097 0.918 1  

Pmean 0.19 -0.802 -0.722 1  
Psd 0.446 -0.646 -0.662 0.731 1  
F 0.078 0.263 0.378 -0.011 0.082 1  
R 0.047 -0.676 -0.546 0.7 0.493 0.232 1  
A 0.854 0.007 0.084 -0.084 0.174 -0.084 -0.31 1  
L 0.247 0.151 0.223 -0.057 0.045 0.084 -0.16 0.33 1  
Ss -0.11 0.006 -0.116 0.176 0.362 0.327 0.108 -0.19 0.204 1 
Sw 0.249 0.441 0.44 -0.093 0.182 0.687 -0.16 0.24 0.258 0.385 1

Emax 0.364 -0.7 -0.689 0.83 0.913 0.165 0.567 0.12 0.015 0.252 0.172 1
Emin -0.089 -0.575 -0.519 0.649 0.274 -0.007 0.538 -0.27 -0.123 -0.169 -0.216 0.564 1

Emean 0.234 -0.752 -0.716 0.882 0.8 0.133 0.644 -0.02 -0.041 0.144 0.034 0.959 0.75 1
Erange 0.502 -0.467 -0.495 0.571 0.925 0.2 0.309 0.33 0.101 0.422 0.357 0.834 0.02 0.657 1

Esd 0.53 -0.44 -0.48 0.553 0.914 0.177 0.274 0.38 0.13 0.382 0.387 0.857 0.12 0.68 0.961 1
S 0.217 -0.011 0.006 0.184 0.382 0.306 0.175 0.09 0.069 0.132 0.177 0.323 0.07 0.266 0.34 0.374 1

     
 Legend 
 Tmax = Maximum Temperature L = Stream Length 
 Tmin = Minimum Temperature Ss = Stream Slope 
 Pmean = Mean Annual Precipitation Sw = Watershed Slope 
 Psd = Standard Deviation of Annual Precipiatation Emax = Maximum Elevation 
 F = % Forested Area Emin = Minimum Elevation 
 R = Recharge  Emean = Mean Elevation 
 A = Area  Erange = Elevation Range 
 S = Soils  Esd = Standard Deviation of Elevation 
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elevation variables but especially Emax and Emin. EMin and Emax may be discarded due to 

their strong correlation to EMean.  

Discussion 

 The correlation analysis suggests that several variables contain redundant 

information. TMax and TMin are very similar measure of temperature and should be 

reduced to a single variable. The same is true for PMean and PSD, as well as Erange and ESD. 

Of the three variables EMax, EMin, and EMean should be reduced to Emean because both EMax, 

and EMin correlate strongly with Emean. The correlation between F and SW is most likely 

related to the fact that steep slopes are less likely to be developed for forestation. Along 

steep slopes, there is generally also a large elevation range, explaining some of the 

correlation between ERange and F. 

Principal Component Analysis 

RUN 1 

Variables Included 

 Although redundancy was recognized in the dataset, all variables were used in 

PCA run 1 to test the hypothesis of the redundancy. Table 7 shows the results of the 

PCA. Since there are 18 variables, an average or random variable would explain 1/18 or 

5.5% of the variation in the data set. The first eigenvector (principal component) in run 1, 

or PC1, accounted for 42% of the total variation and has the largest eigenvalue (7.16). 

The second principal component accounted for 20% of the variation with an eigenvalue 

of 3.39, and the third accounts for 12% of the variation with an eigenvalue of 2.04. The 

fourth principal component  (eigenvalue 1.2) accounted for only 7% of the variation in  
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Table 7 - Run 1: All Variables 

   
   

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 7.1577 3.3923 2.0458 1.2108 0.9268 0.7891 
Proportion 0.421 0.2 0.12 0.071 0.055 0.046 
Cumulative 0.421 0.621 0.741 0.812 0.867 0.913 

 PC7 PC8 PC9 PC10 PC11 PC12 
Eigenvalue 0.6035 0.2932 0.2031 0.1323 0.0917 0.0845 
Proportion 0.035 0.017 0.012 0.008 0.005 0.005 
Cumulative 0.949 0.966 0.978 0.986 0.991 0.996 

 PC13 PC14 PC15 PC16 PC17  
Eigenvalue 0.0318 0.0219 0.0146 0.0005 0.0002  
Proportion 0.002 0.001 0.001 0 0  
Cumulative 0.998 0.999 1 1 1  

   
Variable PC1 PC2 PC3 PC4  

Q 0.147 0.292 0.415 0.254  
Tmax -0.301 0.247 -0.167 0.041  
Tmin -0.29 0.255 -0.14 0.252  

Pmean 0.329 -0.136 -0.051 0.053  
Psd 0.348 0.117 0.019 -0.157  
F 0.033 0.275 -0.468 0.339  
R 0.246 -0.19 -0.215 0.196  
A 0.041 0.321 0.511 0.168  
L -0.005 0.251 0.086 0.004  
Ss 0.099 0.192 -0.36 -0.553  
Sw 0.02 0.439 -0.267 0.104  

Emax 0.364 0.044 -0.037 0.045  
Emin 0.202 -0.287 -0.114 0.411  

Emean 0.351 -0.075 -0.078 0.159  
Erange 0.306 0.247 0.035 -0.227  

Esd 0.308 0.254 0.055 -0.152  
S 0.121 0.182 -0.137 0.271  
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the data set. All other eigenvalues were less than one and were considered statistical 

noise. 

Loadings 

On PC1, Tmax, Tmin, Pmean, PSD, R, Emax, Emin, Emean, Emange, and ESD all had high 

magnitude loadings. All these variables are associated with climate, even though the 

association is indirect for elevation variables. PC1 is designated the “climate 

component”.  

 The remaining variables Q and S also load positively on the climate component. 

Thus as elevation and precipitation increases annually, discharge increases, and run off 

potential is high. 

The second principal component, PC2, was less straightforward than the first. The 

variables Q, Tmax, Tmin, A, F, L, Sw, Erange, and ESD all plot high in a positive direction 

while Emin shows a strong negative loading. This suggests that watersheds which score 

highly on component two have high annual discharge, high temperature, are highly 

forested, have large areas, long lengths, steep watershed slopes, large ranges in elevation, 

and low minimum elevations. The strong negative loading of Emin is unusual because the 

other measures of elevation load less strongly on this component, and in a positive 

direction. 

The variables PSD, SS, and S have moderate positive loadings on PC2, while Pmean 

and R have moderate negative loadings.. 

PC3 is less complex than PC2. On this vector, Q and A show strong positive 

loadings on PC2 and F, SS, and SW have strong negative loadings. Tmax, Tmin, Emean and S 

have moderate loadings on PC2. This indicates that watersheds strongly influenced by 

this component have large discharges, large areas, a high percentage of forested area, a 
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low stream slope, and a low watershed slope. They also have low temperatures, low 

minimum elevation, low recharge, and low runoff potential. The high loading of forested 

area on this vector could be due to the correlation between forested area and watershed 

slope.  

On PC4, Q, Tmin, F, Emin and S had strong positive loadings, whereas SS and Erange 

have strong negative loadings. Watersheds that are strongly influenced by PC4 have high 

discharge, high minimum temperatures, high minimum elevation, high potential for run 

off, and high percentage of forested land. Emean, SW, R and A had moderate positive 

loadings, whereas PSD and ESD had moderate negative loadings on PC4. PC4 varied from 

the first three components in that Emin did not load in the same direction as the other four 

elevation variables.  

Interpretation of Components 

The variable loadings on PC1 suggest that as temperature decreases, precipitation 

and recharge increase in areas influenced by PC1 (i.e., with high positive scores on PC1).  

Also as elevation increases, precipitation increases but temperature decreases. The factor 

loadings also show that as the range in elevation increases, the standard deviation of the 

precipitation increases. These statistics are consistent with the contrast in environment 

between lowland and mountainous settings. 

Both minimum temperature and maximum temperature had strong positive 

loadings on PC2, meaning that annual low temperatures, and annual high temperatures 

are high in watersheds strongly influenced by PC2. PC2 is also associated with areas that 

have large watershed slopes. In order to have a large watershed slope, the maximum 

elevation must be high, the minimum elevation must be low, and the stream length must 

be short. The negative correlation between Emin and the other variables loading on PC2 
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could be due to the correlation between variables, such as elevation and slope, rather than 

true geomorphic relationships. Both components two and three are combinations of 

geomorphic and climate variables, in contrast to Component 1 (elevation and climatic 

variables). 

 This PCA analysis confirmed that there is redundancy in this data set. The first 

component showed a climatic trend where variables like precipitation and temperature 

tended to have high scores.  Many of the climate variables also scored high on other 

components 

RUN 2 

Variables Included 

The second PCA used the results of PCA run 1 and the correlation analysis to 

discard several variables. Among temperature variables, Tmin was removed and Tmax was 

retained because it had higher correlation coefficients with Pmean, R, Emax, Emin, and Emean. 

For precipitation variables, Pmean was retained and PSD deleted due to its higher 

correlation with Emax, Erange, and ESD. For elevation variables, ESD was discarded and 

Erange was retained because the former had lower correlation with R Pmean and Tmax. Emean, 

was retained due to its higher correlation with Emax and Emin. Emax and Emin were also 

discarded. The variables included in Run 2 were Q, Tmax, Pmean, R, F, A, L, SS, SW, Emean, 

Erange, and S (Table 8). 

Eigenvalues 

The first component had an eigenvalue of 3.86, the second 2.74, the third 1.92 and 

the fourth 1.01. All other components had an eigenvalue of less than one and were not  
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Table 8 - PCA Run 2 

   
   

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.8671 2.7486 1.9285 1.0096 0.7784 0.7117 
Proportion 0.322 0.229 0.161 0.084 0.065 0.059 
Cumulative 0.322 0.551 0.712 0.796 0.861 0.92 

 PC7  PC8 PC9 PC10 PC11 PC12 
Eigenvalue 0.42 0.1782 0.1697 0.0788 0.0612 0.0482 
Proportion 0.035 0.015 0.014 0.007 0.005 0.004 
Cumulative 0.955 0.97 0.984 0.991 0.996 1 

   
Variable PC1 PC2 PC3 PC4  

Q 0.19 0.348 -0.462 -0.126  
Tmax -0.414 0.254 0.208 -0.107  
Tmin 0.464 -0.129 0.001 0.095  

R 0.384 -0.196 0.172 -0.164  
F 0.084 0.331 0.442 -0.333  
A -0.002 0.405 -0.505 -0.056  
L -0.012 0.303 -0.084 0.559  
Ss 0.135 0.197 0.411 0.514  
Sw 0.019 0.489 0.281 -0.031  

Emean 0.47 -0.048 0.019 -0.009  
Erange 0.39 0.254 -0.04 0.131  

S 0.175 0.22 0.082 -0.477  
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considered. In combination, the first four components account for 79.6% of the 

variation in this data set. 

Loadings  

 The variables that had high loadings on the PC1 (Table 8) were Pmean, R, Emean, 

Erange, and Tmax. SS, Q, and S showed moderate loadings on PC1. Watersheds that scored 

strongly on this component are areas that have high precipitation, high groundwater 

recharge, high elevations, and cool temperatures. This is clearly a climatic component  

 Similar to Run 1, variables with high factor loadings on PC2 include climatic and 

geomorphic variables. Q, Tmax, F, A, L, SW, and Erange all have a high positive factor 

loading on this component. Watersheds influenced by this component have high 

discharges, high temperatures, large areas, long stream lengths, steep topography, and 

extreme relief. They are also largely forested. The two climatic variables that load on 

PC2 are Tmax and Erange 

PC3 has a strong geomorphic character, with F, SS, SW, Q, and A load strongly.  

None of the climatic variables load significantly on this variable. Watersheds scoring on 

PC2 would tend to be small, very steep, and highly forested. The relationships between 

the high factor loadings for this component make sense. This is clearly a “geomorphic” 

component. 

 The variables with high loadings on PC4 are L, SS, F, and S. Similar to PC3, none 

of the climate variables load on this component. While explaining little (8.4%) variation 

in the dataset PC4 could, however, influence a small number of watersheds. These are 

steep and dendritic but with little forestation. 
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Interpretation of Components 

Similar to Run 1, PC1 in Run 2 is a climatic component. PC2, PC3, and PC4 are 

also a combination of geomorphic and climatic variables, though more clearly expressed 

in Run 2 than Run 1. Erange, an indirect climate variable, could be showing up on PC2 

because it is inherently correlated with SW.  

RUN 3 

Variables Included 

 To further clarify the components, more variables were removed for Run 3. The 

correlation between area and all of the other variables affecting stream flow is very 

strong. Haan and Reed (1970) found area to be the most important factor for predicting 

stream flow.  To remove such intercorrelation, A was removed and Q and other variables 

were normalized with respect to area. Instead of using L/A, a basin shape factor, L/W, 

was employed. 

Eigenvalues  

 Run 3 yielded only three important components. The first 3 components had 

eigenvalues of 3.91, 2.37, and 1.17 respectively for a total of 75% of variance. The other 

seven components had Eigenvalues of less than one therefore were not considered. 

Loadings  

 PC1 had high loadings for all climate variables as in all of the other runs (Table 

9). However there were positive loadings for Pmean, R, Emean, Erange and negative loadings 

for Tmax. PC1 Run 3 differs slightly from Runs 1 and 2 in that Tmax has a positive loading. 

Watersheds that score strongly on PC1 area at high elevation, have low temperatures, and 

receive large amounts of precipitation.  
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Table 9 - PCA Run 3 

   
   

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 4.1598 2.3907 1.4497 0.8967 0.6654 0.6022 
Proportion 0.378 0.217 0.132 0.082 0.06 0.055 
Cumulative 0.378 0.596 0.727 0.809 0.869 0.924 

 PC7 PC8 PC9 PC10 PC11  
Eigenvalue 0.4067 0.1627 0.1385 0.0776 0.05  
Proportion 0.037 0.015 0.013 0.007 0.005  
Cumulative 0.961 0.976 0.988 0.995 1  

   
Variable PC1 PC2 PC3    

G 0.272 -0.1 -0.516  
Tmax -0.382 -0.359 -0.103  
Pmean 0.448 0.144 -0.077  

R 0.384 0.111 -0.247  
F 0.11 -0.522 -0.262  
Ss 0.15 -0.348 0.269  
Sw 0.028 -0.581 0.003  

Emean 0.447 0.061 -0.051  
Erange 0.368 -0.192 0.375  

S 0.157 -0.232 -0.083  
L/W 0.193 -0.058 0.604  
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 PC2 is, as for Runs 1 and 2, a mixture of climatic and geomorphic variables. 

Watersheds scoring on PC2 are above average temperature, forested and steep. Since 

Emean had a low loading, PC2 watersheds may occur at either high or low elevation but 

have extreme relief, little precipitation or recharge. 

Interpretation of Components 

 The component scores from Run 3 of the individual watersheds on PC1 and PC2 

are plotted against normalized discharge in Figures 10&11. In PC1 there are two groups. 

The first group has a low normalized discharge and the second has high normalized 

discharge. There is a somewhat linear trend (with many outliers) between 27 and 40 

inches per year. PC2 does not, however, have a linear trend, but does have two groups, 

one with high discharge and the other with low discharge. 

 Run 3 still showed that the strongest component is the climate component and the 

second two components are still mixtures of climatic and geomorphic variables. There 

should be a linear relationship between component one and discharge and between 

component two and discharge. In order to clarify the signal more variables were removed 

with the hope of removing redundancy.  

RUN 4 

Variables Included 

In Run 4, additional variable elimination was undertaken. S was removed from 

Run 4 due to ambiguous loadings in Runs 1-3. Of the slope variables Sw and SS, SS was 

discarded because the data collection methods for this variable were less uniform than for 

Sww,,  and its loadings were more ambiguous. Of the very similar variables Erange and Ws,  
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Figure 10 – Run 3 PC1 v. Discharge  

 

Figure 11 – Run 3 PC2 v. Discharge 
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Erange was discarded because it loaded ambiguously. Finally, G was removed because it 

also had ambiguous loadings. This leaves the variables Tmax, Pmean, R, Emean, Sw, F, and 

L/W 

Eigenvalues 

 PC1 and PC2 had eigenvalues of 3.36 and 1.81 respectively. PC3 had an 

eigenvalue of 0.93 but was retained because it was the only component L/W loaded on. 

Loadings  

PC1 in Run 4 is again the climate component with only Pmean, R, Emean, and Tmax 

loading strongly (Table 10). This component reflects climate but not geomorphic 

variables. PC2 is a geomorphic component, with only Sw and F loading strongly. PC3 had 

a high loading only for L/W. Despite the low eigenvalue, no other variables load on this 

component suggesting that the component has minor significance. 

Interpretation of Components 

 Watershed scores (Figure 12) for PC1 vs. normalized discharge show a clear 

linear trend. There are still two groupings of watersheds with respect to Q/A, as in Run 3, 

but separation between the two groups is more distinct. Figure 13 shows watershed scores 

on PC2, plotted against Q/A, also showing these two distinct groups. In the high 

discharge group (Group 1) there is a clear linear relationship between PC2 and Q/A. The 

low discharge group (Group 2) shows no clear a linear relationship between PC2 and 

Q/A. 

Cluster Analysis  

 Run 3 and Run 4 showed two groupings of watersheds for PC1 and PC2. One 

group had high relative discharge (Group 1) and the other had low relative (Group 2) 

discharge. The relationship between discharge and both PC1 and PC2 is linear for the
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Table 10 - PCA Run 4 

   
   

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigenvalue 3.3652 1.8188 0.9297 0.5297 0.1696 0.104 
Proportion 0.481 0.26 0.133 0.076 0.024 0.015 
Cumulative 0.481 0.741 0.873 0.949 0.973 0.988 

 PC7  
Eigenvalue 0.0829  
Proportion 0.012  
Cumulative 1  

   
Variable PC1 PC2 PC3    

Tmax -0.506 0.186 -0.058  
Pmean 0.506 0.069 -0.124  

R 0.447 0.136 -0.186  
F -0.024 0.684 -0.101  

Sw -0.14 0.656 0.039  
Emean 0.484 0.177 -0.116  
L/W 0.183 0.113 0.96  
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Figure 12 – Run 4 PC1 v. Discharge  
 

Figure 13 – Run 4 PC2 v. Discharge 
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group 1. The relationship between the Group 2 and Q/A is not linear. In order to clarify 

this a cluster analysis was performed (Figure 14).    

Run 4 PC1  

The cluster analysis was performed using single linkage and the Euclidean 

distance method on PC1. The first level of clusters, 82% similarity, are the same as the 

groupings in the plot of PC1 versus discharge. Table 11 shows that elevation as well as 

discharge separates the groups. The group high Q/A watersheds also had higher Emean. 

The Greenbrier River is the last watershed to join indicating it to be an outlier.   

Further interpretation of the cluster analysis shows the high discharge group splits 

into two clusters at approximately 89.79% similarity (Figure 15). Cluster 1 has a slightly 

lower Pmean, Emean, Sw, R, F, and L/W, than Cluster 2. The low discharge group also splits 

into two clusters, clusters 3 and 4. Cluster 3 has higher Pmean, R and Emean than cluster 

four, but cluster four has the higher values for Tmax, Sw, and F.  

Run 4 PC2 

A cluster analysis was also performed on PC2 from Run 4 (Fig 16). The 

observations in each cluster for PC2 are the same as the observations in each cluster for 

PC1 with the exception of Opequon Creek. This watershed is an outlier on PC2 but not 

PC1. The only other difference between the results of this cluster analysis and PC1 lies in 

the order of the linkages and the levels of similarity. The watersheds join the clusters in a 

different order in PC2 and have slightly higher percent similarities.  
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Figure 14 – Dendrogram of Cluster analysis, PC1 Level one clusters  
Figure 15 – Dendrogram of Cluster Analysis, PC2 Level 2 clusters  
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Table 11 Summary of Cluster Analysis 

  ID Tmax Pmean R Sw Emea
n 

F G L/W 

 Blackwater 1 53.9 53.97 22.5 6.08 1133 71 3.34 0.470477
 Buckhanno
n 

2 58.3 47.99 21.4 11.5 805 81 1.13 3.667036

Cluster 1 Dryfork 9 55.8 52.45 21.4 14.24 989 89 0.4 2.725922
 MiddleFor
k 

16 58.2 48.53 24.5 12.23 846 94 3.34 4.862353

 Meadow 15 58.8 50.99 20.6 11.99 851 84 3.34 2.750569
 Tygart 28 56.4 49.98 15.4 13.63 985 74 0.4 5.781449
 Average  56.9 50.6517 20.97 11.612 934.8 82.167 1.992 3.376301
     
 Cranberry 8 56.3 55.27 31.6 14 1025 97 3.34 3.610742
 Cherry 5 57.5 54.12 27.8 13.35 1005 97 3.34 0.940284

Cluster 2 Elk 10 57.5 51.85 23.9 17.57 896 95 3.34 3.538898
 Williams 29 56.5 54.88 26.4 14.52 1049 97 3.34 2.728533
 ShaversFor
k 

24 55.7 54.19 24.8 14.47 933 96 3.34 14.98655

 Average  56.7 54.062 26.9 14.782 981.6 96.4 3.34 5.161
     
 Cacapon 4 59.8 44.3 8.7 10.78 584 85 1.26 4.200261
 PattersonCr 22 62.4 42 7.3 10.84 355 97 0.53 2.799697

Cluster 3 Sobrpot 25 59.2 48.92 11.6 13.11 953 73 0.53 7.761568
 SfkSBrPot 26 64.6 47.22 10 19.27 794 90 1.26 2.298945
 Average  61.5 47.3004 12.9 13.5 671.5 86.25 0.895 4.444294
     
 Buffallo 3 61.6 42.35 21.4 13.39 394 85 1.13 2.18449
 Cobun 7 60.5 43.76 21.4 9.86 473 82 1.13 4.221172
 MiddleIsla
ndCr 

17 62.3 42.11 8 15.01 346 87 1.13 1.902307

 Coal 6 62.6 46.46 11.9 20.4 616 93 3.34 2.226349
 EastFork 11 64.9 44.18 12.4 17.72 384 97 1.13 5.814969
 Guyandotte 13 61.9 48.63 14.5 18.12 716 94 1.13 1.623974

Cluster 4 NfSBrPot 19 57.7 49.63 11 20.13 900 88 0.53 6.380927
 Hughes 14 63 42.24 7.1 13.4 305 83 1.13 1.385285
 PineyCr 23 61.1 49.84 11.9 11.14 838 80 3.34 0.499358
 Mud 18 64.7 43.44 11.9 14.35 340 91 1.13 1.757326
 Panther 21 64.6 46.88 11.1 19.7 521 99 3.34 1.67792
 TugFork 27 63.1 46.1 11.3 20.35 662 96 3.34 1.365009
 Average  63.37 45.7 10.66 16.131 541.3 89.583 1.817 1.33698
     
     
     
 Opequon 20 57.7 49.63 9.8 4.1 304 36 0.046 2.700058
 Greenbrier 12 56.3 55.27 21.1 14.44 1059 88 3.34 3.683631
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Figure 16 - Dendrogram of Cluster Analysis; PC2 Level 2 clusters 
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Interpretations 

The variables used in this study do not relate to one another in a uniform manner 

across the study area. Watersheds with large relative discharges have different 

relationships between climatic variables and geomorphic variables than watersheds with 

small relative discharges. The similarity between the cluster analysis for PC1 and PC2 

indicates that the climate component is so strong, that it influences the geomorphic 

component. 

Spatial Analysis 

Watershed Loadings 

In order to help visualize the relationships shown above, spatial figures were 

created. Figure 17 shows watershed loadings from Run 4 on PC1. There is a spatial 

relationship on PC1, however, it is not very clear. The majority of watersheds with high 

scores on component one are along the mountainous region along the eastern edge of the 

state. The watersheds with low scores on the first component are mostly in the Eastern 

Panhandle and the Allegheny Plateau. Figure 18 shows watershed loadings on PC2. 

There is no clear spatial pattern to PC2. 

Cluster Analysis 

Similar figures were generated for the results of the cluster analysis for PC1 and 

PC2. Figure 19 shows PC1 grouped into four clusters. There is a clear spatial relationship 

shown in this figure.  Cluster 3 watersheds are located in the Valley and Ridge 

physiographic province, eastern panhandle, cluster 4 watersheds are located in the  
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Figure 17 – Watershed scores on run 4 PC1 
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Figure 18 – Watershed scores on run 4 PC2 
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Figure 19 – Cluster Analysis: PC1 Level 2 Clusters 
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Figure 20 – Cluster Analysis: Level 2 Clusters, PC2 
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Allegheny Plateau, Cluster 1 and 2 watersheds are located along the Allegheny 

Front. One exception to this is the North Fork of the South Branch of the Potomac River, 

which is in Cluster 4. This watershed lies on the boundary between the Allegheny Front 

and the Valley and Ridge. It is also in the rain shadow of the Allegheny Front. These 

factors are likely causing this watershed to be an intermediate watershed and not cluster 

with the other Valley and Ridge watersheds. Clusters 1 and 2 are all located along the 

Allegheny Front. Cluster 2 is at high elevation and cluster 1 is at lower elevation around 

Cluster 2. Grouping PC2 into four clusters (Figure 20) yields very similar results. The 

one difference is Opequon Creek. This watershed is part of cluster 3 in PC1 but is an 

outlier in PC2. 

Interpretations 

Watersheds that are located along the Allegheny Front have a linear relationship 

between PC1 and PC2 and Q/A. All other watersheds in this study do not. These 

watersheds also score high on PC1. This area is split into two groups, a group at high 

elevation and a group with slightly lower elevation but still in the Allegheny front. 

Watersheds in the valley and ridge and Allegheny Plateau do not have a linear 

relationship between PC1 or PC2 and Q/A. These watersheds have different relationships 

between geomorphic variables and Q/A than the other watersheds. Clusters 3 and 4 show 

that the relationships between these variables are not the same in the Allegheny Plateau 

and the ridge and valley regions of the state. The similarity between the cluster analysis 

for PC1 and PC2 suggests that in this state the climate variables are dominant. Possibly to 

the extent of driving the geomorphology.  
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Conclusions 

The results of the statistical analysis were as follows. 
 
�� the optimum combination of variables for predicting stream flow in West Virginia 

were Tmax, Pmean, R, Emean, Sw, F, and L/W; 

�� variables for geology and soils were no load variables; 

�� drainage basin are skews the importance of other variables when included in the 
dataset; 

�� there are three major components of streamflow in West Virginia: climate, 
geomorphology, and basin aspect ratio; 

�� the relationship between the PC1 and PC2, and Q/A differs in the Allegheny Plateau, 
Allegheny Front, and Valley and Ridge physiographic provinces; and 

�� the climate component (PC1) is so strong that it may drive the geomorphology (PC2) 
in the state. 

The results of this study indicate that the optimum combination of variables for 

predicting stream flow in West Virginia is Tmax, Pmean, R, Emean, Sw, F, and L/W. The 

geology and soils data used in this study were found to add noise to the dataset rather 

than explain variance. These variables are “no load” variables because they did not load 

distinctively on any one component. This could be due to poor or inconsistent data. These 

conclusions are based on discharge that is normalized to area. Drainage basin area is such 

a strong factor and is highly correlated with so many of the other characteristics of 

watersheds that influence stream flow that it skews the importance of the other variables.  

Using the above variables, there are three major components of stream flow as 

expressed in PCA run 4: climate (PC1), geomorphology (PC2), and basin aspect ratio 

(PC3). PC3 has very little importance to explaining the variance in the data set. PC1 

however, is very strong and explains 48% of the variation in the data set on its own. The 
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importance of PC1 is reinforced by the results of the spatial analysis. The watershed 

scores on PC1 had a slight spatial relationship while the watershed scores on PC2 did not 

have a spatial relationship. When looking at the results of the cluster analysis for PC1 and 

PC2, there are three groups of watersheds in West Virginia. Clusters 1 and 2 have high 

Q/A and are located along the Allegheny front similar to the spatial pattern in the spatial 

analysis of the watershed scores. 

As previously discussed there are four groupings of watersheds based on the 

cluster analysis of PC2. These groupings fall within the three physiographic provinces in 

the state: Allegheny Plateau, Allegheny Front, and Valley and Ridge. The cluster analysis 

in this study showed that the variables affecting stream flow in these three regions do not 

interact in a uniform manner. Thus, a single equation for stream flow in the state may not 

be practical. The watersheds in the Allegheny Front and Valley and Ridge regions have 

clear spatial relationships. The Allegheny Front is not as distinct. This region has two 

sub-regions and intermediate watersheds along its eastern side. Because of the variability 

in this area further study should be done to clarify these relationships. 

These conclusions are based on several limitations. First, the current available 

statewide data are mapped at very small scale. Larger scale data would be more accurate 

and might remove noise from variables, particularly, geology and soils. Another 

limitation was that realistic recharge estimates were not available for every watershed. 

Several watersheds used regional-average numbers instead of locally measured estimates. 

Finally, evapotranspiration was not included in this study. Evapotranspiration can occur 

above or below the ground making it difficult to measure. The inclusion of R and LULC 

are both variables that influence evapotranspiration, but are thought to be very imprecise 



 

 

62

 

approximations, as confirmed by the PCA. The effects of underground and surface 

mining were also not looked at in this study. Surface mining is widespread in the 

southern part of the state and could impact streamflow. Similarly, underground mining is 

widespread throughout the entire state and can impact streamflow when flooded mines 

discharge to streams or when streams loose water to the mines. 

Future studies should include larger scale studies in each of the three groups of 

watersheds found in the spatial analysis. Because the areas are smaller, better data may be 

available. Individual studies on these areas may also better define the differences in the 

relationships between the variables. Other future studies should include studies using 

precipitation and temperature data at a seasonal time scale. Seasonal variations in 

streamflow are very strong in West Virginia and need to be included in streamflow 

prediction models.  
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Discussion 

 Regulatory agencies in West Virginia use stream flow prediction models for 

various things including protecting drinking water sources (West Virginia Department of 

Health and Human Resources, 1999). Currently a single prediction equation is used for 

the entire state. This study found that one stream flow prediction equation is not adequate 

for the state of West Virginia. There are three regions of similar streamflow 

characteristics within the state. These regions are the Allegheny Plateau, the Valley and 

Ridge, and the Allegheny Front areas. Separate streamflow equations should be 

developed based on large-scale studies for each of these regions. If only one prediction 

equation can be used, the variables were Tmax, Pmean, R, Emean, Sw, F, and L/W should be 

used as the independent variables while Q/A should be used as the dependant variable. 

Q/A should be used rather than Q, because area is so closely correlated to streamflow, 

that it is impossible to have independent variables when it is included.  

 Several variables looked at in this study, such as S and G, were discarded because 

they had ambiguous loadings in the PCA. Most likely this is due to the quality of the 

data. The current available data for S and G is at very small scale and uses a nominal 

classification. Larger scale data and better quantification of the data may show that these 

variables play an important roll in estimating streamflow. An example of this is the two 

outliers Opequon Creek and the Greenbrier River. These are the only two watersheds 

included in the study that are limestone-dominated watersheds. It is possible that better 

geology data could show the reason these watersheds are outliers is due to the karst 

geology. Another limitation in this study is the impact of mining was not included in this 

study although it can play a large roll in streamflow. Streams can gain or loose water 
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from underground mines. Surface mines also impact streamflow by changing vegetation 

and runoff patterns. 

 Of the three streamflow regions, the Allegheny Front is the most complex. There 

are two sub-regions within the region; high elevation, and low elevation. Watersheds 

along the eastern fringe of the Allegheny Front are intermediate watersheds and do not 

group with either the Front or the Valley and Ridge. The variability in area could be 

better understood from a larger scale study performed on the Allegheny Front region. 
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