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Abstract: Magnetic induction ¯elds and potentials produced by electrical currents along an
in¯nitely long elliptical cylinder and around an in¯nitely long elliptical-cylindrical solenoid,
respectively, are explicitly evaluated. The similarities and di®erences of the current dis-
tributions, magnetic induction ¯elds and potentials of these electromagnetic systems are
contrasted with those of the corresponding cylinders with circular cross-sections.
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1 Introduction
The magnetic induction ¯elds of uniformly distributed electrical currents along

an in¯nitely long circular cylinder and around an in¯nitely long circular-cylindrical
solenoid, respectively, are studied in the introductory courses on electromagnetism
(HALLIDAY, 1978; ALONSO, 1967; REITZ, 1967). In the ¯rst case, it is established
through the application of Ampµere's law in its integral form that the ¯eld vanishes
in the interior of the cylinder; and that in the exterior its lines are circular, and its
magnitude is proportional to the electrical current I along the cylinder and inversely
proportional to the radial distance ½ to the axis of the cylinder:

~B(½ < a;'; z) = 0; B̂(½ > a;'; z) = 2I
c½ '̂ (1)

where a is the radius of the cylinder and (½; '; z) are circular cylindrical coordinates.
In the case of the solenoid, the ¯eld vanishes outside and is uniform inside; Ampµere's
law in its boundary condition form leads to

~B(½ < a;'; z) = 4¼
c nIk̂; B̂(½ > a;'; z) = 0 (2)

where I is the current in the solenoid and n is the number of turns per centimeter
in its winding.

On the other hand, the corresponding magnetic vector potentials are studied at
a more advanced level (PURCELL, 1965; LORRAINE, 1990; PANOFSKY, 1964). Here
some of their possible explicit forms are given respectively:

~A(½ < a;'; z) = ¡2Ic lna k̂; ~A(½ > a;'; z) = ¡2Ic ln½ k̂ (3)

and
~A(½ < a;'; z) = 2¼

c nI½'̂; ~A(½ > a;'; z) =
2¼
c nI

a2
½ '̂ (4)

The reader can check their continuity at the boundary ½ = a, and that the curl
of each one gives the correct values of the ¯elds in Eqs. (1) and (2).

For the sake of completeness, we also identify the current distributions in the
respective cylinders:

~J(½; '; z) = {
2¼a±(½¡ a)k̂ (5)

and
~J(½; '; z) = nI±(½¡ a)'̂ (6)

where the Dirac-± function ensures that the current is restricted to the surface of
the cylinder, and the factors preceding it correspond to the current per unit length.
The reader can also check that the curl of the magnetic induction ¯elds in Eqs. (1)
and (2) are zero, in agreement with Ampµere's law in its di®erential equation form
for vanishing currents inside and outside the cylinders.
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In this article, we study the magnetic induction ¯elds, magnetic vector potentials
and current distributions for in¯nitely long elliptical cylinders with longitudinal and
solenoidal currents, respectively. The speci¯c situations of a vanishing ¯eld inside the
cylinder and a non-vanishing ¯eld outside for the ¯rst case, and of a non-vanishing
¯eld inside and a vanishing ¯eld outside for the second case are analyzed. From
the experience of the circular cylinders, certain questions can be formulated for the
elliptical cylinders in parallel to Eqs. (1){(6):

(1) Are the magnetic lines elliptical and what is the magnitude of the magnetic
induction ¯eld?

(2) Is the magnetic ¯eld uniform?
(3) What is the magnitude of the magnetic vector potential inside and outside?
(4) Are the lines of the magnetic vector potential elliptical and what is its mag-

nitude inside and outside?
(5) and (6) Are the current distributions uniform and what are their values?
The readers can think about the answers to each of these questions.
In the following section, both situations are formulated using elliptical cylindrical

coordinates and the answers to questions (1), (3) and (5) for the longitudinal case,
and to (2), (4) and (6) for the solenoidal case are systematically and successively
constructed through the application of the laws of magnetostatics. In the ¯nal
section, we discuss those answers and compare them with their counterparts for the
circular cylinder, underlining some points of didactic interest.

2 Magnetostatics in elliptical cylindrical coordinates
The elliptical cylindrical coordinates (u; v; z) are de¯ned through their connec-

tions with the cartesian coordinates (ARFKEN, 1970)

x = fcoshu cos v; y = fsinhu sin v; z = z (7)

The points (x = f; y = 0; z = 0)and (x = ¡f; y = 0; z = 0) are identi¯ed
as foci separated by the focal distance 2f . The locus de¯ned by a ¯xed value of
u = u0, between zero and in¯nity, and z = 0, corresponds to an ellipse with a major
semiaxis fcoshu0 along the x-axis and a minor semiaxis fsinhu0 along the y-axis;
therefore, u is called the elliptical coordinate. The locus de¯ned by a ¯xed value
of v = v0, between zero and 2¼, and z = 0, corresponds to a hyperbola with a
real semiaxis f cos v0 along the x-axis and an imaginary semiaxis f sin v0 along the
y-axis; therefore, v is called the hyperbolic coordinate. The respective ellipses and
hyperbolas can be displaced vertically as z takes on di®erent values ¡1 · z0 ·1,
generating elliptical and hyperbolic cylinders, respectively.

From Eq. (7), the di®erential displacement can be evaluated, and the scale factors
and unit vectors of the elliptical cylindrical coordinates can be identi¯ed:

d~r = bidx+ ĵdy + k̂dz = ûhudu+ v̂hudv + k̂dz (8)
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where
hu(u; v) = hv(u; v) = f

pcosh2u¡ cos2 v (9)
and

û = bisinhu cos v + ĵcoshu sin vpcosh2u¡ cos2 v ; v̂ = ¡bicoshu sin v + ĵsinhu cos vpcosh2u¡ cos2 v (10)
The reader can check the orthogonality of the vectors in Eq. (10), which is as-

sociated with the orthogonality of the confocal ellipses and hyperbolas discussed
in the previous paragraph. These coordinates are the natural ones to describe the
geometry of the elliptical cylinder u = u0, and also the directions of the longitudinal
k̂, and solenoidal v̂, currents.

The magnetic induction ¯eld can be constructed and analyzed on the basis of
Amperµes law, in its circulation integral formZ

c
~B ¢ d~l = 4¼

c I (11)

or its boundary condition form

n̂£ ³ ~B2 ¡ ~B1
´
= 4¼
c
~K (12)

Since the currents are restricted to the surface of the cylinder, the Poisson equa-
tion satis¯ed by the magnetic vector potential

r2 ~A = ¡4¼c ~J (13)
reduces to the Laplace equation r2 ~A = 0 (14)
inside and outside the cylinder. Therefore, our method of solution consists in se-
lecting the appropriate inner and outer vector harmonic ¯elds solutions of Eqs. (14),
and matching them at the elliptical cylinder boundary, so that the magnetic vector
potential is continuous.

The Laplace equation for the in¯nitely long cylinder geometry does not have the
axial dependence on z. The corresponding equation is bidimensional involving the
Laplacian operator constructed with the use of Eq. (9):

1
f2([cosh]2 u¡ cos2 v)

" @2
@u2 +

@2
@v2

#
f(u; v) = 0 (15)

The ¯rst factor in Eq. (15) drops out, and the resulting equation admits separable
solutions of the form

f(u; v) = U(u)V (v) (16)
where each factor satis¯es the respective ordinary di®erential equation

d2U
du2 = AU (17)
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and d2V
dv2 = ¡AV (18)

A being the separation constant. The solutions of Eqs. (17) and (18) are hyperbolic
sine and cosine functions of pAu and circular sine and cosine functions of pAv,
respectively. The uniqueness of the function V (v) for v ! v + 2¼ requires that
A = m2 with m = 1; 2; 3; : : : . In particular for A = 0, the solution of Eq. (17) is
linear in u and the only admissible solution of Eq. (18) is a constant. Therefore, the
most general solution of Eq. (15) is a linear combination of the separable solutions
of the form of Eq. (16) constructed from these solutions of Eqs. (17) and (18):

f(u; v) = a0u+ b0 +
1X
m=1

[am sinh(mu) + bm cosh(mu)] [cm sin(mv) + dm cos(mv)]
(19)

2.1 Elliptical cylinder with longitudinal electrical current
Let us consider an electrical current along the longitudinal generatrices of the

elliptical cylinder u = u0, with the current density distribution

~J(u; v; z) = {
2¼hv(u0; v)

±(u¡ u0)
hu(u0; v) k̂ (20)

The reader may compare this expression with its counterpart of Eq. (5) for the
circular cylinder with special attention to the following similarities and di®erences.
The presence of the Dirac¡± function ensures that the current is restricted to the
surface of the cylinder. The presence of the scale factors in the denominators of
Eq. (20) is connected with the area element

d~az = hu(u; v)duhv(u; v)dvk̂ (21)
which ensures that the integrated current in any cross section of the cylinder isZ

~J(u; v; z) ¢ d~az = I (22)

It may be instructive for the reader to recognize that in Eq. (5) the scale factors
are h' = ½ = a and h½ = 1, and the area element is d½½d'.

The ¯rst fraction in Eq. (20) gives the current per unit length

~K(u0; v; z) = Ik̂
2¼fpcosh2u0 ¡ cos2 v (23)

showing that the current is not uniformly distributed, being largest at the ends of
the major axis v = 0; ¼ and smallest at the ends of the minor axis v = ¼=2; 3¼=2, fol-
lowing the changes of curvature around the ellipse. Thus, Eq. (23) answers question
(5).
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Concerning the magnetic induction ¯eld produced by the above currents, let us
assume that it vanishes inside the cylinder, and that its lines are elliptical outside.
In other words, our tentative answers to question (1) are

~B(u < u0; v; z) = 0; ~B(u > u0; v; z) = B(u > u0; v; z)v̂ (24)

Then the remaining task is to test the validity of such answers and to deter-
mine the magnitude outside. This task is accomplished next in two steps based on
Ampµere's law in its boundary condition and circulation integral forms, respectively.
In fact, at any point of the elliptical cylinder boundary u = u0, the ¯rst form,
Eq. (12), becomes

û£ ~B(u = u+0 ; v; z) = 4¼
c
~K(u0; v; z) (25)

which through the use of Eqs. (24) and (23), and the orthonormality of the unit
vectors û; v̂; k̂, leads to

B(u = u+0 ; v; z) = 2I
chv(u0; v) (26)

The extension of Eq. (26) valid at the boundary u = u0, to any values of u > u0
leads to the more explicit form of Eq. (24)

~B(u > u0; v; z) = 2Iv̂
chv(u; v) (27)

Let us now evaluate the circulation of the magnetic induction ¯eld of Eq. (27)
around any ellipse with u = u1 > u0:

Z 2¼

0
~B(u = u1; v; z) ¢ v̂hv(u1; v)dv = 4¼I

c (28)

consistent with Ampµere's law, Eq. (11). The corresponding evaluation around any
closed curve surrounding the cylinder u = u0, using the general form of Eq. (8) for
the line element, gives the same result as Eq. (28), because the contributions from
the displacements along û and k̂ vanish due to their orthogonality to B̂. On the
other hand, if the closed curve is in the interior of the cylinder, both sides of Eq. (28)
vanish, because the ¯eld and the current are identically zero there. In conclusion,
we have given a±rmative answers to question (1) through Eqs. (24) and (27). They
are the natural extensions of Eqs. (1), with the replacements '̂ ! û and h' ! hv
from the circular to the elliptical geometry.

The longitudinal currents of Eqs. (20) or (23) can be expected to produce a
longitudinal magnetic vector potential. Of the harmonic functions of Eq. (19), the
ones with m = 0 are compatible with the geometry under consideration. Thus, we
consider explicitly

~A(u < u0; v; z) = a0k̂; ~A(u > u0; v; z) = b0uk̂ (29)
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since we expect a vanishing magnetic induction ¯eld inside the cylinder and a non-
vanishing one outside, Eq. (23). The evaluation of the curl of the potential outside

r£ ~A = 1
huhv

¯̄̄
¯̄̄ huû hvv̂ k̂

@
@u

@
@v

@
@zhuAu hvAv Az

¯̄̄
¯̄̄ = v̂

hu
µ¡ @

@u
¶
(b0u) = ¡b0v̂

hu(u; v) (30)

leads to the magnetic induction ¯eld of Eqs. (27), with the identi¯cation of

b0 = ¡2Ic (31)

The continuity of the potential at u = u0 also determines the value of a0, so that
Eq. (29) takes the speci¯c forms:

~A(u < u0; v; z) = ¡2Ic u0k̂; ~A(u > u0; v; z) = ¡2Ic uk̂ (32)

which give the answer to question (3).

2.2 Elliptical cylindrical solenoid
Let us consider the electrical current along elliptical loops winding around the

cylinder u = u0, with n loops per unit length, so that the current density is

~J(u; v; z) = nI±(u¡ u0)
hu(u; v) v̂ (33)

In this case, the area element is
d~av = v̂dzhu(u; v)du (34)

and the integration of the current over a length h of the cylinder gives
Z
~J(u; v; z) ¢ d~av = nI Z h

0
dz
Z 1
0
±(u¡ u0)du = nhI (35)

where nh is the number of loops in such a length. The corresponding current per
unit length is

~K(u0; v; z) = nIv̂ (36)
which is uniformly distributed along the cylinder following the uniform winding.
Equation (36) is the answer to question (6).

The magnetic induction ¯eld produced by the in¯nitely long solenoid with the
uniformly distributed current of Eq. (36) is expected to be axial and uniform inside
and vanishing outside:

~B(u < u0; v; z) = Bk̂; ~B(u > u0; v; z) = 0 (37)
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Its magnitude inside follows from the application of Eq. (12) for the ¯eld and current
described by Eqs. (37) and (36), respectively

¡û£ k̂B = 4¼
c nIv̂ (38)

Therefore, the ¯elds inside and outside the elliptical cylinder of Eqs. (37) are the
same as those of its circular counterpart of Eq. (12), and question (2) is answered.

In order to construct the magnetic vector potential inside and outside the el-
liptical cylindrical solenoid and ¯nd the answers to question (4), we start out by
examining some of the possibilities leading to the uniform magnetic induction ¯eld
of Eq. (37). Two independent possibilities in cartesian coordinates are

~A1 = ¡biBy; ~A2 = ĵBx (39)
as the reader can verify immediately by taking their respective curls. Another pos-
sibility is the half sum of ~A1 and ~A2,

~A = B½
2 (¡bi sin'+ ĵ cos') (40)

where the unit vector in the parenthesis is identi¯ed as '̂, and coincides with Eq. (4)
for the circular geometry. This suggests considering the general linear combination

~A = p ~A1 + q ~A2 = Bf(¡bipsinhu sin v + ĵqcoshu cos v); p+ q = 1 (41)
where the cartesian coordinates have been written in terms of elliptical coordinates
using Eqs. (7). By making reference to Eq. (19), it is recognized that it is the har-
monic functions with m = 1 that are involved.

From Eqs. (10) the cartesian unit vectors are given as linear combinations of the
elliptical unit vectors

³̂ = û sinhu cos v ¡ v̂coshu sin vpcosh2u¡ cos2 v ; ĵ = û coshu sin v + v̂ sinhu cos vpcosh2u¡ cos2 v (42)

Then Eq. (41) can be rewritten completely in terms of elliptical coordinates and
unit vectors

~A(u < u0; v; z) = fBpcosh2u¡ cos2 v
½
û
h¡psinh2u+ qcosh2ui sin v cos v

+v̂sinhu coshu
h
p sin2 v + q cos2 v

i¾

= Bf2
4hu(u; v)

½
û [(p+ q) + (¡p+ q)cosh2u] sin 2v

+v̂sinh2u [(p+ q) + (¡p+ q) cos 2v]¾ (43)

The reader can check that the curl of the terms with the coe±cient (p+ q) gives
the constant magnetic ¯eld, while the curl of the terms with the coe±cient (¡p+ q)
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vanishes. Also the divergences of the respective combinations vanish. Notice also
that the terms with the coe±cient (p+ q) are not harmonic and the terms with the
(¡p+ q) coe±cient are harmonic, with m = 2 in Eq. (19).

Since (p + q) is one, Eq. (43) indicates that both components in the û and v̂
directions have to be present. Consequently, the answer to the ¯rst part of question
(4) is negative, i. e. , the lines of the magnetic vector potential are not elliptical in
general. Additionally, the value of the coe±cient (¡p+ q) is still to be determined.
This will be done by matching the magnetic vector potential of Eq. (43) at the
boundary u = u0 with the outside potential which is constructed next.

Since the magnetic induction ¯eld outside the solenoid vanishes, Eq. (37), the
corresponding magnetic vector potential must be constructed with harmonic func-
tions from Eq. (19), apart from the unit vectors and scale factor that it must have in
common with Eq. (43). The boundary condition that the magnetic vector potential
vanishes as u!1 selects the negative exponential of mu in Eq. (19). Let us recall
that in 2.1 the m = 0 harmonic composition of the magnetic potential of Eq. (32)
leads to the magnetic induction ¯eld of Eq. (27), which shares the m = 0 harmonic-
ity in the elliptical vector basis, and also has vanishing curl and divergence. These
considerations are made in order to justify the inclusion of m = 0 and 2 harmonic
functions from Eq. (19) in the magnetic vector potential outside the solenoid:

~A(u > u0; v; z) = Bf2
4hu(u; v)

½
ûse¡2u sin 2v + v̂

·
t¡ se¡2u cos 2v¸¾ (44)

The reader can check that the terms with the coe±cient s are harmonic functions
with m = 2 with vanishing curl and divergence. The term with the coe±cient t is
the m = 0 harmonic anticipated in the previous paragraph.

The matching of the magnetic vector potential from Eqs. (43) and (44) at the
elliptical boundary u = u0 by equating the coe±cients of the linearly independent
terms in û sin 2v; v̂; and v̂ cos 2v give three equations

1 + (¡p+ q)cosh2u0 = se¡2u0
sinh2u0 = t (45)

(¡p+ q)sinh2u0 = ¡se¡2u0
which determine the three coe±cients

(¡p+ q) = ¡e¡2u0; s = t = sinh2u0 (46)
In conclusion, the magnetic vector potential inside and outside has the explicit

forms of Eqs. (43) and (44)

~A(u < u0; v; z) = Bf2
4hu(u; v)

½
û
·
1¡ e¡2u0cosh2u¸ sin 2v

+v̂sinh2u
·
1¡ e¡2u0 cos 2v¸¾ (47)
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~A(u > u0; v; z) = Bf2
4hu(u; v)

½
ûsinh2u0e¡2u sin 2v

+v̂sinh2u
µ
1¡ e¡2u cos 2v¸¾ (48)

These equations complete the answer to question (4) and reiterate that the lines
of the magnetic vector potential are not elliptical. Also, from Eqs. (41) and (46),
the individual values of the coe±cients

p = e¡u0coshu0 and q = e¡u0sinhu0 (49)
are immediately obtained. Then the magnetic vector potential has the alternative
forms of Eq. (47)

~A(u < u0; v; z) = Bf
2 e

¡u0·¡bicoshu0sinhu sin v + ĵsinhu0coshu cos v¸ (50)

and of Eq. (48)

~A(u > u0; v; z) = Bf
2 sinh2u0

·¡bie¡u sin v + ĵe¡u cos v¸ (51)

in terms of the cartesian unit vectors. The reader can check that they match at
u = u0 and involve harmonic functions with m = 1.

As it is well known, the magnetic vector potential is not uniquely de¯ned. For
a given potential ~A, it is always possible to add the gradient of any scalar function
Â, so that the new potential ~A + rÂ produces the same magnetic induction ¯eld
~B = r £ ~A, because the curl of the gradient vanishes. This is the so-called gauge
transformation invariance. In Eq. (48), the harmonic vector contributions

ûe¡2u sin 2v ¡ v̂e¡2u cos 2v
hv(u; v) = rµ¡ 1

2e¡2u sin 2v
¶

can be written as a gradient. If we subtract such terms from the magnetic vector
potential of Eqs. (47) and (48), we obtain

~A(u < u0; v; z) = Bf2
4hu(u; v)

½
û
·
1¡ e¡2u0cosh2u¡ sinh2u0e¡2u¸ sin 2v

+ v̂
·
sinh2u(1¡ e¡2u0 cos 2v¶+ sinh2u0e¡2u cos 2v¸¾ (52)

and
~A(u > u0; v; z) = Bf2

4hu(u; v)sinh2u0v̂ (53)
The magnetic potential inside the solenoid, Eq. (52), still has both û and v̂

components and its lines are not elliptical, except the one at the boundary u = u0.
Both expressions match at the boundary, and Eq. (53) indicates that the lines of the
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magnetic potential are indeed elliptical. So after all, the ¯rst part of question (4)
may have a positive answer outside the solenoid. The reader can recognize that the
expressions in Eqs. (53) and (27) have the same harmonic vector composition.

In addition, the circulation of the magnetic potential of Eq. (53) around any
ellipse with u = u1 > u0:Z 2¼

0
~A(u = u1; v; z) ¢ v̂hv(u1; v)dv = B

4 f
2sinh2u02¼ = B¼

µ
fcoshu0

¶µ
fsinhu0

¶
(54)

similar to Eq. (28), is identi¯ed as the magnetic °ux through any elliptical cross-
section of the solenoid. The same result is obtained if Eq. (48) is used instead of
Eq. (53), and it is also extended to any closed curve surrounding the solenoid. The
circulation of Eq. (52) or (47) around any closed curve inside the cylinder gives the
magnetic °ux through the surface limited by the curve.

3 Discussion
In the introduction, the familiar longitudinal and solenoidal electrical current

distributions on in¯nitely long circular cylinders and their respective magnetic in-
duction ¯elds and vector potentials were recalled and used as references to formulate
the corresponding problems for elliptical cylinders, including six speci¯c questions.
In the main section, both situations were analyzed systematically, identifying the
longitudinal and solenoidal currents of Eqs. (23) and (36), constructing the respec-
tive magnetic induction ¯elds of Eqs. (24, 27) and (36, 38) using Ampµere's law in
its boundary condition form, and constructing the corresponding magnetic vector
potentials Eqs. (29{32) and (41{53) as harmonic functions subject to the conditions
that they are continuous at the elliptical boundary and their curls reproduce the
respective magnetic induction ¯elds. The six questions were answered qualitatively
and quantitatively, most of them in the a±rmative; only question (4) has the answer
that the lines of the magnetic vector potential may be elliptical outside the solenoid,
Eq. (53), but not inside Eq. (52).

From Eqs. (7) and their geometrical interpretation it follows that in the asymp-
totic limit u!1, the major and minor axis tend to become equal. In other words,
the ellipses tend to become circles and the hyperbolic coordinate becomes the in-
clination of the corresponding asymptotes. Therefore, the lines of the magnetic
induction ¯eld of Eq. (27) and of the magnetic vector potential of Eq. (53) tend to
become circular far enough from the solenoid, being closer to their counterparts of
Eqs. (1) and (4), respectively.

The general results for the elliptical cylinders reduce to those of the circular
cylinders in the double limit f ! 0; u!1; such that

fcoshu ' fsinhu ' 1
2feu ! ½ and v ! '

and also hu(u; v) ! ½. Then, except for an additive constant term, u ! ln½, and
a constant factor, emu ! ½m. The reader can easily verify that Eqs. (27), (32),
(52-53), (20) and (33) reduce to Eqs. (1), (3), (4), (5) and (6), respectively.
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We complete the discussion of this section with two additional comments on
each of the two problems analyzed in section II. For the elliptical cylinder with the
longitudinal current, we consider, as a reference problem, the electrostatic situation
in which the cylinder is kept at a ¯xed potential. The corresponding solution involves
the electrostatic potential with the lowest harmonic m = 0 in Eq. (19):

Á(u < u0; v; z) = V0; Á(u > u0; v; z) = V0 + V0(u0 ¡ u) (55)
such that the equipotentials are elliptical cylinders. Then the electric ¯eld intensity,
evaluated as the negative gradient of the potential, becomes:

~E(u < u0; v; z) = 0; ~E(u > u0; v; z) = + V0û
hu(u; v) (56)

such that the electric lines are hyperbolic. And the surface charge density on the
cylinder follows from the application of Gauss's law:

¾(u = u0; v; z) =
~E(u = u+0 ; v; z) ¢ û

4¼ = V0
4¼hu(u0; v) (57)

Apart from their scalar or vector nature, the common space dependences of the
sources Eqs. (57) and (23), the potentials Eqs. (55) and (32), and force ¯elds Eqs. (56)
and (24{27), can be recognized. The two situations can be connected with each
other upon recognition that observers in an inertial frame of reference moving with
a velocity ~v = ¡vk̂, relative to the cylinder at the ¯xed potential, will observe a
linear density current

~K(u = u0; v; z) = v¾ = vV0k̂
4¼hu(u0; v) (58)

a magnetic vector potential

~A(u < u0; v; z) = ¡~vcÁ = vV0
c k̂;

~A(u > u0; ¾; z) = vV0k̂
c

·
1 + u0 ¡ u¸ (59)

and a magnetic induction ¯eld
~B(u > u0; v; z) = ¡~vc £ (u > u0; v; z) = vV0v̂

chu(u; v) (60)

which have the same directions and relative magnitudes as their counterparts of
Eqs. (23), (32) and (27). They become identical for vV0 = 2I.

On the other hand, our interest in the case of the elliptical cylindrical solenoid has
its origin in the search for alternative manifestations of the Aharonov-Bohm e®ect
[AHARANOV, 1959; CHAMBERS, 1960; KOUZNETSOV, 1999). This e®ect consists in
physical changes in regions where the magnetic induction ¯eld vanishes but the mag-
netic vector potential is present, like a change in the electronic interference pattern
for beams moving around a cylindrical solenoid, or a change in the eigenenergies
and eigenstates of electrons con¯ned to move inside annular cylindrical boxes. Such
changes depend on the magnetic °ux inside the solenoid as expressed by Eq. (54).
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