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ABSTRACT 

Modeling an Adaptive System with Complex Queuing Networks and Simulation 

Jesse Musgrove 

 

An adaptive system differs from a non-adaptive system in that an adaptive system uses a specific 
process to identify and implement adaptations to system parameters during run time in an effort to 
increase system performance. 

In order to develop an adaptive system one of the most important aspects is the ability to accurately 
predict and manage system behavior. If an unexpected event has occurred, accurate prediction of 
system behavior is needed in order to determine whether or not the system is able to continually meet 
expectations and/or requirements. When considering any possible adaptations to the system, one must 
be able to accurately predict their consequences as well. 

In a feedback loop of an adaptive system performance analysis and prediction performance analysis and 
prediction may lead to a large number of different states. Therefore, the method of analyzing the 
system must be fast. For complex systems, however, the most popular method for predicting 
performance is simulation. Simulations, depending on the size of the system, are known for being slow. 

In this thesis we develop a fast method for prediction of performance of a complex system. We use this 
method to allocate resources to the system initially, and then make decisions for system adaptation 
during runtime. Finally we test various modifications to the system in order to measure the robustness 
of our method. 
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1 Introduction 

In her 2009 MS Thesis, Mayra Sacanamboy developed a queuing network to model border crossing for 

international flight arrivals [1]. In this queuing network, a biometric algorithm is used to evaluate 

traveler’s identity claims. Passengers offering their true identity, as evaluated by the system, are allowed 

into the country. Others are placed in a second queue in which they are examined more closely. Most 

importantly, however, the thesis showed that under certain circumstances the parameters of the 

biometric algorithm could be adjusted in order to improve the throughput, while minimally affecting the 

accuracy of identification. It then follows that it may be possible to devise an adaptive system to react to 

unexpected changes in operating conditions of the system during its run time by making decisions that 

improve certain aspects of its performance. 

This brings up a difficult challenge. The only way to identify intelligent decisions for the system would be 

to first accurately predict how they would affect performance. Therefore, when given a set of 

parameters for the system, we must be able to accurately measure whether or not the system 

performance will  meet the requirements. Furthermore, we may need to examine hundreds of possible 

combinations of decisions during any iteration of the adaptive feedback loop. For that reason our 

method for performance prediction must be fast. The system we analyze is complex, therefore 

predicting the behavior of the system using traditional methods, such as simulation, would be slow and 

inefficient. Hence we explore alternative options. 

1.1 Queuing Networks 

Perhaps the most basic queuing network is what is referred to as an M/M/1 queue [7]. This notation 

(referred to as Kendall’s notation [16]) describes the behavior of the queuing network. The first symbol, 

which in this case is M, signifies that the arrival rate is ‘Markovian’ – that is that the inter-arrival rate of 

arrivals is based on an exponential distribution. The second symbol which is also an M in this example 

signifies a Markovian service time. This means service time spent on each arrival that is processed by the 

server is also based on an exponential distribution. The third symbol refers to the number of servers in 

the queue. Figure 1 gives an example of this very basic queue. 
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Figure 1 - A basic M/M/1 Queue 

In 1917, Agner Krarup Erlang developed formulae for analyzing queues in which both the arrivals rate 

and service times are Markovian [8]. Very simple formulae may be used to find the average queue 

length, average waiting time, utilization of the server, etc. [16]. These formulae are commonly used to 

model call centers and are a basis for most analytical solvers for queuing networks [9]. As such, we will 

begin modeling using these formulae and use them as a baseline from which to improve. 

In Figure 1, the events arrive into the queue following a Poisson process. Therefore, the inter-arrival 

time distribution is exponential. If the average arrival rate is λ, and the next arrival arrives in T, then: 

              

The service time may be calculated in the same way. If the server is busy when a new arrival enters the 

system, then the new arrival must wait in the queue. 

1.2 Software and System Specs 

Initially we had planned on using a queuing network software package known as LQNS (Layered Queuing 

Network Solver) to run the experiments for this thesis. However, LQNS does not support queuing 

networks models in which the number of servers change over time. Since this was an extremely 

important part of our work, we opted to build our own queuing network modeling and simulation 

software instead. 

In addition to the simulator, we needed to find a more efficient method of anticipating system behavior 

in order to perform resource allocation and adaptation analytically. Therefore, we developed two 

analytical solvers to do so. Both solvers as well as the simulator that were developed are described in 

detail in their respective subsections of Chapter 3. 

The run time performance evaluations reported later in the thesis reflect the experimentation on a 

custom desktop computer with the following specifications: 
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 AMD Phenom II X4 940 Processor (3.01 Ghz) 

 8GB RAM 

 Windows 7 Professional OS (SP1) 

1.3 Thesis Contribution 

In this Thesis we offer contributions to both adaptive systems and queuing networks as follows. We 

show that an efficient analytical solver can perform resource allocation in a complex network 

successfully. More specifically, when given a list of parameters, a list of possible biometric algorithm 

thresholds, and a set of performance and security requirements for the complex queuing network, our 

analytical solver will allocate resources in such a way that minimizes cost while creating a high 

confidence that requirements will be met. 

We will show that such an analytical solver may be used to model a complex adaptive queuing network 

in real time, anticipate future problems with the system, and make adaptations to the system that will 

alleviate those problems. While there are many papers that show that analytical solvers may be used to 

verify the integrity of queuing systems, to the best of our knowledge, there are none that use analytical 

solver as a key tool for implementing an adaptive system. 

1.4 Thesis Outline 

In Chapter 2 we discuss work related to ours. It encompasses a detailed description of Queuing 

Networks, Adaptive Systems, and Biometric Systems. Each of these topics will be covered. 

In Chapter 3 we discuss the two analytical solvers we developed in order to predict the behavior of the 

system we are modeling. The first solver we will discuss will be the so called naïve solver. This is the 

solver used most commonly in modeling simple queuing networks, which makes it suitable to serve as 

our performance baseline. The second solver we discuss is the advanced solver. We try to optimize it in 

order to accurately predict system behavior. Lastly, we discuss and attempt to validate the mechanics of 

the simulator we have developed in order to analyze the system. 

In Chapter 4 we introduce capacity planning experiments. The purpose of these experiments is to 

compare and gauge the effectiveness of analytical solvers. A solver capable of predicting an appropriate 
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resource allocation and the system’s reaction to that resource allocation is considered a success. We will 

also optimize the advanced solver in this Chapter. 

In Chapter 5 we introduce biometric security concerns. The purpose of these security concerns is to add 

another analysis dimension– the tradeoff between performance and security. This will allow us to begin 

gauging the robustness of our analytical solvers. 

In Chapter 6 we utilize our solver as part of an adaptive system. We discuss each step of the adaptive 

feedback loop: Collect, Analyze, Decide, and Act. After discussing the methodology for adaptation, we 

test various scenarios in which our solver attempts to adapt to the situation at hand while being given 

various system choices. 

In Chapter 7 we discuss threats to validity of our experiments. We specifically address identified threats 

to construct, internal, and external validity. 

In Chapter 8 and 9 we summarize our work and discuss how we may improve upon it in the future.  
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2 Related Work 

This Chapter is divided into three sections: Queuing Networks, Adaptive Computing, and Biometric 

Security. 

2.1 Queuing Networks 

Queuing Networks have been a very important subject in computing for many years. One issue of ACM 

Computing Surveys was devoted entirely to queuing networks [10]. In the paper “Queuing Models of 

Computer Systems” [7], Dr. Allen describes various queuing networks, and more importantly, methods 

for their simulation. Much of our work has been based on the formulae in Dr. Allen’s paper as well as 

the Erlang formulas developed by Agner Erlang in his paper “Solution of some Problems in the Theory of 

Probabilities of Significance in Automatic Telephone Exchanges” [8]. While simulations have been the 

popular method for accurately gauging the performance of queuing networks, they can be very difficult 

and costly to construct [7]. In a survey paper by Dr. Spragins, “Approximate Techniques for Modeling the 

Performance of Complex Systems," he showed various cases in which simple analytical queuing models 

could be used in place of difficult simulations for complex systems successfully[11]. 

Figure 2 - Model for Airport Border Crossing [1] 
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The queuing model that serves as the starting point for our research was developed by Mayra 

Sacanamboy [1]. Her paper forms the basis of the idea that throughput at the border crossing could be 

increased if the system could adapt to the current situation at hand. 

Figure 2 illustrates the queuing network we are modeling. This network describes the biometric 

inspection of passengers arriving from international flights. This network contains two passenger 

queues. Passengers who arrive at the airport first enter the primary officer queue (POQ) where they will 

wait for an available primary officer (PO) to assist them. If they pass inspection, they exit the system. If 

they fail to pass the inspection, they enter the secondary officer queue (SOQ) where they must wait for 

an available secondary officer (SO) before undergoing a more thorough inspection. Passengers who 

enter the SOQ are removed from the system after the secondary inspection is complete. A simpler 

representation of this process is illustrated in Figure 3. 

 

Figure 3 - Simplified Model for Airport Border Crossing 

Arrival rates are typically described through a Poisson distribution. The inter-arrival rates of a Poisson 

distribution are acquired by pulling variates from a negative exponential distribution as follows. The 

time t, in seconds, until the next passenger arrives is    
     

 
, where u is a uniformly distributed 

random value between 0-1, and r is the average arrival rate of passengers (in passengers/second). 

Arrivals for the system described herein, however, are based on a schedule of plane arrivals. When a 

plane ‘arrives’ to the system, passengers quickly exit the plane and arrive at the queue following an 

exponential distribution as described above. This method of arrivals showing up in short bursts is quite 
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different from a standard Markovian arrival scheme and thus creates issues when attempting to model 

analytically. Those issues are vetted in Section 4. 

The network described here also differs from traditional queues in that the number of servers, 

represented by the primary and secondary officers, changes over time according to a server schedule. 

This makes our model much more difficult to solve analytically. 

 

2.2 Adaptive Computing 

Much of our research was based on the adaptive computing systems research road map [12] This paper 

describes various types of adaptation including their benefits and pitfalls. 

While sparse, there have been previous papers in which analytical solvers for queuing networks are used 

alongside adaptive systems. One such paper is “Queuing Models for Analysis of Traffic Adaptive Signal 

Control” by Mirchandani [13]. This paper is very informative and has inspired ideas herein, the adaptive 

strategies were based on a paper by Newell, “The rolling horizon scheme of traffic signal control. [14]” 

Mirchandani’s paper closely resembles the work that we’ve done. 

Cortellessa et al. predict adaptive behavior where performance risk is measured by the probability of the 

violation of performance requirements [20]. Like our work, this potentially gives an increase in the 

potential for speed in an adaptive system over simulation. This is inherit in any method for predicting 

system behavior given a discrete set of inputs. 

In related papers, the authors explored the optimality of biometric modality and threshold selection 

through a statistical visual tool called cost curves [22]. 

2.3 Biometric Security 

Biometric security itself was not a prime focus of this paper. However, the biometric algorithm chosen 

by the solver has a huge impact on the resulting model. The tradeoff between performance and security 

plays an important role in the system and thus it is important to understand how it works. The 

performance/security tradeoff is described in great detail in "Biometric security technology" by 

Faundez-Zanuy [15]. 
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The correlation of biometric security in an adaptive system, and thus using tools to manipulate the 

biometric device for a performance increase was the prime focus of the paper by Cukic and Sacanamboy 

[21]. In this paper the authors show an enormous potential for performance increase by altering the 

biometric device. More information may be found in Sacanamboy’s thesis in which she laid the 

groundwork for this document [1]. 

3 Modeling Techniques 

The model we describe represents a 24-hour period beginning and ending at 4am. We chose to begin 

and end at 4am due to the fact that planes rarely arrive between the hours of 1am and 7am [6], and 

thus we would be less likely to have passengers in the system at the beginning or end of simulation. We 

use publicly available information about flight arrivals for Indianapolis International Airport [6]. For each 

hour of operation, our solvers determine a set schedule of primary and secondary officers. This schedule 

is determined by the solver’s best estimate at the minimum resource cost for meeting performance 

requirements. 

3.1 Naïve Model vs. Detailed Arrivals 

We derive two analytical models of traveler inspection system, based on the arrival assumptions placed 

upon the primary queue (PQ).  In a simple model (naïve model), passengers randomly arrive into the 

queue following Poisson distribution throughout the hour. This assumption makes calculating the 

average wait time of a passenger simple.  However, this model ignores the fact that travelers arrive into 

the PQ in bursts, following plane landings.  In order to increase modeling fidelity a second more 

advanced model acknowledges that each plane arrival creates its own burst of passenger arrivals.  

3.2 Analytical Solvers 

In this paper the purpose of the solvers is to take information about the system and generate a schedule 

of primary and secondary officers that meets performance requirements as shown in Figure 4. 
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Figure 4 - Optimizing Resource Allocation 

Each analytical solver must be capable of predicting both the average waiting time of passengers, as well 

as the percent of passengers that will be arriving in under X minutes. This will allow us to feed a 

schedule of plane arrivals to the analytical solvers and have them return a minimal schedule of officers 

that they predict will meet performance requirements. 

3.2.1 Naïve Analytical Solver 

The naïve analytical solver (NAS) is based on Erlang - C system description [8]. They are used to predict 

performance parameters, such as average waiting time, average server utilization, etc.  Passengers who 

are unable to immediately get service must wait in a queue. The naïve model is described by the system 

of formulae in Figure 5. 
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Figure 5 - Erlang formulae 

In Figure 5, B(n, x) is the blockage rate, which is a value strictly used in Erlang - B systems. It is used in 

the calculation of C(n, x), the probability of delay for an Erlang C system. This probability of delay is 

needed to calculate both the average wait time (AWT) and the probability that a passenger receives 

service in less than t seconds, P(t), assuming that t is the parameter specified in system requirements.  

Therefore this set of equations will be the predictive mechanism in which we check to see if an officer 

schedule meets performance requirements. 

In addition to assuming a constant traveler arrival rate throughout the modeling period, this model 

suffers from one more simplification.  Each modeling period, in our case one hour, is assumed to be 

independent of others. Therefore, there can be no hand-over of travelers who do not clear the 

inspection in the same time period they arrive into the next. 

3.2.2 Advanced Analytical Solver 

The advanced analytical solver (AAS) is built to monitor quick bursts of traveler arrivals and measure 

their impact on the system performance better than the NAS. 
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Figure 6 - Pseudo code for the AAS 

The AAS works by breaking the entire day of plane arrivals into a list of events that happen throughout 

the day. At each event point you begin with the current number of passengers in queue. You then 

estimate the rate of change in passengers in the system until the next event (this is calculated by 

subtracting the rate that passengers are serviced and leave the system from the rate that passengers are 

entering the system). You then calculate the total waiting time of all passengers between the events by 

calculating the area under the event line (EL). 

In the primary queue there are three types of events in which the net rate of change in passengers in 

the system changes. These are a change in the number of officers, a plane arrival, and a plane finishing 

the unloading of passengers. Consider the event marked Ei in Figure 6. This event marks that a plane has 

just finished unloading. The slope of the EL between Ei and Ei+1 is determined by the number of primary 

officers and their rate of service, and also by the rate of passengers entering the system. Since no 

passengers are arriving into the system, the rate of passengers entering is zero, and the slope is 

negative. It is possible, if there are enough primary officers servicing passengers, for the slope to be 

negative even while one plane is unloading. However it is also possible for multiple planes to be 

unloading at one time if a second plane arrival event is analyzed before the first finishes unloading. 

As the graph is being built, each event must measure its contribution in waiting time. This is easily 

calculated by measuring the area under the line. Since the height of the line represents the estimated 
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size of the queue at that point, the area underneath represents waiting time in the queue. If you notice 

in Figure 6, there is a blue section under the waiting time section. This represents the utilization of the 

primary officers themselves. Passengers in these areas are being serviced and thus are not contributing 

to wait time. Only the areas above the blue sections, but below the ELs are calculated. The sum of all 

waiting times gives us a total waiting time for the day. We simply divide this by the total number of 

passengers in order to get our average waiting time for the day. 

Calculating the percentage of passengers arriving in under X minutes is a more difficult problem. We do 

so by generating threshold lines (TL) on the graph that represent the point at which a passenger, based 

on the rate of service, will be waiting exactly X minutes in the queue. 

Consider a situation in which there are ten officers, and working together they service ten passengers 

per minute. Also consider that we would prefer passengers be serviced in under 30 minutes. This means 

that if a passenger enters the queue and it increases the queue size to 300 passengers (which is a total 

of 310 in the system considering the utilization of officers), then it is estimated that passenger will wait 

exactly 30 minutes in the queue. Any passenger that arrives in position 300 or greater of the queue will 

wait longer than the threshold. 

At the beginning of each hour the number of primary officers may change. This causes the TL that exists 

X minutes before the change to be sloped from the previous hour to the new one. However, there will 

only be at most forty-eight TLs, and only one TL at any given point in time. 

Once the TLs are calculated, the problem becomes simple. For each EL you check to see whether it exists 

above the TL, below the TL, or intersects with the TL. If above, any passengers arriving during the EL 

(based on the rate of arrivals) will be added to the number of passengers that don’t meet the threshold. 

If below, nothing happens. If they intersect, only the portion above the TL will contribute to the number 

of passengers not meeting the threshold. Since we want to ensure that 99% of all passengers make it in 

under the threshold, if greater than one percent of the total number of passengers falls on or above the 

TLs then the schedule is rejected as unable to meet performance requirements. 

Performance for officer schedules generated for both the NAS and AAS are reported in Section 3.  The 

drawbacks of AAS is the assumption that planes arrive exactly when they are scheduled and that 

passenger unloading rates and POs service times are constant. 
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3.3 Simulation Engine 

The simulator has been designed to closely follow system requirements. Plane arrivals are processed in 

chronological order, creating passenger arrival events into the PQ. Twenty thousand passengers’ inter-

arrival times were created from a negative exponential distribution, shown in Figure 7. 

 

Figure 7 - Inter-Arrival Rate of Passengers 

The assumptions regarding the inter-arrival rates of passengers were made in discussion with the 

experts. We were told that it takes about five minutes to unload a 96-passenger plane. Thus the average 

inter-arrival rate for passengers arriving to the primary queue is estimated at 3.125 seconds per 

passenger.  

Simulating service time travelers experience when they meet an immigration officer, however, creates a 

complicated technical problem. Given a set of actual service times by the POs, a best-fit distribution 

could be estimated. However, since such information is not available to general public, we assume an 

Erlang distribution of service times. This assumption will make it easier to internally validate the results. 

We are aware that external validation of this parameter is lacking, although we had a chance to discuss 

the model with domain experts and have used their suggestions in the selection of parameters [26], 

[27]. 

Once a passenger is processed by the primary officer, whose service time is given from an Erlang 

distribution, the passenger is either removed from the system or placed into the secondary queue. The 
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inspection outcome follows a random value from a uniform distribution between zero and one. If this 

value is less than the false non-match rate (FNMR) for a genuine passenger, or (1 – false match rate 

(FMR)) for an imposter, they are placed into the secondary queue. 

For the purpose of modeling the system as accurately as possible, the simulator has the option of adding 

delays to the scheduled arrival times of planes. These delays follow a Normal distribution with mean 

equal to -163.8 seconds and variance equal to 825 seconds [2].   

3.3.1 Simulator Validation 

In order to make sure that our simulation engine is producing reasonable results, we chose to create an 

Erlang system which can be compared to the results of an Erlang calculator, as described in Section 

3.2.1.  For this model we included a single plane at time zero with 21,000 passengers. We assume no 

imposters and zero FNMR, thus no passenger ends up in the secondary queue. We set the number of 

servers to 14, the average inter-arrival rate to 3.125 seconds, and the average service time for the 

primary officer to 42 seconds. 

Using Erlang equations we’ve determined that the average waiting time of a passenger should be 

approximately 62.48 seconds. Since this value is a measure of the system in a steady state and the first 

few passengers would be entering the system with zero wait time and utilization, we omitted the first 

thousand passengers from each simulation in our results. 

To test the system we developed the following null and alternative hypotheses: 

 Null hypothesis (H0): The simulator cannot accurately measure the average waiting time of 

passengers in an Erlang system. 

 Alternative hypothesis (H1): The simulator can accurately measure the average waiting time of 

passengers in an Erlang system. 

We repeated the simulation a thousand times, each time measuring the average waiting time of the last 

twenty thousand passengers. The overall average wait time of all one thousand simulations was 61.62 

seconds with a variance of 517.1 seconds 
squared. Figure 8 shows a histogram of the frequency of 

average waiting times of all one thousand simulations. 
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Figure 8 - Average Waiting Times Obtained from Simulation 

We performed a one-sample t-test on the data comparing our expected value of 62.48 with simulation 

outcomes using = 0.05. We calculated a t-value of -1.201, and a two-tail critical value of 1.962. Since 

the absolute value of t is less than our two-tail critical value, we can reject the null hypothesis with 95% 

confidence and conclude that our simulator is producing the expected values. 

3.4 Solvers and Simulation Run Time 

In order to generate the following table, we ran 1000 iterations of the simulator (without adaptation as 

discussed in Section 6), 1000 iterations of the NAS, and 1000 generations of the AAS. These tests were 

done using parameters as discussed later in Section 5.3 after integrating security concerns, thus 

measuring the time requirement of our tools in a full practical application of the system. 

The tests were performed on the computer discussed in Section 1.2. The tests were timed using the 

computer’s system clock that initiated directly before entering the testing module and finished directly 

following each testing module. Four significant figures were considered. 

Tool Time (seconds) 

NAS 0.021 

AAS 3.811 

Simulator 791.772 
Table 1 - Time required for 1000 iterations of various tools  
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4 Capacity Planning Experiments 

In this section we analyze the methods we have developed for predicting performance using a series of 

capacity planning experiments. Capacity planning will estimate the number of POs needed at each hour 

in order to meet performance requirements. The performance we are predicting with these 

experiments is whether or not performance requirements will be met with the proposed schedule of 

POs. 

4.1 Description of Variables 

We have been given two system-level performance requirements. The first states that the average wait 

time for passengers is less than fifteen minutes (including wait time in both the primary and secondary 

queue). The second requirement is that 99% of all passengers spend less than 30 minutes in the primary 

queue. 

In these experiments, our biometric subsystem utilized Viisage (V-Norm) facial recognition algorithm 

with uncontrolled lighting, implying the FNMR of 0.146 when the FMR is 0.001 [3].  We assume an 

average passenger inter-arrival rate of 3.125 seconds and an imposter probability of 0.0001 (one in ten 

thousand). We set the average service time of the PO to 42 seconds, and the average service time of the 

SO to 300 seconds. These values were recommended through our interactions with domain experts 

either in private conversations or in the relevant technical reports [24], [25]. 

Our dependent variables include the estimated waiting times of the analytical solvers, the average 

waiting times from simulation. We calculate the percentage of all simulations that meet the stated 

performance requirements. 

We analyze the NAS versus the simulator with both scheduled arrival times and delayed arrival times. 

We also test the AAS against the simulator with scheduled arrival times and delayed arrival times. Each 

simulation is performed one thousand times. 

4.2 Capacity Planning Results and Discussion 

Since analytical solvers can only work with scheduled arrival times, the capacity planning was the same 

for both the scenario in which planes arrive on time and when planes arrive with delays. While both 
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solvers created similar schedules, their performance was very different. Figure 9 shows the number of 

primary officers scheduled for each hour of the day along with the estimated number of passengers. 

 

Figure 9 - Primary Officers Scheduled by Analytical Solvers 

The results from the analytical solvers using the scheduled arrival times are shown in Table 2. Table 3 

shows results when planes are given random delays. 

 Sched. 
Hours 

Est. Ave. Wait Time Actual Ave. Wait 
Time 

% Meeting Perf. Reqs. 

Naïve  370 514.0s 597.2s 0% 

Advanced 373 527.6s 531.1s 50.9% 
Table 2 - Comparison of Analytical Solvers assuming planes arrive exactly as scheduled 

 Sched. 
Hours 

Est. Ave. Wait Time Actual Ave. Wait 
Time 

% Meeting Perf. Reqs. 

Naïve  370 514.0s 706.1s 24.3% 

Advanced  373 527.6s 698.7s 45.1% 

Table 3 - Comparison of Analytical Solvers when delays are simulated for planes 

Tables 2 and 3 suggest that the AAS is outperforming the NAS by a great deal, albeit with a slightly 

higher number of scheduled hours. However, to truly gauge their predictive capabilities, we must 

compare their estimated waiting time to actual waiting time by the hour. Figure 10 compares what the 

NAS believed would be the wait time per hour against the median and average wait times over 1,000 

simulations. 
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Figure 10 - NAS estimated wait time per hour versus wait times in simulation 

Figure 10 shows that NAS does a very poor job at predicting passenger wait time.  By assuming 

passenger arrivals are distributed evenly over each hour, the NAS vastly underestimates the wait times.  

The large spike in estimated average wait time at 5pm is a result of the NAS deciding that it has leeway 

in meeting the performance requirement due to underestimating most waiting times. It just so happens 

that passengers entering the secondary queue at 5pm could wait hours for service and overall daily 

performance requirements would still be met. However the NAS assumes each hour is independent of 

subsequent hours, thus when the number of secondary officers increases by four in the following hour 

any accumulated queue is quickly dissipated. 

Where NAS proves the least reliable, however, are the last few hours of arrivals. The largest spike in 

arrivals occurs between 11pm and 12am, and then dissipates greatly for the following two hours. Due to 

the underestimation of waiting times, the NAS under-schedules the number of primary officers between 

11pm and 12am.  As a result, a large queue is left over when the number of POs drops to four and then 

two. Thus passengers arriving between 12am and 2am are placed in the back of a larger than expected 

queue. This increase in primary queue waiting times causes the NAS to fail to meet the performance 

requirement that 99% of passengers in the primary queue are serviced in under 30 minutes. 

Figure 11 compares AAS wait time predictions against the median and average wait times over 1,000 

simulations. 
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Figure 11 - AAS estimated wait time per hour versus wait times in simulation 

The AAS is far superior to the NAS in estimating passenger wait time. In some cases it seems to 

underestimate or overestimate the waiting time, but at a small degree. 

4.3 Optimization 

While the AAS performs well, only 509 of the 1,000 simulations runs have managed to meet 

performance requirements. The 491 that failed did so because less than 99% of passengers in the 

primary queue received service in less than 30 minutes.  This result is due to the fact that the analytical 

solver attempts to find a point in which exactly 99% of all travelers are inspected in less than thirty 

minutes. Therefore, the randomness of the simulator causes approximately half of the results to fall 

below that threshold. The distribution of passengers serviced below the thirty minute threshold for the 

simulation of AAS vs. scheduled arrivals can be found in the histogram in Figure 12. 
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Figure 12 - Distribution of percentages of passengers being serviced in under the required threshold 

Let’s assume that we want to increase this value to a 95% confidence. In order to do so, we introduce a 

new value into the analytical solver called the leeway value, depicted herein by £. This value gives us 

some leeway in ensuring that the simulation has a significant confidence that performance 

requirements are met. 

In order to find this value, it’s important for us to know which thresholds were met in our previous 

simulation. We ran another series of distributions using the parameters in Section 3.2 using the AAS and 

the scheduled arrival times in the simulator. We then plot the distributions of thresholds met in a 

histogram as shown in Figure 13. 

 

Figure 13 - Distribution of thresholds 
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As we can see, the distribution of thresholds is very similar to a Normal distribution. Given the standard 

deviation, we can determine for which value 95% of our simulations were below. We may calculate the 

value at which 95% of simulations successfully met the threshold, v, and ultimately the leeway value, £. 

             

        

            

          

  
 

 
 

The value z is a confidence interval ensuring 90% confidence that a value exists between two points 

equally distant from the mean. However, since we’re fine with values appearing in the left tail, we get a 

95% confidence that a particular result doesn’t appear in the right tail of the distribution. 

The way we ultimately find the leeway value is by first finding the value, v, satisfied by the original set of 

parameters. This tells us that, in order to have 95% confidence that an officer schedule meets the 

security requirement that 99% of all passengers get service in the primary queue in under v minutes, we 

must set the AAS to create a schedule given the performance requirement that 99% of passengers get 

service in the primary queue in under v * £ minutes. It then goes to imply that in order to have a 95% 

confidence that 99% of passengers in the primary queue are serviced in under 30 minutes, that we must 

assume a 30 * £ requirement when running the AAS. 

In the case of the simulation above, we found a £ value of 0.900839. By multiplying the requirement as 

it is read in to the analytical solver by our leeway value, we end up with new results for our now 

‘optimized’ advanced analytical solver (OAAS). The results of the OAAS as compared to the AAS using 

the same parameters from 4.2 while the simulator uses the scheduled arrivals are in Table 4. 

 Sched. Hours Est. Ave. Wait Time Actual Ave. Wait Time % Meeting Perf. Reqs. 

AAS  373 527.6s 531.1s 50.9% 

OAAS 375 512.0s 510.9s 96.6% 
Table 4 - Comparing AAS and OAAS against the simulator while using the scheduled arrival times 

The OAAS is now able to meet performance requirements with a significant level of confidence. 
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In order to determine whether or not the leeway value remains consistent over varying thresholds, we 

repeated the experiment finding new leeway values for simulations with thresholds ranging from 15 

minutes to 60 minutes in five minute increments. The findings are in Figure 14. 

 

Figure 14 - Leeway values derived from performance requirement thresholds 

The leeway values remain consistent for the first 40-45 minutes and then begin to drop off as the 

standard deviation of our results grows faster than the increase in threshold. 
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5 Integration of Security Concerns 

Up until this point we have been focusing solely on performance requirements. In this section we 

introduce security requirements and examine how our system can adapt to varying system parameters 

from day to day. 

5.1 Performance vs. Security 

As discussed earlier, any given biometric algorithm has both an FMR (false match rate) and an FNMR 

(false non-match) rate. However, almost all biometric devices may vary their FMR and FNMR based on a 

configurable threshold. 

If a lower, more lenient threshold is chosen then passengers are less likely to be rejected by the system. 

This means that the FNMR decreases. As a result, less passengers need to enter the secondary queue 

and performance improves. However, FMR increases and thus imposters are also more likely to be 

accepted. So this increase in performance is accompanied by a decrease in security. 

If a higher, less lenient threshold is chosen then the exact opposite situation occurs: more passengers 

are rejected. Thus more passengers enter the secondary queue and performance suffers. However, 

imposters are less likely to be accepted and security improves. Figure 15 illustrates this trade-off with 

various facial recognition algorithms (along with human performance). 
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Figure 15 - ROC curves of various facial recognition algorithms [3] 

5.2 Identifying Biometric Threshold 

Given that we are using a static security requirement (as opposed to a cost heuristic), the requirement 

and parameters of the system alone dictate which thresholds are available to use for a given day. If the 

static requirement is written as “Less than or equal to x imposters may successfully pass the primary 

officer in a given day,” then the maximum acceptable FMR can be calculated as follows: 

       
 

            
 

Where pimp is the probability of an imposter and #pass is the total number of passengers arriving on that 

day. 

While it’s obvious that the number of passengers varies from day to day, the security requirement and 

probability of imposter may also vary due to changes in foreign affairs or other external events. Thus the 

ability to identify a new maximum FMR each day is important. 

Once a maximum FMR has been established, we must maximize performance and minimize cost. This is 

done by implementing the threshold with the lowest FNMR out of the remaining thresholds available. 
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Table 5 shows some of the thresholds of an undisclosed NEC algorithm extracted from a 2010 NIST 

report on facial recognition accuracy [5]. 

Threshold FMR FNMR 

1 0.01 0.024 

2 0.001 0.037 

3 0.0001 0.055 

4 0.00001 0.065 
Table 5 - NEC algorithm thresholds 

If, for example, we were to model the day we’ve been exploring throughout this paper in which there 

are 13,928 total passengers, and we assumed an imposter probability of 0.00001 (one in a hundred 

thousand) with a security requirement that the probability of an imposter getting through in a day must 

be less than or equal to one in ten thousand (0.0001), then our maximum FMR would be equal to 

0.000718. Thresholds 3 and 4 both meet this requirement. Since threshold 3 has a lower FNMR it would 

be chosen for performance purposes. 

5.3 Testing and Discussion 

In this section we experiment with various levels of security requirements and see how they affect our 

performance and capacity planning using our OAAS. 

For the following experiments we are using the same performance requirements, service times, and 

passenger inter-arrival rates that we used in Section 3.1. We use the OAAS solver for capacity planning. 

The probability of an imposter and the security requirement (and in turn, the algorithm) vary between 

experiments as listed. 

We run three experiments, each chosen to simulate varying states of security. They are listed in Table 6. 

 Probability of Imposter Security Requirement FMRmax Threshold 

Test 1 0.000001 0.001 0.07 1 

Test 2 0.00001 0.0001 0.0007 3 

Test 3 0.00001 0.00001 0.00007 4 
Table 6 - Test parameters 

Test 1 represents a low-security test. In this scenario it is estimated that only one in a million 

international arrivals are imposters. Furthermore, security requirements only dictate that the probability 



 

31 
 

of an imposter entering the country on a given date must be less than one in a thousand. Given that we 

have 13,928 passengers arriving, we need a FMR of less than 0.07 (7%) to meet the security 

requirement. Threshold 1 fits this requirement and has the lowest FNMR of all available thresholds. 

Test 2 represents a medium-security test. Test 3 represents a very high security test. They require the 

use of thresholds 3 and 4 respectively. 

The results of these tests are shown in Table 7. Please note that only secondary servers are listed since 

chances in security have no impact on the primary queue or officers. 

 Secondary 
Servers Scheduled 

Average Waiting 
Time 

Percent Meeting Performance 
Requirements 

Test 1 39 553.07s 95.9% 

Test 2 75 534.47s 98.9% 

Test 3 87 581.82s 93.8% 
Table 7 - Test Results 

Figure 16 shows the number of secondary servers schedules to meet the demand caused by variations in 

FNMR throughout the day. A lower the level of security result in less servers being scheduled. 

 

Figure 16 - Secondary Servers Scheduled  
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6 Adaptation 

In order to adapt to unexpected events in system’s environment at run time, we must first discuss the 

method in which our simulator gives feedback to our analytical solver. Figure 17, taken from  [12] gives a 

basic idea of the information flow in a feedback loop of an adaptive system. 

 

Figure 17 - Feedback loop for Adaptive Systems [12] 

The overreaching goal of system adaptation is to meet performance requirements. Based on 

information received, if the solver decides as though the current configuration of servers does not meet 

performance requirements then it has the option of making decisions that changes the way the system 

behaves. 

For the purposes of this experiment we have decided that the feedback loop initiates once every five 

minutes beginning at 4:05am and ending at 2:55am the following day. The reason it ends early is due to 

the fact that we have set the limitation that adaptations may only be implemented by the hour, and we 

may only change system performance in time periods that begin an hour after the feedback loop is run. 

Furthermore, we only use the delayed plane schedule when testing the adaptive model. This is due to 

the fact that the important feedback is based on the ‘actual’ arrival times. Our system adapts to planes 

that arrive delayed. 
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6.1 Collect 

The first step in the feedback loop of our adaptive system is to collect information about the system and 

its environment for analysis. This means that we need to determine what information our analytical 

solver has access to. 

Since the goal is to maintain performance requirements, the feedback we need is that in reference to 

the waiting times of passengers. While current queue size would be very useful to this end, it would be 

impractical to try and accurately gauge the queue size at a given point in time. Since we have shown in 

Section 4.2, and more specifically in Figure 11, that the AAS is capable of accurately estimating waiting 

time using only the plane schedule, this is the data we analyze with the analytical solver. 

Other possible choices such as server utilization, PO accept and reject rates, or actual service times 

would be difficult and impractical to obtain in a real system. 

6.2 Analyze 

When analyzing the data it’s important to keep four pieces of information in mind: 

 The original plane arrival schedule 

 The actual arrival times of every plane that has landed thus far 

 The original server schedule and algorithm threshold 

 A list of all adaptations implemented in previous iterations of the feedback loop 

The analytical solver is designed to take a schedule of primary and secondary officers along with a plane 

arrival schedule, and a list of which algorithmic thresholds are being utilized each hour, and to 

determine if performance requirements are maintained. The schedule of primary and secondary officers 

may be ascertained using the original schedule along with the list of adaptations made by previous 

iterations of the feedback loop. The schedule of plane arrivals, however, must be reacquired at each 

feedback loop iteration, i.e., every 5 minutes. 

When determining the most accurate plane schedule there are two situations to consider for each 

plane: 

 All planes that have already arrived are listed as arriving at their ‘actual arrival time’. 
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 All planes that have yet to arrive have their arrival times estimated based on a truncated Normal 

distribution using their scheduled arrival time, the current time (of the feedback iteration), and 

the average distribution of delays. 

Since the second point may not be immediately clear, we consider the following example: 

 

Figure 18 - Truncated Normal Distribution 

Figure 18 demonstrates a case in which a plane was scheduled to arrive before the current time and 

hasn’t. The MAT is the mean arrival time which takes place 163.8 seconds before the scheduled arrival 

time as discussed in Section 3.3 [2]. SAT signifies the scheduled arrival time. Finally, CT signifies the 

current time (the time at which the feedback loop was initiated). The only thing that system can know 

about this plane is that it must arrive sometime in the shaded area of the distribution. 

The arrival time of the plane, X, given that X must be greater than the current time, CT, is given as 

follows [18]: 
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where      is the probability density function and      is the cumulative distribution function [18]. 

It is important to note that this method for estimating future arrival times is useful for all planes which 

have not arrived, not only the ones that are known to be late.  The analysis step determines, given the 

modified server schedule and plane arrival schedule, if the system is still on track to meet performance 

and security requirements. 

6.3 Decide 

Once analysis is complete it is time to consider making adaptations to the system in order to maintain 

performance requirements. There are five possible adaptations to our system and we have put them 

into two categories, simple and drastic. 

Simple adaptations are those that are always taken as long as they result in a performance increase. 

Most importantly, these are the possible adaptations the system considers regardless of whether it was 

determined that the system will still meet performance requirements. The two simple adaptations are 

as follows: 

 Move a secondary officer to the primary officer position 

 Move a primary officer to the secondary officer position 

In either of these cases it creates no added cost. If it is determined that moving any number of officers 

from one position to the other potentially increases performance than the change is made. 

Drastic adaptations are those which increase resource cost or threaten to trip the security requirements. 

These adaptations are only considered if analysis reveals that performance requirements will most likely 

not be met. Drastic adaptations are as follows: 

 Add a secondary officer 

 Add a primary officer 

 Temporarily reduce the biometric algorithm threshold 

Adding an officer undoubtedly increases performance but at the cost of employing an extra server. 
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Reducing the biometric algorithm threshold also undoubtedly increases performance, but this may 

cause the simulation to break security requirements. Please note that temporarily reducing the 

threshold does not always trip the security requirements. However, since planes are randomly delayed 

and service times are randomly distributed, in the worst case scenario every remaining passenger that 

has not yet been serviced may be processed during the hour in which the threshold is reduced. However 

unlikely this may be, the system always treats this as a potential risk. 

The only design decision left is to decide whether to prioritize adding additional officers or reducing the 

algorithm threshold. It really depends on what is most important to the vendor. Since either method 

could be tested with a simple reordering of the code, we opted to test out both methods. These 

methods are referred to as Extra Server First (ESF) and Threshold Reduction First (TRF). An alternative 

would be to allow the addition of additional servers up until a point, then prioritize reducing the 

threshold, and then finally allow the addition of the remaining available servers in the worst case 

scenario. We did not test this method due to time constraints. 

One last added note is that the system does not implement a set of drastic adaptations unless it believes 

that by doing so the system is once again be in a position to meet security requirements. This was done 

to prevent a situation in which the performance requirements fail early and the system responds by 

downgrading the algorithm for every remaining hour to the lowest threshold while also calling in every 

possible additional server in vain. If the system is unable to meet performance requirements in this 

situation then it reverts to only making simple adaptations. 

6.4 Act 

Once any number of decisions have been made, those decisions are then fed back to the simulator and 

the alterations are added to the event list at the appropriate times. 

6.5 Testing 

Testing the adaptive system was done using the same parameters that were used for the testing done in 

Section 5.3. The security level chosen stipulates that the probability of an imposter getting into the 

country must be less than or equal to one in ten thousand with the assumed probability of imposters 

equal to one in one hundred thousand. 
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The system choices for adaptations were given a few limits to make them more practical. First of all, in 

no case may all officers be moved from one queue to another. Secondly, only twelve servers may be 

‘added’ to the system (that is twelve server hours total). Lastly, no more than three servers may be 

added at any given hour. This was done because it seems unlikely that there would be more than three 

additional servers willing to be ‘on call.’ 

Three experiments were conducted. One thousand simulations were run without adaptation, one 

thousand simulations were run with adaptation prioritizing the increase in servers, and one thousand 

simulations were done with adaptation prioritizing lowering the threshold. 

6.6 Results and Discussion 

The results for the tests from Section 6.5 are shown in Table 8. 

Solver Adaptation Average Wait Percent meeting 
performance Requirements 

OAAS No 682.71s 62.8% 

OAAS Yes, prioritizing more servers 606.68s 73.2% 

OAAS Yes, prioritizing downgrading algorithm 598.25s 75.2% 
Table 8 - Adaptive Computing Results 

Before discussing these results it is important to make note of some interesting behavior from 

adaptation. The following points are in reference to the adaptation in which downgrading the algorithm 

had preference unless noted otherwise: 

 In 412 of the simulations, no adaptations were made. All 412 of these simulations met 

performance requirements. 

 In an additional 42 simulations, only simple adaptations were made. The only simple adaptation 

for these simulations was to remove officers from primary to secondary (and only during the 

busiest hours). 

 When a drastic change was made to reduce the algorithm threshold, it was always accompanied 

by transferring secondary officers to primary. This was most likely due to the fact that a 

decrease in algorithm threshold would mean less passengers would move on to the secondary 

queue. 

 In all 248 simulations in which the performance requirements were not met, the OAAS correctly 

identified that performance requirements would not be met during a feedback iteration. The 
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OAAS also incorrectly stated that performance requirements would not be met during 27 

simulations in which they were. 

 In almost all cases in which the OAAS identified that performance requirements would not be 

met, it did so just before or during the largest spikes in traffic (6pm and 11pm). 

It is the last point which helped us identify the reason as to why the adaptive system wasn’t creating 

a larger increase in performance. 

Consider what was shown in Figure 11 about the AAS in respect to estimating the average hourly 

wait time. Compare that to Figure 19 below. 

 

Figure 19 - Waiting Times: Expected versus Actual 

Figure 19 shows the comparison between expected waiting times and the actual waiting times from 

both the normal delayed simulation and the adapted delayed simulation. 

In the case of the normal delayed simulation (marked in red) the times in which the solver makes the 

poorest estimations of waiting times are immediately before and after the ‘spike’ hours (6pm and 

11pm). This makes sense due to the fact that the hours before and after spikes have the greatest 

potential for unexpected plane arrivals due to planes in the spike arriving early or late. 
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In the case of the adapted simulation, however, the only significantly poor estimates are during hours 

that precede the spikes. The hours following spikes do fairly well. This is because the system is adaptive 

and responds to feedback. It knows before a spike ends whether or not all the scheduled planes have 

arrived. If not, then it knows those planes will most likely land in the following hour and the system 

takes the necessary precautions to avoid a drop in performance. However it has no way of knowing that 

planes will arrive early before the spike, and is thus unable to prepare for them. This is why the OAAS 

typically reported failure to meet performance requirements nearing the ends of hours proceeding 

spikes. 

The adaptive system we have developed for the border crossing works well for late arrivals, but is still 

vulnerable to early arrivals with no mechanism for anticipating potential threats. Extensions of the work 

which help to mitigate these issues are discussed in the next section as well as the Future Work section. 

6.7 Early Warning and Extended Delays 

In order to further test the robustness of our solution given a complex system, we have devised a final 

set of conditions and battery of tests to use in conjunction with the analytical solver. 

6.7.1 Early Warning Time 

Given that our biggest obstacle with the adaptive system is that we are unable to react to early arrivals, 

we wanted to explore the idea that the airport would most likely have an advanced warning of the 

actual arrival times of the aircrafts. If early enough, this advanced warning that we call the Early 

Warning Time (EWT) gives the analytical solver an advanced warning of early arrivals while there is still 

time to make adaptations in the system. 

In order to implement this we need to maintain a working schedule during each run of the simulator 

that maintains a list of the best-known arrival times for aircrafts. Consider for example that one 

particular aircraft was scheduled to arrive at 5:05pm but ended up arriving at 4:35pm instead. Without 

an early warning the solver would be unaware of the early arrival until 4:35, and therefore would be 

unable to make adaptations in a timely manner. If, however, there were an EWT of one hour, then the 

solver would become aware of the actual arrival time of the aircraft at 3:35pm. This would allow for the 

system to make adaptations that could greatly reduce the performance cost. 
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6.7.2 Call-In Delays 

One issue that we have ignored thus far in testing was the delay in the arrivals of officers called in for 

backup. In Sections 6.5 and 6.6 a new officer could be scheduled to come in with as little as a five 

minute delay. This is impractical in a real world setting. However, if we set a Call-In Delay (CID) of one 

hour for example then it becomes much more difficult to react to changes in the schedule. 

Given that the EWT and CID are closely related, we explore them both together. 

6.7.3 Early Warning Time versus Call-In Delay 

The system parameters for the following testing were done using the same parameters from Section 

5.3. The analytical solver prioritized downgrading the security setting before adding additional officers 

when faced with the inability to meet performance requirements. Each combination was simulated one 

thousand times. 

  CID 

  None One hour Two Hours Three Hours 

EWT None 74.8% 64.5% 62.3% 63.7% 

One hour 87.3% 83.4% 71.8% 70.9% 

Two hours 89.2% 87.5% 84.1% 71.5% 

Three hours 89.2% 87.8% 86.8% 83.9% 
Table 9 - Percentage of simulations meeting Performance Requirements when considering CID vs. EWT 

Any significant CID that isn’t offset by an equal or greater EWT reduces performance by a great deal. 

One possible explanation for this is the fact that it limits the solver to trying to allocate for resources 

during times in which it has no information of delays. 

However, when the EWT is one hour or greater with an equal CID, a significant performance increase is 

seen. This results from reduction of the security level and the ability to move officers from secondary to 

primary without any delay. Therefore, any EWT greater than zero helps to fix the problems introduced 

by early arrivals. 

Finally, when given a significantly higher EWT than CID the performance increases by a great deal. This 

performance increase is almost as high as when working with an exact schedule without the 

introduction of delays. 
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6.7.4 Storm Delays 

The last scenario that we wanted to explore was a situation in which a storm delayed all arrival times by 

a significant delay. For this test we chose to delay all plane arrivals between the hours of 10:00pm and 

12:00am. Beginning at 12:00am any plane scheduled to land would do so in chronological order with a 

three minute delay between landings. Thus the first plane whose actual landing was between 10-12 

would land at 12:00am, the second at 12:03am, ect. The solver receives word about this delay two hours 

in advance at 8:00pm. 

Initial testing showed that no simulations were able to meet performance requirements under these 

conditions. This was in large part due to the limitation that only three additional server hours could be 

scheduled for any given hour. Therefore the solver was given a new potential decision in the simple 

change category: 

 Primary and secondary officers may be delayed until a later time. For example, if five officers 

were scheduled to work from 4-5 and four officers were scheduled to work from 5-6, then an 

officer could be removed from the 4-5 interval and added to the 5-6 interval at no cost. 

Given this new option we performed one thousand simulations with the delay using the same 

parameters as in 7.7.3 using an EWT of two hours and a CID of one hour. The resulting simulations 

showed that 845/1000 or 84.5% met the performance requirements. This was barely any worse than the 

performance without the delay. The solver simply indentified the problem and shifted the officers into a 

more appropriate configuration. 

6.7.5 Discussion 

What we can conclude from our latest round of testing is that our analytical solver remains resilient 

when confronted with radical changes in the system’s operational environment. We have also seen how 

better information increases the performance of our adaptive system. 
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7 Threats to Validity 

7.1 Construct Validity 

The validity of the results is highly dependent on the accuracy of the simulator. In this paper we used 

the simulator to represent the real-world queuing network, so any discrepancies in our simulator mean 

that our conclusions are less likely to carry over to a real system. 

Due to the difficulties in obtaining information about international flight arrivals, we had to randomly 

generate the number of passengers on each plane as well as only ran experiments on the data collected 

from a single day. As a result there may have been a risk of ‘overfitting’ during optimization for that 

specific day which would not give as strong results if given new data. 

7.2 Internal Validity 

Most variables were controlled very carefully throughout the experiments. However, we never tested 

the effect of a given FAR/FRR pair on the accuracy of the analytical solvers, thus algorithm choice may 

be a potential confounding variable. 

7.3 External Validity 

The queuing network described herein is a very specific type of queuing network. The reason the AAS 

was developed was due to the fact that the arrival rates were similar to that of an MMPP queue. As 

such, we believe the methods described herein would be extensible to MMPP queuing networks as well 

as batch arrival networks. Simple Markovian arrival networks, however, would most likely need to 

develop and test alternative solvers. 
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8 Summary 

Developing an adaptive solution for a complex system can difficult. Deciding about how to implement a 

process for predicting the behavior of the system is very important. 

The study has been motivated in part by the requests from some of our industry partners to develop a 

low cost alternative to extensive and complex simulations developed as a part of conceptual analysis of 

modern border crossings [23]. While the design of airport immigration systems if largely known and well 

studied, the design of exit procedures for passengers leaving the United States and many other 

countries through airports is still an open issue. We believe that our techniques offer a good starting 

point for the early, design - time analysis of architectural alternatives. The organization of pedestrian, 

vehicle and other type of BIMS also remains open to innovation. For this reason, the lessons learned 

from the application and experimentation of rather mature performance analysis tools and techniques 

are relevant and are likely to be consequential for the domain practice. 

Consider if we had tried to use the simulator instead of the AAS to predict the system’s behavior. At 

each instance of the feedback loop, we may need to test 100 different options. One simulation per test 

wouldn’t give us any significant confidence that we are correctly predicting the outcome of the system 

following the given choice. Therefore we would need to repeat the simulation at least 15-20 times. For 

any given instance of the feedback loop this may take thirty minutes for the simulator to determine the 

best course of action using a mid-to-high-end computer like the one utilized for our tests. This is 

infeasible without a large investment of resources. 

The advanced analytical solver however not only runs over two hundred times fast than the simulator, it 

only needs a single run to reach its optimal predictive behavior. Thus it predicts the best course of action 

for the same feedback loop in less than a second. 

Not only have we shown that efficient solvers may be developed to accurately predict the behavior of 

complex systems, we have tested our solver against a simulation of one such real-world system. We 

have verified the robustness of our solution by introducing multiple ‘unexpected events’ into the 

simulator. 
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There are many applications of adaptive systems [12], many of which are too complex for simple solvers. 

Given the work shown herein, we are confident similar techniques may be employed to increase the 

efficiency, or even feasibility, of many real-world systems in use today. 
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9 Future Work 

We would like to be able to extend this work onto a different complex queuing network in order to see 

how extensible our optimization techniques are. There are potentially thousands of different outlets for 

this work. 

One thing we would like to consider is the possibility of testing different analytical solvers. Initial 

brainstorming rejected the idea of an optimal solver using Bayesian analysis as being too 

computationally complex, but we haven’t ruled out the idea all together. Furthermore, there may be 

dozens of potential suboptimal solvers such as AAS which may obtain even better performance. 

While the adaptive system is able to predict and expect some future events, it was unable to react to 

early arrivals without a greater than zero EWT due to their being entirely unexpected. This problem may 

be solved by implementing a learning element to the analytical solver which develops the initial 

schedule using theory from pattern matching to learn to identify potential threats to performance and 

take action beforehand. Adding an evolutionary element to the adaptive system could potentially create 

a substantial increase in performance. 

Possibly the most obvious extension of this work, however, would be to apply it to a real-world system. 

In doing so we could better validate the results and therefore further our capabilities of dealing with 

complex queuing models.  
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