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ABSTRACT 
 

Statistical Estimation of Strain Energy Release Rate of Delaminated Composites 

 
Rajesh Vijayaraghavan 

 

An improved two-sublaminate model based on first-order shear deformation 

theory is implemented in a general-purpose finite element software (ANSYS) to study 

delaminated composite plates. Double cantilever beam and end-notched flexure models 

of unidirectional and multidirectional composite plates with mid-plane and offset 

delaminations are analyzed. The total strain energy release rate and the mode-I, mode-II 

and mode-III components are evaluated using a plate-theory-based crack-closure 

technique.  

The effects of variation of material properties, ply thickness, fiber orientation, 

coefficient of friction between the crack surfaces, finite element mesh density and virtual 

crack-closure length and applied load on the mixed-mode strain energy release rates are 

studied using Monte Carlo simulations. The statistics and trends are analyzed and 

quantified using sensitivity plots and scatter plots. Anderson-Darling goodness-of-fit tests 

are performed on the results to fit them to a two-parameter Weibull, normal or log-

normal distribution and the statistically-based design values are calculated. Three-

dimensional contour plots are also generated to study the overall variation in the strain 

energy release rate distribution along the delamination front. 

In the case of double cantilever beam specimens, the ply thickness has a 

significant influence on the total and average strain energy release rate. Fiber 

misalignment controls the amount of mode-II and mode-III components observed. The 

maximum and minimum values are also highly dependent on the virtual crack-closure 

length. For unidirectional end-notched flexure models, sliding friction effects are found 

to be negligible and occur only adjacent to the supports. For the symmetric and 

unsymmetric end-notched flexure models studied, the energy loss due to sliding friction 

controls the total strain energy release rate for friction coefficients greater than 0.16 and 

0.24, respectively. 
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1 INTRODUCTION 
 

1.1 Problem Statement 
 
 

The use of composite structures has seen a rapid growth in various industries due 

to their low weight-to-strength ratio and the scope for concurrent design. But the main 

drawback is that they have a comparatively low strength in the thickness direction and 

thus exhibit numerous failure modes, one of the most common being delamination 

between plies.  

Numerous studies have been done to analyze delamination growth in laminated 

composites. The usual method is to evaluate the total strain energy release rate (SERR) G 

and it’s mode-I, mode-II, and mode-III components GI, GII and GIII at various locations 

along the delamination front. “Failure is expected when, for a given mixed-mode ratio 

GII/G, the calculated total SERR, G, exceeds the interlaminar fracture toughness, Gc”, 

Krueger (2004). Some of the methods proposed in the literature for calculating the 

mixed-mode strain energy release rates are the Virtual Crack Closure Technique, J-

Integral method, Crack-Tip Element method (CTE) and plate-theory-based crack-closure 

techniques. In most cases the crack surfaces are assumed to be smooth and only a few 

authors have considered sliding friction between the surfaces bound by the delamination 

and calculated the strain energy release rates which include the friction effects. 

Even after incorporating sufficient refinements to the evaluation of the mixed-

mode strain energy release rates, the common drawback in most of the works available in 

literature is that they are based on deterministic models, i.e. they do not account for the 

randomness or scatter in the data of the design parameters. The Composite Materials 

Handbook (2002), points out that “Variability in composite material property data may 

result from a number of sources including run-to-run variability in fabrication, batch-to-

batch variability of raw materials, testing variability and variability intrinsic to the 

material”. Similarly variability in dimension and fiber orientation is manifested from the 

type of process used for laying-up the laminate. Variability in testing environment is due 

to changes in temperature and moisture content. Testing methods, personnel performing 

the tests and applied loads are some of the other aspects in composites design that exhibit 
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uncertainties. 

As far as finite element implementation of delamination problems is concerned, 

the mesh density, geometric uncertainties, material properties, loads, friction coefficient 

if sliding friction between crack surfaces is considered, delamination length, and virtual 

crack closure length are some of the random variables that can be controlled. The aim of 

the present study is to account for all these uncertainties by using appropriate 

probabilistic distributions for the design variables and calculate the statistically-based 

energy release rates along the delamination front. The results would assist in assessing 

the reliability of the structure when compared with statistical fracture toughness values. 

Also, the scatter in the strain energy release rate values obtained through a probabilistic 

analysis would aid in the non-conservative use of the resistance factor which determines 

the design values of the composite structure. 

 

1.2 Literature Review 

 

In this section, some of the techniques used for evaluating mixed-mode strain 

energy release rates from finite element models of delaminated composites are reviewed. 

Out of the techniques listed in section 1.1, the J-integral method is not considered. This is 

because, sliding friction effects are taken into account in this study and the J-integral 

loses its path independence in the presence of contact and friction. Emphasis is placed on 

the other three methods. The section is organized as follows: 

• First, one of the most common data reduction methods, the virtual crack closure 

technique is reviewed. 

• Next, plate theory-based crack closure techniques are studied. Among these, the 

two-sublaminate models are reviewed first followed by the multi-layer models. 

• Two references, in which sliding friction effects between the delaminated 

surfaces are accounted for, are reviewed. 

• Finally, references in which laminated composites are studied by taking into 

account the effects of various uncertainties are reviewed. 
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1.2.1 Virtual Crack Closure Technique  

 

Virtual crack closure technique (VCCT) is based on Irwin’s crack closure integral 

which assumes that the energy released when a crack is extended by a small distance ∆a 

is equal to the energy required to close the crack by ∆a. Further it is assumed that the 

crack extension does not alter the stress state at the crack tip. Krueger (2004) has given a 

detailed account on the history and approach used for the finite element implementation 

of the VCCT with emphasis on the application of the technique for damage analysis in 

composite structures. The VCCT formulae for use with two-dimensional quadrilateral 

elements and three dimensional solid and plate/shell finite elements with linear and 

quadratic shape functions are summarized. The various approaches required for 

geometrically nonlinear analyses, presence of arbitrarily shaped delamination contours, 

delaminations with sharp corners, elements with different lengths/widths at the crack tip 

and delaminations at bi-material interfaces are suggested.  

     Krueger (1994) has developed a classical laminate plate theory based three 

dimensional shell element and has used VCCT to determine the mixed mode strain 

energy release rate distributions along straight and curved crack fronts in double 

cantilever beam, end-notched flexure and single leg bending test specimens. The effects 

of mesh type and local refinement of mesh near the crack tip, which in-turn affects the 

virtual crack closure length, on the energy release rates and individual mode 

contributions are discussed. 

     Kruger, Rinderknecht and Konig (1997) have simulated delamination front 

growth in end-notched flexure specimens using adaptive meshing technique and 

compared them with experimentally observed results. They have also used surface-to-

surface contact elements in conjunction with the penalty method to prevent 

interpenetration of the sublaminates in the cracked region.   

     Krueger and O’Brien (2001) have used a Shell/3D modeling technique to analyze 

delaminated composites. The global section is modeled using 4-node shell elements and 

the local section in the immediate vicinity of the delamination front extending to three 

specimen thicknesses on either side is modeled using 8-node solid elements. Multi-point 

constraint is used to enforce displacement compatibility along the shell-solid interface. 
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The total strain energy release rates and the individual components along the 

delamination front are found using the virtual crack closure technique for double 

cantilever beam, end-notched flexure and single leg bending test models. 

 

1.2.2 Plate Theory-based Energy Release Rate Evaluation 

      

      Whitcomb, J.D. and Shivakumar, K.N. (1989) have developed a classical laminate 

plate theory based crack closure technique to calculate the distribution of total strain 

energy release rate around the boundary of the delamination in composite plates. The 

uncracked region is modeled as a single plate and the cracked region is modeled as two 

plates. The strain energy release rate is calculated as the work required for changing the 

mid-plane strains and curvatures at the crack front in the cracked region to be equal to 

those in the uncracked region. A transversely loaded square laminate and a post-buckled 

laminate with an embedded delamination surface under compressive loading are analyzed. 

Since classical laminate plate theory is used, the transverse shear deformations are 

neglected and also expressions for the components of strain energy release rate are not 

provided. 

      Sankar and Sonik (1995) have calculated the point-wise energy release rate along 

the delamination front in terms of force and moment resultant jumps across the front. 

They also provided a measure of error in the J-integral or G values computed using plate 

theories by comparing the J-integrals obtained using exact stress fields and the plate 

theory stresses.  

      Bruno and Greco (2001) have analyzed symmetric laminates with mid-plane 

delaminations using their interface model and found that the bending-shear interaction 

has a notable influence on the mode-I component of the energy release rate. Wang and 

Qiao (2004a) have extended the formulation to general two-dimensional cases by 

including the bending-shear interaction and have calculated the total energy release rate 

using the J-integral method. The expression for strain energy release rate contains terms 

that not only account for shear deformation in the cracked region but also terms that 

account for the in-plane force-shear and bending moment-shear interactions in the 

uncracked region. The stress intensity factors are evaluated by extending the formulation 
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of Suo and Hutchinson (1990) to include transverse shear forces. They have also 

provided expressions for the complex stress intensity factors using only two concentrated 

forces Nc and Qc and a mode mix parameter, ω1 which is identical to that defined by 

Davidson, Hu and Schapery (1995). 

 

1.2.2.1 Crack-tip Element Method 

 

Schapery and Davidson (1990) have used a global approach to predict the 

distribution of the total strain energy release rate using force and moment resultants 

applied to a plate model. It should be noted that the total strain energy release rate is not 

affected by the local stress fields around the tip but the individual energy release rates are 

influenced by it. So they have proposed a local approach, called the crack-tip element 

approach, where a separate continuum analysis is performed on a small portion of the 

specimen around the delamination front using a solid finite element model and a refined 

mesh to retrieve the mode components of the strain energy release rate. 

     Suo and Hutchinson (1990) have analyzed a semi-infinite interface crack between 

two infinite isotropic elastic layers using the superposition principle wherein the strain 

energy release rate is expressed in terms of only two independent loads P and M. They 

are the equivalent force and moment per unit thickness respectively which control the 

crack-tip singularity. The mixed-mode stress intensity factor is also solved analytically 

except for a single real scalar parameter ω which is similar to the mode-mix parameter of 

Schapery and Davidson (1990), Ω. The evaluation of this parameter ω, which is a 

function of the specimen geometry and material properties, requires a supplementary 

analysis for one particular loading combination and the value extracted through Gauss-

Legendre integration. 

      Davidson and Krafchak (1993) have used the crack-tip element approach to 

predict mixed-mode energy release rates in one-dimensional delamination buckling 

problems. They have performed a closed-form, nonlinear cylindrical buckling analysis on 

a laminate with two symmetrically located delaminations near the free-surface. The 

forces and moment resultants thus obtained are input into a linear crack-tip element 

analysis to obtain the total energy release rate and the individual mode-I and mode-II 

 5



components. This method also requires one more linear finite element analysis of the 

crack-tip element geometry to determine the mode-mix parameter Ω. 

     Davidson (1995) has employed the crack-tip element approach to laminates 

containing free-edge delaminations. The total energy release rate and individual modes 

are defined by a concentrated crack-tip force and moment Nc and Mc and a mode-mix 

parameter Ω. The problems associated with oscillatory singularity in the near-crack stress 

field are eliminated by neglecting the effects of the bi-material constant ε by setting β, a 

generalization of one of Dundur’s parameters for isotropic materials, to zero. 

 Davidson, Hu and Schapery (1995) have extended the crack-tip element approach 

to cover the case of non-zero biomaterial constant ε, which produces oscillatory 

singularity. Specific values for the mode-mix parameter Ω are also presented for a large 

number of cases. 

     Davidson (1998, 2001) has observed that mode decomposition of the energy 

release rate based on the singular-field based approach is valid only if the near-tip 

damage zone is smaller compared to the singular zone or the zone of K-dominance, 

which is of the order of a single-ply thickness in multidirectional composites and where 

the stress and strain fields correspond to the classical linear elastic fracture mechanics 

predictions. If a zone of K-dominance does not exist then different geometries predicted 

to be at the same mode mix would display different toughness. For such materials 

Davidson has proposed a non-singular field based approach which is insensitive to the 

details of the near-tip damage state. An explicit expression for the non-singular field 

based mode mix parameter is provided which is valid for all materials and lay-ups and 

depends only on the thicknesses of the two sublaminates above and below the 

delamination plane. 

 

1.2.2.2 Multi-layer Models 

 

Zou, Reid, Soden, and Li (2001) have modeled each ply or group of plies above 

and below the delamination plane as sublaminates based on first-order shear deformation 

theory. The rotations between the sublaminates are independent of each other. 

Displacement compatibility is enforced using constraint equations. They found that there 
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are no interfacial moments and only three concentrated forces exist, which represent the 

stress resultant jumps across the delamination front. These forces correspond to the three 

modes of fracture and the mode components are calculated by VCCT. 

      The above formulation suffers from a strong dependence on the mesh refinement 

around the delamination front for the stress resultant jumps to converge to the exact 

concentrated forces required for VCCT. Zou, Reid, Li and Soden (2002) have developed 

an alternative approach which eliminates the above drawback. The individual energy 

release rates are calculated in terms of the stress resultant jumps and the derivatives of the 

relative displacements between the upper and lower surfaces of the delamination at its tip.  

     Bruno, Greco, and Lonetti (2003) have proposed a multilayer model based on 

first-order shear deformation theory to analyze two dimensional delaminated structures. 

The laminate is divided in the thickness direction into a number of sublaminates. 

Interface displacement compatibility between the layers is enforced with interface 

elements that use the Lagrange multiplier method whereas in the previous case constraint 

equations are used. The uncracked region is simulated using interface elements in 

conjunction with the penalty method by treating interface stiffness as penalty parameters. 

The mode-I and mode-II strain energy release rates are computed using the penalty 

parameters and the relative displacements between the upper and lower sublaminates at 

the crack tip. Bruno, Greco, and Lonetti (2005) have extended the model to cover three 

dimensional delamination problems. 

 

1.2.3 Sliding Friction between Delaminated Surfaces 

 

Buchholz, Rikards, and Wang (1997) have analyzed delamination growth initiated 

from a transverse crack in a cross-ply laminate under three point bending. Contact and 

friction along the crack surfaces are taken into account in their two dimensional finite 

element model. The influence of the coefficient of friction on the energy release rates is 

studied and is found to be significant for short delaminations and insignificant for long 

cracks. 

Sun and Qian (1998) have proposed a fracture criterion based on finite extension 

strain energy release rate which can be used as a measure of fracture toughness when 
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frictional sliding between crack faces is included. They have performed numerical 

simulations of a center crack in a plane strain infinite bi-material panel under remote 

shear loading and also fiber pull-out and push-out tests. 

 

1.2.4 Improved Transverse Shear Stiffness 

 

     Rolfes and Rohwer (1997) have proposed a method to calculate accurate 

transverse shear stresses in laminated composite plates. The usage of shear correction 

factors is eliminated since the formulation itself provides an improved transverse shear 

stiffness matrix. The transverse shear stresses are calculated directly from the transverse 

shear forces by neglecting the influence of membrane forces on the transverse shear 

stresses and by assuming two cylindrical bending displacement modes. This method 

provides better results than those based on shear correction factors and the equilibrium 

method usually implemented in commercially available finite element software. Since it 

is based on first-order shear deformation theory and only first derivatives of the shape 

functions are necessary, it is easy to implement at the post-processor level. Rolfes, Noor, 

and Rohwer (2000) have later improved the formulation to account for thermal loadings 

and have also provided expressions for transverse normal stresses, which require only 

second derivatives of the shape functions. 

 

1.2.5 Probabilistic Design 

 

      The Composite Materials Handbook (2002) has laid out detailed guidelines on the 

statistical characterization of polymer matrix composite structures for use in the 

aerospace industry. It examines the various methods used for finding the A-basis and B-

basis values from composite material data, which are 95% lower confidence bound on the 

first and tenth percentile values of the population, respectively. It suggests the k-sample 

Anderson-Darling test for determining whether the data available is structured or 

unstructured. For unstructured data, a 5% significance level is used for testing the 

goodness-of-fit for Weibull, normal and log-normal distributions in that particular order 

and the next distribution is examined only if the previous one is rejected. If none of them 
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fit adequately, a nonparametric basis value is calculated depending on the sample size. 

For structured data, where grouping is based only on one random effect, say, batch-to-

batch variability of data, the handbook suggests the use of a test for equality of variances 

and the application of the ANOVA procedure for finding the basis values. 

      Chamis, Singhal and Minnetyan (1994) have studied the initiation and 

propagation of damage for a polymer matrix composite panel fastened near one end by a 

bolted joint and under uniform edge load at the other end. They describe a method 

wherein the uncertainties are progressively defined at each scale of the composite 

structure viz. fiber-matrix constituents, ply, laminate, structure and fabrication process. 

The fiber longitudinal and transverse moduli, fiber and matrix coefficients of thermal 

expansion, matrix modulus, fiber volume fraction, ply thickness and the end load are 

considered as uncertainties. The sensitivities of the end displacement, ply longitudinal, 

transverse and shear stresses to the above mentioned uncertainties are assessed. 

      Dirikolu, Aktas and Birgoren (2002) have used the two-parameter Weibull 

distribution to statistically analyze the fracture strength values obtained from a series of 

tension tests performed on unidirectional carbon/epoxy composite panels. The scale and 

shape parameters of the Weibull distribution are obtained using the method of linear 

regression and the fracture strength is defined in terms of a reliability function. 

      Zureick, Bennett and Ellingwood (2006) have analyzed strength and stiffness 

properties of FRP composite materials in view of establishing a method, consistent with 

those used with other common materials, to statistically characterize the data. The 

Anderson-Darling test is used to evaluate the goodness-of-fit for normal, log-normal and 

Weibull distributions. They suggest that strength data be represented using the two-

parameter Weibull distribution and nominal design value be calculated as the lower 

tolerance limit associated with 80% confidence level for the fifth percentile value of the 

Weibull distribution. 

 

1.3 Need for Present Research 

 

      As composite materials are replacing conventional materials in various fields, it is 

imperative that a good insight on the characterization of one of its most frequent failure 
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modes, which is delamination between plies, be obtained. Traditionally two dimensional 

and three dimensional finite elements have been used in conjunction with the virtual 

crack closure technique to obtain the mixed-mode energy release rates along the crack 

front to predict the onset of delamination growth. But this method poses problems in 

dealing with oscillatory stress singularity at the vicinity of the crack tip and the 

dependence of the VCCT forces on the mesh refinement for convergence. The use of 

plate theory force and moment resultants to evaluate strain energy release rates eliminate 

the problems associated with stress singularity and meshing requirements, to an extent.  

      It has been shown that interlaminar stresses contribute significantly to the mode-I 

energy release rate. So use of first-order shear deformation theory or higher-order plate 

theory is required to adequately capture the stress state at the crack-tip. Since only FSDT-

based plate/shell elements are commonly available in commercial finite element software, 

its use in the present work is justified. But FSDT uses a shear correction factor for 

interlaminar stresses, which is only an approximation. Few authors have proposed multi-

layer models which improve the accuracy of the model by a small degree, but the number 

of elements increases linearly with increase in the number of sublaminates used and thus 

increase computational time and cost. The best alternative would be to use a two sub-

laminate FSDT model instead of a multi-layer model and implement a suitable procedure 

in the pre-/post-processing phase to improve interlaminar stress evaluation. 

      But even after sufficient improvements and refinements to the testing and finite 

element implementation of delaminated composites, it suffers a setback in the form of 

variability of the design variables. So it is important to account for the uncertainties in the 

design of composite structures, which are encountered at every stage of fabrication, from 

the micromechanical scale to ply, laminate, structure and fabrication process. Extensive 

research is being conducted to standardize the procedure for obtaining statistically-based 

composite material property data. For example, the two-parameter Weibull distribution is 

suggested for fitting fracture toughness values of laminated plates. To predict the onset of 

delamination growth, the strain energy release rates are compared with the fracture 

toughness values, at a particular mixed-mode ratio. To aid in this comparison, it is 

required that statistically-based energy release rate values be evaluated. In this thesis an 

attempt is made to account for the various random design variables encountered in the 
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finite element implementation of delaminated composites by performing Monte Carlo 

simulations, evaluating the components of the strain energy release rates and fitting them 

to appropriate distributions. 

 

1.4 Objectives 

 

The objectives of this thesis are: 

• To parametrically develop deterministic models of laminated composite plates 

with through-the-width delaminations using the two-sublaminate model and shell 

elements based on first-order shear deformation theory.  

• To generate a MATLAB code, to calculate improved transverse shear stiffness 

values and the matrices used for evaluating improved transverse shear forces and 

strains, for a given laminate configuration and the corresponding material 

properties, and import the data into ANSYS at the pre-processor phase. 

• To enforce displacement compatibility between nodes in the uncracked region 

using the internal multi-point constraint (MPC) algorithm of contact elements. 

• To prevent layer interpenetration between the sub-laminate arms and to account 

for sliding friction along the delamination surfaces by using surface-to-surface 

contact elements that are based on the augmented Lagrange method. 

• To implement an FSDT based improved plate closure technique in the post-

processing phase for the calculation of total energy release rates and its mode 

components at various locations along the delamination front. 

• To analyze double cantilever beam and end-notched flexure models of 

delaminated composite plates with various lay-ups, geometry and material 

properties. 

• To perform Monte Carlo simulations by considering material properties, mesh 

density, friction coefficient, virtual crack closure length, ply thickness, fiber 

orientation and shear correction factors as uncertainties and defining those using 

appropriate probabilistic distributions. 

• To obtain an insight on the effects of uncertainties on the mixed-mode strain 

energy release rates along the delamination front.  
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• To perform Anderson-Darling goodness-of-fit test to fit the maximum and 

average strain energy release rates for each of the mode components to a Weibull, 

normal or log-normal distribution and calculate statistically-based properties. 

• To perform a regression analysis to build the response surface for a unidirectional 

double cantilever beam model and generate Monte Carlo simulations from the 

regression equation to study the effects of uncertainties on the maximum and 

average strain energy release rates for a particular configuration. 
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2 THEORETICAL FORMULATION 
 

2.1 Introduction 

 

In this chapter the formulations pertinent to this thesis work are summarized. First, 

the first-order shear deformation theory is reviewed. The subsequent sections are 

arranged in the following order: 

1. The theoretical formulation for evaluating improved transverse shear stiffness, 

transverse shear stresses and strains, as proposed by Rolfes and Rohwer (1997), is 

reviewed. 

2. The general form of total energy release rate in the presence of crack propagation 

is given.  

3. The evaluation of the total strain energy release rate using a plate-theory-based 

crack-closure technique applied to a three-dimensional crack-tip element is 

presented. The transverse stresses and strains calculated in the first step are used 

in this formulation. 

4. If contact elements are used in a finite element model to prevent layer 

interpenetration and account for sliding friction effects, then formulae for 

calculating change in total potential energy of the structure in terms of the contact 

element’s output parameters are given.  

5. The evaluation of the total strain energy release rate in terms of the values output 

from the fourth step is presented. Since only two-dimensional end-notched flexure 

test results are available in the literature, where friction has been taken into 

account, the procedure for reducing three dimensional analysis results to that of 

the two dimensional case is provided.  

6. After the total strain energy release rate is evaluated, mode decomposition is done 

by evaluating the mode-I component as the difference between the total SERR 

and the sum of the mode-II and mode-III components calculated using the 

formulation given by Wang and Qiao (2004b). Thus the complex analysis that is 

required in their work for finding the concentrated transverse shear force at the 

crack-tip is eliminated.  
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7. Finally the procedures for performing Anderson-Darling goodness-of-fit tests for 

the two-parameter Weibull, normal and log-normal distributions and for 

evaluating the nominal values for the SERR values to be obtained from Monte 

Carlo simulations are provided. 

 

2.2 First-order Shear Deformation Theory 

 

Figure 2.1 shows the stacking sequence of an N-layer laminate of thickness t. The 

thickness of each ply is . The mid-surface of the laminate is the reference plane from 

where the lateral coordinates are measured.  and 

kt

kz kz  are the z-coordinates of the top 

and middle of the kth layer from the reference plane. 

 

 
Figure 2.1 Geometry of an N-layer laminate [Barbero (1999)] 

 

First-order shear deformation theory can be used to analyze thin to moderately-

thick composite structures. It is based on the following assumptions (Barbero 1999): 

• A line originally straight and perpendicular to the middle surface remains straight 

after the plate is deformed (line A-D in Figure 2.2). This implies that the shear 

strains xzγ and yzγ are constant through the thickness.  

• The length of the line A-D in Figure 2.2 is constant. This implies that the normal 

strain, 0≅zzε . 
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Figure 2.2 Geometry of deformation in the x-z plane [Barbero (1999)] 

 

Under these assumptions, the displacements at every point through the thickness are, 

 

),(),(),,( 0 yxzyxuzyxu xφ−=  

),(),(),,( 0 yxzyxvzyxv yφ−=  

),(),,( 0 yxwzyxw =                   (2.1)  

 

Where,  ,  , and  are the displacements along the x, y and z-

directions at each point (x, y, z). The independent variables , , and 

 represent the displacements of every point (x, y) of the middle surface of the 

plate. 

),,( zyxu ),,( zyxv ),,( zyxw

),(0 yxu ),(0 yxv

),(0 yxw

),( yxxφ  and ),( yxyφ  are the rotations of the normal to the middle surface at each 

point (x, y). 

 

The mid-plane strains , , and and the curvatures ,  and 

are defined as, 
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The in-plane strains xε , yε , and xyγ  at any point in the plate are given by, 

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

xy

y

x

xy

y

x

xy

y

x

z
κ
κ
κ

γ
ε
ε

γ
ε
ε

0

0

0

                (2.3)  

 

The interlaminar shear strains yzγ  and yzγ  are defined as, 
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The stress-strain relation in material coordinates are given by 
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Where, the superscript k indicates the layer number. The coefficients are defined as, 
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With,  

1E  - Longitudinal modulus 

2E  - Transverse modulus 

12ν , 21ν  - Poisson’s ratios 

12G  - In-plane shear modulus 

13G ,  - Transverse shear modulus 23G

 

The stress-strain relation in global coordinates is given by, 
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For the kth layer with ply orientationθ , the coefficients are defined as, 
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Figure 2.3 Force and moment resultants on a flat plate [Barbero (1999)] 
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The resultant forces and moments shown in Figure 2.3 are given by, 
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{N}, {M} and {Q} are the in-plane force resultants, bending moment resultants and 

transverse shear forces respectively. The notations for the transverse shear forces have 

been changed from  and  in Figure 2.3 to  and to be consistent with the other 

formulations used in this thesis work. 
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The plate stiffness equations are, 
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The coefficients are defined as, 
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Where, [A], [D], [B] are the in-plane, bending and bending-extension coupling stiffness 

respectively.  

 

The plate compliance equations are given by, 
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Where,   and [h] are the compliance coefficients. ⎥
⎦

⎤
⎢
⎣

⎡
δβ
βα

 

2.3 Improved Transverse Shear Stress Evaluation 

 

This section reviews the formulation given in Rolfes and Rohwer (1997) for 

finding the improved transverse shear stiffness and the matrices required for evaluating 
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accurate transverse shear stresses and strains. 

 

The transverse shear stress distribution for a laminated composite is, 
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Where, 

{ }τ  - Transverse shear stresses 

{ }γ - Transverse shear strains 

⎥⎦
⎤

⎢⎣
⎡ *
Q - Transformed interlaminar stiffness matrix  

 

The transverse shear forces are given by, 
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Where, 

 {Q} – Transverse shear forces    

 

With transverse shear stiffness 
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Where, t(k) is the thickness of the kth ply. 

 

A shear correction factor of 5/6 is usually used to account for a parabolic 

distribution of shear stress that vanishes on the surfaces of the laminate. But this 
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assumption is valid only for a single layer isotropic plate. Rolfes and Rohwer (1997) used 

the equilibrium approach and assumed two cylindrical bending displacement modes to 

provide accurate shear stiffness and transverse shear stresses. The procedure is as follows. 

 

The equilibrium equations of a plate, neglecting body forces are 
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Equation (2.14) solved with respect to the transverse shear stresses in the kth lamina at 

any point z=ζ  along the transverse direction gives 
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Where, the coordinate ζ starts at the bottom surface of the laminate. 

 

The in-plane stresses at the kth lamina are given by 
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Where )(][ kQ  is the reduced stiffness matrix of the kth lamina and  and denote the 

mid-plane strains and curvatures of the laminate respectively. 
}{ 0ε }{k

 

Using equation (2.16) in equation (2.15) yields 
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[BB1] and [B2B ] are Boolean matrices of the form 
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The constitutive equation for a laminate is 
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Since the influence of membrane forces on the transverse shear stresses is very small, the 

laminate strains can be expressed only in terms of the moments as, 
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And 
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Where, 
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Substituting equations (2.23)-(2.25) into equation (2.17) provides transverse shear 

stresses only depending on the moment derivatives w.r.t. x and y, 
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With  defined as, )]([ zF

 

)]([ zF  = ([a(z)] [A]-1 [B] – [b(z)]) [D*]-1            (2.27) 

 

Where [a(z)] and [b(z)] are the partial membrane and bending-extension coupling 

stiffness matrices of the laminate, respectively, which are the [A] and [B] matrices 

calculated from the bottom surface of the laminate to the z-coordinate where transverse 

stresses are to be calculated. 
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Assuming cylindrical bending around the x-axis yields, 
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And around the y-axis yields,  
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Then, according to Rolfes and Rohwer (1997), from the equilibrium conditions of a plate, 

the derivatives of the moments can be related to the shear forces via, 
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Which, finally results in 
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or 
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Where,  is the reduced [F(z)] matrix. )]([ zf

 

The complementary transverse shear energy in terms of shear stresses is 
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Where, t is the laminate thickness. 
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And in terms of shear forces is 
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Introducing equation (2.35) into equation (2.36) and comparing with equation (2.37) 

provides the expression for the improved transverse shear stiffness based on the 

equilibrium approach, 
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2.4 Total Strain Energy Release Rate 

 

 When a delamination of length ‘a’ propagates by a small distance ‘δa’ the total 

strain energy release rate is given by, 
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Where,  

ΔΠ  = Change in total potential energy 

AΔ   = Increase in crack area 

 

When kinetic energy, work done by external forces and contact friction are zero and if 

there are no plasticity effects and stress stiffening effects, 

A
UG
Δ
Δ

=              (2.40) 

 

Where, 

UΔ = Change in elastic strain energy 
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2.5 Three Dimensional Crack-tip Element 

 

             Whitcomb and Shivakumar (1989) have proposed a plate theory-based crack 

closure procedure where the total strain energy release rate during crack growth is 

calculated as the work required for changing the mid-plane strains and curvatures at the 

crack front in the cracked region to be equal to those in the uncracked region.  

 

 
Figure 2.4 Three dimensional crack-tip element [Davidson (2001)] 

 
A Crack-tip element is a portion of the laminate near the delamination front as 

shown in Figure 2.4. Davidson (2001) has used a procedure similar to that of Whitcomb 
and Shivakumar (1989) to calculate the total energy release rate using the force and 
moment resultants acting on the crack-tip element. Loads are applied away from the 
crack-tip and the loading on the crack-tip element is determined analytically or using 
numerical methods. Their formulation is based on CLPT and so the transverse shear 
forces are not shown in the figure. The total energy release rate is calculated as, 
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The notations have been changed to be consistent with the ones previously used in 

this work. Here, p = 1, 2 refers to the portions of the laminate above and below the 
delamination plane respectively. , }{ 0εΔ }{ κΔ  represent the change in mid-plane strains 
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and curvatures required for crack closure and }{ NΔ , }{ MΔ are the corresponding change 

in force and moment resultants respectively. 
 
In this section, an attempt is made to extend the formulation to account for transverse 
shear deformations. 
 

Strains, and curvatures in the cracked region: 
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Transverse shear strains in the cracked region: 
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Where,            
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With p = 1, 2 for upper and lower sub-laminates and the subscript ‘c’ indicates that these 

values are from the cracked region of the laminate.   

 

Total resultant forces, moments and transverse shear forces at mid-plane of the uncracked 

region are, 
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Where, the subscript ‘u’ indicates that these values are from the uncracked region of the 

laminate and t1 and t2 are the thickness of plates 1 and 2 respectively.   

 

Strains and curvatures at mid-plane of the uncracked region:  
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Strains and curvatures at the mid-plane of plates 1 & 2 in the uncracked region: 
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Transverse shear stresses at midplanes of plates 1 & 2 in the uncracked region: 
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Transverse shear strains at midplanes of plates 1 & 2 in the uncracked region: 
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Where, 
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**  is the transverse shear compliance of the mid-layers of plates 1 & 2. 

 

Changes in force and moment resultants, transverse shear forces, strains, curvatures and 

transverse shear strains due to a change in the crack surface area, AΔ , can be represented 

as, 
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Finally the total strain energy release rate is given by, 

 

 

 

           (2.54

.6 Prevention of Layer Interpenetration 

    When surface-to-surface contact elements are used in the cracked region to 
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prevent interpenetration of the two sublaminates, even if the penetration tolerance is kept 

small and the contact stiffness kept at a reasonable value so as to avoid convergence 

problems, there will be an infinitesimal amount of penetration. So a small fraction of 

strain energy gets locked up in the contact elements. During frictionless contact, this 
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energy can be evaluated by selecting all the contact elements that have undergone 

penetration and calculating the sum of their strain energies. It is given by, 
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here, 
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.7 Influence of Friction 

   When the influence of friction between the crack surfaces is considered, the energy 
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CNFY = Y-component of contact element force 

tasx  = Total accumulated sliding in the X-direction 

tasy  = Total accumulated sliding in the Y-direction 

 

he change in total potential energy is given by 

Π +                 (2.59) 

 

nd the total strain energy release rate is 
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.8 Total Energy Release Rate for comparison with Two 

    An end-notched flexure specimen is shown in Figure 4.11. Let be the crack 

st

ergy of crack-tip element in the cracked region, 
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here, 

ain energy of the crack-tip element in the cracked region of upper plate 

 

train energy of crack-tip element in the uncracked region, 
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2
         Dimensional End-notched Flexure Tests 
 

  aΓ

surface for a crack length of ‘a’. The length of the crack-tip elements mu  be ‘2*δa’ so 

that the distance between the centroid of the element in the cracked region (or the 

uncracked region) and the delamination front is ‘δa’ which is the incremental crack 

length. 
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Where, 

ain energy of the crack-tip element in the uncracked region of upper plate 

 

hange in elastic strain energy (for virtual crack closure), 

i 1
      (2.63) 

 

here, ‘k’ is the number of crack-tip elements along the delamination front 

hange in total potential energy, 

1
uU  = Str

2
uU  = Strain energy of the crack-tip element in the uncracked region of lower plate 
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otal strain energy release rate, T

G = 
Ak Δ

ΔΠ                 (2.65) 

There will be a small difference between the strain energy release rate values 

 

 

obtained by a two-step approach and this one-step approach. This is due to the fact that, 

the presence of friction makes the problem path-dependent and also because 
a

pW
δΓ

and 

a

fW cannot be accounted for in the one-step approach since, 
δΓ
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                (2.66) W

aaaa

ppp WWW
δδ ΓΓΓ

+≠
+

                (2.67) 

 

o, the energy dissipation due to finite crack extension cannot be taken into account in S

the one-step approach. The difference can be minimized by decreasing the virtual crack 
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closure length. 

 

2.9 Mode Decomposition of Total Strain Energy Release Rate 

    Wang and Qiao (2004b) computed the total strain energy release rate and its 

po

 

  

com nents in terms of three concentrated crack tip forces Nxc, Nxyc and Qxc shown in the 

Figure (2.5) as follows: 

 
Figure 2.5 Stress resultants at the crack tip [Wang and Qiao (20 )] 

The mode-I, mode-II, and mode-III strain energy release rates are given by, 

04b
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)(
2
1 2
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otal strain energy release rate is the sum of the individual components and is given by, T

)2(1 222 QNNNNG δδδδ +++=                  (2.71) 
2 661611 xcQxyccxycxccxcc
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Where,  
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here,   i = 1, 2 are the compliance matrices of plates 1 and 2 

The in-plane concentrated forces are computed as, 
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With the coefficients defined as, 
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To determine the concentrated transverse shear force Qxc a supplementary analysis needs 

 be solved and analytical solution is presented only for a two-dimensional problem in 

esent study the total SERR has already been found, the problem of finding 

xc is avoided and the mode-I SERR is evaluated as, 

      (2.87) 

2.10 Statistical Characterization of Material Property Data 
 

lated total strain energy 

release rate and its components, Monte Carlo simulations are to be performed. If a Monte 

Carlo 

to

the reference. 

 

Since in the pr

Q

 

IIIIII GGGG −−=               

 

To account for the effects of uncertainties on the calcu

simulation is performed and the SERR values are found for various double 

cantilever beam and end-notched flexure models, it is necessary to fit the results to an 

appropriate distribution and calculate the statistically-based values. The A-basis value or 

B-basis value for a statistical distribution is defined as the lower tolerance limit 

associated with the 95% confidence for the 1st-percentile value or the 10th-percentile 

value of a specified population. This basis value is calculated for the maximum strain 

energy release rate and compared with the fracture toughness of the laminate to predict 

the onset of delamination growth. Section 2.9.1 describes the step-by-step procedure for 
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performing the Anderson-Darling goodness-of-fit test to fit the strain energy release rate 

values to a Weibull, normal or log-normal distribution and calculate the corresponding B-

basis value for the distribution that best fits the results. 

 

2.10.1 Anderson-Darling Goodness-of-fit Test 

 

A te how well a particular distribution 

fits the data at hand. It compares the cumulative distribution function of interest with the 

cumula

on 
 

,  and 

nderson-Darling test can be used to evalua

tive distribution function of the data and provides a measure of the fit. The 

distribution is accepted or rejected based on a 5% significance level. The Composite 

Materials Handbook (2002) details the step-by-step procedure for performing goodness-

of-fit tests for the two-parameter Weibull, normal or log-normal distribution. 

 

2.10.1.1 Goodness-of-fit Test for the Two-parameter Weibull Distributi

First, the maximum likelihood estimates of the shape and scale parameters  β̂

α̂ of the Weibull distribution are calculated from the equations below. 
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Where, xi is the sa n sorted from the smalle  to largest va

 

/Sy) and a 

leran onvergence of (0.00000 y) where Sy is the geometric standard deviation 

of the sampl

mple data of size st lues. 

)ˆ(βG , is solved iteratively for β̂  assuming an initial estimate of (1.28

to ce for c 2*S

e data. The final β̂  is substituted in equation (2.89) to obtain the scale 

parameter estimateα̂ . 
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The general form o thef  Anderson-Darling test statistic is given by, 
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Wh is the cumulative distribution functio istribu on co idereere, )(0 ixF n of the d ti ns d. 

 

 For a two-parameter Weibull distribution, 
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Substituting in equation (2.90) gives 
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The Observed Significance Level is given by 

1
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If OSL≥0.05 the We str ution is accepted and the B-basis value is c culatibull di ib al ed as 
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2.10.1.2 Goodness-of-fit Test for the Normal Distribution 

unction is given by 

 

For the normal distribution, the cumulative distribution f
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Where,  is the error function defined as  
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Where, and e mean and standard deviation respectively. s are thx
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The Observed Significance Level is given by 
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If OSL≥0.05 the normal distribution is accepted and the B-basis value is calculated as 

 

skxB B−=                    (2.105) 
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2.10.1.3 Goodness-of-fit Test for the Log-normal Distribution 
  

For the log-normal distribution, the cumulative distribution function is given by 
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LxWhere,  and  are the mean and standard deviation of  values.  

The calculation of Anderson-Darling test statistic, Observed Significance Level 

and B-

2.10.1. Non-parametric B-basis Values 

If the number of samples (n>29), the rank for determining the non-parametric 

basis v

Ls )ln( ix

 

basis value are similar to that of the normal distribution case. Finally the basis 

value is transformed to the original units as the exponent of B. 

 

4 
 

alue is given by 

 

23.0
100
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10
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nnrB                  (2.109) 

 

he calculated value is rounded off to the nearest integer towards -∞. The B-basis value T

is the th
Br lowest observation in the data set.    
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3 FINITE ELEMENT MODELING 
 

3.1 Introduction 

 

One of the methods used for the finite element modeling of delaminated 

composites is called the two-sublaminate method. This method can be implemented using 

two approaches. 

• The regions above and below the plane of delamination are modeled using 

separate volumes and meshed with solid elements. Further, this model can have a 

number of solid or layered solid elements in the thickness direction for improved 

interlaminar stresses. 

• The mid-planes of the two regions are modeled using separate areas and meshed 

with shell elements. 

 

ANSYS v10.0 finite element software is used for the current work. The following 

sections review the various options available in ANSYS for implementing the two-

sublaminate model. They are arranged in the following order: 

• Elements available for modeling the sublaminates. 

• Specifying the improved transverse shear stiffness matrix for the chosen element. 

• Enforcing displacement compatibility on the elements in the uncracked part, so 

that they are constrained to rigid body motion.  

• Preventing interpenetration of the two sublaminates and accounting for sliding 

friction effects using surface-to-surface contact elements.  

 

After the deterministic model is created parametrically, probabilistic analysis is 

performed on the deterministic model by varying the parameters and samples of strain 

energy release rates are obtained. The ANSYS Probabilistic Design System that is used 

for performing these operations is introduced in Section 3.2.5. Finally the step-by-step 

procedure for creating the deterministic model and executing the probabilistic analysis 

are listed in Section 3.3. 

 

 42



3.2 Modeling Considerations for ANSYS Finite Element Software 
 
3.2.1 Element Type 
 
      ANSYS offers two solid and three shell elements to model layered composite 

structures. 

Solid46 – Layered structural solid – It is an 8-noded element that can be used to model 

layered solids or thick shells with up to 250 uniform thickness layers.  

 

Solid191 – Layered structural solid – It is a 20-noded element that can be used to model 

layered solids or thick shells with up to 100 uniform thickness layers. 

 

Shell99 – Linear layered structural shell – It can be used to model laminated composites 

with linear material properties. Up to 250 layers with orthotropic material properties can 

be specified. 

 

Shell91 – Non-linear layered structural shell – It can be used to model composites with 

non-linear material properties. It allows only a maximum of 100 layers. But the element 

formulation time is small compared with Shell99 elements if the number of layers is three 

or less. It can be used if there are convergence problems with Shell99 elements in a non-

linear analysis. 

 

Shell181- Finite strain shell element – It can be used to model laminated composites by 

defining the lay-up and material properties through the section commands. It can account 

for thickness variations in large-strain analyses.  

 

As mentioned in section 1.4, Monte Carlo simulations are to be performed, by 

declaring as many as eight random input variables. To get sufficiently accurate statistical 

results, 120 to 150 simulation loops may be required. So, a two-sublaminate model using 

shell elements is the best option, as they are more efficient and can drastically reduce the 

formulation time. Out of the shell elements available, Shell181 is very stable, with the 

least convergence problems of the three. It is well suited for the current analysis since 
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improved transverse shear stiffness values can be specified by the user using section 

control commands. 

 

3.2.2 Transverse Shear Stiffness 

 

      In most of the literature available, a shear correction factor of 5/6 is assumed. 

This assumption is not valid for laminated composites and it varies within a large range. 

The user can implement the exact formulation required to find the shear correction factor 

for the specific problem at hand (for e.g. the energy equivalence principle) as follows: 

 

ANSYS calculated transverse shear stiffness = kGh 

Where, 

k – Shear correction factor (5/6) 

G – Shear modulus 

h – Thickness of the element 

 

Once the transverse shear stiffness values are known, the exact values can be input by the 

user as, 

 

Exact stiffness value = (user calculated shear correction factor*6/5) * ANSYS calculated      

                                                                                                                Stiffness 

 

      This approach is useful only when Shell91 or Shell99 elements are used because 

they include a factor of 1.2 to the stiffness values to avoid shear locking. Since Shell181 

is used for the current analysis, a valid methodology is used to find improved transverse 

shear stiffness values and input directly using section control commands. 

 

      The basic idea behind the methodology is to calculate the transverse shear stresses 

directly from the transverse shear forces by neglecting the influence of the membrane 

forces and assuming two cylindrical bending modes (Rolfes and Rohwer 1997). This 

method has shown good correlation with three dimensional models that used a number of 
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solid elements in the thickness direction. Shear correction factors are no longer required, 

since the formulation itself provides improved transverse shear stiffness values. These 

values are input as real constants R7, R8 and R9 of the Shell181 element.  

 

3.2.3 Defining the Uncracked Region 
 

After modeling the sublaminates, the uncracked regions of the sublaminates have 

to be declared to be rigid. Four options are available to define the uncracked region, if the 

nodes of the upper plate are offset to the bottom face and the nodes of the lower plate are 

offset to the top face of the element.  

 

Merging coincident nodes – The plates are modeled as areas with an infinitesimal offset 

above and below the plane of delamination. The areas are then meshed identically with 

the nodes of the upper plate offset to the bottom of the shell element and nodes of the 

lower plate offset to the top of the shell element. The nodes in the uncracked region of the 

two plates are selected. All the nodes within the tolerance limit for coincidence are 

simply merged together by issuing the NUMMRG command. Only the lower numbered or 

the higher numbered nodes are retained. For example, if the areas are modeled with an 

offset of say 0.001, then the appropriate command in ANSYS would be 

“NUMMRG,NODE,0.0011”. 

 

Coupling coincident nodes – In this method, the degrees of freedom (DOF) of all the 

nodes within the tolerance limit for coincidence are coupled. Only the DOF of the lower 

numbered or higher numbered nodes are calculated and are assigned to the DOF of the 

coupled node. The same modeling considerations as for NUMMRG apply here and 

coupled nodes are automatically generated by issuing the command 

“CPINTF,ALL,0.0011”. 

 

Constraint equations – Constraint equations are linear equations which relate the DOF of 

one node to the DOF of another node. According to the plate theory implemented in the 

shell elements, constraint equations are formulated which enforce displacement 
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compatibility along the plane of delamination in the uncracked region. Constraint 

equations can also be automatically generated by selecting the elements in the upper plate 

and the nodes in the lower plate, both from the uncracked regions, and tying them 

together by issuing the command “CEINTF, ,ALL”. 

      The main drawback of the above three methods is that they are valid only for 

small-displacement static analyses. 

 

MPC184 element – MPC184 element internally generates multi-point constraint 

equations which define various kinematics between two nodes. The shell elements in the 

uncracked region can be declared to move rigidly by just overlaying MPC184 elements 

along the boundaries of the two plates and there is no need to create MPC184 elements 

along the internal boundaries of each element that make up the two plates. This can be 

done by selecting all the nodes along the boundary of the uncracked region and issuing 

the command “EINTF,0.0011, ,LOW” 

 

Internal MPC algorithm of contact elements – The surface-to-surface contact elements 

CONTA173, CONTA174 and their target element TARGE170 incorporate an internal 

multi-point constraint algorithm to define ‘Bonded Initial’ or ‘Bonded Always’ contact 

condition between the contact and target surfaces. Using the ESURF command, the 

contact elements are created overlaying the shell elements along the boundaries of the 

two plates in the uncracked region. If the type of contact is defined to be ‘Bonded 

Always’ using the contact element’s key option, the two plates are constrained 

throughout the solution phase. 

 

      The calculation of strain energy release rate in the near crack tip region requires 

that mid-plane strains, curvatures and stress resultants be output for each element along 

the delamination front.  Also the evaluation of stresses and strains are better when curved 

structures are modeled with nodes along the mid-plane of the shell element. So, it would 

be better if the shell elements are defined with their nodes lying on the mid-plane instead 

of being offset to the top or bottom surfaces. The main advantage of using the internal 

multi-point constraint approach of contact elements is that they account for the thickness 
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of the underlying shell elements and so the nodes can be placed on the mid-surface of the 

elements. Unlike the use of MPC184 elements, this modeling method is valid for 

buckling analyses too. So, out of the latter two methods, the use of the internal multi-

point constraint algorithm is better in terms of future work that can be performed along 

the lines of the current thesis work, like modeling curved structures and also studying 

buckling behavior of delaminated composites. 

 

3.2.4 Sliding Friction and Prevention of Layer Interpenetration 
 

      Friction effects between the two sublaminates in the cracked region cannot be 

neglected for mode-II and mode-III loadings since the friction coefficient can range from 

0.4-0.8 for some laminated composites depending on the material properties and the 

nature of damage. Layer interpenetration must also be prevented in the cracked region to 

accurately predict the strain energy release rates. Both these issues are overcome by using 

surface-to-surface contact elements in the delaminated region which prevent layer 

interpenetration as well as account for sliding friction effects. Figure 3.1 shows contact 

and target elements which use the internal multi-point constraint approach in the 

uncracked region and those that use the augmented Lagrange algorithm in the 

delaminated region.  

 

 
Figure 3.1 Element plot showing the contact and target elements 
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3.2.5 Probabilistic Design 
 

      Even after incorporating all the above mentioned improvements, it can be seen 

that there are a few input parameters like friction coefficient between crack faces, which 

do not have definite values and that they vary within a large range. Since first-order shear 

deformation theory inherently has several simplifying assumptions, making further 

assumptions on these variables would make the results less meaningful. So the best 

option would be to use the ANSYS Probabilistic Design System (PDS) for assessing the 

effect of uncertain input parameters and assumptions on the current model.  

 

3.2.5.1 Terminology 
 

Random Input Variables (RVs) – The parameters in the computer model that exhibit 

uncertainty and are subjected to scatter in reality cannot be assigned deterministic values. 

This would make the validity of the results depend totally on the accuracy of these 

parameters for the component under real life conditions. In probabilistic design such 

variables are specified by the type of statistical distribution that they follow and the 

parameter values of their distribution functions. These are called the RVs. 

 

Random Output Parameters (RPs) – The results of the finite element analysis which 

change with changes in the values of the RVs are called the RPs and are typically 

functions of the RVs. 

 

Sample – A unique set of values selected from within the distribution functions of the 

RVs and the values of the resulting RPs that represents a particular model configuration 

is called a sample.  

 

Simulation Loop – A single pass through the analysis file in which the probabilistic 

analysis uses the RVs from one sample and collects the values of the RPs after the run. 

 

Simulation – The collection of all the samples at the end of the required number of 

simulation loops.  
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3.2.5.2 ANSYS Probabilistic Design System 
 

      ANSYS Probabilistic Design System offers two primary techniques to employ 

probabilistic analysis. They are the Monte Carlo simulation and the Response Surface 

method.  

    With Monte Carlo simulation, a large number of individual simulation loops are 

performed which do not depend on the results of any other simulation loop. The number 

of loops is determined by whether the samples are statistically representative of the real-

life conditions and whether sufficient correlation between the RVs and the RPs has been 

reached. Direct sampling and Latin hypercube sampling are the two methods by which 

RVs can be chosen for each simulation loop. The drawback of the direct sampling 

method is the possibility that same or almost same samples may be repeated since the 

process has no memory. Latin hypercube sampling differs from direct sampling in that it 

has memory and so avoids repeating samples that have been evaluated earlier. It also 

gives more weightage to the tail regions of the distributions of the RVs which is 

important for accurately assessing the reliability of delaminated composites.   

     Response Surface method can be used if the influence of the RVs on the RPs can 

be approximated by mathematical functions, usually a quadratic polynomial. First, 

simulation loops are run to calculate the RPs corresponding to the sample points in the 

space of the RVs. Then a regression analysis is performed to derive the terms and 

coefficients of the approximation function in terms of the sampling point results. This 

method requires that the RPs be smooth functions of the RVs.  

Since contact and friction are taken into account in the present study, sudden 

jumps in the output parameters are possible. So, Monte Carlo simulation technique is 

used which is valid irrespective of the physical effects being modeled. The random input 

variables (RVs) chosen are: 

 

1. Longitudinal modulus, E11 

2. Transverse modulus, E22 

3. In-plane shear modulus, G12 

4. Transverse shear modulus, G13 and G23 
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5. Coefficient of friction between the delaminated faces, FC 

6. Mesh refinement, MRV 

7. Virtual crack extension length, VCCL 

8. Ply thickness, TPLY 

9. Fiber misalignment, THETA 

 

The significant parameters that are varied are 

1. Laminate width, LAMWID 

2. Delamination length, DELAMLEN 

3. Loading, FZPDS 

 

3.3 Modeling Procedure 
 
3.3.1 Deterministic Model 
 

      Before executing the probabilistic run, an ANSYS input file is created containing 

the necessary commands for developing a deterministic model parametrically, applying 

loads, solving the problem, processing the results and storing them in parameters. The 

input file also contains commands to import all the laminate stiffness matrices, shear 

correction factors and the matrices required for calculating the improved transverse shear 

stresses and strains, which are output to a text file by MATLAB software. This eliminates 

the need for calculating the matrices during each run. 

  

Step 1:  

Four areas are created at the mid-planes of the upper and lower plates. In the figure below, 

areas A1 and A3 represent the uncracked region of upper plate while A2 and A4 represent 

the cracked region of upper plate.  
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Figure 3.2 (a) Front view of the areas 

 

 
Figure 3.2 (b) Top view of the areas 

Figure 3.2 Areas generated at mid-planes of the upper and lower plates 

 

Step 2: 

The number of element divisions and spacing ratio for the lines are specified using the 

LESIZE command. A spacing ratio of 1.0 (uniform spacing) for the lines parallel to the y-

axis, a spacing ratio less than 1.0 (size decreases) for the uncracked region and a spacing 

ratio greater than 1.0 (size increases) for the cracked region are specified to obtain a 
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refined mesh around the delamination front. The number of element divisions for the 

lines constituting areas around the crack is the mesh refinement value which is declared 

as a random input variable for the probabilistic run. 

 

 
Figure 3.3 Line plot showing the mesh size 

 

Step 3: 

The areas are meshed with quadrilateral SHELL181 elements using the mapped meshing 

technique. 
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Figure 3.4 Element plot of the upper plate 

 

Step 4: 

The elements along the boundaries of the uncracked region and then the nodes attached to 

these elements are selected. 

 

 
Figure 3.5 Nodes selected along the boundary of the uncracked region 
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Step 5: 

The shell elements which lie along the boundary of the uncracked region in the upper 

plate are overlaid with contact elements and those in the lower plate with target elements 

by meshing the nodes selected in the previous step using the ESURF command. 

 

 
Figure 3.6 Translucent model showing contact and target elements 

 

Similarly, all nodes are selected from the cracked region and meshed with contact and 

target elements. 

 

Step 6: 

After applying loads, solving the problem and reading in the results, the required post-

processing is done to calculate the mixed-mode strain energy release rates and all random 

output variables are stored in parameters.  

 

Step 7: 

The strain energy release rate distributions along the delamination front which have to be 

post-processed using MATLAB are appended to a text file at the end of every simulation 

loop. 
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Step 8: 

The commands that perform the above operations are saved to a text file. 

 

3.3.2 Probabilistic Analysis 

 

The step-by-step procedure for executing the probabilistic analysis in the ANSYS 

Probabilistic Design System, discussed in 3.2.5.2, is listed below. 

 

Step 1: 

In the ANSYS PDS pre-processor, the input file containing the deterministic model is 

declared as the PDS analysis file. 

 

Step 2: 

The random input variables are declared and their statistical distributions defined. 

 

Step 3: 

Any correlations between the random variables are defined. 

 

Step 4: 

The random output parameters are specified. 

 

Step 6: 

After choosing the probabilistic design method and the sampling method, settings 

corresponding to the chosen method like location of samples within intervals, number of 

simulation loops, repetition cycles, auto-stop criteria and random number generation 

method are set. The required number of simulation loops is executed.  

 

Step 8: 

The statistics and trends of the random variables are plotted using the commands 

available in the PDS post-processor. An HTML report containing all the statistics is also 

generated. 
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4 VERIFICATION 
 

4.1 Total Strain Energy Release Rate Verification 

 

      Double cantilever beam models of delaminated composite plates are analyzed to 

verify the total energy release rates calculated using the present plate closure technique 

based on first-order shear deformation theory. For this preliminary investigation, the 

specimens chosen from the literature are unidirectional and multidirectional laminated 

composite plates with isotropic and orthotropic material properties with a single mid-

plane delamination. 

 

4.1.1 Isotropic and Orthotropic Double Cantilever Beam 

   Models with Unidirectional Lay-up 

 

Figure 4.1 shows the geometry and the boundary conditions of a double cantilever beam 

specimen.  

 

 
Figure 4.1 Double cantilever beam test [Szekrényes (2005)] 

 

      The size and material properties for the isotropic double cantilever beam model, 
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given in Table 4.1, are taken from Zou, Reid, Li and Soden (2002). Since a two-

sublaminate model is used in the reference, a direct quantitative comparison is possible.  

 
Table 4.1 Properties of isotropic double cantilever beam model 

a = 50.8 mm     c = 50.8 mm     b = 25.4 mm     h = 1.65 mm  

 

E = 3.4 GPa     G = 1.3 GPa      ν = 0.3              P = 1.0 N m-1

 

      The finite element model consists of 50 elements along the delamination front 

and 50 elements each in the cracked and uncracked regions along the length direction. A 

spacing ratio of 0.05 is used to obtain a refined mesh around the delamination front. 

When surface-to-surface contact elements based on the internal multi-point constraint 

algorithm are used to enforce displacement compatibility in the uncracked region, 

degrees of freedom have to be constrained only for the target nodes to specify necessary 

boundary conditions. If the degrees of freedom for the contact nodes are specified, then it 

would result in over-constraining of the system. So, to specify that the end of the 

uncracked region is fixed, all degrees of freedom for the target elements’ nodes that lie on 

the mid-plane of the lower plate at the uncracked end are constrained. There are 51 nodes 

at the ends of the sublaminate arms in the cracked region. A force of 4.98x10-4 N is 

applied in the positive z-direction on all nodes at the delaminated end of the upper plate 

and in the negative z-direction for the lower plate. Thus the total load is equal to P = 1.0 

N m-1.  

      The average energy release rate along the delamination front is 20.16x10-4 J m-2 

for the present method as against the 20.15x10-4 J m-2 obtained by Zou, Reid, Li and 

Soden (2002) and the 20.2x10-4 J m-2 obtained by Crews, Shivakumar, and Raju (1989) 

using a three dimensional finite element model and virtual crack closure technique. 

Figure 4.2 shows the total strain energy release rate, G, plotted against the normalized 

width of the plate. Each data point in the graph corresponds to the SERR evaluated at the 

centroidal y-location of the crack-tip elements along the front. 
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Figure 4.2 Total SERR distribution for the isotropic double cantilever beam model under opening 

load 

 

      The next model analyzed is an orthotropic double cantilever beam model with 

unidirectional lay-up. The geometry and material properties are shown in Table 4.2. 

These values are taken from Krueger (1994). 

 
Table 4.2 Properties of orthotropic double cantilever beam model  

 a = 111.5 mm     c = 138.5 mm     b = 25 mm     h = 1.5 mm  

 

 E1 = 139400 N/mm2     G12 = 4600 N/mm2     ν21  = 0.3 

 E2 = 10160 N/mm2       G13 = 4600 N/mm2     ν23  = 0.436 

 E3 = 10160 N/mm2        
 

 Ply thickness t = 0.125 mm     Lay-up: [0]24    P = 12.66 N/mm   

 

      The finite element model consists of only one shell element along the thickness 

direction to model the twelve plies in the upper and lower plates. The mesh density is 
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32x40 for each of the cracked and uncracked regions. The boundary conditions are 

applied in the same manner as for the isotropic double cantilever beam model and the 

load on each node at the ends of the two arms is 9.59 N.  

      Krueger (1994), has normalized the SERR values using the reference opening 

mode component GI,b obtained using beam theory as follows 

1
32

22

,
,

~ 12
Ehb
PaGwith

G
GG bI

bI

I
I ==                        (4.1) 

 

Figure 4.3 shows the normalized G values plotted against the normalized width of 

the plate. It can be seen that there is an excellent correlation between values obtained 

using the present method and three dimensional nonlinear finite element analysis 

(Krueger 1994) in all the regions except for 5% of the plate width near the free edges. 

This is due to the inadequacy of the shell elements to accurately capture the three-

dimensional nature of the stress state at the edges. Also in the reference (Krueger 1994), 

the mesh is highly refined near the free edges compared to the constant element length 

used in the present model. 
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Figure 4.3 Normalized SERR distribution for the orthotropic double cantilever beam model under 

opening load 
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4.1.2 Symmetric Double Cantilever Beam Models 

 

The next set of analyses is performed on orthotropic double cantilever beam 

models with multidirectional lay-up. The models chosen are symmetric with a mid-plane 

delamination. The geometry, material properties and loads are shown in Table 4.3. These 

values are taken from Davidson, Yu, and Hu (2000). 

The mesh is similar to the one in the reference with the length of the crack tip 

elements being 1 mm and width being 8 mm with 50 elements along the delamination 

front. So there are a total of 51 nodes along the ends of each delaminated arm. The load, 

which is a moment of 100 N, is applied equally on all the nodes as a moment of 784.3137 

N-mm in the y-direction for the upper plate and -784.3137 N-mm for the lower plate. The 

comparison of the total strain energy release rates plotted against the normalized width of 

the plate is shown in Figures 4.4-4.6.  

 
Table 4.3 Properties of symmetric double cantilever beam model 

 a = 256 mm             c = 256 mm             b = 400 mm           h = 16 mm 

 

 E1 = 1 N/mm2         G12 = 0.5 N/mm2     ν12  = 0.3 

 E2 = 0.1 N/mm2      G13 = 0.5 N/mm2     ν13  = 0.3 

 E3 = 0.1 N/mm2      G23 = 0.5 N/mm2     ν23  = 0.3 
 

 Ply thickness t = 4 mm         Lay-ups: [90/-45/45/0]s         = 100 N    1
yM

                                                              [0/90/90/0]s            = -100 N  2
yM

                                                              30° Orthotropic          
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Figure 4.4 Total SERR distribution for the [90/-45/45/0]s model under opening load 

 

It can be seen that there is an excellent correlation between values obtained using 

the present method and reference values obtained using three dimensional finite elements 

and three dimensional crack-tip element method for all the three lay-ups considered.  

It should be noted that for these cases, an opening load produces only pure mode-I 

component of the SERR. So, the mode decomposition is simultaneously verified. The 

mode-II and mode-III components are correctly predicted to be zero for all the cases. 

For the 30° orthotropic case, Figure 4.6 shows the mode-I component which is 

normalized using the SERR as predicted by the classical plate theory, 

 

)(
2
1 2

11
1
11

2 δδ += MG CPT
I              (4.2) 

 

Where, M is the applied load, and [δ] is the bending compliance with the superscripts 1 

and 2 representing the upper and lower laminates. 
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Figure 4.5 Total SERR distribution for the [0/90/90/0]s model under opening load 
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Figure 4.6 Normalized SERR distribution for the 30° orthotropic model under opening load 
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4.2 Mode Decomposition Verification 
 

Double cantilever beam tests are performed on laminated composite plate models 

that produce mixed-mode energy release rates. The mode-II and mode-III components are 

calculated using the formulation given by Wang and Qiao (2004b). The mode-I 

component is evaluated as the difference between the total SERR, which has already been 

verified, and the sum of the mode-II and mode-III components. 

First an isotropic double cantilever beam model with the material properties, 

geometry and loading given in the Table 4.4 is considered. 

  
Table 4.4 Properties of isotropic double cantilever beam model under mode-II loading 

 a = 256 mm        c = 256 mm        b = 400 mm        h = 16 mm 

 

 E = 80,000 N/mm2    υ = 0.3  

 

 Ply thickness: t = 4 mm        Loading:  = 6.25 N/mm 1
xN

                                                               = -6.25 N/mm 2
xN

 

The mesh contains 50 elements along the delamination front. The in-plane 

shearing load of 6.25 N/mm is applied as a uniform load of   = -  = 49.02 N on all 

the 51 nodes along the end of the delaminated arms. This loading produces both mode-II 

and mode-III SERR which are normalized using the G

1
xF 2

xF

II value predicted by a two 

dimensional analysis under plane strain assumption and based on classical plate theory. 
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1 δαα             (4.3) 

  

In equation (4.3), N = 6.25 N/mm and [α], [δ] are the extension and bending 

compliance matrices with the superscripts 1, 2, and u representing the upper, lower and 

uncracked laminates respectively. 
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Figures 4.7 and 4.8 show the comparison between the values obtained using the 

present method and those obtained by Bruno, Greco, and Lonetti (2003) with a two-

sublaminate model. It can be seen that there is excellent correlation between the predicted 

mode-II values, which is the predominant mode, along the entire delamination front and 

the mode-III values show good correlation only in the central 40% width of the specimen. 
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Figure 4.7 Normalized mode-II SERR distribution for isotropic double cantilever beam model under 

in-plane shearing load 
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Figure 4.8 Normalized mode-III SERR distribution for isotropic double cantilever beam model 

under in-plane shearing load 

 

Next, three orthotropic models with [0/453/d/45/0], [0/902/0/d/02] and 

[45/0/452/d/0/45] lay-ups are analyzed. The first two lay-ups are chosen from Davidson 

(2001) and have an offset delamination between plies of same orientation and the third is 

chosen from Yu and Davidson (2001) which has an offset delamination between plies of 

different orientation. The loading and geometry are the same as in Table (4.3) with h1 = 8 

mm and h2 = 16 mm. The opening load produces both GI and GII with GIII being 

negligible. 

Figures 4.9-4.11 show the comparison of G, GI and GII for the [0/453/d/45/0] 

laminate with those obtained by three dimensional finite element analysis. It can be seen 

that the total energy release rate G is almost identical for both the methods. The 

difference in the GI and GII values can be attributed to the different mode-mix values 

predicted by local approach of the three dimensional finite elements and global approach 

of the present method. This is because the three dimensional finite element analysis 

assumes the presence of singular stress and strain fields in the near-tip region while the 

present method based on laminate theory eliminates the singularity and thus predicts a 

different mode-mix value. The normalized GI and GII plots for the [0/902/0/d/02] laminate 
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in Figure 4.12 follow the same trend. 
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Figure 4.9 Total SERR distribution for the [0/453/d/45/0] model under opening load 
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Figure 4.10 Mode-I SERR distribution for the [0/453/d/45/0] model under opening load 
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Figure 4.11 Mode-II SERR distribution for the [0/453/d/45/0] model under opening load 
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Figure 4.12 Normalized SERR distribution for the [0/902/0/d/02] model under opening load 
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For the third laminate considered, [45/0/-452/d/0/45], the mode-I and mode-II strain 

energy release rate distributions in Figures 4.13 and 4.14 confirm this. 
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Figure 4.13 Mode-I SERR distribution for the [45/0/-452/d/0/45] model under opening load 
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Figure 4.14 Mode-II SERR distribution for the [45/0/-452/d/0/45] model under opening load 
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4.3     Sliding Friction and Layer Interpenetration 

 

      To verify the present method for calculating the friction energy dissipation and to 

demonstrate the need for using contact elements to prevent layer interpenetration the end-

notched flexure model is considered. The setup is as shown in Figure 4.11 and the 

geometry and material properties are given in Table 4.5. In the finite element model, the 

left end is fixed and the displacement in the transverse direction is constrained at the right 

end of the lower plate. Instead of applying a uniform load at the center of the plate, a 

displacement of 5 mm is applied in the z-direction on all the nodes that lie at the center of 

the laminate in the length direction. The boundary conditions are shown in Figure 4.16. 

 

 
Figure 4.15 End-notched flexure test [Szekrényes (2005)] 
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Table 4.5 Properties of end-notched flexure model 

 a = 25 mm     2L = 100 mm     b = 25 mm     h = 1.6 mm     t = 0.4 mm   

 

 E1 = 146860 N/mm2     G12 = 5450 N/mm2     ν12  = 0.33 

 E2 = 10620 N/mm2       G13 = 5450 N/mm2     ν13  = 0.33 

 E3 = 10620 N/mm2       G23 = 3990 N/mm2     ν23  = 0.33 
 

 Loading: UZ = 5 mm     Lay-ups: [90/-45/45/0/d/0/45/-45/90]     

                                                       [0/45/-45/-45/d/45/0]  

 

 

 
Figure 4.16 Boundary conditions for the end-notched flexure model 

 

Since there are no constraints for the upper sub-laminate it can be seen from 

Figure 4.17 that it penetrates the lower arm completely, which is physically inadmissible.  
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Figure 4.17 Element plot: Interpenetration of delaminated arms 

 

When contact elements are used in the cracked region, the displacement profile 

shows that there is only an infinitesimal amount of penetration. This depends on the 

contact algorithm, normal penalty stiffness, penetration tolerance, and other contact 

element properties and key options specified.  

 

 
Figure 4.18 Element plot: No interpenetration of delaminated arms 
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The verification for friction energy dissipation is done by solving the end-notched 

flexure model twice for both the lay-ups, once with frictionless contact and once with a 

friction coefficient of μ = 0.5. First, the total potential energy of all the elements is 

calculated directly from the element output as the sum of potential energy of the 

individual elements, stored in an element table using the ETABLE command in ANSYS 

and then summing the results in the table using the SSUM command. The change in 

potential energy between the two cases, ΔΠ  is found. Similarly the energy lost to friction, 

 and strain energy locked up in the contact elements due to layer interpenetration, 

are calculated by summing the results of the individual contact elements. Since the 

delamination length is constant, the strain energy release rate, 

fW
pW

UΔ  is zero. Finally the 

change in potential energy is calculated using Equation 2.59. Table 4.6 lists the change in 

potential energies calculated from direct element output and using Equation 2.59 for both 

the lay-ups considered. 

 
Table 4.6 Verification of friction energy dissipation 

Laminate 5.00 == ΔΠ−ΔΠ=ΔΠ μμ

(N-mm) 

pf WWU −+Δ=ΔΠ
(N-mm) 

Error 

[90/-45/45/0/d]s 

 

4.894 4.936 0.86% 

[0/45/-45/-45/d/45/0] 

 

0.288 0.294 2% 

      

By comparing the results in the second and third columns of Table 4.6, the 

validity of Equation 2.59 for calculating the energy lost to contact and friction and also 

the change in potential energy is verified. The maximum difference in the values 

calculated using the two approaches is 2%, which is acceptable. Another inference that 

can be made is that, when there is no crack extension, the only form of energy loss in the 

delaminated region is by sliding friction.  
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5 RESULTS AND DISCUSSION 
 

5.1 Introduction 
 

Probabilistic analyses are performed on C12K/R6376 graphite/epoxy composite 

double cantilever beam and end-notched flexure models with a single through-the-width 

delamination using ANSYS finite element analysis software. The effects of uncertainties 

on the mixed-mode strain energy release rates are studied using the Monte Carlo 

simulation technique. The material properties, coefficient of friction, ply thickness, 

change in fiber orientation, mesh density and consequently, the virtual crack closure 

length are considered as the random input variables (RVs). Due to the variations in 

material properties, the transverse shear correction factors for the two sublaminates are 

also implicit random input variables. Appropriate probability distributions are assumed 

for the random variables to account for the scatter in the data. Since ANSYS allows only 

scalar parameters to be assigned as random output parameters (RPs), the total (GSUM), 

average (GAVG), maximum (GMAX), minimum (GMIN) and mid-point (GMID) strain 

energy release rate values for each of the three mode components are assigned as the RPs. 

For analyses in which the effect of friction is included, the total energy release rate (G), 

the change in elastic strain energy (DELU), total energy lost to friction (WFSUM), total 

change in potential energy (DELPE) and the ratio of change in elastic strain energy to the 

energy lost to friction (ERATIO) are assigned as RPs. Since the virtual crack closure 

length (VCCL) is varied only through the change of mesh density (MRV), it is also 

declared as an RP. A macro is created to write the mixed-mode SERR distributions along 

the delamination front with the corresponding RVs for each simulation loop to a text file. 

This data is later read into MATLAB software as arrays and processed to produce three 

dimensional contour plots. Then, the maximum and average strain energy release rate 

values are fit to appropriate distributions. The Anderson-Darling goodness-of-fit test is 

performed on the data to first check for Weibullness, if that is rejected, the data is 

subsequently checked for normality and log-normality and a corresponding B-basis value 

is found. If none of the three distributions fit adequately, then a non-parametric basis 

value is calculated.  
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5.2 Probabilistic Analysis Specifications 
 

Table 5.1 lists the settings used for performing the probabilistic analysis using the 

ANSYS Probabilistic Design System (PDS). As described in section 3.2.5.2, ANSYS 

offers two probabilistic techniques viz. Monte Carlo simulation and response surface 

method. Unlike the response surface method, Monte Carlo simulation technique is 

applicable irrespective of the physical effect modeled and so it is chosen for this study. 

Out of the direct sampling and the Latin hypercube sampling methods offered by ANSYS, 

the latter possesses process memory and so clusters of samples are avoided and also it 

gives importance to the tail of the distribution. So the Latin hypercube sampling method 

is chosen for this study. During the execution of the probabilistic run, the mean and 

standard deviation histories of the random output parameters are checked for an accuracy 

of 1% and 2% respectively every tenth simulation loop. If the accuracy is within the 

prescribed criteria for all the output parameters, the probabilistic run is automatically 

stopped. 

 
Table 5.1 Probabilistic analysis specifications 

Probabilistic analysis technique Monte Carlo Simulation 

Sampling method Latin Hypercube Sampling 

Location of samples Random location within the intervals 

Simulation loops 60 

Repetition cycles 2 

Auto-stop criteria Mean accuracy = 1% 

Standard Deviation accuracy = 2% 

Random number generation Continue updating using derived seed value 

 

Table 5.2 lists the random input variables, their notations in parentheses, and their 

assumed distributions. The mean values of the material properties correspond to that of 

the C12K/R6376 graphite/epoxy composite. Fiber misalignment is the small error in the 

orientation that is manifested by the laying-up process. Figures 5.1-5.9 show the plots of 
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the probability density functions (PDF) and cumulative distribution functions (CDF) of 

the random input variables. For all the double cantilever beam and end-notched flexure 

models a constant laminate length, laminate width and delamination length of 100 mm, 

25 mm and 25 mm, respectively, are used. For the double cantilever beam models, all the 

random input variables except friction coefficient are considered.  

 
Table 5.2 Random input variable definitions 

Random Input Variable Probability 

distribution 

Specification 

Longitudinal modulus 

(E11) 

Normal μ = 146.86 GPa   

σ = 0.3 

Transverse modulus 

(E22) 

Normal μ = 10.62 GPa   

σ = 0.2 

In-plane shear modulus 

(G12) 

Normal μ = 5.45 GPa   

σ = 0.2 

Transverse shear modulus 

(G13) 

Normal μ = 5.45 GPa   

σ = 0.2 

Transverse shear modulus 

(G23) 

Normal μ = 3.99 GPa   

σ = 0.2 

Ply thickness  

(TPLY) 

Normal μ = 0.4 mm  

σ = 0.004 

Fiber misalignment  

(THETA) 

Uniform Minimum = -1°   

Maximum = 1° 

Mesh refinement  

(MRV) 

Uniform Minimum = 4    

Maximum = 22 

Virtual crack closure length 

(VCCL) 

Uniform Minimum = 0.04 mm 

 Maximum = 0.18 mm 

Friction Coefficient  

(FC) 

Uniform Minimum = 0.0    

Maximum = 0.8 
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Figure 5.1 Probability density function & cumulative distribution function of longitudinal modulus 

 

 

Figure 5.2 Probability density function & cumulative distribution function of transverse modulus 
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Figure 5.3 Probability density function & cumulative distribution function of in-plane shear modulus 

 

 

Figure 5.4 Probability density function & cumulative distribution function of transverse shear 

modulus 
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Figure 5.5 Probability density function & cumulative distribution function of transverse shear 

modulus 

 

 
Figure 5.6 Probability density function & cumulative distribution function of ply thickness 
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Figure 5.7 Probability density function & cumulative distribution function of fiber misalignment 

 

 

Figure 5.8 Probability density function & cumulative distribution function of mesh refinement value 
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Figure 5.9 Probability density function & cumulative distribution function of friction coefficient 

 

The notations used for the random output parameters are listed in Table 5.3. For 

the double cantilever beam models, the total strain energy release rate and its mode 

components are calculated at the centroidal y-location of all the crack-tip elements along 

the delamination front. These values are stored in vectors and their total, average, 

maximum and minimum values are found and stored in scalar parameters. Similarly, for 

the end-notched flexure models, the change in elastic strain energy, energy lost to friction, 

the ratio of these two values and the total strain energy release rate are stored in 

parameters. The scalar parameters used for storing all these values are declared as 

random output parameters before the execution of the probabilistic analysis. So, at the 

end of every simulation loop ANSYS appends the random output parameters to a results 

file, which is processed to obtain the statistics and trends of the parameters.   
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Table 5.3 Random output parameter definitions 

Random Output Parameter Description 

GSUM/GISUM/GIISUM/GIIISUM Sum of the total SERR, mode-I, mode-II 

and mode-III components respectively, 

across the delamination front 

GAVG/GIAVG/GIIAVG/GIIIAVG Average of the total SERR, mode-I, mode-

II and mode-III components respectively, 

across the delamination front 

GMAX/ GIMAX/ GIIMAX/ GIIIMAX Maximum of the total SERR, mode-I, 

mode-II and mode-III components 

respectively, across the delamination front 

GMIN/ GIMIN/ GIIMIN/ GIIIMIN Minimum of the total SERR, mode-I, 

mode-II and mode-III components 

respectively, across the delamination front 

GMID/ GIMID/ GIIMID/ GIIIMID Total SERR, mode-I, mode-II and mode-

III components respectively at the mid-

point of the laminate width 

COD Crack-tip opening displacement at y = 0 

G Total SERR in the presence of friction 

DELU Change in elastic strain energy 

WFSUM Total energy lost due to friction 

DELPE Change in potential energy 

ERATIO Ratio of change in elastic strain energy to 

the energy lost due to friction 
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5.3 Double Cantilever Beam Model  
 

First, a [90/-45/45/0]s double cantilever beam model, as shown in Figure 4.1, is 

considered. The finite element model contains 50 elements along the delamination front. 

An opening load of 50 N is applied. The opening load produces pure mode-I SERR, as 

described in chapter 4.1.2, even though the fiber orientation is varied and the bending 

stiffness matrix coefficients D16 and D26 are not equal to zero. This is because the 

laminate is still symmetric with a mid-plane delamination. The total strain energy release 

rate is almost constant even for a fiber misalignment of THETA = -1°. To study the 

effects of small change in material mismatch, THETA = -1° is added to the plies of the 

upper plate and subtracted from the lower plate. A maximum increase in mode-II 

component of the SERR of 6 J/m2 is observed at the free edge where the mode-I strain 

energy release rate peaks. The slope of the trendline that is fit for the maximum mode-I 

value versus THETA is very small indicating that there is not much variation. 

  

To check if the number of simulation loops is adequate, the mean value history 

and standard deviation history of all the random output parameters are plotted. It can be 

seen from the plots for average mode-I SERR (GIAVG) that both the mean and standard 

deviation converge, i.e., the curves approach a plateau and the width of the confidence 

bounds are reduced. The same trend is observed for all the other RPs and for all the 

analyses too. So it is concluded that 120 simulation loops are sufficient for getting 

accurate statistical data. Table 5.4 lists the statistical properties of the random output 

parameters.  
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Figure 5.10 Mean value history of GIAVG: [90/-45/45/0]s double cantilever beam model 

 

 

Figure 5.11 Standard deviation history of GIAVG: [90/-45/45/0]s double cantilever beam model 
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Table 5.4 Statistics of the random output parameters: [90/-45/45/0]s double cantilever beam model 

Name Mean 
Standard 

Deviation 
Minimum Maximum 

GISUM (J/m2) 9180.0 275.1 8537 10063 

GIAVG (J/m2) 183.6 5.501 170.7 201.3 

GIMAX (J/m2) 437.4 16.04 403.9 493.9 

GIMIN (J/m2) 109.6 3.654 101.7 122.2 

GIMID (J/m2) 162.9 4.825 150.9 177.5 
 

The average strain energy release rate, GIAVG, can be considered as the total 

strain energy release rate obtained from a two dimensional analysis under plane stress 

conditions. So it can be used to compare the delamination growth predictions of two 

dimensional problems that are currently available in the literature. The maximum strain 

energy release rate, GIMAX, can be compared with the fracture toughness to determine if 

delamination growth occurs. The minimum and maximum values for these random output 

parameters indicate that there is almost an 18.25% scatter in GIAVG values due to the 

randomness of the input variables. Similarly GIMAX shows a 22.25% scatter. If the 

fracture toughness were, say, 450 J/m2 then a deterministic model would predict that 

delamination growth may or may not occur depending on the values assumed by the input 

variables. This shows the need for a probabilistic design methodology for prediction of 

delamination growth. 

 

To find out which of the random input variables have a significant influence on 

the output parameters, the sensitivities between the input and output based on the Pearson 

linear correlation coefficients listed in Table 5.5 are visualized using sensitivity plots. A 

significance level of 2.5% is used to identify the significant and insignificant random 

input variables for each of the random output parameters. Both absolute and relative 

sensitivities are plotted in bar and pie chart forms respectively.  
Table 5.5 Correlation between input and output variables: [90/-45/45/0]s double cantilever beam 
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model 

Out\Inp E11 E22 G12 G13 G23 TPLY THETA MRV 

VCCL 0.094 small -0.185 0.141 -0.056 0.056 0.218 -0.914

COD -0.051 0.184 0.078 0.044 -0.280 0.940 -0.056 -0.019

GISUM 0.036 -0.136 0.038 -0.062 0.281 -0.966 0.019 0.088 

GIAVG 0.036 -0.136 0.038 -0.062 0.281 -0.966 0.019 0.088 

GIMAX 0.049 -0.333 -0.206 small 0.344 -0.797 0.023 0.280 

GIMIN 0.029 -0.091 -0.039 0.050 0.347 -0.957 0.050 -0.051

GIMID 0.016 -0.043 0.131 -0.086 0.253 -0.987 -0.002 0.088 

 

 
Figure 5.12 Sensitivity plot of GIAVG: [90/-45/45/0]s double cantilever beam model 

 

Interlaminar stresses contribute significantly to the mode-I energy release rate. 

This is evident from the sensitivity plots of GIAVG and GIMAX shown in Figures 5.12 

and 5.13 respectively, where transverse shear modulus is a significant variable. As 
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transverse shear modulus increases the mode-I strain energy release rate increases. Also, 

the SERR is directly proportional to the compliances of the two sublaminates. Since the 

compliance decreases with increase in thickness, the SERR decreases when thickness 

increases. From figure 5.3(b) it can be seen that as the mesh refinement value (MRV) 

increases, the virtual crack closure length decreases and so the maximum SERR, GIMAX, 

is evaluated accurately. This is mainly because the maximum value occurs at the free 

edge. It should be noted that the present formulation is not sensitive to the mesh density 

in evaluating the average strain energy release rate or the minimum and midpoint values.  

 

 

Figure 5.13 Sensitivity plot of GIMAX: [90/-45/45/0]s double cantilever beam model 

 

After finding out the sensitivities, scatter plots of GIAVG and GIMAX versus the 

most significant design variable, the ply thickness, are obtained. The scatter plots in 

Figures 5.14-5.15 show the sample points and the trendline fitted for the data. For both 

cases a cubic polynomial is sufficient to describe the relationship between the input and 

output variables. The advantage of fitting a trendline is that, an approximate solution for 

the output parameter as a function of the random input variable is obtained. The 

coefficients of the cubic equations and the accuracy measures of the trendlines are listed 
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beside the scatter plots. The deviation of the sample points from this trendline are 

controlled by the influence of all the other input variables. For example, in the scatter plot 

for GIAVG, the deviation from the trendline is controlled by the variation in the 

transverse shear modulus. The scatter plots help in assessing how far the accuracy of 

prediction of the SERR values can be improved by reducing the scatter in the ply 

thickness. By controlling the tolerance of ply thickness to ± 0.002 mm, the average 

SERR could be predicted to an accuracy of ± 3 J/m2. 

 

 

Figure 5.14 Scatter plot of GIAVG vs. ply thickness: [90/-45/45/0]s double cantilever beam model 
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Figure 5.15 Scatter plot of GIMAX vs. ply thickness: [90/-45/45/0]s double cantilever beam model 

 

As stated in Section 5.1, the distribution of mode-I SERR along the delamination 

front and the normalized width data are appended to a text file every simulation loop. 

This data is read into MATLAB software as arrays. A mesh grid is created by converting 

arrays into matrices for the normalized width versus ply thickness values using the 

‘meshgrid’ command with a grid resolution of 360 along both the axes. The interpolation 

of the SERR values to fit this grid is done using the MATLAB v4 grid data method. 

Figure 5.5 shows the three dimensional contour plot of the distribution as a function of 

the ply thickness created using the ‘mesh’ command. The critical SERR, GIC can be 

compared with the data points in the plot to determine at which locations along the crack 

front delamination growth would occur. 
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Figure 5.16 Three dimensional contour plot of mode-I SERR distribution: [90/-45/45/0]s double 

cantilever beam model 

 
The next step is to fit the maximum and average strain energy release rates to 

appropriate distributions and calculate the basis values. The GIAVG values from the 80 

simulation loops (solution converged after 80 loops) are listed in Table 5.6. An 

Anderson-Darling test is performed to first test if the data is from a Weibull distribution. 

For that an estimate of the scale parameter, α, and shape parameter, β of the Weibull 

distribution are required. Using the guidelines given in the Composite Materials 

Handbook (2002), the initial guess for β is chosen to be (1.28/Sy) which is equal to 33.327, 

where Sy is the geometric standard deviation of the data. The final solution for β (31.618) 

is obtained through iteration and α (1.863) is calculated as a function of β. The Anderson-

Darling test statistic is found to be 1.552 and the Observed Significance Level (OSL) is 

5.08e-4. Since the OSL is less than 0.05, the hypothesis that the data fits a Weibull 

distribution is rejected. Next the data is checked for normality and an OSL of 0.394 is 

obtained. So the hypothesis that the data comes from a normal distribution is accepted. 
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The B-basis value is calculated as a function of the mean, standard deviation and the 

sample size of 80. In Table 5.7, ‘parameter 1’ refers to the mean and ‘parameter 2’ refers 

to the standard deviation. The B-basis value is found to be 175 J/m2, which means that if 

sample data is obtained repeatedly from the population and basis values calculated, 95% 

of time the calculated value falls below the 10th percentile. 

 
Table 5.6 GIAVG (J/m2) values from probabilistic analysis: [90/-45/45/0]s double cantilever beam 

model 

1.88E+02 1.84E+02 1.77E+02 1.81E+02 1.83E+02 

1.77E+02 1.75E+02 1.84E+02 1.87E+02 1.77E+02 

1.80E+02 1.71E+02 1.82E+02 1.89E+02 1.81E+02 

1.87E+02 1.78E+02 1.82E+02 1.88E+02 1.84E+02 

1.86E+02 1.81E+02 1.90E+02 1.84E+02 1.91E+02 

1.89E+02 1.77E+02 1.76E+02 1.78E+02 1.87E+02 

1.77E+02 1.85E+02 1.85E+02 1.84E+02 1.75E+02 

1.87E+02 1.84E+02 1.89E+02 1.88E+02 1.81E+02 

1.84E+02 1.89E+02 1.80E+02 1.82E+02 1.94E+02 

1.90E+02 1.81E+02 1.77E+02 1.74E+02 1.85E+02 

1.85E+02 1.90E+02 1.89E+02 1.86E+02 1.80E+02 

1.85E+02 1.75E+02 1.83E+02 1.96E+02 1.81E+02 

1.91E+02 1.79E+02 1.81E+02 1.77E+02 2.01E+02 

1.86E+02 1.87E+02 1.87E+02 1.76E+02 1.94E+02 

1.86E+02 1.83E+02 1.77E+02 1.81E+02 1.83E+02 

1.83E+02 1.86E+02 1.84E+02 1.82E+02 1.92E+02 
 

Table 5.7 Statistical characteristics of SERR values: [90/-45/45/0]s double cantilever beam model 

Variable Distribution Parameter 1 Parameter 2 B-Basis Value  

GIAVG (J/m2) Normal 183.6 5.528 175  
 

GIMAX (J/m2) Normal 437.4 16.04 412.38  
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The next double cantilever beam model is the [0/453/d/45/0] laminate which has 

an offset delamination between plies of same orientation. For this model too, an opening 

load of 50 N is applied. The loading produces all three components of the strain energy 

release rate though the distribution of the mode-III component is fairly constant along the 

delamination front and is small compared to the mode-I and mode-II components. Both 

the mode-I and mode-II components peak at one of the free edges. Unlike the symmetric 

laminate with mid-plane delamination, the effects of fiber misalignment, THETA are not 

negligible and control all three components to some extent. The statistics are listed in 

Table 5.8 and the sensitivity plots are shown in Figures 5.17-5.22.  

 
Table 5.8 Statistics of the random output parameters: [0/453/d/45/0] double cantilever beam model 

Name Mean
Standard 
Deviation 

Minimum Maximum 

GAVG (J/m2)  725.0 21.15 668.3 779.9 

GMAX (J/m2) 1578 95.70 1322 1792 

GIAVG (J/m2) 695.8 20.35 641.1 747.8 

GIMAX (J/m2) 1431 86.35 1198 1625 

GIIAVG (J/m2) 12.16 0.7149 10.52 13.97 

GIIMAX (J/m2) 137.0 14.63 98.12 170.5 

GIIIMAX (J/m2) 31.87 1.309 28.99 35.17 
 

The mode-I component is mostly controlled by the amount by which the other 

two components vary. Figures 5.19-5.21 show that, the in-plane shearing mode 

component, mode-II, is influenced by the in-plane shear modulus and similarly the 

scissoring mode component, mode-III, is controlled by the transverse modulus.  As can 

be seen in Figure 5.17, the mode-I SERR is negatively correlated to the ply thickness as 

described for the previous laminate configuration. In the case of the symmetric laminate 

the transverse shear modulus influenced the total SERR and mode-I component directly. 

But in this case, the in-plane shear modulus and the transverse modulus, which are 
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inversely correlated to the mode-II and mode-III components, control the average of the 

total strain energy release rate and also the minimum and midpoint values while the 

transverse shear modulus has a negligible effect. This trend is reflected in the distribution 

of the mode-I component as well. But, at the free edge, the reverse trend of GIMAX 

increasing with increase in in-plane shear modulus is observed. This can be attributed to 

the increase in the crack-tip opening displacement with an increase in the in-plane shear 

modulus. The virtual crack closure length has a sizeable effect on the evaluation of the 

maximum mode-I and mode-II strain energy release rate values. Also, as the fiber 

misalignment increases, the material mismatch increases. This leads to an increase in the 

predicted mode-ratio, GII/G and consequently the mode-I SERR decreases and the mode-

II component increases. 

 

 
Figure 5.17 Sensitivity plot of GIAVG: [0/453/d/45/0] double cantilever beam model 
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Figure 5.18 Sensitivity plot of GIMAX: [0/453/d/45/0] double cantilever beam model 

 

 
Figure 5.19 Sensitivity plot of GIIAVG: [0/453/d/45/0] double cantilever beam model 
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Figure 5.20 Sensitivity plot of GIIMAX: [0/453/d/45/0] double cantilever beam model 

 

 
Figure 5.21 Sensitivity plot of GIIIMAX: [0/453/d/45/0] double cantilever beam model 
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Figure 5.22 Sensitivity plot of COD: [0/453/d/45/0] double cantilever beam model 

 

Figures 5.23-5.26 show the scatter plots of the SERR values versus the 

corresponding significant random input variables. For GIAVG, the slope of the trendline 

indicates a very high scatter even for small variations in ply thickness. By controlling the 

tolerance of the ply thickness to ± 0.002 mm, the average SERR can be predicted to an 

accuracy of ± 9 J/m2. Similarly, by controlling the tolerance of fiber orientation to ± 0.2 

degrees, the average SERR can be predicted to an accuracy of ± 20 J/m2.  

 

Table 5.9 lists the type of distribution that fit the various strain energy release rate 

values, the parameters of the distributions and the B-basis values. It can be seen that the 

maximum mode-II SERR value could not be fit to a Weibull, normal, or log-normal 

distribution and so a non-parametric basis value is calculated using the method described 

in Section 2.10.1.4. 
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Figure 5.23 Scatter plot of GIAVG vs. ply thickness: [0/453/d/45/0] double cantilever beam model 

 
Figure 5.24 Scatter plot of GIMAX vs. fiber misalignment: [0/453/d/45/0] double cantilever beam 

model 
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Figure 5.25 Scatter plot of GIIAVG vs. in-plane shear modulus: [0/453/d/45/0] double cantilever 

beam model 

 
Figure 5.26 Scatter plot of GIIMAX vs. in-plane shear modulus: [0/453/d/45/0] double cantilever 

beam model 
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Figure 5.27 Three dimensional contour plot of Mode-I SERR distribution: [0/453/d/45/0] double 

cantilever beam model 

 
Figure 5.28 Three dimensional Contour plot of Mode-II SERR distribution: [0/453/d/45/0] double 

cantilever beam model 
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Figure 5.29 Three dimensional contour plot of Mode-III SERR distribution: [0/453/d/45/0] double 

cantilever beam model 

 

Table 5.9 Statistical characteristics of SERR values: [0/453/d/45/0] double cantilever beam model 

Variable Distribution Parameter 1 Parameter 2 B-Basis Value 

GAVG (J/m2) Normal 724.95 21.12 693.18 

GMAX (J/m2) Normal 1578.08 95.76 1434.05 

GIAVG (J/m2) Normal 695.85 20.41 665.14 

GIMAX (J/m2) Normal 1430.91 85.96 1301.62 

GIIAVG (J/m2) Normal 12.16 0.71 11.08 

GIIMAX (J/m2) Non-parametric - - 111.00 

GIIIMAX (J/m2) Normal 31.87 1.31 29.89 
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The next model to be analyzed is a [0/45/-45/-45/d/45/0] laminate since it has an 

offset delamination which is between plies of different orientation. The opening load is 

doubled to 100 N from 50 N to see if the mode-II component would increase appreciably. 

But the mode-II and the mode-III components observed are too small to initiate failure. 

The statistics of the random output parameters are given in Table 5.10 and the sensitivity 

plots are shown in Figures 5.30-5.34. Unlike the previous case, a small change in fiber 

orientation has a significant effect on even the average mode-I component of the strain 

energy release rate. The trends of the other parameters are similar except that the mode-

III component is not influenced by the transverse modulus. Figures 5.35-5.38 show the 

scatter plots of the SERR values versus the corresponding significant random input 

variables. By controlling the tolerance of the ply thickness to ± 0.002 mm, the average 

SERR can be predicted to an accuracy of ± 40 J/m2. Similarly, by controlling the 

tolerance of fiber orientation to ± 0.2 degrees, the maximum mode-I and mode-II SERR 

can be predicted to an accuracy of ± 125 J/m2 and ± 10 J/m2 respectively. 

 
Table 5.10 Statistics of the random output parameters: [0/45/-452/d/45/0] double cantilever beam 

model 

Name Mean 
Standard 
Deviation 

Minimum Maximum 

GAVG (J/m2) 3317 121.5 3033 3676 

GMAX (J/m2) 6576 465.7 5585 7843 

GIAVG (J/m2) 3187 115.7 2916 3529 

GIMAX (J/m2) 6348 433.3 5435 7504 

GIIAVG (J/m2) 75.01 7.178 60.55 96.93 

GIIMAX (J/m2) 224.7 45.31 140.8 332.3 

GIIIMAX (J/m2) 84.36 4.331 75.76 96.73 
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Figure 5.30 Sensitivity plot of GIAVG: [0/45/-452/d/45/0] double cantilever beam model 

 

 
Figure 5.31 Sensitivity plot of GIMAX: [0/45/-452/d/45/0] double cantilever beam model 
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Figure 5.32 Sensitivity plot of GIIAVG: [0/45/-452/d/45/0] double cantilever beam model 

 

 
Figure 5.33 Sensitivity plot of GIIMAX: [0/45/-452/d/45/0] double cantilever beam model 
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Figure 5.34 Sensitivity plot of GIIIMAX: [0/45/-452/d/45/0] double cantilever beam model 

 

 
Figure 5.35 Scatter plot of GIAVG vs. ply thickness: [0/45/-452/d/45/0] double cantilever beam model 
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 Figure 5.36 Scatter plot of GIMAX vs. fiber misalignment: [0/45/-452/d/45/0] double 

cantilever beam model 

 
 Figure 5.37 Scatter plot of GIIAVG vs. in-plane shear modulus: [0/45/-452/d/45/0] double 

cantilever beam model 
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Figure 5.38 Scatter plot of GIIMAX vs. fiber misalignment: [0/45/-452/d/45/0] double cantilever beam 

model 

 
Figure 5.39 Three dimensional contour plot of Mode-I SERR distribution: [0/45/-452/d/45/0] double 

cantilever beam model 
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Figure 5.40 Three dimensional contour plot of Mode-II SERR distribution: [0/45/-452/d/45/0] double 

cantilever beam model 

 
Figure 5.41 Three dimensional contour plot of Mode-III SERR distribution: [0/45/-452/d/45/0] double 

cantilever beam model 
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Table 5.11 Statistical characteristics of SERR values: [0/45/-452/d/45/0] double cantilever beam 

model 

Variable Distribution Parameter 1 Parameter 2 B-Basis Value 

GAVG (J/m2) Normal 3317.33 121.36 3134.8 

GMAX (J/m2) Normal 6575.66 465.37 5875.73 

GIAVG (J/m2) Normal 3187.16 115.88 3012.87 

GIMAX (J/m2) Normal 6347.75 433.62 5695.55 

GIIAVG (J/m2) Normal 75.00 7.17 64.21 

GIIMAX (J/m2) Lognormal 219.2 1.22 162.98 

GIIIMAX (J/m2) Normal 84.35 4.32 77.84 

 

 

5.4 End-notched Flexure Models 

 

End-notched flexure models of [90/-45/45/0]s, [0/453/d/45/0] and [0/45/-

452/d/45/0] laminates are analyzed with consideration for sliding friction between the 

delaminated surfaces. The laminate length, width, delamination length and ply thickness 

are kept constant at 100 mm, 25 mm, 25 mm and 0.4 mm respectively. Instead of a 

uniform load at the center of the laminate length, the nodes are selected and a constant 

displacement of 5 mm is applied.  

 

First the [0/453/d/45/0] laminate is considered. The coefficient of friction between 

the delaminated surfaces is defined as a random input variable using a uniform 

distribution with a range of 0.0 to 0.8. The statistics of the random output parameters are 

given in Table 5.12. The sensitivity plots are not plotted since friction coefficient is the 

only random input variable. The scatter plots are shown in Figures 5.42-5.45. The 

contribution of energy lost due to friction to the total energy release rate increases with 

increase in friction and the contribution of the change in elastic strain energy decreases 

with increase in the friction coefficient. The total strain energy release rate is 84.66 J/m2 
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when friction coefficient is 0.0 and is 117.2 J/m2 when the friction coefficient is 0.8. The 

parameter ERATIO is the ratio of change in elastic strain energy to the energy loss due to 

friction. It can be seen from Figure 5.45 that ERATIO is 70.5 when there is frictionless 

contact between the surfaces and decreases to 1.85 when friction coefficient is 0.8. All 

the output parameters fit a Weibull distribution adequately. In Table 5.13, ‘parameter 1’ 

and ‘parameter 2’ represent the scale and shape parameters of the Weibull distribution 

respectively. 

 
Table 5.12 Statistics of the random output parameters: [0/453/d/45/0] end-notched flexure model 

Name Mean Standard Deviation Minimum Maximum 

G (kJ/m2) 0.1024 1.0316E-02 8.466E-02 0.1172 

DELU (N-mm) 2.168 7.8506E-02 2.041 2.297 

WFSUM (N-mm) 0.6057 0.3356 3.259E-02 1.102 

DELPE (N-mm) 2.561 0.2579 2.117 2.931 

ERATIO 8.603 15.40 1.852 70.48 
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Figure 5.42 Scatter plot of G vs. friction coefficient: [0/453/d/45/0] end-notched flexure model 

 
Figure 5.43 Scatter plot of DELU vs. friction coefficient: [0/453/d/45/0] end-notched flexure model 
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Figure 5.44 Scatter plot of WFSUM vs. friction coefficient: [0/453/d/45/0] end-notched flexure model 

 

 
Figure 5.45 Scatter plot of ERATIO vs. friction coefficient: [0/453/d/45/0] end-notched flexure model 
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Table 5.13 Statistical characteristics of results: [0/453/d/45/0] end-notched flexure model 

Variable Distribution Parameter 1 Parameter 2 B-Basis Value 

G (kJ/m2) Weibull 0.10686 12.105 0.08021 

DELPE (N-mm) Weibull 2.67381 11.964 1.99998 

DELU (N-mm) Weibull 2.20525 31.132 1.97240 

WFSUM (N-mm) Weibull 0.67399 1.787 0.09647 

 

 

The end-notched flexure test is repeated for the [0/45/-452/d/45/0] laminate with 

only the friction coefficient as the random input parameter. The statistics are listed in 

Table 5.14. The scatter plots are shown in Figures 5.46-5.49. For this case too, the same 

trends are observed. The total strain energy release rate is 54.53 J/m2 when friction 

coefficient is 0.0 and is 86.02 J/m2 when the friction coefficient is 0.72. It can be seen 

from Figure 5.49 that the ratio of change in elastic strain energy to the energy loss due to 

friction is 128.22 when there is frictionless contact between the surfaces and decreases to 

1.63 when friction coefficient is 0.72. All the output parameters fit a Weibull distribution 

adequately. In Table 5.15, ‘parameter 1’ and ‘parameter 2’ represent the scale and shape 

parameters respectively. 

 
Table 5.14 Statistics of the random output parameters: [0/45/-452/d/45/0] end-notched flexure model 

Name Mean 
Standard 
Deviation 

Minimum Maximum 

G (kJ/m2) 6.8282E-02 9.0072E-03 5.4538E-02 8.6027E-02 

DELU (N-mm) 1.503 3.0082E-02 1.453 1.551 

WFSUM (N-mm) 0.4041 0.2546 1.2099E-02 0.8916 

DELPE (N-mm) 1.707 0.2252 1.363 2.151 

ERATIO 10.62 23.24 1.639 128.2 
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Figure 5.46 Scatter plot of G vs. friction coefficient: [0/45/-452/d/45/0] end-notched flexure model 

 

 
Figure 5.47 Scatter plot of DELU vs. friction coefficient: [0/45/-452/d/45/0] end-notched flexure model 
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Figure 5.48 Scatter plot of WFSUM vs. friction coefficient: [0/45/-452/d/45/0] end-notched flexure 

model 

 
Figure 5.49 Scatter plot of ERATIO vs. friction coefficient: [0/45/-452/d/45/0] end-notched flexure 

model 
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Table 5.15 Statistical characteristics of results: [0/45/-452/d/45/0] end-notched flexure model 

Variable Distribution Parameter 1 Parameter 2 B-Basis Value 

G (kJ/m2) Weibull 0.07225 8.34929 0.04942 

DELPE (N-mm) Weibull 1.80583 8.33765 1.23467 

DELU (N-mm) Weibull 1.51657 57.85458 1.43570 

WFSUM (N-mm) Weibull 0.44544 1.53247 0.05628 

 

 

The end-notched flexure model of the [90/-45/45/0]s laminate is analyzed next 

with all the material properties and friction coefficient as random input variables. In this 

case, the change in elastic strain energy is controlled by not only the friction coefficient 

but also by the longitudinal and transverse moduli. This is verified from the deviation of 

the sample points from the trendline fitted for DELU versus friction coefficient. The 

energy loss due to friction is not influenced by the scatter in the material property data 

and is a linear function of the friction coefficient. This is because only the contact 

stiffness for the first iteration of every simulation loop depends on the material properties 

and for subsequent iterations; the contact stiffness is automatically updated to reflect the 

changes in contact status by ANSYS software. Therefore, small changes in material 

properties do not affect the contact element’s output. Except for the friction energy 

dissipation, which fit a normal distribution, all other parameters fit a Weibull distribution. 
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Table 5.16 Statistics of the random output parameters: [90/-45/45/0]s end-notched flexure model 

Name Mean Standard 
Deviation Minimum Maximum 

G (x103 kJ/m2) 3.4089E-04 5.4832E-05 2.4125E-04 4.3046E-04 

DELU (N-m) 6.4789E-03 1.7401E-04 6.1621E-03 6.9343E-03 

WFSUM (N-m) 2.7184E-03 1.5293E-03 4.9516E-05 5.2292E-03 

DELPE (N-m) 8.5222E-03 1.3708E-03 6.0313E-03 1.0762E-02 

ERATIO 6.903 18.11 1.186 134.5 

 

 

Figure 5.50 Sensitivity plot of DELU: [90/-45/45/0]s end-notched flexure model 
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Figure 5.51 Scatter plot of G vs. friction coefficient: [90/-45/45/0]s end-notched flexure model 

 

 

Figure 5.52 Scatter plot of DELU vs. friction coefficient: [90/-45/45/0]s end-notched flexure model 
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Figure 5.53 Scatter plot of WFSUM vs. friction coefficient: [90/-45/45/0]s end-notched flexure model 

 

 

Figure 5.54 Scatter plot of ERATIO vs. friction coefficient: [90/-45/45/0]s end-notched flexure model 
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Table 5.17 Statistical characteristics of results: [90/-45/45/0]s end-notched flexure model 

Variable Distribution Parameter 1 Parameter 2 B-Basis Value 

G (x103 kJ/m2) Weibull 3.64077e-04 7.23825 2.458e-04 

DELPE (N-m) Weibull 0.00910 7.22347 0.00614 

DELU (N-m) Weibull 0.00656 37.97388 0.00609 

WFSUM (N-m) Normal 0.00271 0.00152 2.577e-04 

 

 For all the three end-notched flexure models considered, the coefficient of friction 
between the delaminated surfaces is varied between 0.0 and 0.8 so that the strain energy 
release rate values for any value of friction coefficient can be evaluated from these results. 
For the graphite/epoxy composite considered in this study, it has been shown that the 
friction coefficient between the delaminated surfaces varies from 0.35 to 0.40. Table 5.18 
lists the total strain energy release rate, change in elastic strain energy and energy loss 
due to friction for the three laminate configurations for friction coefficients 0.35 and 0.40. 
 
 

Table 5.18 Inference from results: End-notched flexure model 

Laminate Parameter FC = 0.35 FC = 0.40 

G (J/m2) 101 103.3 

DELU (N-mm) 2.1855 2.1687 

 
[0/453/d/45/0] 

WFSUM (N-mm) 0.5540 0.6261 

G (J/m2) 66.6 68.4 

DELU (N-mm) 1.5092 1.5028 

 
[0/45/-452/d/45/0] 

WFSUM (N-mm) 0.3552 0.4074 

G (J/m2) 328.6 340.4 

DELU (N-m) 0.00651 0.00647 

 
[90/-45/45/0]s

WFSUM (N-m) 0.0024 0.0027 
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5.5 Unidirectional Double Cantilever Beam Model 
 
 Since Monte Carlo simulations cannot be performed for each and every 

configuration of a double cantilever beam model, the best option would be to perform a 

regression analysis for building a response surface model to obtain approximate 

analytical solutions for energy release rates that include all the typical uncertainties 

encountered. To validate the use of the response surface method in the ANSYS 

Probabilistic Design System for evaluating the statistically-based energy release rates, a 

unidirectional double cantilever beam model is analyzed. The settings are given in Table 

5.19. 

 
Table 5.19 Probabilistic analysis specifications: Unidirectional double cantilever beam model 

Probabilistic analysis technique Response Surface Method 

Sampling method Central Composite Design 

Number of samples 149 

Design of Experiments Levels: Lower Bound 
Probability 

0.5% 

Design of Experiments Levels: Upper Bound 
Probability 

99.5% 

 

The random input variable definitions are the same as that given in Table 5.2 and 

except for fiber misalignment (THETA) and friction coefficient (FC), all other random 

input variables are assigned for the current analysis. The parameters that are varied are 

given in Table 5.20. 

 
Table 5.20 Parameter definitions: Unidirectional double cantilever beam model 

Parameter Minimum Maximum 

Laminate Width (LAMWID) 25 mm 40 mm 

Delamination Length (DELAMLEN) 25 mm 50 mm 

Opening Load (FZPDS) 25.5 N 51.0 N 
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After the analysis is completed, a regression analysis is performed to determine 

the response surface of the maximum and average mode-I strain energy release rates 

based on the results obtained at the sampling points. The output for the maximum strain 

energy release rate (GIMAX) is given in Figures 5.55 and 5.56. In Figure 5.55 the setting 

used for the regression analysis and the scaling of the input variables are listed. For the 

automatic Box-Cox transformation a step length of λ = 0.001 is used. Figure 5.56 lists the 

regression equation which is used to evaluate GIMAX in transformed form. Then the 

original value is calculated by back transforming the value using the equation provided. 

 

 
Figure 5.55 Settings used for the regression analysis: Unidirectional double cantilever beam model 
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Figure 5.56 Regression equation for GIMAX: Unidirectional double cantilever beam model 

 

From this equation more Monte Carlo simulations are also generated by choosing 

specific values for the parameters. The effects of uncertainties on the output for that 

particular configuration are then studied. The values chosen for the laminate width, 

delamination length and opening load are 25 mm, 25 mm and 51 N respectively. For this 

configuration of the double cantilever beam model, beam theory predicts a strain energy 

release rate of 51.89 J/m2. A MATLAB program is written to run 240 Monte Carlo 

simulations for this specific laminate configuration by varying the random input variables 

to generate maximum and average strain energy release rate values. An Anderson-

Darling goodness-of-fit test is performed to fit the results to appropriate distributions and 

the corresponding B-basis values are calculated. The results are listed in Table 5.21. It 
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can be seen that, in the present case, the beam theory predictions and B-basis value 

calculated for GIMAX are almost equal. But this may not be true for all cases, say, for 

delaminated composites in which the interactions between the random input variables and 

the random output parameters are pronounced. 

 
Table 5.21 Statistical characteristics of results: Unidirectional double cantilever beam model 

Variable Distribution Mean Standard deviation B-Basis Value  

GIMAX (J/m2) Normal 54.56 1.76 52.03 

GIAVG (J/m2) Normal 53.24 1.64 50.88 
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6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Contributions 

 

• A parametrical model of a laminated composite plate with through-the-width 

delamination is implemented using the two-sublaminate method and shell 

elements based on first-order shear deformation theory.  

• A MATLAB code is written to calculate improved transverse shear stiffness 

values and the matrices used for evaluating improved transverse shear forces and 

strains, for a given laminate configuration and the corresponding material 

properties and to export the data to a text file in a format that can be imported by 

the ANSYS pre-processor. 

• Layer interpenetration between the sub-laminate arms and sliding friction along 

the delamination surfaces is accounted for, by using surface-to-surface contact 

elements based on the augmented Lagrange method. 

• A first-order shear deformation theory based improved plate closure technique is 

implemented using the ANSYS Parametric Design Language in the post-

processing phase for the calculation of total energy release rates and its mode 

components at various locations along the delamination front. 

• Double cantilever beam and end-notched flexure models of delaminated 

composite plates with various lay-ups, geometry and material properties are 

analyzed. 

• Monte Carlo simulations are performed by considering material properties, mesh 

density, friction coefficient, virtual crack closure length, ply thickness, fiber 

orientation and shear correction factors as uncertainties. 

• Effects of uncertainties on the mixed-mode strain energy release rates along the 

delamination front are studied using sensitivity plots, scatter plots and contour 

plots.  

• An Anderson-Darling goodness-of-fit test is performed to fit the maximum and 

average strain energy release rates for each of the mode components to a Weibull, 

normal, or log-normal distribution and to calculate statistically-based properties. 
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• Regression analysis is performed to build the response surface for a unidirectional 

double cantilever beam model. Monte Carlo simulations are generated from the 

regression equation to study the effects of uncertainties on the maximum and 

average strain energy release rates for a particular configuration. 

  

6.2 Conclusions 

 

• Even if the scatter in the material properties, ply thickness, and fiber 

misalignment are within allowable tolerances, they have a significant influence on 

the evaluated strain energy release rate of delaminated composites.  

• For symmetric laminates with mid-plane delaminations under opening load, small 

variations in fiber orientation do not affect the mode-I strain energy release rate 

distribution. The same is not true for laminates with offset delaminations, in 

which all three-mode components are controlled by the variations to some extent. 

• Ply thickness is a significant factor for all the models analyzed even though the 

standard deviation is just 1% of the mean value. For a variation of 0.004 mm in 

the ply thickness value of 0.4 mm, the average SERR varies by 6 J/m2, 18 J/m2, 

and 80 J/m2, respectively, for the [90/-45/45/0]s, [0/453/d/45/0], and [0/45/-45/-

45/d/45/0] laminates. 

• Sliding friction between the delaminated surfaces must be taken into account for 

accurate evaluation of mode-II strain energy release rates in end-notched flexure 

tests. 

• As friction coefficient increases, the contribution of change in elastic strain 

energy to the total energy release rate (ΔU/ΔA) decreases and the contribution of 

energy loss due to sliding friction  increases. )/( AW f Δ

• For a mean friction coefficient of 0.375 with a standard deviation of ±0.025, the 

total strain energy release rate varies from 101-103.3 J/m2, 66.6-68.4 J/m2, and 

328.6-340.4 J/m2 for the [0/453/d/45/0], [0/45/-45/-45/d/45/0], and [90/-45/45/0]s 

laminates, respectively. 

• Friction effects are negligible for unidirectional end-notched flexure specimens 

and occur only adjacent the supports. 
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• The results clearly indicate that probabilistic design is necessary to reliably 

predict delamination growth in laminated composites. 

• Since Monte Carlo simulations cannot be performed for each and every 

configuration of a double cantilever beam or end-notched flexure specimen, the 

best option would be to use the response surface method and perform a regression 

analysis to obtain closed form solutions for energy release rates that include all 

the typical uncertainties encountered. 

 

6.3 Recommendations 

 

• Mode-II, mode-III and mixed-mode strain energy release rates of unidirectional 

composites can be characterized by performing regression analysis on end-

notched flexure, split cantilever beam and mixed-mode bending models, 

respectively. 

• Delamination growth can be simulated using adaptive meshing technique or using 

interface elements. 

• Curved crack fronts can be studied. 
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