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ABSTRACT:

RESERVOIR HETEROGENEITY IN A CARBON SEQUESTRATION TARGET: THE DONOVAN SAND
MEMBER OF THE RODESSA FORMATION, CITRONELLE FIELD, ALABAMA

Keith Coffindaffer

The Citronelle field, located in Mobile County, Alabama, has been chosen as a U.S.
Department of Energy (DOE) Carbon Capture and Storage (CCS) pilot site, and supercritical CO,
has been injected for the combined purposes of long-term storage testing and enhanced oil
recovery (EOR). The target formation for injection is the Early Cretaceous Donovan Sand of the
Rodessa Formation, and is characterized by discontinuous fine- to medium-grained,
heterogeneous arkosic fluvial sandstones interbedded with fissile mudstones and micaceous
silts. Based upon core analysis of the Donovan Sand, depofacies indicate a fluvio-
deltaic/estuarine depositional environment for the Donovan Sand. Probable sources of the
Donovan sediments are the Motts Gneiss and the Hospilika Granite, both of which are exposed
within the Pine Mountain Window at the Georgia/Alabama state border and into central
Georgia. Through synthesis of core, thin section, and well log analysis, reservoir heterogeneity
and porosity development within the Upper Donovan Sand is highly variable, with porosity
averages of ~2-5%, but locally can be up to ~13%. In more porous zones there is more evidence
of grain alteration and creation of secondary porosity, while in the lower porosity sections
cementation or high matrix content fill interstitial space and the main pore type is primary
pores. Porosity and cement percentages, rather than mineralogic composition, were used to
categorize sandstones into petrofacies due to the consistent mineral composition of the
Donovan Sand. According to petrofacies-to-well log correlations, the most porous petrofacies
are present within the same stratigraphic zone (defined herein as a ‘high porosity zone’) and
this zone is interpreted to represent a porous (> 5% ¢) fluid migration pathway in the
subsurface. An Upper Donovan Sand structure map, thickness map, and average porosity map
generated using transform equations from SP and bulk density curves show that the thickest
portions of the Upper Donovan do not directly correlate with the most porous areas within the
formation. This research may serve as an analog for other mature oil and gas fields and CCS
sites targeting fluvial-deltaic reservoirs.
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Chapter 1: Introduction
Carbon Sequestration

In recent years, much effort has been made in order to assess the viability of carbon
capture and storage (CCS) in geologic reservoirs as a way to reduce the amount of CO, expelled
into the atmosphere from anthropogenic sources. Geologic carbon sequestration involves four
steps (Myer, 2008):

1. Capture of CO, from flue gas or some fossil fuel-burning source (such as a coal-fired

power plant).

2. Drying of the CO,, and compression of the gas to ~100 bars.

3. Transport of the compressed gas to the injection site.

4. Injection of the CO, at high pressures into a geologic formation at depth, and

monitoring of the plume as time progresses.
The main targets for geologic CCS are deep coal beds that cannot be mined, saline formations
(with total dissolved solids >10,000ppm per EPA regulations), and as in this study, produced or
producing mature oil and gas reservoirs. Sequestration within producing petroleum reservoirs is
also beneficial because storage operations can be performed simultaneously with enhanced oil
recovery (EOR) efforts. EOR operations have been performed using CO, in the United States
since the early 1970s (United States Department of Energy, 2011) to attempt to produce any
remaining hydrocarbon after initial producing stages.

CO, EOR was developed based upon the premise that the CO, will miscibly mix with the
oil in the formation to reduce viscosity, allowing the oil that remains in situ to migrate towards

the wellbore (Meyer, 2007). A waterflood normally follows the CO, injection, and acts as the



driving force to push the hydrocarbon towards the borehole. Evidence that CO, can successfully
be contained in geologic formations is plentiful (e.g., Bachu, 2002; Hadlow, 2002; Meyer, 2007;
Myer, 2008; United States Department of Energy, 2011). CO, is known to occur naturally within
oil and gas reservoirs, suggesting that reservoirs can effectively hold CO, for long periods of
time (Myer, 2008). In fact, CO, is effectively being stored during CO,-EOR operations as well.
According to Hadlow (1992), oilfield production history shows that approximately 40% of the
originally injected CO:is being produced at the pump and re-injected which suggests a gross CO:
retention efficiency of ~60% during the EOR process (Bachu, 2001). This further reinforces the
claim that geologic storage is a plausible method for long-term CO, emission mitigation.

The target CCS reservoir must be deemed as appropriately sealed in order to store the
CO,. The fluid flow dynamics must also be adequately defined so as not to allow for unwanted
underground transport of the CO, to freshwater aquifers or to other unpredictable flow zones.
Variable pressure and temperature of the target sequestration reservoir could result in changes
in the state of the injected CO, once it is within the formation. This should be avoided due to
the increased mobility of CO; in a gaseous versus a supercritical liquid state (Bachu, 2002). The
reservoir that is being considered for geologic CO, sequestration must also be laterally extant
and structurally sound. There must not be fractures which allow for unwanted or uncontrolled
migration of the CO, out of the target formation.

Citronelle Field

The Citronelle oil field (Fig. 1), Alabama’s largest oil and gas producing field, sits overtop
a salt-cored anticline (Fig. 2) and has produced 168MMbbl of oil (Esposito et al., 2008) and

~15Bcf of gas since 1955 (Pashin et al., 2007). It is estimated that supercritical CO,-EOR should



increase production from the Donovan Sand by about 20% (Pashin et al., 2007). After the
injection of the first 7500 ton slug of CO, and the subsequent waterflood, there was a decrease
in the rate of injection (P. Walsh, personal communication, 2011). This shows that some
downhole factor has changed, and this research will qualitatively and quantitatively
characterize stratigraphic porosity and mineralogy within the Donovan Sand so that it can be
used to investigate why injection rate changed.

CO; injection for the purposes of EOR operations has been implemented in hydrocarbon
production in Citronelle Field since 1981 (Pashin et al., 2007). Typically with this type of
operation, the CO, is actually produced with the hydrocarbon, separated, and reinjected into
the formation for continuation of EOR; this type of recovery is possible with most conventional
reservoirs. However, with the advent of CO, injection for storage purposes, it is now important
to identify possible long-term storage reservoirs across the nation. In looking for storage fields,
there are certain qualities that must be considered: basin geology and hydrogeology,
hydrodynamics of the targeted reservoir, depth of the reservoir, pressure and temperature of
the reservoir, the physical extent and structural integrity of the reservoir, storage capacity of
the reservoir, and porosity and permeability within the reservoir (Bachu, 2002; Kovscek, 2002).

The Citronelle Field is a good candidate for geologic carbon sequestration because it is a
mature oil field that: 1) has been recently waterflooded and injected with CO,, 2) already
possesses the deep well infrastructure necessary for the CO, injection, and 3) is near (~10 miles;
16 km) away from Plant Barry, the eventual anthropogenic source of the CO,. Furthermore,
geologically, it is located overtop of a gently sloping, structurally competent dome which

provides four-way structural closure, and the targeted Donovan sand is overlain and sealed by



the thick and extensive Ferry Lake Anhydrite (Esposito et al., 2008; United States Department of
Energy, 2007). These factors make the Citronelle oil field a prime candidate for geologic carbon

sequestration.

Mississipbbi River

Figure 1. Location map of Citronelle Field, Mobile County, Alabama.
Citronelle Field is outlined with the red rectangle. State boundaries are represented by the gray

lines and state names are in white font, while country borders are shown with yellow lines. Gulf
of Mexico and Mississippi River are labeled for geographic reference (Modified from Google
Inc., 2012.)

Previous Work

Limited work has been published concerning the potential of the Rodessa Formation as
a viable carbon sequestration target. Most published information pertains to the production of

hydrocarbons and includes general stratigraphic identification, lithology descriptions,



production-related volumetric analyses, and permeability data collection (Pashin et al., 2007;
Esposito et al., 2008; Esposito et al., 2010). However, Esposito et al. (2010) reported planning
for CCS pilot test operations in the form of injection of two 7500 short-ton slugs, one at a time,

and with a waterflood phase directly after the injection of each slug.

Citronelle Oil Field Township and Range Map
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Figure 2. Geologic structure map of the Citronelle Field.

Note the Citronelle Field inset with locations of cored study wells and the study area. (Modified
from Pashin et al., 2007).



Chapter 2: Background
Geologic Setting

Situated on the edge of the present-day Gulf of Mexico (GOM), southwestern Alabama
underwent geologic changes associated with evolution of the GOM (Fig. 1). The GOM originated
as a rift basin that began opening in the Late Triassic- Early Jurassic as the Pangean
supercontinent was breaking up (Pindell and Kennan, 2001; Bird et al., 2005; Stern and
Dickinson, 2010). Marine water first entered the GOM basin during the late Bathonian- Early
Callovian (Fig. 3), probably through intermittent connections with the paleo-Pacific Ocean to
the west (Salvador, 1987; 1991). The arid climate caused evaporation of shallow saltwater lakes
and the precipitation of widespread salt (Salvador, 1987). During the Callovian, thick salt was
deposited over the thin transitional crust and in lows in the region of thicker transitional crust
in the northern GOM basin. Along with the salts, terrigenous redbed sediments and basaltic
dikes and sills associated with initial Early Jurassic magmatic activity within the basin (Dobson
and Buffler, 1997; Salvador, 1987) filled the small proto-basins within the GOM. Active rifting of
the GOM is generally thought to have ceased by the earliest Cretaceous (Berriasian), and
sedimentation persisted through to the present day (Galloway, 2000; Bird et al., 2005).
Stratigraphy

The Lower Cretaceous Rodessa Formation (Fig. 4) does not crop out at the surface;
however its western equivalent, the Glen Rose Formation, does crop out in east-central Texas
(Mancini and Scott, 2006). The Glen Rose is lithologically quite different from the Rodessa
Formation in Alabama, as it is composed primarily of limestone, dolostone, and thin beds of

carbonate mudstone and marlstone (Mancini and Scott, 2006). In contrast, the Rodessa



Formation in Alabama is a primarily siliciclastic unit that contains the Donovan sand, which is
itself divided into three members from top to bottom: Upper, Lower, and Middle (Fig. 4). All
three members were deposited in a nearshore to fluvio-deltaic complex (Raymond et al., 1988)
and are characterized by lenticular, discontinuous sand bodies interbedded with coastal plain
shales and siltstones with some intraclast carbonate conglomerate and limestone facies,
including rudstone and carbonate mudstone, respectively. A distinguishing aspect of the
Donovan sand is that the Upper and Lower Donovan members are both oil-bearing, whereas
the Middle Donovan produces mainly brine. As a result, the Upper and Lower have been targets
for oil and gas exploration. Typically, the depths at which the total Upper Donovan thickness
can be determined within Citronelle Field are ~10,800-11,000 ft (~3,291-3,352 m) subsea.

The Ferry Lake Anhydrite overlies the Upper Donovan Sand, and regional sealing
formation to the Donovan Sand (Fig. 4). Below the Lower Donovan sand is the Pine Island
Formation, and is comprised of mainly of red clastic sediments and some interbedded
variegated shale (Raymond et al., 1988). This unit can be distinguished from the Lower Donovan
in Citronelle Field by its lack of oil and its red color versus the tan/white coloration of the
Donovan, as well as the Pine Island’s significantly lower SP-signature than those of the Lower
Donovan (Fig. 4).

Lithology of the Donovan Sand

Overall, the Donovan Sand is comprised of fluvial/marginal marine sandstones with
grain sizes ranging from very fine to fine and in some portions, medium. Gray siltstones and
some horizontally bioturbated and variegated overbank and marginal marine mudstones are

interbedded within the Donovan sand bodies.



Figure 3. Paleogeographic reconstruction of the Laurentian supercontinent during the early
Jurassic (180 Ma).

This figure shows the beginning stage of the creation of the proto-Gulf of Mexico via rifting.
Location of the Citronelle Field is highlighted with the red circle (Modified from Blakey, 2010).
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Chapter 3: Methodology
Core and Thin Section Dataset

Six cores from wells that had penetrated the Donovan sand were described and sampled
for thin sections at the Geological Survey of Alabama in Tuscaloosa, Alabama. Well permit
number 706 was not described by hand sample but rather by using a previously constructed
graphic log that was generously supplied by the Geological Survey of Alabama after this core
was viewed. The cored wells include the CO,-injection well and its nearest cored offset as well
as 4 other wells within 4 miles (~6.4 km) of the injection well (Fig. 2). Sedimentary structures,
fossils, and lithologies, were observed in core samples. Graphic logs were created from core
descriptions using the program SedLog (Zervas et al., 2009). These graphic logs give a visual
representation of the core descriptions and show grain sizes, lithology types, interpreted
depositional facies, sedimentary structures, fossils (if present), and presence of oil staining. In
some cases, the cores that were to be described were not continuous. Absence of core from
within the cored intervals was not accounted for in the graphic logs. In other words, the graphic
logs do not necessarily reflect continuous cored section, but instead only represent description

at the depths from which core samples were preserved.

Thirty-eight thin sections were point counted for compositional analysis and described
for textural analysis. Point counting of thin sections allows for compositional determination of
the reservoir, and was conducted with the use of a mechanical stepping stage, a Nikon Eclipse
LV100 POL microscope, and the geologic point counting software Petrog Lite. The point-
counting process involved placing a thin section within the mechanical stepping stage and using

Petrog Lite computer software to advance the stage and count grains using pre-programmed
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keys on the keyboard. The stage was set to move horizontally by 100 microns after each
keystroke. Framework grains, cement, matrix, and pore spaces, were counted until 400

framework grains were counted in each thin section.

Well Log Dataset

Wireline logs supplied by the Geological Survey of Alabama were used for identification
and correlation of petrofacies according to core-calibrated log character. In order to produce
the structure map, thickness map, net sand map, and cross-section network, approximately 47
well logs, selected based upon proximity to the injector well, log availability, and log quality,
were imported into GeoGraphix Discovery software suite and then interpreted. Given that
Citronelle Field is a relatively mature oil field, the quality of some logs acquired from early on
(~1960-70) in the field’s development was not ideal for incorporation into the project. Typically
a spontaneous potential log (SP) and a resistivity log (RHOD) were available for each well,
although a few wells included gamma ray (GR) and bulk density (RHOB) logs as well (Plate 1 —

cross-sections).

Transform Equations

Using transform equation operations within the GeoGraphix PRIZM module, an
estimation of bulk density (EstRHOB) was derived from SP log data (Formula #1). First, in order
to correctly assess the relationship between RHOB and SP, four cross-plots (Fig. 5, part A) were
made in Microsoft Excel of the four well records within this dataset that contain both bulk
density (RHOB) and spontaneous potential (SP) logs. From this plot, the mathematical

relationship between SP and RHOB data was then defined in y=mx+b form, as follows:
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(Formula #1) EstRHOB = 0.00265 (SP) +2.4550

where ‘EstRHOB’ represents the bulk density estimated from the relationship between actual
SP and RHOB measurements demonstrated in the four well set with SP and RHOB logs
available, and ‘SP’ represents the vector value at any given depth at which there was a SP
measurement taken. The constant values ‘0.00265’ and ‘2.4550’ are values which were
averaged from the four cross-plot regression line equations for the SP and RHOB relationships,
respectively. Since there was a strong relationship between the two logs, this transform
equation was used to create a new log for all logs in the data set. Hence, all dataset wells with
an SP curve now also had an EstRHOB curve, since the EstRHOB equation was based off of

values taken from the SP log.

Taking values from the newly created EstRHOB curve, another transform equation was

used in order to produce a curve showing estimated porosity (Formula #2).

(Formula #2) PHID = RhoM — EstRHOB
RhoM-RhoF

where ‘PHID’ represents the estimated porosity, ‘RhoM’ represents the density of the rock
within the formation of interest, and ‘RhoF’ represents the density of the formation fluid. For
this study, the RhoM of the Donovan Sand was assumed to be 2.556 g/cm?>. This value was
chosen because the sands within the Donovan interval are arkosic in nature, meaning that using
the RhoM values for pure quartz (2.64 g/cm?) or pure orthoclase feldspar (2.52 g/cm?) would be

incorrect. A distribution of 70%/30% in favor of orthoclase feldspar was applied to the two
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values in order to produce the weighted value of 2.556 g/cm?, which represents RHOM of an
arkosic sandstone composed of 70% feldspar and 30% quartz. Orthoclase feldspar was chosen
over other feldspar types because it is the predominant feldspar type within the Upper
Donovan sand, representing about 75% of the total feldspar content in most samples. There is
inherently some error in this value as the sands within the Donovan Sand interval are not
entirely pure orthoclase and pure quartz, however given the relatively consistent feldspar and
quartz distribution within the reservoir this approach yields an adequate approximation. ‘RhoF’
is the density of the formation fluid and for this calculation the value was assumed to be 1.00
g/cm3. Using these values, the PHID curve was created for all wells in the database. In order to
show porosity distributions the average value of the PHID curve within the Upper Donovan
Sand was taken using curve statistics operations within PRIZM, applied to all wells, and then
posted to a WellBase layer within GeoAtlas. From this set of posted porosity averages, the
Upper Donovan Sand porosity distribution map was created and then contoured manually.
Manual contouring was chosen over computer-generated contouring within GeoGraphix in
order to minimize error within the interpretation of the data, as the automatic contouring

sometimes accentuates gaps in the data (i.e., data busts) and complicates the interpretation.

Well Log Correlation

Interpretation of the well logs consisted of using the type log to define signatures of
formation tops and then picking the top and bottom of the reservoir unit in well logs across the
study area. For the petrofacies correlation, a core was chosen from well permit number 3232

and converted into graphic log format.
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Figure 5. Cross-plots of SP vs. RHOB and thin section porosity.

(A) Cross-plots of the SP (x-axis) versus RHOB (y-axis) vector log values taken during logging of
well permit numbers 1305, 2055, 2100, and 2115. Note the linear correlations and the
equations given for the lines of best fit. (B) Same data shown in GeoGraphix cross-plot view
showing increased r? correlation values when data points from oil and gas-charged zones have
been removed. These points may be seen in (A) at y-axis values less than 2.3. Part (B) also
shows color-coding of the data by depth, with blue and red representing the deepest and
shallowest depths, respectively. (C) Cross-plot showing SP values taken from thin section-
sampled depths plotted against point-counted porosity from thin section.

Using the graphic log, the depth of the cored reservoir sample was matched with the
petrophysical log signature at that same depth to create a type log section which was
correlated to other nearby wells. This process was repeated for the other cored wells which had
logs (well permit numbers 706 and 633) within the dataset. Upon completion of this correlation
from core-graphic log-petrophysical log, the petrofacies were correlated across the rest of the
well log dataset in the form of the high porosity zone (outlined in chapter 7). The Upper

Donovan formation top pick chosen within the well logs served as a boundary for petrofacies
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correlation, as the petrofacies represented within the graphic logs were all identified within the

Upper Donovan Sand interval.
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Chapter 4: Depositional Setting Analysis
Depositional Facies Identification

Eight depositional facies (depofacies) were defined within the Upper Donovan Sand
based upon sedimentary structures, color, grain size and shape, grain sorting, composition,
presence of fossils, and diagenetic facies features.

Depofacies 1: Rudstone Conglomerate

Depofacies 1 is characterized by dark gray, subangular to subrounded gravel- to pebble-
sized clasts (2-10 mm (~0.078-0.393 in) in diameter) of lime mudstone and soil carbonate within
the lighter gray-colored matrix of silt and very fine-grained sand with some minor amounts of
coarse-grained silicate sand as well (Fig. 6). The pedogenic carbonate clasts are roughly 2-5mm
(~0.078-0.196 in) in diameter and are typically light brown in color. They are also usually
subrounded to rounded, and may show evidence of alteration around their edges in the form of
a usually dark brown color. Some of the mudstone clasts are elongate, with the longer axis
parallel to horizontal. Thin (< 2mm/0.078 in) thick) layers of dark gray/black micaceous
mudstone are sometimes evident in this facies, and fractures, if present, tend to develop along
these layers. Any porosity within this facies type oftentimes has been nearly entirely filled by
calcite cement, and there is no pyrobitumen staining within this facies. The matrix within this
conglomerate is typically carbonate mud, and this facies fits the description for a rudstone as
per the revised limestone classification scheme of Dunham (1962) by Emery and Klovan (1972).

In rudstone samples, there are often dark gray stylolites evident within core samples.
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Figure 6. Depofacies 1 - Rudstone Conglomerate.

Sample was taken from well permit # 3198 at a depth of 11,130 feet (~3,392m). This is a typical
sample for this depofacies, with lime mudstone lithic clasts and some pedogenic carbonate
fragments.

Depofacies 2: Cross-bedded sandstone

Depofacies 2 is composed of white to tan-colored, cross-bedded moderately-well sorted
sandstone (Fig. 7). Cross-bed contacts within this facies are usually planar in nature. This facies
can range from ~0.2 to ~12 meters (~0.656 to ~39.37 feet) thick (see Plate 2). Grain sizes within
this facies range from very fine- to fine-grained and sometimes medium, and the grain shape is
subangular to subrounded. Mica fragments within this facies may be as large as medium-

grained sand. Like most sandstones within the Upper Donovan interval, the composition of the
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cross-bedded sandstone is arkosic and lithic fragments comprise a small portion (< 1%) of the
sandstone framework grain distribution. (Table 1, in Appendix).

Cementation of this depofacies is variable, and where there is porosity, light-dark
brown/black pyrobitumen staining is apparent. This staining is typically bound to ~1 meter (~3
ft) intervals, and is typically sharply interrupted as facies change within the core. Calcitic to
dolomitic concretions ranging from 6-10 mm (~0.236-0.393 inches) are present in some zones
where pyrobitumen staining is evident. Secondary porosity due to cement and framework grain
dissolution is evident in thin-section samples of this facies, and contributes significantly to the

overall porosity amount.

Figure 7. Depofacies 2 - Cross-bedded sandstone.

Core was taken from well permit # 3232 at a depth of 11,058 feet (~3,370m). Fracture was
likely created during the coring process and did not occur naturally.
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Depofacies 3: Massive to horizontally laminated sandstone

Depofacies 3 (Fig. 8) consists of primarily featureless or horizontally-stratified poorly-
sorted sandstone. Bed thicknesses may range from 1-2 meters up to 5-6 meters (~3-19 ft).
Much like depofacies 2, the grain size of this facies is very fine to fine, and grain shape is
subangular to subrounded. This facies is also characterized by a beige/tan/white color and a

slightly higher amount of mica than depofacies 2.

Figure 8. Depofacies 3 - Massive to horizontally laminated sandstone.

Sample was taken from well permit number 3198 at a depth of 11117 feet (~3,388m). Notice
the darker laminations through this core sample and the black, flattened organic matter
fragment within the upper portion.
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Pyrobitumen and live oil staining are relatively common within porous zones of this
depofacies, and these stained zones are sharply truncated rather than gradational in the
vertical direction. Degree of cementation varies from well-cemented to semi-friable, and the
dominant cement phase observed in thin-section is calcite. There are zones within this
depofacies that have numerous small (6-10mm/0.236-0.393 in) in diameter) calcite/dolomite
concretions (Fig. 9) in an otherwise moderately-cemented zone, but the concretions are not so

many in number as to degrade the overall porosity within this depofacies.

Figure 9. Depofacies 3 - Massive sandstone with calcite concretions and pebble-sized
carbonate clasts.

Sample was taken from well permit # 3198 at a depth of 11087 feet (~3,379m). Notice the
white calcite concretions and the more brown/tan colored pedogenic carbonate fragments.
Black staining of the rock is due to dead oil within pore spaces.
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As in depofacies 2, the composition of the sand is arkosic and secondary porosity created via
cement and framework grain dissolution is a major pore type within this depofacies.

Depofacies 4: Ripple-laminated Siltstone

Within this facies, gray and sometimes red siltstones show ripple laminations and
occasionally some additional small amounts of very fine white to gray subangular sand. This
facies is predominantly composed of silt-sized quartz and an argillaceous matrix with large
amounts of muscovite and sometimes biotite micas. Scour marks as well as planar crossbeds
are present. Vertical burrow traces and moderately to heavily bioturbated zones are commonly
found in this depofacies. White-colored plant root traces are rarely found within this zone.
Planar laminae of this facies fracture readily and are lined with silt- to very fine grained sand-
sized mica grains. These fractures provide high porosity zones, but pyrobitumen staining of
some portions of the siltstone indicates additional pore space. Sometimes the dead oil may be
found in zones that have small (6-10mm/0.236-0.393 in) in diameter) and numerous calcite
concretions.

Depofacies 5: Massive to horizontally laminated siltstone

Alternating red/green and sometimes gray-colored massive and horizontally stratified
siltstone deposits dominate depofacies 5. Compositionally, this facies is very similar to
depofacies 4 but with approximately 30-40% more mud within the matrix in most cases as well
as with inclusions of some lighter gray-colored lithic fragments. Pyrobitumen may be found in
this depofacies, typically within zones where there are numerous dolomite-cemented
concretions. These concretions are roughly 6-10 mm (0.236-0.393 in) in diameter and are also

found in depofacies 2-4. There are also mainly horizontal rather than vertical burrows, and
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degrees of bioturbation are generally higher in this depofacies than depofacies 1-4. Level of
bioturbation is equivalent to ichnofacies 3 (10-40% of bedding disturbed) of Droser and
Bottjer’s (1986) ichnofacies fabric index.

Depofacies 6: Bioturbated and Burrowed Mudstones and Shales

Bioturbated and burrowed gray/green and sometimes red shales and mudstones are
present in depofacies 6. Most deposits are moderately to heavily bioturbated, with 40-60% of
bedding disturbed; only the last remnants of bedding discernible (ichnofacies 4, Droser and

Bottjer, 1986) and both vertical and horizontal burrows are evident in core samples.

T e

Organic

Figure 10. Depofacies 6 - Bioturbated and burrowed mudstones and shales.

Notice the organic matter (black fragments, denoted by red arrows) within the silty mudstone
matrix. (From sample 624-11410.)
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Oyster shell fragments in this facies are the only described body fossils within this
depofacies but are not seen in every deposit. Organic plant material is also present in the form
of black fragments (Fig. 10). Depofacies 6 is mainly composed of clay with some micaceous silty
sections. Where the siltstone is absent, mudstones of this facies are quite soft and may be
scratched with a fingernail. Horizontal fractures may be present, and there has been no
evidence of pyrobitumen staining along fractures within this facies. These fractures appear to
be naturally occurring, rather than having been created by coring-related stresses because the
fractures appear to follow bedding planes versus randomly oriented. The fractures are also
relatively clean breaks within the rock rather than having broken the majority of the rock in this
section as may occur in drilling.

Depofacies 7: Horizontally Laminated Shales

Depofacies 7 is comprised of horizontally laminated shales with no evidence of fossils,
bioturbation, or grains larger than silt. Black and dark gray shales are diagnostic of this
depofacies, and they are typically homogeneously comprised of clay minerals with some
organic matter. Beds within this depofacies are often up to 5-7 meters (16-22 ft) thick, but may
be as thin as 0.3 meter (~1 ft), and this depofacies also is sometimes truncated on its upper
bedding plane by an erosional surface and a coarser-grained deposit immediately above.

Depofacies 8: Calcareous mudstones

These mudstones are somewhat rare within the Donovan interval, and are gray to light
gray in color. There are fractures within some limestone intervals, and occasionally there is
evidence of hydrocarbon staining within them. Beds of this mudstone are typically thin, ranging

in thickness from 0.2 meter to 1 meter (~0.6-3 ft).
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Interpretation
Depofacies 1

The nature of the conglomerate depofacies indicates very high energy turbulent flow
during deposition. However, given that the sorting is poor within this depofacies, a combination
of both high energy and low energy flow regimes could be responsible for this deposit. During
the early Cretaceous sea level was fluctuating, with alternating phases of regression and
transgression (Mancini and Puckett, 2002). Given the larger clast size and the inclusion of the
pedogenic carbonate clasts, the interpreted fluvial character for the other depofacies, the lack
of grading within this depofacies that would suggest waning flow (e.g., flood currents), and the
fluctuating sea level during time of deposition (Mancini and Puckett, 2002), this facies is
interpreted to have been formed from fluvial valley incision or downcutting of a tidal ravine
(c.f., Esposito, 2010). As the fluvial system incised into the substrate, soil horizons within which
these carbonate clasts formed were reworked. The clasts were incorporated directly into the
fluvial system as bedload and accumulated along with other bedload sediments. The mudstone
fragments could have been incorporated in the same manner as the pedogenic carbonate, but
could be sourced from a mudstone layer rather than a paleosol. The possibility exists, however,
that the mudstone clasts may have simply been sourced from the same muddy paleosol as the
pedogenic carbonate clasts.

Depofacies 2

The cross-bedded sandstone of this depofacies indicates that unidirectional flow existed
and that the sediment transport mechanism was mainly fluvial channel bedload rather than

suspended load. Grain size ranges within this depofacies provide evidence for moderate energy
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flows, as sands ranging from very fine- to medium-grained are present. Fluctuating flow levels
and unidirectional flow orientation are both consistent with a fluvial setting for deposition
(Allen and Collinson, 1974). Occasional climbing ripple cross-stratification indicates that there
may have been rapid deceleration of flow that was carrying a high amount of suspended very-
fine sand (Ashley et al., 1982). These small-scale (<~5 cm/~1.968 in thick) deposits could be
representative of crevasse splay deposits that had broken through the channel levee, as the
deceleration would have been provided by dispersion of unidirectional flow once the water had
escaped the channel.

Concretions within this depofacies are interpreted to be diagenetic in nature due to
their nearly spherical shape as well as the carbonate cement’s crystalline structure that has
often been preserved within the thin sections taken from this depofacies. Depofacies 2 is
interpreted as representing the fluvial channel deposits. This is in agreement with previous
interpretation of the Donovan Sand as a vertical conglomeration of fluvial channels (Esposito,
2010).

Depofacies 3

Without any sort of sedimentary structure, aside from some horizontal laminations, this
depofacies is mainly comprised of massive, featureless sandstone. Concretions seen within this
depofacies are of the same nature as those within depofacies 2, 4, and 5. The sandstone
composition is nearly identical to depofacies 2, but there is no cross-bedding in this depofacies.
A possible explanation for this lack of sedimentary structure is that there could have been rapid
deposition which could have suppressed formation of any ripple marks or bedforms that could

be generated by unidirectional flow, but not so fast as to allow for large-scale dunes to develop
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(Ashley et al., 1982). The subrounded grain shape dictates that the sediment would have had to
have been transported over a significantly longer distance than the sediments in depofacies 2,
that the sediments in depofacies 3 were delivered by a slightly higher energy system, or that
the sediments were reworked by shoreface or eolian processes.

A braided stream environment is consistent with evidence supporting high energy flow
regimes and the poor grain sorting evident in this depofacies. Featureless sandstones may be
deposited within a braided stream if the channel flow velocities are very concentrated and did
not allow for planar cross-bedding to occur (Martin and Turner, 1998). The concentrated flow
would need to fit the velocity conditions outlined previously by Ashley et al. (1982) in order to
preclude the formation of ripple crossbeds, but horizontal laminations and featureless
sandstone deposits may be formed within a braided reach of the stream systems. The increased
thickness of this depofacies also indicates that there was a high sediment bedload, which is key
to the formation of a braided stream (Prothero and Schwab, 2003).

Depofacies 4

Ripple laminations are an indication of unidirectional flow under lower flow regime
conditions. In siltstones, these laminations indicate that there was a relatively low energy level,
as silts tend to remain in suspended load if flow is highly turbulent. The presence of both
vertical and horizontal burrow traces within these sediments suggests that organisms were
active within this depofacies.

Unidirectional flow is consistent with a fluvio-deltaic environment. The finer-grained
sediments in depofacies 4 could have been transported by the same fluvial system as that of

depofacies 2, but these silts would have been deposited once the energy level had dropped,
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hence bypassing the higher energy braided stream reach. The ripple laminations must have
been created due to minor bedload transport, and this could have occurred along a channel
once there a decrease of the flow velocity. Preserved plant root traces within this depofacies
also lend to the interpretation that this was a lower energy environment. These roots could
have been present just outside of the channel, along the banks or levees that may have been
present at the stream’s edge or between distributary channels within a delta. A low-energy
channel that transports mainly silt can be present in a braided stream system (Allison, 1998),
however given the mud content of this depofacies and the degree of bioturbation, a tidally-
influenced deltaic distributary channel is the inferred environment for deposition of this facies.
Silts may be interbedded with mud laminae within a tidal channel, but are rarely seen in high
energy, non-abandoned fluvial channels. Hence, the tidal environment better suits this
depofacies because it offers an explanation for the higher amounts of mud in the channel.

Depofacies 5

Red-colored silt deposits of this depofacies indicate oxidation of iron-bearing minerals
within the sediments via exposure to atmospheric oxygen. This depofacies contains more mud
than any of those previously discussed, but also contains the same type of concretions that
have been seen in depofacies 2, 3, and 4. The greater abundance of mud within these siltstones
indicates deposition from by suspended load. Horizontal laminations of these finer-grained
sediments indicate suspension fall out in a very low-energy environment, as the laminations
would likely be disturbed if currents interacted with them. Some horizontal burrows also

indicate that the energy level within depofacies 5 may have been lower than in the previously
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discussed depofacies, because organisms will burrow vertically into the underlying sediment for
self-preservation purposes in high energy environments (e.g., Buatois et al., 2008).

A low energy environment that is tied to fluvial systems is the floodplain. A large enough
flood to increase the energy level to that necessary to transport silt would allow for silt and
muddy sediments to be transported to the floodplain (Hudson, 2005). Although these periodic
floods occurred, the presence of anhydrite in many thin section samples indicates that there
was a semi-arid to arid climate (Esposito, 2010) during the deposition of the Donovan Sand. The
horizontal lamination of the silts indicates that upon deposition, the sedimentary structure was
not disturbed except from minor bioturbation. Higher amounts of bioturbation (ichnofabric 4;
Droser and Bottjer, 1986)) also provide evidence for a low energy environment because
burrows have higher preservation potential in a lower-energy versus a higher-energy
environment for reasons discussed previously. The reddish-green color suggests these
sediments were exposed to subaerial conditions upon deposition. Oxidation of these sediments
may have occurred after the floodwaters subsided, leaving only the sediments exposed
subaerially on the floodplain.

Depofacies 6

Muddy lithologies of depofacies 6 indicate that the majority of the sediment deposited
in these zones was transported via suspended load. Deposition of this suspended load, as with
the floodplain muds in depofacies 5, requires the energy to be very low during deposition.
However, the inclusion of some silt and organic fragments may mean that there was some

turbulence of the water.
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These features indicate an estuarine environment interpretation for depofacies 6.
Suspended load sediments, including the organic matter and silts, could have been carried to a
more distal environment than that of depofacies 5. It would be within this distal environment
that these sediments would fall out of suspension if the stream’s energy slightly decreased. At
freshwater-saltwater mixing zones within estuarine environments, the density of the saltwater
in comparison to the freshwater effectively halts slower bedload transport (Nichols and Biggs,
1985) causing, the silty bedload fraction to be immediately deposited at this interface. The
oyster shell fragments within these mudstones and shales also indicate a brackish water setting
for deposition, which is consistent with the depositional setting of an estuary.

Depofacies 7

Horizontally laminated shales are indicators of low energy deposits formed by
deposition of platy clay particle from suspension. Considering that this is the most fine-grained
depofacies within the dataset, this is the lowest energy clastic depofacies. The occasional black
coloration of these deposits indicates anoxic conditions during deposition. The greater
thickness of this depofacies indicates that sedimentation occurred consistently rather than
episodically. The Donovan Sand has been interpreted in the past as being deposited during an
overall marine transgression (Mancini and Puckett, 2002), and as such this depofacies is
interpreted to represent a prodelta shale. Graphic logs within which this depofacies is present
show a coarsening upward succession in deposits stratigraphically just above these shales, and
these shales typically mark the top portion of a fining-upward sequence. These factors

combined reinforce that sea level could have been fluctuating during deposition of this
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depofacies, but that this facies was deposited during a localized (due to abandoned delta lobe
subsidence), global (eustatic), or combined local and global marine transgression.

Depofacies 8

Limestones are deposited as the result of a lack of clastic deposition. During times when
there was no transport mechanism for sediments in this deposystem, limestones were forming.
These periods of nondeposition were relatively short-lived, because the thickness of these beds
would be much greater otherwise. This facies is typified almost exclusively by lime muds with
no observed fossils in the cores.

Factors such as sand influx, water temperature, and depth would all play a significant
role in the deposition of this limestone depofacies. Given the an overall transgressive behavior
of the shoreline during Donovan time, and clastic deposition occurring within the estuary which
would have precluded abundant limestone deposition, this depofacies is interpreted to have
occurred on the shallow marine shelf seaward of the prodelta environment. Limestone has
been documented to have deposited during marine transgressions in the past, particularly
within marine shelf regions, as part of cyclothems (Caldwell, 1983). Although these Citronelle
deposits are not interpreted to be cyclothems, the process for limestone deposition during
transgression applies to these deposits.

Analog: The Ganges-Brahmaputra Delta

The Ganges-Brahmaputra (G-B) delta, located in the People’s Republic of Bangladesh, is
currently the world’s largest delta and is named for the confluence of the two major sediment
delivering rivers within it (Fig. 11). It is the drainage basin for streams beginning in the

Himalayan Mountains and ending in the Bay of Bengal. The upper portion of the delta is
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essentially a braided river-type system with multiple freshwater channels and silty interfluves.
Most of the sediment fraction is comprised of silt-sized particles with some fine sand and mud
(Allison, 1998). Landward of the G-B delta, the Brahmaputra River is a braided stream, with
voluminous sandy sediments and inadequate flow to remove these sediments. The Ganges on
the other hand, carries silt and mud with some very fine-grained sand as bedload (Allison, 1998;
Goodbred et al., 2003).

The smaller, lower energy channels within the lower reaches of the G-B delta are prone
to rapid and major lateral avulsion, creating multiple and widespread overbank deposits as they
do so (Goodbred et al., 2003). At the mouth of the G-B delta system is the Meghna estuary
region, which consists of multiple islands and channels. Diurnal tides create stacked sequences
of silt and mud as they flood the channels which deliver the sediment to the delta (Allison,
1998).

The upper fluvial-dominated reaches of the G-B delta are interpreted to be analogous to
depofacies 1, 2, and 3. Sea level was fluctuating during the early Cretaceous (Mancini and
Puckett, 2002), and during regressions, the stream responsible for delivering the Donovan
sediment incised into the underlying substrate in response to the drop in base level; depofacies
1 would be deposited within this incised valley. Higher energy deposits such as the cross-
bedded channel sands and braided stream deposits of depofacies 2 and 3, respectively, are
analogous to deposits of the braided fluvial environment of the upper G-B delta. As the slope
decreases, so too does the energy of the fluvial system. However, there are periods of monsoon
rains that affect the G-B delta and increase the energy level of the streams (Allison, 1998;

Goodbred et al., 2003). When floods occur as a result of these monsoons, the channel cannot
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contain the higher volume of water and the floodplains become inundated with sediment-laden
water. Depofacies 5 represents the floodplain deposits that were accumulated as a result of
these periodic events.

In the lower reaches (Fig. 11), the coarser-grained sediments are deposited as the
gradient and energy level of the fluvial system continues to diminish and silts and muds become
the dominant caliber of the sediment load. As the fluvial system terminates in the estuary and
the mixing of freshwater and seawater occurs, as within the Meghna estuary within the G-B
delta, the fluvial system transforms into a number of tidally-influenced deltaic distributary
channels (depofacies 6). The most seaward portion of this delta distributary complex would be
the prodelta, which is typified by the muddy deposits of depofacies 7. Because the climate was
semi-arid to arid (Esposito, 2010), the discharge of the sediment system may have periodically
been diminished. This drastic change in sediment delivery to the basin would have allowed for
limestone deposition at the distal portions of the marine shelf. This portion of the sedimentary
system would become the carbonate shelf, and deposits within this marine shelf consist of

limestones outlined in depofacies 8.
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Figure 11. The Ganges-Brahmaputra Delta System.

Note the upper braided stream reach (outlined in red), the lower meandering stream reach
(partly outlined in yellow), and the lower tidally-influenced estuarine region (outlined in green).
(Modified from Google Inc., 2012.)
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Chapter 5: Donovan Sand Analysis
Donovan Sand Composition
Framework Grains

The three main framework minerals within the Donovan Sand are quartz, feldspar, and
lithic fragments (Fig. 12; percentages listed in Table 2 in appendix). Quartz grains are typically
subangular to subrounded and ranged in size from very fine-grained to medium grained (Fig.
13). They also were primarily monocrystalline, though there are some portions of the reservoir
that contain minor (~1-2% of total framework grain count) polycrystalline quartz. Roughly 60%

of the quartz grains exhibited undulatory extinction when viewed under crossed polarizers.

o o o [

Figure 12. QFL ternary diagram for the Donovan Sand thin sections.

Compositional data were gathered by point-counting 400 framework grains in thin-section
samples. Data presented in the form of Qm-F-Lt, with Qm representing monocrystalline quartz,
F representing all feldspars, and Lt representing all lithics (including polycrystalline quartz). The
majority of the thin-sectioned reservoir samples have high amounts of feldspar and few lithics.
Ternary plot formulae and design from Graham and Midgley (2000).
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Lightly altered feldspars in the Donovan usually were rectangular in shape, but were
also subrounded to subangular in some cases. Plagioclase feldspar was also seen in minor
amounts and most of the time exhibited albite twinning. Orthoclase may be distinguished from
some plagioclase by nature of the distinctive albite twinning in plagioclase as well as the
alteration pattern of plagioclase along its twinning planes, although these twins are not evident
in all plagioclase feldspars. Because the sections were not stained for feldspar, it was not always
possible to distinguish untwinned plagioclase from orthoclase. Microcline feldspar was present
in a minor amount within some thin sections, and it is distinguishable from other feldspars by
its tartan-plaid twinning (see Fig. 14). As with the plagioclase feldspar, microcline was subject to
chemical alteration along its twinning planes as well as the grain edges. Feldspars showed
evidence of dissolution along the twinning planes as well as around the grain edges (Figs. 13,
15, and 16). Occasionally feldspar grains contained some other mineral phase such as calcite or
clay such as sericite, within the grain framework as products of alteration. Intragranular void
space, as well as dissolution of the grain edge was a result of dissolution of the secondary
mineral alteration product. Feldspars also show evidence of compaction within the reservoir, as
some grains exhibited sutured grain boundaries.

Mudstone lithic fragments seen in thin section are typically subrounded and flattened
due to compaction. Most of these lithic fragments were partly opaque under plane-polarized
light, but exhibited a beige to brown color under cross-polarized light (Fig. 17). Limestone and
dolostone lithic fragments typically showed a particular mineral cleavage under crossed

polarized light.
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Figure 13. Common framework grains of the Donovan Sand.

Photomicrographs of minerals in plane-polarized light (PPL; left) and cross-polarized light (XPL;
right). A1 and A2: Unaltered quartz and feldspar grains as seen in PPL (A1) and XPL (A2). B1 and
B2: Altered feldspar grains as seen in PPL (B1) and XPL (B2). C1 and C2: Unaltered albite-
twinned plagioclase as seen in PPL (C1) and XPL (C2). D1 and D2: Polycrystalline quartz grain as
seen in PPL (D1) and XPL (D2). All photomicrographs in this figure are from sample 3232-11378.
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7 Flgure 14 Common accessory minerals of the Donovan Sand

Photomicrographs of minerals in plane-polarized light (PPL; left) and cross-polarized light (XPL;
right). A1 and A2: Biotite and muscovite micas as seen in PPL (A1) and XPL (A2). B1 and B2:
Detrital (?) calcite grain as seen in PPL (B1) and XPL (B2). Note the grain-like shape and the
roundedness of the grain edges. C1 and C2: Detrital anhydrite as seen in PPL (C1) and XPL (C2).
Note the grain shape and truncation of the anhydrite fibers at the grain edge. D1 and D2:
Altered chloritic biotite and microcline feldspar grains as seen in PPL (D1) and XPL (D2).
Photomicrographs within this figure were all taken of portions of thin section sample 3232-
11378 except for D1 and D2, which are from sample 3198-11087.
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Individual calcite and dolomite rhombs are diagnostic of these calcareous lithic fragment types,
and where these rhombs are not present, the limestone fragments mainly contain
microcrystalline calcite or micrite.

Accessory Constituents

Accessory constituents included muscovite and biotite micas, chlorite, organic material,
detrital (?) anhydrite, detrital hematite, detrital calcite, opaque minerals, and pyrobitumen (Fig.
14). Muscovite mica was evident in nearly every thin section, and was the most abundant
accessory mineral. Flakes of muscovite and biotite mica were slightly larger than the dominant
grain size for a given sample. There were also samples that showed cross-sections of books of
mica, exhibiting the ordered sheet structure (Fig. 18). Chlorite grains within the sediment were
light green in color under plane- and cross-polarized light. These grains were often subrounded
and slightly altered around the grain edges. Anhydrite was also found in the samples, and in
places exhibits a fibrous crystal habit (Fig. 14). Some anhydrite fragments within the sediment
have been crushed over time due to compaction, and exhibit a fragmented and flattened
structure in the vertical direction. Grain sizes of both the chlorite and anhydrite range from very
fine-fine.

A subrounded mineral that was opaque in transmitted light and blue in plane light (Fig.
19) was also counted in some thin sections. The grain size for this mineral typically did not
exceed medium grain size, and in sections where it was present it accounted for less than 5% of
the total point count. Based on pilot Raman spectroscopy investigation, this mineral is likely a
titanium-oxide mineral (A. Weislogel, personal communication, 2011). Calcite was present in
some samples as detrital grains (Fig. 14). The calcite fragments exhibited very high
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birefringence under cross-polarized light, were typically subrounded, and were the same grain
size as the rest of the thin section sample in most cases.

Matrix

Matrix was typically comprised of clay and silt-sized particles of accessory constituents
(Fig. 20) and coalified plant matter. Organic matter appeared black in reflected light and was
opaque in transmitted light. It generally was the same size as the surrounding grains; however
there were some fragments that were flattened by compaction and these tend to be one to

two times larger than the overall grain size in the long-axis direction.

Figure 15. Partial chemical alteration of feldspar.

Thin section sample 706-10854. Note the cavities within the feldspar likely filled with cement
after alteration of the grain since the cavity would have to be present to have been in-filled.
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Figure 16. Alteration of plagioclase feldspar along twinning planes.

Also notice black/brown pyrobitumen staining within pores between grains. (Taken from thin
section sample 3086-10817.5. Photomicrograph courtesy of Geological Survey of Alabama.)
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Figure 17. Typical Donovan section subrounded mudstone lithic fragment containing some
silt-sized quartz.

Thin section sample 706-10854. Secondary porosity (blue epoxy) is evident within the lithic
fragment as well as around the grain edges. Typical Donovan section subrounded mudstone
lithic fragment containing some silt-sized quartz.

Cement

Cement types within the thin sections were typically calcite or dolomite with some
minor amounts of silica and hematite cement in some sections. Calcite cement was typically
pervasive in sections with very low to no porosity, and localized in sections where there were
calcite concretions. In low porosity zone thin sections where grains were altered to the point of
physically breaking via alteration or compaction, the cement filled any fractures within the

grains that were present. Often in these pervasively-cemented zones there are preserved
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calcite rhombs (see Fig. 20). In higher porosity zones calcite cement is present in the form of
localized, spherical diagenetic concretions that likely formed in-situ, judging by their shape and

lack of evidence of alteration around their edges.

Figure 18. Photomicrograph of an altered mica book within thin section 3086-10941 under
plane-polarized light.

Notice the secondary porosity along the cleavage planes of the mica. Photomicrograph courtesy
of Geological Survey of Alabama.

Typically, hematite cement was only evident within zones that were also pervasively
cemented by calcite or in zones with high matrix content (Fig. 20). Hematite cement is easily

distinguished from other cement types by its characteristic red/brown color.
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Figure 19. Photomicrograph of thin section 3232-10815 showing the blue titanium oxide
mineral under reflected light.

Black arrows point to some of the individual titanium oxide minerals shown in the field of view.
Photomicrograph courtesy of George Case.

The majority of the thin sections from well permit numbers 3198, 2993, 713, 633, and
624 were less porous than those from well permit number 706 or 3232 primarily due to the
higher degree of cementation within zones sampled from the 5 wells. Authigenic anhydrite was
also seen in some samples (Fig. 21), but was far less abundant than calcite cement. Anhydrite
exhibits 5™ order birefringence and may be distinguished from other minerals by its
characteristic fibrous crystal habit.

Porosity

Average porosity of the Upper Donovan Sand thin sections is 2.6%, with a maximum

value of ~12% (Appendix Table 1; sample 706-10913) in dataset thin sections. Both primary and
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secondary porosity types were seen in thin section. Usually the dominant pore type in Donovan
Sand sections with lower porosity is primary intergranular, and in higher porosity sections there
is typically a higher amount of secondary porosity in conjunction with similar amounts of

primary porosity that may be seen in lower porosity sections.
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Figure 20. Most common Donovan Sand cement types.

Photomicrographs of the most common cement types within the Donovan Sand. Al and A2,
from sample 713-11347: Hematite cement as seen in PPL (A1) and XPL (A2). B1 and B2, from
sample 633-10944.5: Calcite/dolomite cement with dolomite rhomb crystals as seen in PPL (B1)
and XPL (B2).
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Figure 21. Anhydrite as seen under cross-polarized light.

Sample taken from thin section sample number 2993-10579.5. Photomicrograph courtesy of
Geological Survey of Alabama.

Primary pores are typically triangular in shape if the sediment is well-sorted and well-
packed, and secondary pores tend to be more rectangular or grain-shaped, as the void space
that is now porosity used to be occupied by a grain of some sort. In sections with higher

porosity, there are both primary and secondary pore types. Intragranular porosity is
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uncommon, but there is some minor intragranular porosity in zones where there is also a large

amount of secondary porosity. Typically, intragranular porosity is seen within feldspars or lithic

grains. No intragranular porosity was seen within quartz grains. There has been no documented
fracture porosity within rock samples studied in this research.

Origins of Cement and Porosity

Pervasive calcite/dolomite cementation is interpreted to have occurred as a product of
precipitation in pore spaces from chemically supersaturated formation waters during and after
burial. Hematite and silica cement types were likely formed in the same manner. Dissolved
constituents necessary for calcite/dolomite cement precipitation include calcium and
magnesium, which could be sourced from seawater during deposition of these sediments. Iron
in hematite may have been sourced by terrigenous silts and muds that were deposited along
with the sand in the early Cretaceous.

Primary pore space was created within the Donovan Sand as the sediment was being
deposited. Primary pore space distribution is based upon the grain packing and sorting of the
sediment. Most of the Donovan Sand samples are moderately well-sorted to well-sorted, and
this has allowed for initial preservation of the triangular shape of the primary pores although
they may have been in-filled with cement later in the burial history. Secondary pores within the
Donovan were formed by the dissolution of grains or other minerals. Partial alteration of some
grain edges and complete dissolution of some grains are both evidence that there has been
some interaction between the formation fluid and the reservoir rock.

Secondary porosity mainly forms by dissolution of framework grains or intergranular

cement. Due partially to its relative insolubility in acidic waters compared to feldspar (Nesbitt et
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al., 1997), quartz does not often show evidence of chemical alteration via dissolution in thin
section (Fig. 13, Fig. 22). However, in arkosic sands framework feldspar grains and lithic
fragments are both prone to partially dissolving with the introduction of acidic liquids such as
briny formation or injected waters (Nesbitt et al., 1997; Prothero and Schwab, 2003).
Secondary pores are typically one to two times larger than primary pores in well-sorted
sands, and may also exhibit the same size and shape of surrounding framework grains (Fig. 23 —
void space; Fig. 24 —filled secondary pore). Primary pores on the other hand, are usually
triangular in shape, with overall size and geometry a function of the relative arrangement and

degree of packing of the sediment grains.

Figure 22. Photomicrograph showing highly-cemented fine-grained sandstone within the
Donovan Sand.

Sample number 633-10995.5 under XPL. Notice the grain spacing, perhaps meaning that there
was cementation prior to extensive or intense compaction.
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Figure 23. Photomicrograph of a nearly completely dissolved feldspar.

Notice how the creation of secondary porosity results in the creation of a pore in the shape of
the grain that formerly occupied that space. Photomicrograph of thin section sample number
3232-11378.

For example, in an idealized diagram of a well-sorted sandstone, perfect spherical grains
interlock with one another and are packed in a rhombohedral order (Fig. 25). In this

configuration, the pores between the grains are triangular in shape.

Provenance Interpretation

The petrologic and petrographic data indicate a proximal rather than a distal source for
the sediments of the Donovan Sand. The subangular and subrounded framework grain shapes
as well as the arkosic composition of the sandstone units both provide evidence for either short

transport distance or a very weak chemical weathering system.
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Figure 24. Dolomitic cementation of a secondary pore within the Donovan Sand.

From sample 633-11009.5 as viewed under cross-polarized light. Notice the altered feldspar
filled with calcite/dolomite cement.

Figure 25. Diagram of rhombohedral packing in an ideal sediment.

Diagram showing rhombohedral packing pattern of ideal, well-sorted sediment with spherical
grains and triangular pore spaces.
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Since orthoclase and plagioclase feldspars are susceptible to chemical weathering during
sediment transport, and given the high amounts of feldspar within the Donovan sand, chemical
weathering processes were not strong during transport and deposition of this sediment. Most
of the feldspars seen in thin section maintained a rectangular shape, also indicating that the
feldspars had not been transported for a very long distance. As sediments are transported from
source to sink, the individual grains abrade against one another as well as other objects along
the transport route (e.g., stream or riverbed, debris during floods). During this transport phase,
the sediment ‘matures’ and grains begin to develop rounded edges as they abrade. Had the
feldspars been transported over a longer distance, the grain edges would likely be more
rounded than the subangular sediments seen in the Donovan Sand. Along with the feldspars,
subangular quartz, and lithic grains show signs of only moderate physical abrasion.

Plausible sources for these sediments are the Grenvillian-aged metasedimentary and
granitic rocks exposed in the Pine Mountain Window (Fig. 26) within the southern portion of
the Piedmont geological province of the Appalachian Mountains (Hooper and Hatcher, 1988;
Chalokwu and Hanley, 1990; Steltenpohl et al., 2008). The rocks exposed in the Piedmont
province evolved during the Acadian/early Taconic (Bayona, 2003) orogenies as Laurentia
collided with Gondwana to produce a fold-thrust belt along the eastern Laurentian margin
(Hooper and Hatcher, 1988; Steltenpohl et al., 2008). This fold-thrust belt extended as far south
as the present-day state of Alabama (Fig. 27).

Within the tectonically active southern Appalachian Mountains, at the transition from
the Acadian orogeny to the Taconic orogeny, metamorphic gneisses and schists of the Uchee

terrane were uplifted along with the rest of the now-Pine Mountain Window and any cover
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rock present and immediately began to erode as it was transported to nearby Paleozoic
depocenters (Steltenpohl et al., 2008). As uplift continued, this Grenvillian rock was continually
exhumed near the Alabama promontory through persistent Neoacadian-Alleghanian orogenic
events (Barineau, 2009).

During the Alleghenian orogeny, there were granitic intrusions into the Uchee terrane.
They occurred in two phases: 1) exhumation of the Motts Gneiss and 2) intrusion of the
Hospilika Granite into the Motts Gneiss. The Motts Gneiss is granodioritic in composition and is
up to 3 km (~1.864 mi) thick in some locales, and the Hospilika Granite occurs in small (< ~1
km?/0.386 mi?) vein-like intrusions within the Motts Gneiss (Steltenpohl et al., 2008). Upon the
conclusion of the Alleghenian orogeny, these rocks were exposed directly adjacent to the
newly-formed Grenvillian uplift, and their sediments would have been transported towards the
nearby newly-forming proto-Gulf of Mexico through the Triassic-Cretaceous periods. Hence,
these intruding granites and granitoids are a plausible source for the Donovan Sand sediments
because of their composition, proximity to the southern Alabama depocenter, and timing of

their exhumation and intrusion.

52



V7

/‘Alllnli

A'
84" L\\
L4 10 0_20 30 L\G:>
85 KILOMETRES -
( B) PINE MOUNTAIN
TERRANE

TF. F,OF )
A AN BAF g‘R afr =

su

KILOMETRES
Figure 26. The Pine Mountain Window.

The Pine Mountain Window, shown here between the Inner Piedmont and the Coastal Plain
terranes. Cross-section A-A’ is delineated in map (A) within this figure and shown in part (B).

Cross section key: BAF — Box Angle Fault, GRF — Goat Rock Fault, OF — Ocmulgee Fault. (Both
figures taken and modified from Hooper and Hatcher (1988).)
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Figure 27. Map of the Piedmont region of the Eastern United States.

(A) - Map of the Piedmont region of the Eastern United States showing the various structural
terranes as well as the faults associated with them. Key: GMW-Grandfather Mountain window.
SMW-Sauratown Mountains window. SRA—Smith River allochthon (modified from Steltenpohl
et al., 2008). (B) — Physiographic province map of the southeastern United States. The red
rectangle outlines the Pine Mountain Window’s location within the Piedmont province (in
accordance with part (A)), and the red circle indicates the location of the study area (modified
from Johnston and Crossley, 2002).
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Petrofacies Identification
Eight petrofacies were identified in Donovan reservoir sandstones. Because the sands of
the Donovan Sand are so compositionally uniform, petrofacies were defined according to grain
size distribution, degree of sorting, grain shape, cement type relative abundance, cement
volume, and porosity types and amounts. The eight petrofacies defined are listed below:
A. Well sorted, very fine-grained subangular sandstone with > 5% porosity
and minor calcite and/or dolomite cement. Well-developed secondary porosity
with grain-shaped void spaces and alteration features evident in feldspars.
B. Well sorted, fine-grained subangular sandstone with >5% porosity and
minor calcite and/or dolomite cement. Well-developed secondary porosity with
grain-shaped void spaces and alteration features evident in feldspars.
C. Moderately well sorted, medium-grained subrounded sandstone with >
5% porosity and minor calcite and/or dolomite cement. Some evidence of
secondary alteration of feldspars via dissolution. There are few completely
dissolved grains.
D. Moderately well sorted, very fine-grained subangular sandstone with
numerous, small (~8mm (~0.314 in) diameter) calcite-cemented concretions and
2-5% porosity. Some evidence of secondary alteration of feldspars via
dissolution. There are few completely dissolved grains.
E. Moderately sorted, fine-grained subangular-subrounded sandstone with

numerous, small (~8mm (~0.314 in) diameter) calcite-cemented concretions and
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2-5% porosity. Secondary porosity only is evident in minor alterations and
dissolution cavities in some grains, with very few grain-shaped void spaces.

F. Moderately sorted, very fine-grained subangular-subrounded sandstone
with < 5% total porosity and abundant calcite/dolomite cementation. Minor
amounts of secondary porosity are present in altered calcite cement and altered
feldspars.

G. Moderately sorted, fine-grained subangular-subrounded sandstone with
< 5% total porosity and abundant calcite/dolomite cementation. Minor amounts
of secondary porosity are present in altered calcite cement and altered
feldspars.

H. Poorly sorted, very fine-grained subangular sandstone with < 5% total
porosity due to high matrix content. Some secondary porosity evident due to

dissolution of calcite cement and apparent removal of matrix.

Although not typically involved in petrofacies determination, porosity was included due
to the low variability in composition of the Donovan Sand samples. Porosity-based petrofacies
definitions emphasize the most and least porous zones within a reservoir.

A 5% porosity cutoff was applied because 5% was the value separating the relatively few
higher-porosity thin sections from the lower-porosity thin sections. The porosity percentage for
each thin section was determined by dividing the frequency of pore space counted during
point-counting divided by total points counted (grains, matrix, and cement) “n” plus total pore

space points counted “x” (n+x), resulting in some percentage of the total.
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Petrofacies A

Petrofacies A (Fig. 28) consists of well sorted, very fine-grained subangular sandstone
with > 5% porosity. Calcite and/or dolomite cements within this petrofacies are not so
widespread as to severely diminish porosity values, as is the case in petrofacies F or G, but
rather are present in minor amounts (<~6% on average, see Table 1). There is well-developed

secondary porosity within this petrofacies, with grain-shaped void spaces and alteration

features evident in feldspars.

Figure 28. Petrofacies A.

Well sorted, very fine-grained subangular sandstone with > 5% porosity and minor calcite
and/or dolomite cement. Well-developed secondary porosity with grain-shaped void spaces
and alteration features evident in feldspars. Some dead oil staining is present within pore
spaces in this photomicrograph. (Photomicrograph taken from thin section sample number
3232-10814.)
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The grain-shaped voids are typically the same size as the dominant grain size of the
sandstone, because there was an actual sediment grain where the void now exists. These void
spaces may connect preexisting primary pores, significantly increasing the overall porosity and
permeability. This petrofacies as well as petrofacies B are the highest porosity (up to ~12%) petrofacies,
with the primary difference between the two being the grain size.

Petrofacies B

Petrofacies B (Fig. 29) is comprised of well sorted, fine-grained subangular sandstone
with >5% porosity and minor calcite and/or dolomite cement, as in petrofacies A. This
petrofacies is nearly the same as petrofacies A as the porosity, cement, and compositional

factors are identical between the two.

Figure 29. Petrofacies B.

Well sorted, fine-grained subangular sandstone with >5% porosity and minor calcite and/or
dolomite cement. Well-developed secondary porosity with grain-shaped void spaces and
alteration features evident in feldspars. (Photomicrograph of thin section sample number 3232-
11378.)
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The lone distinguishing factor between A and B is the fine grain size of petrofacies B versus the
very fine-grained framework of petrofacies A.

Petrofacies C

Petrofacies C (Fig. 30) consists of moderately sorted, fine-grained, subrounded
sandstone with > 5% porosity and minor calcite and/or dolomite cement. Unlike petrofacies A
and B, there is only moderate evidence of secondary alteration and complete dissolution of
feldspars via dissolution within this petrofacies. There is typically still moderately well-
developed primary as well as secondary porosity within this petrofacies. There may be some

silty laminae within this petrofacies, as these sediments were not well-sorted during deposition.

Figure 30. Petrofacies C.

Moderately well sorted, fine-grained, subrounded sandstone with > 5% porosity and minor
calcite and/or dolomite cement. Some evidence of secondary alteration of feldspars via
dissolution. There are few completely dissolved grains, however there is evidence that this may
have occurred within this thin section. (Photomicrograph of sample number 706-10860.)
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Petrofacies D

This petrofacies is distinguished from others by its small (~8 mm/0.314 in) diameter) and
numerous calcite/dolomite concretions and slightly altered pedogenic carbonate fragments
amongst moderately well sorted, very fine to fine-grained, subangular sandstone with 2-5%
porosity (Fig. 31). The concretions may be distinguished from the pedogenic carbonate clasts by
color in hand sample; concretions are almost purely white in color, while the carbonate
fragments are a brown/tan color. There is some evidence of secondary alteration of feldspars

and carbonate fragments via dissolution, although there are few completely dissolved grains.

Figure 31. Petrofacies D.

Moderately well sorted, very fine- to fine-grained, subangular sandstone with numerous, small
(~8mm (~0.314 in) diameter) calcite-cemented concretions and 2-5% porosity. Some evidence
of secondary alteration of feldspars via dissolution. There are few completely dissolved grains.
Areas of calcite cement are denoted by red arrows. (Photomicrograph shown as seen in XPL
from sample number 3232-10943.)
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Cement is typically localized around the concretions in this petrofacies, however this
petrofacies may be cemented in varying amounts (0.2-5.5% cement seen in thin section
samples) which can lead to coincidentally variable porosity.

Petrofacies E

Petrofacies E (Fig. 32) is comprised of moderately sorted, fine-grained subangular-
subrounded sandstone often with numerous, small (~8mm/0.314 in) diameter) calcite-

cemented concretions and 2-5% porosity.

Figure 32. Petrofacies E.

Moderately sorted, fine- to medium-grained, subangular-subrounded sandstone with
numerous, small (~8mm (0~.314 in)) diameter) calcite-cemented concretions and 2-5%
porosity. Secondary porosity only is evident in minor alterations and dissolution cavities in
some grains, with very few grain-shaped void spaces. Areas of calcite cement are denoted by
red arrows. (Photomicrograph of thin section 3232-11023.)
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Secondary porosity only is evident in minor alterations and dissolution cavities in some grains,
with very few grain-shaped void spaces. This petrofacies is essentially a slightly coarser-grained
petrofacies D, as the only difference is its grain size, and it represents a mid-range porosity
petrofacies in the Donovan sand.

Petrofacies F

Moderately sorted, very fine-grained subangular-subrounded sandstone with < 5% total
porosity and abundant calcite/dolomite cementation defines petrofacies F (Fig. 33). Minor

amounts of secondary porosity are present in altered calcite cement and altered feldspars.

Figure 33. Petrofacies F.

Moderately sorted, very fine-grained subangular-subrounded sandstone with < 5% total
porosity and abundant calcite/dolomite cementation. Minor amounts of secondary porosity are
present in altered calcite cement and altered feldspars. Calcite cement pervades this section,
and is evident between the grains in this photomicrograph from thin section sample number
706-10865.
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This petrofacies is one of the three lowest porosity petrofacies, with petrofacies G and H
making up the other 2 low porosity petrofacies. The abundant cementation within this
petrofacies has occluded pore space to the degree that some sections that this petrofacies may
not possess any porosity at all. This zone is compositionally the same as the previously
discussed petrofacies but the grain size, abundant calcite cementation, and resultant low
porosity characterize petrofacies F.

Petrofacies G

Petrofacies G (Fig. 34) is characterized by moderately sorted, fine-grained subangular-

subrounded sandstone with < 5% total porosity and abundant calcite/dolomite cementation.

Figure 34. Petrofacies G.

Moderately sorted, fine-grained subangular-subrounded sandstone with < 5% total porosity
and abundant calcite/dolomite cementation. Minor amounts of secondary porosity are present
in altered calcite cement and altered feldspars in this photomicrograph (taken from thin section
sample number 3232-11018.5).
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Much like petrofacies F, minor amounts of secondary porosity are present in altered calcite
cement and altered feldspars, however the large volume of cement in this petrofacies occludes
large amounts (>5%) of intergranular space. The sole difference between this petrofacies and
petrofacies F is the grain size.

Petrofacies H

This petrofacies is comprised of poorly sorted, very fine-grained subangular sandstone
with < 5% total porosity due to high matrix content (Fig. 35). Some secondary porosity is
evident due to dissolution of calcite cement and apparent removal of matrix, but given the
large matrix volume within this petrofacies there is an overall very low amount of porosity.
While this petrofacies is like petrofacies F and G in that it possesses very minor amounts of
porosity, this petrofacies is not thoroughly cemented. There may be some dissolution surfaces
within the matrix, but these are not numerous and do not seem to be interconnected in most
cases.

Petrofacies Discussion

Petrofacies A through E are stained by dead oil in some cases, meaning that they were
porous enough to allow for hydrocarbon storage and possibly migration in the past. However it
is worth mentioning that when encountered in thin section, dead oil was counted as
intergranular matrix and not porosity. Thus, petrofacies with dead oil are slightly more porous
than their porosity values calculated from open pores represent, but not by more than 2-3%.

These petrofacies (A-E) are conceivably still conducive to fluid storage due to their
relatively higher porosities although where there is dead oil in the section, the rock will not be

able to store as much fluid as easily because the dead oil is occupying the pore space as a
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hardened substance. Dead oil-bearing petrofacies may be seen in the graphic logs (Plate 2), and

are denoted by two asterisks in the left-most column.

Figure 35. Petrofacies H.

Poorly sorted, very fine-grained subangular sandstone with < 5% total porosity due to high
matrix content. There is very little porosity within this section due to the high matrix content.
(Photomicrograph of thin section 713-11347.)

Many of the sandstone thin sections taken from wells 713, 2993, 3198, and 624 also did
not have high amounts (>5%) of porosity because they were nearly completely cemented.
Typical porosity values for these low porosity sections were 1-3%. Petrofacies F and G represent

these sandstone units with very little to no porosity due to pervasive cementation, and there

would not be fluid migration through these tightly cemented zones. Petrofacies H also is not a
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candidate for fluid transmission, but due to the high volumes of pore-filling silty matrix, not
cement. In some instances there are micropores have formed within these three petrofacies
due to mineral or matrix dissolution, but these zones are few and the micropores are not
significant enough in number to develop connective networks for transmission of fluid.

Diagenesis Interpretation

Petrofacies A-C are inferred to share a similar diagenetic history, because their porosity
type distribution and porosity volumes are similar. After the Donovan sediments were
deposited during the early Cretaceous, they began to compact. After some moderate
compaction, cementation processes began. Moderate amounts of calcite cementation, driven
by mineral precipitation from supersaturated calcium-rich formation water, occurred before
there was extensive compaction. This resulted in the preservation of wide grain spacing. By
occupying the available primary pore spaces, the early cementation slowed the effects of
compaction on the sediment, and the grain spacing was preserved. As cementation was
occurring, there was intermittent dissolution of grains or cement, judging by some cases of
filled intragranular and intergranular porosity within these petrofacies (e.g., Figs. 15, 22, and
24). This was likely driven by the lower degree of calcium saturation of formation waters during
some portions of the reservoir’s diagenetic history.

Petrofacies D and E likely share the same diagenetic history, as both of these petrofacies
contain calcite/dolomite concretions and have similar porosity distributions. These sediments
were likely buried and compacted in the same manner as petrofacies A-C, but were not as
drastically affected by secondary porosity creation processes as the higher porosity petrofacies.

Cementation within petrofacies D and E likely initially began as small patches as calcite cement
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precipitated out of solution from supersaturated formation waters, with some patches growing
faster than others. Eventually, small concretions began to form and served as the main sites for
cementation within these petrofacies. Some slight alteration via fluid interaction with minerals
may have occurred afterward, but the effect of the interaction would be minimal, as these
petrofacies have only 2-5% porosity.

Petrofacies F and G were buried similarly to the previously discussed petrofacies,
however these petrofacies did not undergo as much compaction as the others because of
nearly immediate cementation after burial due to immediate introduction of calcite-
supersaturated formation waters to the reservoir, preserving the wider grain spacing within the
cement. Some grains may not be touching all of their surrounding grains, and this is an indicator
that cementation occurred very early on in the diagenetic history because otherwise the grains
would likely be forced to share edge contacts with one another due to compaction. Primary
pores are all filled with calcite/dolomite cement, and secondary pores are not present within
these petrofacies. However, there may be filled secondary pores within this petrofacies which
may indicate alternating periods of cementation and fluid dissolution after the beginning of
initial cementation.

Petrofacies H was deposited along with an abundance of silt and mud, and as a result, the
sediments within this petrofacies were compacted until the matrix and framework grains were so tightly
packed together that most (if not all) porosity was occluded by the pore space-filling muds. There may
have been some minor calcite cementation after compaction due to temporary interaction of the

reservoir with calcite-supersaturated fluids; however the majority of the pore-filling constituency is

matrix within this petrofacies.
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Chapter 6: Geophysical Well Log Analysis
Formation Top Signatures

Formation tops were picked by comparison with a type log based on SP and resistivity
log curves from Pashin et al. (2007, see Fig. 4). The uppermost formation top picked was the
Mooringsport Formation, and it was picked at the base of the Paluxy Formation which typically
has a pronounced log signature of low (~20 mV) SP and mid-range (~100-200 ohm-m) resistivity
values. The Ferry Lake Anhydrite immediately underlies the Mooringsport Formation. This
formation top exhibits a sharp decrease in SP as well as a pronounced resistivity increase
immediately downhole of the Mooringsport Formation mudstone. Resistivity values within the
Ferry Lake are typically the highest of any formation in the section (average ~130-150 ohm-m),
and this pick is laterally extensive and continuous across the area. The top of the Upper
Donovan Sand was identified as the base of the Ferry Lake Anhydrite, based upon the sharp
increase in SP and decrease in resistivity as the top mud layer of the Upper Donovan is
encountered downhole. This 10-to-20-foot (3-6 m) thick mudstone signature should overly a
zone with decreased SP and increased resistivity once more as the section transitions into the
first Upper Donovan sand body.

The top of the Middle Donovan Sand was identified based on the sharp deflection of SP
toward the more negative end of the track and coinciding resistivity decrease from the bottom
mudstone of the Upper Donovan to the sands of the Middle Donovan. The Middle Donovan is
water-bearing, but both the Upper and Lower are oil-bearing. This is a key difference in
interpreting the sand layers and different Donovan formations in the log signature. The Lower

Donovan Sand formation top was picked based upon the sharp increase in the SP curve as it
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transitioned downward from the overlying water-bearing sandstone of the Middle Donovan to
the upper mudstone layers of the Lower Donovan. Generally, this pick was made at the base of
the last extremely negatively-deflecting sand layer, because the Lower Donovan sandstone
signatures tended to seem dampened or not as pronounced. Lastly, the Pine Island formation
top exhibits a larger negative deflection of the SP and resistivity curves than the Lower
Donovan. This is likely due to the sorting difference as well as the fluid type difference between
the formations. Formation tops were correlated across all 47 wells in the dataset and then
checked for quality control. The resultant data was used to produce a series of cross-sections
(Fig. 36; also Plate 1).

Structure Map

The Upper Donovan Sand structure map was generated and hand-contoured using
formation top depths. The study area is situated on the northeastern flank of the Citronelle
Dome, and the structure map (Fig. 37) shows that the slope of the top of the Upper Donovan
begins at its highest in the southwest and gently dips away from the dome. There are no major

faults within the study area which would disrupt this structural pattern.

Upper Donovan Sand Isochore

Much like the Upper Donovan Sand structure map, the isochore map was created in
GeoGraphix GeoAtlas module using the formation top picks made within GeoGraphix
CrossSection module. The formation tops used to measure the thickness of the formation were
the Upper Donovan Sand and the Middle Donovan Sand tops as the top and bottom,
respectively. This isochore map shows the total thickness of the formation, not solely the

thickness of the sand bodies within the Upper Donovan. However it does seem to match the
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shape of a fluvial channel system, with the brighter-colored portions of the isochore
representing the thickest accumulations of total Upper Donovan thickness and then thinning
towards the edges of the map (Fig. 38).

Upper Donovan Net Sand Map

The Upper Donovan Sand net sand map (Fig. 39) was created by applying gamma ray
and SP cutoffs of 90 API units and 30 mV, respectively, to the Upper Donovan Sand interval
within GeoGraphix. These cutoffs allow differentiation between sand and shale layers within
the two logs. SP-related net sand values were used where there was not gamma ray log control.
Some portions of the Upper Donovan Sand were not logged in some wells. In these cases, the
well log cross-sections that contained the Upper Donovan were reviewed and a value for the
net sand was assumed based on interpretation by the author.

The areas within the Upper Donovan Sand with the thickest total amount of sand are
indicated by the red and orange areas denoted in the net sand map (Fig. 39). Aside from the
northern and far western/southwestern portions of the map, the areas with the thickest overall

section are not necessarily the areas with the thickest accumulations of sandstone (Fig. 38).
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Figure 36. Cross-section location map for all dataset wells.

The transects of all cross-sections made within the GeoGraphix module, GeoAtlas, are shown
here. In total there are nine cross-sections, with number one beginning at the bottom with well
permit number 1525A and ending at well permit number 653. Each of the horizontal cross-
sections followed this pattern except for the north-south (N-S)-oriented cross-sections which
began in the northern portion of the study area and progressed southward. Northeastern

portion of Citronelle field landgrid may be seen in the right-hand portion of this figure, outlining
the study area. Cored study wells are outlined in red.
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Contour interval: 50 ft

-10350to -10450 ft
-10450to -10600 ft
-10600to -10650 ft
-10650t0 -10600 ft

-10600to -10650 ft
-10650to —10700 ft
-10700to -10800 ft

Figure 37. Upper Donovan structure map.

The structure is gently sloping away from the Citronelle Dome, which is to the southwest of this
study area. Study well locations are shown as red dots, with the Upper Donovan formation top
depth listed below each respective well location. Cored well locations are shown as white ovals.
(Metric contour interval is 15.24 m.)
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415to 430 ft

a00to 415 ft

| 3B5t0 400 ft
370t0 385 ft

Figure 38. Upper Donovan isochore map.

Map showcasing the thickness of the entire Upper Donovan interval. Study well locations are
shown as red dots, with the total Upper Donovan Sand thickness listed below each respective
well location. Cored well locations are shown as white ovals. (Metric contour interval is ~4.572
m.)
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100to 150 ft

Figure 39. Upper Donovan net sand map.

Map showing the areas of the Upper Donovan Sand with the most total sand. Red and orange
colors indicate the areas with the most sand, while the blue color denotes an area with
relatively thin (< 200 ft) total sand accumulation. Well permit numbers are shown next to their
respective locations (marked with red dots). Cored well locations are shown as white ovals.
Map was hand-contoured by the author within GeoGraphix. (Metric contour interval is 15.24
m.)
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Chapter 7: Petrology-Log Ties
Petrofacies Distribution within Petrophysical Logs

Petrofacies were defined in all seven cored wells (Plate 2) and then identified in
respective well logs. These petrofacies were then transferred from graphic logs (Plate 2) to
cross-section well logs in order to test for a relationship between the geophysical log character
and petrofacies. The 3 available well logs from the 7 cored wells were gathered into a single
cross-section (Fig. 40) and then the most porous petrofacies (A through C) were denoted on the
well log (see Plate 3). The results depict zones within the Donovan sand that contain
widespread cementation and other zones in which some factor has precluded widespread
cementation, leaving open pore space. Most of these porous petrofacies are distributed within
the middle portion of the Upper Donovan Sand. This zone has been identified as a high porosity
zone and will be discussed later in this chapter.

Porosity Distribution

The PHID curve, generated within the geologic software program GeoGraphix via
methods outlined in Chapter 3, was averaged over the entire thickness of the Upper Donovan
Sand interval (Fig. 38) using operations within the PRIZM module within GeoGraphix and then
posted as a single value on the wellbore location (red dots in Fig. 41). Because PHID values were
generated in decimal form, the points on the porosity map are also in decimal form. Negative
values posted in Figure 41 represent a denser matrix than the 70/30 feldspar to quartz ratio
sandstone that the PHID curve was generated for, possibly indicating that the material was
slightly more dense than this approximation. This may mean that more quartz (density: 2.64

g/cm?) or calcite cement (density: 2.71 g/cm?) rather than orthoclase feldspar (density:
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2.52g/cm’) was present within the averaged interval. Wells that are not shown did not have
adequate log control for a formation top pick of the Middle Donovan Sand to constrain the
bottom of the Upper Donovan Sand, and as such the average porosity for the Upper Donovan
could not be generated. After the average porosity data had been posted to the well location
within the GeoGraphix module GeoAtlas, the values were then hand-contoured to create the
porosity map (Fig. 41). Two higher porosity zones are present within this map, and are denoted
by the yellow and green portions. The area with the highest average porosity is located in the
western portion of the porosity map, with another area of relatively high porosity at the
central-eastern portion. When the porosity distribution (Fig. 41) is compared with the total
Upper Donovan interval thickness map (Fig. 38), the western high porosity zone does fit within
an area of relatively thicker Donovan section, but there does not seem to be a direct

relationship between porosity and overall formation thickness within this study area.

High Porosity Zone & CO, Storage

The three most porous petrofacies occur in the same stratigraphic zone within the three
cored wells (well permit numbers 3232, 706, and 633; Fig. 40). The ‘high porosity zone’ is
defined as a zone in the Donovan Sand that possesses >5% porosity according to thin section
point counts and correlation of porous petrofacies based on well logs signature for wells with
no thin section control. The high porosity zone is represented in log as a relatively clean sand
body with a depressed gamma, EstRHOB, and resistivity signature, while the PHID curve usually

exhibits higher values. This zone represents a preferential migration pathway of fluids.
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Figure 40. Cored wells cross-section

Cross-section showing well permit numbers 635, 706, and 3232 from left to right. Formation
tops are shown as colored lines, and the high porosity zone (yellow fill) lies within the Upper
Donovan Sand portion of the log. The cross-section is flattened stratigraphically on the Upper
Donovan Sand (blue) formation top in order to show the correlation of the high porosity zone.
The red formation top line is the Middle Donovan Sand formation top, which is included for
reference. Map of the study area (top right, inset) outlines the cross-section (pink line).
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Figure 41. Upper Donovan Sand porosity distribution map.

Average porosity values are shown as they were calculated: minus-cement taken from the PHID
curve generated during log analysis. Minus-cement means that these values were calculated as
if there was no cement present within the reservoir. Note the red, orange, and yellow higher
porosity areas.

78



Due to the high feldspar content and moderate amount of calcite and dolomite cement
in this zone, minerals could be subject to further dissolution given reservoir conditions and fluid
geochemistry. The pressure and temperature within an underground reservoir is much
different than at the surface, and depending upon these conditions CO, behaves differently
with regards to CO,-mineral interaction.

The current temperature of the Donovan Sand at depth is ~¥98.9°C (210°F), and although
depleted since initial production within Citronelle Field, the formation pressure is ~20.7 MPa
(3000 psi) (Esposito, 2010). In past studies concerning the interaction of formation fluid and
injected CO,, there has been evidence for alteration/dissolution of feldspars and carbonate
mineral phases in both experimental (Fischer et al., 2011) and naturally-occurring (Emberley et
al., 2004; Rosenbauer et al., 2005) settings. The Donovan Sand within Citronelle Field is thus
prone to dissolution of calcite phases and creation of secondary porosity within the reservoir
with the injection of CO,. Given that the high porosity zone could_delineate a fluid migration
pathway if the pores are well-connected within the Upper Donovan prior to injection, it is
logical that the CO, will also migrate along this pathway. Secondary porosity creation along this
pathway will then be accentuated as the CO, interacts with and likely alters the formation
minerals.

CO; injected during EOR operations likely would have had an effect similar to that just
described, with the CO, being forced through the reservoir and temporarily interacting with the
reservoir minerals it contacted. With long-term storage operations however, the CO, will be left
within the reservoir for a longer period of time and will interact with the reservoir longer than

in EOR operations. This prolonged interaction between the sequestered CO, and the reservoir
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minerals could have a drastic effect on the reservoir quality, either enhancing or diminishing
the porosity. Introduction of the CO, may initially lead to an increase in secondary porosity
amounts as susceptible mineral phases are altered, but over time the fluid may equilibrate with
the reservoir rock as it becomes more saturated with ions derived from mineral dissolution in
the reservoir rock. If the fluid becomes supersaturated with respect to these minerals, the same
minerals that were initially dissolving may precipitate out of solution once more resulting in a

decrease in overall porosity.
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Chapter 8: Discussion

The data that has been gathered over the course of this study show that there is a high
porosity zone within the Upper Donovan Sand that is correlatable from well to well within the
study area. This zone could be a fluid migration pathway, such that as CO, is injected into the
reservoir, CO, flow will preferentially follow this zone. The CO, could interact with the reservoir
minerals themselves just as formation fluids have over geologic time to create secondary pore
space and fill pore space with authigenic cement. However, it is difficult to ascertain the exact
timing of these reactions, be it immediately with introduction of CO, to the reservoir or
sometime in the distant future. It is also difficult to predict the exact reactions that may occur
within the reservoir, however experimental results all point to the conclusion that silicate and
carbonate minerals are prone to dissolution when CO, is introduced and the pH of the
formation waters is lowered as a result (e.g., Emberley et al., 2004; Rosenbauer et al., 2005;
Strazisar et al., 2006; Fischer et al., 2011). This is not to say that there will necessarily be a net
increase in the total porosity within the formation or even within the zone of interest within the
formation when long-term storage is further pursued within the Donovan, because diagenetic
porosity development may also be redistributional in closed systems such as a long-term
geologic storage reservoir. Redistributional porosity is secondary porosity that results in the
dissolution of minerals and/or cement in one portion of a reservoir and the precipitation of
some mineral out of supersaturated formation fluid in another part of the reservoir (Bloch,
1994).

The composition of the Donovan Sand is very consistent within the upper portion and

presumably the Middle and Lower members as well, and this bodes well for secondary porosity
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creation via mineral dissolution given that the sands are arkosic. However, heterogeneity can
present itself on such a scale that it may not be noticeable in the data given the spatial log
control and the scarcity of log data.

The petrofacies analysis has demonstrated that the porosity distribution is almost, if not
entirely dependent upon diagenetic processes. That is, cementation occurred in some zones
but not uniformly across the basin during and after deposition. The petrofacies outline the
zones in which there has and has not been abundant cementation, which further reinforces the
need for better logs and geophysical data because the Upper Donovan Sand is highly
compartmentalized not only lithologically, but reservoir sandstones themselves are
compartmentalized by diagenetic alteration as well. However, core descriptions, thin section
compositional analysis, or depofacies correlations do not fully capture the heterogeneous
nature of the Upper Donovan Sand reservoir for a few reasons:

1. The core descriptions do not allow for a thin-section analysis of every
compartment within the reservoir because not every well has had core
sampled.

2. Thin-section compositional analysis is not very useful in trying to plot
compositional heterogeneity of framework grains in these rocks because of
the essentially uniform framework composition throughout the Donovan.
However, thin section-derived porosity counts are important because there

are porosity differences within the Donovan Sand.
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3. Petrofacies seem to have been formed independently of depositional
environment, meaning that we cannot accurately trace degrees of

cementation to depofacies outlined in this thesis.

Hence in order to accurately ascertain the location of compartmentalized deposits, the
petrofacies outlined in this thesis and the subsequent high porosity zones may act as
boundaries which may define fluid flow pathways within the reservoir.

With the petrofacies tied to a log character and the correlation of that log signature
across the field (Plate 1; high porosity zone is outlined in yellow), the sand unit that has been
correlated is composed of the same three most porous petrofacies. However the possibility
exists that the cementation of that unit is variable. This possibility could be tested through
other logs, such as gamma ray and density logs, if these logs were available. The process
involved in the determination of petrofacies as well as the high porosity zones is repeatable,
and can be applied to any area in which adequate log control exists and where core samples
have been taken from the intended study target at depth.

The amount of secondary porosity that is evident within the Upper Donovan Sand,
specifically within the high porosity zone outlined in the cross-sections, is direct proof that this
zone has been affected by diagenetic porosity enhancing processes in the past. While connate
water moving through a porous zone can dissolve minerals over geologic time, the introduction
of CO, into the reservoir could drastically increase the rate of dissolution by lowering the

formation water pH (Strazisar et al, 2006) and create porosity more quickly within the unit.
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Chapter 9: Conclusions

The Citronelle Field in southwestern Alabama is a longstanding oil and gas producing
field with over 168 MMbbl of oil and 15 Bcf of natural gas produced from the Donovan Sand
within the Rodessa Formation (Pashin et al., 2007). The Donovan Sand has undergone CO,
injection for EOR purposes in the past, and the Upper Donovan Sand is currently undergoing
CO, injection as a test for long-term storage in mature oil and gas reservoirs.

The Cretaceous-aged Donovan Sand is arkosic, with most of its sediments likely having
been sourced from granites and granitoids within the Motts Gneiss and the Hospilika Granite
intrusions of the Uchee terrane of Georgia and Alabama (Steltenpohl et al., 2008). The Upper
Donovan Sand a heterogeneous reservoir with variable porosity but relatively consistent
composition. In order to better understand the subsurface migration pathway as well as the
potential fluid-rock interactions that may occur as a result of the introduction of the CO, into a
mature hydrocarbon reservoir, core, thin section, and petrophysical log data have been
gathered and cross-referenced. An estimation of bulk density based upon SP log values was
generated using the geologic software package GeoGraphix and then applied to every well with
well logs. From this approximation of bulk density (EstRHOB) another log was generated using
the EstRHOB curve in order to approximate the porosity. A structure map, isochore map, and an
average porosity map of the Upper Donovan Sand were created using publicly available well
logs from the Geological Survey of Alabama and the user-generated EstRHOB and estimated
porosity curves.

Seven cores were described and thin sections were taken from the cores in order to

sample each representative sandstone facies. Data from the cores and thin sections were
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compiled into graphic log form (Plate 2) and the 8 depofacies and 8 petrofacies were outlined
from the cores and thin sections, respectively. Depositional environments of the 8 depofacies
were interpreted to be as follows: depofacies 1 —incised valley fill, depofacies 2 — channel
thalweg sandstone, depofacies 3 — braided stream channel sandstone, depofacies 4 — tidally-
influenced deltaic distributary channel, depofacies 5 — floodplain, depofacies 6 — estuary,
depofacies 7 — prodelta, and depofacies 8 — carbonate shelf.

Petrofacies were unconventionally defined, due in large part to the consistent
composition of the Donovan Sand. Petrofacies were defined based upon their porosity and
cement percentages according to point-counted values from thin sections. The petrofacies
were then tied to their depth-calibrated signature on the well log based upon porosity and
cement percentages. The most porous petrofacies (A-C) happen to occur within the same
stratigraphic zone in the Upper Donovan Sand, and this zone has been dubbed a ‘high porosity
zone’. Correlation of this high porosity zone from well to well results in the delineation of a fluid
migration pathway that the sequestered CO, may follow in the subsurface.

There are higher amounts of secondary porosity within the high porosity zone than in
other portions of the reservoir, indicating that there has already been some sort of fluid-rock
interaction within the high porosity zone prior to injection of the CO, for long-term storage
purposes. Experimental and field data both provide evidence of feldspar and carbonate mineral
dissolution with the introduction of CO, (Emberley et al., 2004; Rosenbauer et al., 2005;
Strazisar et al., 2006; Fischer et al., 2011), and these mineral phases are present within the high

porosity zone. In delineating and understanding the fluid migration pathway, the reservoir
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composition, and the possible mineral reactions to introduction of CO,, the possible effects that

sequestered CO; could have upon the reservoir rock may also be better understood.
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Plate 1. Cross-sections 1-7 and N-S cross-sections 1-2 showing the formation top picks (labeled)
and the high porosity zone (yellow-filled horizon) within the Upper Donovan Sand.
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Plate 2. Graphic logs from 7 cored study wells.
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Plate 3a. Petrofacies A-C, correlated from well per-

mit #3232 graphic log (left) to petrophysical well log

(right). Petrofacies A and B are outlined in yellow

and petrofacies C is outlined in blue on both logs.

Colored zones are presented side-by side to illus-

trate their lithology and representative well log sig-

nature. Red rectangles alongside depth indicate that

core was described for that depth.
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Plate 3b. Petrofacies A-C, correlated from well
permit #633 graphic log (left) to petrophysical
well log (right). Petrofacies A and B are outlined
in yellow and petrofacies C is outlined in blue
on both logs. Colored zones are presented side-
by side to illustrate their lithology and repre-
sentative well log signature. Red rectangles
alongside depth indicate that core was de-
scribed for that depth.
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Plate 3c. Petrofacies A-C, correlated
from well permit #706 graphic log (left)
to petrophysical well log (right). Petro-
facies A and B are outlined in yellow
and petrofacies C is outlined in blue on
both logs. Colored zones are presented
side-by side to illustrate their lithology
and representative well log signature.
Red rectangles alongside depth indi-
cate that core was described for that
depth.
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Table 1: Raw point count data gathered from thin section samples.

Feldspar
Well permit#-  Sandstone Quartz Quartz Feldspar (twinned Calcite Hematite Titanium oxide
depth sampled  Petrofacies  (monocryst.) (polycryst.) (undiff.) plag.) Lithic Muscovite  Biotite Microcline (det.) (det.) mineral Dead oil
624-10934 G 101 0 252 15 5 1 5 1 0 4 0 0
624-11410 - 89 0 134 1 6 75 78 0 0 0 0 0
624-11428 E 137 4 231 8 1 8 6 8 0 0 0 4
624-11446 E 145 2 193 10 2 17 17 1 0 0 0 0
633-10947.5 F 56 6 256 17 16 11 16 5 0 0 0 12
633-10994.5 - 13 3 90 7 284 7 1 3 0 0 0 8
633-10995.5 F 83 4 278 11 6 1 0 3 0 20 0 0
633-11009.5 G 91 5 249 19 2 2 4 4 0 0 0 6
713-10880 B 112 3 237 28 6 7 4 10 0 13 0 0
713-11347 - 136 3 115 7 2 106 19 2 0 15 0 0
713-11372 A 140 6 216 15 1 8 5 1 0 0 0 0
2993-10978 G 59 6 272 18 17 7 1 0 0 2 0 23
3198-11087 G 67 6 264 20 4 10 0 0 0 0 9 21
3198-11117 E 135 15 207 22 3 12 5 0 0 1 0 1
3198-11130 - 13 1 121 6 105 2 0 2 0 0 0 4
3198-11131 E 102 32 216 18 5 17 1 3 0 0 0 1
3198-11136 E 114 22 219 13 2 13 9 0 0 0 0 2
3198-11323 - 29 0 211 4 13 6 1 1 0 0 0 33
3198-11466 F 105 7 263 15 9 5 2 1 0 0 0 19
706-10852 D 80 0 246 7 3 43 4 0 0 0 0 4
706-10853 D 109 0 250 6 10 8 4 1 0 0 0 3
706-10860 C 119 0 237 1 5 13 13 1 0 0 0 1
706-10865 F 139 0 245 6 9 8 0 0 0 3 0 2
706-10913 B 101 1 257 13 5 4 2 6 2 2 0 0
706-10916-25 D 129 0 241 9 7 8 1 1 2 1 0 0
3232-10814 A 122 0 246 5 8 8 0 3 0 0 0 0
3232-10815 D 135 1 229 8 5 18 0 2 1 5 0 0
3232-10943 D 105 3 238 17 5 26 0 1 3 1 0 0
3232-10944 B 174 2 197 10 2 18 0 0 1 0 0 0
3232-11012 B 147 0 189 10 7 33 0 0 0 0 0 0
3232-11017 B 133 7 217 18 2 13 0 3 3 0 0 0
3232-11023 E 149 3 180 18 29 8 1 3 2 0 0 12
3232-11038 A 148 4 174 16 1 7 0 2 2 0 0 38
3232-11056 A 155 1 163 43 15 4 0 2 0 0 4
3232-11057 G 179 0 127 2 6 76 0 0 1 0 0 4
3232-11060 E 164 13 144 10 7 0 4 15 0 0 38
3232-11378 B 203 15 146 9 2 6 4 0 14 0 0 10
3232-11381.9 G 137 21 149 10 0 8 0 0 43 0 0 28
Key: monocryst. - monocrystalline det. - detrital
polycryst. - polycrystalline acc. - accessory (Muscovite+Biotite+Calcite(det.)+Hematite(det.)+Titanium oxide mineral+Anhydrite(det.))
undiff. - undifferentiated frmwrk. - framework grains (Qtz (monocryst.)+Qtz (polycryst.)+Fspar (undiff.)+Fspar (twinned plag.)+Microcline+Lithic)

plag. - plagioclase feldspar
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400
403
414
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406
406
431
405
400
414
411
405
400
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400
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16
14
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13

12

18
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18
13
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11
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15

12

13
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12
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12

21

13
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60
54

10
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10
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18
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16
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12
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14
31

13

16

36
25
19
43

11
11
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Table 2: Quartz, feldspar, and lithic fragment percentages used in QFL diagram creation.

Well permit # - Depth Sampled % Quartz % Feldspar % Lithic % Porosity

624-10934 27.08 71.58 1.34 1.0 Calculations:

624-11410 38.70 58.70 2.61 0.0 % Quartz = Tqtz/(Tqtz+Tfspar+Tlith)
624-11428 37.01 62.73 0.26 3.0 % Feldspar = Tfspar/(Tqtz+Tfspar+Tlith)
624-11446 41.76 57.67 0.57 1.2 % Lithic = Tlith/(Tqtz+Tfspar+Tlith)

633-10947.5 17.66 77.78 4.56 0.0 % Porosity = Tphi/Tgrain

633-10994.5 4.03 24.43 71.54 0.2

633-10995.5 22.77 75.65 1.57 0.0 Key to Calculations:

633-11009.5 26.23 73.22 0.55 1.5 Tgrain - total solid sediment grain points counted in respective thin section
713-10880 29.79 68.65 1.55 0.0 Tfspar - total feldspar points counted in respective thin section
713-11347 52.85 46.39 0.76 1.6 Tlith - total lithic fragment points counted in respective thin section
713-11372 38.62 61.11 0.26 0.7 Tphi - total porosity points counted in respective thin section
2993-10978 17.47 77.96 4.57 0.0 Tqtz - total quartz points counted in respective thin section

3198-11087 20.22 78.67 1.11 0.0

3198-11117 39.27 59.95 0.79 0.7 (% Porosity was not used in QFL diagram, but is included for reference.)

3198-11130 5.69 51.63 42.68 0.0

3198-11131 35.92 62.73 1.34 0.2

3198-11136 36.76 62.70 0.54 4.7

3198-11323 11.28 83.66 5.06 0.0

3198-11466 28.07 69.67 2.26 0.6
706-10852 23.81 75.30 0.89 4.2
706-10853 29.07 68.27 2.67 4.3
706-10860 32.87 65.75 1.38 1.6
706-10865 34.84 62.91 2.26 0.4
706-10913 27.06 71.62 1.33 11.5

706-10916.25 33.42 64.77 1.81 4.4

3232-10814 32.02 65.88 2.10 5.7

3232-10815 35.98 62.70 1.32 2.6

3232-10943 29.35 69.29 1.36 33

3232-10944 45.71 53.77 0.52 6.9

3232-11012 41.64 56.37 1.98 5.0

3232-11017 37.14 62.33 0.53 3.6

3232-11023 40.11 52.24 7.65 4.8

3232-11038 44.31 55.39 0.29 33

3232-11056 42.16 46.22 11.62 6.9

3232-11057 57.01 41.08 1.91 2.4

3232-11060 52.68 44.35 2.98 2.5

3232-11378 58.13 41.33 0.53 4.8

3232-11381.9 49.84 50.16 0.00 11
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