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ABSTRACT 

LIFE CYCLE ANALYSIS OF FOREST CARBON IN THE CENTRAL APPALACHIAN 
REGION 

 
Pradip Saud 

 

Forest management and wood product processing activities such as harvesting, 

transportation, and lumber processing consume fossil fuels and emit carbon dioxide. This emitted 

carbon dioxide creates credit carbon balance which is usually overlooked while estimating the 

carbon benefits from woody biomass and wood products. Accountability of carbon stored in 

woody biomass and wood products varies when such carbon emissions are considered. Factors 

such as, harvesting intensity, growth rate, dead trees and forest fires all affected the estimation of 

forest carbon balance while harvesting system determines the carbon emission from fossil fuel 

consumptions. Energy sources used in sawmills for electricity are also crucial in credit carbon 

balance analysis. Therefore, this study assessed (1) forest carbon balance of the mixed 

Appalachian hardwood forests and carbon emissions due to the use of fossil fuels in harvesting 

systems in West Virginia, and (2) carbon balance in hardwood lumber processing in the central 

Appalachian region. Data were obtained from a regional sawmill survey, public database and 

relevant publications.  

Forest carbon balance and carbon emission were analyzed within a life cycle inventory 

framework of cradle to gate using sensitivity analysis and stochastic simulation. The results 

showed that the annual carbon balance of the forests per hectare was not significantly affected by 

carbon loss from the volume of removal, fire and dead trees.  It was also found that carbon 

emission from combustion of fossil fuel using manual harvesting system was less than using 

mechanized harvesting systems. Though a minimal amount of carbon was emitted from 

harvesting systems, the forest carbon displacement rate during timber processing was affected 

largely by hauling compared to felling, processing, skidding and loading. Carbon emission 

quantity from fuel consumption and forest carbon displacement rate were also affected by 

harvest intensity, hauling, payload size, forest type, and machine productivity.  

Credit carbon balance generated from lumber processing was statistically analyzed within 

the gate to gate life cycle inventory framework. Stochastic simulation of carbon emission and its 

impact on carbon balance and carbon flux during lumber processing were carried out under 

different operational scenarios. Credit carbon balance from electricity consumption varied 

among sawmills of different production levels and operation hours per week and also attributed 

effect of different head saws, lighting types and air compressors used at sawmills. Credit carbon 

balance significantly reduced the carbon accountability of the lumber in useful life period at first 

order of decay of carbon. Substantial amount of carbon flux attributed from energy consumption 

and exports of lumber reduced the carbon storage accountability of the lumber product. Increase 

of the carbon accountability of the lumber products and decrease of the carbon flux ratio could 

be achieved through using an efficient equipments at sawmills and an appropriate mixture of 

energy sources for electricity supply.  
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1.   Introduction 

 

Forests are the largest terrestrial carbon (C) reservoir and sequester substantial amounts 

of carbon dioxide (Dixon et al., 1994). Carbon sequestration is regulated by tree growth, plant 

death and plant oxidation (Harmon et al., 1994; Huston and Gregg, 2003) and also on the initial 

size of stand stock or time period over which carbon sequestration is allowed (Schlamadinger 

and Marland, 1996). Depending upon species, carbon content may differ but research commonly 

posits that 50% of a plant‘s dry biomass is carbon (Smith et al., 2003). Several studies have 

focused on  assessing the use of forest biomass sinks to sequester carbon as part of a global 

climate mitigation effort (Sedjo and Toman, 2001) and even using avoided deforestation  

principles to meet the target of carbon emissions credit  (Sedjo and Sohngen, 2007). 

The forest carbon cycle is composed of biological and industrial sub-cycles. Biological 

cycle indicates the annual sequestration or emission of carbon, whereas industrial cycle presents 

the carbon emissions and offset throughout the wood product life span. Both carbon cycles 

should be studied in concert (Gower, 2003) and the role of wood product carbon cycle is equally 

as important as the biological cycle for studying climate change (White et al., 2005). The net 

balance of forest carbon stock is influenced by transfer of carbon to the round wood or release of 

carbon into the atmosphere (Apps et al., 1999). 

Carbon stored in trees serves as one carbon pool and the manufactured wood product 

serves as another pool. Depending on wood products use and end of life process, it creates a lag 

time and determines the rate of carbon return to the atmosphere (Karjalainen, 2002). When 

woody biomass is used as fuel to reduce fossil fuel combustion, it serves as the third pool (Oneil 

and Lippke, 2010). When wood products are used as the substitute of steel and concrete, the 
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displacing emission from these products serves as permanent emission offset and is called the 

substitution pool (Perez-Garcia et al., 2005). 

Information on carbon stocks of wood products is useful in evaluating their potentials in 

GHGs mitigation (Brown et al., 1998; IPCC, 2003). Carbon emission estimation of wood 

products during their life time is affected by the decay rate and waste treatment practices. Decay 

rate influenced the estimate of the carbon pool and uncertainty of outflow (Winjum et al., 1998). 

One way of minimizing the uncertainty of the carbon pool estimates is to perform direct stock 

inventories of wood products (Pingoud et al., 2001). If practical stock inventories are available, 

we can directly estimate carbon stock changes and verify parameters during the modeling 

process (Pingoud et al., 1996). Such estimates need to consider the life cycle analysis of wood 

products. Therefore, most estimates of carbon stocks and stock changes are based on indirect 

calculation models using hypothetical parameters (Apps et al., 1999; Harmon et al., 1994; Kurz 

et al., 1992).  

Previous forest carbon assessments have focused only on changes in biomass carbon and 

assumed that GHGs emissions from forestry activities are minimal. This assumption not only 

omits a potentially significant source of emissions from forest management but also precludes 

the evaluation of differences in emissions from alternative forest management intensity choices 

by forest landowners (Sonne, 2006). Such greenhouse gas emission occurring from changes of 

carbon stock in forests and products could be complex over time but it might be limited when 

sustainable forest management is practiced over a long time (Gustavsson et al., 2006).  

Carbon stored in trees is removed through harvesting process. Carbon stored in harvested 

timber also varies among tree species (Smith et al., 2003). Carbon emission occurred from the 

use of energy or fossil fuel sources in harvesting and wood product processing is usually 
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overlooked while accounting carbon sequestration through forest and wood products. The carbon 

dioxide generated through such energy and fossil fuel sources is a contributing factor affecting 

for both global warming and greenhouse gases (GHG) (Wilson and Dancer, 2005). Identifying 

the major sources of carbon dioxide emission and quantifying its magnitude from forest 

management and wood product processing are critical in developing policies to reduce carbon 

emissions (White et al., 2005). Concurrently increasing environmental regulations, government 

policies and public concerns have challenged forest management and wood product processing. 

It sought the importance of Life Cycle Inventory (LCI) of the forest management and forest 

product manufacturing activities (USEPA, 2009; Puettmann et al., 2010). The importance of 

carbon storage in woody biomass relays when there is a clear depiction and quantification of the 

carbon emissions from energy involved in timber harvesting and wood products manufacturing. 

Therefore, the pre- and post-forest management activities are essential to evaluate carbon 

emissions form energy consumptions during timber harvesting and wood product manufacturing, 

and the net carbon offset in the forest carbon cycle.  

Though several guidelines can be used to conduct Life Cycle Analysis (LCA) to identify 

where, when, and how environmental impacts occur throughout a product‘s life, the most widely 

accepted methods are set forth in the International Standard Organization (ISO) 14000 series of 

standards (ISO, 2006). Most recently, the Intergovernmental Panel on Climate Change (IPCC, 

2006) and the US Environmental Protection Agency (USEPA,  2010) have also developed 

guidelines for calculating greenhouse gas emission and sink, specifically for the carbon emission 

from the use of energy sources in forest management and wood product processing. Due to the 

concerns raised on negative carbon emissions, the Consortium for Research on Renewable 

Industrial Materials (CORRIM) has changed the protocol to access LCA for forest management 
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and wood products. It shows that the carbon stored in products is functionally equivalent to 

negative carbon emissions generated from the manufacture of wood products (Puettmann et al., 

2010; Lippke et al., 2010).  

LCI helps to quantify energy and raw material requirements, air emissions, waterborne 

effluents, solid wastes and other environmental releases occurred within the system boundary. 

Fuel and electricity are the two most important energy elements used in forest harvesting and 

wood product manufacturing (Wilson and Dancer, 2005; Oneil et al., 2010; Puettmann et al., 

2010). LCI has been increasingly used in policy decision making for greenhouse gas reduction in 

the forest sector but the related database has been limited at the unit-process level of wood 

products due to practical difficulty in gathering data.  

The Appalachian region sequesters significant amount of atmospheric carbon through 

vast area of mixed hardwood forests. A significant amount of timber is harvested and processed 

annually that change the forest carbon and wood carbon inventory. However, fossil fuels and 

other energy sources used in harvesting and wood processing are typically not considered as 

issues for atmospheric carbon flux and factors affecting accountability of carbon stored in forest 

and wood products. This necessitates the analysis of forest carbon balance in the central 

Appalachian region within a life cycle inventory framework incorporating forest status, 

harvesting system, sawmill size, processing equipment, and energy usage.  Therefore, the 

objectives of this study were to conduct a life cycle analysis on: (1) forest carbon balance and 

carbon emissions of timber harvesting in West Virginia, and (2) carbon balance of hardwood 

lumber processing in the central Appalachia region. 
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Abstract 

Forest management activities such as harvesting and transportation emit carbon dioxide 

(CO2) and this emission is usually overlooked when estimating the carbon benefits from woody 

biomass. This study assessed the net aboveground biological carbon balance of the central 

Appalachian mixed hardwood forests in West Virginia and carbon emissions from the use of 

fossil fuels in harvesting systems including felling, processing, skidding, loading, and hauling of 

timber to a sawmill or a processing facility. A life cycle inventory framework of ‗cradle to gate‘ 

was used to analyze the forest carbon balance and emission using sensitivity analysis and 

stochastic simulation of Monte Carlo. The results showed that the annual carbon balance of the 

forests per hectare was not significantly affected by carbon loss from the volume of removal, fire 

and dead trees.  It was found that an average carbon emission was 5.06 ± 0.90 metric tons per 

thousand cubic meters (tC/TCM) using manual harvesting system, or 6.84 ± 1.22 tC/TCM using 

mechanized harvesting system. Both harvesting systems had an average of 80 km hauling 

distance. Though minimal amount of carbon was emitted from fossil fuel used in mechanized 

operations, the forest carbon displacement rate during timber processing were affected largely by 

hauling process compared to felling, processing, skidding and loading. Species group, forest 

type, and harvest intensity were attributed to the variation of forest carbon displacement rate and 

carbon balance of harvested timber. Uncertainty of carbon emission amounts from fuel 

consumption and forest carbon displacement rate were also coupled to hauling distance, payload 

size, forest type, and machine productivity.  
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2 .1 Introduction 

Increasing concentration of carbon dioxide (CO2) and other greenhouse gases (GHGs) in 

the atmosphere instigate to develep the strategies to mitigate climate change impact (Petit et al., 

1999; Vannien and Makela, 2004; IPCC, 2006). One of the climate mitigation policies is to focus 

on increasing the amount of carbon stored in forests and forest products and quantifying the 

carbon (C) budgets of forest stands (Raupach et al., 2007; Hennigar et al., 2008). Forests, being 

the largest terrestrial carbon reservoir (Dixon et al., 1994), are adapted to increase the forest 

carbon stock using different management strategies and practices (Richard et al., 1997). The fate 

of forest carbon is determined by the use and end use of wood products (Perez-Garcia et al., 

2005, Puettmann et al., 2010; Sharma et al., 2011).  

The forest carbon cycle can be distinguished into biological and industrial cycles. The 

forest biological cycle represents the sum of all carbon flux including an annual sequestration or 

emission in forests while the industrial cycle indicates the net emission of carbon throughout 

forest product life span (Gower, 2003; White et al., 2005). The net carbon flux from forest to 

industry is close to zero when forest is being managed for timber production under sustainable 

principles. Carbon stock in forests managed under sustainable forestry principles can help to 

increase net carbon sequestration (Straka and Layton, 2010; Sharma, 2010). Carbon emissions 

remain neutral or negative over time in sustainably managed forests where harvest contributes to 

the sustainable product pools and post-product life pools, increasing sustainability (Lippke et al., 

2010).  

Forests managed under sustainable principles have a biological foundation with inputs 

and outputs that can be incorporated into life cycle analysis (LCA) (Straka and Layton, 2010). 

LCA ensures that forest sustainability standards are being met and measures environmental 
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impacts of management activities. Therefore, LCA can help to understand and characterize the 

opportunity of reducing carbon emissions into the atmosphere, and evaluate whether our 

activities are motivated towards carbon storing or carbon generating (Oneil et al., 2010). 

Defining forest carbon in a ―closed‖ system not only helps conclude carbon sequestration from 

tree growth but also accounts carbon loss from dead trees as it decomposes (Harmon, 2001). The 

coarse woody biomass of dead trees also changes the carbon storage of the ecosystem 

significantly (Janisch and Harmon, 2002). Likely, forest carbon and emission models that 

include carbon loss from forest fire helps develop strategies to reduce the threat of catastrophic 

wildfire (Bonnicksen, 2008). 

Many previous studies have simulated hypothetical forest modeling processes to 

demonstrate different management scenarios and harvesting schedules reflecting minimal 

difference in carbon storage (Schlamadinger and Marland, 1995; Perez-Garcia et al., 2005; 

Hennigar et al., 2008). These studies optimize the forest carbon stock with intensive forest 

management that can offset carbon emissions from raw material extraction and transportation 

while the carbon emissions from machinery are undetermined. In the human assisted biological 

carbon cycle, carbon is sequestered and then emitted. It occurs due to combustion of fossil fuels, 

such as diesel, gasoline, and lubricants used in equipment used for seedling production, 

plantation, fertilization, harvesting, and transportation of final products to a sawmill (Oneil et al., 

2010; Puettman et al., 2010).  

Forest harvesting intensity affects carbon emissions of machines and it also depends on 

factors such as supply, demand, and ownership. It is found that carbon emitted to the atmosphere 

and carbon sequestered differed by 12% among three different ownership types, i.e. national 

forest, state forest and non-industrial private forest (White et al., 2005). Employed harvesting 
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systems could be either manual or mechanized and its preference determines harvesting 

productivity and cost (Li et al., 2006; Oneil et al., 2010). The fuel consumption rates of each 

manual or mechanized harvesting process differs (Wang et al., 2004a, 2004b; Oneil et al., 2010). 

Likely, fuel consumption rates vary among truck types for hauling harvested timber to sawmill.  

An assessment of forest carbon that includes timber harvesting intensity level, forest 

growth rates, dead trees and forest fire loss could be beneficial to account net forest carbon 

balance of the existing forest stock. Similarly, consideration of the different forest group types, 

harvesting systems, harvesting residue extraction systems, and truck types, would be useful to 

illustrate the variation of carbon emission rates that occurred from different fossil fuel 

consumption in the process. Thus, it is an imperative to analyze and quantify the forest carbon 

balance and variation in carbon emission that occurred from fossil fuel in the process of  

evaluating existing management and harvesting practices in order to consider whether 

sustainable forest management practices exist or not. Therefore, this study aims to evaluate the 

net carbon offset of central Appalachian hardwood forests under current management and 

harvesting strategies using life cycle inventory (LCI) approach. The specific objectives were to 

(1) assess the forest carbon balance of mixed hardwood forests in West Virginia, and (2) analyze 

the carbon emissions from fuel combustions of harvesting systems in West Virginia.  
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2.2 Materials and Methods 

2.2.1 Data 

Naturally regenerated forests in West Virginia that represent the central Appalachian 

region sequester a vast quantity of atmospheric carbon and offset carbon emissions from fossil 

fuel consumption in machinery and industrial purposes. Forestland covers almost 76% of the 

state (USDA FS, 2010) and 71% of the forests are privately owned (Milauskas and Wang, 2006; 

USDA FS, 2010). Data obtained from published literature and public databases were normalized 

and coordinated, within a cradle to gate (sawmill gate) life cycle inventory framework, according 

to inventory data collection rules (ISO, 2006) and good practice guidance for forestry practices 

(IPCC, 2006a; 2006b). The system boundary was setup for harvesting systems that include fuel 

consumption in terms of felling, processing (topping and delimbing), skidding, loading, and 

hauling (Fig 2.1). We selected a thousand cubic meter (TCM) volume of the harvested hardwood 

logs as the base functional unit in the harvesting system. 

Timberland data were obtained from an online Forest Inventory Database (FIDO) by 

USDA Forest Service (USDA FS, 2010). Annual growing stock, annual removal, annual 

mortality (dead and fire), and annual growth of the forest tree species group were categorized by 

species groups. Net volume of live trees above 12.7cm (>5 inches) diameter at breast height 

(dbh) was included in carbon analysis since these trees were assumed to be commercially useful 

for either pulp and paper or structural purpose. Inventory data on net volume of live trees and net 

volume of dead trees were available for 2000, 2004, 2005, 2006, 2007, 2008 and 2009. However, 

data on net growth volume and harvested volume were only available for the years 2000, 2006, 

2008 and 2009.  
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 Harvested residue biomass (BHresi) by species group (i) was estimated as green weight in 

metric tons using Eq 2.1. The product of harvested volume (Hvi) is in m
3
 and density is in green 

weight (Dengwti) in tons/m
3
. It was assumed that 29% of total stem biomass is contained in 

branches and tops for every ton of biomass contained in tree stem in the Northeastern region 

(INRS, 2007). It was also assumed that only 65% of wood residue can be economically extracted 

and available due to technical and topographic feasibility (Perlack et al., 2005).  Since forest fire 

is another important factor for forest carbon loss, we estimated carbon emissions due to fires 

from 2002 to 2009 based on the data obtained from West Virginia Division of Forestry 

(http://www.wvforestry.com/dailyfire.cfm) (WVDOF, 2010).   

Statistical analysis was conducted using R 2.9.2 statistical package and significance 

testing was carried out at the 95% confidence level. One sample t-test was used to test significant 

difference of annual mean carbon stock (forest stock), mean carbon growth (forest growth) and 

mean carbon removal (forest harvest) of the forest. Similarly, the significant difference in mean 

carbon emissions among harvesting systems and among  fuel consumption rates was tested  We 

also conducted Two Sample, two sided t-test assuming the true variance for the ratios of variance 

less than the critical F-value. 

 

                                                           (2.1) 

 

http://www.wvforestry.com/dailyfire.cfm
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Figure 2.1 Life cycle inventory framework and system boundary. 

Minus sign (-) denotes decrease in carbon balance/stock and plus sign (+) denotes increase in 

carbon balance/stock. 
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2.2.2 Forest Carbon Estimation  

Carbon content (CHvi) of tree species (i) in harvested volume (HV) was estimated in 

metric tons using Eq. (2.2). The harvested volume (Hvi) was multiplied by specific gravity (Sgi) 

of the tree species at oven dry weight (Alden, 1995) for each tree species and assumed carbon is 

50% of weight (Smith et al., 2006). Carbon content in wood residue (CBHresi) was also 

estimated at oven dry weight in metric tons (Eq. 2.3). Carbon content by forest type of harvested 

timber and wood residue were derived by allocating an average harvest percentage of each 

species for the total harvested volume of that forest type group. Carbon sequestered by dead trees 

(CBD) was also estimated in metric tons. Carbon loss from forest fires (CBF) was estimated in 

metric tons using the product of an average estimated carbon content of the current forest 

productivity per unit area in hectare (ha) and burnt forest area.  

Net carbon balance (CBL), in metric tons per hectare (tC/ha), of the aboveground stem 

biomass was estimated (Eq. 2.4) by subtracting mean carbon removal through CHV, CBD, and 

CBF from existing carbon stock (CS) and multiplying by the mean carbon growth (CBG). It was 

also simulated for 200 years using mean carbon loss and standard deviation through Monte Carlo 

simulations to examine the uncertainty of forest carbon balance using mean (μ) and standard 

deviation (σ) assuming a normal distribution of the randomly generated 1000 numbers. Forest 

carbon displacement rate (DCr) that determines reduction in carbon balance of harvested timber 

at the expense of carbon emission from fossil fuel consumption was calculated using Eq. (2.5). 

However, this study does not take into account the carbon sequestered by roots, branches, foliage 

and leaf litter on the forest floor. 

 

                                              (2.2)  
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2.2.3 Forest Harvesting and Fuel Consumption 

We only considered the clear-cut (CC) scenario because of limited data on other forest 

harvesting methods. Manual and mechanized harvesting systems are the two most commonly 

used systems in the central Appalachian region (Milauskas and Wang, 2006). A manual 

harvesting system includes tree felling with chainsaw, and a cable skidder for skidding while 

mechanized harvesting system consists of tree felling with feller buncher, and skidding with a 

grapple skidder. Other processing functions are assumed to be the same for these two harvesting 

systems, including delimbing and topping with chainsaws, loading with large loader, and log 

truck for hauling timber.  

Data on machine utilization, fuel consumption, and productivity for manual harvesting 

were based on a study by Wang et al. (2004a) (Tables 1 and 4). Manual harvesting was 

performed on sites with slopes from 10 – 45%, tree diameters of 20.3 to 66 centimeters, and tree 

merchantable heights of 2.43 -17 meters. Similarly, mechanized harvesting analysis was based 

on previous studies (Wang et al., 2004b; Oneil et al., 2010) (Tables 2, 3 and 5). These harvested 

sites represent typical central Appalachian harvesting with slope from 0 – 30% (Wang et al., 

2004b). Site conditions representing the Northeast and North Central regions were based on a 

study by Oneil et al. (2010).   
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We normalized the machine‘s productivity with delay time (Table 1). Fuel consumption 

rates were estimated for selected harvesting machines (Brinker et al. 2000). An average tree 

distance was assumed to be approximately 3.048 meters (10 feet) depending on stand density 

(USDA FS, 2010). An average extraction distance of 500 meters (equivalent to 1640.41 feet) 

was assumed with an average payload size of 3.114 m
3 

(equivalent to 110 ft
3
 or 3-5 long logs) for 

skidders (Wang et al., 2004a; 2004b).  

Gasoline and oil (lubricant) consumption was estimated for chainsaws.  Chain saw; 

Husqvarna 55 consumes 10 ml/min at 8500 rpm (operator manual, Husqvarna 2002) and 

Husqvarna 372 consumes 4-20ml/min (Husqvarna, 2002). Therefore, an average consumption of 

0.6 lit/hr and 0.72 lit/hr of gasoline, and 0.012 lit/hr and 0.014 lit/hr of lubricant was estimated 

for Husqvarna 55 and Husqvarna 372, respectively. Similarly, it was assumed that 4-axle log 

truck hauls 23 m
3 

of timber
  
as payload (an average equivalent to 20-21 metric tons depending on 

green weight of logs) for an average hauling distance of 80 km (equivalent to 50 miles) that 

includes 16 km of gravel (unpaved) road 64 km of paved road. It was assumed that it consumes 

31.4 liters of diesel and 0.73 liter of lubricant for one way travel of 80 km distance but the fuel 

consumption rate of a loaded trucks travelling on a gravel roads was twice that than on paved 

roads (McCormark, 1990). The return distance of a hauling truck to forest was also included, but 

the fuel consumption of the returning truck on a gravel road was not doubled that on a paved 

road. The estimated pay load incorporates the restriction on the hauling capacity and gross 

vehicle weight for single unit tandem (4 axles) and tractor-semi trailer (5 axles) in West Virginia 

(Spong, 2007). For extracting logging residue, the machine productivity and fuel consumption 

rate for cable and grapple skidders were normalized to a skidding distance of 500 m  (Li et al., 

2006) (Table 2.1). The productivity rate and fuel consumption rate of the loader was assumed to 
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be the same for both harvesting systems. We also assumed the dump truck was used for residue 

hauling with a capacity of 25 tons. But we considered hauling 20 tons or less of unchipped 

residues, and used the same fuel consumption rate as long log truck (English et al., 2000).  

 

Table 2. 1 Machine productivity and fuel consumption rate. 

Process Machine and Model Hp Productivity Diesel 

L/m
3
 

Lubrica

nt 

(m
3
/PMH) L/m

3
 

Mixed hardwood 

timber 
          

Felling with 

topping  and 

delimbing  

Chain Saw, 5.4 3.87
 a
 *0.19

 e
 0.004

e
 

Husqvarna 372
 a
 

Skidding  Cable skidder,
 
Timber

 a
 

Jack 460  

174 7.69
 a
 1.72

 a
 0.49

 b
 

Felling Feller buncher, Timbco 

445 C 

260 25.25
 b
 2.08

 d
 0.22

 c
 

Topping and 

delimbing 

Chain Saw, Husqvarna 

55
 a
 

3.4 5.06
c
 *0.16

e
 0.003

 e
 

Skidding Grappler skidder 

Timber jack 460
 a
 

172 7.21
 c
 1.84

c
 0.52

 c
 

Logging residue      

 Cable skidder NA 5.66
 e
 1.34

e
 0.80

 e
 

 Grappler Skidder NA 14.50
 e
 0.84

 e
 0.31

 e
 

**Loading Large Loader  NA 13.17 
b
 1.437

 b
 0.026 

b
 

**Hauling Long log truck  NA 7.77 
b
 12.73

b
 0.229

b
 

*Represent gasoline consumption instead diesel; **Represent common process of harvesting; 

PMH = Productivity per Machine Hour; PMH calculation includes productive time and delay 

time delay time, 
a 
Wang et al 2004a; 

b 
Oneil et al 2010; 

c
Wang

 
et al 2004b; 

d
Brinker et al 2000. 

e
Hasqvarna 2002, 2011; Li et al 2006. 

 

 

2.2.4 Carbon Emissions from Fuel Consumptions 

C emissions were calculated for both manual and mechanized harvesting systems. Carbon 

emissions from fossil fuels like diesel combustion (CDC) and gasoline combustion (CGC) were 
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based on the carbon dioxide emission estimates by USEPA (2005). C emission from lubricant 

consumption (CLC) was calculated using the method for industrial product and process by IPCC 

(2006). The default carbon content of lubricant, 20.0 kg C/GJ was used based on a lower heating 

value basis. Using the principles outlined in the Good Practice Guidance of IPCC (2006) and by 

USEPA (2010) total carbon emissions (TCFc) was estimated. TCFc (Eq. 2.6) from fossil fuel 

consumption in timber harvesting, residue extraction, and timber and residue hauling process 

was based on the calculation of C emissions from diesel (Eq.2.7), lubricants (Eq. 2.8) and 

gasoline (Eq. 2.9).  
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Where, Hv is the harvested volume (m
3
) of timber, k is the k

th
 harvesting system (1 = 

manual, 2 mechanized);  ,  , and   are diesel, lubricant, gasoline consumption rate (liters per 

hour) of  machine m, n, o, and p in harvesting system k;  Pm  is the productive machine hour of 

the involved machine m, n, o .and p; pd is the net payload (tons) of hauling truck; γq  and ∂q are 

diesel and lubricant consumption rates per km (liters/km) of hauling truck, dg is the gravel 
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distance (km), dp is the paved distance  in km, 𝛼 is CO2 emission (tons) from diesel,   is CO2 

emission (tons) from lubricant, ŋ carbon emission (tons) from gasoline and 𝜹  is molecular 

weight of carbon (tons).  

 

2.2.5 Sensitivity Analysis 

Sensitivity analysis of carbon emissions from timber harvesting was conducted in terms 

of skidding distance, hauling truck types, hauling distance, and payload size. In conjunction with 

hauling distance and payload size, forest type was also used to analyze the forest carbon 

displacement rate. Skidding distance ranged from 300 to 1000 m for both cable skidder and 

grappler skidders. Similarly, hauling distance was categorized as 80, 160, 240 and 300 km (50, 

100, 150 and 200 miles) and 80 km hauling distance as a base case (Harouff, 2008). Based on the 

payload capacity and fuel consumption rate, five hauling truck types were considered with a 

maximum payload capacity of 14, 19, 23, 28, 30 m
3
 for single axle, single unit tandem with 3 

axle, single unit tandem with 4 axles, tractor-semi trailer with 5 axles and six-axle long loggers, 

respectively (Mason et al., 2008; Spong, 2007; Timson, 1974). For six-axle long logger, diesel 

consumption rate was assumed to be 8.04 km/lit (5 miles/gallon) and lubricant was assumed to 

be 708.5 km/lit (6 gallon oil change at 10000 miles) with an average payload of 26.7 metric tons 

(Mason et al., 2008). Hence, we assumed, 9.65, 11.26, 12.87, 14.48 km/lit (6, 7, 8, 9 

miles/gallon) of diesel consumption for these five types of trucks as the payload size decreases. 

Similarly, we also assumed lubricant consumption rate of 850 km/liter (5 gallon oil change at 

10000 miles drive) for single axle truck and single unit tandem with 3 axles, but for others 

hauling  truck types lubricant consumption rate was assumed to be same as six-axle truck. 
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Forest carbon displacement rate from hauling distances (80, 160, 240 and 320 km) was 

also analyzed by forest group types for harvesting system and harvested residue extraction 

system assuming mixed hardwood species as a base case. We categorized tree species into three 

major forest type groups based on national core field guide for North Central and Northeast 

regions (USDA FS, 2006). The selected major forest groups were (1) Oak-hickory which 

includes all oak species, hickory, black walnut and yellow-poplar, (2) Ash-cottonwood, and (3) 

Maple, beech, basswood and birch. Four different scenarios of carbon emissions for mechanized 

and manual harvesting systems of mixed hardwood species were simulated to examine the 

uncertainty of carbon emissions using Markov-chain Monte Carlo (MCMC pack) simulation in 

R. For both harvesting systems, carbon emissions from harvesting and hauling up to 80 km 

distance was assumed as a base case scenario while 160, 240 and 320 km distances included as 

there different scenarios. Annual carbon emissions amount from harvesting systems was 

proportioned to per unit of the periodic mean harvested timber volume. The obtained value was 

simulated for 1000 times with a known variance (normal likelihood) and assuming a conjugate 

normal prior mean for hauling distance of 160, 240, 360 km using two different harvesting 

systems. 

 

2.3 Results and Discussion  

2.3.1 Forest Carbon Balance 

In West Virginia, annual net volume of mixed hardwood forest is 689 ± 30.16 million 

cubic meters with mean carbon stock of 46.76 ± 2.06 tC/ha. Annual average carbon stock (tC/ha) 

of forestlands was significantly different over the years (p = 1.430e-09) due to different growth 

in volume. The annual growth in volume of live trees increased annual carbon growth (increase 
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in forest carbon stock) and it was also significantly different over the years (p = 0.001386). This 

annual tree growth added 1.09 ± 0.19 tC/ha to the existing carbon stock. It was found that the 

simulated annual carbon growth would range from 0.63 to 1.69 tC/ha for the next 100 years (Fig 

2.2a). Annually, 2.6 ± 0.44 million tons of carbon (Mt C) stored in trees were removed through 

harvesting from timberland with an average removal of 44.89 ± 1.69 tC/ha. The mean carbon 

stock (tC/ha) and carbon removed (tC/ha) were significantly different among tree species groups. 

For example, yellow-poplar shares an average of 11% of the timberland stock but it was 

harvested with an average of 20% of the annual timber harvested volume. 

Annually, forest fires also depletes 0.21± 0.03 Mt C stored in timberland and it attributed 

to carbon loss of an average of 0.05 ± 0.02 tC/ha. Since smaller amount of forest carbon loss 

occurred due to forest fire, it would not significantly reduce net forest carbon balance (tC/ ha).  

An annual carbon loss from net dead trees is 28.63 ± 15.06 Mt C with an average of 6.35 ± 3.09 

tC/ha in West Virginia. Though large amount of carbon loss occurred from dead trees, carbon 

release time in atmosphere would be lagged by the time period required for wood decay. 

Normally 20 years period is required to release carbon from dead trees (Janisch and Harmon, 

2002). 

Existing carbon balance would be increased in coming years, but carbon loss from 

harvesting and forest fire would also increase simultaneously (Fig 2.2b). The pattern of carbon 

loss and carbon balance per hectare would be parallel to each other because annual forest growth 

per hectare was attributed to the volume of harvested timber and volume loss due to forest fire.  

Continuation of timber harvesting at the current mean annual harvest rate would be helpful to 

increase carbon balance (tC/ha) significantly with slight variation in annual carbon loss (tC/ha) 

due to dead trees (Figure 2b). However, this would not be possible in practice because of the 
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increasing demand of wood and wood products. Thus, if we increased current harvesting 

intensity (volume) by 5% and kept constant for consecutive five years and repeated this process 

for 100 years period in order to meet the increasing wood demand, we found that a significant 

amount of carbon stock (tC/ha) would be created and more atmospheric carbon would be 

sequestered in the forest. It was also observed that increases up to 5% of the harvested volume 

would be considerable to augment forest carbon stock (Figure 2b). Greater than 5% harvesting 

intensity would not be advantageous. For example, if increased by 10 %, the carbon loss from 

harvesting would be greater than the carbon balance after 50 year, and the net forest carbon 

balance (tC/ha) would start decreasing after that years. Thus the difference between carbon 

balance and carbon loss could play an important role in enhancing carbon stock per hectare. If 

the difference is positive, this indicates the sustainable forest management practice exists to 

sequester more atmospheric carbon. Otherwise, the management efforts would be oriented to 

accrue more biological carbon cycle and maximize carbon stock.  

The mean carbon balance would be 1.16 tC/ha (Fig 2.3a) ranging from -3.41 to 6.13 

tC/ha. At 95% confidence level, the net forest carbon balance would be between -2.53 tC/ha at 

0.025 quantile and 4.83 tC/ha at 0.975 quantile. At 90% confidence level, the net carbon balance 

would be between -2.25 tC/ha at 0.05 quantile and 4.41 tC/ha at 0.95 quantile. If dead trees were 

treated as carbon loss and simulated along with carbon loss from removal and fire, the mean 

carbon balance would be -3.63 tC/ha with a range from -11.83 to 4.89 tC/ha (Fig 2.3b). At 95% 

confidence level, the net carbon balance would be between -9.32 tC/ha at 0.025 quantile and 2.31 

tC/ha at 0.975 quantile. At 90% confidence level, the net carbon balance would range from -8.63 

tC/ha at 0.05 quantile to 1.51 tC/ha at 0.95 quantile. Under this condition, there would be a 

higher possibility that the existing forest carbon balance could decrease. 
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Figure 2.2 Predicted trends of carbon growth and carbon balance for 100 years: 

(a) Carbon growth rate per hectare. (b) Cumulative carbon balance from stock and current 

carbon timber removal rate with the growth rate, constant timber volume removal rate 

and 5% increment in removal rate for a consecutive five year period.   

 

 

 

Figure 2.3 Stochastic simulation of carbon balance from net stock and growth rate: 

(a) Carbon balance includes timber removal and fire loss rate, (b) Carbon balance 

including timber removal, fire loss and net dead rate.  
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2.3.2 Carbon Emissions from Timber Harvesting and Transportation  

Carbon emission rates from consumption of fossil fuel was 5.06 ± 0.90 tC/TCM using 

manual harvesting systems and 6.84 ± 1.22 tC/TCM using mechanized harvesting systems with a 

hauling distance of 80 km or less. Mean carbon emission level from mechanized and manual 

harvesting systems was not significantly different (p = 0.058) at 95% confidence level. It could 

be attributed to the similar fuel consumption and productivity rates for loading and hauling in 

both harvesting systems. Annual carbon emission was directly proportional to timber volume 

harvested (Table 2.2). Carbon emission in both harvesting systems was lower in contrast to the 

average carbon content level (296 kg/m
3
) of timber harvested that is consistent with the carbon 

content of (307 kg/m
3
)
 
 for hardwood round logs in the Northeast region (Skog and Nicholson, 

1998).  

Mean carbon emission of combined diesel and gasoline consumption did not significantly 

differ (p = 0.106) while it was significantly different from lubricant consumption (p = 0.031) 

between mechanized and manual harvesting systems.  It was 6.06 and 4.61 tons/TCM from 

combined diesel and gasoline consumption and 0.65 and 0.45ton/TCM from lubricant 

consumption for the mechanized and manual harvesting systems, respectively. In carbon 

emission level from both harvesting systems, hauling process contributed greater percentage of 

carbon emission from diesel and gasoline consumption (Table 2.3). It was followed by felling 

and skidding in mechanized harvesting system, whereas it was followed by skidding and loading 

process in manual harvesting system. Similarly, skidding process contributed greater percentage 

of carbon emissions from lubricant consumption in both harvesting systems.  
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Table 2. 2 Annual C emissions (in thousand tons) in harvesting mixed hardwood species. 

 

Year 

Fuel type 

 

Machine 2000 2006 2008 2009 

Manual Harvesting System 

 

*Chainsaw  0.941 1.219 1.220 0.854 

Diesel Cable skidder 9.804 12.696 12.710 8.895 

 

Larger Loader 8.190 10.605 10.617 7.430 

 

Long log truck 17.121 22.170 22.194 15.533 

 

Subtotal 36.056 46.689 46.741 32.711 

      Lubricant Chainsaw  0.024 0.031 0.031 0.022 

 

Grapple skidder 2.961 3.834 3.838 2.686 

 

Larger Loader 0.157 0.203 0.204 0.143 

 

Long log truck 0.422 0.546 0.547 0.383 

 

Subtotal 3.564 4.615 4.620 3.233 

 

Total  39.619 51.304 51.361 35.944 

Mechanized Harvesting System 

Diesel Feller-buncher 11.857 15.353 15.370 10.757 

 

*Chainsaw  0.792 1.026 1.027 0.719 

 

Grapple skidder 10.488 13.582 13.597 9.516 

 

Larger Loader 8.190 10.605 10.617 7.430 

 

Long log truck 17.121 22.170 22.194 15.533 

 

Subtotal 48.448 62.736 62.806 43.954 

      Lubricant Feller-buncher 1.329 1.721 1.723 1.206 

 

Chainsaw  0.018 0.023 0.023 0.016 

 

Grapple skidder 3.142 4.068 4.073 2.850 

 

Larger Loader 0.157 0.203 0.204 0.143 

 

Long log truck 0.422 0.546 0.547 0.383 

 

Subtotal 5.068 6.563 6.570 4.598 

 

Total 53.516 69.299 69.376 48.552 

* Chainsaw uses gasoline.  
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Table 2. 3 C emissions from fossil fuel due to harvesting hardwood species by harvesting 

function. 

 

Manual harvesting system Mechanized harvesting system 

 

Diesel (C %) Lubricant (C %) Diesel (C %) Lubricant (C %) 

*Felling 2.61 0.68 24.47 26.23 

Processing 

  

1.64 0.36 

Skidding 27.19 83.08 21.65 61.99 

Loading 22.71 4.41 16.90 3.10 

Hauling 47.48 11.84 35.34 8.32 

*Felling process in manual harvesting consumes gasoline and topping and delimbing are also 

associated with it. 

 

2.3.3 Carbon Displacement from Forest to Sawmill  
 Carbon stored in standing trees was displaced from timberland to sawmill or facilities at 

the expense of carbon emission from fossil fuel consumption of timber harvesting system. In the 

base case scenario (mixed hardwood) of mechanized harvesting, the forest carbon displacement 

rate was 2.31% of the carbon stored in harvested timber, while it was 1.71% of the carbon stored 

in the harvested timber using manual harvesting system. This variation in forest carbon 

displacement rate was due to higher carbon emission amount from mechanized harvesting 

system than manual harvesting system. As hauling distance increased, the carbon displacement 

rate also increased (Figure 2.4a and 2.4b). It was 4.37% and 3.77 %, respectively for hauling up 

to 320 km in mechanized harvesting and manual harvesting. Therefore, longer hauling distance 

could indirectly decrease the accountability of the carbon balance of the harvested timber to 

some extent. Forest carbon displacement rates also varied with the harvested volume of different 

forest types since the average carbon content by forest type varied. For example; the estimated 

carbon content of the harvested timber was 296, 282, 303 and 316/TCM for the base case (mixed 

hardwood), ash-cottonwood, and oak-hickory and maple-beech-birch forest type, respectively. 
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Therefore the forest carbon displacement rate was greater in ash-cottonwood forest type than that 

in the mixed hardwood types, but it was lower in maple-beech-birch forest type and followed by 

oak-hickory forest type (Figure 2.4a and 4b) in both harvesting systems.   

 

 

Figure 2.4 Carbon displacements of four different forest type from the timber harvesting 

systems and the generated residue extraction systems. (a) and (b) timber harvesting under 

mechanized and manual harvesting systems. (c) and (d) residue extracting under cable and 

grappler skidding systems. 

Approximately 265 m
3 

(32 green metric tons/ ha) of logging residue was estimated for 

harvesting 1000 m
3 

volume of mixed hardwood species. This estimate was 7 tons/ha greater to an 
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estimated of 25 tons/ha of wood residue availability in southern WV (Grushecky et al., 2007). In 

the base case, forest carbon displacement rate was 1% and 1.2% of the carbon stored in logging 

residue using a cable skidding system or a grappler skidding system, respectively. This 

difference was due to higher fuel consumption rate of grapple skidder than by cable skidder in 

the residue extraction process. The difference would be greater when hauling for a longer 

distance due to coupled effects of road types, i.e., 1.9% using cable skidder and 2.2% using 

grappler skidder for hauling up to 320 km (Figure 2.4c and 4d). The forest carbon displacement 

rate variation was also observed among forest types (Figure 2.4c and 4d). This variation was also 

coupled due to green weight of unchipped residue that limits truck payload size and increases 

trucking cycle time.  

The forest carbon displacement varied for both harvesting system and residue extraction 

system due to the effects of carbon content of trees and their composition on the timber harvested 

volume for the respective forest types. Therefore, tree species with varied carbon content per unit 

volume, would play an important role in determining net carbon balance of harvested timber and 

forest carbon displacement rate from forest to sawmill. For example, yellow-poplar of 215 

tons/TCM in Oak-hickory forest group, cottonwood of 205 tons/TCM in Ash-cottonwood forest 

group.  

 

2.3.4 Sensitivity Analysis and Uncertainty of Carbon Emission  

It was found that carbon emission (tons/TCM) increased with skidding distance (Figure 

2.5a). Carbon emission from grappler skidder was sharply increased from 0.19-0.47 tC/TCM 

while carbon emission from cable skidder was gradually increased from 0.18 – 0.27 tC/TCM 

when the skidding distance changed from 300 to 1,000 m. In this regard, the use of a cable 
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skidder would be beneficial in avoiding certain amount of carbon emission from these harvesting 

systems. 

The amount of carbon emission (ton/TCM) varied with different hauling truck types. In 

the base case of 80 km, carbon emission tons/TCM was almost equivalent for all five trucks 

types. But when distance was increased up to 320 km, it was found that carbon emission per unit 

volume transported using a single axle truck was quite greater than that of other truck types 

(Figure 2.5b). A single axle truck has a smaller payload and the higher number of hauling cycle 

though it consumes less fuel compared to other trucks. The use of tandem-4 axle single truck or 

tractor-semi trailer-5 axle truck would be beneficial in minimizing carbon emissions amount 

from the hauling process at greater distances. 

 

 

Figure 2.5 Carbon emission variations during skidding and hauling of mixed hardwood 

species: (a) by skidder types and skidding distance (meters) and (b) by truck type and 

hauling distance (km). 

 

The amount of carbon emissions (tons/TCM) from the hauling process was also affected 

by truck payload size and hauling distance for different forest types. Trucking for a longer 
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hauling distance with smaller payload size would emit a greater amount of carbon (Figure 2.6a, 

6b, 6c and 6d). However, average truck payload size is usually 5 m
3
 less than the maximum 

payload, because log dimension, shape and log arrangement in a truck determine the payload size 

at volume rather than payload size at tons (Timson, 1974). Hence, greater carbon emissions 

would occur from hauling timber at lower payload size (18 m
3
) compared to a standard payload 

size (23 m
3
), which results in a carbon emission ratio of 1:1.27.  

 

 

Figure 2.6 Carbon displacement rate variations from hauling process by different payload 

size at different distances: (a) Mixed hardwood forest species (b) Oak-hickory forest group 

(c) Ash-cottonwood forest group, and (d) Maple-beech-birch forest group. 
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In the base case scenario of 80 km distance, a slight deviation in mean carbon emission 

level (tC/TCM) existed for both harvesting systems if it was iterated for 1,000 times (Figure 2.7a 

and 7c). For mechanized harvesting, mean carbon emission was 6.87 ± 0.56 tC/TCM ranging 

from 5.78 to 7.93 tC/TCM (Fig 2.7b) with a higher probability density. For manual harvesting 

system, mean carbon emission was 5.08 ± 0.39 tC/TCM ranging from 4.28 to 5.81 tC/TCM 

(Figure 2.7d). The mean carbon emissions of both harvesting systems was positioned at 50% 

quantile and was similar to the estimate (tC/TCM) under typical operational conditions for both 

systems.  

 

Figure 2.7 Trace plot and probability density plot of carbon emission (tC/TCM) using 

mechanized (a) and (b) and manual (c) and (d) harvesting systems in the base case scenario. 
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In the scenario of hauling distance up to 160 km, the mean carbon emission was 8.88 ± 

0.70 tC/TCM and 7.07 ± 0.57 tC/TCM at 50% quantile using mechanized and manual harvesting 

systems, respectively (Figure 2.8a and 2.8b). In this case, the uncertainty with respect to carbon 

emissions would range from 7.529 -10.22 tC/TCM for mechanized system and it would be 5.97 - 

8.11tC/TCM for manual harvesting system at 2.5% and 97.5% quantile distribution, respectively. 

If hauling distance up to 240 km, the mean carbon emission was 9.91 ± 0.731 and 9.13 ± 0.735 

tC/TCM at 50% quantile distribution for mechanized and manual harvesting systems, 

respectively (Figure 2.8c and 8d). In this case, the uncertainty for carbon emissions would range 

from 8.37 – 11.34 tC/TCM for mechanized system and 7.69-10.60 tC/TCM for manual 

harvesting system at 2.5% and 97.5% quantile distribution, respectively. Similarly using the 

hauling distances 320 km, the mean carbon emission was 12.97 ± 1.02 tC/TCM and 11.17 ± 0.89 

tC/TCM at 50% quantile using mechanized and manual harvesting systems, respectively (Figure 

2.8e and 8f). These had a range of carbon emissions from 11.03 to 15.06 tC/TCM  and 9.47 to 

12.99 for mechanized harvesting and manual harvesting at 2.5 % and 97.5% quantile distribution 

respectively. 

The estimated uncertainty of carbon emission range would be useful in predicting the 

minimum and maximum level of carbon burden created by fossil fuel consumption by timber 

harvesting systems. The uncertainty of carbon emission levels from harvesting system would 

always be associated with the variation in a machine‘s productivity level (Wang et al., 2004a, 

2004b; Oneil et al., 2010; Li et al., 2006) and hauling process (McCormark, 1990; Oneil et al., 

2010). Higher production per machine hour would create smaller carbon emission burdens and 

vice versa with respect to fossil fuel consumption.  
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Figure 2.8 Probability density of carbon emission (tC /TCM) using mechanized (a, c, e) and 

manual harvesting systems (b, d, f) at three different hauling distance i.e. 160 km (a, b), 240 

km (c, d) and 320 km (e, f). 
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2.4 Conclusions 

Estimation of forest carbon balance considering carbon loss from dead trees and forest 

fire along with timber removal rate helps to predict future carbon balance of the timberland. 

Forest carbon removal due to harvesting, small fire and limited dead trees does not significantly 

impair the existing forest carbon stock. However, an increase in the number of dead trees or 

harvesting intensity could reduce the net carbon balance of timberland. Considering rotation age 

of the natural mixed hardwood forests with slight increase in harvesting intensity, would also 

increase forest carbon stock, meet wood supply demands and undermine carbon emissions from 

fossil fuel consumption. Such practice would have healthy impacts on the carbon stock for 

timberland and neutralize minor natural depreciation of carbon from fire loss and dead trees. 

Natural regeneration in forests, as applicable in the Appalachian region, entails no fossil 

fuel consumption in seedling production and plantation and thus results in zero carbon emission 

level from mechanized instrument. Although mechanized harvesting systems emit more amount 

of carbon into the atmosphere than manual harvesting systems, the mean carbon emissions 

amount do not differ significantly between these two harvesting systems. The amount of carbon 

emissions from fossil fuel consumption due to harvesting is considerably lower than the carbon 

stored in the harvested timber and logging residue. Harvesting functions such as felling, 

skidding, topping and delimbing and loading present less effect on carbon emissions compared to 

hauling. Hauling distance and truck payload size also influence carbon emissions amount, which 

increases the forest carbon displacement rate and reduce the carbon balance in harvested timber. 

The uncertainty of carbon emissions amount and the carbon balance of harvested timber also 

depend on the harvested volume of different forest types and the machine‘s productivity for each 

process. 
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3. CARBON BALANCE ANALYSIS OF HARDWOOD LUMBER PROCESSING IN 
CENTRAL APPALACHIA2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
2
 To be submitted to Forest Products Journal 



 
 

45 

 

Abstract 

Hardwood lumber processing generates mill residue and consumes energy, such as 

electricity and fossil fuels, which eventually increases atmospheric carbon and creates credit 

carbon balance. This study assessed credit carbon emission and carbon balance from lumber 

processing of different size sawmills and its effect on the potential carbon offsetting capacity 

through product useful life. Data were obtained from a regional sawmill survey, public database 

and relevant publications.  Credit carbon balance was statistically analyzed within the gate to 

gate life cycle inventory framework. Stochastic simulation of carbon emission and its impact on 

carbon balance and carbon flux from lumber processing was carried out under different sawmill 

operational scenarios. Credit carbon balance from electricity consumption was significantly 

different among sawmills of different production levels and operation hours per week. Variation 

in carbon emission was also recognized due to different head saws, lighting types and air 

compressors used at sawmills. Generated credit carbon balance in significant amounts from 

energy source consumption reduced carbon accountability of the lumber in its useful life period 

at first order of decay of carbon. This credit balance would also affect wood carbon disposition 

patterns in hardwood sawlogs. Substantial amount of carbon flux occurred due to greater amount 

of energy consumption and exports of lumber would also reduce carbon accountability of lumber 

production. Carbon storage accountability of hardwood lumber could be improved by reducing 

carbon flux from processing using an efficient equipments at sawmill and as well as an 

appropriate mixture of energy sources for electricity supply.  
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3.1 Introduction 

The forest carbon cycle and net carbon budget are influenced by the wood product cycle 

as carbon emissions occurs throughout forest product life span (Apps et al. 1999; Gower, 2003; 

White et al., 2005). Wood products are carbon reservoirs and limit sequestered carbon emission 

into the atmosphere, depending on the type and useful life period of these products (Row and 

Phelps 1996; Skog et al., 2004). Long living wood products act as a carbon pool, create a lag 

time in carbon release and determine the rate of carbon return to the atmosphere (Karjalainen et 

al., 2002). Sustainable wood products in use serve as an important carbon pool in sequestrating 

carbon that would otherwise be released into the atmosphere and contribute to climate change 

(Dixion et al., 1994). Additionally they replace other fossil fuels and energy after their service 

life or decay in landfills (Werner et al. 2005).  

Carbon (C) stocks of wood products can be useful in evaluating their potentials in GHG 

mitigation (Brown et al., 1998; IPCC, 2003). Carbon tracking in wood products requires 

knowledge of life cycle for realistic estimation and statistical representation of potential amount 

of carbon contained in wood. Most estimates of C stocks and stock changes are based on indirect 

estimation models using hypothetical parameters (Kurz et al., 1992; Harmon et al. 1994; Apps et 

al. 1999). One of the approaches to estimating C pools in wood products is accounting  for the 

amount of carbon expected to be stored in wood products and in landfills at the end of a 100-year 

period (Skog et al. 2004; Smith et al., 2006; Birdsey, 2006). Estimation of C in wood products 

can start from the quantity of roundwood that is harvested, removed from the forest and available 

to primary processing for wood products in the mills (Birdsey, 2006). Carbon emission 

estimation of wood products during their life time is affected by the decay rate and fraction of 

carbon allocated to long-lived products (Dias et al., 2005; Smith et al., 2006). Wood decay rate 
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also influences the estimate of the carbon pool and uncertainty of outflow (Winjum et al., 1998). 

The C estimation is also affected by waste treatment practices that influences C sink (Micales 

and Skog, 1997; Pingoug et al., 1996). One way of diminishing the uncertainty of the C pool 

estimates is to perform direct stock inventories of wood products (Pingoud et al., 2001).  

In wood product manufacturing, greenhouse emissions occur from the use of energy 

sources at different processing stages and uses over its life cycle. Normally, it occurs from 

manufacturing process, mill residue process and transportation. According to an EPA report, the 

growth rate in GHG emissions from 1990 to 2008 is weighted an average of 1.8% from 

electricity consumption, 0.8% from fossil fuel consumption 0.8% and 0.9% from energy 

consumption (USEPA, 2010a). The amount of carbon emission from the consumption of 

different energy sources, such as coal, fossil fuels, petroleum, is different because of their 

different heating value and carbon coefficients (US EPA, 2010a, 2010b; USEIA, 2011). The 

mean heating value of these products changes with time depending on the composition (coal), 

the blend of primary ingredients (petroleum products) and impurities (natural gas). This variation 

of carbon emission amount over the course of a year from these different fuel sources leads to 

change in an annual cycle in the carbon isotope ratio (Blasing, 2005). 

In a life cycle inventory (LCI) measure of total energy required, the degree of energy 

required for a product varies based on the wood product type. The energy requirement in 

manufacturing one m
3 

of logs is greater than that for the same volume of logs in harvesting and 

transportation (Lippke et al., 2010). In a LCI of cradle to mill gate analysis, Puettmann et al. 

(2010) reported that hardwood lumber manufacture consumes 62% of the total energy but the 

energy consumption of hardwood flooring was even higher in the northeast region. Lumber 

processing requires large amount of saw logs and concurrently significant amount of wood loss 
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occurs in producing 1 m
3
 dry lumber (Wilson and Dancer, 2005; Bergman and Bowe, 2008). 

Wood loss occurred at each steps of a production chain as a percentage of carbon in the standing 

tree or harvested wood volume helps to portray the carbon losses at each step (Ingerson, 2009). 

The guideline on fraction of carbon disposition in wood product is helpful in estimating the 

wood carbon loss during timber processing (Smith et al., 2006). 

Log processing involves; yarding, debarking and bucking, dying and seasoning, and 

planning process that uses different types of mechanical equipments and consumes different type 

energy sources. Employed mechanical equipments such as head saw, and air compressors and 

sawmill management strategies such as production capacity, and lighting bulbs could play an 

important role in determining carbon emission level at sawmill. Such possible variation in carbon 

emission level ―credit carbon‖ from the mechanical instruments, energy sources at sawmill 

production capacity was overlooked in the previous studies of LCI of wood product processing. 

Additionally, such credit carbon is also disregarded while accounting the carbon stored by the 

produced wood product in its useful life period. Therefore, this study aims to assess the carbon 

balance of hardwood lumber processing from sawmill size within the ‗gate to gate‘ life cycle 

inventory framework. The specific objectives of this study were to: (1) assess the credit carbon 

balance generated from energy consumption at sawmill size and affect of efficient equipments in 

carbon emission level, and (2) examine the effect of credit carbon in the carbon accountability of 

the product in its useful life period.   
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3.2 Methodology 

3.2.1 Methodological Framework and System Boundary 

The debit and credit balance accounting principal was used to account for carbon 

emission as greenhouse gas emission, irrespective of other gaseous emissions. The amount of 

carbon, in metric tona (tC) stored in one thousand cubic meters (TCM) of planed dried lumber 

was assumed as an assets, since it increases the carbon stock of humanly assisted wood carbon 

pool. This increase wood carbon stock at the expense of carbon emissions from the electricity 

consumption, was considered as credit carbon balance. Carbon emissions were quantified based 

upon the quantity of carbon dioxide (44 molar mass) emissions using (12/44) factor value 

(USEPA, 2005). Carbon stored in green hardwood logs was defined as initial carbon stock as an 

is asset, i.e. debit carbon balance. Carbon emission from the use of energy sources, such as 

electricity, gas, and diesel, were accounted as liabilities, i.e. credit carbon balance. Carbon 

emission from mill residues such bark, chips, and sawdust were regarded as carbon loss as 

expense, i.e. credit carbon balance. The carbon stored in the final product of planed sawn lumber 

was regarded as net debit carbon balance accounting against the credit carbon balance from 

energy consumption.  

This process begins with the green hardwood logs at the sawmills yards and ends with the 

final product of planed dried sawn lumber within the ‗gate to gate‘ life cycle inventory 

framework (Figure 1). The system boundary and the process unit were defined as described by 

the National Renewable Energy Laboratory Life Cycle Inventory (NREL, 2010) database that 

covers the  processing of green hardwood logs at a sawmill, kiln drying of rough sawn hardwood 

lumber and planing of kiln dried sawn lumber. Data on lumber production capacity, mill residue, 

energy consumption and energy efficiency practices in Appalachian sawmills were obtained 
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from a mail survey in 2010. A total of 58 sawmill from Pennsylvania, New- York, Ohio and 

West Virginia responded to the mail survey. Sawmills were classified into three categories based 

on their weekly production: (1) small sawmills (SSM):  less than 94.4m
3
/week (≤ 40000 

bdf/week); (2) medium sawmills (MSM) : > 94.4 and ≤ 471.9 m
3
/week (>40000 and ≤ 200000 

bdf/week); and (3) large sawmill (LSM) :  > 471.9 m
3
/week (>200,000 bdf/week).  

The required volume of green hardwood logs to produce 1m
3
 of kiln dry planed lumber 

was obtained from a final report on hardwood lumber production in the northeast region 

(Bergman and Bowe 2008). Similarly, data on energy consumption and lumber production were 

also used to simulate and compare the results obtained from our survey. The survey response was 

not detailed enough to allocate the consumption of different energy sources in producing lumber 

to the  lumber production process i.e. debarking, lumbering and drying, but it provided the 

average monthly electricity consumption rate. Similarly, natural gas consumption in sawmill was 

also reported by a few responses. 

 

3.2.2 Carbon Emission from Energy Sources 

Average monthly electricity consumption reported in kWh/month and the consumption 

rate reported in dollars was normalized to MJ/month based on the industrial average monthly 

bills and state data by US Energy Information Administration (USEIA, 2010) (Table 5). Carbon 

emission (tC/TCM) from electricity consumption (MJ/TCM) was estimated using an average 

emission factor for mixed energy sources reported by the US Environment Protection Agency 

(USEPA, 2010b) on emission and generation resource integrated database (eGrid) for the regions 

of RFC WEST (WV & OH), RFC EAST (PA) and NYUP (NY) in 2004, 2005, and 2007. 

Carbon emission from the mixed energy sources such as fossil fuel, coal, oil and gas were 
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assumed to have an average of 0.17 kg/MJ (USEPA, 2010b). Carbon generated from energy 

sources, such as natural gas, propane, fuel #1, fuel #4 and fuel #6 was estimated using the 

national average carbon dioxide coefficient reported by USEIA (2011). Similarly, carbon 

emission from diesel and gasoline was estimated based on published emission facts by USEPA 

(2005). Energy gained from wood source was excluded assuming that it was substituted by mill 

residue generated from lumber processing at sawmill and to avoid double quantification of 

carbon stock. Other related carbon emissions amount from electricity consumption (EC) from 

offsite generation and onsite generation  and all energy sources (ES) used in lumber processing 

was based on the CORRIM  report(Bergman and Bowe 2008) (Table 3.1).  

 

Table 3. 1 Carbon emission from all energy sources. 

Energy source Consumption 

Rate 

SI unit per  

1 m
3
 

Carbon emission per 

1000 m
3
 

Natural Gas 16.4 m
3
 8.62 Kg 

Fuel #1  0.02 L 14.63 Kg 

Fuel #2 2.08 L 1521.05 Kg 

Fuel# 6 0.01 L 8.50 Kg 

Propane 1.477 L 610.81 Kg 

Electricity : Offsite generation 597 MJ 28040.91 Kg 

Electricity : Onsite generation 10.2 MJ 479.09 Kg 

Off-Road Diesel 6.65 L 4862.99 Kg 

Gasoline 0.571 L 366.55 Kg 

Total 

  

35913.15 Kg  

Note: Carbon emission was estimated at higher heating values of energy sources. 
 

Carbon emissions (tC/TCM) from electricity consumption in lumber processing for 

different sized sawmill were simulated for 1,000 times using a known variance (normal 

likelihood) and assuming a conjugate normal prior mean. The uncertainty of carbon emission 

levels was examined using Markov-chain Monte Carlo (MCMC pack) simulation in R.  Scenario 
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analysis of carbon emission from electricity source in eGRid sub region was carried out 

assuming coal, gas, oil and other fossil fuels are the major source of electricity generation. 

Though, nuclear and renewable sources shares significant percentage in electricity generation we 

didn‘t include assuming these sources is neutral to greenhouse gas emission. An average 

electricity generation shared percentage by the four energy sources from 2004 2005 and 2007 

were proportioned to the total quantity of electricity generated. The base case was of mixed 

current source shared by coal (78.1%), gas (16%), oil (4.9%), and other fossil fuels (1.1%). Other 

scenarios of mixed sources of electricity in the eGrid sub-region include: Scenario 1 (RFC 

WEST) - coal (95.5%), natural gas (3.1%), oil (0.5%) and other fossil fuel (0.8%); Scenario 2 

(RFC East)-, coal (75.2%), natural gas (18.4%), oil (4.8%) and other fossil fuel (1.5%); and 

Scenario 3 (NYUP) - coal (52..5%), natural gas (34.9%), oil (11.8%) and other fossil fuel 

(0.8%).  

 

3.2.3 Carbon in Lumber and Mill Residue 

Wood loss occurred during lumber processing was accounted as a percentage of carbon 

stored in green hardwood logs at sawmill yard. Carbon stored in green hardwood logs was 

estimated at oven dry stage. An average of 296 kg
 
of carbon was contained in one cubic meter of 

logs for the central Appalachian mixed hardwood species (Saud, 2011). A similar value of 307 

kg/m
3 

was used for carbon for round wood in the northeast region
 
(Skog and Nicholson, 1998) 

and 260 kg/m
3
 was used for both hardwood roundwood and hardwood lumber for the Unites 

States (Skog 2008). In hardwood lumber processing, volume shrinkage changed from 1.46 m
3
 of 

green lumber to 1.37 m
3 

of dried lumber (Bergman and Bowe, 2008)
 
and carbon per unit also 

differs in wood products (Skog, 2008). Therefore, we assumed 315 kg/m
3
 of carbon per unit 
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volume of planed dried lumber. Mill residues such as chips and sawdust (reported in green tons ) 

were assumed to contain 50% moisture, and were then converted to dry tons (Siau, 1984). 

Carbon content of mill residue was assumed to be similar to saw logs. 

The impact of carbon emission (Cemission) from electricity at sawmills and from other 

energy sources on the fraction of carbon (j) in lumber (FClum) over its useful life period of 100 

years (n) was analyzed. For this, credit carbon pay off period (PP), equation 3.1, was estimated. 

PP is the time when the amount of carbon emission/credit carbon balance equivalent to the 

fraction of carbon in lumber at year i,. This payoff period was estimated under half life scenario 

at first order of decay rate of carbon of hardwood lumber and the carbon disposition rate of  

industrial roundwood in the northeast region respectively (Smith et al., 2006) (Tables 6 and 9). 

Similarly, affect of carbon emissions from the average of all sawmill energy source consumption 

was analyzed for the carbon disposition pattern in sawlogs over the 100-year period.   

Carbon flux from lumber processing was also analyzed considering the carbon emission 

from energy consumption, export of lumber and carbon loss from mill residues at sawmills. 

Similarly, four different scenarios of carbon flux (CF) from energy (CFenerery), export of lumber 

(CFexport) and FClum from lumber production, for a 100-year period were analyzed. Cumulative 

carbon balance in lumber (CCBlumber) (Eq. 3.2), cumulative carbon emission from energy 

(CCFenergy) (Eq. 3.3), cumulative carbon flux from export  (CCFexport) (Eq3.4) were used to 

estimate cumulative carbon flux ratio (CCFR) (Eq. 3.5). The base case includes carbon flux from 

the average energy consumption and the average export of the lumber from sawmills. Other 

scenarios for CCFR were; (1) export and all ES consumption (2) export and 25% reduction in 

carbon emission or in all ES consumption, and (3) export and 50% reduction in carbon emission 

or all ES consumption.   



 
 

54 

 

 

Figure 3. 1 Methodological framework and system boundary using LCI method. 

Note: -minus sign denotes credit carbon balance and + sign denotes debit carbon balance 
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3.2.4 Avoided Carbon Emission 

Carbon that is not emitted from electricity consumption for lumber processing is regarded 

as avoided carbon emission. Typically, it is attributed to sawmill management that includes using 

efficient electric motors, upgrading efficient equipment such as head saws, air compressor, and 

lighting bulbs. Based on the machine‘s engine‘s capacity (hp), load factor (lf), utilization factor 

(Uf) and yearly operating hours (Oh), estimated energy usages (ER) can be reduced to 2% -5% 

using the Motor Master+ software (Gopalakrishan et al., 2008). However, the energy saving 

efficiency achieved can be up to 10-15% by identifying the most efficient action for a given 

repair or motor purchase decision at medium sized and large industrial facilities (USDOE, 2010).  

Energy saving was estimated with reference to the wood industry assistance program 

focusing on IOF WV priorities (Gopalakrishan et al., 2008). The base case of a typical sawmill 

includes 1 air compressor (60 hp), 1 band saw (200 hp), 1 band saw (250 hp), 1 debarker (50 hp), 
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1 chipper (200 hp), 1 edger (50 hp), 8 trim saws (7 hp), 4 vibrators (7 hp), 1 crane chain (50 hp) 

and 2 log decks (20 hp). Avoided carbon emission scenario was analyzed at 2% and 5% energy 

saving with a range of 0.6 to 0.9 for both machine usage and load factors. Based on the above 

data and operation hours for  sawmills, we estimated the potential avoided carbon emission 

amount from electricity saving. The total energy usage of the manufacturing system can be 

estimated using Equation (3.6) (Gopalakrishan et al., 2008).  

 

                                   (3.6) 

0.746 converts hp into kilowatts 

 

3.2.5 Sawmill Processing Assessments 

 Our survey responses were classified into categorical data and parametric data and were 

analyzed according to sawmill size.  The categorical data such as response on use of efficient 

techniques and upgrading motors were analyzed in SPSS using crosstab.  

 Parametric (ratio and interval) data analysis was conducted in R. 2.9.2. Two-way 

Analysis of Variance (ANOVA) was conducted at a 95% confidence level to examine whether 

significant difference exist in mean monthly electricity consumption, mean operation hours per 

week and mean lumber production per week among different size sawmills. Further, post-hoc 

test, Tukey‘s Honestly Significant Difference (HSD) multiple comparison of mean was used to 

detect how difference exists among pairs of sawmills sizes at a 95% family wise confidence 

level. A linear regression model was fitted to predict yearly sawmill C emissions (metric tons) 

(CEsm) during the lumbering process through electricity consumption. The carbon emission 

based rate, based on average monthly electricity consumption rate, was interpolated into yearly 
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carbon emission values. Parameters, such as lumber production per week (lumw) in m
3
, operating 

weeks per year (Opweekyr) and operating hours per week (Ohrwk), were used and tested at a 95% 

significance level.  

Random effect of the use of efficient techniques in the carbon emissions amount from 

lumber processing was also analyzed by sawmills size. Specifically, a linear mixed effect model 

was employed for the carbon emission per TCM of lumber which depends on the main effect of 

sawmills size as the fixed effect.  Random effect of the head saw types, lighting bulb types, and 

air compressor type was introduced and adjusted to the intercept as well as to sawmill size, in 

each model.  

 

3.3 Results and Discussion 

3.3.1 Carbon Emission from Electricity Consumption 

Sawmills were operated with an average of 34.8, 40.4, 42.7 hours per week with one shift 

in small sawmills (SSM), medium sawmills (MSM) and large sawmills (LSM), respectively. 

Similarly, the yearly average operation weeks were 47.46 for SSM and 50.4 weeks for both 

MSM and LSM. Consequently, electricity consumption rate was different among sawmills size 

with different production capacity (Table 3.2). The mean carbon emission from electricity 

consumption was 23.96, 11.03 and 0.87 tC/month for LSM, MSM and SSM, respectively. 

Therefore, carbon emission from lumber production was 9.01, 17.51 and 9.40 tC/TCM in LSM, 

MSM and SSM, respectively. The lower carbon emission in LSM might be attributed to the 

higher lumber production level and the use of efficient electric motosr in these larger sawmills.  
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Table 3. 2 Descriptive statistics of lumber production and electricity consumption. 

Sawmill size Lumber production (m
3
/month) Electricity (MJ/month) MJ/m

3
 

 Mean Min Max Mean Min Max Mean 

SSM (n=10) 152.16 4.72 377.56 18943 1800 79200 124.5 

MSM(n=16) 822.29 424.75 1415.84 318337 5796 1025640 387.1 

LSM (n=5) 2624.03 2123.76 3539.61 584431 400000 1168358 222.7 

 

Significant differences exist in carbon emission from electricity (p=0.0047, F=6.6928), 

in operating hours per week (p=0.004523, F0 = 6.2198), and between lumber production levels 

per week (p=0.0001, F=125.44) for different sized sawmills.  It was also found that significant 

differences exist in mean annual carbon emission between LSM and SSM but not with LSM and 

MSM, and SSM and MSM pairs. Likely, significant differences did not exist in mean operating 

hours per week between LSM and MSM but differences exist between other pairs (LSM-SSM 

and SSM –MSM). However, the significant differences exist mean weekly lumber production 

levels among different sawmills sizes.  

Linear regression model was developed to predict the yearly C emission from sawmills 

(Eq. 3.7). The model was significant (P [F0 ≥16.42]   4.184e-06) and the coefficients of the 

predictors were also significant. The residual fitted plot (Figure 3.2a) suggests we can assume 

constant error of variance. The normal quantile-quantile (Q-Q) distribution plot (Figure 3.2b) 

suggests it is possible to assume normality of the errors though there appears to be a slight 

departure due to few outliers.  

 

 E      Lum      (Lum )
2
    { 

 
(

1

 pweekyr
  hrwk)}      (3.7) 

 

 0 = 1.005e+00,  1 = -1.402e-03,  2 = 1.085e-19, adjusted R
2
 = 0.623   
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Figure 3. 2 Diagnostic plots of the predictors to estimate the yearly C emissions from 

sawmilsl. 

 

3.3.2 Carbon Emission and Energy Capture 

While producing 1,000 m
3
 of lumber, a total of 2290 m

3 
of green round wood is required 

and almost 64% of the volume is turned into wood residues (NREL, 2010, Bergman and Bowe, 

2008).   Approximately, 316.5 out of 680.13 metric tons of wood carbon are deposited as major 

mill/wood residues such as sawdust, chips and slabs. Carbon emissions from slabs were not 

considered in analysis because very few sawmills produced slabs in each sawmill size group. An 

average of 637.5, 422.50 and 383.22 green metric tons/TCM of chips and an average of 220.86, 

262.50, and 232.71 green metric tons/TCM of sawdust were generated in SSM, MSM and LSM. 

Thus, an average of 286, 228.3, 205.3 tC/TCM of carbon were emitted with and without 

corresponding energy capture from SSM, MSM and LSM. It corresponds to an average of 212.5, 

140.8, 127.7 tC/TCM from chips and 73.6, 87.6, 77.6 tC/TCM form sawdust in SSM, MSM and 
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LSM.  The carbon emission amount from mill residue varied with the dimension of hardwood 

logs being processed. Typically, the smaller the diameter of log, the higher proportion of the mill 

residue. It also depends on shape such as green log taper.  

Onsite carbon emission due to energy capture was greater from the combustion of chips 

than sawdust (Figure 3.3). Chips recaptured a greater amount of carbon when used for either 

heating or fuel purposes, i.e. 91.1 tC/TCM at SSM and 71 tC/TCM at LSM.  Similarly, sawdust 

also recaptured a greater amount of carbon, i.e. 18.4 tC/TCM at SSM and 13.68 tC/TCM at 

LSM. This recaptured carbon from chips and sawdust as energy source, was released into the 

atmosphere at zero year of the lumber production.  In the study area, timber product output data 

for 2001 and 2006 showed that an average 92% of carbon is emitted from using mill residue 

when used as energy source (USDA FS, 2010). However, such energy captures could account for 

1.5% of the total energy consumption in U.S. (Perlack et al., 2005). 

Industrial use of chips and sawdust was another source of carbon emission from the 

energy capture process. Carbon emission from industrial use of chips was greater in LSM and 

MSM while it was greater for sawdust in SSM and LSM. They were utilized either to generate 

heat or produce different short lived wood products, i.e. pulp and paper, pallets and barn that 

could lengthen carbon emission period. Similarly, carbon emission amount without energy 

captured from chips was significantly greater in SSM (91.1 tC/TCM) and it was greater in LSM 

(46.54 tC/TCM) from sawdust. Mill residue used for either mulching purpose on the farm or 

animal bedding lagged the carbon release time into the atmosphere than the residue used for heat 

or fuel purpose. This type of carbon emission, without energy capture, accounts for 8 % of the 

total carbon of mill residues (USDA FS, 2010). Therefore, mill residues used for either industrial 
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or farm purposes would be helpful to extend wood carbon life and increase carbon stock, as short 

lived wood product does.  

 

 

Figure 3. 3 Carbon emissions with and without energy capture processes from sawmill size. 

 

3.3.3 Energy Efficient Equipment and Avoided Carbon Emission 

(a) Energy efficient equipment 

It was recently found that, MSM (13.9%) and LSM (8.3%) had upgraded efficient 

techniques to avoid carbon emissions, but SSM did not.  However, every sawmill size had used 

efficient electric motor and had usually achieved at 80-90% efficiency level (Table 3.3). The 

efficiency level in energy consumption was coupled from the use of different efficient techniques 

such as head saws, light bulbs, and air compressors. Head saw used in sawmills were band 

(38.1%), circular saw (45.22%) and both types of head saws (16.7%). Lighting used in sawmills 
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varied from fluorescent bulbs (53.8%), incandescent bulbs (17.9%) and both (28.2%). Similarly, 

sawmills used conventional air compressor (45.7%) and/or highly efficient screw drive air 

compressors (45.7%) and both compressors (8.6%).  

 

Table 3. 3 Descriptive statistics of the efficient technique utilization in sawmill types. 

Efficient Techniques SSM  MSM  LSM  Total 

 

(n=11) (n=21) (n=9)  

Upgraded for energy efficient 0.0% 13.9% 8.3% 22.2% 

Efficient electric motor utilization 12.2% 36.6% 22.0% 70.80% 

Efficiency level (n=5) (n=10) (n=7)  

80-90% 13.6% 27.3% 9.1% 50.0% 

91-94% 4.5% 13.6% 18.2% 36.4% 

>94% 4.5% 4.5% 4.5% 13.6% 

 

It was also found that the prediction intervals on the random effects (Fig 3.4) confirmed 

that the conditional distribution of the random effects of air compressor types by sawmill size 

has much less variability than the conditional distribution of the random effects from head saw 

types and light bulb types. Standard deviation on carbon emission (tC/TCM) in lumber 

processing from the random effect of head saw types was 2.51, 4.37, and 6.25 for the LSM, 

MSM, and SSM, respectively. From the random effect of light bulb types, the standard deviation 

was 6.87, 11.764 and 4.13 for the LSM, MSM, and SSM, respectively. Similarly, the standard 

deviation from air compressor type was 1.62, 0.68, and 2.62 for the LSM, MSM, and SSM, 

respectively. The greater variation in conditional distribution of random effect from efficient 

techniques might be the consequences of smaller sample size.  However, the linear mixed effect 

model confirmed that the use of efficient techniques does affect carbon emission of sawmills.  
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Figure 3. 4 Diagnostic plot of variability of carbon emission (tC) per TCM of lumber 

processing by sawmill size at 95% prediction interval on the random effect of efficient 

techniques: (a) head saw types, (b) light bulb types, and (c) air compressor types. 
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(b) Avoided carbon emission  

An average carbon emission from electricity consumption in sawmills was 10. 07 

tC/month. Carbon emission could be reduced by 0.1 - 0.29 tC/month or 1-2.9%, when 2% 

electricity saving was achieved using both load and use factor of the machine at 0.6 in sawmills 

with a power range from 800 to1600 hp (Figure 3.5a). Increased electricity saving level up to 5% 

of existing electricity consumption could increase avoided carbon from 0.25 to 0.73 tC/month or 

2.5-7.2%. Greater amount of carbon emission could be avoided when both load and use factors 

were used at 0.8 (Figure 3.5b). In this case, avoided carbon emission amount could range from 

0.18 to 0.52 tC/month (1.8 -5.2%) at a 2% electricity saving or from 0.45 to 1.3 tC/month (4.5 -

12.9 %) at 5% electricity saving. Likely, in the scenario of the combination of  either load factor 

at 0.6 or use factor at 0.8 of machine in sawmills could achieve avoided carbon amount from 

0.13 to 0.39 tC/month (1.3- 3.9%)%), and 0.34 to 0.98 tC/month (3.4 - 9.7%) at a 2% and 5% 

electricity saving level, respectively (Figure 3.5c).   

In the base case, greater amount of avoided carbon emission could be achieved from 

electricity saving in MSM followed by LSM and SSM. This avoided carbon emission amount 

could range from 0.2 to 0.9 tC/TCM (2.13% at SSM -5.14% at MSM) from onsite and offsite 

electricity consumption, when 2% to 5% electricity saving was achieved during lumber 

production (Figure 3.5d). Though avoided carbon emission amount was less, it could play a 

significant role in mitigating greenhouse gaseous impact in Appalachian region in the long run, if 

it is accounted for the whole year production level and the total number of sawmills across the 

region. This avoided carbon could be instrumental in offsetting carbon emission burden from 

wood industries. For large sawmills size, increasing electricity saving could be beneficial in 

abating carbon emission as well as adopting carbon cap and trade policy.  
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Figure 3. 5 Avoided C emission using motor master in sawmills: (a) Total Hp at 0.6 load 

factor and use factor, (b) Total Hp at 0.8 load factor and use factor (c) Total Hp at 0.6, 0.8 

load factor and use factor, and (d) at sawmill size category. 

 

3.3.4 Carbon Balance in Lumber Production 

The credit carbon balance accounts for 2.9, 5.5, and 2.8 % of the net debit carbon balance 

of lumber (316.5 tC/TCM) at the zero year of lumber production in the SSM, MSM and LSM, 

respectively. Effect of this credit carbon balance was not significant in the net debit carbon 

balance of lumber at first order of carbon decay up to 100 years (Figure 3.6a). However, it could 

affect after the useful life period of 100 years, i.e. beginning of the time period that lumber 
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would be discarded from their use purpose and disposed at landfills. The low credit carbon 

balance could be attributed to low electricity consumption by sawmills and it could be increased 

when other energy sources consumed were also considered. However, few sawmills reported 

consumption of other energy source used in lumber processing such as natural gas, and  the total 

carbon emission amount from all energy sources involved in the lumber production averaged 

13.1 ton/TCM.  

Estimated total carbon emission amount from electricity consumption (EC) was 28.5 

tC/TCM and it accounts for 9% of the carbon stored in the processed lumber. EC bisects carbon 

balance of lumber in 100 years of its useful life period at year 79, where the amount of carbon 

remained in lumber at first order of decay rate  becomes equivalent to EC (Figure 3.6b). The 

payoff period (PP) begins after year 79 and reduced the carbon accountability period of lumber 

in its useful life by 21%.  Similarly, 35.91 tC/TCM of credit carbon balance generated from all 

energy sources (ES) accounted for 11.35 % of the carbon balance in lumber. ES also bisects 

carbon balance of lumber at year 67 and shortens carbon accountable period of the lumber 

almost by 33 % (Figure 3.6b). Hence, carbon emitted from lumber after the bisected year would 

be equivalent to the amount of carbon debt created by credit carbon balance from lumber 

processing. The higher the debt carbon balance is, the early PP and consequently lower the 

carbon accountability in useful life period of the lumber would be. This PP of credit carbon 

would vary depending on the hardwood tree species used for lumber processing because the 

carbon content value among tree species differs.  Debt carbon from lumber would attribute more 

if accounted cumulative carbon emission that occurred from harvesting of timber, transportation 

of lumber and energy consumed in lumber used for. Therefore, to neutralize such carbon debt, 
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reforestation of the harvested area should be conducted timely to pay off the credit carbon 

balance.  

 

 

 

Figure 3. 6 Effect of credit carbon balance in carbon balance of lumber and fraction of 

carbon disposition in sawlogs at 100 years period:  (a) and (b) carbon balance by carbon 

emission level and energy consumption, (c) average sawmill energy consumption, and (d) 

electricity consumption (EC) all energy sources (ES).  

 

Lumber processing of 1000 m
3
 sawlogs contains an average of 680 metric tons of carbon. 

This carbon disposition pattern of sawlogs was significantly affected by the generated credit 
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carbon balance. An average credit carbon balance generated from all energy sources in lumber 

processing at sawmills only affected the carbon disposition pattern in landfills (Figure 3.6c). The 

generated carbon credit balance from only EC affected the period of carbon disposition pattern of 

sawlogs and the PP of credit carbon begins either for fraction of carbon in use at last 11 years of 

useful life or for fraction of carbon in landfills at first 3 years (Figure 3.6d). Likely, credit carbon 

balance from ES also affected the fraction of carbon in use and reduced carbon disposition period 

to 76 years (Figure 3.6d). It also affected fraction of carbon disposition period in landfills for 

first 3.5 years. 

Accounting  credit carbon balance against the carbon stored in wood product showed the 

similar pattern of shortening useful life period for both  lumber at first order of decay (Figure 

3.6a and 3.6b) and fraction of carbon disposition pattern in sawlogs (Figure 3.6c and 3.6d). 

Though credit carbon balance shortened useful life period of wood products, it tentatively 

estimated carbon accountability period of the lumber similar to the half life of solid wood 

products in single-family housing (75-80 years) (Skog and Nicholson, 1998; Skog, 2008; Lippke 

et al. 2010). When accounted credit carbon balance at year zero of lumber production, it just 

lowered the net carbon balance and showed the regular trends of carbon disposition as reported 

by Smith et al. (2006). However, deduction of carbon from lumber is not possible at its 

production year. Paying off of such generated credit carbon balance from re-growth or 

reforestation of the harvested area would not be possible in the same harvest year and 

concurrently it would be also augmented by the fuel consumption involved in the artificial 

regeneration process. A similar study addressed how to pay off such carbon debt in 

Massachusetts (MCCS, 2010), while producing of an equivalent amount of energy from woody 

biomass and fossil fuel burning. Almost 9 tons of carbon debt occurred from the utilization of 
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woody biomass energy. It could be recovered in 32 years by forest growth and after the benefit 

of burning woody biomass begins to accrue. Therefore, accounting the PP for carbon emission 

from wood product processing against the carbon stored in wood product in its useful life period 

would be reliable measures to compensate carbon emission amount from energy consumed in 

wood processing.  

 

3.3.5 Carbon Flux from lumber processing  

More carbon was emitted in the lumber processing mainly from the generated mill 

residues. Carbon flux from the use and no use of mill residues was 96.56 tC/TCM as energy 

capture, 55.3 tC/TCM as industrial use, 88.51 tC/TCM as farm manure, and 123.8 ton/TCM as 

others. The use and no use of mill residues increases the atmospheric carbon level from zero year 

of lumber production to 5 years depending on what purposes they are used for (Karjalainen et al., 

2002; Skog, 2008; Zeng, 2008; Sharma, 2010). Carbon flux was also instigated by export of the 

lumber.  An average of 6.7% of lumber produced was exported and it reduced carbon stock of 

lumber production place to 93.3%.  

 

3.3.6 Sensitivity Analysis of Carbon Emission from Lumber Processing 

In the base case, the mean carbon emission from electricity consumption would be 24.63 

± 0.68 tC/TCM during processing of hardwood lumber in sawmills in the Appalachian region. 

The carbon emission from electricity consumption would range from 23.28 to 25.88 tC/TCM 

(Figure 3.7a) at 2.5 % and 97.5% quantile distribution, respectively. In SSM, the mean carbon 

emission would be 13.73 ± 0.92 tC/TCM ranging from 12.03 to 15.55 tC/TCM (Figure 3.7b) at 

2.5% and 97.5% quantile distribution, respectively. For MSM, the mean carbon emission from 
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electricity consumption was 18.68 ± 1.12 tC/TM and ranged from 16.41 to 20.94 tC/TCM 

(Figure 3.7c) at 2.5% and 97.5% quantile distribution. Similarly, in LSM, the mean carbon 

emission was 12.79 ± 1.24 tC/TCM and varied from 10.36 to 15.20 tC/TCM (Figure 3.7d) at 

2.5% and 97.5% quantile distribution.  

The upper range of carbon emission predicted in the base case was closer to the carbon 

emission estimated from the electricity consumption by CORRIM (Bergman and Bowe, 2008) 

and it shortened the carbon accountability period of lumber in a similar manner. The simulated 

mean carbon emission amount was greater than the estimated average carbon emission in 

sawmills of different size. The observed difference between the simulated mean carbon emission 

and the estimated mean carbon emission was due to variability in data and associated uncertainty 

of electricity consumption rate at sawmills. The simulated mean carbon emission of each case 

lied at 50% quantile distribution whereas the estimated mean carbon emission lied at or below 

2.5% quantile distribution. Since uncertainty always associates with the energy source for 

electricity generation and equipments used in sawmills, it would be better to use upper range of 

the simulated carbon emission (tC/TCM) for sawmill estimate. 
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Figure 3. 7 Probability density plot of carbon emission (tC/TCM) from electricity 

consumption in lumber processing: (a) Overall average (b) SSM, (c) MSM, and (d) LSM. 
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3.3.7 Scenario Analysis of Carbon Flux from Lumber Processing  

The consequence of cumulative carbon emission from energy sources was observed in 

the cumulative carbon balance at the first order of carbon decay in the lumber production cycle 

of 100 years. In the base case, the CCFlumber (21.1 tC/TCM) was 57.2 % higher than the 

cumulative carbon emission from electricity (13.1 ton/TCM) at sawmills for 100 years of lumber 

production (Figure 3.8a). However, the combined carbon flux from the electricity and export did 

not affect carbon stored in the produced lumber because the CCFR ranged from 0.12 to 0.42 

from year zero to year 100.  

The cumulative carbon emission from the total energy consumption and export of lumber 

could affect the cumulative carbon balance in lumber (Figure 3.8b). In this case, the CCFR from 

the all CCFenergy   source consumption (ES) (104.57 GJ/TCM) and CCFexport was 0.19 to 0.77 for 

the hardwood lumber production years of 0 -100. Thus, at the end of 100 years of production 

period, only 23% of the CCBlumber would be available to account as the net debit carbon balance. 

Therefore, a great amount of carbon emission would affect the CCBlumber production period and it 

would also discount such credit carbon balance at later years of the wood product life.  

When 25% of the carbon emission from all energy source consumption was reduced, the 

CCFR would range from 0.16 at zero years to 0.65 at 100 years (Figure 3.8c). In this situation, 

45% of the carbon in the lumber would be available to account as net CCBlumber   at 100 years. 

Similarly, if reducing 50% of carbon emission from all energy source consumption (Figure 3.8d), 

it could have the similar effect as carbon flux created from electricity and export by sawmills 

(Figure 3.8a). But the CCFR would range from 0.13 to 0.53. Thus, either reducing carbon 

emission/energy consumption rate or decreasing export of the lumber would help increase 

accountability of carbon balance in the lumber production for a long time period. Energy 
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consumption could be reduced by installing a waste oil burner for burning the waste oil to heat 

the plant and office areas. It saves the waste oil disposal cost and reduces the potential of a 

demining from spill and also less consumption of natural energy. But the waste oil installation 

factor depends on the quantity of waste oil generated by sawmill.   

 

 
 

 

Figure 3. 8 Atmospheric carbon fluxes from hardwood lumber processing in 100 years: 

(a) average electricity consumption at sawmills (b) all energy source consumption, (c) 25% 

reduction in all energy source consumption, and (d) 50% reduction in all energy source 

consumption.   
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3.3.8 Carbon Emission under Different Energy Sources 

Since a great amount of electricity is required for lumber processing (607.2 GJ/TCM, 

Bergman and Bowe, 2008), it increases the atmospheric carbon level significantly. Generating 

such amount of electricity from natural gas would emit carbon equivalent to an average carbon 

emission level from the current electricity generation from the mixed sources in the Appalachian 

region (Figure 3.9a). Carbon emission from single source of electricity generation such as fossil 

fuel would be greater followed by coal. Therefore, the electricity generated from an appropriate 

mixture of energy sources could help avoid certain amount of credit carbon balance.  

In figure (3.9b), the base case represents electricity generation from the mixed energy 

sources in central Appalachian region, scenario 1 represents RFC WEST, and scenario 2 

represents RFC EAST, and scenario 3 NYUP. The credit carbon balance  was 30.92 tC/TCM, 

29.5 tC/TCM, 27.2 tC/TCM, and 32.8 tC/TCM  for the base case, scenario 1, scenario 2 and 

scenario 3 respectively (Figure 3.9b).  Scenario 2 would create less credit carbon balance than 

scenario 1 and scenario 3, and base case. Though in scenario 3, coal source shared less 

percentage of electricity than other scenarios, the higher carbon content value per unit of coal 

attribute to the greater amount of credit carbon balance in the represented region. It could be 

coupled from the variation in calorific value of coal and oil though these shared greater 

percentage of electricity generation than in other scenarios. Though coal shared higher 

percentage of electricity generation in the scenario 1 and 2, the lower value of average carbon 

content per unit of electricity generation in the represented regions created less credit carbon 

balance. Eventually, the credit carbon balance would have less affect on the carbon balance from 

lumber production. However, coal is the major source of electricity generation supplemented by 

gas and these energy sources usually have higher carbon coefficient value per unit of electricity. 
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Thus carbon credit per unit of lumber processing would vary depending on the electricity supply 

sources and their mixed ratio.  

 

 
 

Figure 3. 9 Carbon emissions from electricity generation during hardwood lumber 

processing using: (a) single energy sources and current average, and (b) mixed energy 

sources. 

Note: Carbon emission from energy sources is calculated based at their higher heating values 

and the average carbon dioxide emission is based on eGrid (US EPA 2010b), CO2: Fossil fuel = 

0.851 kg/kWh; Coal = 0.713 kg/kWh; Oil, 0.358 kg/kWh;, Gas = 0.556 kg/kWh;, and Current = 

0.62 kg/kWh. 
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3.4. Conclusions 

Carbon emission from electricity consumption while per unit of processed lumber vary 

depending on sawmill size. This variation would be coupled to electricity generation sources and 

available equipment at sawmills while per unit processed lumber. The random mixed effect of 

the available equipments such as head saws types, light bulb types and air compressors types also 

fluctuate the credit carbon balance of a sawmill. Such carbon emission could be avoided to some 

extent if energy efficient motors and equipment were used, which would be beneficial in abating 

carbon credit balance. Although carbon stored in produced lumber increases carbon stock of the 

wood carbon pool and magnifies humans‘ carbon mitigation efforts, carbon flux occurs due to 

significant wood loss during sawmill processing. Not all carbon loss from mill residues would be 

immediately recaptured as an energy source and released into the atmosphere. Mill residue used 

for either for industrial or mulching and farm bedding use would help to store significant amount 

wood carbon from being emitted for the time period as short lived wood product does. 

Carbon balance in lumber would be affected by the credit carbon generated during its 

processing. It could also impair the carbon accountability period of lumber during its useful life.  

Carbon disposition pattern of sawlogs would also be greatly affected by this credit carbon 

balance. Carbon flux from the export of lumber also decreases the carbon accountability of the 

cumulative lumber production in years. The greater the carbon flux ratio from energy and export, 

the lower the carbon accountability of the produced lumber would be. Carbon emission from 

electricity consumption could be minimized by using energy sources that have a lower carbon 

coefficient. Thus, appropriate mixed energy sources in the region would be helpful to minimize 

carbon emission from electricity consumption at sawmills.  
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4. SUMMARY 

Inclusion of parameters such as carbon loss from dead trees, forest fire along with timber 

removal and forest growth rate is essential to estimate future carbon balance of the timberland. 

The lower harvesting intensity of the existing timber stock volume, small amount of carbon 

removal from small fire and limited dead trees do not significantly affect the future forest carbon 

stock per hectare. However, the observed high mortality rate of trees could be a major factor to 

limit the sustainable increase of forest carbon stock in West Virginia.  Increasing timber demand 

could be met with slight increases in existing harvesting intensity and making constant 

harvesting intensity for certain consecutive years. This would help to lengthen the rotation age of 

natural mixed hardwood forest and also increase forest carbon stock. Eventually, this strategy 

would employ the sustainable forest management practice and also undermine the effect of 

carbon emissions from fossil fuel consumption due to timber harvesting and processing.  

Natural regeneration in forests, as applicable in the Appalachian region, entails no fossil 

fuel consumption in seedling production and plantation and thus results in zero carbon emission 

from regeneration process. Carbon emission from mechanized harvesting system and manual 

harvesting system did not differ significantly. The variations associated with the machine 

productivity and the tree size would influence the carbon emission level from harvesting systems 

to some extent. However, these variations would be significant when considering topographic 

factors attributed to the harvested area. In harvesting and residue extraction, the hauling process 

has a greater effect on carbon emission than other operational procedures. Though carbon 

emissions from fossil fuel consumption from harvesting systems are considerably lower than the 

carbon stored in harvested timber and logging residue, the forest carbon displacement rate would 

varies with forest group types, road types, hauling truck types, and payload sizes. Forest type 
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having lower carbon content per unit of harvested volume and hauling smaller payload would 

increase forest carbon displacement rate. In hauling, the distance travelled on gravel road and 

paved road, and payload variation of harvested timber dimensions would determine the 

magnitude of carbon emission. Therefore, hauling distance and truck payload size indicate a 

greater uncertainty of carbon emissions level, which increases the forest carbon displacement 

rate and reduce the accountability of carbon balance in harvested timber.  

Different levels of credit carbon balance are generated from carbon emitted from 

electricity consumption depending on operation hours and lumber processing quantity of 

different sawmills sizes. This variation is attributed to electricity generated from different energy 

sources. Similarly it is also attributed to the available equipment and its energy efficiency level at 

sawmills while processing per unit of lumber. For example, different head saws, light bulbs and 

air compressors used in sawmills fluctuated the degree of credit carbon balance. Such generated 

credit carbon balance could be lowered to some extent if using energy efficient motors and 

equipment. During lumber processing, a substantial amount of carbon emission occurs due to 

wood loss as mill residue other than carbon stored in the processed lumber products. Not all 

carbon loss from mill residues, such as chips and sawdust, would be immediately recaptured as 

an energy source (e.g. heat/fuel source) in sawmills. The amount of mill residue that used for 

mulching and farm bedding would be significant to lengthen carbon release time period.  

The generated credit carbon balance during lumber processing could impair the carbon 

accountability period of lumber during its useful life period. Carbon disposition pattern of 

sawlogs would also be greatly affected by this credit carbon balance. The greater the credit 

carbon balance, the shorter the debt payoff period would be, and the shorter the carbon 

accountability period of wood product in its useful life period. This payoff period could vary 
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depending on hardwood tree species. Carbon emission from energy consumption and carbon loss 

from export of hardwood lumber create carbon flux in the wood carbon stock. Such cumulative 

carbon flux from energy consumption and lumber export would reduce the accountability of 

carbon balance during lumber production in years. The greater the cumulative carbon flux ratio, 

the lower the carbon balance accounted from the lumber production.  Such carbon flux ratio 

could be minimized by reducing energy consumption rate in lumber processing. One of the 

feasible options to reduce energy consumption is to  install a waste oil burner to heat the plant 

and office areas and it also saves waste oil disposal cost depending on the quantity of waste oil 

generated in sawmill. Additionally, the use of different energy sources that has lower carbon 

coefficient value would be advantageous to supply the required amount of electricity to process 

per unit of lumber. An appropriate mixed energy source in the region would be helpful to 

minimize credit carbon balance from electricity consumption at sawmills.  
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