
Graduate Theses, Dissertations, and Problem Reports

2004

Decentralized control for UAV path planning and task allocation Decentralized control for UAV path planning and task allocation

Matthew C. Lechliter
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Lechliter, Matthew C., "Decentralized control for UAV path planning and task allocation" (2004). Graduate
Theses, Dissertations, and Problem Reports. 1443.
https://researchrepository.wvu.edu/etd/1443

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1443?utm_source=researchrepository.wvu.edu%2Fetd%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Decentralized Control for UAV Path Planning and Task Allocation

Matthew C. Lechliter

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Aerospace Engineering

Marcello R. Napolitano, Ph.D., Chair
Gary Morris, Ph.D.
Jacky Prucz, Ph.D.

Department of Mechanical and Aerospace Engineering

West Virginia University
Morgantown, WV

 2004

Keywords: unmanned air vehicle, cooperative control, decentralized control

ABSTRACT

Decentralized Control for UAV Path Planning and Task Allocation

Matthew C. Lechliter

 The effort of this research is to move toward enabling Unmanned Air Vehicles to
fly in autonomous formations with intelligent mission planning capabilities. In
particular, UAVs will be able to autonomously perform path planning and task allocation.
During missions, the UAVs must be able to avoid threats and no-fly zones while still
reaching their target optimally in time.

A path planning and task allocation approach was first developed that treats the
problem as a Multi-dimensional, Multiple-Choice Knapsack Problem. Paths are selected
and task assigned while minimizing the UAV team’s overall mission cost. Next, a
SIMULINK-based centralized simulation environment was created. This simulation uses
the path planning and task allocation scheme previously developed, and adds time-
varying, dynamic environment aspects. The latter part of the research effort was focused
on development of a decentralized simulation environment. This decentralized version
includes a vehicle’s own decision making capabilities and communication amongst a
team of vehicles.

The decentralized simulation was compared with the centralized version in terms of
simulation efficiency and was found to be faster for individual UAVs. Finally, real
communications issues were addressed to show that while communication problems lead
to a lack of cooperation, tasks can still be performed and missions completed within the
decentralized simulation environment.

Acknowledgments

 I would first like to thank my wife Leah for all her love and support throughout

these last two years. Your dedication to me while obtaining this degree and choosing my

career path means more to me than I can express. I love you.

 I would like to thank my committee chairman and research advisor Dr. Marcello

Napolitano. Your help and guidance throughout the last two years have been integral to

not only this research, but my career as well.

 I would like to acknowledge and thank my committee members Dr. Garry Morris

and Dr. Jacky Prucz for taking time from their busy schedules to review and contribute

their thoughts to this research effort.

 I would like to thank everyone who contributed to this research effort: Zachary

Spritzer, Jennifer Hazelton, Dr. Giampiero Campa, Dr. Brad Seanor, Elena Lucci, and Dr.

Mario George Perhinschi.

 Finally, I would like to thank God, for through Him all things are possible.

 iii

Table of Contents

Title Page ...i
Abstract ..ii
Acknowledgments..iii
Table of Contents...iv
List of Tables ...vi
List of Figures ..vii
Nomenclature...x
Chapter 1: Introduction ..1

1.1 UAV History..1
1.2 Envisioned Future ..4
1.3 Research Objectives...8

Chapter 2: Literary Review..11
2.1 Path Planning Methods ..11
2.2 Path Planning/Task Allocation Approaches ..14
2.3 Decentralized Control and Communications ...17

Chapter 3: Development of the Path Planning/Task Allocation Scheme18
3.1 Discussion of Setup..18
3.2 Voronoi Diagram Generation ..20
3.3 Dijkstra’s Algorithm and Cost Assignment...23
3.4 Path Shortening and Flyability...28
3.5 Multi-dimensional, Multiple-Choice Knapsack Problem..38

Chapter 4: Aircraft Dynamics..41
4.1 Introduction..41
4.2 Body Axes Modeling ...42
4.3 Flight Path Equations...47
4.4 Earth-fixed Axes and Kinematic Relationships...51

Chapter 5: Development of Centralized UAV Simulation ..55
5.1 Main Simulation System..55
5.2 Simulation Inputs ...56
5.3 Path Planning and Task Allocation Execution...64
5.4 Aircraft Dynamics Subsystem ...67
5.5 UAVs Manager ..76
5.6 Targets Manager ..81
5.7 Threats Manager ..86
5.8 Simulation Outputs ..88

Chapter 6: Decentralized Path Planning and Task Allocation...101
6.1 Main Simulation System..101
6.2 Individual UAV System...102
6.3 UAV Communications...103
6.4 Individual UAV Calculations ..104
6.5 Simulation Outputs ..109

Chapter 7: Comparison of Decentralized and Centralized Simulations112
7.1 Simulation Efficiency ..112
7.2 Miscommunication ..122

 iv

7.3 Delay of Communication...126
7.4 Loss of Communication...127

Chapter 8: Conclusions and Recommendations ..132
8.1 Conclusions..132
8.2 Recommendations..133

References..134
Appendix A: MATLAB codes for Path Planning and Task Allocation139

path_planning.m ... 140
filter_zeros.m .. 142
vrn_diag_gen.m .. 143
 voronoi.m .. 145
connect_vrn.m... 148
cheapest_paths.m ... 149
set_THC.m .. 151
c_assign.m... 152
list2adj.m... 154
adj2list.m... 156
pred2path.m .. 157
mat2vec.m ... 159
isint.m.. 160
dijk.m .. 161
path_shrtng.m ... 164
shorten_paths.m.. 167
fillet_path.m ... 169
heading_angle_paths.m .. 170
update_cost.m ... 174
mmkp_task_allocation.m .. 175
mmkp_new.m... 176
vrt_sim_convert.m... 177
plot_uav.m..179

Appendix B: MATLAB codes for Simulation...181
place_waypoints_s.m .. 182
place_waypoints.m ... 183
path_planning_s.m.. 185
uav_crash_s.m .. 186
uav_crash.m ... 187
uav_intercepted_s.m .. 188
uav_intercepted.m .. 189
target_classifier_s.m .. 190
target_classifier.m ... 191
compare_targets_s.m ... 193
compare_targets.m ... 194
compare_threats_s.m ... 195
compare_threats.m .. 196
display_initial_s.m ... 197
display_initial.m ... 198

 v

List of Tables

Table 3.1: Typical threats ..24
Table 3.2: List of example path permutations and mission costs ..39
Table 7.1: Summary of MATLAB Profile Reports ..112
Table 7.2: Profile Report based on 4 UAVs, 4 Targets, 4 Threats, and 4 No-fly Zones113
Table 7.3: Profile Report based on 5 UAVs, 5 Targets, 5 Threats, and 5 No-fly Zones114
Table 7.4: Profile Report based on 9 UAVs, 9 Targets, 15 Threats, and 15 No-fly Zones ...115
Table 7.5: SIMULINK Profile Summary for centralized simulation118
Table 7.6: SIMULINK Profile Report for centralized version ..119
Table 7.7: SIMULINK Profile Report for centralized version, with Accelerator119
Table 7.8: SIMULINK Profile Summary for decentralized simulation120
Table 7.9: SIMULINK Profile Report for decentralized version ..120
Table 7.10: SIMULINK Profile Report for decentralized version, with Accelerator121

 vi

List of Figures

Figure 1.1: USAF Firebee drone ...2
Figure 1.2: U.S. MQ-1 Predator UAV, equipped with Hellfire missiles..............................3
Figure 1.3: U.S. Air Force RQ-4 Global Hawk ...4
Figure 1.4: Department of Defense Annual Funding Profile for UAVs................................5
Figure 1.5: Autonomous Control Level Trend ..6
Figure 1.6: LOCAAS mini-UAV munition ...7
Figure 1.7: U.S. Air Force X-45A UAV..8
Figure 1.8: Cooperative Operation of UAVs for SEAD..9
Figure 2.1: Vertices of a simple graph...11
Figure 2.2: Voronoi diagram for threat locations ..12
Figure 3.1: Voronoi diagram with 25 sites ..21
Figure 3.2: Crotale “Rattlesnake” surface-to-air missile ...25
Figure 3.3: Example directed graph with costs..27
Figure 3.4: Picture illustrating fillet principle..32
Figure 3.5: Example of heading angle solution ...34
Figure 3.6: Second example of heading angle solution ...35
Figure 3.7: Final example of heading angle solution...35
Figure 3.8: Example UAV to target MMKP setup ..39
Figure 4.1: Body axis system with forces and moments ...42
Figure 4.2: Stability axis system and angles with body axis system47
Figure 4.3: Aircraft orientation with Euler angles ...52
Figure 5.1: Main simulation system...55
Figure 5.2: Cooperating UAVs Simulation Main Menu..57
Figure 5.3: Error message ..58
Figure 5.4: Aircraft Menu GUI..59
Figure 5.5: Point-and-click method of placing UAV positions ...60
Figure 5.6: Pop-up Target Menu..61
Figure 5.7: No-Fly Zones Menu ..62
Figure 5.8: Pop-up Threats Menu ..63
Figure 5.9: Example battlefield setup ..64
Figure 5.10: Place Waypoints block ..65
Figure 5.11: Path Planning and Task Allocation block ...66
Figure 5.12: ‘UAV Dynamics’ blocks for all UAVs ...68
Figure 5.13: Blocks to output UAV positions, heading angle, and signal end of path..........69
Figure 5.14: Determining next position in path, runs aircraft model, and signal end of path69
Figure 5.15: Blocks that ‘look ahead’ and output next position in path70
Figure 5.16: Determination of end of assigned path..70
Figure 5.17: Actual UAV dynamics block, with aircraft model and heading-angle autopilot......... 71
Figure 5.18: Flight simulation environment for aircraft model ...72
Figure 5.19: Parameters and inputs for aircraft model ..73
Figure 5.20: Actuator and cable dynamics subsystem...74
Figure 5.21: Heading angle autopilot, showing turn generator ...75
Figure 5.22: Turn generator subsystem ...75
Figure 5.23: UAV Positions block...76

 vii

Figure 5.24: UAV CRASH block ..77
Figure 5.25: UAV INTERCEPTED block...77
Figure 5.26: UAV DOWN block ...78
Figure 5.27: UAV MANAGER subsystem ...79
Figure 5.28: Individual UAV manager for tracking positions, velocity, and destruction80
Figure 5.29: Printing blocks for UAV destruction...81
Figure 5.30: Target State Manager ..82
Figure 5.31: Target classifier function...83
Figure 5.32: Part of target classification used for signaling replan83
Figure 5.33: TARGETS MANAGER..84
Figure 5.34: Part of target management used for signaling replan ..84
Figure 5.35: Pop-up target manager...85
Figure 5.36: Pop-up target manager for an individual target...85
Figure 5.37: THREATS MANAGER..86
Figure 5.38: Part of threat management used for signaling replan ..86
Figure 5.39: THREAT CHANGE blocks ..87
Figure 5.40: Pop-up and firing threat manager for an individual threat88
Figure 5.41: Initial battlefield setup...89
Figure 5.42: Path Planning and Task Allocation occurring at time 0....................................90
Figure 5.43: Path Planning and Task Allocation occurring at time 100................................91
Figure 5.44: Path Planning and Task Allocation occurring at time 150................................91
Figure 5.45: Path Planning and Task Allocation occurring at time 325................................92
Figure 5.46: Detail of UAV 3 turning to now attack target 1 at time 32592
Figure 5.47: Path Planning and Task Allocation occurring at time 462................................93
Figure 5.48: Path Planning and Task Allocation occurring at time 538................................93
Figure 5.49: Path Planning and Task Allocation occurring at time 688................................94
Figure 5.50: Path Planning and Task Allocation occurring at time 704................................94
Figure 5.51: Path Planning and Task Allocation occurring at time 749................................95
Figure 5.52: Path Planning and Task Allocation occurring at time 764................................95
Figure 5.53: Path Planning and Task Allocation occurring at time 838................................96
Figure 5.54: Path Planning and Task Allocation occurring at time 878................................96
Figure 5.55: Path Planning and Task Allocation occurring at time 921................................97
Figure 5.56: Path Planning and Task Allocation occurring at time 938................................97
Figure 5.57: Path Planning and Task Allocation occurring at time 978................................98
Figure 5.58: Path Planning and Task Allocation occurring at time 1014..............................98
Figure 5.59: Path Planning and Task Allocation occurring at time 1056..............................99
Figure 5.60: Path Planning and Task Allocation occurring at time 1098..............................99
Figure 6.1: Main simulation system for decentralized UAV control.....................................101
Figure 6.2: Main system for individual UAVs ..102
Figure 6.3: ‘UAV Dynamics’ blocks for UAV 1...105
Figure 6.4: UAV Positions block...106
Figure 6.5: Individual UAV MANAGER subsystem..106
Figure 6.6: UAV initialization block with UAV REPLAN subsystem107
Figure 6.7: UAV REPLAN subsystem ..107
Figure 6.8: TARGETS MANAGER..108
Figure 6.9: TARGETS initialization block with UAV REPLAN subsystem........................108

 viii

Figure 6.10: TARGET REPLAN subsystem...108
Figure 6.11: Initial battlefield setup for decentralized simulation example110
Figure 6.12: Decentralized simulation example ..111
Figure 7.1: Initial battlefield setup for SIMULINK Profile Reports118
Figure 7.2: Main system for decentralized UAV control with miscommunication...............123
Figure 7.3: NOISE block used for simulating miscommunication..124
Figure 7.4: Individual UAV noise ...124
Figure 7.5: Initial battlefield setup for miscommunication example.....................................125
Figure 7.6: Miscommunication, decentralized simulation example126
Figure 7.7: Main system with individual UAV communication loss128
Figure 7.8: Main system for individual UAV 2, showing modifications129
Figure 7.9: Loss of team of UAVs block...129
Figure 7.10: Initial battlefield setup for individual communication loss example130
Figure 7.11: Individual communication loss example...131

 ix

Nomenclature

Symbol Description

English
CD Drag coefficient
CL Lift coefficient
Cl Rolling moment coefficient
Cm Pitching moment coefficient
Cn Yawing moment coefficient
CY Side force coefficient
H Altitude
Ix Airplane moment of inertia about x
Ixy Airplane product of inertia about x
Ixz Airplane product of inertia about z
Iy Airplane moment of inertia about y
Iyz Airplane product of inertia about y
Iz Airplane moment of inertia about z
m Mass
ntarg Number of targets
nthreats Number of threats
nuav Number of UAVs
nzones Number of no-fly zones
p Airplane angular velocity component about x
q Airplane angular velocity component about y
r Airplane angular velocity component about z
u Airplane velocity component about x
V True aircraft velocity
v Airplane velocity component about y
w Airplane velocity component about z
xe X-position with respect to Earth-fixed axes
ye Y-position with respect to Earth-fixed axes

Greek
α Angle of attack
α Angle formed by two intersecting edges
β Sideslip angle
ψ Airplane heading angle
θ Airplane pitch attitude angle
φ Airplane bank angle

Acronym
GUI Graphical User Interface
MILP Mixed-Integer Linear Program
MMKP Multi-dimensional, Multiple Choice Knapsack Problem
UAV Unmanned Air Vehicle

 x

Chapter 1
Introduction

1.1 UAV History

 The United States Armed Forces has a long history of involvement with Unmanned

Air Vehicles (UAVs), with roots beginning in late World War I. The first person to

successfully address the issues of automatic stabilization, control, and navigation in

creating a UAV was Elmer Ambrose Sperry. In early World War I, the U.S. Navy had

appointed him to chair the development of an ‘aerial torpedo.’ The first successful flight

of a UAV occurred on 6 March 1918, when the Curtis Sperry Aerial Torpedo was

catapulted into the air, flew a preplanned 1000-yard flight, and successfully landed in the

waters off Long Island to be later reflown1. Other aerial torpedoes soon appeared,

including the Liberty Eagle ‘Kettering Bug’, which attempted to navigate to a target some

50 miles away, turn its engine off, and hit the target with a 200-pound bomb.

 The first robotic aircraft to successfully take off, fly radio-controlled maneuvers,

and land was the British RAE 1921 TARGET, followed a year later by the U.S. Navy’s

Curtiss N-9 Seaplane on 15 September 1924. The N-9 was remotely controlled for 40

minutes and executed 50 commands before landing1. As a result of these early aerial

torpedoes efforts, target drones came about in the 1930s. These drones were used to train

aerial gunners. The first operation cruise missiles (formerly called aerial torpedoes) were

the German V-1 ‘Buzz Bombs,’ which sadly introduced the general public to these

weapons, as all previous aerial torpedoes/cruise missiles had been classified. During the

course of World War II, some 10,500 V-1s were launched, with over 2,400 reaching their

targets, most of which resided in England1.

 Reconnaissance drones were first evaluated in the 1950s. In 1955, the U.S. Army’s

SD-1 Observer became the first tactical UAV. Other reconnaissance drones that

appeared during that decade include the Army’s SD-2 Overseer, SD-3 Sky Spy, SD-4

Swallow, SD-5 Osprey, the U.S. Air Force’s GAM-67 Crossbow, and the USMC’s small

 1

Bikini UAV. However, during the Cuban Missile Crisis of the early 1960’s, the Air

Force successfully modified some of its Ryan Firebee drones to carry cameras and return

with reconnaissance pictures. These reconnaissance drones were successfully used in

3,500 sorties flown during the Vietnam Conflict1.

Figure 1.1: USAF Firebee drone (U.S. Air Force photo) 2

 The strike role of UAVs was first explored in 1962 with the U.S. Navy’s Gyrodyne

QH-50 drone helicopter. These unmanned helicopters carried anti-submarine torpedoes.

 1972, the Air Force again modified Firebee drones to carry Maverick and Stubby

Hobo missiles for use in Suppression of Enemy Air Defenses (SEAD) roles. The end of

the Vietnam Conflict, however, put an end to this “Have Lemon” program.

 UAV development continued in the 1980’s, but really expanded in the 1990’s. In

the U.S. military’s arsenal during this time were the Predator, Hunter, Pioneer, and

Shadow UAVs, which were used for reconnaissance in the conflicts in the Persian Gulf,

the Balkans, and more recently in Afghanistan and Iraq2. The MQ-1 (formerly RQ-1)

In

 2

Predator is a 2,250 pound UAV that has been used by the military forces since 1995.

The UAV was used for reconnaissance purposes in Bosnia, Kosovo, Afghanistan, and

Iraq with its 24-hour endurance flight time while carrying up to a 450-pound payload. In

2001, a Predator was equipped with Hellfire missiles and successfully used to engage

targets, thus earning it a multi-mission capability status.

Figure 1.2: U.S. MQ-1 Predator UAV, equipped with Hellfire missiles2

 hours and up to a 50-kilometer

nge, while carrying a 60-pound payload.

 The RQ-2 Pioneer was developed in 1986. It is a Navy UAV that was used in

1991 in the Persian Gulf, as well as in Bosnia and Kosovo. The RQ-5 Hunter was used

in 1999 through 2002 in NATO operations in the Balkans. The RQ-7 Shadow is a U.S.

Army UAV. It can provide video surveillance for 4

ra

 3

 The l bal Hawk.

his is a large 26,750 pound UAV capable of 32-hour flight endurance while carrying a

ayload of 1950-pounds. It is a high altitude, long endurance UAV designed to provide

connaissance coverage of up to 40,000 nm2 per day2.

ast of the currently employed UAVs is the Air Force’s RQ-4 Glo

T

p

re

Figure 1.3: U.S. Air Force RQ-4 Global Hawk (U.S. Air Force photo) 2

1.2 Envisioned Future

 During the decade of the 1990s, the Department of Defense spent roughly $3

billion on Unmanned Air Vehicles. For the following decade, the DOD is scheduled to

spend over $10 billion on UAVs! As described in the Unmanned Aerial Vehicles

Roadmap 2002 – 20272, the DOD is aggressively pursuing UAV technology and

significan endous tly increasing spending on UAVs. Figure 1.4 illustrates this trem

increasing in the funding.

 4

Figure 1.4: Department of Defense Annual Funding Profile for UAVs2

 U merous advantages to the military. Most notable are the advantages

of t a

are cla aircraft loitering over airspace for long

eriods of time while providing surveillance or jamming enemy electronic devices.

r include:

• Maxim n the crew’s

physical limits;

• Low or no risk to human operators, such as in the dirty or dangerous missions;

AVs offer nu

he bility to perform missions classified as “dull, dirty, or dangerous”3. Missions that

ssified as dull include examples of an

p

These types of missions can last for especially long periods of time, such that manned

crews would not be optimal to perform, plus UAVs could be outfitted with multiple

sensors and/or jamming equipment and provide and even higher efficiency at performing

the ‘dull’ missions. The second type of mission is the dirty type. This type of mission

includes reconnaissance in areas that have been contaminated by nuclear, biological, or

chemical weapons, where the presence of manned aircraft would put the crew in danger.

The last type is the dangerous mission, such as high-risk but high-value targets or

Suppression of Enemy Air Defenses (SEAD).

 Additional advantages offered by the use of UAVs offe

izing maneuverability, where there are no constraints based o

 5

• Lower overall weight of the aircraft, resulting from elimination of crew support

hardware;

• A lower overall cost, due in part to the lack of crew support hardware and the

elimination of expensive pilot training4.

 Currently UAVs require several operators on the ground for control of a single

UAV, as all of the current UAVs discussed in Section 1.1 are controlled in this manner.

hile such elimination of the pilot and crew from the aircraft do result in many benefits W

such as decreasing cost and eliminating danger to aircrews, the future of UAVs is moving

in the direction of autonomy5. Autonomous UAVs will require little or no human support

to carry out missions, and this addition of autonomy adds another benefit – that is

superior coordination among a group of UAVs. Figure 1.5 illustrates the trend in the

increase of UAV autonomous control from early in their history until the year 2015.

Figure 1.5: Autonomous Control Level Trend (U.S. Air Force) 2

 Cooperative UAV flight based on autonomous aircraft offers capabilities of the use

a formation to overwhelm enemy defenses, the ability of adjust timing in a coordinated

 6

attack, and the expansion from the small area a single UAV can see and detect to a much

broader situational awareness created by multiple UAVs sharing information2. These

teams of UAVs lead to superior abilities to perform a large variety of missions, including

reconnaissance, jamming, suppression of enemy air defenses, missile defense, fixed and

moving high-priority target attacks, and eventually air-to-air combat4.

 Currently there are several DOD projects attempting to address the possibilities of

autonomous capabilities for the future for the next quarter-century. These include the

Broad Area Maritime Surveillance, the RQ-8 Fire Scout, the MQ-9 Predator B, which is

an extension of the current MQ-1 Predator to allow hunter-killer groups, the Dragon Eye

mini-UAV, the Force Protection Aerial Surveillance System (FPASS), Neptune, the Low

Cost Autonomous Attack System (LOCAAS), and finally the Air Force’s X-45. The first

of significant interest is the LOCAAS. This UAV is a miniature, autonomous munition

that is capab und targets6.

le of a broad area search, identification, and destruction of gro

These UAVs are designed to cooperate upon locating a possible target, and they work

together to destroy it, as each is itself also a flying munition. Figure 1.6 illustrates the

LOCAAS munition.

Figure 1.6: LOCAAS mini-UAV munition 2 (U.S. Air Force photo)

 7

 Another developmental UAV of interest is the U.S. Air Force’s X-45. This

Unmanned Combat Air Vehicle (UCAV) is designed to use UAV autonomy and

cooperation to perform dangerous but high-priority missions such as high-value targets or

SEAD7. These UCAVs will be designed to have preprogrammed objectives and target

information from ground mission planners. This information is used to carry out

missions autonomously and efficiently by taking advantage of cooperation amongst a

roup.

g

Figure 1.7: U.S. Air Force X-45A UAV (U.S. Air Force photo) 2

attacking targets.

1.3 Research Objectives

 As mentioned in Section 1.2, dangerous missions including Suppression of Enemy

Air Defenses (SEAD) and high-risk but high-value target missions are important

objectives for future UAV capabilities. These UAVs are very attractive in that they

eliminate risk to the human crew while performing these dangerous missions, the aircraft

have potential for greater survivability, they have greater endurance to perform a mission

as opposed to crew fatigue, the cooperative nature gives a greater probability of

successful outcome, and finally cost is reduced4. Figure 1.8 illustrates what a typical

SEAD or high-risk but high-value might look like, with several cooperating UCAVs

 8

ure 1.8: Cooperative Operation of UAVs for SEAD (U.S. Air Force picture)Fig

missions is as follows: given ‘

or political

accomplish a m izing an

boundary c

be reconnoitered prior to attack

maximum linear velocities for UAVs and m

need to be

are additio

may occur. Also, in the role of

‘nthreats’ threats in the s

 The

Suppression of Ene

 2

 The general basic problem formulation for SEAD or high-risk but high-value

nuav’ UAVs with ‘nzones’ no-fly zones such as mountains

 boundaries, and given ‘ntarg’ targets or waypoints to visit, the UAVs must

ission such as visiting each target or waypoint while minim

overall cost to the group. Extending this basic formulation to add realistic constrains and

onditions include timing constraints, such as a preliminary target needing to

ing. Also dynamic constraints on planned paths, such as

aximum angular rates for rolling performance

 accounted for. Furthermore, the problem may be time varying, where there

n/removal or targets, loss of UAVs in the team, and loss of communications

 high-risk but high-value missions, there will also be

cenario that the UAVs should avoid.

following research objectives are intended to address the problem of

my Air Defenses or high-risk but high-value mission planning.

 9

Item #1. A path planning and task allocation scheme must be created for an elementary

two-dimensional scenario, with a limited number of UAVs, targets, and no-fly

zones. The generated trajectories must be of minimal length, but subject to a

cost factor to include flying around the no-fly zones. The trajectories must be

dynamically feasible, and additionally, the software must be computationally

efficient in order to be run ‘real-time’8.

Item #2. The coding is to be extended to encompass a larger number of UAVs, targets,

and no-fly zones, and now has the addition of threats – areas that can be flown

into but with an additional cost of the probability of the UAV being destroyed.

Item #3. After the path planning and task allocation scheme is finished, the

development of a SIMULINK-based centralized simulation environment is

next. This centralized simulation environment is such that a central processor

controls all of the decision making abilities for the entire UAV team.

Item #4. After the basic simulation is in place, it now needs to be extended to include

the time-varying aspects of the problem. Included in this are ‘pop-up’ threats,

ones that were not previously known to the team of UAVs but appear some

time into the mission, varying states of targets, such as ‘identified but not

reconned,’ ‘reconned but not attacked,’ ‘attacked but not confirmed,’ and

‘confirmed destroyed,’ the ability of threats to attempt to destroy UAVs if the

UAVs pass within range of the threat, and finally the ability of the group to

replan if any of these events occur.

Item #5. Once the time-varying centralized simulation environment is complete, a

decentralized simulation environment is to be developed based on the

centralized version. This decentralized version now includes a vehicle’s own

decision making capabilities and communication amongst vehicles.

Item #6. Finally, the decentralized simulation is to be compared to the centralized

simulation in terms of ‘real-time’ efficiency, and the real-life ‘what-if’

communication problems are to be tested in the decentralized simulation

environment.

 10

Chapter 2
Literary Review

2.1 Path Planning Methods

 Vehicle path planning is a broad subject with a significant body of research

already established, especially in the field of robotics. Applied to UAVs, however, path

planning has been the subject of study for only a limited number of years. In general,

three different approaches have been studied to generate UAV paths, as discussed by

Bortoff8. These include graph-based methods, where paths are generated from a

sequence of edges connecting vertices of the graph, optimal control, which computes an

optimal path based on a cost function, and finally virtual potential fields, where a simpler,

related problem is solved to obtain the path8.

 For UAV trajectory planning, graph-based approaches have received the most

attention. In a graph approach, vertices are assigned to discrete points in space, edges are

used to connect these vertices, costs are assigned to each of the edges, and lastly the

graph is searched for an optimal trajectory8. For a simple graph, vertices can be assigned

rectangular points, as illustrated in Figure 2.1.

Figure 2.1: Vertices of a simple graph

 11

However, in this simple arrangement, for a well-defined graph, the computational

omplexity tends to grow at an exponential rate. A graph with a higher density of

ertices will result in a more optimal solution, but will also be more complex. A better

starting arrangement of vertices can curtail this exponential increase in complexity and

still yield a near-optimal solution.

 Known locations for threats, such as radar sites, can be used to build the graph.

Since threats and radar are generally to be avoided, a graphical approach based on

Delaunay Triangles and their geometric dual, Voronoi diagrams, arranges the vertices in

a much more natural layout8. McLain9, 10 and Beard10 developed a Voronoi-based

approach for UAV trajectory generation. Figure 2.2 illustrates a typical Voronoi

diagram.

c

v

Figure 2.2: Voronoi diagram for threat locations (shown as black dots)

 12

A Voronoi diagram places vertices such that the edges connecting any two will be

equidistant from the two closest sites (in this case, threats or radar sites). The diagram is

constructed without regard to starting or finishing points, and thus these must be added

into the graph. In McLain and Beard’s approach, the starting and finishing points are

connected to the three closest vertices.

Once the Voronoi diagram is complete, costs are assigned to each of the edges. The

general approach is to construct costs based on fuel costs and threat costs. When costs

re assigned, the Voronoi diagram is searched to determine the lowest cost path from the

ssigned. Voronoi can also be modified if certain sites are weighted (such as flying

he Voronoi diagram and other graph-based methods have advantages that the optimal

a

starting position to the finishing position. A number of algorithms can be used for this –

McLain and Beard use Dijkstra’s algorithm11, but Eppstein’s k-shortest paths algorithm

can also be used9, 12. For a graph with V vertices and E edges, the complexity of

Dijkstra’s algorithm is O(V log(V)+E); thus the complexity of the problem is always

predictable. Once a solution is generated, it will be the lowest cost path for a UAV from a

given starting position to a known finishing position. It may neither be the shortest path,

nor the safest path, but will be the lowest in cost according to whatever cost function was

a

between a powerful radar and a weak one), resulting in curves known as circles of

Apollonius13.

 For graph-based path planning, the resulting path must be made flyable for the

aircraft. There are several techniques for accomplishing this goal. The first involves

discretization of the path. This ‘chain path’ is made flyable by smoothing9. Another

method involves overlying splines to the path, as demonstrated by Judd and McLain14.

T

solution from the graph is always found and that the complexity of the solution is always

bounded. Thus, the problem can be setup such that it can achieve real-time performance.

 The second approach to UAV path planning is classical optimal control. This

approach, using Calculus of Variations, had been used since the 1960’s for aircraft path

 13

planning. In it, a cost function consisting of a path length cost, a proposed ‘radar cost’,

and a turning cost are subject to constraints of the starting and final aircraft states and a

mple model of the aircraft kinematics8, 15, 16. The dynamic constraints assure that the

na ol produces an optimal solution,

omputation complexity means that it may not be able to achieve real-time performance.

2.2

si

fi l path will be flyable. Although optimal contr

c

 The third approach to UAV path planning is one using virtual potential fields and

forces, as proposed by Bortoff 8. In this method, a chain of masses connected to each

other by springs and dampers represents a UAV path. Obstacles to be avoided, such as

radar and threats, have repulsive force fields that shape the path until equilibrium is

reached. This method has had the smallest amount of research performed among the

three, though Bortoff concludes that the method is quite promising for a uniform radar

field.

 Path Planning/Task Allocation Approaches

 Whenever task allocation is added to the path-planning problem, the complexity

greatly increases because the task allocation and the trajectory generation are highly

coupled. The cost for each UAV to visit a particular target is clearly a function of the

path taken. If trajectory optimization could be performed for all the possible

permutations of vehicle to target, the task assignment could be performed, and a globally

optimal, dynamically feasible solution would be reached. Unfortunately, this can

realistically be performed only for a very limited number of vehicles and targets.

Otherwise, the number of possible permutations makes the probably computationally

impossible for real-time in-flight performance.

 Aside from specialized, proposed approaches such as a genetic algorithm

proposed by Chen and Cruz17, there have been three main approaches for solution of the

task allocation and path-planning problem. Jonathan How and his group at MIT

researched the first of these approaches. In this approach, the coupling between task

allocation and path planning is partially decoupled18. From the known locations of no-fly

 14

zones, threats, waypoints, and targets, the first step is the creation of polygons for threats

and no-fly zones. The vertices of these polygons are then connected to polygons and to

the vehicle and target using a ‘line-of-sight’ approach. Once all possible graph segments

using the polygons and line-of-sight are formed, the Floyd-Warshall All-Shortest Path

algorithm18 is employed to find the shortest paths (where cost is based solely on path

length) for all vehicles to all targets and waypoints. Once these paths are known, the

basic task allocation problem is formulated as a Multi-dimensional, Multiple-Choice

napsack Problem (MMKP) 19. In this type of knapsack problem, one element must be

. This method combines the task

llocation and trajectory planning into a single Mixed-Integer Linear Program (MILP)

ptimiz

K

chosen from each of the multiple sets. Each choice yields a benefit but uses up a resource

dimension. The goal of the MMKP applied to this problem is to minimize overall cost

while selecting a single path for each vehicle and being constrained to ensure that each

target and waypoint is visited. Once task assignment has been performed, a more refined

trajectory generation scheme is used to make the chosen paths flyable. If the flyable

paths are sufficiently different from the original paths used to calculate the task

allocation, the problem can be resolved using different, more refined, paths to begin with.

To cope with a dynamic environment, How proposes using a local repair method 18 for

reshaping an individual UAV’s path or a sub-team reallocation for those UAVs directly

affected by a change in environment.

 The second approach for solution of the path planning and task allocation problem

has also been researched by How and his group at MIT20

a

o ation problem . In order to create a linear (as opposed to nonlinear)

program, the aircraft dynamics are linearized. These dynamic constraints, plus other

constraints such as each UAV only having one selected path and each pre-assigned target

and waypoint being visited, create the variables for the MILP problem. This method is

guaranteed to find the globally optimal solution that provides detailed trajectories for

each vehicle to reach its allocated waypoints in minimum time, but it is computationally

intensive. Although experiments involving ground vehicle have been performed to

demonstrate the usefulness for small-scale path planning and task allocation problems , a

20, 21, 22

23

 15

MILP strategy is typically used for a benchmark, as it is a centralized scheme that is

computationally inefficient for real-time applications .

 The third approach is a hierarchical control scheme that has been developed by

Chandler and Pachter at Wright-Patterson Air Force Base . This hierarchical

decomposition deals with the coupling-induced complexity and a method to reduce it .

There are four layers within the hierarchical autonomous controller . The first layer is

the decision-making layer. This layer performs the task allocation function by using a

market-based bidding method and also assures that all mission objectives and sub-

objectives are met. The second layer is the path planning level. This layer coordinates

cooperati

24

25

26

27, 28

ve search, classification, attack, damage assessment, and rendezvous. The third

yer is the trajectory-planning layer, which the individual UAVs perform for themselves.

tock exchange, in that each

ehicle ‘bids’ on an assignment. Vehicles with a higher bid (meaning higher cost to

erform the assignment) trade off with vehicles that have a lower cost to perform the

ass he overall cost of performing all
25-33

la

The fourth layer is a redundancy management layer, which ensures accurate following of

desired trajectories. Whenever task allocation is needed, each of the vehicles performs

trajectory planning in their third layer. The top, centralized layer uses an auction, such as

a forward Gauss-Seidel auction, a forward Jacobi auction, or a forward/reverse auction to

perform the task allocation29. The auction resembles a s

v

p

ignment. The goal of the auction is to minimize t

assignments. There has been much research performed using this approach , and

currently the U.S. Air Force’s LOCAAS UAV (discussed in Section 1.2) uses this

scheme.

 Of the three methods, the first method by MIT and the third method by WPAFB

have been shown to be the most appropriate for path planning and task allocation

performed aboard actual UAVs. While the results of both methods are suboptimal,

research performed has shown that they perform well, without the complexity associated

with an optimal solution as found using the second method.

 16

2.3 Decentralized Control and Communications

 The first and third methods mentioned in the previous section have been shown to

be more appropriate for actual implementation in part due to the decoupling of the tasks.

Especially with the third method as researched by the Air Force, individual UAVs make

calculations for themselves in the decentralized portion of the scheme. The topmost layer

of the scheme then uses these calculations for task allocation34. In How’s research for the

first method, he proposes distributing the optimization of the selected paths to the

dividual UAVs. These methods are partially decentralized, meaning that there is still

ome ‘supervisory’ centralized processor35-37 that makes group decisions. For both the

entralized and decentralized schemes, communication among UAVs is an issue. For a

entralized scheme, delay or loss of communication means that the vehicles will not

eceive any instructions for performing tasks, whereas in a decentralized scheme, each

vehicle can still perform tasks, though there may be some repetition of tasks and loss of

others. Mitchell, Schumacher, and Chandler studied the effects of a delay using the

hierarchical control methods38. Communication delays of 1 to 3 seconds were simulated

and resulted in a significantly decrease in successful attack and verification, though tasks

were still completed. A delay or loss of communication implies a lack of cooperation,

but for UAVs that are involved in the decision-making process, tasks can still be

performed39.

in

s

c

c

r

 17

Chapter 3
Development of the Path Planning/Task Allocation Scheme

3.1 Discussion of Setup

In selection of methods for performing path planning and task allocation, the type of

mission envisioned is crucial. For the research presented here, the problem statement

given in Section 1.3 dictates the following:

Given ‘nuav’ UAVs with ‘nzones’ no-fly zones such as mountains or

political boundaries, and given ‘ntarg’ targets or waypoints to visit, the

UAVs must accomplish a mission such as visiting each target or waypoint

while minimizing an overall cost to the group. Extending this basic

formulation to add realistic constrains and boundary conditions include

timing constraints, such as a preliminary target needing to be

reconnoitered prior to attacking. Also dynamic constraints on planned

paths, such as maximum linear velocities for UAVs and maximum angular

rates for rolling performance need to be accounted for. Furthermore, the

problem may be time varying, where there are addition/removal or

targets, loss of UAVs in the team, and loss of communications may occur.

Also, in the role of high-risk but high-value missions, there will also be

‘nthreats’ threats in the scenario that the UAVs should avoid.

This setup is considered to be appropriate for the mission of high-risk by high-value

target attack. In this mission, the high-valued targets are known, the area having been

reconnoitered previously by possibly other UAVs or even satellite intelligence. During

this reconnaissance, threat and no-fly zone information is also given. The mission must

still be able to account for a dynamic environment where new targets may appear, known

targets may disappear, and real threats can ‘pop-up’ and destroy UAVs working in a

team.

 18

 The literary review of Chapter 2 presented three main approaches for the solution

of the path planning and task allocation problem. As concluded, the use of a Mixed-

Integer Linear Program based approach is only appropriate for a benchmark. Of the

remaining two, for a high-risk by high-value mission, the approach presented by How

will be seen as more suitable. Currently, the hierarchical control scheme is quite suitable

for a highly dynamic environment that a flying munition such as LOCAAS is expected to

encounter. These UAVs perform the Suppression of Enemy Air Defenses role by being

released in an area thought to contain some threats and enemy air defenses. As the UAVs

search for targets (which are air defenses in the SEAD mission, so there are no threats),

any changes in the environment cause the market-based bidding scheme to be employed.

 While highly effective for such missions, whenever known target locations and

no-fly zone and threat-avoidance are considered, a method similar to How’s approach is

more desirable. With this type of approach, all the a priori information about the targets,

threats, and no-fly zones can be considered during path planning and task allocation,

while certainly being adaptable to dynamic environment changes. The first part of this

research presents a path planning and task allocation approach that shares similarities

with the one presented by How et.al. in "Co-ordination and Control of Multiple UAVs".

The presented approach uses a Multi-dimensional, Multiple-Choice Knapsack Problem

algorithm for solution of the task allocation portion, as does How’s approach, but the

steps leading to the MMKP employment are quite distinct. The information used to set

up the approach presented here includes the following:

• Information about UAV positions, altitude, velocity, and heading angle;

• Information about target positions, deemed target values, and the current state of

the target (whether it is confirmed as a target, reconned, attacked, or battle-damage

assessment performed)

• Information about threat positions, effective ranges, and probability of kill

• Information about no-fly zone positions and size

 19

3.2 Voronoi Diagram Generation

The first step in this approach is the determination of possible paths that the UAVs

could take to reach targets. Several methods were discussed in the literary review,

including graph-based methods, optimal control, virtual potential fields, and the line-of-

sight method described in How’s method. Of these, the graphical methods have the

advantage. Optimal control tends to be computationally inefficient, and the virtual

potential field method is largely unresearched. While the line-of-sight method

theoretically finds the shortest paths to initially choose from, the threats must be modeled

the same as the no-fly zones, with definitive boundaries and vertices surrounding. This is

less than optimal with threats because the probability of being destroyed if the UAV

enters the range of the threat is not considered. Though the UAV would incur an

additional cost due to the possibility of being destroyed, this may be desirable, as the

overall path may be cheaper from the lowering of the distance cost. The inability to pass

within the boundaries of a threat also causes a certain dilemma when considering that

multiple threat ranges can overlap, and targets can possibly (an most probably will) be

inside of the effective range of one or many threats.

 Graphical methods do not take into consideration the boundaries of no-fly zones

or threats. These methods must account for these boundaries with additional costs such

as a probability of being destroyed cost for entering the effective range of a threat and an

infinite cost for flying into the boundary of a no-fly zone (more on the cost function in

the following section). Of the possible graphical methods, Voronoi diagrams were

concluded to have many advantages for path planning and have been used in this research

approach.

 In order to properly define a Voronoi diagram, the Euclidean distance between

two points p and q must be defined for points in a plane:

() () ()22, yyxx qpqpqpdist −+−≡ (3.1)

 20

The sites for the Voronoi diagram are defined as:

()npppp ,,, 21 K≡ (3.2)

40

 are shown in

e lower left corner while the target positions are shown in the upper right.

which are a set of n distinct points. The Voronoi diagram of these sites is defined as the

subdivision of the plane into n cells, one for each site, with the property that a point q lies

in the cell corresponding to a site pi if and only if the distance dist(p,qi) is less than the

distance dist(pj,q) for each pj in p where i is not equal to j . Each site p corresponds to a

single Voronoi cell, which is the intersection of a number of half-planes. The Voronoi

diagram is a planar subdivision whose edges are a number of straight-line segments.

Figure 3.1 illustrates a typical Voronoi diagram showing 13 no-fly zones, represented by

black dots, and 12 threats, represented by green circles. The UAV positions

th

Figure 3.1: Voronoi diagram with 25 sites

 A

is a pla shown in

Computational Geometry: Algorithms and Applications40.

n algorithm for computing a Voronoi diagram is illustrated next. This algorithm

ne sweep algorithm commonly known as Fortune’s algorithm, which is

 21

utation of Voronoi Diagram

In s in the plane
ed edge

1
2.
3 .

5
6 E IRCLE VENT_ __ _ nt of the circle causing

7
8 e half-infinite edges

f the Voronoi diagram. Compute a boundi box that contains all vertices
n its interior, and attach the half-infinite

H

2
e other two leaves store the

riginally stored with 〈. Store the tuples hpj _ pii and
pip jrepresenting the new breakpoints at the two new internal nodes.

in the Voronoi diagram structure for the two halfedges
pj, which will be traced out by the two

new breakpoints.
4. Check the triples of consecutive arcs involving one of the three new arcs.

eep line
and the circle event isn’t present yet in Q.

Algorithm for comp
put. A set of point site

Output. The Voronoi diagram given inside a bounding box in a doubly connect
list structure

. Initialize the event queue Q with all site events.
while Q is not empty

. do Consider the event with largest y-coordinate in Q
4. if the event is a site event, occurring at site pi

. then HANDLESITEEVENT_pi_

C E p , where p is the lowest poi. else HANDL
the event

. Remove the event from Q .

. The internal nodes still present in T correspond to th
ng o

of the Voronoi diagram i
edges to the bounding box by updating the doubly-connected edge list
appropriately.

9. Traverse the half-edges of the doubly connected edge list to add the cell records and
the pointers to and from them.

The procedures to handle the events are defined as follows.

ANDLESITEEVENT(pi)
T 〈 1. Search in for the arc vertically above pi, and delete all circle events

involving 〈 from Q .
. Replace the leaf of T that represents 〈 with a subtree having three leaves.

 stores the new site pi and thThe middle leaf
site pj that was o
h _ i

Perform rebalancing operations on T if necessary.
3. Create new records

separating V _pi_ and V

Insert the corresponding circle event only if the circle intersects the sweep
line and the circle event isn’t present yet in Q .

HANDLECIRCLEEVENT(p_)
1. Search in T for the arc 〈 vertically above p_ that is about to disappear, and delete all

circle events that involve 〈 from Q.
2. Delete the leaf that represents 〈 from T. Update the tuples representing the breakpoints

at the internal nodes. Perform rebalancing operations on T if necessary.
3. Add the center of the circle causing the event as a vertex record in the Voronoi

diagram structure and create two half-edge records corresponding to the new
breakpoint of the Voronoi diagram. Set the pointers between them appropriately.

4. Check the new triples of consecutive arcs that arise because of the disappearance of 〈.
Insert the corresponding circle event into Q only if the circle intersects the sw

This algorithm is implemented in the MATLAB function as found in voronoi.m, which is

shown in Appendix A.
 22

 The number of vertices in the Voronoi diagram of a set of n point sites is at most

2n-5 and the number of edges is at most 3n-6 (40). From this theorem it is seen that for an

insufficient number of sites (threats and no-fly zones in this case), the Voronoi diagram

will either not be able to be computed or will have a small number of edges for finding

appropriate paths. To work around this difficulty, 16 extra sites are added around the

edges of the known battlefield. This ensures that even without any threats or targets,

ere will be edges to choose paths from. Once this is accomplished, the next step is to

om fore is voronoi.m.

ronoi diagram. This completes the Voronoi diagram section of the approach, and

next follows the cost assignment and determination of the cheapest paths for each

permut

th

c pute the Voronoi diagram, which as mentioned be

The computation of the Voronoi diagram is the first major step in this path

planning and task allocation research. The MATLAB code implementing this is

vrn_diag_gen.m, which is shown in Appendix A. After the computation of the Voronoi

diagram, the UAV locations and the target locations must be added into its list of

vertices. For each of the locations of UAVs and targets, the 3 closest vertices are found.

Three edges between these vertices and the location are formed and added to the edges of

the Vo

ation.

3.3 Dijkstra’s Algorithm and Cost Assignment

Once the Voronoi diagram is complete and the UAV positions and target

positions are connected, a path planning method must determine the optimal path for each

permutation of UAV to target. This consists of two separate parts – first, a cost function

must be developed and applied to each edge of the Voronoi diagram, and second, the

edges must be searched to determine the optimal path, which is defined as the

combination of graph edges that connects the UAV to the target with the lowest possible

cost.

 23

The first task in this section of the approach is the assignment of costs to each

graph edge. The cost function developed here consists of three separate parts. The first

art of the cost relates to the fuel cost. Since typically UAVs will be flying at a constant

speed, the fuel required to fly onal to the length of the edge.

Thu rst part of t unction is ost. T d part of t is

that is re o s coul ossibly mountains or

po ndaries AVs liti u

disastrous and should never be allowed. Sim , a UAV cr a physical ary

(cra to a mountain) is also unacceptable. Thus, to ensure that crossing political

nd physical boundaries is never a cheapest path, a cost of infinity is assigned to each

nges and probabilities-of-kill.

Table 3.1: Typical threats41

Name KS-19 SA-7 Grail Crotale SA-2

p

along an edge will be proporti

s, the fi he cost f a distance c he secon the cos

 which lated to no-fly zone c st. No-fly zone d be p

litical bou . Offensive U crossing a po cal boundary co ld certainly be

ilarly ossing bound

shing in

a

edge that intersects such a boundary. The last part of the proposed cost function is

associated with threats. A typical threat can be visualized as a munition (whether anti-

aircraft artillery or surface-to-air missile) that has an effective range which inside has a

‘probability-of-kill’ for destruction of intended aircraft. Table 3.1 illustrates some typical

threats and their associated effective ra

Type 100mm -
Antiaircraft Artillery

Man-
Portable SAM

SAM SAM

Effective
range

4000 meters 5000 meters 10,000 meters 30,000 meters

Probability
of kill

40% 50% 80% 80%

These threats are used as examples of real-world threats that might be encountered in

current conflicts. These particular threats were compiled by selection of several arms

available to the former Iraqi regime. Figure 3.2 depicts a launched Crotale “Rattlesnake”

SAM that can be used

struction of 80%.

 effectively inside at 10-kilometer range, with a probability of

intended aircraft de

 24

Figure 3.2: Crotale “Rattlesnake” surface-to-air missile

Thus, the cost assigned due to threat boundary intersection is as follows: for each

permutation of edges and threats, the length of edge is found, and the Euclidean distances

of the first (starting) vertex of the edge to the center of the threat and the second

(finishing) vertex to the center of the threat are found. These distances are provided in

the following equations:

() ()2
,,

2
,,_ yfysxfxs vvvvlengthEdge −+−= (3.3)

() ()2
,

2
,__ yysxxsstart cvcvcentertoV −+−= (3.4)

() ()2
,

2
,__ xxffinish cvcentertoV −= yyf cv −+ (3.5)

Next, the 3 distances are used in the following equation to find the distance from the

starting vertex to the point where the perpendicular of the edge to the center of the threat

intersects the edge.

()
lengthEdge

centertoVcentertoVlengthEdge
intersecttoV finishstart

s _2

__
222

∗

−+
= (3.6)

 25

 26

 this distance from the starting vertex to the intersection is greater than zero (meaning it If

is past the starting vertex in the direction of the other end of the edge) and is less than the

length of the edge, then the closest point on the edge to the threat is that point of

intersection. Equation 3.7 gives that distance.

22 _____ intersecttoVcentertoVdistanceClosest ss (3.7)

If the distance from the starting vertex to the intersection is negative, the closest point on

the edge is the starting vertex. Otherwise, the distance is greater than the length of the

edge, and the closest point is the finishing vertex.

 Once the closest point on the edge is computed, the effective range of the threat

and the distance between that edge and the center of the threat are compared. If the edge

falls within the range of the threat, a threat cost is added to the distance cost of the edge,

shown by Equation 3.8.

killofprobThreatWlengthEdgeWcostEdge _____ 21

−=

∗+∗= (3.8)

In this equation, W1 is a weight for the cost of distance due to the proportionality of fuel

to distance and W2 is a weight for the probability of being destroyed. The preceding

algorithm is implemented in the code c_assign.m, which again is found in the first

appendix.

 At this point, all edges now have realistic costs associated with flying along that

edge. The next step is searching of these edges to determine the cheapest paths for each

UAV to target permutation. As the section title suggests, this has been accomplished

using Dijkstra’s algorithm. Dijkstra’s algorithm solves the cheapest path problem for a

irected graph that has nonnegative edge costs42. The necessary inputs for the algorithm

clude the set of vertices and the set of ordered pair representing the edges connecting

ose vertices. Not that Dijkstra’s algorithm requires a graph with directed edges.

his means that each edge must be designated with a starting vertex and a finishing

d

in

th ice

T

vertex (unlike in the threat cost assignment where the starting and finishing vertex labels

re arbitrary). To overcome this difficulty, the Voronoi diagram is overlaid with two

nd finishing vertices while the second, identical edge has the opposite labeling. The

oding labeled set_thc.m (meaning tail-head-cost) solves this. This code first renames all

vertices with integers f

rected edges and their

ssociated cost form an adjacency list.

For implementation of Dijkstra’s algorithm, a weighted adjacency matrix must

dicates the cost from the ith to the jth vertex43. Figure 3.3

hows an example of a directed graph with costs.

ple directed graph with costs

The corres

⎦⎢⎣ 00900
1500

a

edges connecting each set of vertices. The first edge has an arbitrary labeling of starting

a

c

rom 1 to n and refers to them in this manner instead of using their

coordinates. The ordered pairs of vertices representing di

a

first be formed. A weighted adjacency matrix is defined as a square n-by-n matrix whose

entry in row in and column j in

s

Figure 3.3: Exam

ponding weighted adjacency matrix for this figure is:

⎥
⎥
⎥
⎥
⎥

⎢
⎢

00000

⎥⎢ 013700
⎤⎡ 0015250

⎢
⎢ 00

31

2 5

4

15

25 7

15

9

13

 27

The adjacency matrix is formed using the file list2adj.m. This file is available from the

MATLAB toolbox Matlog44.

 The algorithm for Dijkstra with inputs of the adjacency matrix and the beginning

vertex (a UAV position) and finishing vertex (a target position) works by constructing a

bgraph S such that the cost of any vertex v in S from the beginning vertex s is known to

e minimum44. The algorithm43 is as follows:

1.

 cheapest cost from the UAV position to the target

position is found. This algorithm is implemented in the Matlog toolbox function dijk.m.

The fun

 previously, developing paths based on a Voronoi diagram has

limitations for battlefields with smaller numbers of sites (the threats and no-fly zones).

To address this issue, it was suggested that additional sites should be added into the list of

su

b

for each vertex v, set d(v), the cost of reaching that vertex, to infinity

2. Set d(s), the cost of reaching the current vertex from itself, to zero

3. Initialize S a an empty set

4. Initialize Q as a set of all the vertices

5. while Q still has vertices in it,

a. find vertex u in Q that has the lowest d(v) value

b. include the vertex u in the set S

i. for each vertex v with is connected to u with an edge

1. if d(v) > d(u) + edge cost

2. then d(v) = d(u) + edge cost

c. remove vertex u from Q

This algorithm continues until the

ction outputs the total cost for the individual UAV to reach a target, and the order

of vertices the path takes. This concludes the selection of the cheapest paths for each

UAV to target permutation.

3.4 Path Shortening and Flyability

As mentioned

 28

sites, e

UAV is permitted to enter

at threat up to the radius it had previously before. Each UAV may ‘see’ a different set

nsuring that Voronoi produces acceptable possible paths. However, this adds an

unwanted side effect. When the cheapest paths are selected, some of the paths may have

unnecessary ‘kinks’ due to Voronoi avoidance of these sites that do not represent either

threats or no-fly zones. This issue can be dealt with by using a path shortening method

based on line-of-site. Whenever the method of line-of-sight path shortening is employed

at this point, the best features of Voronoi diagrams are coupled with the best features of

line-of-sight path generation. The previous disadvantages of the line-of-sight method

were highlighted as the lack of realistic threat modeling and the situations where threats

overlapped each other or desired targets. The modified line-of-sight version presented

here removes these disadvantages.

The file path_shrtng.m uses the methods discussed in this section. Adding a

number of new vertices along each edge modifies the previously selected cheapest paths.

The number of new vertices is variable, but typically ten new vertices are added per edge.

These vertices take the place of the vertices surrounding threats and no-fly zones are

proposed previously for a line-of-sight method. Once these vertices are added, new

edges are effectively created. With these new edges, the modified line-of-sight method

can be implemented.

Since UAV paths already selected from the above sections may include passing

into threat boundaries, the modified line-of-sight approach must address this. The first

step the approach takes is identifying which UAV pass though which threats and at what

range. The next step is to essentially decrease the range of the threats for these UAVs.

These vehicles have already incurred a threat cost, thus that

th

of threats at this point, representing where its previous path went. It should be noted,

however, that for each UAV to target permutation, all of the threats that it did not enter as

part of its previously selected path remain unmodified. The only boundaries that are

reduced are the ones that the individual UAV passes through.

 29

The path-shortening algorithm executes for each UAV to target permutation. This

 is found. The vertex at the end of this edge becomes the new second

ertex of the path and the new starting vertex for the algorithm to pair up with the target

e

be too computationally intensive.

 new method is presented here to solve this problem.

 Fillets can be added to intersection of edges in order to m

s for aircraft dynamics, the concept being addressed deals solely with a minimum

algorithm begins by selecting the UAV position for a single permutation. This position

becomes the starting vertex in the list of vertices that produce the path. From the starting

vertex, the algorithm couples that vertex with the target vertex and checks the produced

edge to see if it intersects a threat or no-fly zone via the method discussed in the previous

section. If the edge is found to intersect a boundary line, the starting position is coupled

with the vertex immediately preceding the target position. The algorithm continues to

choose vertices successively backward until a combination that produces no intersections

with any boundary

v

position. The algorithm continues until the target position is reached, which can occur in

as few as a single edge from the UAV position to the target position to as many as the

number of edges selected from the original Voronoi diagram.

 The next issue to address is the flyability issue. In Section 2.1, two methods wer

presented for this task. The first was one that discretized the paths into chains and used

smoothing effect via forces. The second method was one in which splines were used.

The spline approach was considered to be excellent for producing flyable paths.

However, upon implementation, it was soon to found to

A

ake paths more flyable.

A

turning radius. Though a full review of aircraft dynamics is covered in a subsequent

chapter, the concept of minimum turning radius for an aircraft is the tightest turn that the

aircraft is physically able to make. This property is dependent upon several variables,

including the aircraft inertia properties and velocity. For a known minimum turning

radius, each intersection of edges for the paths can be filleted to account for simple

aircraft dynamics.

 30

 This concept is found using several equations and a few trigonometric relations.

Adding fillets begins with selecting the first three vertices of a path. These three vertices

will form some sort of angle that the aircraft will by some degree not be able to

completely follow. These vertices are labeled Start, Middle, and Finish, relating to their

position in the path. The first calculations needed are the Euclidean distances from the

Start to the Middle vertices, from the Middle to the Finish vertices, and from the Start to

e Finish vertices. These distances are labeled SM, MF, and SF, respectively. The angle

formed by the intersection of the two edges i

th

s called α, and can be found using the

following equation, which is simply the law of cosines:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∗

−+
=

MFSM
SFMFSM

2
arccos

222

α (3.9)

hus, the lengths SM, MF, and SF, and the angle α are now known. A circle of minimum

r is now fitted to the angle caused by the intersection of the edges. The

irc such that each edge forms a tangent on the circle. The place where the

dge touches the circle is where a n vertex should be placed. From the Start position

aveling along the path, it can be seen that upon reaching the position of the first new

ertex, the vehicle should follow the circle until it reaches the next vertex, upon which it

e follows the original path on toward the Finish vertex.

The position of the new vertex can be found by noting that a line of the minimum

ength connecting the center of the circle to the tangent intersection of the

le and the edge SM is obviously perpendicular to the edge. The radius is known, a

ght angle is found, and the angle formed between the edge and a line connecting the

Middle vertex and the center of

efines the length entitled Fillet.

T

tu ning radius

le is fitted c

e ew

tr

v

th

turning radius l

circ

ri

the circle is half of α. This leads to Equation 3.10 that

d

⎟
⎞

⎜
⎛

=
tan

__
α

radiusturnMinFillet (3.10)

⎠⎝ 2

 31

The following figure illustrates the filleting principle. The circle meets both edges on a

tangent, and the new vertices are found using the length Fillet, as shown in the figure.

his procedure creates the two new fillets and removes the vertex Middle. This is

Figure 3.4: Picture illustrating fillet principle

T

continued by moving along the path and re-labeling new vertices with Start, Middle, and

Finish until the target vertex is labeled Finish, at which point the path can be considered

flyable. Each path representing every permutation of UAV to target is made flyable in

this manner.

 A second task for flyability is met when considering that a current path is not

formed with respect to the aircraft’s heading angle. Though the path is considered to be a

flyable one, this can only be if the UAV was initially facing directly towards the first

vertex along the path from its initial starting vertex. This will only occur a small

percentage of the time, so the path must be supplemented at the beginning with several

segments that get the UAV onto the path facing the correct direction.

Start

Finish

Middle

α

Circle of minimum
turn radius

Fillet
length

Place new
vertex here

Place new
vertex here

 2

 32

 As the location of the next vertex is not guaranteed to be any specific distance

away from the starting vertex, it is unacceptable to simply let the aircraft attempt to turn

in order to align itself with the path aside from relatively small angular differences.

Depending on how close the UAV is to the next vertex and how important reaching that

vertex is, a vehicle could potentially overshoot its intended target. A method is devised

here that adds the minimum length section to the beginning of the path and allows the

AV to turn as quickly as possible to arrive on the selected path starting from the same

initial vertex but now facing with the correct heading angle.

 This methods shares similarities with the theory behind the fillets presented in the

preceding pages and is much an extension of it. For an aircraft traveling along a given

heading angle and suddenly re-planned and assigned a new path with a different heading

angle, the quickest method to get on the new path with the correct heading angle without

the possibility of overshooting any target will be to ircles of minimum turning

radius to the old and new paths, with each circle being tangent to one of the paths and

both circles being tangent to each other. To illustrate this concept, Figure 3.5 shows two

different paths. This plot begins with a UAV initially with a heading angle of –90

degrees (heading toward the bottom of the plot). The ne signed to it has a

heading angle of 0 degrees (heading toward the right edge of the plot). Whenever the

new path is assigned, the UAV is located in the center, where the two paths cross. In

order to get on the new path with a minimum amount of time, the aircraft will begin by

flying along the current path heading at –90 degrees. Upon reaching the tangent with the

lower left circle (which has a radius equal to the aircraft’s minimum turning radius), the

UAV will begin following the circle. At the tangent between the two circles, the aircraf

will follow the secon ance until it reaches

s initial start point. The aircraft will now be heading exactly 0 degrees, toward the right

f the plot, starting exactly from where the new path was planned to start.

U

fit two c

w path as

t

d circle of minimum turn radius for the short dist

it

o

 33

Initial
heading

Final
heading

Figure 3.5: Example of heading angle s

 This method can be used for any change in heading angle. The next example

demonstrates the effects of having a new path such that the heading angle flips, and the

aircraft must turn around. Once again, the vehicle begins by continuing along its current

path until it reaches the tangent of the first circle with the current path. It follows this

circle until it reaches the tangent of the two circles, where is beings to follow the other

circle. Upon reac ngent to the new

ath, the aircraft follows the newly assigned path now currently heading in the correct

olution

hing its initial location, where the second circle is ta

p

direction to accurately follow the new path.

 34

Figure 3.6: Second example of heading angle solution

mple, the UAV is initially heading at –20 degrees and

 Figure 3.7 is the last example meant to illustrate how this approach handles

varying heading angles. In this exa

is assigned a heading angle of 25 degrees.

Figure 3.7: Final example of heading angle solution

his last example is getting nearing a limit that should be imposed on the usefulness of

this approach. For angles with less than about 30 degrees difference, the aircraft can

T

Initial
heading

Final
heading

Initial
heading

Final
heading

 35

follow the new path with sufficient accuracy. It should be noted that a filleting type

approach could not be used here since the aircraft is already to the intersection of the two

edges before the new path is assigned and corrective measures are taken.

 For performing this procedure, the current heading angle and the new heading

angle are found. For ease in computation, these angles are then rotated such that the new

heading angle is horizontal at 0 degrees, and the current heading angle of the aircraft is

rotated by the same amount. Again, for small angles of roughly 30 degrees or less

difference, this procedure is omitted. The first calculation involves finding the distance

the aircraft must fly before beginning to turn onto the first circle.

()

()

()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

urnmin_t
pi

angleHeading
C

urnmin_t
pi

angleHeading
C

2
_

2
_

3

2

2 (3.11)

The coefficients have been determined by numerical methods for use in the MATLAB

code heading_angle_paths.m. The coordinates of this first break point may now be

calculated using the initial position of the aircraft and the distance determined from

Equation 3.11.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= urnmin_t

pi
angleHeading

Cdistinit 2
_

_
3

1

()angleHeadingdistinituavxbreakx _cos___ ∗+= (3.12)

()angleHeadingdistinituavybreaky _sin___ ∗+= (3.13)

With these coordinates, all the information for computing the two circles of minimum

rning radius is at hand. The centers of the circles are found based on whether the

orig r counter clockwise

ire tion. For positively rotated heading angles, the variable ccw will be set to negative

one; otherwise, it will have a unitary value. Equations 3.14 and 3.15 are used to find the

tu

inal heading angle was rotated in the clockwise direction o

d c

 36

center of the second circle. For finding the center of the first circle, the new heading

angle is substituted for the current heading angle and the position of the UAV is used

instead of the first breakaway point.

⎟
⎠
⎞

⎜
⎝
⎛ ∗

−∗+=
2

____ ccwpiangleHeadingCOSdistinitbreakxcirclex (3.14)

⎟
⎠
⎞

⎜
⎝
⎛ ∗

−∗+=
2

____ ccwpiangleHeadingSINdistinitbreakycircley (3.15)

Two more angles are needed to find the locations where the two circles become tangent

and at what angle the first circle becomes tangent to the current path. The first angle is

the one made by the horizon (the reason this system was first rotated) and the line

 the first circle. The second angle is the

a

hs, with shortening, adding fillets, and

angle sections, updated costs are assigned to the paths

onally prudent to perform path shortening and flyability

ber of possible paths that Voronoi presents. The

ombination of using both a Voronoi diagram approach and a line-of-sight shortening

ffer advantages that an offer by themselves. Using the flyability methods

resented in the preceding pages ensure that dynamically feasible paths will be chosen

rom without the complexities associated with a linear program or optimal control. This

connecting the breakaway point and the center of

one m de by the horizon and the line connecting the center of the second circle to the

center of the first circle. This now leads to the creation of vertices around the circles,

starting first with the initial location of the UAV, followed by the first breakaway vertex,

then with vertices around the first circle until the circles become tangent, then with the

vertices along the second circle until the initial position once again becomes a vertex, and

finally ending with the first assigned vertex of the new path. The coordinates are then

rotated to reflect the change back to the unrotated system, and the new vertices are

inserted into the new paths.

 Since much change has occurred to the pat

possibly adding initial heading

using the same methods as first described in Section 3.3. It may seem redundant to have

already assigned costs, only to later change them before they are used in task allocation.

However, it is not computati

additions to such a large num

c

o neither c

p

f

 37

concludes the entire path planning section and leads directly into the last section, the

pplication of a Multi-dimensional, Multiple-Choice Knapsack Problem for solution to

e task allocation problem.

3.5 Multi-dimensional, Multiple-Choic Knapsack Problem

The task allocation problem is solved via implementation of a Multi-dimensional,

Multiple-Choice K be NP-hard 45 in

 of knapsack problems. For a typical knapsack problem, items for the knapsack

 is packing of cargo – the

oal is to maximum the amount of cargo put aboard a ship or a truck or an aircraft, but

resource con e MMKP is

a variant of such a problem. With MMKP, there are multiple groups of items. Each

group has an assigned value but uses up certain resources. The objective of the MMKP is

to select a single item from each group for maximizing the value while adhering to the

resource constraints46.

 As applied to the current problem, the choice of a single item from a group

presents a single permutation of UAV to target within the group of a single UAV. The

a

th

e

napsack Problem (MMKP), which is considered to

the class

must be picked such that a total value is maximized while adhering to resource

constraints. A simple example of the classic knapsack problem

g

straints such as total weight and volume must be considered. Th

re

constraints on the solution are that each target has to be visited, and each UAV has to be

assigned a path. These constraints assure that tasks are assigned to all UAVs and that

objectives of visiting targets are not missed by assigning multiple UAVs to perform the

same task while neglecting to perform others. Instead of maximizing a value function,

the equivalent benefit is derived when attempting to minimize a cost. Each permutation

has already been assigned a cost as addressed in early sections, and thus it is the goal of

the MMKP to use these costs to find the optimal combination of paths to minimize the

cost of performing the entire mission for the team.

 38

 An example will clarify this concept. The MMKP knapsack problem of Figure

3.8 features 3 UAVS and 3 targets, and each block represents a possible path.

Table 3.2: List of example path permutations and mission costs

From inspecting the combinations above, the cheapest combination of paths that satisfies

the constraints of every target being visited and each UAV being assigned a task is the

Figure 3.8: Example UAV to target MMKP setup

For this problem, there are six different permutations of the path combinations.

Specifically, the list of permutations is found in Table 3.2.

382
413
153
351
162
391

31
21
12
32
13
23

Paths of CostChoice Path 3 UAVChoice Path 2 UAVChoice Path 1 UAV

Path to
target 1

Cost: 10

Path to
target 1

Cost: 5

Path to
target 1

Cost: 13

Path to
target 3

Cost: 2

Path to
target 3

Cost: 19

Path to
target 3

Cost: 7

Path to
target 2

Cost: 3

Path to
target 2

Cost: 24

Path to
target 2

Cost: 9

UAV 1 UAV 2 UAV 3

 39

combination of UAV 1 being assigned AV 2 being assigned to target 1, and

UAV 3 being assigned to target 3 erforming the mission using this

ssignment of tasks is 15. Any other assignment of tasks results in an increased cost to

per It should be noted that the goal is only to minimize the total

mission cost, not the individual costs for the UAVs. The can be seen where UAV 1 was

not cho

 he algorithm for solution to the task allocation problem initializes by inputting

each U

 Figure 3.8. Similar to Dijkstra’s algorithm, the cost of assignment of any

combination of paths is set to infinity. A permutations m

e UAV to target paths could be combined while adhering to the resource constraints is

 combination. As

lower cost combinations are found, they become the selected assignments unless an even

lower cost combination is encountered. Once determined that the

ermutations of assignments, the MMKP reports the selected assignments and the cost to

to target 2, U

. The total cost of p

a

form the mission.

sen to follow its cheapest path. It would have been cheaper for UAV 1 to be

assigned to target 3 with a cost of only 2 instead of being assigned to target 2 with a cost

of 3. However, such an assignment would have used up a resource allotted for target 3,

and caused overall mission costs of either 16 or 39, depending on where UAV 2 and

UAV 3 were assigned.

T

AV to target permutation and associated cost in a matrix similar to the layout

shown in

atrix that captures all the ways

th

formed. These permutations are then searched to find the lowest cost

re are no cheaper

p

perform the mission. The code applying this method is titled MMKP_task_allocation.m.

 The first two research objectives have now been fulfilled. Each UAV has a task

assignment for visiting a target and a dynamically feasible path to complete that task.

The coupling of the problem has been accounted for using this approach, and the last

steps in the path planning and task allocation scheme are simple data conversion used for

plotting purposes. All MATLAB code employing the methods discussed here are

included in Appendix A, and are listed in the order in which they are run.

 40

Chapter 4

The third research objective is the development of a simulation environment that

employs the path planning and task allocation approach described in the previous chapter.

Thi ree-of-freedom aircraft model to follow the assigned paths

at are generated for each UAV. Therefore, it is appropriate to first review the aircraft

dynami

Aircraft Dynamics

4.1 Introduction

s simulation uses a six deg

th

cs and equations of motion. More detailed descriptions and analyses than those

presented here can be found in several references47-49.

A single, nonlinear vector equation can be formulated to accurately model an

aircraft:

() ()()tlt totatotal MFxfx ,,=& (4.1)

 Equation 4.1, x is defined as the following vector of state variables:

 (4.2)

his state variable modeling consists of twelve state equations that can be divided into

ur groups. The first group of state variables, the translational velocity variables,

onsists of the true airspeed V, the aircraft angle-of-attack α, and the sideslip angle, β.

he second group is the rotational velocities of the aircraft, with p, the angular roll rate,

, the angular pitch rate, and r, the angular yaw rate. The third group describes the

aircraft attitude i e vertical axes.

his group includes ψ, the Euler yaw angle, θ, the Euler pitch angle, and φ, the Euler roll

ircraft x-coordinate with respect to the

arth-fixed x-axis, ye, the aircraft y-coordinate with respect to the Earth-fixed y-axis, and

ze, the aircraft z-coordinate with respect to

In

[]T
ee HyxrqpV φθψβα=x

T

fo

c

T

q

n terms of orientation of the body axes with respect to th

T

angle. The last group of variables describes the aircraft position with respect to an Earth-

fixed set of axes. This group contains xe, the a

E

 the Earth-fixed z-axis.

 41

 Certain assumptions should be noted for the following analysis of the aircraft

equations of motion. First, the aircraft is considered to be a rigid body. Secondly, the

mass of aircraft is not time-dependent – it is cons

sed, where the curvature and rotation of the Earth are neglected.

4.2 Body Axes Modeling

The body axis system is depicted in Figure 4.1. Forces and moments acting on an

aircraft are also shown and will be used in the follow

riginates at the center of gravity of the aircraft, as shown by the point. The x-axis is the

nward from the aircraft.

Figure 4.1: Body axis system with forces and moments

 Consider a point mass δm, moving with velocity V, and being acted upon by force

tant. Finally, a flat Earth assumption is

u

ing analysis. The body axis system

o

longitudinal axis of the aircraft that extends along the nose to the tail. The y-axis is the

lateral axis of the aircraft and is parallel with the wings. The z-axis is perpendicular with

the x-y plane and points dow

F. Application of Newton’s Second Law yields:

N, r

L, p

M, q
uX

w

v

Y

Z

 42

VF &mδδ = (4.3)

An aircraft is considered to be a rigid body consisting of a finite number of point masses.

Applying Equation 4.3 to each point mass δm and summing results in Equation 4.4.

∑∑ = VF &mδδ (4.4)

The equation accounts for the total force acting upon the aircraft.

()∑= VF m
dt
d δ (4.5)

here the force can be defined as: w

zyx FFF kjiF ++= (4.6)

he center of gravity of the aircraft is defined as the average location of the weight. This

location ponents u, v,

and w.

kiiV

T

 can be used to describe the velocity of the entire aircraft, using com

wvugc ++=..

The velocity for any poin

 (4.7)

t inside a rigid body is:

rVV &+= ..gc

on of velocity, Equation 4.5 becomes:

 (4.8)

where r is the vector connecting any point inside the rigid body to the center of gravity.

Using this definiti

()()∑ += rVF &..gcm
dt
d δ (4.9)

This can be divided into two separate parts,

() ()∑∑ += m
dt
dm

dt
d

gc δδ rVF &.. (4.10)

 43

The second part of Equation 4.20 will be identically zero due to the definition of the

center of gravity. Thus, the general force equation can be defined as:

..gcmVF &= (4.11)

 The moment developed about the center of gravity for a point m

r is shown in the following equation. This equation also uses the definition of angular

ass δm located at

momentum h.

() hVrMδ = δδ
dt
dm

dt
d

=× (4.12)

 this, the general moment equation about the center of gravity is found to be:

 (4.13)

where the moment is defined to be:

jiM

From

hM &=..gc

NkMLgc ++=..

Next angular velocity is introduced. Angu

 (4.14)

lar velocity is defined as:

rqp kji ++=Ω
r

 (4.15)

The angular velocity can be used to find the total velocity for any point mass according to

the following equation:

rVV ×Ω+= ..gc (4.16)

The angular momentum can also be shown to be I, the inertia tensor, dotted with the

angular velocity.

Ω⋅=
r

Ih (4.17)

 44

The inertia tensor is given by:

 (4.18)

Using the body reference frame described in Figure 4.1, the entire reference frame

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

zzyzx

yzyyx

xzxyx

III
III
III

I

rotates with the angular velocity. The general force and moment equations given by

Equations 4.11 and 4.13 then become:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×Ω+

∂

∂
= ..

..
gc

gc

t
m V

V
F

r
 (4.19)

()Ω⋅×Ω+
∂

Ω⋅∂
=

rr
r

IIM
tgc .. (4.20)

The force equation shown by Equation 4.19 can be rearranged to solve for th linea

accelerations at the center of gravity.

e r

..
..

gc
gc

mt
VFV

×Ω−=
∂

∂ r

he above equation can be broken into its scalar acceleration parts as shown in Equations

4.22

 (4.21)

T

 through 4.24.

rvqw
m
F

u x +−=& (4.22)

pwru
m
F

v y +−=& (4.23)

qupv
m
Fw z +−=& (4.24)

For a constant inertial system, the moment equation shown in 4.20 can be rearranged to

solve for the angular accelerations.

 45

()()Ω⋅×Ω−=
∂
Ω∂ −

rr
r

IMI ..
1

gct
 (4.25)

where

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−

653

542

321
1

III
III
III

II (4.26)

with

xyxzyzxzyxyzyzxzyx IIIIIIIIIIII 2222 −−−−=I (4.27)

⎤

⎢
⎢
⎢

⎣ ++
+++
++−

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

2

2

653

542

321

xzxyyzxxzyyzxy

xzxyyzxxzzxxyyzzxy

xzyyzxyxyyzzxyyzzy

IIIIIIII
IIIIIIIIIII
IIIIIIIII

III
III (4.28)

ollowing three equations represent the first three of twelve state equations that are used

to describe the motion of an aircraft in flight.

⎡⎤⎡ IIIII

⎥⎦+ 2
xzzx III

⎥
⎥

As with the rearranged force equation, Equation 4.25 can be broken into scalar parts. The

f

() (()(

()() () (
()())132

12
2

31
2

213

32123
2

321
1

IIIIIIIqr

IIIIrIIIIqIIIIIIIpr

IIIIIIIpqIIIIpNIMILIp

yzxzxy

yzxzxyyzzxxyyz

xyyzxzxzxy

−−−+

−+−+−−−+

−−−+−+++=
I

&

)

) (4.29)

() ()()(2
542 IIIIIIIpqIIIIpNIMILI −−−+−+++

I
&

()() () ()
()())254

24
2

52
2

425

54245
1

IIIIIIIqr

IIIIrIIIIqIIIIIIIpr

q

yzxzxy

yzxzxyyzzxxyyz

xyyzxzxzxy

−−−+

−+−+−−−+

=

 (4.30)

 46

() (()(

()() () (

)

()())
35

2
63

2
536

65356
2

653
1

IIIIIIIqr

IIIIrIIIIqIIIIIIIpr

IIIIIIIpqIIIIpNIMILIr

yzxzxyyzzxxyyz

xyyzxzxzxy

−−−+

−+−+−−−+

−−−+−+++=
I

&

 (4.31)

4.3 Flight Path Equations

In lieu of using the velocity variables u, v, and w, which are found in terms of the

true velocity, and the

ngle-of-attack α and the sideslip angle β are used to determine where the true velocity

vector points with respect to the body axes. Figure 4.2

path axes, it body axes, the corresponding angles, and the true velocity vector.

)
365 yzxzxy

aircraft body axes, a set of axes based on the flight path reference system is used. The

velocity used by the state equations then becomes the aircraft’s

a

illustrates an aircraft and its flight

Figure 4.2: Stability axis system and angles with body axis system

 Using this figure, it can be seen that the body axes-based velo a

cities are rel ted to

the true aircraft velocity using:

α
β

X

X

Y, Ys

V

v

u

s

 Zs Z

w

 47

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

βα
β

βα

sinsin
sin

coscos
V

w
v
u

 (4.32)

he ma

T gnitude of the true velocity is then determined by the following equation.

222 wvuV ++= (4.33)

f-attack α and the sideslip angle β are then found by The angle-o

⎟
⎠
⎞

⎜
⎝
⎛=

v
warctanα (4.34)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

22
arctan

wu
vβ (4.35)

ntiating

quation 4.33, which results in:

 Determining the aircraft’s true acceleration is accomplished by differe

E

()
V

wwvvuuwvu
dt
dV

&&&& ++
=++= 222 (4.36)

, and w from Equation 4.32 yields:

Using the expressions for u, v

() () ()
V

VvVuVV
&&& w&βα sininββα ssincoscos ++

=

Finally, the fourth state equation can be found by substituting the expressions for the

found in Equations 4.22 through 4.24.

 (4.37)

body axes accelerations

()βα sinsinF (4.38) ββα sincoscos1
zyx FF

m
V ++=&

 48

 The fifth state equation is the rate of change of the angle-of-attack. It is

determined by first differentiating Equation 4.34, as shown below.

22arctan
wu

wuwu
v
w

dt
d

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

&&
&α (4.39)

The above equation can be manipulated to get:

() ββ
α 222222 cossin V

wuwu
V

wuwu
vV
wuwu &&&&&&

&
−

=
−

−
=

−
−

= (4.40)

 of the rate of angular change equation for

ngle-of-attack can be found by substitution of Equations 4.32 and 4.22 through 4.24.

As with the true acceleration, the final form

a

() () βααα
β

α scoscossin1
cos
1 rpqFF

mV zx +−+
⎭
⎬
⎫

⎩
⎨
⎧ +−=&

 The sixth state equation is found in the same manner. The rate of change of the

sideslip angle is first found by differentiating.

α tanin (4.41)

() ()
22222 wuV

wwuuv
wudt +

+−
⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ +

&&22

arctan vuvvd +
=⎟

⎞
⎜
⎛

⎟
⎞

⎜
⎛

=
&&β (4.42)

Substituting in the expressions for u, v, and w and their derivatives:

() αα

tate equations can be broken

into components. These components consist of aerodynamic forces and moments,

propuls

βαββαβ cossinsinsincossincos11 rpFFF
mV zyx −+

⎭
⎬
⎫

⎩
⎨
⎧ −+−=& (4.43)

 The forces and moments acting upon these first six s

ion forces and moments, and gravitational force.

 49

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

=

⎭

⎪
⎬

⎫

⎩

⎪
⎨

⎧

gravitypropulsioncaerodynami

gravitypropulsioncaerodynami

gravitypropulsioncaerodynami

z

y

x

ZZZ
YYY
XXX

F
F
F

 (4.44)

⎪⎪

 (4.45)

ypically, aerodynamic forces are used in more familiar terms of lift, drag, and side force

s opposed to the body axis system forces. The two sets of forces are related by:

 (4.46)

erodynamic forces and moments can be found using the following six equations.

 the longitudinal direction,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

propulsioncaerodynami

propulsioncaerodynami

propulsioncaerodynami

NN
MM
LL

N
M
L

T

a

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− Y
Drag
Lift

Z
Y
X

caerodynami

caerodynami

caerodynami

αα

αα

cos0sin
010

sin0cos

A

In

SqCLift L= (4.47)

SqCDrag D= (4.48)

cSqCM m= (4.49)

In the lateral direction,

SqCY Y= (4.50)

SbqCL l= (4.51)

SbqCN n= (4.52)

an be found from known aircraft

oefficient derivatives. In the longitudinal direction, the coefficients are built up

component-wise using the following three equations:

Aerodynamic coefficients used in the above equations c

c

 50

ELLLHLLLL EqiH
C

V
cC

V
cqCiCCCC δαα

δαα
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+++=

220

&
&

 (4.53)

EDHDDDD EiH
CiCCCC δα

δα
+++=

0
 (4.54)

EmmmHmmmm EqiH
C

V
cC

V
cqCiCCCC δαα

δαα
+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+++=

220

&
&

 (4.55)

 the lateral direction, the coefficients are:

In

rYAYYYYY rArp
CC

V
rbC

V
pbCCC δδβ

δδβ
++⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

22
 (4.56)

rlAlllll
rbpbCCC β

β

⎞⎛⎞+=
rArp

CC
V

C
V

δδ
δδ

++⎟
⎠

⎜
⎝

+⎟
⎠

⎜
⎝
⎛

22
 (4.57)

rnAnnnYn rArp
CC

V
rbC

V
pbCCC δδβ

δδβ
++⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+=

22
 (4.58)

4.4 Earth-fixed Axes and Kinematic Relationships

The last six state equations are derived from a new set of axes and kinematic

lationships. These equations will relate the aircraft orientation to an Earth-fixed set of

arth-

xed axes until the origin of the translated set corresponds to the center of gravity of the

raft. This set of axes will be labeled X1, Y1, and Z1

The first rotation of the axes is about the Z1 axis over the Euler angle ψ. This axis

is then labeled X2, Y2, and Z2. The next rotation of the new ax

rough the Euler angle φ. This results in the new set of axes X3, Y3, and Z3. The final

re

axes. Figure 4.3 illustrates the principles discussed here for relating the aircraft to the

Earth-fixed axes. The first step is to translate a set of axes parallel to those of the E

fi

airc . These axes will be rotated three

times to align themselves with the body axes of the aircraft.

es set is about the Y2 axis

th

 51

rotation of the axes is about the axis X3, through the Euler angle θ. The set of axes that

sults from these three rotations is labeled X, Y, and Z, and is aligned with the body axes

of the aircraft.

The first relation from the above is that the first set of axes X1, Y1, and Z1 is

re

Figure 4.3: Aircraft orientation with Euler angles

parallel to the Earth-fixed axis. From this, it is easily seen that

eee zWyVxU &&& === 121 (4.59)

Using the above equation and relating each set of axis to the next, the Earth-relative

velocities can be related to the body-relative velocities.

 (4.60)

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

w
v
u

z
y
x

e

e

e

φφ
φφ

θθ

θθ
ψψ
ψψ

cossin0
sincos0
001

cos0sin
010

sin0cos

100
0cossin
0sincos

&

&

&

Z Z3

Z1
and
Z2

ψ

φ

θ

P

Flight Pa

X and X3

X1

th

X2

ψ

φ XE

YE

Z

Y

Earth-fixed Axes

E

Y1 Y2 and Y3

θ

 52

This reduces to provide an equation for Earth-relative velocities.

 each of the

(){ } () ψφφψθφφθ sinsincoscossincossincos wvwvuxe −−++=& (4.61)

}({) () ψφφψθφφθ cossincossinsincos wvsincos wvuye ++=& −− (4.62)

() θφφθ coscossinsin wvuze ++−=& (4.63)

Using the expressions of Equation 4.32 to relate the body axes velocities to the true

velocity h, and ninth

state equations are found to be:

The Z-axis is defined to be pointed downward, so the relationship between the ZE axis

and the altitude of the aircraft is:

ezh && −= (4.64)

 V, the angle-of-attack α, and the sideslip angle β, the seventh, eight

(){
()}ψφψθφβα

ψφψθφβψθβα
sinsincossincoscossin

sincoscossinsinsincoscoscoscos
++

−+= Vxe& (4.65)

(){
()}ψφψθφβα

ψθφψφβψθβα
cossinsinsincoscossin

sinsinsincoscossinsincoscoscos
−+

++= Vye& (4.66)

 (4.67)

 The last three state equations come from the airplane kinematic equations. The

relationship between the Euler angular rates and the angular velocity components is:

{ }θφβαθφβθβα coscoscossincossinsinsincoscos −−= Vh&

φθψ
r
&

r
&

r
&

r
++=++=Ω rqp kji (4.68)

The Euler angular rates can be found by referencing which axis each rotates about. For

the angular rate ψ
r
& , the rot o the next equation. ation is about the Z1 axis. This leads t

 53

()()ψφφθθψ &
r
& cossincossin kji ++−= (4.69)

The next angular rate is θ
r
& , which rotates around the Y2 axis.

()θφφθ &
r
& sincos kj −= (4.70)

The last angular rate is φ

r
& . Since its rotation is about the X3 axis, its equation is:

φφ &
r
& i= (4.71)

These three relations can be substituted into Equation 4.68 to yield the kinematic

equations:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

φ
θ
ψ

φθφ
φθφ

&

&

&

coscossin0
sincoscos0

001

r
q
p

 (4.72)

The final three state equations are found by inverting the above equation.

Invert to get:

()φφθψ cossinsec rq +=& (4.73)

 (4.74) φφθ sincos rq −=&

() θφφφ tancossin rqp ++=& (4.75)

 At this time, all twelve state equations have been developed, and an aircraft model

can be implemented into the simulation presented in the next chapter.

 54

Chapter 5

Development of Centralized UAV Simulation

5.1

The simulation environment developed in this chapter is one where a central

processor controls all of the decision-making abilities for the entire UAV team. This

simulation fulfil hapter 1, and is

me-varying since the states of targets can change, UAVs can be and actually are

 Main Simulation System

s the third and fourth research objectives as presented in C

ti

destroyed during the simulation, unknown threats and targets can appear, and the group

of UAVs can replan using this new information.

Figure 5.1 shows the main SIMULINK block of the simulation code.

Figu tem re 5.1: Main simulation sys

 55

There are several main components of the simulation, and each will be discussed

Section 5.4. The outputs from this are

ositions of each UAV, which are checked to see if the position coincides with a threat

boundary or a no-fly zone. If a UAV position does meet one of these criteria, another

scheme is executed to determ urvives. A UAV Manager

block is discussed in Section 5.5. This block keeps track of all UAVs and triggers action

 be taken if a UAV is lost. The Targets Manager block keeps track of the state of each

5.2 Simulation Inputs

The obvious first step for the simulation is to initialize all inputs. The necessary

inputs can be derived from the original problem statement given. The first information is

the number of UAVs, targets, threats, and no-fly zones. Because the fourth research

objective states that the simulation should be of a dynamic environment, the targets and

threats are divided into the number of static and the number of pop-up for each. Pop-up

targets and threats are now defined as those that are not known by the UAV team

separately in subsequent sections of this chapter. The first component is the simulation

inputs. All necessary information is inputted based on graphical user interfaces that are

discussed in Section 5.2. The top left block initializes these. The next component is the

path planning and task allocation block, seen as the large middle block of Figure 22. This

block executes the path planning and task allocation approach discussed in Chapter 3 and

will be elaborated further upon is Section 5.3. Once a UAV is given an objective and has

a planned path, the aircraft dynamics discussed in Chapter 4 are implemented in the

Aircraft Dynamics Blockset, discussed in

p

ine if the UAV is destroyed or s

to

target. As assignments are completed by individual UAVs, target states change, and

targets are eventually removed once confirmed as destroyed. More information about the

Target Manager is found in Section 5.6. The last main block of the simulation is the

Threats Manager. It is similar to the Targets Manager, and keeps track of all known

threats, their positions, and when they fire at a UAV. Section 5.7 will complete the

discussion of this manager. The final section of this chapter shows the outputs of the

simulation and gives an example simulation.

 56

whenever the simulation first begins, but rather appear after a time that the omnipotent

user defines.

Graphical user interfaces have been developed to collect this necessary

information in an easy manner. Figure 5.2 illustrates the main menu of the GUIs.

Figure 5.2: Cooperating UAVs Simulation Main Menu

This GUI collects the information specified above and allows the user to continue

inputting information in one of two ways. The first way, the GUIs with visual

initialization, will be discussed further in this section and allow the user to ‘point-and-

click’ to initialize the battlefield. The second way to input the information is with the

numerical initialization GUIs, where the user types in all locations manually.

 57

 All GUIs in this initialization scheme have error checking. All numbers inputted

must be within proper ranges, and all necessary values must be specified for proper

initialization. The following figure shows the error message shown to the user whenever

n input error is detected.

a

Figure 5.3: Error message

 The next step for initializing the data is the aircraft menu. From the previous

chapter, it is clear that many aircraft parameters are needed to accurately model the

aircraft dynamics. The following menu uses several ‘built-in’ aircraft with all the

necessary parameters already defined. The only necessary input from the user is the type

f aircraft and its initial positions. Using the numerical initialization option, a value for

each Earth-fixed initial position is chosen manually by entering numbers. With the

graphical initialization option, only the height needs to be typed for the aircraft position.

Figure 5.4 illustrates the Aircraft Menu GUI.

o

 58

Figure 5.4: Aircraft Menu GUI

The Earth-fixed axial positions for XE and YE are now entered using a graphical ‘point-

and-click’ method. A message indicating what is being placed on the graph is displayed,

along with instructions to first determine the location of the object using the crosshairs,

and finally click on that location to place the object there. Figure 5.5 shows the use of

this point-and-click tool for setting up the battlefield. This method is quite useful for

determining where appropriate locations for the UAVs should be and illustrates where the

placed UAVs for use in placing other UAVs.

 59

Figure 5.5: Point-and-click method of placing UAV positions

 The UAVs are displayed as blue diamonds with the individual number to the right

of the UAV. The battlefield size is defaulted to a 200-kilometers by 200-kilometers.

This size was selected so that longer distances for target engagement could be simulated

without having an excessively long simulation time for literal cross-country travel by a

team of UAVs.

 Next, the target information is inputted. Two different menus are used to

accomplish this task. The first of these menus is for the static target values and locations,

while the second is for d locations. Since the

pical mission envisioned within this research has been the ‘high-risk but high-value’

the so-called ‘pop-up’ target values an

ty

 60

mission type, associated values for individual targets are appropriate. These values are

use the case of more targets than

AVs, and will be discussed further in the next section. The Static Target Menu and the

Pop-up

d for determining which targets are attacked first in

U

 Target Menu vary only by addition of a pop-up time for the second menu.

Figure 5.6: Pop-up Target Menu

The static target values are first selected; next, the static targets are then placed using the

same ‘point-and-click’ method as discussed earlier. The UAV positions are still visible

hen targets are placed for ease of battlefield setup. Once the static targets are placed, w

the pop-up menu is used to select values for pop-up targets. These targets are then placed

to complete the target information for the simulation. On the battlefield plot, static

targets are depicted by a green ‘x’, while the popup targets are shown with a green cross.

 61

 Now, no-fly zone information is required. The only necessary information for

these is the location and the radius. Figure 5.7 is the menu for the radius input. No-fly

zones can represent two either physical or political boundaries that the UAVs are not

allowed to cross. For ease of use input, the no-fly zones are modeled as simple

mountains with a known radius. While input of complex political boundaries could be

ccomplished, it was chosen that ‘point-and-click’ mountains would be used to simulate a

no-fly zones.

Figure 5.7: No-Fly Zones Menu

utted, the point-and-click menu appears and the

cations of the no-fly zones are chosen. On the battlefield plot, each placed no-fly zone

app rs sly placed UAVs and

targ e plot while no-fly zones are placed.

 threats. Threats are

bro ar to the targets. Typical threats are

Once the radius of each no-fly zone is inp

lo

ea as a black filled in circle of given radius. The previou

ets are also visible on th

The last inputs are the descriptions and locations of the

ken into two groups of static and pop-up, simil

 62

bui n s

the effective range of the threat and the probability of kill. The threats that are built in to

lt-i to the drop down list for the threat type and description. The description include

the list include all the threats described in Table 3.1 from Chapter 3. As with the target

menus, the static threat information is first input and then locations are point-and-click

inputted. The static threats appear on the battlefield as a red star with a red circle of

effective range surrounding.

Figure 5.8: Pop-up Threats Menu

The ‘Pop-up Threats’ menu also includes the pop-up time for each threat. As above, the

threats are then placed where desired on the battlefield. All previously placed objects

will still be visible when placing the threats. Pop-up threats will appear as red ‘O’s with

a red circle of the effective range surrounding it.

 63

 At this point, all needed information is now entered into the simulation. A typical

nal bafi ttlefield setup is shown in Figure 5.9, below. The next sections will describe the

components used within the simulation.

Figure 5.9: Example battlefield setup

5.3 Path Planning and Task Allocation Execution

Before the path planning and task allocation scheme can be executed, the number

of targets and waypoints must first be equated with the number of UAVs. This

requirement is a consequence of the MMKP constraints that each UAV must be assigned

a single task and each target is required to be visited. However, this is fairly easily

 64

overcome using the Place Waypoints block and the accompanying MATLAB code,

place_waypoints.m, as found in Appendix B.

Figure 5.10: Place Waypoints block

The UAV locations and velocities and the target locations, values, and states are

input into the block. The MATLAB code place_waypoints.m is then executed. This

code approaches the problem with two different types of solution. For the situation

where the ghest

alues and removes the lower-valued targets for any number greater than the number of

t of targets until the number of targets equals the number of UAVs. These

aypoints are added at the same locations as the targets based upon the value of targets.

Targets with a higher value have waypoints added to their position before lower-valued

targets. This is to help ensure that higher-valued targets will have a higher probability of

successful mission e targets.

red and a waypoint is assigned

with the same location but no value. The stored value is then decreased by 50%. The

reason that the stored value decreases in half is that if the target is more than twice as

valuable as any other target, it will automatically get two waypoints assigned to it before

any other target gets an extra waypoint. The waypoints do not have values themselves

re are more targets than UAVs, the program sorts the targets by the hi

v

UAVs. The removed, lower-valued targets are not forgotten and will be later added back

in to the list of targets whenever higher-valued targets are removed after being destroyed.

The second solution is employed whenever the number of UAVs is higher than the

number of targets, such as toward the end of a mission. In this situation, waypoints are

added to the lis

w

 accomplishment by assigning multiple UAVs to thes

 The actual method of assigning waypoints begins by finding the highest valued

target. The location and value of this target are then sto

 65

because they are simply the same as the target whose coordinates they share. The

program executes for the same number of times as the difference between the number of

UAVs and targets.

 The path planning and task allocation scheme can now be executed. The

following block diagram illustrates the inputs for the scheme and the outputs

Figure 5.11: Path Planning and Task Allocation block

Inputs into this block are the following:

• UAV coordinates, altitudes, velocities, and heading angles

• Target coordinates

• No-fly zone coordinates and radii

• Target coordinates, effective ranges, and probability-of-kill

• The time at which the program is executing

• The number of times the path planning and task allocation scheme has executed

 66

The program then executes and outputs which assignment each UAV receives and the

orresponding optimal path for the UAV to fly to complete that assignment. Options are

also given whether the user wants to see static plots for every execution of this block. It

should be not e 5.11. This

ddition indicates the path-planning scheme will only execute whenever the Enable is

iggere

A six degree-of-freedom aircraft model is used within this section to model the

aircraft dynamics. The centralized control scheme simulates all of the UAV dynamics for

the entire group. The inputs to this section are specifically the outputs of the previous

section, the assignment each UAV receives and the corresponding optimal path for the

UAV to fly to complete that assignment. The outputs are the current positions and

rotations of the UAV, the current heading angle of the aircraft, and an end-of-path signal

for each UAV (to indicate when it has reached the target).

Figure 5.12 shows the ‘UAV Dynamics’ block for each of the possible UAVs,

and the inputs and outputs of the block. Note that while there are blocks for 9 UAVs,

there do not have to be 9 UAVs in the simulation, only a maximum of 9 UAVs. If there

is less than the maximum number of UAVs running in the simulation, whether from the

initialization or due to UAV loss, the individual blocks are not enabled within the

centralized simulation. All of the present UAVs will then contribute to the outputs of

positions and rotations, the heading angle output, and the end-of-path signals.

c

ed that this block contains an “Enable”, seen at the top of Figur

a

tr d. When the simulation is first started, the path planning and task allocation

scheme will execute, but after that only when there is a signal to indicate replan. The

necessary conditions to produce a replan are discussed in later sections of this chapter.

5.4 Aircraft Dynamics Subsystem

 67

Figure 5.12: ‘UAV Dynamics’ blocks for all UAVs

 is

resent, or if the UAV is not involved in the simulation, the appropriate outputs to

indicate this.

 Under each of the blocks labeled ‘UAV Dynamics’ lies the subsystem shown in

Figure 5.13. This block coordinates the enabling of the aircraft model is the UAV

p

 68

Figure 5.13: Blocks to output UAV positions, heading angle, and signal end of path

 The above subsystem sends an enable signal to the blocks show in Figure 5.14.

These blocks are subsystems for three separate functions. The first mask labeled ‘X, Y,

Z, time, pos_des’ is used to determine a next position for the individual UAV. The ‘End

of path’ block is used to determine when the UAV has reached the target position, and

the ‘UAV DYNAMICS’ block is a mask for the actual aircraft model and autopilot

subsystem.

Figure 5.14: Determines next path position, runs aircraft model, and signals end of path

 The first of these subsystems to be discussed is the ‘X, Y, Z, time, pos_des’ block.

Looking under the mask results in the blocks shown in Figure 5.15. These blocks are

used to break up the paths coming out of the path planning and task assignment scheme

to short segments to use with the aircraft model. This is accomplished by using look-up in

 69

tables to find e.

his location is then outputted and used with the aircraft model.

 where the UAV will be on the path after a small elapsed amount of tim

T

Figure 5.15: Blocks that ‘look ahead’ and output next position in path

 The next mask co ining when a UAV has

reached the end of its path, which is analogous to saying the UAV has reached its target.

hene

ver the simple subsystem used for determ

W ver the UAV reaches its target, it no longer can look forward in time to the next

position on its assigned path. This causes an empty output, which signals the target has

been reached.

Figure 5.16: Determination of end of assigned path

The last of these three subsystems is the actual subsystem that controls the aircraft

motion. Figure 5.17 illustrates this subsystem

.

 70

Figure 5.17: Actual UAV dynamics block, with aircraft model and heading-angle autopilot

This subsystem itself contains three major subsystems. The first and most obvious

system is the block labeled “Discrete Time General Aircraft Model’. This is where

specific control commands are inputted and used in conjunction with external forces and

moments and known aircraft parameters to model the aircraft dynamics. This flight

simulation environment is an open-source blockset distributed as FDC (Flight Dynamics

and Control) 49. This environment consists of five groups, which can be viewed in Figure

39. The first such group up contains the standard

and are used in conjunction with

quations 4.44 and 4.45. The fourth group is the Aircraft Equations of Motion group.

oup.

group is the determination of the flight path variables, the time-

erivatives of the body axes velocity components and acceleration components, and the

rouping of aerodynamic forces and moments, propulsive forces and moments, gravity

forces, and atmospheric turbulences.

 is the Airdata group. This gro

atmospheric model, such as gravity variation, temperature, pressure, density, and

equations related to these, such as dynamic pressure and Mach number. The second

group is the Aerodynamics group. This group calculates the dimensionless coefficients

discussed in the fourth chapter, in Equations 4.53 through 4.58. The third group

calculates forces associated with gravity and wind,

E

This group uses the twelve state equations in conjunction with the first three blocks to

completely describe the motion of the aircraft. These state equations are solved using a

fourth-order Runge-Kutta method. The last group is the Additional Outputs gr

Contained within this

d

g

 71

Figure 5.18: Flight simulation environment for aircraft model

The aircraft parameters seen in Figure 5.19 are used with the flight simulation

environment to model the motion of the aircraft. These parameters include the geometry,

mass, and inertial properties, aerodynamic coefficient derivatives, and the state vector of

initial conditions that was shown in Equation 4.1. These parameters can be set up to be

entered manually, as shown in the figure or can be used in conjunction with the specific

aircraft selected from the GUI inputs.

 72

Figure 5.19: Parameters and inputs for aircraft model

 The second subsystem shown in Figure 5.17 is the Cable and Actuator Dynamics

subsystems. This system models the dynamic response associated with the throttle,

stabilators, ailerons, and rudder as generic first order systems with an inherent delay.

()
as

asGActuator +
= (5.1)

 73

The ailerons are modeled as a fast response system with the value of a set to 40. The

rudder and stabilators are modeled as moderately fast actuators with the value of a set to

15. The throttle is set to a slow response, with a low value of 4 being used for a.

Figure 5.20: Actuator and cable dynamics subsystem

he third subsystem shown is the heading angle autopilot. This autopilot

enerates commands in terms of throttle adjustment and stabilators, aileron, and rudder

eflections to follow a desired heading angle. This is where the input of looking ahead in

the raft compares its current position and rotations with those of

here it needs to be at in certain amount of time (usually 15 or 20 seconds later). It then

uses th

 T

g

d

path is used. The airc

w

e autopilot shown in Figure 5.21 to generate the necessary commands to follow

that path (or at least attempt to in case that the path is not dynamically feasible).

 74

Figure 5.21: Heading angle autopilot, showing turn generator

 The turn generator of Figure 5.21 is shown in detail in the below figure. This

system generates the necessary outputs of p, q, r, and the Euler angles of ψ, θ, and φ.

Figure 5.22: Turn generator subsystem

 This completes the rcraft dynamics. The last

part of this section is the block called UAV Positions in the main system. This block

moves the angular orientations of the aircraft and leaves only the positions of each

AV f

 discussion of the modeling of the ai

re

U or use in later calculations of the simulation. Heading angle is the only orientation

 75

angle that is used for the path-planning scheme, and it is output before reaching this

block. The other orientation angles are not needed for such calculations as if the UAV is

destroyed or when a UAV reaches the end of its path. However, all state information is

contained within the system of Figure 5.17 for each individual UAV, so these angular

orientations are not lost, just removed from the UAVs matrix.

Figure 5.23: UAV Positions block

5.5

hat fall within the scope of this

efinition. The first two blocks are the UAV CRASH and UAV INTERCEPTED blocks,

hich serve similar functions. The first of these two blocks is the UAV CRASH block.

This block uses a MATLAB s-function to determine if a UAV crosses the boundary of a

no-fly zone. Though this should never happen with correct paths being assigned, the

 UAVs Manager

For the centralized simulation, the UAV manager is what keeps track of all the

UAVs. There are four blocks in the main system t

d

w

 76

function is still included for simulation completeness and is useful for error checking

purposes.

Figure 5.24: UAV CRASH block

he MATLAB function uav_crash.m, as found in Appendix B, uses the UAV positions

 The second block is the UAV INTERCEPTED block. This block performs

similarly to e the UAV

positions with the threat positions and effective ranges. Figure 46 shows this block.

Figure 5.25: UAV INTERCEPTED block

If the function finds that a UAV has entered the effective range of a threat, the threat is

simulated to have fired at the UAV. Note that each threat is considered to expend its

entire armament when firing at a UAV. The amount of this armament is the same

amount that was originally used to determine the probability-of-kill. For SAMs, a single

missile determines this number, while for anti-aircraft artillery, the number of munitions

T

as output by the aircraft dynamics and compares them with the no-fly zone information.

If a UAV is determined to cross a boundary for a no-fly zone, the binary vector of UAV

Crash is changed to a unit value for that UAVs position. That UAV is then deleted by the

UAV DOWN block, which will be discussed shortly.

 the UAV CRASH block. It uses a MATLAB s-function to compar

 77

fired would be much higher. When a UAV is considered to have been fired upon, the

simulator uses a random number generator to determine if the UAV got destroyed. For a

random number between zero and one, if the number is less than the probability-of-kill

for the threat, the UAV is considered destroyed and the binary vector UAV SHOT

DOWN is changed to a unit value for that UAVs position. If the number is greater than

or equal to the probability-of-kill, the UAV survives and continues on its path. Either

way, the binary vector THREATS FIRED changes to a unit value for the firing threat and

the Threats manager, discussed in Section 5.7, then removes that threat.

 The third block that can be considered part of the UAVs manager is the UAV

DOWN block. This block combines the two binary vectors UAV SHOT DOWN and

UAV Crash into a single binary vector UAV DOWN that represents destroyed UAVs that

are to be removed from the simulation.

Figure 5.26: UAV DOWN block

cheme to replan if a UAV is

st. Figure 5.27illustrates the main subsystem.

The information from the UAV DOWN block is used in conjunction with the

current UAV positions as output by the AIRCRAFT DYNAMICS block for the system

entitled UAV MANAGER. The job of this system is to keep track of a current UAV

matrix and to signal the path planning and task allocation s

lo

 78

Figure 5.27: UAV MANAGER subsystem

This system is divided into a subsystem for each UAV that keeps track of the positions

for each UAV, the velocity of the UAV, and if the UAV is destroyed or runs out of fuel.

The binary value of the UAV DOWN vector associated with the individual UAV is

combined with a binary value associated with the UAV running out of fuel to determine

if the UAV is destroyed. The binary fuel value changes from zero to a unit value after a

predetermined amount of time (for example, a LOCAAS type UAV has 30 minutes

before it runs out of fuel). Changing the velocity of the aircraft to zero is used for a

determination of UAV destruction. Because of inherent delays in the simulation, the

change of velocity to zero is used to signal a replan as opposed to a binary value that is

only a unit value for a single time step. Once the velocity changes to zero, the UAV is

 79

officially removed from the list of UAVs and thus a replanning of the tasks and paths

occurs only once for the loss of a UAV. For UAVs that are not used in the simulation, a

zero vector is used to denote they do not exist. Because this vector is assigned at the start

of the simulation and remains throughout, replanning is never based upon those UAVs.

Figure 5.28: Individu city, and destruction al UAV manager for tracking positions, velo

In addition to tracking UAV positions, velocities, and destruction, the individual manager

has a subsystem to print a statement saying which UAV was destroyed and at what time.

This statement is triggered when the combined binary number contains a unit value. The

blocks to accomplish this function are seen in the next figure.

 80

Figure 5.29: Printing blocks for UAV destruction

e, and targets are

eventually removed once confirmed as destroyed. There are two subsystems of the main

system

All targets start with the first state being assigned to them, where each is indicated as a

possible target. The first assignment a UAV must do is to determine is the object really is

a target. If the object is determined to be a target, then the second state is assigned stating

 This concludes the UAVs manager description and the functions performed

therein.

5.6 Targets Manager

The Target managing blocks keeps track of the state of each target. As

assignments are completed by individual UAVs, target states chang

 that performs the necessary management. The first subsystem is contained within

the block TARGETS CLASSIFIER, while second is the TARGETS MANAGER.

The TARGETS CLASSIFIER has the job of tracking the states of each target.

The five possible states of any given target are:

1. Indicated as a possible target

2. Identified as a target

3. Classified but not attacked

4. Attacked but not assessed

5. Assessed as destroyed

 81

so. For objects determined to not be a target, a state indicating that it has been identified

as not being a target is assigned. For targets determined to be such, the next possible

state declares a target as classified but not attacked. UAVs must determine what type of

target they are going to attack once the object is declared a target, but prior to the actual

attack. Once a UAV attacks a target, that target receives the state ‘attacked but not

assessed’. The target must then be assessed as to whether the attack was successful or

not. If so, the final state is assigned as ‘assessed as destroyed’; otherwise, the target has

not been successfully destroyed and must be reattacked. This is accomplished by

returning the target to state 3, indicating that the target has been classified but not

attacked. The target is then reattacked and reassessed.

 The subsystem performing this state management is shown in Figure 5.30.

Figure 5.30: Target State Manager

 This manager features two parts. The first part uses a MATLAB s-function called

tion can be viewed in

their assigned target.

re

ssessed as destroyed. However, for simulation purposes, it also includes random

target_classifier_s.m to perform the classification task. This func

Appendix B. Individual UAVs signal when they have reached

Whenever this occurs, this manager increases the state of the target for successful state

succession, and removes objects that are found to be not actual targets and targets that a

a

 82

probability that objects are not targets and that targets will take more than one attack for

successful destruction. Figure 5.31 contains the function used for classifying purposes.

Figure 5.31: Target classifier function

The second part of this subsystem is used to signal replanning to occur. Whenever a

target changes states, a new task m

anning and task allocation scheme to be assigned to an individual UAV, so thus a signal

hows how an inequality between the former

ates of all targets and the new states of the targets is used to enable a replan.

ust be performed. This task must go through the path

pl

is issued to cause a replan. Figure 5.32 s

st

Figure 5.32: Part of target classification used for signaling replan

 The second subsystem considered to be part of the managing of targets is the

block called TARGETS MANAGER. This subsystem handles the tasks of tracking pop-

up targets and issuing replanning commands based upon new target information. The

following figure is of the blocks used for this purpose.

 83

Figure 5.33: TARGETS MANAGER

This subsystem contains two smaller systems within itself. The first of these systems is

identical to the one shown in Figure 5.32. This system uses a comparison of old target

information and current target information to determine when a change has occurred.

When a change occurs, a signal is sent to initiate a replan.

Figure 5.34: Part of target management used for signaling replan

The second, small system within the TARGETS MANAGER system is used for

managing pop-up targets. Pop-up targets have

ow up on the list of targets at a predetermined time. This manager tracks the time, and

rget is included into the target matrix. Figure 5.35 shows

with an associated pop-up time.

been declared by the omniscient user to

sh

at the predetermined time, the ta

the nine possible targets that can be used

 84

Figure 5.35: Pop-up target manager

nder each block labeled TARGET CHANGE lies the blocks shown in Figure 5.36.

rget and display to the

ser whenever the pop-up occurs.

U

These blocks control the pop-up function for each individual ta

u

Figure 5.36: Pop-up target manager for an individual target

 85

5.7 T

r, the threats manager

 quite similar to the targets manager. The THREATS MANAGER is shown in the

llowing figure. As with the TARGETS MANAGER subsystem, there are two parts

used to control the replan signal and the new list of threats.

hreats Manager

Aside from the state change functions of the targets manage

is

fo

Figure 5.37: THREATS MANAGER

The first part controls the replan initialization. This part is the same as the one used in

the targets manager, as shown in Figure 5.34. This part compares the list of old threats to

the current list of threats. If a change is detected, such as a new pop-up threat being

added or an old threat firing and then being removed, the replan signal is issued.

Figure 5.38: Part of threat management used for signaling replan

 THREAT CHANGE

locks, as shown in Figure 5.39.

The second part of the THREATS MANAGER contains a set of 15

b

 86

Figure 5.39: THREAT CHANGE blocks

These blocks each contain a subsystem that controls the pop-up function for each

individual target and displays to the user whenever the pop-up occurs. In addition to

these functions, this subsystem also tracks if and when the threat fires. If a threat is

determined to have fired as declared by the UAV SHOT DOWN system, the threat is

removed from the list of threats, as explained in section 5.5

 87

Figure 5.40: Pop-up and firing threat manager for an individual t reat

The outputs of this simulation are threefold. The first is output to the MATLAB

command window. This output initially displays all inputted information to the user.

This infor ons and

initial states, threat locations, ranges, and pr -kill, and no-fly zone coordinates

 displays whenever a

e, and what event caused it. The second types of output are

static plots showing the planned paths and allocated tasks. These plots can be turned on

or off, and when on, are displayed every time a replan is performed. The last output is a

graphical visualization using moving plots to illustrate the simulation.

The first two simulation outputs are illustrated through an example. This example

is relatively simple, to keep the length down for necessary plots to shown simulation

steps. This simulation consists of four UAVs, three static targets, a single pop-up target

occurring at 100 seconds, three no-fly zones of radius nine kilometers, two static threats,

and one pop-up threat appearing after 150 seconds. Figure 5.41 illustrates the initial

battlefield setup. Note that the scales along the axes are in terms of kilometers. The

h

5.8 Simulation Outputs

mation includes UAV locations, altitudes, and velocities, target locati

obability-of

and radii. After this initial display, the command window output

replan occurs, at what tim

 88

UAVs are shown as blue diamonds numbered 1 through 4 along the left side of the

battlefield. The static targets are green ‘x’s, while the single pop-up target is shown as a

green ‘+’. The no-fly zones are the obvious black circles. Threats are shown as a red star

with surrounding effective radius for the static variety, and the pop-up threat is the large

read range with the red ‘O’ at the center.

Figure 5.41: Initial battlefield setup

 The first outputs when the simulation is started are the following expressions

printed in the MATLAB command window:

UAV 1 exists at location 25 x, location 133 y, altitude 2 km, and is flying at 130 m/s.

UAV 2 exists at location 27 x, location 96 y, altitude 2 km, and is flying at 130 m/s.

UAV 3 exists at location 27 x, location 61 y, altitude 2 km, and is flying at 130 m/s.

UAV 4 exists at location 38 x, location 24 y, altitude 2 km, and is flying at 130 m/s.

Target 1 indicated to be at location 87 x, location 110 y , and with an estimated value of 40.

Target 2 indicated to be at location 125 x, location 64 y, and with an estimated value of 70.

Target 3 indicated to be at location 97 x, location 37 y, and with an estimated value of 100.

 89

No-Fly Zone 1 exists at location 66 x, location 119 y, and with a radius of 9 km.

No-Fly Zone 2 exists at location 85 x, location 80 y, and with a radius of 9 km.

No-Fly Zone 3 exists at location 74 x, location 47 y, and with a radius of 9 km.

Threat 1 exists at location 110 x, location 65 y, with a range of 10 km, and has a probability of kill of 80%.

Threat 2 exists at location 98 x, location 40 y, with a range of 5 km, and has a probability of kill of 50%.

These expressions completely specify the initial battlefield setup in words. From here

out, the example will proceed with text stating what event occurred, and a figure

illustrating the path planning and task allocation based on the new information will

immediately follow.

Path Planning ran at time 0.

Figure 5.42: Path Planning and Task Allocation occurring at time 0

 90

Target 4 has popped up at time 100.

Figure 5.43: Path Planning and Task Allocation occurring at time 100

Threat 3 has popped up at time 150.

Figure 5.44: Path Planning and Task Allocation occurring at time 150

 91

Threat 3 has fired at time 325.

UAV 2 has been destroyed at time 325. .

Figure 5.45: Path Planning and Task Allocation occurring at time 325

Figure 5.46: Detail of UAV 3 turning to now attack target 1 at time 325

 92

Threat 2 has fired at time 462.

UAV 3 has been destroyed at time 462.

Figure 5.47: Path Planning and Task Allocation occurring at time 462

Target 2 (value 70) identified as NOT a target at time 538 by UAV 4.

Target 2 has been removed from target status at time 538.

Figure 5.48: Path Planning and Task Allocation occurring at time 538

 93

Target 4 (value 50) identified as a target at time 688 by UAV 1.

Figure 5.49: Path Planning and Task Allocation occurring at time 688

Target 4 (value 50) classified not attacked at time 704 by UAV 1.

Figure 5.50: Path Planning and Task Allocation occurring at time 704

 94

Target 4 (value 50) attacked not assessed at time 749 by UAV 1.

Figure 5.51: Path Planning and Task Allocation occurring at time 749

Target 4 (value 0) assessed as destroyed at time 764 by UAV 1.

Figure 5.52: Path Planning and Task Allocation occurring at time 764

 95

Target 3 (value 100) identified as a target at time 838 by UAV 4.

Figure 5.53: Path Planning and Task Allocation occurring at time 838

Target 3 (value 100) classified not attacked at time 878 by UAV 4.

Figure 5.54: Path Planning and Task Allocation occurring at time 878

 96

Target 3 (value 100) attacked not assessed at time 921 by UAV 4.

Figure 5.55: Path Planning and Task Allocation occurring at time 921

Target 1 (value 40) identified as a target at time 938 by UAV 1.

Figure 5.56: Path Planning and Task Allocation occurring at time 938

 97

Target 1 (value 40) classified not attacked at time 978 by UAV 1.

Figure 5.57: Path Planning and Task Allocation occurring at time 978

Target 3 (value 0) assessed as destroyed at time 1014 by UAV 4.

Figure 5.58: Path Planning and Task Allocation occurring at time 1014

 98

Target 1 (value 40) attacked not assessed at time 1056 by UAV 1.

Figure 5.59: Path Planning and Task Allocation occurring at time 1056

Target 1 (value 0) assessed as destroyed at time 1098 by UAV 1.

Figure 5.60: Path Planning and Task Allocation occurring at time 1098

 99

Since no more tasks are to be allocated, all UAVs are assigned to return to a

predetermined set of home-base coordinates (typically the origin is used for simulation).

It should be noted that the static plots presented here are based off of the plot_uav.m

MATL

ber of the path planning and task allocation scheme.

 The simulation presented in this chapter has been a centralized version that fulfils

the third and fourth research objectives. This simulation has been designed to simulate a

maximum of nine UAVs, nine targets, fifteen no-fly zones, and fifteen threats, and

encompasses time-varying simulation aspects, such as UAVs being destroyed, targets and

threats popping-up at a time unknown to the UAVs, and simulates accurate battle

management.

AB code shown in Appendix A. Since is uses the knowledge presented by the

path planning and task allocation scheme, there is an occasional renumbering of targets

shown on the static plots. However, the actual numbering kept by the targets manager is

the same as the original numbering, even as targets are removed from the list. The

MATLAB command window printouts are also based upon this list, rather than the

localized renum

 100

Chapter 6

Decentralized Path Planning and Task Allocation

6.1 Main Simulation System

The decentralized simulation developed here is a truly decentralized control

heme for a team of UAVs. This approach is an extension of the centralized version

discussed in the preceding chapter. The following figure illustrates the new simulation

with a maximum of n etween each.

sc

ine UAVs and corresponding communications b

Figure 6.1: Main simulation system for decentralized UAV control

 101

As seen with leader. All

UAVs are used to make decisions and perform tasks. The theory behind this

decentralized approach is the following statement: a team of UAVs with every member

ossessing full situational awareness (SA) will always arrive at the same correct

decisio

he theoretical statement made in the last section has been applied to designing

an indi

 the main system, this scheme has no center controller or even

p

n.

6.2 Individual UAV System

T

vidual UAV system that makes decisions for that UAV and performs similar

management as the centralized simulation. Each UAV uses the same path planning and

task allocation scheme as the centralized version discussed but then uses only the

information necessary for that UAV to perform its allocated task. Figure 6.2 contains the

main system that is used within each individual UAV. The similarities between the

centralized simulation and the system used for individual UAVs should be noted. The

differences between these systems will be discussed shortly.

Figure 6.2: Main system for individual UAVs

 102

 running the above system

info sed between all coopera . info atio ch

individual UAV to run a path planning and task allocation schem the

info cated between UAV t lobal know is

able planning and task allo m arrive at th ns

as every other UAV. This minimizes the in tion mm en

UA ed to have a c g an sk a me

issu ands to each UAV; how plies the need for availability of

substantial computational power for th uter eac ch

indi uses their planned path to s ed task. Because each UAV

has act same path plann assignm

decentralized scheme progresses much lik li rsion

ommunications

are three main pieces of n ne o be ed:

info individual UAVs, up ation, and updated threat

info the no-fly zones a cenar s in up

mountains’ are unrealistic), this informat t to b omm the

indi Vs. As can be seen in the f f hapte here uts

of each UAV: the first output is the po e idual AV the

indi V’s knowledge of the tar d e UAV’s k the

thre stly is the individual UAV’ a ngle. Each of the outputs of

the d s Thi s the hat

each UAV is communicating with every other UAV.

Once this information enters the individual UAV, several things happen to

correctly process this information. For the UAV positions and heading angle, the

information can be used directly, since there is only one set of information about UAV

Essentially each UAV in the team is . Necessary

rmation is pas ting UAVs That rm n is used by ea

e. Because

rmation commu

h

ni s is curren and g ly n, each UAV

 to run the pat cation sche e and e same decisio

amount of forma co unicated betwe

Vs and eliminates the ne entral path plannin d ta llocation sche

ing comm ever, it im

e on-board comp of h UAV. Ea

vidual UAV perform it assign

 arrived at the ex ing and task allocation ents, the

e the centra zed ve .

6.3 UAV C

There informatio that ed t communicat

rmation about dated target inform

rmation. Since are station ry (s io cluding ‘pop-

ion does no need e c unicated by

vidual UA irst figure o this c r, t are four outp

sitions of th indiv U s. Second is

vidual UA gets. Thir is th nowledge of

ats, and la s current he ding a

individual UAVs is multiplexed an ent to every UAV. s i information t

 103

‘X e

knowledge of each other UAV for the targets. The individual UAV th pares that

knowledge to what it already knew about th . F mple, if all but one UAV

indi ‘Y’ has been attacked d as sm en

acc one dissenting UAV indicates tha e d ag has

been perform ed it), f th vi l U eir

info arget ‘Y’ has had battle dama es nt d a

replan occurs in each of the UAVS. The sa with np fo f a

threat fires, and a single UAV indicates tha en

info wing that that threat fired. pa s a ac ing

the mpare_targets.m an thr , which can be found in

App

formation will give all UAV tion a ss to

corr anning decisions. The n r w e te ing

whenever all team members do not possess nal ene w the

above information is not being properly com .

 UAV Calculations

ementioned, the system runn eac vid l U ny

features with the centralized simulation, b tai num er to

allo tralized simulation to occu ps e p ask

allo ain the sam ent d s ula

usin run DD YP NTS subsystem to

generate extra waypoints or suspend low targ r t lly

perf g and task allocatio Th ntr ze ins

e same, with current information (now coming from team communication) and

waypoint information being used for path planning and task allocation.

’, because only UAV ‘X’ output that information. For the targets, the UAV has th

en com

ose targets or exa

cates that target but battle amage ses ent has not be

omplished, and

ed (because he perform

 the t battl am e assessment

then each o e indi dua AVs update th

rmation to indicate that t ge ass sme performed, an

me occurs the i uts r the threats. I

t it fires, th all the UAVs will update their

rmation sho These com rison re complished us

MATLAB code co d compare_ eats.m

endix B.

This in s full situa al aw rene and the ability

ectly make pl ext chapte ill inv stiga issues occurr

full situatio awar ss, hich indicates

municated

6.4 Individual

As afor ing inside h indi ua AV shares ma

ut also con ns a b of differences

w the decen r. The ste to th path lanning and t

cation scheme essentially rem e. In the c ralize im tion, this entailed

g the most current information, ning an A WA OI

er-valued ets fo the eam, and fina

orm the path plannin n process. e dece ali d version rema

th

 104

The first difference occurs with the AIRCRAFT DYNAMICS subsystem. In the

cent sion, the central processo mulated the d cs of eam

me dividual UAVs in the d v there n te

dy UAVs that an indiv ce es co re

bel f the UAV D S first V.

ralized ver r si ynami all UAV t

mbers. For in ecentralized ersion, is o need to simula

namics for other idual UAV rtain do not ntrol. The figu

ow shows the subsystem o YNAMIC for the UA

Figure 6.3: ‘UAV D loc

Th and task allocation sc rate sk as nm or

ted assignments of all other UAV team

members. For correct communications, all UAVs will know what every other UAV will

be doing. As mentioned with the dynamics, there is no need after the path planning and

ynamics’ b ks for UAV 1

e path planning heme gene s a ta sig ent and path f

the individual UAV along with the predic

 105

task allocation assignment for an individual UAV to be concerned with other UAVs who

it certainly does not control. The aircraft dynamics for the individual aircraft are found

using the exact same approach as described in Section 5.4. Once the actual aircraft

positions and rotations are found using the aircraft model, the UAV Positions block

passes on the positions of that UAV, as seen in Figure 6.4.

Figure 6.4: UAV Positions block

 The position of the UAV is then used in the same way as the central version to

determine if the individual UAV passes within the boundary of any threat or no-fly zone.

The calculations are much simpler here since only a single UAV position is compared

with known threat and no-fly zone positions. The former UAV DOWN vector is turned

into a single binary number to signal UAV loss. This information is then used in

conjunction with the position to signal the group of the loss of the individual UAV, as

performed in the UAV MANAGER, shown in Figure 6.5.

Figure 6.5: Individual UAV MANAGER subsystem

The UAV no longer issues replanning signals itself. To ensure the entire UAV team

replans as the new surviving UAV information becomes available, the replan has been

relocated to the initialization block for the UAVs, as shown in the next figure.

 106

Figure 6.6: UAV initialization block with UAV REPLAN subsystem

This block still serves its initialization function uninterrupted, as seen in the upper branch

of the system, but has the addition of the UAV REPLAN block. This subsystem

compares the UAVs current knowledge of the UAV team with its former knowledge of

the UAV team. When a difference is detected that indicates a loss of one or more

members, the replan signal is issued. Figure 6.7 illustrates the new UAV REPLAN

subsystem.

Figure 6.7: UAV REPLAN subsystem

Whenever the other UAVs become aware of the loss of a member, each UAV replans

based on the surviving UAV positions and current target and threat information. Each

UAV contains the same target and threat management that the central version contains.

Each UAV has knowledge of every threat and target and the corresponding states. As

mentioned, whenever any UAV presents new information to the group about a threat or

target, all team members update their information and each replans accordingly.

 107

 Target management is conducted in a similar manner. The new TARGETS

MANAGER still determines if a new target is added to the list of current targets, but the

replan signal for target changes (including target state changes) occurs within the

TARGETS initialization block, as seen in Figure 6.9, which is preceded by the figure of

the new manager.

Figure 6.8: TARGETS MANAGER

Figure 6.9: TARGETS initialization block with UAV REPLAN subsystem

The TARGETS REPLAN subsystem functions the same as the UAV REPLAN system.

This system detects changes in the same manner as the comparing system originally

5.6 in Figure 5.32.

described in Section

Figure 6.10: TARGET REPL

AN subsystem

 108

6.5 Simulation Outputs

The outputs of this simulation are the same as the centralized version. As with the

centralized simulation, there are three outputs; however, only two of them would be

typically used with a decentralized simulation. The first is, again, the output to the

MATLAB command window. Initially, it displays the UAV locations, altitudes, and

velocities, target locations and initial states, threat locations, ranges, and probability-of-

kill, and no-fly zone coordinates and radii. After this, occurring events will be displayed

y the UAV that detected them, and each UAV will display whenever it replans.

Typically, thi displays for

replanning. There can be a maximum of nine UAVs for this simulation, and while less

than the m can be ran, the path planning and task me still runs in

the nonexi en though th pe r

 pes of outp s in aths and

allocated t ypically a w d tra Because

the path p s o s ill be

nine sets h occurring e o s hat each

dividual UAV knows, not what could realistically be happening. Contrasting

formation such as misinformation or loss of information will produce different plots

ccurrences are discussed in the next section.

 the

simulation. Coupled with a statement of the events occu LAB command

window, this ing plot greatly h isu iz on. A short

example to ill is h of a Figure 6.11

shows an initi V ee t g y zones, and

ur threats.

b

s means that an event will happen, and then there will be nine

aximum allocation sche

stent UAVs, ev ey never receiver or rfo m tasks.

The second ty

 plots t

ut are static plots how g the planned p

asks. These re not used ith a ecen lized scheme.

lanning and task allocation cheme actually pr duce the plots, there w

of plots for eac vent. Als , these plot display only w

in

in

based upon what each UAV sees as the correct information. This could be helpful in

situations where the user wants to find out ‘who-knows-what’, but generally these plots

would not be of much use. Misinformation o

 The last output is a graphical visualization using moving plots to illustrate

rring in the MAT

mov elps the user to v al e the simulati

ustrate this plotting shown in t e form c ptured images.

al battlefield setup with four UA s, thr ar ets, three no-fl

fo

 109

Figure 6.11: Initial battlefield setup for decentralized simulation example

ulation completes, the user can choose the PLOT

IMULATION button shown at the top left of the main simulation system in Figure 6.1.

This produce s in motion

traveling toward their assigned targets, and shows dynami hanges such as

pop-up targets, pop-up threats, remov get Vs. An

option is al tting to nd e traveled

thus far. T veal in

times of re gets they have been assigned to. Figure 6.12 illustrates a

captured fr oving plot.

 Once the user sets up the initial battlefield, the simulation proceeds just as the

centralized version would. As events occur, the MATLAB command window prints

them, and replans occur. Once the sim

S

s the moving plot being discussed. This plot shows the UAV

c environment c

al of destroyed tar s, and loss of UA

so given with this plo

aths re

 show the path the i ividual UAVs hav

hese traveled p formation about where the UAVs were located at

plan and which tar

ame of this m

 110

Figure 6.12: Decentralized simulation example

In this specific frame, two replans have already occurred. UAV 1 has confirmed target 2

is a target and is currently assessing the target; UAV 2 was first assigned to target 3 but

has now been reassigned to target a; UAV 3 was initially assigned to target 2 along with

UAV 1, was later assigned to target 3, and finally has been reassigned back to target 2;

and lastly, UAV 4 has completed assessing target 1 and is now assigned to target 3. It

can also be seen that threat 4, which was an antiaircraft artillery piece guarding target 1,

has fired unsuccessfully at the only UAV to have entered its effective range – UAV 4.

The decentralized simulation environment proposed by research objective 5 has

now been completed. The next and last discussion chapter will be dedicated to

comparison of the centralized and decentralized simulations in terms of ‘real-time’

simulation; furthermore, communication issues will be addressed for this decentralized

simulation environment.

 111

Chapter 7

Comparison of Decentralized and Centralized Simulations

7.1 Simulation Efficiency

Real-time performance is crucial for implementation of any scheme aboard an

aircraft

location approach

discussed in Chapter 3 can be used with MATLAB function profile to track program

executi

Table 7.1: Summary of MATLAB Profile Reports

. This section investigates all MATLAB codes in terms of time of completion,

and both SIMULINK simulations are run in conjunction with a simulation profiler that

shows how much time is spent executing the simulation.

The MATLAB code that performs the path planning and task al

on time. The results of running the path_planning.m code with the MATLAB

Profiler is shown in the next four tables for three different cases. The first of these tables

gives a summary of the profile reports, such as number of UAVs, targets, threats, and no-

fly zones used to generate the profile report, in which table the report is found in, and the

total recorded time the path_planning.m code took to execute. The next three tables

present the profile report generated for each of the three cases.

Number of UAVs 4 5 9
Number of Targets 4 5 9
Number of Threats 4 5 15
Number of No-fly Zones 4 5 15
Profile Report found in: Table 4 Table 5 Table 6
Total recorded time: 1.41 s 3.10 s 20.48 s
Number of M-functions: 30 30 30
Number of M-subfunctions: 2 2 2
Number of MEX-functions: 1 1 1
Clock precision: 0.00000006 s 0.00000006 s 0.00000006 s
Clock Speed: 1584 Mhz 1584 Mhz 1584 Mhz

 112

Table 7.2: Profile Report based on 4 UAVs, 4 Targets, 4 Threats, and 4 No-fly Zones

Name Time Calls Time/call
path_shrtng 1.11100000 78.7% 1 1.11100000000
shorten_paths 0.88100000 62.4% 16 0.05506250000
cheapest_paths 0.16100000 11.4% 1 0.16100000000
vrn_diag_gen 0.11000000 7.8% 1 0.11000000000
update_cost 0.09000000 6.4% 16 0.00562500000
dijk 0.08100000 5.7% 16 0.00506250000
heading_angle_paths 0.06000000 4.2% 16 0.00375000000
voronoi 0.06000000 4.2% 1 0.06000000000
delaunay 0.04000000 2.8% 1 0.04000000000
delaunayn 0.03000000 2.1% 1 0.03000000000
pred2path 0.02100000 1.5% 16 0.00131250000
vrt_sim_convert 0.02000000 1.4% 1 0.02000000000
list2adj 0.02000000 1.4% 1 0.02000000000
c_assign 0.02000000 1.4% 1 0.02000000000
set_thc 0.02000000 1.4% 1 0.02000000000
unique 0.02000000 1.4% 2 0.01000000000
perms 0.01000000 0.7% 4 0.00250000000
mmkp_new 0.01000000 0.7% 1 0.01000000000
mmkp_t 0000 ask_allocation 0.01000000 0.7% 1 0.0100000
cart2p 2941 ol 0.01000000 0.7% 136 0.0000735
fillet_path 0.01000000 0.7% 16 0.00062500000
connect_vrn 0.01000000 0.7% 2 0.00500000000
voronoi/circle 0.01000000 0.7% 2 0.00500000000
sortrows 0.01000000 0.7% 2 0.00500000000
profile 0.00000000 0.0% 1 0.00000000000
pol2cart 0.00000000 0.0% 136 0.00000000000
isint 2 0.00000000000 0.00000000 0.0%
num2cell 0.00000000 0.0% 1 0.00000000000
mat2vec 0.00000000 0.0% 1 0.00000000000
qhullmx 0.00000000 0.0% 1 0.00000000000
sortrows/sort_back_to_front 0.00000000 0.0% 2 0.00000000000
nargchk 0.00000000 0.0% 39 0.00000000000
filter_zeros 0.00000000 0.0% 4 0.00000000000

 113

Table 7.3: Profile Report based on 5 UAVs, 5 Targets, 5 Threats, and 5 No-fly Zones

Name Time Calls Time/call
path_shrtng 2.72400000 87.8% 1 2.72400000000
shorten_paths 2.35300000 75.8% 25 0.09412000000
cheapest_paths 0.22000000 7.1% 1 0.22000000000
update_cost 0.16000000 5.2% 25 0.00640000000
dijk 0.14000000 4.5% 25 0.00560000000
heading_angle_paths 0.12000000 3.9% 25 0.00480000000
vrn_diag_gen 0.11000000 3.5% 1 0.11000000000
voronoi 0.06000000 1.9% 1 0.06000000000
delaunay 0.05000000 1.6% 1 0.05000000000
delaunayn 0.04000000 1.3% 1 0.04000000000
vrt_sim_convert 0.03000000 1.0% 1 0.03000000000
unique 0.03000000 1.0% 2 0.01500000000
mmkp_new 0.02000000 0.6% 1 0.02000000000
mmkp_task_allocation 0.02000000 0.6% 1 0.02000000000
pol2cart 0.02000000 0.6% 481 0.0000415 04 80
fillet 000000 _path 0.02000000 0.6% 25 0.00080
list2a 000000 dj 0.02000000 0.6% 1 0.02000
c_assign 0.02000000 0.6% 1 0.02000000000
set_thc 0.02000000 0.6% 1 0.02000000000
cart2pol 0.01000000 0.3% 481 0.00002079002
voronoi/circle 0.01000000 0.3% 2 0.00500000000
isint 0.01000000 0.3% 2 0.00500000000
num2cell 0.01000000 0.3% 1 0.01000000000
mat2vec 0.01000000 0.3% 1 0.01000000000
sortrows 0.01000000 0.3% 2 0.00500000000
profile 0.00000000 0.0% 1 0.00000000000
perms 0.00000000 0.0% 5 0.00000000000
pred2path 0.00000000 0.0% 25 0.00000000000
connect_vrn 0.00000000 0.0% 2 0.00000000000
qhullmx 0.00000000 0.0% 1 0.00000000000
sortrows/sort_back_to_front 0.00000000 0.0% 2 0.00000000000
nargchk 0.00000000 0.0% 57 0.00000000000
filter_zeros 0.00000000 0.0% 4 0.00000000000

 114

Table 7.4: fly Zones

Name Time Calls Time/call

 Profile Report based on 9 UAVs, 9 Targets, 15 Threats, and 15 No-

path_shrtng 15.46200000 75.5% 1 15.462000000000
shorten_paths 13.88000000 67.8% 81 0.171358024691
mmkp_task_allocation 4.03600000 19.7% 1 4.036000000000
mmkp_new 4.02600000 19.7% 1 4.026000000000
perms 1.02200000 5.0% 9 0.113555555556
cheapest_paths 0.82100000 4.0% 1 0.821000000000
update_cost 0.71100000 3.5% 81 0.008777777778
dijk 0.71100000 3.5% 81 0.008777777778
heading_angle_paths 0.43100000 2.1% 81 0.005320987654
vrn_diag_gen 0.12000000 0.6% 1 0.120000000000
cart2pol 0.07000000 0.3% 2801 0.000024991075
voronoi 0.06000000 0.3% 1 0.060000000000
delaunay 0.05000000 0.2% 1 0.050000000000
pol2cart 0.05000000 0.2% 2801 0.000017850768
pred2path 0.05000000 0.2% 81 0.000617283951
fillet_path 0.04000000 0.2% 81 0.000493827160
delaunayn 0.04000000 0.2% 1 0.040000000000
vrt_sim_convert 0.04000000 0.2% 1 0.040000000000
c_assign 0.04000000 0.2% 1 0.040000000000
set_thc 0.04000000 0.2% 1 0.040000000000
unique 0.03000000 0.1% 2 0.015000000000
num2cell 0.01000000 0.0% 1 0.010000000000
mat2vec 0.01000000 0.0% 1 0.010000000000
list2adj 0.01000000 0.0% 1 0.010000000000
connect_vrn 0.01000000 0.0% 2 0.005000000000
voronoi/circle 0.01000000 0.0% 2 0.005000000000
profile 0.00000000 0.0% 1 0.000000000000
isint 0.00000000 0.0% 2 0.000000000000
qhullmx 0.00000000 0.0% 1 0.000000000000
sortrows/sort_back_to_front 0.00000000 0.0% 2 0.000000000000
sortrows 0.00000000 0.0% 2 0.000000000000
nargchk 0.00000000 0.0% 169 0.000000000000
filter_zeros 0.00000000 0.0% 4 0.000000000000

 115

As shown in Table 7.1, a case where there are only four UAVs executes quickly in 1.41

seconds. This time represents the necessary time for the code to complete once started.

This time is of course a function of processor speed and memory. All figures shown here

were performed with a 1.6 GHz processor and 256 MB of RAM. However, completion

time is not just a function of computer hardware, but also the initial problem set up.

Whenever the problem is extended to 5 UAVs, 5 targets, 5 threats, and 5 no-fly zones, the

program takes 3.10 seconds to complete. Whenever the problem is extended to the

maximum allowable inputs of 9 UAVs, 9 targets, 15 threats, and 15 no-fly zones, the

simulation takes over 20 seconds to output all paths and assignments!

 performing 4 assignments, there are only 16 different

ombinations of UAV to assignment. For 5 UAVs, that number increases to 120. For 6

UAVs there are 720 permutations, 7 UAVs have 5040 permutations, and for 8 UAVs

there are 40,520 permutations. Whenever 9 different UAVs are used in a single team and

each must have a different assignment, there are 362,880 possible combinations of UAV

to assignment! For the simulation with 4 UAVs, the MMKP section takes 0.7% of the

total completion time to execute. For the 5 UAV simulation, MMKP takes roughly the

same percentage of time, decreasing slightly to 0.6%. However, for the 9 UAV

simulation, MMKP takes 19.7% of the completion time to determine the optimal

combination of UAVs to assignments. For this reason, the limit of the UAVs and targets

in simulation was chosen to be 9 each. Since the complexity of permutations is a

factorial function, a path planning and task allocation scheme for 10 UAVs would have

3,628,880 permutations, 11 UAVs would have 39,916,800 permutations, and 12 UAVs

would encounter 479,001,600 different combinations of UAV to assignment.

 A second reason for the increased computation time for higher UAV systems is

the number of paths that have to be shortened and made flyable. For the 4 UAV

simulation, there are only 16 paths, for 5 UAVs there is 25 paths, and for 9 UAVs, there

are 81 paths. The time required to shorten and make flyable the paths also depends on

 The reason behind the greatly increased computing time can be seen by the

number of permutations experienced by increasing the number of UAVs. With a

standard simulation of 4 UAVs

c

 116

how complex the system is. If there are a high number of UAVs but a low number of

threats and no-fly zones, the paths can quickly be optimized. For a high number of

obstacles to fly around, this time increases. Path shortening can be seen in Tables 7.2-7.4

to take roughly 70% of the total completion time, indicating an approximate linear

function to complexity associated with path shortening.

 For standard simulations with a limited number of UAVs and targets (such as 4 or

5), the path planning and task allocation MATLAB code computes in only a few seconds,

indicating that it could be used in real aircraft systems. MATLAB code is also a slower

computational environment and turning this code into an executable C code will speed up

completion time even further. In situations with near maximum numbers of UAVs,

targets, threats, and no-fly zones are desired, there are two possible options for quicker

completion time of task assignments. First, the team of UAVs could be broken into two

smaller teams that cooperate to perform tasks, so essentially there would be two teams of

4 or 5 with each team performing 4 or 5 assignments. Secondly, the path optimization

(shortening and flyability) can be performed after the assignments are chosen. This

would cause the completion time of the code to be reduced by about 50%. Performing

path optimization before allocating tasks is beneficial to choosing an optimal assignment.

For a standard number of UAVs, targets, threats, and no-fly zones, the degraded

performance is not worth the trade off for a shorter computational time where paths are

shortened up some

optimality for much faster running time should be considered.

AVs, 3 targets, 3 no-fly zones, and 4 threats.

and made flyable post-assignment. In large simulations, giving

 Execution times for simulation is also of interest. SIMULINK has a simulation

profiler built into its Performance Tools option. This simulation profile generates a

profile report similar to the MATLAB profile report, detailing the execution time of a

simulation. The decentralized and centralized simulations were both run with this tool,

and the findings are presented next. To ensure equitable conditions when comparing

these two simulations, the same initial battlefield was used for both. This battlefield is

show in the following figure and uses 4 U

 117

Figure 7.1: Initial battlefield setup for SIMULINK Profile Reports

 The centralized profile function. The

simulation was tested for running the initi ulation and the first 10

mulat

Table 7.5: SIMULINK Profile Summary for centralized simulation

Simulation Speed Normal Accelerator

simulation was first executed using the

alization of the sim

si ed second. Table 7.5 shows the results of running this simulation normally within

SIMULINK, and also with the Accelerator function.

Total recorded time: 18.03 s 4.90 s
Number of Block Methods: 1471 76
Number of Internal Methods: 9 5
Number of Nonvirtual Subsystem Methods: 104 4
Clock precision: 0.00000006 s 0.00000006 s
Clock Speed: 1584 Mhz 1600 Mhz

 118

The SIMULINK Accelerator produces an executable C file that replaces the simulation

used within SIMULINK. The completion time of the simulation to initialize and run for

10 simulated seconds was 4.90 seconds with the Accelerator function, and 18.03 seconds

when the simulation was executed as normal. Tables 7.6 and 7.7 detail the profile report

for the normal execution and the Accelerator execution, respectively. For the normal

execution, the initialization of the simulation task 35% of the completion time, or 6.3

seconds. The rest of the time is used for executing the simulation for 10 simulated

seconds, which occurred in 11.7 seconds.

Table 7.6: SIMULINK Profile Report for centralized version

Name Time Calls Time/call
sim 18.02600000 100.0% 1 18.02600000000
ModelExecute 11.66600000 64.7% 1 11.66600000000
pathplan (Output) 8.46200000 46.9% 205 0.04127804878
MajorOutputs 8.46200000 46.9% 205 0.04127804878
ModelInitialize 6.30900000 35.0% 1 6.30900000000
Integrate 2.46200000 13.7% 202 0.01218811881
pathplan (MinorOutput) 2.14100000 11.9% 210 0.01019523810
MinorOutputs 2.14100000 11.9% 210 0.01019523810

 over The Accelerator-based simulation ran in 4.9 seconds. The model initialization took

half of the completion time, representing 2.7 seconds. The simulation ran for 10

simulated seconds afterward in 2.2 seconds.

Table 7.7: SIMULINK Profile Report for centralized version, with Accelerator

Name Time Calls Time/call
sim 4.89700000 100.0% 1 4.89700000000
ModelInitialize 2.71400000 55.4% 1 2.71400000000
ModelExecute 2.14300000 43.8% 1 2.14300000000
pathplan (Output) 1.81300000 37.0% 205 0.00884390244

 119

 The same steps were used with the decentralized simulation. As shown in Figure

7.1, the same battlefield setup was used for both simulations. As with the centralized

version, a normal simulation and a SIMULINK Accelerator-based simulation were

initialized and ran for 10 simulated seconds. Table 7.8 shows both summaries for the two

simulations of the decentralized version.

Table 7.8: SIMULINK Profile Summary for decentralized simulation

Simulation Speed Normal Accelerator
Total recorded time: 63.05 s 37.37 s
 Number of Block Methods: 2965 160
Number of Internal Methods: 9 5
Number of Nonvirtual Subsystem Methods: 455 4
Clock precision: 0.00000006 s 0.00000006 s
Clock Speed: 1600 Mhz 1600 Mhz

The decentralized simulations took considerably longer to execute than their centralized

counterparts. For the normal simulation, initialization and 10 simulated seconds took 63

seconds to complete. For the Accelerator-based version, this took 37 seconds. Tables 7.9

and 7.10 detail the two profile reports.

Table 7.9: SIMULINK Profile Report for decentralized version

Name Time Calls Time/call
sim 63.05100000 100.0% 1 63.05100000000
ModelExecute 53.03700000 84.1% 1 53.03700000000
pathplan (Output) 46.30200000 73.4% 201 0.23035820896
MajorOutputs 46.30200000 73.4% 201 0.23035820896
ModelInitialize 9.92400000 15.7% 1 9.92400000000
Integrate 3.29100000 5.2% 200 0.01645500000
pathplan (MinorOutput) 2.95100000 4.7% 200 0.01475500000
MinorOutputs 2.95100000 4.7% 200 0.01475500000

 120

Table 7.10: SIMULIN ion, with Accelerator

 Time Calls Time/call

K Profile Report for decentralized vers

Name
sim 37.37300000 100.0% 1 37.37300000000
ModelExecute 24.26500000 64.9% 1 24.26500000000
pathplan (Output) 22.00300000 58.9% 201 0.10946766169
ModelInitialize 13.01800000 34.8% 1 13.01800000000

For the normal simulation, the initialization took 10 seconds and the Accelerator-

based simulation initialized in 13 seconds. The increase in initialization times represents

the increased from a single centralized simulation to 9 independent UAV simulations.

Therefore, this increase in initialization is expected. The execution times were then 53

seconds and 24.3 seconds, respectively. It should here be noted that the profile function

itself is quite computationally expensive to simulate. About 15 seconds at the beginning

of the simulation can be attributed to the initial path planning. Because the simulation is

setup for a maximum of nine UAVs, each of these possible UAVs run a path-planning

scheme even if they do not exist. This accounts for the first 15 seconds after the

initialization. However, without the profiler running, 10 simulated seconds was found to

n in 6.62 seconds for the normal simulation. The profile shows 38 seconds for this part

dividual UAV system is approximately one-ninth of the total

sim lation time for the decentralized simulation. This computes to seven seconds for the

rmal

ru

for the normal simulation, and 9 seconds for the Accelerator-based simulation.

Though the decentralized simulation has been shown to take longer to simulate a

given system, an interesting aspect is found when considering that the decentralized

simulation consists of essentially 9 UAVs being simulated by the same central processor

(a personal computer). Since the objective is to achieve real-time performance for an

individual UAV simulation, the individual UAV system needs to be investigated, not the

entire team being run by a central processor. Since a single CPU cannot run simulations

in parallel, the time for an in

u

no simulation and just over four seconds for the Accelerator-based simulation.

These times are even faster than the centralized version, and with reason. Since the

individual UAVs within the decentralized simulation do not have to perform calculation

 121

regarding the other UAVs (with respect to dynamics and threats and no-fly zone

checking), the simulation should occur in less time.

7.2 Miscommunication

Just like the real-time performance of software, investigation of real-life situations

using simulation is crucial. For decentralized path planning and task allocation, the

critical link for correct decision making is communication amongst a team of UAVs. The

next three sections investigate three possible scenarios where problems in

ommunications can lead to incorrect decisions for the team of UAVs.

blem with communication is miscommunication. There are

o po

he part of the individual UAVs

ith a cooperating team. The likely outcome of miscommunication is that certain tasks

ill be duplicated by multiple UAVs while other tasks will be neglected. To test the

ffects of miscommunication, the decentralized simulation was modified as shown in

igure 7.2. A noise generator was added to the communications about UAV positions, so

at individual UAVs would not know the location of their team members within a few

kilometers. Small allowances within aircraft position will not cause any incorrect

decisions, but the difference of several kilometers can.

c

The first possible pro

tw ssible ways for miscommunication to occur. The first way would be a fault within

the aircraft’s software or hardware to either send out incorrect signals or misinterpret

signals from other aircraft. This is less likely to occur than the second way, which is

caused by enemy electronic warfare efforts. If this electronic warfare leads to some

uncertainty, say within the exact locations of other team members, then the individual

UAVs may base their path planning on wrong information.

Miscommunication leads to incorrect decision on t

w

w

e

F

th

 122

Figure 7.2: Main system for decentralized UAV control with miscommunication

he noise that is added to the positions of each U ility

density fun nd a standard deviation of 1. This noise is run

rough a gain of value 2, so each UAV’s position can be plus or minus 2 kilometers in

e re 7.3 illustrates

the SE

gains for ea

T AV follows a Gaussian probab

 ction with a mean of zero a

th

th X-direction and plus or minus 2 kilometers in the Y-direction. Figu

NOI block of the main system, and Figure 7.4 shows the noise generators and

ch individual UAV of the team.

 123

Figure 7.3: NOISE block used for simulating miscommunication

Figure 7.4: Individual UAV noise

 The

xample is presented here for the simple simulation of 3 UAVs, 2 targets, 2 no-fly zones,

and gl

se modifications were used to test the response to misinformation. An

e

 a sin e threat. Figure 7.5 contains the initial battlefield setup for this example.

 124

Figure 7.5: Initial battlefield setup for miscommunication example

 The

orrectly until the first replan occurs. Whenever this replan occurs, UAV 2 is assessing

targ

information l

hre V

still being

are being n

e aerodynamic path discontinuities for the UAVs. The moving plot shown here is

bas pon

to be disto ly

nf le.

they only r

 UAVs are initialized with the correct information, so the simulation proceeds

c

et 1 while UAVs 1 and 3 are assigned to target 2. The replan contains incorrect

 for the locations of all three UAVs. This incorrect information causes al

t e UA s to be assigned to target 2, while no UAV is assigned to target 1. Tasks are

accomplished, but the simulation will take longer overall because certain tasks

eglected. Figure 7.6 shows the UAVs after the replanning. One should note

th

ed u the UAVs knowledge of positions, and whenever noise causes the positions

rted during a replan, the paths become strange and certainly dynamical

u easib However, the dynamics of the aircraft do not see these discontinuities, since

epresent noise that makes the plot somewhat incorrect.

 125

Figure 7.6: Miscommunication, decentralized simulation example

7.3 Delay of Communication

Delay of comm ype of investigated problems with

com

seful for initialization purposes and comparison of old information with current

info certainly cause

incorrect d

that occurs

e next se munication

wil on

hile the team neglects other tasks.

unication is the second t

munication. Delays are already inherent within the situation, as delays can be quite

u

rmation. However, longer delays within the communications will

ecisions. Longer delays can be seen as essentially a loss of communication

 for a definite period of time. Loss of communication will be investigated in

ction, and an example will be presented as well. Delays in comth

l resp d in the exact same manner, with multiple UAV assignments of a single task

w

 126

7.4 L s of Communication os

The third source for problems in communication is loss of communication. Loss

f c munication would typically result from highly effective enemy electronic warfare,

hich would produce an environment where all communications are effectively jammed.

os of communication could also result from damage to an individual UAV, but not

enough damage to cause destruction of the UAV or inability to perform tasks.

In any situation, one or more UAVs can experience loss of communication. The

A s that loose communication effectively become a separate, one vehicle team from

e other group. The lone UAVs will still see teammates where their last known position

as, and it will still be assumed they will perform tasks, but when no communication

about task accomplishment is received, the lone UAV performs all known tasks on all the

known targets. Meanwhile, for the team of UAVs that has lost contact with one or more

members, these members will essentially be seen as UAVs whose last known coordinates

represent their location. These lost UAVs will still be expected to perform tasks as

before, but because no information is received from them, their tasks are eventually

delegated to other team members who still properly communicate with the team. From

these two scenarios, the omniscient user sees a group of UAVs performing tasks, and one

or more lone UAVs who are attempting to duplicate those same tasks, whether they have

been performed or not. Thus, typically there are multiple UAVs performing the same

task while other tasks are neglected, as has been seen in the miscommunication case.

An example can be shown representing this scenario. The decentralized

simulation must first be modified to account for a loss of communication. Figure 7.7

shows the modification to the decentralized scheme where UAV 2 has lost

communication with the group.

o om

w

L s

U V

th

w

 127

Figure 7.7: Main system with individual UAV communication loss

The group of UAVs remains the same, but in place of UAV 2 are now just the

riginal coordinates of the vehicle. The group sees this UAV as one who continuously

remains at its initial position, but not as one who has been destroyed (because the loss of

communication may just be temporary). UAV 2 is now acting like a team by itself.

Though it sees the rest of the group as not being destroyed, the group essentially stays at

their original coordinates. Figure 7.8 shows the modifications for the individual system

to allow for simulation of this isolation.

o

 128

Figure 7.8: Main system for individual UAV 2, showing modifications

n known coordinates and target and threat states, and uses two new

ss of a team. These two blocks contain the system shown in

e 7.9. These systems show the UAV team as stationary at their original coordinates.

V 2 to perform tasks, but because UAV 2

ually UAV 2 will perform all the

The UAV uses its ow

systems to simulate this lo

Figur

The team members are still expected by UA

sees them as never accomplishing those tasks, event

known target assignments.

Figure 7.9: Loss of team of UAVs block

 129

 An example is now shown using this new simulation. The initial battlefield is

given by the following figure. There are 3 UAVs, 2 targets, 2 no-fly zones, and a single

threat.

Figure 7.10: Initial battlefield setup for individual communication loss example

owing the correct initial positions. The UAVs

nd 2 being assigned to the higher-valued target,

owever, target 1 lies inside of a Crotale

e, and whenever UAV 3 crosses that boundary, it is destroyed. At

nt, UAV 1 believes UAV 2 still exists at its original position, which is the last

osition for UAV 2. Whenever UAV 1’s path planning and task allocation

s expected to perform

et 1. Meanwhile, UAV 2 has lost communication with the

other two UAVs. Therefore, UAV 2 simply continues on for its assigned task at target 2,

because UAV 2 never receives communication that UAV 3 gets destroyed. The end

result is shown in Figure 7.11.

The simulation begins with all UAVs kn

make the correct decisions of UAVs 1 a

target 2, while UAV 3 is assigned to target 1. H

SAM’s effective rang

this poi

known p

scheme runs, UAV 1 is again assigned to target 2, while UAV 2 i

target reconnaissance on targ

 130

Figure 7.11: Individual communication loss example

As seen here, both UAV 1 and UAV 2 are assigned to target 2. Neither UAV has

assigned tasks at target 1, because of the lack of communication. UAV 1 expects UAV 2

to perform tasks on target 1, while UAV 2 expects the now destroyed UAV 3 to perform

tasks on target 1. The result of this loss of communication is a lack of cooperation.

Tasks are still performed, even if duplicated, and eventually all tasks will be completed

(assuming there is at one surviving UAV to perform assignments). The decentralized

scheme allows the UAVs to make their own decisions, even if incorrect because of

problems with communication. Even with incorrect decision making on the individual

UAV parts, missions can still be accomplished, whereas with a centralized scheme, all

UAVs would be lost once proper communication ceased.

 131

Chapter 8

 accomplished the six research objective as

s were to create a path

by using Voronoi diagram to

xt had costs assigned to

e edge costs were assigned,

hm was used to search the graph edges to determine the lowest-cost path

ere then further refined

ng the edge intersections, and

path to transition the current UAV heading angle to the

 The last step in the path planning and task allocation scheme was to use a

olution to allocate all

bjects by development of a

ed simulation environment. This simulation used the path

ed, and added time-varying,

capabilities were implemented.

e possibilities of individual or multiple

aircraft dynamics subsystem.

ck the tasks performed on individual targets, and real-

, and targets that are not

as focused on development of a

 the last research objectives. This

wn decision making capabilities and

Conclusions and Recommendations

8.1 Conclusions

 The research effort presented here

stated at the end of the Introduction chapter. The first objective

planning and task allocation scheme. This scheme began

connect UAVs to targets with graphical edges. These edges ne

them based on their length and possible threat cost. Onc

Dijkstra’s algorit

for each permutation of UAV to target. These lowest-cost paths w

by shortening using a line of sight method, adding fillets alo

adding initial sections to the

desired one.

Multi-dimensional, Multiple-Choice Knapsack Problem s

assignments while minimizing UAV team costs.

 The next research addressed the third and fourth o

SIMULINK-based centraliz

planning and task allocation scheme previously develop

dynamic environment, aspects. Pop-up target and threat

A UAV manager was developed to address th

UAV loss. A UAV model was implemented with an

Target states were used to tra

possibilities were modeled to include objects disguised as targets

destroyed in the first attack.

 The latter part of the research effort w

decentralized simulation environment to complete

decentralized version now includes a vehicle’s o

 132

communication amongst vehicles. Next, the decentralized simulation was compared

ith the centralized version in terms of simulation efficiency. It was concluded that the

xpected. The centralized simulation proved to be a faster simulation than the

were addressed to show that

this research effort, further investigation and implementation of this

ntralized path planning and task allocation scheme could be pursued in several

f UAVs cooperating. The next direction this

ive UAVs. These UAVs could

be used as a proving vehicle for this approach, to show the actual implementation of this

decentralized path planning and task allocation scheme.

w

path planning and task allocation scheme could be implemented in a real-time

environment only for a limited number of UAVs, targets, threats, and no-fly zones, as

e

decentralized version, but when the decentralized is considered to be essentially running

nine separate simulations at once, the individual UAV simulations show faster times than

the centralized version. Lastly, real communications issues

while communication problems lead to a lack of cooperation, tasks can still be performed

and missions completed within the decentralized simulation environment.

endations 8.2 Recomm

From

dece

directions. The first direction would be conversion of the decentralized simulation

environment into executable files in C code. These executable files could be tested using

parallel processing to truly model a team o

research could be taken in would include small, inexpens

 133

References

d Precision Guided Munitions at
om/library/defnews.doc

1. UAV Forum. “Unmanned Aerial Vehicles an
the Centennial” http://www.uavforum.c

ehicles Roadmap 2002-2027.
ber 2002.

p://www.uavforum.com/

2. Department of Defense. Unmanned Aerial V

ary of Defense: DecemOffice of the Secret

3. UAV Forum. “Librarian’s Desk – UAV forum” htt
library/librarian.htm

4. McLain, T.W., “Coordinated Control of

s Directorate, Wright-Patterson Air Force Base, Ohio, summer 1999.
Unmanned Air Vehicles” Air

e. “Unmanned Air Vehicles”
ex.html

Vehicle

5. USAF ARFL - Air Vehicles Directorat
http://www.va.afrl.af.mil/FA/UAV/uav_ind

etwork. “Low Cost Autonomous Attack System
apability” http://www.fas.org/man/dod-

6. FAS Military Analysis N

(LOCAAS) Miniature Munition C
101/sys/smart/locaas.htm

ned Combat Air Vehicle (X-45)”
oeing.com/phantom/ucav.html

7. Phantom Works. “Unman

http://www.b

A., “Path-Planning for Unmanned Air Vehicles” Air Vehicles
rate, Wright-Patterson Air Force Base, Ohio, August 1999.

ain, T.W., “Cooperative Control of UAV Rendezvous” Air Vehicles
ate, Wright-Patterson Air Force Base, Ohio, Summer 2000.

McLain, T.W., and Beard, R.W., “Trajectory Planning for Coordinated
Rendezvous of Unmanned Air Vehicles” AIAA Paper 200-4369. 2000.

 Moon, T.K. and Stirling, W.C. Mathematical Methods and Algorithms. New
Jersey: Prentice Hall, 2000.

 Eppstein, D. “Finding the k Shortest Paths” March 1997.

M.C. and Jacques, D.R. “Air Vehicle Optimal Trajectories Between
oceedings of the American Control Conference, Anchorage,

.

 and McLain, T.W. “Spline Based Path Planning for Unmanned
Air Vehicles” AIAA Paper 2001-4238.

8. Bortoff, S.

Directo

cL9. M
Director

10.

11.

12.

13. Novy,

Two Radars” Pr
AK, May 2002

14. Judd, K.B.,

 134

15. Herbert, J., Jacques, D., Novy, M., and Pachter, M. “Cooperative Control of
ce, Navigations, and Control

anada, August 2001.

, E.P., and Beard, R.W. “An Algorithmic Implementation of
ed Extremal Control for UAVs” AIAA Paper 2002-4470. AIAA
 Navigations, and Control Conference, Monterey, CA, August

17. Chen, G., and Cruz, J.B. “Genetic Algorithm for Task Allocation in UAV
Cooperative Control” AIAA Paper 2003-5582. AIAA Guidance, Navigations,

ce, Austin, TX, August 2003.

Multi-Task Allocation

UAVs” AIAA Paper 2001-4240. AIAA Guidan
Conference, Montreal, C

16. Anderson

Constrain
Guidance,
2002.

and Control Conferen

. Bellingham, J., Tillerson, M., Richards, A., How, J. "18
and Trajectory Design for Cooperating UAVs," in Cooperative Control:

lications and Algorithms at the Conference on Coordination,
timization, November 2001.

hiratori, N. “An Algorithm for the
Multidimensional Multiple-Choice Knapsack Problem” IEICE Trans.

, Vol. E80-A, No. 3, March 1997.

Richards, A., Bellingham, J., Tillerson, M., How, J. "Co-ordination and

Models, App
Control and Op

19. Moser, M., Jokanovic, D.P., and S

Fundamentals

20.
Control of Multiple UAVs" AIAA Guidance, Navigation, and Control

, Monterey, CA, August 2002.

ing with Collision
ger Linear Programming” Proceedings of the

ntrol Conference, Anchorage, AK, May 2002.

22. Schouwenaars, T., De Moor, B., Feron, E., and How, J. “Mixed Integer
ulti-Vehicle Path Planning” ECC Conference,

 and How, J. “Experimental Demonstrations of
Real-time MILP Control” AIAA Paper 2003-5802. AIAA Guidance,

, and Control Conference, Austin, TX, August 2003.

er, M., Rasmussen, S., and Schumacher, C. “Distributed
UAVs with Strongly Coupled Tasks” Paper 2003-5799.

AIAA Guidance, Navigations, and Control Conference, Austin, TX, August

ical Control for Autonomous
ams” AIAA Paper 2001-4149. AIAA Guidance, Navigations, and Control

rence, Montreal, Canada, August 2001.

Conference

21. Richards, A, M., How, J. “Aircraft Trajectory Plann
Avoidance Using Mixed Inte
American Co

Linear Programming for M
2001.

23. Richards, A., Kuwata, Y.,

Navigations

24. Chandler, P.R., Pacht
Control for Multiple

2003.

25. Chandler, P.R., and Pachter, M., “Hierarch
Te
Confe

 135

26. Chandler, P.R., Pachter, M., Swaroop, D., Fowler, J.M., Howlett, J.K.,

acher, C., Nygard, K., “Complexity in UAV
roceedings of the American Control Conference,
2.

., Prasanth, R., and Mehra, R.K. “An Autonomous Hierarchical
r Unmanned Aerial Vehicles” AIAA Paper 2002-4468.

vigations, and Control Conference, Monterey, CA,

a, R.K. “A Multi-Layer Control
hitecture for Unmanned Aerial Vehicles” Proceedings of the American

nchorage, AK, May 2002.

29. Howlett, J.K. “Path Planning and Cooperative Assignment” Air Vehicles
son Air Force Base, Ohio, Summer 2001.

u, C., and Castelli, V. “Autonomous Command and Control for
UAV Formation” Paper 2003-5704. AIAA Guidance, Navigations, and
Control Conference, Austin, TX, August 2003.

31. Schumacher, C., Chandler, P.R., and Rasmussen, S. “Task Allocation for a

Wide Area Search Munition via Iterative Network Flow” AIAA Paper 2002-
4586. AIAA Guidance, Navigations, and Control Conference, Monterey, CA,
August 2002.

32. Schumacher, C., Chandler, P.R., Pachter, M., and Pachter, L.S. “UAV Task

Assignment with Timing Constraints” Paper 2003-5664. AIAA Guidance,
Navigations, and Control Conference, Austin, TX, August 2003.

33. Rasmussen, S., Chandler, P., Mitchell, J.W., Schumacher, C., and Sparks, A.

“Optimal vs. Heuristic Assignment of Cooperative Autonomous Unmanned
Air Vehicles” Paper 2003-5586. AIAA Guidance, Navigations, and Control
Conference, Austin, TX, August 2003.

34. Rasmussen, S., Mitchell, J.W., Schulz, C., Schumacher, C., and Chandler, P.

“A Multiple UAV Simulation for Researchers” Paper 2003-5684. AIAA
Guidance, Navigations, and Control Conference, Austin, TX, August 2003.

35. Carpenter, J.R. “Partially Decentralized Control Architectures for Satellite

Formations” AIAA Paper 2002-4959. AIAA Guidance, Navigations, and
Control Conference, Monterey, CA, August 2002.

36. Boskovic, J.D., and Mehra, R.K. “A Decentralized Scheme for Autonomous
Compensation of Multiple Simultaneous Flight-Critical Failures” AIAA Paper

Rasmussen, S., Schum
Cooperative Control” P
Anchorage, AK, May 200

27. Boskovic, J.D

Control Architecture fo
AIAA Guidance, Na
August 2002.

28. Boskovic, J.D., Prasanth, R., and Mehr

Arc
Control Conference, A

Directorate, Wright-Patter

30. Verma, A, W

 136

2002-4453. AIAA Guidance, Navigations, and Control Conference,

Yang, Y., Minai, A.A., Polycarpou, M.M., “Decentralized Cooperative Search
in UAVs Using Opportunistic Learning” AIAA Paper 2002-4590. AIAA

nce, Monterey, CA, August

Communication Delays in
 Search Munitions Via Iterative

Network” AIAA Paper 2003-5665. AIAA Guidance, Navigation, and Control
Conference, Austin, TX, August 2003.

s Under
Communication Delay” AIAA Paper 2003-5663. AIAA Guidance,

gust 2003.

., and Overmarr, M.
nd Edition. New

pringer-Verlag, 2000.

curity.org “World Military Guide”. http://www.globalsecurity.org/

Monterey, CA, August 2002.

37.

Guidance, Navigations, and Control Confere
2002.

38. Mitchell, J.W., Schumacher, C., Chandler, P.R., “

the Cooperative Control of Wide Area

Jeffcoat, D.E., “Cooperative System39. Ashokkumar, C.R., and

Navigations, and Control Conference, Austin, TX, Au

40. de Berg, M., van Kreveld, M., Schwarzkopf, O
lgorithms and Applications, SecoComputational Geometry: A

York: S

41. Global Se
military/world/index.html

ikipedia. “Dijkstra’s Algorithm” http://en.wikipedia.org/wiki/

42. W
Dikjstra’s_algorithm

edia. “Adjacency Matrix” http://en.wikipedia.org/wiki/

43. Wikip
Advacency_matrix

, MATLAB toolbox package. Available from
/matlog

44. Kay, Michael. MATLOG

http://www.ie.ncsu.edu/kay

tp://en.wikipedia.org/wiki/NP-hard

45. Wikipedia. “NP-hard” ht

 Akbar, M.M., Manning, E.G., Shoja, G.C., and Khan, S. “Heuristic Solution
for the Multiple-Choice Multi-Dimensional Knapsack Problem” International
Conference on Computational Science, San Francisco, May 2001.

47. Roskam, J. Airplane Fight Dynamics and Automatic Flight Controls: Part I.

DARcorporation: Lawrence, 1995.

48. Stevens, B.L., and Lewis, F.L. Aircraft Control and Simulation. John Wiley
and Sons: New York, 1992.

46.

 137

49. Rauw, M. FDC 1.2 – A SIMULINK Toolbox for Flight Dynamics and Control
wanadoo.nl/dutchroll/manual.htmlAnalysis. May, 2001. http://home.

 138

MATLAB Codes for Path Planning and Task Allocation

Appendix A

 139

path_planning.m

=in([1:36],1);
_long=reshape(UAVS_long,4,9);

NES_long=reshape(ZONES_long,3,10);

ADING_ANGLE=in([165:173]);

)>0 & abs(sum(UAVS_long(:,i)))~=0.26
 uavs_existing(1,i)=1;

v=size(UAVS,2);

_existing=zeros(1,9);

ARGETS_temp]=filter_zeros(TARGETS_long,9);
ARGETS=[TARGETS_temp(1,:);TARGETS_temp(2,:)];
_targ=size(TARGETS,2);

ONES_long,10);

g(3,i)~=0
,i)=1;

EATS_long,15);
size(THREATS,2);

ES;
ATS;

_REAL(3,:);
S(3,:)=1.15*THREATS_REAL(3,:);

seg=10;
in_turn=1;

[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS);

Authored by Matthew Lechliter and Zachary Spritzer
function [out]=path_planning(in)

UAVS_long
UAVS
TARGETS_long=in([37:72]);
TARGETS_long=reshape(TARGETS_long,4,9);
ZONES_long=in([73:102]);
ZO
THREATS_long=in([103:162]);
THREATS_long=reshape(THREATS_long,4,15);
TIME=in(163);
n_plots=in(164);
HE

uavs_existing=zeros(1,9);
for i=1:9
 if abs(sum(UAVS_long(:,i))

 end
end
[UAVS]=filter_zeros(UAVS_long,9);
n_ua

targ
for i=1:9
 if TARGETS_long(3,i)~=0,
 targ_existing(1,i)=1;
 end
end
[T
T
n

[ZONES]=filter_zeros(Z
n_zones=size(ZONES,2);

threats_existing=zeros(1,15);
for i=1:15
 if THREATS_lon
 threats_existing(1
 end
end
[THREATS]=filter_zeros(THR
n_threats=

ZONES_REAL=ZON
THREATS_REAL=THRE

ZONES(3,:)=1.15*ZONES
THREAT

split_
m

 140

[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

(stored_paths,all_pos,ZONES,THREATS,m
turn,split_seg,n_uav,n_targ,HEADING_ANGLE);

ths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path
n_uav);

s_x,Selected_Paths_y,UA

path_x,uav_path_y,n_plots,

(sprintf('Path Planning ran at time %d. \n',round(TIME)));

 if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &

nd

ros(9,100);
s(9,1);

);

r i=1:9,
ting(1,i)==1

ounter);

ath])=uav_path_y(counter,:);

emp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)];

temp,selected_targets'];

S,THREATS);
[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng
in_
[Selected_Pa
s_y,
[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Path
VS,min_turn*2);
if n_plots~=0,

plot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long,uav_
uavs_existing,targ_existing,threats_existing);
end

disp

bestcomb=zeros(1,9);
for i=1:n_uav,
 for j=1:n_targ,

 round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)
 bestcomb(1,i)=j;
 break
 end
 e
end

%Making into vector
uav_x=zeros(9,100);
uav_y=zeros(9,100);
uav_time=zeros(9,100);
uav_alt=ze
selected_targets=zero
szpath=size(uav_path_x,2
counter=1;
fo
 if uavs_exis
 selected_targets(i,1)=bestcomb(1,c
 uav_x(i,[1:szpath])=uav_path_x(counter,:);
 uav_y(i,[1:szp
 uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
 uav_alt(i,[1:szpath])=altitude_uav(counter,:);
 counter=counter+1;
 end
end
sys_temp=[];
for i=1:9;
 sys_temp=[sys_t
end
out=[sys_

 141

filter_zeros.m
Authored by Matthew Lechliter and Zachary Spritzer

]=filter_zeros(A_long,n)

um(A_long(:,i)))>0 & abs(sum(A_long(:,i)))~=0.26

ter=counter+1;

function [A

A=[];
counter=1;
for i=1:n
 if abs(s
 A(:,counter)=A_long(:,i);
 coun
 end
end

 142

vrn_diag_gen.m
uthored by Matthew Lechliter, Zachary Spritzer, and Jennifer Hazelton

nes_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS)

r of UAVs, the first row is the
he initial y position

elocity of the UAVs.

ix where n is the number of Targets, the first row

f No-Fly Zones, the first
es, the second row is the y

dius or range of
-fly zones.

 first row
 y position of the

reats, the third row is the range of the threats, and the fourth row is

ue voronoi points,
uav points, and target points. Where the first row is the x position and

unique points.

all_lines_x - is a 2xn matrix where n is the number of all of the lines

and the second row is the starting point's
x position for the nthe line.

for the voronoi, uavs, and targets. The first row is the ending point's
e and the second row is the starting point's

where n is the number of all of the lines
nd targets. This row is the costs for all of the

x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])+25;
in_x=min([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])-25;

,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])+25;
(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])-25;

ax_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ...
 [(((max_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ...

+min_x);(min_y)*ones(1,4)] ...
in_x)*[1:4]/4)+min_x);(max_y)*ones(1,4)]];

A
function [all_pos,all_lines_x,all_li

%INPUTS:
%
%UAVS - is a 4xn matrix where n is numbe
%initial x position of the UAVs, the second row is t
%of the UAVs, the third row is the initial altitude of the UAVs, and
%the fourth row is the intial V
%
%TARGETS - is a 2xn matr
%is the x position of the targets and the second row is the y position of
%the targets.
%
%ZONES - is a 3xn matrix where n is the number o
%row is the x position of the no-fly zon
%position of the no-fly zones, and the third row is the ra
%the no
%
%THREATS - is a 4xn matrix where n is the number of Threats, the
%is the x position of the threats, the second row is the
%th
%the level of danger of the threats.
%
%OUTPUTS:
%
%all_pos - is a 2xn matrix where n is the number of uniq
%
%the second row is the y position of all of these
%
%
%for the voronoi, uavs, and targets. The first row is the ending point's
%x position for the nth line
%
%
%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%
%y position for the nth lin
%y position for the nthe line.
%
%all_costs - is a 1xn row
%for the voronoi, uavs, a
%lines of all_lines_x and all_lines_y

max_
m
max_y=max([TARGETS(2
min_y=min([TARGETS

VRNPTS=[ZONES([1,2],:) THREATS([1,2],:) ...
 [(((m

 [(((max_x-min_x)*[1:4]/4)
 [(((max_x-m

 143

[vx,vy] = voronoi(VRNPTS(1,:),VRNPTS(2,:));

%%
 n mbers om vx and vy

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(round(1e6*[vx(:),vy(:)]),'rows');

%%
Connecting UAV's into voronoi

%%
vy]=connect_vrn(vxyn,UAVS([1,2],:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Connecting the targets into the voronoi

%%%
[line_cost_targ,targx,targy]=connect_vrn(vxyn,TARGETS([1,2],:));

%%%
%Generation for voronoi line costs
%%%
nvlines=size(vx,2);
line_cost_vrn=zeros(1,nvlines);
for i=1:nvlines,
 line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2);
end
%%%
%Stacking unique positions, lines for x and y, and costs of those lines
%%%
all_pos=[UAVS([1,2],:) vxyn(:,[1,2])' TARGETS([1,2],:)];
all_lines_x=[uavx([1,2],:) vx([1,2],:) targx([1,2],:)];
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],:)];
all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,:)];

%
%Taking unique u fr
%%%%%%%%%%%%%%%
[vxyn]= 1e-6*unique

%%%
%
%%%%%%%%%
[line_cost_uav,uavx,ua

%%%%%%%%%%%%%%%%%%%
%

 144

voronoi.m

function [vxx,vy] = voronoi(x,y,arg3,arg4)

lots the Voronoi diagram for the points X,Y.
 point at infinity are unbounded and

tion TRI instead of

 H = VORONOI(...,'LineSpec') plots the diagram with color and linestyle
reated in H.

 the Voronoi
reates the

 Voronoi diagram.

 For the topology of the voronoi diagram, i.e. the vertices for
IN as follows:

 [V,C] = VORONOIN([X(:) Y(:)])

NOIN, DELAUNAY, CONVHULL.

ks, Inc.
Revision: 1.15 $ $Date: 2002/06/05 20:05:17 $

rror(nargchk(2,4,nargin));

 nargin==2,
y);

,
if isstr(arg3),

(x,y);

 tri = arg3;

 ls = '';
 end
else
 tri = arg3;
 ls = arg4;
end

% re-orient the triangles so that they are all clockwise
xt = x(tri); yt=y(tri);
ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ...
 xt(:,2).*(yt(:,3)-yt(:,1)) + ...
 xt(:,3).*(yt(:,1)-yt(:,2));
bt = find(ot<0);
tri(bt,[1 2]) = tri(bt,[2 1]);

n = prod(size(x));
ntri = size(tri,1);

%VORONOI Voronoi diagram.
% VORONOI(X,Y) p
% Cells that contain a
% are not plotted.
%
% VORONOI(X,Y,TRI) uses the triangula
% computing it via DELAUNAY.
%
%
% specified and returns handles to the line objects c
%
% [VX,VY] = VORONOI(...) returns the vertices of
% edges in VX and VY so that plot(VX,VY,'-',X,Y,'.') c
%
%
%
% each voronoi cell, use the function VORONO
%
%
%
% See also VORO

% Copyright 1984-2002 The MathWor
% $

e

if
 tri = delaunay(x,
 ls = '';
elseif nargin==3

 tri = delaunay
 ls = arg3;
 else

 145

t = (1:ntri)';
T = sparse(tri,tri(:,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)

ge if E(i,j)

isempty(ls),
rorder');

 h = plot(vx,vy,'-',x,y,'.','color',co(1,:));

sg)
 if isempty(m), m = '.'; end

if ~ishold,
min(x(:)) max(x(:)) min(y(:)) max(y(:))])

end

vxx = vx;

)

,Y) returns a N-by-3 vector containing [xcenter(:)

 = x(:); y = y(:);

1 = x(tri(:,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3));
)); y3 = y(tri(:,3));

center of each circumcircle:
1 a22]*[x;y] = [b1;b2] * 0.5;

1; a12 = y2-y1;
2 = y3-y1;

y1);
 (x3+x1) + a22 .* (y3+y1);

 explicitly
.*a12;

dom displacement to points that are either the same
e.

), % Add small random displacement to points

E = (T & T').*T; % Voronoi ed

[i,j,v] = find(triu(E));
[i,j,vv] = find(triu(E'));
c1 = circle(tri(v,:),x,y);
c2 = circle(tri(vv,:),x,y);

vx = [c1(:,1) c2(:,1)].';
vy = [c1(:,2) c2(:,2)].';

if nargout<2
 if
 co = get(gcf,'defaultaxescolo

 else
 [l,c,m,msg] = colstyle(ls); error(m

 h = plot(vx,vy,ls,x,y,[c m]);
 end

 view(2), axis([

 if nargout==1, vxx = h; end
else

end

function c = circle(tri,x,y
%CIRCLE Return center and radius for circumcircles
% C = CIRCLE(TRI,X
% ycenter(:) radius(:)] for each triangle in TRI.

% Reference: Watson, p32.
x

x
y1 = y(tri(:,1)); y2 = y(tri(:,2

% Set equation for
% [a11 a12;a2

a11 = x2-x
a21 = x3-x1; a2

b1 = a11 .* (x2+x1) + a12 .* (y2+
b2 = a21 .*

% Solve the 2-by-2 equation
idet = a11.*a22 - a21

% Add small ran
% or on a lin
d = find(idet == 0);
if ~isempty(d

 146

 delta = sqrt(eps);
) + delta*(rand(size(d))-0.5);

lta*(rand(size(d))-0.5);
(rand(size(d))-0.5);

) + delta*(rand(size(d))-0.5);
(rand(size(d))-0.5);

 y2-y1;
x1; a22 = y3-y1;

12 .* (y2+y1);
1 .* (x3+x1) + a22 .* (y3+y1);

 - a21.*a12;

et = 0.5 ./ idet;

.*b1 - a12.*b2) .* idet;
 = (-a21.*b1 + a11.*b2) .* idet;

1-xcenter).^2 + (y1-ycenter).^2;

 x1(d) = x1(d
 x2(d) = x2(d) + de
 x3(d) = x3(d) + delta*
 y1(d) = y1(d) + delta*(rand(size(d))-0.5);
 y2(d) = y2(d
 y3(d) = y3(d) + delta*
 a11 = x2-x1; a12 =
 a21 = x3-
 b1 = a11 .* (x2+x1) + a
 b2 = a2
 idet = a11.*a22
end

id

xcenter = (a22
ycenter

radius = (x

c = [xcenter ycenter radius];

 147

connect_vrn.m
uthored by Matthew Lechliter and Zachary Spritzer

]=connect_vrn(vxyn,UAVS)

 all of the unique x
positions of the voronoi diagram or grid and the second column defining

ram or grid.

UAVS - is a 2xn matrix with the first row defining the x position of the

the UAV's into the voronoi diagram or grid

 with first row defining ending point and second row

%uavy - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the y coordinates.
nuav=size(UAVS,2);
nvxynpts=size(vxyn,1);
du=zeros(1,nvxynpts-1);
uavx=zeros(2,nuav*3);
uavy=zeros(2,nuav*3);
line_cost_uav=zeros(1,nuav*3);
for k=1:nuav,
 for j=2:nvxynpts,
 du(1,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))^2+(UAVS(2,k)-vxyn(j,2))^2);
 end
 mdu=sort(du,2);
 for i=1:3,
 mdu_loc=find(du==mdu(1,i));
 uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1);
 uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2);
 uavx(2,3*(k-1)+i)=UAVS(1,k);
 uavy(2,3*(k-1)+i)=UAVS(2,k);
 line_cost_uav(1,3*(k-1)+i)=mdu(1,i);
 end
end

A
function [line_cost_uav,uavx,uavy

%Inputs:
%
%vxyn - is a nx2 matrix with first column defining
%
%all of the unique y positions of the voronoi diag
%
%
%UAV and the second row defining the y position of the UAV.
%
%Outputs:
%
%line_cost_uav - is a vector containing the cost of the lines of connecting
%
%
%uavx - is a 2xn matrix
%defining starting point for the x coordinates.
%

 148

cheapest_paths.m
uthored by Matthew Lechliter and Zachary Spritzer

es_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

all_pos - is a 2xn matrix where n is the number of unique voronoi points,
ow is the x position and

f all of these unique points.

gets. The first row is the ending point's
int's

ere n is the number of all of the lines

%for the voronoi, uavs, and targets. The first row is the ending point's
%y position for the nth line and the second row is the starting point's
%y position for the nthe line.
%
%all_costs - is a 1xn row where n is the number of all of the lines
%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y.
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVs, the third row is the initial altitude of the UAVs, and
%the fourth row is the intial Velocity of the UAVs.
%
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
%the targets.
%
%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%OUTPUTS:
%
%stored_paths - is a mxn matrix where m is the number of uavs times the
%number of targets and n is the length of the longest path. The first row
%being the first path for the first uav and the last row being the last
%path for the last uav. The paths are output by node numbers coming from
%the implementation of dijkstra's algorithm.
%
%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

A
function
[stored_paths,totalcost]=cheapest_paths(all_pos,all_lin
S,THREATS)
%
%INPUTS:
%
%
%uav points, and target points. Where the first r
%the second row is the y position o
%
%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and tar
%x position for the nth line and the second row is the starting po
%x position for the nthe line.
%
%all_lines_y - is a 2xn matrix wh

 149

%%%

jkstra's algorithm
%%%%%%%%%%%%%%%

os,all_lines_x,all_lines_y,all_costs);

%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
REATS);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
e

%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

i=1:nuav,

;
 stored_paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]);

%Making THC matrix for di
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[THC]=set_THC(all_p

%%%%%%%%%%%%%%%%%%%%%%%%%%
%Cost Assignment for all lines
%%%%%%%%%%%%%%%
[THC]= c_assign(all_pos,THC,ZONES,TH

%%%%%%%%%%%%%%%%%%%
%Adding the reverse of the THC matrix onto the end, so that th
%reverse of the lines is possible
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
THC=[THC(:,[1,2,3]); THC(:,[2,1,3])];

%%%%%%%%%%%%%%%%%%%%%%%%
%Implementing Dijkstra's algorithm
%%
nuav=size(UAVS,2);
ntarg=size(TARGETS,2);
A = list2adj(THC);
totalcost=zeros(nuav,ntarg);
for
 for j=1:ntarg,
 [totalcost(i,j),path] = dijk(A,i,size(all_pos,2) - j + 1)

 end
end

 150

set_THC.m
Authored by Matthew Lechliter, Zachary Spritzer, and Elena Lucci

 [THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs)

INPUTS:

all_pos - is a 2xn matrix where n is the number of unique voronoi points,
 Where the first row is the x position and

 unique points.

2xn matrix where n is the number of all of the lines
oronoi, uavs, and targets. The first row is the ending point's

 position for the nth line and the second row is the starting point's

 is the number of all of the lines
vs, and targets. The first row is the ending point's

e nth line and the second row is the starting point's
 line.

osts - is a 1xn row where n is the number of all of the lines
oi, uavs, and targets. This row is the costs for all of the

x and all_lines_y.

PUTS:

e first column is the tail of the line or starting point, the second

r the ending point, and the third column
e line. With updated costs due to no-fly zones and

nes_x,2),3);

*size(all_lines_x,2))
(round(all_pos(1,:)*100)== round(all_lines_x(i)*100)) &

0)==round(all_lines_y(i)*100));

=find(P);

);
HC(bz,1)=num;

 tz=(fix((i./2))+1);

(i/2),2)=i;

function
%
%
%
%
%uav points, and target points.
%the second row is the y position of all of these
%
%all_lines_x - is a
%for the v
%x
%x position for the nthe line.
%
%all_lines_y - is a 2xn matrix where n
%for the voronoi, ua
%y position for th
%y position for the nthe
%
%all_c
%for the voron
%lines of all_lines_
%
%OUT
%
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%th
%column is the head of the line o
%is the cost of th
%threats.

THC=zeros(size(all_li
THC(:,3)=all_costs(:);
for i=1:(2
 P=
(round(all_pos(2,:)*10
 if any(P)
 num
 if (rem(i,2))~=0
 bz=((fix(i./2))+1
 T
 else THC((i/2),2)=num;
 end
 else
 if (rem(i,2))~=0

 THC(tz,1)=i;
 else THC(
 end
 end
end

 151

c_assign.m
uthored by Matthew Lechliter and Zachary Spritzer

THREATS)

PUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.
%
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line.
%
%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%OUTPUTS:
%
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due to no-fly zones and
%threats.
szthc=size(THC,1);
nzones=size(ZONES,2);
nthrts=size(THREATS,2);

for i=1:szthc,
 start=THC(i,1);finish=THC(i,2);
 SF=sqrt(((all_pos(1,finish)-all_pos(1,start))^2)+((all_pos(2,finish)-all_pos(2,start))^2));
 for j=1:nzones,
 SC=sqrt(((ZONES(1,j)-all_pos(1,start))^2)+((ZONES(2,j)-all_pos(2,start))^2));
 FC=sqrt(((ZONES(1,j)-all_pos(1,finish))^2)+((ZONES(2,j)-all_pos(2,finish))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);
 else
 if SC<FC,PC=SC;
 else
 PC=FC;
 end
 end
 if PC < ZONES(3,j),THC(i,3)=1e30*THC(i,3);
 end
 end
 for j=1:nthrts,
 SC=sqrt(((THREATS(1,j)-all_pos(1,start))^2)+((THREATS(2,j)-all_pos(2,start))^2));
 FC=sqrt(((THREATS(1,j)-all_pos(1,finish))^2)+((THREATS(2,j)-all_pos(2,finish))^2));

A
function [THC]= c_assign(all_pos,THC,ZONES,
%
%IN

 152

 SN=(SC^2+SF^2-FC^2)/(2*SF);

 else
=FC;

 end

 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);
 else
 if SC<FC,PC=SC;

 PC

 end
 if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3);
 end
 end
end

 153

list2adj.m

function A = list2adj(IJC,m,spA)
%LIST2ADJ Arc list to node-node weighted adjacency matrix representation.

es
c costs, where n = number of arcs

nored

(j))}

 = 0, always make A full matrix
 A = m x m node-node weighted adjacency matrix

)

 A[-j(k),i(k)] = c(k)

y duplicate arcs added together in A

right (c) 1994-2002 by Michael G. Kay

put Error Checking **
rror(nargchk(1,3,nargin))

,1); end

in(min([i j]));

= max{max(i),max(abs(j))}.');

sempty(spA)
 = 0.1;

lseif length(spA(:)) ~= 1 | spA < 0

% A = list2adj(IJC,m,spA)
% IJC = n x 2-5 matrix arc list [i j c u l], where
% i = n-element vector of arc tails nodes
% j = n-element vector of arc head nod
% c = (optional) n-element vector of ar
% = (default) ONES(n,1)
% u = (optional) ig
% l = (optional) ignored
% m = (optional) scalar size of A if greater than max{max(i),max(abs
% spA = (optional) make A sparse matrix if n <= spA x m x m
% = 1, always make A sparse
% = 0.1 (default), A sparse if 10% arc density
%
%
%
% Transforms: If j(k) > 0, then [i(k) j(k) c(k)] -> A[i(k),j(k)] = c(k
% If j(k) < 0, then [i(k) j(k) c(k)] -> A[i(k),-j(k)] = c(k) and
%
%
% Note: Weights of an
% c(k) = 0 => A(i(k),j(k)) = NaN
% Wrapper for c(c==0) = NaN; A = SPARSE(i,j,c,m,m);
%
% See also LIST2INCID, ADJ2LIST, and ADJ2INCID

% Copy
% Matlog Version 6 19-Sep-2002

% In
e

[n,cIJC] = size(IJC);
if cIJC < 2 | cIJC > 5, error('IJC must be a 2-3 column matrix.'), end

[i,j,c] = mat2vec(IJC);
if isempty(c), c = ones(n

jsgn = sign(j); j = abs(j);
minIJ = m
if isempty(minIJ) | minIJ < 1 | any(~isint(i)) | any(~isint(j))
 error('All elements of ''i'' and ''j'' must be nonzero integers.');
end

if nargin < 2 | isempty(m)
 m = max(max([i j]));
elseif length(m(:)) ~= 1 | ~isint(m) | m < max(max([i j]))
 error('''n'' must be >
end

if nargin < 3 | i
 spA
e

 154

 error('''spA'' must be non-negative scalar.');
end
% End (Input Error Checking) **

if any(jsgn < 0) % Add elements from undirected arcs

; c(jsgn < 0)];

(c==0) = NaN;

 full(A); end

 jsgn(jsgn < 0 & i == j) = 1;
 i = [i; j(jsgn < 0)];
 j = [j; i(jsgn < 0)];
 c = [c
end

c
A = sparse(i,j,c,m,m);

if n > spA * m * m, A =

 155

adj2list.m

function [i,j,c] = adj2list(A)
%ADJ2LIST Node-node weighted adjacency matrix to arc list representation.

j2list(A)
i,j,c] = adj2list(A)

lengths

lement vector of arc head nodes
 c = n-element vector of arc weights

Arc (i,j) exists with 0 weight
 Wrapper for [i,j,c] = FIND(C); c(ISNAN(c)) = 0)

ael G. Kay
atlog Version 6 19-Sep-2002

 must be a square matrix.');

rror Checking) **

 = 0; end

 -j; end

% IJC = ad
% [
% A = m x m node-node weighted adjacency matrix of arc
% IJC = n x 2-3 matrix arc list [i j c], where
% i = n-element vector of arc tails nodes
% j = n-e
%
%
% Note: All A(i,j) = A(j,i) => [i -j c] (symmetric A)
% A(i,j) = 0 => Arc (i,j) does not exist
% A(i,j) = NaN =>
%
%
% See also LIST2INCID, LIST2ADJ, and ADJ2INCID

% Copyright (c) 1994-2002 by Mich
% M

% Input Error Checking **
[rA,cA] = size(A);
if rA ~= cA
 error('''A''
end
% End (Input E

if all(all(triu(A)==tril(A)')), A = triu(A); issym = 1; else issym

[i,j,c] = find(A);
if issym, j =
c(isnan(c)) = 0;

if nargout == 1
 i = [i j c];
end

 156

pred2path.m

nction rte = pred2path(P,s,t)
edecessor indices to shortest paths from node 's' to 't'.

h(P,s,t)
atrix of predecessor indices (from DIJK)

de indices
(default), paths from all nodes

es
 = [] (default), paths to all nodes

ell array of paths (or routes) from 's' to 't', where
 rte{i,j} = path from s(i) to t(j)

f no path exists from s(i) to t(j)

tput of DIJK)

) 1994-2002 by Michael G. Kay
ion 6 19-Sep-2002

t Error Checking **
));

= t(:); end

ents of P must be integers between 1 and ',num2str(n)]);

eger between 1 and ',num2str(n)]);
 | t > n)

eger between 1 and ',num2str(n)]);

t Error Checking) **

(t));

ngth(s)
 1

 si = 1;

 if si < 1 | si > rP
% error('Invalid P matrix.')
% end
% end
 si = find(idxs == s(i));
 for j = 1:length(t)
 tj = t(j);
 if tj == s(i)
 r = tj;
 elseif P(si,tj) == 0
 r = [];

fu
%PRED2PATH Convert pr
% rte = pred2pat
% P = |s| x n m
% s = FROM no
% = []
% t = TO node indic
%
% rte = |s| x |t| c
%
% = [], i
%
% (Used with ou

% Copyright (c
% Matlog Vers

% Inpu
error(nargchk(1,3,nargin

[rP,n] = size(P);

if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end
if nargin < 3 | isempty(t), t = (1:n)'; else t

if any(P < 0 | P > n)
 error(['Elem
elseif any(s < 1 | s > n)
 error(['''s'' must be an int
elseif any(t < 1
 error(['''t'' must be an int
end
% End (Inpu

rte = cell(length(s),length

[ans,idxs] = find(P==0);

for i = 1:le
% if rP ==
%
% else
% si = s(i);
%

 157

 else
 r = tj;
 while tj ~= 0
 if tj < 1 | tj > n

r('Invalid element of P matrix found.')
 end

nd

 end

hile 0%t ~= s
 if t < 1 | t > n | round(t) ~= t

o reaching ''s''');

nd

 erro

 r = [P(si,tj) r];
 tj = P(si,tj);
 end
 r(1) = [];
 e
 rte{i,j} = r;

end

if length(s) == 1 & length(t) == 1
 rte = rte{:};
end

%rte = t;
w

 error('Invalid ''pred'' element found prior t
 end
 rte = [P(t) rte];
 t = P(t);
e

 158

mat2vec.m

function varargout = mat2vec(X)
%MAT2VEC Convert columns of matrix to vectors.
% [X(:,1),X(:,2),...] = mat2vec(X)

 (Additional output vectors assigned as empty)

atlog Version 6 19-Sep-2002

 error('X must be numeric.')

out = cell(1,max(1,nargout));

X,2)));

%
%

% Copyright (c) 1994-2002 by Michael G. Kay
% M

% Input Error Checking *****************************
if ~isnumeric(X)

end
% End (Input Error Checking) ***

vararg
X = num2cell(X,1);
varargout(1,1:min(nargout,size(X,2))) = X(1,1:min(nargout,size(

 159

isint.m

function y = isint(x,TolInt)

 = [0.01*sqrt(eps)], default

ay
on 6 19-Sep-2002

ecking **
rgchk(1,2,nargin));

rgin < 2 | isempty(TolInt), TolInt = 0.01*sqrt(eps); end

%ISINT True for integer elements (within tolerance).
% y = isint(x,TolInt)
% = abs(x-round(x)) < TolInt
% TolInt = integer tolerance
%

% Copyright (c) 1994-2002 by Michael G. K
% Matlog Versi

% Input Error Ch
error(na
if na
% End (Input Error Checking) **********************************

y = abs(x-round(x)) < TolInt;

 160

dijk.m

function [D,P] = dijk(A,s,t)
%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.

ighted adjacency matrix of arc lengths
 (Note: A(i,j) = 0 => Arc (i,j) does not exist;

 Arc (i,j) exists with 0 weight)

 [] (default), paths from all nodes
 t = TO node indices

ult), paths to all nodes
 's' to 't'

nce from node 'i' to node 'j'
indices, where P(i,j) is the

ex of the predecessor to node 'j' on the path from 's(i)' to
NaN is 'j' not on path to 's(i)'

nvert P to paths)
th from 's' to 't', if |s| = |t| = 1

intensive node
raph is acyclic (triangularity is a

tion for a graph to be acyclic)
can have non-negative elements)

(A',t,s) used, where D is now
osed and P now represents successor indices)

Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows,
ll, 1993, p. 109.)

ay

t Error Checking **
r(nargchk(1,3,nargin))

nd
1:n)'; else t = t(:); end

(any(tril(A) ~= 0)) % A is upper triangular

) % A is lower triangular
clic = 2;

aph may not be acyclic

'A must be a square matrix');
if ~isAcyclic & any(any(A < 0))

);
if any(s < 1 | s > n)

 be an integer between 1 and ',num2str(n)]);

% [D,P] = dijk(A,s,t)
% A = n x n node-node we
%
% A(i,j) = NaN =>
% s = FROM node indices
% =
%
% = [] (defa
% D = |s| x |t| matrix of shortest path distances from
% = [D(i,j)], where D(i,j) = dista
% P = |s| x n matrix of predecessor
% ind
% 'j',where P(i,i) = 0 and P(i,j) =
% (use PRED2PATH to co
% = pa
%
% (If A is a triangular matrix, then computationally
% selection step not needed since g
% sufficient, but not a necessary, condi
% and A
%
% (If |s| >> |t|, then DIJK is faster if DIJK
% transp
%
% (
% Prentice-Ha

% Copyright (c) 1994-2002 by Michael G. K
% Matlog Version 6 19-Sep-2002

% Inpu
erro

[n,cA] = size(A);

if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); e
if nargin < 3 | isempty(t), t = (

if ~any
 isAcyclic = 1;
elseif ~any(any(triu(A) ~= 0)
 isAcy
else % Gr
 isAcyclic = 0;
end

if n ~= cA
 error(
else
 error('A must be non-negative'
else
 error(['''s'' must

 161

elseif any(t < 1 | t > n)
 error(['''t'' must be an integer between 1 and ',num2str(n)]);

g) **

 A'; % Use transpose to speed-up FIND for sparse A

,n); end

r i = 1:length(s)

Lab = logical(zeros(length(t),1));

cal(ones(n,1));

rgout > 1, P(i,s(i)) = 0; end % Change from NaN to indicate no pred

Di(isUnLab));

;
UnLab(j) = 0;

nd

 1;
 (j == t); end

Aj(isnan(Aj)) = 0;

if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end

 isAcyclic == 1 % Increment node index for upper triangular A

triangular A
 j = j - 1;

 end
 end
 D(i,:) = Di(t)';

end
% End (Input Error Checkin

A =

D = zeros(length(s),length(t));
if nargout > 1, P = NaN*ones(length(s)

fo
 j = s(i);

 Di = Inf*ones(n,1); Di(j) = 0;

 is
 if isAcyclic == 1
 nLab = j - 1;
 elseif isAcyclic == 2
 nLab = n - j;
 else
 nLab = 0;
 UnLab = 1:n;
 isUnLab = logi
 end

 if na

 while nLab < n & ~all(isLab)
 if isAcyclic
 Dj = Di(j);
 else % Node selection
 [Dj,jj] = min(
 j = UnLab(jj);
 UnLab(jj) = []
 is
 e

 nLab = nLab +
 if length(t) < n, isLab = isLab |

 [jA,kA,Aj] = find(A(:,j));

 if nargout > 1, P(i,jA(Dk < Di(jA))) = j; end
 Di(jA) = min(Di(jA),Dk);

 if
 j = j + 1;
 elseif isAcyclic == 2 % Decrement node index for lower

 162

end

if nargout > 1 & length(s) == 1 & length(t) == 1
 P = pred2path(P,s,t);
end

 163

path_shrtng.m
Authored by Matthew Lechliter and Zachary Spritzer
function [Shortened_Paths_x,Shortened_Paths_y,totalcost]=

targ,HEADING_ANGLE)

row being the last
ath for the last uav. The paths are output by node numbers coming from

w is the x position and
e second row is the y position of all of these unique points.

ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
osition of the no-fly zones, the second row is the y

osition of the no-fly zones, and the third row is the radius or range of

sition of the threats, the second row is the y position of the
threats, the third row is the range of the threats, and the fourth row is
the level of danger of the threats.

m turning radius for the UAVs

 voronoi lines into for the
purpose of a more near-optimal solution

ntarg - number of targets

 element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.
%
%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.
%
%Stored_Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%%%
%Splitting the voronoi lines into more segments for the purpose of a more near-optimal solution
%%%

path_shrtng(stored_paths,all_pos,ZONES,THREATS,min_turn,split_seg,nuav,n

%INPUTS:
%
%stored_paths - is a mxn matrix where m is the number of uavs times the
%number of targets and n is the length of the longest path. The first row
%being the first path for the first uav and the last
%p
%the implementation of dijkstra's algorithm.
%
%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first ro
%th
%
%
%row is the x p
%p
%the no-fly zones.
%
%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x po
%
%
%
%min_turn - minimu
%
%split_seg - number of segments to Split the
%
%
%nuav - number of UAVs
%
%

%OUTPUTS:
%
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The

 164

szpths=size(stored_paths,2);

%%
inding the corresponding x and y coordinates

%%%%%%%%%%%%%%%

ed_paths(:,szpths+1)=0;
*ntarg,

nz=min(find(stored_paths(i,:)==0));

z:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))';
ored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);

ths-1)*split_seg)+1),nuav*ntarg);

 -1),

seg -1))],k)=
lit_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-Stored_Pos_x(i,k));

ew([j:(j + (split_seg -1))],k)=
_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-Stored_Pos_y(i,k));

;

red_Pos_x_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_x(szpths,k);
 Stored_Pos_y_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_y(szpths,k);

end

Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:);
Shortened_Paths_y_end=ones(500,1)*Stored_Pos_y(szpths,:);
Shortened_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end];
Shortened_Paths_y=[Stored_Pos_y_new;Shortened_Paths_y_end];
%%%
%Shortening the paths
%%%
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten_paths(Shortened_Paths_x(:,i),Shortened_Paths_y
(:,i),ZONES,THREATS,Stored_Pos_x(:,i),Stored_Pos_y(:,i));
end

%%%
%Putting fillets into the shortened paths
%%%
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shortened_Paths_y(:,i
)],min_turn);
end

split_vect=[(0:(1/split_seg):(1- 1/split_seg))]';

%%%%%
%F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Stored_Pos_x=ones(szpths,nuav*ntarg);
Stored_Pos_y=ones(szpths,nuav*ntarg);
stor
for i=1:nuav
 m
 Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))';
 Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))';
 Stored_Pos_x(mn
 St
end

%%%%%%%%%%%%
Stored_Pos_x
Stored_Pos_y_new=ones((((szp
for k=1:nuav*ntarg,
 j=1;
 for i=1:(szpths
 Stored_Pos_x_new([j:(j + (split_
ones(sp
 Stored_Pos_y_n
ones(split_seg,1)*Stored_Pos
 j=j+ split_seg
 end
 Sto

 165

%%%

i=1:nuav,

g,
 [Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-1)*ntarg)+j)]=...

g)+j),Shortened_Paths_y(:,((i-

ened_Paths_y=[];
j=1:size(Shortened_Paths_x_old,1)-1,

Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
ened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:),

 break

Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);

%%%

%%%%%%%%%%%%%%%

(nuav*ntarg,1);

hs_y(:,z)],THREATS);

lcost=reshape(permcost,ntarg,nuav)';

%Adding initial path based on heading angle
%%%
for
 for j=1:ntar

 heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntar
1)*ntarg)+j)],min_turn,HEADING_ANGLE(i,1),72);
 end
end

Shortened_Paths_x_old=Shortened_Paths_x;
Shortened_Paths_y_old=Shortened_Paths_y;
Shortened_Paths_x=[];
Short
for
 if Shortened_
Short
 Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
 Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);

 else
 Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);

 end
end

%%
%Updating the Costs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
szsp_perm=size(Shortened_Paths_x,2);
permcost=zeros

for z=1:szsp_perm,
 [permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Pat
end
tota

 166

shorten_paths.m
Authored by Matthew Lechliter and Zachary Spritzer
function [shr_x,shr_y]=shorten_paths(sp_x,sp_y,Z,T,spo_x,spo_y)

x2 matrix where n is the length of the longest
 m is the number of UAVs. The element (nxmx1) x position of the

nxmx2) y position of the mth uav at

 a 3xn matrix where n is the number of No-Fly Zones, the first
 is the x position of the no-fly zones, the second row is the y

position of the no-fly zones, and the third row is the radius or range of

number of Threats, the first row
ond row is the y position of the

threats, the third row is the range of the threats, and the fourth row is
nger of the threats.

atrix where n is the length of the longest

 of the mth uav at
 n. This matrix is the original matrix without the voronoi segements

 - is a nxmx2 matrix where n is the length of the longest
path and m is the number of UAVs. The element (nxmx1) x position of the

lement (nxmx2) y position of the mth uav at
point n.

;
];

0;

];
1:size(spo,1)-1,

 SC=sqrt(((T(1,j)-spo(i,1))^2)+((T(2,j)-spo(i,2))^2));
 FC=sqrt(((T(1,j)-spo(i+1,1))^2)+((T(2,j)-spo(i+1,2))^2));
 SF=sqrt(((spo(i+1,1)-spo(i,1))^2)+((spo(i+1,2)-spo(i,2))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0
 PC(i)=sqrt(SC^2-SN^2);
 else
 if SC<FC
 PC(i)=SC;
 else
 PC(i)=FC;
 end
 end
 mPC=min(PC);
 if mPC< T(3,j),
 T(3,j)=mPC*.995;
 end

%INPUTS:
%
%sp - is a nxm
%path and
%mth uav at point n. The element (
%point n.
%
%Z - is
%row
%
%the no-fly zones.
%
%T - is a 4xn matrix where n is the
%is the x position of the threats, the sec
%
%the level of da
%
%spo - is a nxmx2 m
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position
%point
%split up.
%
%OUTPUTS:
%
%shr
%
%mth uav at point n. The e
%
spo=[spo_x,spo_y]
sp=[sp_x,sp_y
SC=0;FC=0;SF=0;SN=
for j=1:size(T,2),
 PC=[
 for i=

 167

 end
end

ZT=[Z([1:3],:) T([1:3],:)];
szzt=size(ZT,2);
szsp=size(sp,1);
shr=ones(szsp,2);
for i=1:2,
 shr(:,i)=sp(szsp,i);

(1,:);

))^2)+((shr(a,2)-sp(i,2))^2));

(i,1))^2)+((ZT(2,j)-sp(i,2))^2));
2+SF^2-FC^2)/(2*SF);

N<SF & SN>0
 PC(1,j)=sqrt(SC^2-SN^2);

d
d

,:)>ZT(3,:),
 a=a+1;

 shr(a,:)=sp(i,:);

end
shr(1,:)=sp
a=1;
PC=zeros(1,szzt);
while shr(a,:)~=sp(szsp,:),
 for i=1:szsp,
 if shr(a,:)==sp(i,:)
 pck=i;
 break
 end
 end
 for i=szsp:-1:pck+1,
 SF=sqrt(((shr(a,1)-sp(i,1
 for j=1:szzt,
 SC=sqrt(((ZT(1,j)-shr(a,1))^2)+((ZT(2,j)-shr(a,2))^2));
 FC=sqrt(((ZT(1,j)-sp
 SN=(SC^
 if S

 else
 if SC<FC
 PC(1,j)=SC;
 else
 PC(1,j)=FC;
 end
 en
 en
 if PC(1

 break
 end
 end
end
shr_x=shr(:,1);
shr_y=shr(:,2);

 168

fillet_path.m

n [Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path(Shortened_Paths,min_turn)

INPUTS:

mx2 matrix where n is the length of the longest
of UAVs multiplied by the number of targets.

ement
mx2) y position of the mth uav at point n.

AVs

S:

rtened_Paths_fillet - is a nxmx2 matrix where n is the length of the
%longest path with the addition of fillets ((2*old size)-1) and m is the
%number of UAVs multiplied by the number of targets. The element (nxmx1)
%x position of the mth uav at point n. The element (nxmx2) y position of
%the mth uav at point n.

Shortened_Paths_fillet=Shortened_Paths*0;
Shortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1);
Shortened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2);
Shortened_Paths_fillet(1,:)=Shortened_Paths(1,:);

fillet_counter=2;
for j=2:size(Shortened_Paths,1)-1,
 if Shortened_Paths(j,:)==Shortened_Paths(j+1,:),
 break
 end
 start=Shortened_Paths(j-1,:);
 middle=Shortened_Paths(j,:);
 finish=Shortened_Paths(j+1,:);
 SM=sqrt(sum((middle-start).^2));
 MF=sqrt(sum(((finish-middle).^2)));
 SF=sqrt(sum(((finish-start).^2)));
 alpha=acos((SM^2+MF^2-SF^2)/(2*SM*MF));
 Fillet=min_turn/tan(alpha/2);
 if Fillet>=SM
 Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:);
 else
 Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:)+(Shortened_Paths(j,:)-
Shortened_Paths(j-1,:))*((SM-Fillet)/SM);
 end
 if Fillet>=MF,
 Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j+1,:);
 else
 Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+(Shortened_Paths(j+1,:)-
Shortened_Paths(j,:))*(Fillet/MF);
 end
 fillet_counter=fillet_counter+2;
end
Shortened_Paths_fillet_x=Shortened_Paths_fillet(:,1);
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2);

Authored by Matthew Lechliter
functio

%
%
%Shortened_Paths - is a nx
%path and m is the number
%The element (nxmx1) x position of the mth uav at point n. The el
%(nx
%
%min_turn - minimum turning radius for the U

%OUTPUT
%
%Sho

 169

heading_angle_paths.m
Authored by Matthew Lechliter
function [Shortened_Paths_heading_angle_x,Shorten _Paths_heading_angle_y]=
heading_angle_paths(Shortened_Paths,min_turn,HEA ING_ANGLE,num_segs);

warning off MATLAB:divideByZero

if HEADING_ANGLE < 0,
 HEADING_ANGLE=pi*2+HEADING_ANGLE;
end

delta_x = Shortened_Paths(2,1) - Shortened_Paths(1,1);
delta_y = Shortened_Paths(2,2) - Shortened_Paths(1,2);

NEW_HEADING_ANGLE=(atan(abs(delta_y)/abs(delta_x)));
if delta_x>=0 & delta_y>=0,
 NEW_HEADING_ANGLE=NEW_HEADING_A GLE;
end
if delta_x<0 & delta_y>=0,
 NEW_HEADING_ANGLE=pi-NEW_HEADING_ NGLE;
end
if delta_x<0 & delta_y<0,
 NEW_HEADING_ANGLE=pi+NEW_HEADING NGLE;
end
if delta_x>=0 & delta_y<0,
 NEW_HEADING_ANGLE=2*pi-NEW_HEADING_ANGLE;
end

% x and y are the initial positions of the UAV
x=Shortened_Paths(1,1);
y=Shortened_Paths(1,2);

 Rotated heading angle
ROTATED_HEADING_ANGLE=HEADING_ANGLE-NEW_HEADING_ANGLE;

% Rotated NEW_HEADING_ANGLE is 0 degrees
ROTATED_NEW_HEADING_ANGLE=0;

% This section ensures that ROTATED_HEADING_ANGLE is between -pi and pi
if abs(ROTATED_HEADING_ANGLE) > pi
 if ROTATED_HEADING_ANGLE > 0
 ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE-2*pi;
 else
 ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE+2*pi;
 end
end

if abs(ROTATED_HEADING_ANGLE) < pi/5.5
 small_ang=1;
else
 small_ang=0;
 % Equation found by numerical methods, used to find the location of the
 % first point to break from the old path onto the first circle

init_dist=0.082565052*(abs(ROTATED_HEADING_ANGLE)/pi*(2*min_turn))^3+0.020254038*(abs(R

ed
D

N

A

_A

%

 170

OTATED_HEADING_ANGLE)/pi*(2*min_turn))^2+0.629231718*(abs(ROTATED_HEADING_ANGL

from the
he circles

t_dist*cos(ROTATED_HEADING_ANGLE);
u = y+init_dist*sin(ROTATED_HEADING_ANGLE);

OTATED_HEADING_ANGLE >= 0
-1;

cw = 1;

inds the locations of the center of both circles, based on whether
e made by the intersection of the old and new heading angles

 xc1 = (x+min_turn*cos(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi));

GLE - ccw*.5*pi));

en the position of the
first break off point and the center of the first circle

by the horizon (x-axis) and the line between
ter of the first circle

c2)/abs(dx_c2)));

f dx_c2<0 & dy_c2>=0,

d

 c2_angle=pi+c2_angle;

elta x and delta y between the position of the
 % center of the final circle and the center of the first circle
 dx_cc = (xc1 - xc2);

le made by the horizon (x-axis) and the line between

 % the position of the center of the final circle and the center of the first circle
 cc_angle=(atan(abs(dy_cc)/abs(dx_cc)));
 if dx_cc>=0 & dy_cc>=0,
 cc_angle=cc_angle;

E)/pi*(2*min_turn));

 % xu and yu are the coordinates of the first point that breaks
 % old path and onto the new path following t
 xu = x+ini
 y

 if R
 ccw =
 else
 c
 end

 % F
 % the angl
 % is positive or negative

 yc1 = (y+min_turn*sin(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi));

 xc2 = (xu+min_turn*cos(ROTATED_HEADING_AN
 yc2 = (yu+min_turn*sin(ROTATED_HEADING_ANGLE - ccw*.5*pi));

 % dx_c2 and dy_c2 are the delta x and delta y betwe
 % center of the
 dx_c2 = xu - xc2;
 dy_c2 = yu - yc2;

 % c2_angle is the angle made
 % the break off point and cen
 c2_angle=(atan(abs(dy_
 if dx_c2>=0 & dy_c2>=0,
 c2_angle=c2_angle;
 end
 i
 c2_angle=pi-c2_angle;
 en
 if dx_c2<0 & dy_c2<0,

 end
 if dx_c2>=0 & dy_c2<0,
 c2_angle=2*pi-c2_angle;
 end

 % dx_cc and dy_cc are the d

 dy_cc = (yc1 - yc2);

 % cc_angle is the ang

 171

 end
 if dx_cc<0 & dy_cc>=0,
 cc_angle=pi-cc_angle;
 end

c<0,

 end
 if dx_cc>=0 & dy_cc<0,

le;

 abs(ROTATED_HEADING_ANGLE)>pi/2
 cc_point = (2*pi-cc_angle);

 c2_point = -(2*pi-c2_angle);

2_angle);
 end

DING_ANGLE)>pi/2
nt = ccw*(cc_angle);

_point = ccw*(cc_angle);

 counter = 1;
i/num_segs:ccw*2*pi/num_segs:cc_point+c2_point)+pi/2-c2_angle
r)=min_turn*sin(i)+xc2;

cos(i)+yc2;
unter + 1;

));

_angle=c1_angle;

_c1>=0,
e=pi-c1_angle;

 & dy_c1<0,
_angle=2*pi-c1_angle;

d

gle+ccw*pi;

 if dx_cc<0 & dy_c
 cc_angle=pi+cc_angle;

 cc_angle=2*pi-cc_ang
 end

 if ccw == 1
 if

 else
 cc_point = (2*pi-cc_angle);
 c2_point = (c

 else
 if abs(ROTATED_HEA
 cc_poi
 c2_point = -1*ccw*(c2_angle);
 else
 cc
 c2_point = ccw*(2*pi-c2_angle);
 end
 end

 for i = (ccw*2*p
 x_c2(1,counte
 y_c2(1,counter) = min_turn*
 counter = co
 end

 dx_c1 = x - xc1;
 dy_c1 = y - yc1;

 c1_angle=(atan(abs(dy_c1)/abs(dx_c1)
 if dx_c1>=0 & dy_c1>=0,
 c1
 end
 if dx_c1<0 & dy
 c1_angl
 end
 if dx_c1<0 & dy_c1<0,
 c1_angle=pi+c1_angle;
 end
 if dx_c1>=0
 c1
 en

 cc_angle=cc_an

 counter = 1;

 172

 for i = (-ccw*2*pi/num_segs:-ccw*2*pi/num_segs:(cc_angle-c1_angle))-(cc_angle-pi/2)
1;

+ NEW_HEADING_ANGLE;
_temp,yu_temp] = pol2cart(t,r);

 Shortened_Paths_heading_angle_x_temp(1) = x;
;

 Shortened_Paths_heading_angle_x_temp(2) = xu_temp + x;
 Shortened_Paths_heading_angle_y_temp(2) = yu_temp + y;

 for i = 1:size(x_c2,2)
 [t,r] = cart2pol(x_c2(i) - x,y_c2(i) - y);
 t = t + NEW_HEADING_ANGLE;
 [x_c2_temp,y_c2_temp] = pol2cart(t,r);
 Shortened_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) =
(x_c2_temp + x);
 Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) =
(y_c2_temp + y);
 end

 for i = 1:size(x_c1,2)
 [t,r] = cart2pol(x_c1(i) - x,y_c1(i) - y);
 t = t + NEW_HEADING_ANGLE;
 [x_c1_temp,y_c1_temp] = pol2cart(t,r);
 Shortened_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) =
(x_c1_temp + x);
 Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) =
(y_c1_temp + y);
 end
end

if small_ang==0,
 sze = size(Shortened_Paths,1);
 Shortened_Paths_heading_angle_x=ones(sze,1)*Shortened_Paths(end,1);
 Shortened_Paths_heading_angle_y=ones(sze,1)*Shortened_Paths(end,2);

 szpts=size(Shortened_Paths_heading_angle_x_temp,2);

 Shortened_Paths_heading_angle_x([1:szpts],1)=Shortened_Paths_heading_angle_x_temp';
 Shortened_Paths_heading_angle_x([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],1);
 Shortened_Paths_heading_angle_y([1:szpts],1)=Shortened_Paths_heading_angle_y_temp';
 Shortened_Paths_heading_angle_y([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],2);
else
 Shortened_Paths_heading_angle_x=Shortened_Paths(:,1);
 Shortened_Paths_heading_angle_y=Shortened_Paths(:,2);
end

 x_c1(1,counter)=min_turn*sin(i)+xc
 y_c1(1,counter) = min_turn*cos(i)+yc1;
 counter = counter + 1;
 end

 % Rotation back to original coordinates
 [t,r] = cart2pol(xu - x,yu - y);
 t = t
 [xu

 Shortened_Paths_heading_angle_y_temp(1) = y

 173

update_cost.m
Authored by Matthew Lechliter and Zachary Spritzer
function [permcost]=update_cost(Shortened_Paths,THREATS)

ed_Paths - is a nxmx2 matrix where n is the length of the longest
ber of targets.

ent (nxmx1) x position of the mth uav at point n. The element
.

 where n is the number of Threats, the first row
n of the threats, the second row is the y position of the

level of danger of the threats.

ortened_Paths,1)-1;

tened_Paths(i,2);
ths(i+1,1);finish_y=Shortened_Paths(i+1,2);

)^2)+((finish_y-start_y)^2));

S(1,j)-start_x)^2)+((THREATS(2,j)-finish_y)^2));
 FC=sqrt(((THREATS(1,j)-finish_x)^2)+((THREATS(2,j)-finish_y)^2));

SF);
 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);

 if SC<FC,PC=SC;

SF;
nd

%INPUTS:
%
%Shorten
%path and m is the number of UAVs multiplied by the num
%The elem
%(nxmx2) y position of the mth uav at point n
%
%THREATS - is a 4xn matrix
%is the x positio
%threats, the third row is the range of the threats, and the fourth row is
%the

%OUTPUTS:
%
%permcost - cost associated with the nth UAV going to the mth TARGET

szsp_num=size(Sh
nthrts=size(THREATS,2);
permcost=0;

for i=1:szsp_num,
 start_x=Shortened_Paths(i,1);start_y=Shor
 finish_x=Shortened_Pa
 SF=sqrt(((finish_x-start_x
 for j=1:nthrts,
 SC=sqrt(((THREAT

 SN=(SC^2+SF^2-FC^2)/(2*

 else

 else
 PC=FC;
 end
 end
 if PC < THREATS(3,j),SF=SF+(THREATS(4,j)*100);
 end
 end
 permcost=permcost+
e

 174

mmkp_task_allocation.m

_Paths_y,nuav)

t - is a mxn matrix where m is the number of uavs and n is the
 matrix

e cost for the mth uav to take the nth path.

e length of the longest
 and m is the number of UAVs multiplied by the number of targets.

x position of the mth uav at point n. The element
h uav at point n.

ber of UAVs

TPUTS:

 x position of the
 the mth uav at

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p_new(totalcost);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mmkp

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s(size(Shortened_Paths_x,1),nuav);
ected_Paths_y=zeros(size(Shortened_Paths_x,1),nuav);

elected_Paths_x(:,i)=Shortened_Paths_x(:,(nuav)*(i-1)+bestcomb(1,i));
tened_Paths_y(:,(nuav)*(i-1)+bestcomb(1,i));

Authored by Matthew Lechliter and Zachary Spritzer
function [Selected_Paths_x,Selected_Paths_y]=
mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened

%INPUTS:
%
%totalcos
%number of possible paths for each uav. The element (m,n) of this
%is th
%
%Shortened_Paths - is a nxmx2 matrix where n is th
%path
%The element (nxmx1)
%(nxmx2) y position of the mt
%
%nuav - num

%OU
%
%Selected_Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1)
%mth uav at point n. The element (nxmx2) y position of
%point n.

%%%%%%%%%
%MMKP algorithm
%%%%%%%%%%%%%
[bestcomb,mincost]=mmk

%%%%%%%%%%%%%
%Taking the results from
%%%%%%%%%%%%%%

Selected_Paths_x=zero
Sel
for i=1:nuav,
 S
 Selected_Paths_y(:,i)=Shor
End

 175

mmkp_new.m
lena Lucci

mkp_new(totalcost)

totalcost - is a nxm matrix where n is the total number of uav's and m is
or paths. Where the element nxm is the cost

associated with uav "n" choosing target or path "m".

to the number or uav's where each
which path the uav should select to give the

ution.

cost - is a scalar number which is sum of the optimal costs for all

uav=size(totalcost,1);
mincost=inf;
C_new=perms(1:nuav);
for j=1:size(C_new,1),
 sc=0;
 for i=1:nuav,
 sc=sc+totalcost(i,C_new(j,i));
 end
 if sc < mincost
 bestcomb=C_new(j,:);
 mincost = sc;
 end
end

Authored by Matthew Lechliter, Zachary Spritze, and E
function [bestcomb,mincost]=m

%Inputs:
%
%
%the total number of targets
%
%
%Outputs:
%
%bestcomb - is a 1xn row with n equal
%element of the row represents
%optimal sol
%
%min
%the uav's paths.
n

 176

vrt_sim_convert.m
Authored by Matthew Lechliter and Zachary Spritzer
function [uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,UAVS,distpast)

r - is a nxmx2 matrix where n is the length of the longest
 m is the number of UAVs. The element (nxmx1) x position of the

 mth uav at
 n.

UAVs, the first row is the
al x position of the UAVs, the second row is the initial y position

ird row is the initial altitude of the UAVs, and
locity of the UAVs.

uav_path_x - is a mxn matrix where m is the number of uavs and m is the

f uavs and m is the

f uavs and m is the
gest path. These values correspond to the time at which

th_y.

atrix where m is the number of uavs and m is the
. These values correspond to the altitudes that
 are at coordinates x and y in uav_path_x and

 number of threats, where
nge of the threats at the altitude where the uavs

re flying.

ne_range_vrt - is a 1xn vector where n is the number of zones, where
the zones at the altitude where the uavs

e flying.

h+1);
av_path_y=zeros(nuav,szshrpth+1);
r i=1:nuav,

 if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j,i)] | j==szshrpth,
(j,i);

 nxtlst_pnt_x=shr_x(j-1,i);
 lst_pnt_y=shr_y(j,i);
 nxtlst_pnt_y=shr_y(j-1,i);
 dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((lst_pnt_y-nxtlst_pnt_y)^2));

%
%INPUTS:
%
%sh
%path and
%mth uav at point n. The element (nxmx2) y position of the
%point
%
%UAVS - is a 4xn matrix where n is number of
%initi
%of the UAVs, the th
%the fourth row is the intial Ve
%
%
%OUTPUTS:
%
%
%length of the longest path. These are the x coordinates of the paths.
%
%uav_path_y - is a mxn matrix where m is the number o
%length of the longest path. These are the y coordinates of the paths.
%
%time_uav - is a mxn matrix where m is the number o
%length of the lon
%the uavs are at coordinates x and y in uav_path_x and uav_pa
%
%altitude_uav - is a mxn m
%length of the longest path
%the uavs are at when they
%uav_path_y.
%
%Threat_range_vrt - is a 1xn vector where n is the
%the first row is the ra
%a
%
%Zo
%the first row is the range of
%ar

nuav=size(shr_x,2);
szshrpth=size(shr_x,1);
shr_x=[[shr_x];[shr_x(szshrpth,:)]];
shr_y=[[shr_y];[shr_y(szshrpth,:)]];
uav_path_x=zeros(nuav,szshrpt
u
fo
 for j=1:szshrpth,

 lst_pnt_x=shr_x

 177

 last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts));
ast/dist_pnts));

1])=last_x;
 uav_path_y(i,[j+1:szshrpth+1])=last_y;

 break

_x(j,i);
_path_y(i,j)=shr_y(j,i);

=zeros(nuav,szshrpth+1);

 matrix
1:nuav,

dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))^2+(uav_path_y(i,j)-uav_path_y(i,j+1))^2);
 time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i);

 end
 time_uav(i,[2:szshrpth+1])=sum(time_uav_temp(i,:));
 for j=2:szshrpth+1,
 time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j);
 end
end

time_uav=time_uav*1.01;

%Altitude matrix
for i=1:nuav,
 for j=1:szshrpth+1,
 altitude_uav(i,j)=UAVS(3,i);
 end
end

 last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(distp
 uav_path_x(i,[j+1:szshrpth+

 uav_path_x(i,j)=shr_x(j,i);
 uav_path_y(i,j)=shr_y(j,i);

 else
 uav_path_x(i,j)=shr
 uav
 end
 end
end

%Initializing matrixes
time_uav_temp=zeros(nuav,szshrpth+1);
time_uav=zeros(nuav,szshrpth+1);
altitude_uav

%Time
for i=
 for j=1:szshrpth,
 shr_

 178

plot_uav.m
Authored by Matthew Lechliter and Zachary Spritzer
function
plot_uav(UAVS,TARGETS,ZONES,THREATS,uav_path_x,uav_path_y,n_plots,uavs_existing,targ_existi

%%
otting results

%%

n;

i=1:size(UAVS,2)
(1,i)==1

2,i),'bd');
 text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b');

200 5 200]);

nd
 end

,.4,0]);

2)
)==1
),THREATS(2,i),'r*');
+5,THREATS(2,i),{i},'FontSize',12,'Color','r')

);

ld on;

=1:size(THREATS,2)

2*pi;

EATS(2,i);

eat,y_threat,'r.');hold on;
 end
 end

Plotting No fly Zones

 t_nfz = (1/16:1/16:1)'*2*pi;
 x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
 y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);

ng,threats_existing)
%%%%%%%
%Pl
%%%%%
figure(n_plots);
hold o
for i=1:2,
 subplot(1,2,i),
 for
 if uavs_existing
 plot(UAVS(1,i),UAVS(

 axis([5
 hold on;
 e

 for i=1:size(TARGETS,2)
 if targ_existing(1,i)==1
 plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0
 text(TARGETS(1,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);
 axis([5 200 5 200]);
 hold on;
 end
 end
 for i=1:size(THREATS,
 if threats_existing(1,i
 plot(THREATS(1,i
 text(THREATS(1,i)
 axis([5 200 5 200]
 hold on;
 end
 end
 ho
end

%Plotting Threats and range
for i
 if threats_existing(1,i)==1
 t_threat = (1/32:1/32:1)'*
 x_threat = THREATS(3,i)*sin(t_threat)+THREATS(1,i);
 y_threat = THREATS(3,i)*cos(t_threat)+THR
 for i=1:2,
 subplot(1,2,i),plot(x_thr

end

%
for i=1:size(ZONES,2)

 179

 for i=1:2,
 subplot(1,2,i),fill(x_nfz,y_nfz,'k');hold on;
 end
end

Plotting shortened paths

 subplot(1,2,2),plot(uav_path_x(i,:),uav_path_y(i,:),'b-');hold on;

s');hold on;
;

r i=1:2,
-25 250]);hold on;

nd

%
for i=1:size(uav_path_x,1)

end

subplot(1,2,1),title('Initial Position
subplot(1,2,2),title('Shortened Selected Paths');hold on
fo
 subplot(1,2,i),axis([-25 250
e

 180

Appendix B

MATLAB Codes for Simulation

 181

place_waypoints_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =place_waypoints_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 9*4+9;

4; sizes.NumInputs= 9*4+9*
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);

[sys]=place_waypoints(u);

% End of mdlOutputs.

 182

place_waypoints.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=place_waypoints(u)

UAVS=u([1:36],1);
UAVS=reshape(UAVS,4,9);

uavs_existing=zeros(1,9);
for i=1:9
 if abs(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26

nd

TS_REAL,4,9);

9
(UAVS(:,i)))~=0.26

))>0

v < n_targ

sort(A);
)));

AL(1,Column(1,1));
RGETS(2,i) = TARGETS_REAL(2,Column(1,1));

EAL(3,Column(1,1));
AL(4,Column(1,1));

gets_location(1,i)=Column(1,1);
ARGETS_REAL(3,Column(1,1))=0;

 counter=1;
 for i=1:9
 if abs(sum(TARGETS_REAL(:,i)))>0
 TARGETS(:,counter)=TARGETS_REAL(:,i);
 targets_location(1,counter)=i;
 counter=counter+1;
 end
 end
end

if n_uav > n_targ
 for i=1:(n_uav-n_targ)
 A=TARGETS_REAL(3,:);

 uavs_existing(1,i)=1;
 end
e

TARGETS_REAL=u([37:72],1);
TARGETS_REAL=reshape(TARGE
n_uav=0;n_targ=0;

TARGETS=zeros(4,9);
targets_location=zeros(1,9);
for i=1:
 if abs(sum(UAVS(:,i)))>0 & abs(sum
 n_uav=n_uav+1;
 end
 if abs(sum(TARGETS_REAL(:,i)
 n_targ=n_targ+1;
 end
end

if n_ua
 for i = 1:n_uav
 A=TARGETS_REAL(3,:);
 B=
 Column=find(A==B(1,size(B,2
 TARGETS(1,i) = TARGETS_RE
 TA
 TARGETS(3,i) = TARGETS_R
 TARGETS(4,i) = TARGETS_RE
 tar
 T
 end
else

 183

 B=sort(A);
 Column=find(A==B(1,size(B,2)));
 TARGETS(1,n_targ+i) = i*.01+TARGETS_REAL(1,Column(1,1));

umn(1,1));

TS(4,n_targ+i) = 0;
 TARGETS_REAL(3,Column(1,1))=0.5*TARGETS_REAL(3,Column(1,1));

ts_location(1,i+n_targ)=Column(1,1);

S=[TARGETS,zeros(4,9-size(TARGETS,2))];

eshape(TARGETS,36,1);targets_location'];

 TARGETS(2,n_targ+i) = i*.01+TARGETS_REAL(2,Col
 TARGETS(3,n_targ+i) = 0;
 TARGE

 targe
 end
end
TARGET

sys=[r

 184

path_planning_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] = path_planning_s(t,x,u,flag,T)

 Dispatch the flag. The switch function controls the calls to
on stage.

% Initialization

uts

handled flag = ',num2str(flag)]); % Error handling

==
es the states, sample

s, state ordering strings (str), and sizes structure.
==

Sizes(T)
function simsizes to create the sizes structure.

itialization information.
umContStates= 0;

umInputs= 36+36+30+60+1+1+9;

 the sys vector with the sizes information.

; % No continuous states

mple time

==
nction mdlOutputs performs the calculations.
===

ys]=path_planning(u);
% End of mdlOutputs.

%
% S-function routines at each simulati
switch flag,
 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T);
 case 3
 sys = mdlOutputs(u); % Calculate outp
 case { 1, 2, 4, 9 }
 sys = []; % Unused flags
 otherwise
 error(['Un
end;
%================
% Function mdlInitializeSizes initializ
% time
%================
function [sys,x0,str,ts] = mdlInitialize
% Call
sizes = simsizes;
% Load the sizes structure with the in
sizes.N
sizes.NumDiscStates= 0;
sizes.NumOutputs= 9*100*4+9;
sizes.N
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load
sys = simsizes(sizes);
%
x0 = []
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sa
% End of mdlInitializeSizes.
%====
% Fu
%===
function sys = mdlOutputs(u)
[s

 185

uav_crash_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =uav_crash_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

utputs

ts(u);

;

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate o

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 9;
sizes.NumInputs= 57;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutpu

[sys]=uav_crash(u)

% End of mdlOutputs.

 186

uav_crash.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=uav_crash(u)

:27],1),3,9);
),3,10);

s(1,i)-zone_pos(1,j))^2)+((uav_pos(2,i)-zone_pos(2,j))^2));
uav_zone < zone_pos(3,j),

 end

uav_pos=reshape(u([1
zone_pos=reshape(u([28:57],1

uav_shot_down=zeros(9,1);

for i=1:9,
 for j=1:10,
 dist_uav_zone=sqrt(((uav_po
 if dist_
 uav_shot_down(i,1)=1;
 end

end
sys=[uav_shot_down];

 187

uav_interc
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =uav_intercepted_s(t,x,u,flag,T

 Dispatch the flag. The switch function controls the calls to
 S-function routines at each simulation stage.

switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u)

 case { 1, 2, 4, 9
 sys = []; % U

 otherwise

 error(['Unhandled flag = ',num2str(fla
end;

=========================== ==============
 Function mdlInitializeSizes initializes the states, sample

% times, state ordering strings (str), and sizes structur
%==
function [sys,x0,str,t
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes stru
sizes.NumContStates
sizes.NumDiscStates= 0;
sizes.NumOutputs= 24;
sizes.NumInputs= 87;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%===
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);

[sys]=uav_intercepted(u);

% End of mdlOutputs.

epted_s.m

)
%
%

; % Calculate outputs

 }
nused flags

g)]); % Error handling

%
%

=====================

e.

s] = mdlInitializeSizes(T)

cture with the initialization information.
= 0;

===

 188

 189

uav_intercepted.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=uav_intercepted(u)

uav_pos=reshape(u([1:27],1),3,9);
threat_pos=reshape(u([28:87],1),4,15);

uav_shot_down=zeros(9,1);
threats_fired=zeros(15,1);
for i=1:9,
 for j=1:15,
 dist_uav_threat=sqrt(((uav_pos(1,i)-threat_pos(1,j))^2)+((uav_pos(2,i)-threat_pos(2,j))^2));
 if dist_uav_threat < threat_pos(3,j),
 threats_fired(j,1)=1;
 uav_chance=rand;
 if uav_chance <= threat_pos(4,j),
 uav_shot_down(i,1)=1;
 end
 end
 end
end
sys=[uav_shot_down; threats_fired];

 190

target_classifier_s.m
Authored by Matthew Lechliter and Zachary Spritzer
 function [sys,x0,str,ts] = target_classifier_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 36;
sizes.NumInputs= 100;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);

[sys]=target_classifier(u);

% End of mdlOutputs.

 191

target_classifier.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=target_classifier(u)

TARGETS_OLD=u([1:36],1);
TARGETS_OLD=reshape(TARGETS_OLD,4,9);

END_OF_PATH=u([37:45],1);

SELECTED_TARGETS=u([46:54],1);

TARGETS_REAL=u([55:90],1);
TARGETS_REAL=reshape(TARGETS_REAL,4,9);

target_location=u([91:99],1);

clock=round(u(100,1));

uav_complete=find(END_OF_PATH==1);
nuav_complete=size(uav_complete,2);
action=0;
for i=1:nuav_complete,
 target_real_location=target_location(SELECTED_TARGETS(uav_complete(1,i),1));
 action=TARGETS_REAL(4,target_real_location);
 if TARGETS_REAL(4,target_real_location) < 4,
 TARGETS_REAL(4,target_real_location)=TARGETS_REAL(4,target_real_location)+1;
 else
 TARGETS_REAL(:,target_real_location)=0;
 end
 if action==1,
 target_present=rand;
 if target_present <= .9,
 disp(sprintf('Target %d (value %d) indentified as a target at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
 else
 disp(sprintf('Target %d (value %d) indentified as NOT a target at time %d by UAV %d.',...
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
 disp(sprintf('Target %d has been removed from target status at time %d.\n',...
 target_real_location,clock));
 TARGETS_REAL(:,target_real_location)=0;
 end
 end
 if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); end
 if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); end
 if action==4,
 target_destroyed=rand;
 if target_destroyed <= .85,
 disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
 else
 disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
 TARGETS_REAL(4,target_real_location)=3;
 end

 192

 end
end

if sum(sum(TARGETS_REAL))==0,
 TARGETS_REAL(:,1)=[4 2 3 1]';
end

sys=reshape(TARGETS_REAL,36,1);

 193

compare_targets_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =compare_targets_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 36;
sizes.NumInputs= 36*9;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);

[sys]=compare_targets(u);

% End of mdlOutputs.

 194

compare_targets.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=compare_targets(u)

targets_1=reshape(u([1:36],1),4,9);
targets_2=reshape(u([37:72],1),4,9);
targets_3=reshape(u([73:108],1),4,9);
targets_4=reshape(u([109:144],1),4,9);
targets_5=reshape(u([145:180],1),4,9);
targets_6=reshape(u([181:216],1),4,9);
targets_7=reshape(u([217:252],1),4,9);
targets_8=reshape(u([253:288],1),4,9);
targets_9=reshape(u([289:324],1),4,9);

for i = 1:9
 real_targets(:,i) = targets_1(:,i);
 if targets_2(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_2(:,i);
 end
 if targets_3(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_3(:,i);
 end
 if targets_4(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_4(:,i);
 end
 if targets_5(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_5(:,i);
 end
 if targets_6(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_6(:,i);
 end
 if targets_7(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_7(:,i);
 end
 if targets_8(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_8(:,i);
 end
 if targets_9(4,i)>real_targets(4,i)
 real_targets(:,i) = targets_9(:,i);
 end
end

sys=reshape(real_targets,36,1);

 195

compare_threats_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =compare_threats_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 60;
sizes.NumInputs= 60*9;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);

[sys]=compare_threats(u);

% End of mdlOutputs.

 196

compare_threats.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=compare_threats(u)

threats_1=reshape(u([1:60],1),4,15);
threats_2=reshape(u([61:120],1),4,15);
threats_3=reshape(u([121:180],1),4,15);
threats_4=reshape(u([181:240],1),4,15);
threats_5=reshape(u([241:300],1),4,15);
threats_6=reshape(u([301:360],1),4,15);
threats_7=reshape(u([361:420],1),4,15);
threats_8=reshape(u([421:480],1),4,15);
threats_9=reshape(u([481:540],1),4,15);
for i = 1:15
 real_threats(:,i) = threats_1(:,i);
 if threats_2(4,i) == 0
 real_threats(:,i) = threats_2(:,i);
 end
 if threats_3(4,i) == 0
 real_threats(:,i) = threats_3(:,i);
 end
 if threats_4(4,i) == 0
 real_threats(:,i) = threats_4(:,i);
 end
 if threats_5(4,i) == 0
 real_threats(:,i) = threats_5(:,i);
 end
 if threats_6(4,i) == 0
 real_threats(:,i) = threats_6(:,i);
 end
 if threats_7(4,i) == 0
 real_threats(:,i) = threats_7(:,i);
 end
 if threats_8(4,i) == 0
 real_threats(:,i) = threats_8(:,i);
 end
 if threats_9(4,i) == 0
 real_threats(:,i) = threats_9(:,i);
 end
end

sys=reshape(real_threats,60,1);

 197

display_initial_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] = display_initial_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 0;
sizes.NumInputs= 36+36+30+60;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function mdlOutputs(u)

display_initial(u);

% End of mdlOutputs.

 198

display_initial.m
Authored by Matthew Lechliter and Zachary Spritzer
function display_initial(u)

UAVS=u([1:4*9],1);
UAVS=reshape(UAVS,4,9);
a=4*9;
TARGETS=u([a+1:a+4*9]);
TARGETS=reshape(TARGETS,4,9);
a=a+4*9;
ZONES=u([a+1:a+3*10]);
ZONES=reshape(ZONES,3,10);
a=a+3*10;
THREATS=u([a+1:a+4*15]);
THREATS=reshape(THREATS,4,15);

for i=1:9
 if abs(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26
 disp(sprintf('UAV %d exists at location %d x, location %d y, altitude %d km, and is flying at %d m/s.
\n',...
 i,round(UAVS(1,i)),round(UAVS(2,i)),round(UAVS(3,i)),round(UAVS(4,i)*1000)));
 end
end

for i=1:9
 if abs(sum(TARGETS(:,i)))>0
 disp(sprintf('Target %d indicated to be at location %d x, location %d y , and with an estimated value
of %d. \n',...
 i,round(TARGETS(1,i)),round(TARGETS(2,i)),round(TARGETS(3,i))));
 end
end

for i=1:10
 if abs(sum(ZONES(:,i)))>0
 disp(sprintf('No-Fly Zone %d exists at location %d x, location %d y, and with a radius of %d km.
\n',...
 i,round(ZONES(1,i)),round(ZONES(2,i)),round(ZONES(3,i))));
 end
end

for i=1:15
 if abs(sum(THREATS(:,i)))>0
 disp(sprintf('Threat %d exists at location %d x, location %d y, with a range of %d km, and has a
probability of kill of %d%%. \n',...

i,round(THREATS(1,i)),round(THREATS(2,i)),round(THREATS(3,i)),round(THREATS(4,i)*100)));
 end
end

	Decentralized control for UAV path planning and task allocation
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1 - Introduction
	1.1 UAV History
	1.2 Envisioned Future
	1.3 Research Objectives

	Chapter 2 - Literary Review
	2.1 Path Planning Methods
	2.2 Path Planning/Task Allocation Approaches
	2.3 Decentralized Control and Communications

	Chapter 3 - Development of the Path Planning/Task Allocation Scheme
	3.1 Discussion of Setup
	3.2 Voronoi Diagram Generation
	3.3 Dijkstra's Algorithm and Cost Assignment
	3.4 Path Shortening and Flyability
	3.5 Multi-dimensional, Multiple-Choice Knapsack Problem

	Chapter 4 - Aircraft Dynamics
	4.3 Flight Path Equations
	4.2 Body Axes Modeling
	4.1 Introduction
	4.4 Earth-fixed Axes and Kinematic Relationships

	Chapter 5 - Development of Centralized UAV Simulation
	5.1 Main Simulation System
	5.2 Simulation Inputs
	5.3 Path Planning and Task Allocation Execution
	5.4 Aircraft Dynamics Subsystem
	5.5 UAVs Manager
	5.6 Targets Manager
	5.7 Threats Manager
	5.8 Simulation Outputs

	Chapter 6 - Decentralized Path Planning and Task Allocation
	6.1 Main Simulation System
	6.2 Individual UAV System
	6.3 UAV Communications
	6.4 Individual UAV Calculations
	6.5 Simulation Outputs

	Chapter 7 - Comparison of Decentralized and Centralized Simulations
	7.1 Simulation Efficiency
	7.2 Miscommunication
	7.3 Delay of Communication
	7.4 Loss of Communication

	Chapter 8 - Conclusions and Recommendations
	8.1 Conclusions
	8.2 Recommendations

	References
	Appendix A
	Appendix B

		John.Hagen@mail.wvu.edu
	2004-04-23T14:04:52-0400
	West Virginia University Libraries
	John H. Hagen
	I am approving this document

