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ABSTRACT 
 

Decentralized Control for UAV Path Planning and Task Allocation 
 

Matthew C. Lechliter 
 

 
 The effort of this research is to move toward enabling Unmanned Air Vehicles to 
fly in autonomous formations with intelligent mission planning capabilities.  In 
particular, UAVs will be able to autonomously perform path planning and task allocation.  
During missions, the UAVs must be able to avoid threats and no-fly zones while still 
reaching their target optimally in time. 
 

A path planning and task allocation approach was first developed that treats the 
problem as a Multi-dimensional, Multiple-Choice Knapsack Problem. Paths are selected 
and task assigned while minimizing the UAV team’s overall mission cost.  Next, a 
SIMULINK-based centralized simulation environment was created.  This simulation uses 
the path planning and task allocation scheme previously developed, and adds time-
varying, dynamic environment aspects.  The latter part of the research effort was focused 
on development of a decentralized simulation environment.  This decentralized version 
includes a vehicle’s own decision making capabilities and communication amongst a 
team of vehicles.   

 
The decentralized simulation was compared with the centralized version in terms of 
simulation efficiency and was found to be faster for individual UAVs.  Finally, real 
communications issues were addressed to show that while communication problems lead 
to a lack of cooperation, tasks can still be performed and missions completed within the 
decentralized simulation environment. 
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Chapter 1 
Introduction 

 
 

1.1 UAV History 

 

          The United States Armed Forces has a long history of involvement with Unmanned 

Air Vehicles (UAVs), with roots beginning in late World War I.  The first person to 

successfully address the issues of automatic stabilization, control, and navigation in 

creating a UAV was Elmer Ambrose Sperry.  In early World War I, the U.S. Navy had 

appointed him to chair the development of an ‘aerial torpedo.’  The first successful flight 

of a UAV occurred on 6 March 1918, when the Curtis Sperry Aerial Torpedo was 

catapulted into the air, flew a preplanned 1000-yard flight, and successfully landed in the 

waters off Long Island to be later reflown1.    Other aerial torpedoes soon appeared, 

including the Liberty Eagle ‘Kettering Bug’, which attempted to navigate to a target some 

50 miles away, turn its engine off, and hit the target with a 200-pound bomb.   

 

          The first robotic aircraft to successfully take off, fly radio-controlled maneuvers, 

and land was the British RAE 1921 TARGET, followed a year later by the U.S. Navy’s 

Curtiss N-9 Seaplane on 15 September 1924.  The N-9 was remotely controlled for 40 

minutes and executed 50 commands before landing1.  As a result of these early aerial 

torpedoes efforts, target drones came about in the 1930s.  These drones were used to train 

aerial gunners.  The first operation cruise missiles (formerly called aerial torpedoes) were 

the German V-1 ‘Buzz Bombs,’ which sadly introduced the general public to these 

weapons, as all previous aerial torpedoes/cruise missiles had been classified.  During the 

course of World War II, some 10,500 V-1s were launched, with over 2,400 reaching their 

targets, most of which resided in England1. 

 

          Reconnaissance drones were first evaluated in the 1950s.  In 1955, the U.S. Army’s 

SD-1 Observer became the first tactical UAV.  Other reconnaissance drones that 

appeared during that decade include the Army’s SD-2 Overseer, SD-3 Sky Spy, SD-4 

Swallow, SD-5 Osprey, the U.S. Air Force’s GAM-67 Crossbow, and the USMC’s small 
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Bikini UAV.  However, during the Cuban Missile Crisis of the early 1960’s, the Air 

Force successfully modified some of its Ryan Firebee drones to carry cameras and return 

with reconnaissance pictures.  These reconnaissance drones were successfully used in 

3,500 sorties flown during the Vietnam Conflict1. 

 

 

Figure 1.1:  USAF Firebee drone (U.S. Air Force photo) 2 

 

          The strike role of UAVs was first explored in 1962 with the U.S. Navy’s Gyrodyne 

QH-50 drone helicopter.  These unmanned helicopters carried anti-submarine torpedoes.  

 1972, the Air Force again modified Firebee drones to carry Maverick and Stubby 

Hobo missiles for use in Suppression of Enemy Air Defenses (SEAD) roles.  The end of 

the Vietnam Conflict, however, put an end to this “Have Lemon” program. 

 

          UAV development continued in the 1980’s, but really expanded in the 1990’s.  In 

the U.S. military’s arsenal during this time were the Predator, Hunter, Pioneer, and 

Shadow UAVs, which were used for reconnaissance in the conflicts in the Persian Gulf, 

the Balkans, and more recently in Afghanistan and Iraq2.  The MQ-1 (formerly RQ-1) 

In
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Predator is a 2,250 pound UAV that has been used by the military forces since 1995.   

The UAV was used for reconnaissance purposes in Bosnia, Kosovo, Afghanistan, and 

Iraq with its 24-hour endurance flight time while carrying up to a 450-pound payload.  In 

2001, a Predator was equipped with Hellfire missiles and successfully used to engage 

targets, thus earning it a multi-mission capability status. 

 

 

Figure 1.2:  U.S. MQ-1 Predator UAV, equipped with Hellfire missiles2 

 hours and up to a 50-kilometer 

nge, while carrying a 60-pound payload.    

 

 
 
          The RQ-2 Pioneer was developed in 1986.  It is a Navy UAV that was used in 

1991 in the Persian Gulf, as well as in Bosnia and Kosovo.  The RQ-5 Hunter was used 

in 1999 through 2002 in NATO operations in the Balkans.  The RQ-7 Shadow is a U.S. 

Army UAV.  It can provide video surveillance for 4

ra
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          The l bal Hawk.  

his is a large 26,750 pound UAV capable of 32-hour flight endurance while carrying a 

ayload of 1950-pounds.  It is a high altitude, long endurance UAV designed to provide 

connaissance coverage of up to 40,000 nm2 per day2. 

ast of the currently employed UAVs is the Air Force’s RQ-4 Glo

T

p

re

 

 

Figure 1.3:  U.S. Air Force RQ-4 Global Hawk (U.S. Air Force photo) 2 

 
 
 
 

1.2 Envisioned Future  
 
          During the decade of the 1990s, the Department of Defense spent roughly $3 

billion on Unmanned Air Vehicles.  For the following decade, the DOD is scheduled to 

spend over $10 billion on UAVs!  As described in the Unmanned Aerial Vehicles 

Roadmap 2002 – 20272, the DOD is aggressively pursuing UAV technology and 

significan endous tly increasing spending on UAVs.  Figure 1.4 illustrates this trem

increasing in the funding. 
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Figure 1.4:  Department of Defense Annual Funding Profile for UAVs2

 
          U merous advantages to the military.  Most notable are the advantages 

of t a

are cla aircraft loitering over airspace for long 

eriods of time while providing surveillance or jamming enemy electronic devices.  

r include:  

• Maxim n the crew’s 

physical limits;  

• Low or no risk to human operators, such as in the dirty or dangerous missions;  

AVs offer nu

he bility to perform missions classified as “dull, dirty, or dangerous”3.  Missions that 

ssified as dull include examples of an 

p

These types of missions can last for especially long periods of time, such that manned 

crews would not be optimal to perform, plus UAVs could be outfitted with multiple 

sensors and/or jamming equipment and provide and even higher efficiency at performing 

the ‘dull’ missions.  The second type of mission is the dirty type.  This type of mission 

includes reconnaissance in areas that have been contaminated by nuclear, biological, or 

chemical weapons, where the presence of manned aircraft would put the crew in danger.  

The last type is the dangerous mission, such as high-risk but high-value targets or 

Suppression of Enemy Air Defenses (SEAD). 

 

          Additional advantages offered by the use of UAVs offe

izing maneuverability, where there are no constraints based o
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• Lower overall weight of the aircraft, resulting from elimination of crew support 

hardware;  

• A lower overall cost, due in part to the lack of crew support hardware and the 

elimination of expensive pilot training4. 

 

          Currently UAVs require several operators on the ground for control of a single 

UAV, as all of the current UAVs discussed in Section 1.1 are controlled in this manner.  

hile such elimination of the pilot and crew from the aircraft do result in many benefits W

such as decreasing cost and eliminating danger to aircrews, the future of UAVs is moving 

in the direction of autonomy5.  Autonomous UAVs will require little or no human support 

to carry out missions, and this addition of autonomy adds another benefit – that is 

superior coordination among a group of UAVs.  Figure 1.5 illustrates the trend in the 

increase of UAV autonomous control from early in their history until the year 2015. 

 
 

 
Figure 1.5:  Autonomous Control Level Trend (U.S. Air Force) 2 

 
 
          Cooperative UAV flight based on autonomous aircraft offers capabilities of the use 

a formation to overwhelm enemy defenses, the ability of adjust timing in a coordinated 
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attack, and the expansion from the small area a single UAV can see and detect to a much 

broader situational awareness created by multiple UAVs sharing information2.  These 

teams of UAVs lead to superior abilities to perform a large variety of missions, including 

reconnaissance, jamming, suppression of enemy air defenses, missile defense, fixed and 

moving high-priority target attacks, and eventually air-to-air combat4.   

 

         Currently there are several DOD projects attempting to address the possibilities of 

autonomous capabilities for the future for the next quarter-century.  These include the 

Broad Area Maritime Surveillance, the RQ-8 Fire Scout, the MQ-9 Predator B, which is 

an extension of the current MQ-1 Predator to allow hunter-killer groups, the Dragon Eye 

mini-UAV, the Force Protection Aerial Surveillance System (FPASS), Neptune, the Low 

Cost Autonomous Attack System (LOCAAS), and finally the Air Force’s X-45.  The first 

of significant interest is the LOCAAS.  This UAV is a miniature, autonomous munition

that is capab und targets6.  

 

le of a broad area search, identification, and destruction of gro

These UAVs are designed to cooperate upon locating a possible target, and they work 

together to destroy it, as each is itself also a flying munition.  Figure 1.6 illustrates the 

LOCAAS munition.   

 
Figure 1.6:  LOCAAS mini-UAV munition  2  (U.S. Air Force photo)
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          Another developmental UAV of interest is the U.S. Air Force’s X-45.  This 

Unmanned Combat Air Vehicle (UCAV) is designed to use UAV autonomy and 

cooperation to perform dangerous but high-priority missions such as high-value targets or 

SEAD7.  These UCAVs will be designed to have preprogrammed objectives and target 

information from ground mission planners.  This information is used to carry out 

missions autonomously and efficiently by taking advantage of cooperation amongst a 

roup.   

 
 

g

 
Figure 1.7:  U.S. Air Force X-45A UAV  (U.S. Air Force photo) 2 

attacking targets.  

 
 
 

1.3 Research Objectives 
 
          As mentioned in Section 1.2, dangerous missions including Suppression of Enemy 

Air Defenses (SEAD) and high-risk but high-value target missions are important 

objectives for future UAV capabilities.  These UAVs are very attractive in that they 

eliminate risk to the human crew while performing these dangerous missions, the aircraft 

have potential for greater survivability, they have greater endurance to perform a mission 

as opposed to crew fatigue, the cooperative nature gives a greater probability of 

successful outcome, and finally cost is reduced4.    Figure 1.8 illustrates what a typical 

SEAD or high-risk but high-value might look like, with several cooperating UCAVs 
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ure 1.8:  Cooperative Operation of UAVs for SEAD (U.S. Air Force picture)Fig
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          The general basic problem formulation for SEAD or high-risk but high-value 

nuav’ UAVs with ‘nzones’ no-fly zones such as mountains 

 boundaries, and given ‘ntarg’ targets or waypoints to visit, the UAVs must 

ission such as visiting each target or waypoint while minim

overall cost to the group.  Extending this basic formulation to add realistic constrains and 

onditions include timing constraints, such as a preliminary target needing to 

ing.  Also dynamic constraints on planned paths, such as 

aximum angular rates for rolling performance 

 accounted for.  Furthermore, the problem may be time varying, where there 

n/removal or targets, loss of UAVs in the team, and loss of communications 

 high-risk but high-value missions, there will also be 

cenario that the UAVs should avoid. 

 

following research objectives are intended to address the problem of 

my Air Defenses or high-risk but high-value mission planning.   
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Item #1. A path planning and task allocation scheme must be created for an elementary 

two-dimensional scenario, with a limited number of UAVs, targets, and no-fly 

zones.  The generated trajectories must be of minimal length, but subject to a 

cost factor to include flying around the no-fly zones.  The trajectories must be 

dynamically feasible, and additionally, the software must be computationally 

efficient in order to be run ‘real-time’8. 

Item #2. The coding is to be extended to encompass a larger number of UAVs, targets, 

and no-fly zones, and now has the addition of threats – areas that can be flown 

into but with an additional cost of the probability of the UAV being destroyed. 

Item #3. After the path planning and task allocation scheme is finished, the 

development of a SIMULINK-based centralized simulation environment is 

next.  This centralized simulation environment is such that a central processor 

controls all of the decision making abilities for the entire UAV team. 

Item #4. After the basic simulation is in place, it now needs to be extended to include 

the time-varying aspects of the problem.  Included in this are ‘pop-up’ threats, 

ones that were not previously known to the team of UAVs but appear some 

time into the mission, varying states of targets, such as ‘identified but not 

reconned,’ ‘reconned but not attacked,’ ‘attacked but not confirmed,’ and 

‘confirmed destroyed,’ the ability of threats to attempt to destroy UAVs if the 

UAVs pass within range of the threat, and finally the ability of the group to 

replan if any of these events occur. 

Item #5. Once the time-varying centralized simulation environment is complete, a 

decentralized simulation environment is to be developed based on the 

centralized version.  This decentralized version now includes a vehicle’s own 

decision making capabilities and communication amongst vehicles. 

Item #6. Finally, the decentralized simulation is to be compared to the centralized 

simulation in terms of ‘real-time’ efficiency, and the real-life ‘what-if’ 

communication problems are to be tested in the decentralized simulation 

environment. 
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Chapter 2 
Literary Review 

 
 

2.1 Path Planning Methods 
 
 Vehicle path planning is a broad subject with a significant body of research 

already established, especially in the field of robotics.  Applied to UAVs, however, path 

planning has been the subject of study for only a limited number of years.  In general, 

three different approaches have been studied to generate UAV paths, as discussed by 

Bortoff8.  These include graph-based methods, where paths are generated from a 

sequence of edges connecting vertices of the graph, optimal control, which computes an 

optimal path based on a cost function, and finally virtual potential fields, where a simpler, 

related problem is solved to obtain the path8. 

 

 For UAV trajectory planning, graph-based approaches have received the most 

attention.  In a graph approach, vertices are assigned to discrete points in space, edges are 

used to connect these vertices, costs are assigned to each of the edges, and lastly the 

graph is searched for an optimal trajectory8.  For a simple graph, vertices can be assigned 

rectangular points, as illustrated in Figure 2.1. 

 

 

Figure 2.1:  Vertices of a simple graph 
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However, in this simple arrangement, for a well-defined graph, the computational 

omplexity tends to grow at an exponential rate.  A graph with a higher density of 

ertices will result in a more optimal solution, but will also be more complex.  A better 

starting arrangement of vertices can curtail this exponential increase in complexity and 

still yield a near-optimal solution. 

 
 Known locations for threats, such as radar sites, can be used to build the graph.  

Since threats and radar are generally to be avoided, a graphical approach based on 

Delaunay Triangles and their geometric dual, Voronoi diagrams, arranges the vertices in 

a much more natural layout8.    McLain9, 10 and Beard10 developed a Voronoi-based 

approach for UAV trajectory generation.  Figure 2.2 illustrates a typical Voronoi 

diagram. 

 

 

c

v

 

Figure 2.2:  Voronoi diagram for threat locations (shown as black dots) 
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A Voronoi diagram places vertices such that the edges connecting any two will be 

equidistant from the two closest sites (in this case, threats or radar sites).  The diagram is 

constructed without regard to starting or finishing points, and thus these must be added 

into the graph.  In McLain and Beard’s approach, the starting and finishing points are 

connected to the three closest vertices.   

 

Once the Voronoi diagram is complete, costs are assigned to each of the edges.  The 

general approach is to construct costs based on fuel costs and threat costs.  When costs 

re assigned, the Voronoi diagram is searched to determine the lowest cost path from the 

ssigned.  Voronoi can also be modified if certain sites are weighted (such as flying 

he Voronoi diagram and other graph-based methods have advantages that the optimal 

a

starting position to the finishing position.  A number of algorithms can be used for this – 

McLain and Beard use Dijkstra’s algorithm11, but Eppstein’s k-shortest paths algorithm 

can also be used9, 12.  For a graph with V vertices and E edges, the complexity of 

Dijkstra’s algorithm is O(V log(V)+E); thus the complexity of the problem is always 

predictable. Once a solution is generated, it will be the lowest cost path for a UAV from a 

given starting position to a known finishing position.  It may neither be the shortest path, 

nor the safest path, but will be the lowest in cost according to whatever cost function was 

a

between a powerful radar and a weak one), resulting in curves known as circles of 

Apollonius13.  

 

 For graph-based path planning, the resulting path must be made flyable for the 

aircraft.  There are several techniques for accomplishing this goal.  The first involves 

discretization of the path.  This ‘chain path’ is made flyable by smoothing9.  Another 

method involves overlying splines to the path, as demonstrated by Judd and McLain14.  

T

solution from the graph is always found and that the complexity of the solution is always 

bounded.  Thus, the problem can be setup such that it can achieve real-time performance. 

 

 The second approach to UAV path planning is classical optimal control.  This 

approach, using Calculus of Variations, had been used since the 1960’s for aircraft path 
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planning.  In it, a cost function consisting of a path length cost, a proposed ‘radar cost’, 

and a turning cost are subject to constraints of the starting and final aircraft states and a 

mple model of the aircraft kinematics8, 15, 16.  The dynamic constraints assure that the 

na ol produces an optimal solution, 

omputation complexity means that it may not be able to achieve real-time performance. 

2.2

si

fi l path will be flyable.  Although optimal contr

c

 

 The third approach to UAV path planning is one using virtual potential fields and 

forces, as proposed by Bortoff 8.  In this method, a chain of masses connected to each 

other by springs and dampers represents a UAV path.  Obstacles to be avoided, such as 

radar and threats, have repulsive force fields that shape the path until equilibrium is 

reached.  This method has had the smallest amount of research performed among the 

three, though Bortoff concludes that the method is quite promising for a uniform radar 

field. 

 
 

 Path Planning/Task Allocation Approaches 
 
 Whenever task allocation is added to the path-planning problem, the complexity 

greatly increases because the task allocation and the trajectory generation are highly 

coupled.  The cost for each UAV to visit a particular target is clearly a function of the 

path taken.  If trajectory optimization could be performed for all the possible 

permutations of vehicle to target, the task assignment could be performed, and a globally 

optimal, dynamically feasible solution would be reached.  Unfortunately, this can 

realistically be performed only for a very limited number of vehicles and targets.  

Otherwise, the number of possible permutations makes the probably computationally 

impossible for real-time in-flight performance. 

  

 Aside from specialized, proposed approaches such as a genetic algorithm 

proposed by Chen and Cruz17, there have been three main approaches for solution of the 

task allocation and path-planning problem.  Jonathan How and his group at MIT 

researched the first of these approaches.  In this approach, the coupling between task 

allocation and path planning is partially decoupled18.  From the known locations of no-fly 
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zones, threats, waypoints, and targets, the first step is the creation of polygons for threats 

and no-fly zones.  The vertices of these polygons are then connected to polygons and to 

the vehicle and target using a ‘line-of-sight’ approach.  Once all possible graph segments 

using the polygons and line-of-sight are formed, the Floyd-Warshall All-Shortest Path 

algorithm18 is employed to find the shortest paths (where cost is based solely on path 

length) for all vehicles to all targets and waypoints.  Once these paths are known, the 

basic task allocation problem is formulated as a Multi-dimensional, Multiple-Choice 

napsack Problem (MMKP) 19.  In this type of knapsack problem, one element must be 

.  This method combines the task 

llocation and trajectory planning into a single Mixed-Integer Linear Program (MILP) 

ptimiz

K

chosen from each of the multiple sets.  Each choice yields a benefit but uses up a resource 

dimension.  The goal of the MMKP applied to this problem is to minimize overall cost 

while selecting a single path for each vehicle and being constrained to ensure that each 

target and waypoint is visited.  Once task assignment has been performed, a more refined 

trajectory generation scheme is used to make the chosen paths flyable.  If the flyable 

paths are sufficiently different from the original paths used to calculate the task 

allocation, the problem can be resolved using different, more refined, paths to begin with.  

To cope with a dynamic environment, How proposes using a local repair method 18 for 

reshaping an individual UAV’s path or a sub-team reallocation for those UAVs directly 

affected by a change in environment. 

 

 The second approach for solution of the path planning and task allocation problem 

has also been researched by How and his group at MIT20

a

o ation problem .  In order to create a linear (as opposed to nonlinear) 

program, the aircraft dynamics are linearized.  These dynamic constraints, plus other 

constraints such as each UAV only having one selected path and each pre-assigned target 

and waypoint being visited, create the variables for the MILP problem.  This method is 

guaranteed to find the globally optimal solution that provides detailed trajectories for 

each vehicle to reach its allocated waypoints in minimum time, but it is computationally 

intensive.  Although experiments involving ground vehicle have been performed to 

demonstrate the usefulness for small-scale path planning and task allocation problems , a 

20, 21, 22

23
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MILP strategy is typically used for a benchmark, as it is a centralized scheme that is 

computationally inefficient for real-time applications . 

 

 The third approach is a hierarchical control scheme that has been developed by 

Chandler and Pachter at Wright-Patterson Air Force Base .  This hierarchical 

decomposition deals with the coupling-induced complexity and a method to reduce it .  

There are four layers within the hierarchical autonomous controller .  The first layer is 

the decision-making layer.  This layer performs the task allocation function by using a 

market-based bidding method and also assures that all mission objectives and sub-

objectives are met.  The second layer is the path planning level.  This layer coordinates 

cooperati

24

25

26

27, 28

ve search, classification, attack, damage assessment, and rendezvous.  The third 

yer is the trajectory-planning layer, which the individual UAVs perform for themselves.  

tock exchange, in that each 

ehicle ‘bids’ on an assignment.  Vehicles with a higher bid (meaning higher cost to 

erform the assignment) trade off with vehicles that have a lower cost to perform the 

ass he overall cost of performing all 
25-33

la

The fourth layer is a redundancy management layer, which ensures accurate following of 

desired trajectories.  Whenever task allocation is needed, each of the vehicles performs 

trajectory planning in their third layer.  The top, centralized layer uses an auction, such as 

a forward Gauss-Seidel auction, a forward Jacobi auction, or a forward/reverse auction to 

perform the task allocation29.  The auction resembles a s

v

p

ignment.  The goal of the auction is to minimize t

assignments.  There has been much research performed using this approach , and 

currently the U.S. Air Force’s LOCAAS UAV (discussed in Section 1.2) uses this 

scheme. 

 

 Of the three methods, the first method by MIT and the third method by WPAFB 

have been shown to be the most appropriate for path planning and task allocation 

performed aboard actual UAVs.  While the results of both methods are suboptimal, 

research performed has shown that they perform well, without the complexity associated 

with an optimal solution as found using the second method. 
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2.3 Decentralized Control and Communications 
 
 The first and third methods mentioned in the previous section have been shown to 

be more appropriate for actual implementation in part due to the decoupling of the tasks.  

Especially with the third method as researched by the Air Force, individual UAVs make 

calculations for themselves in the decentralized portion of the scheme.  The topmost layer 

of the scheme then uses these calculations for task allocation34.  In How’s research for the 

first method, he proposes distributing the optimization of the selected paths to the 

dividual UAVs.  These methods are partially decentralized, meaning that there is still 

ome ‘supervisory’ centralized processor35-37 that makes group decisions.  For both the 

entralized and decentralized schemes, communication among UAVs is an issue.  For a 

entralized scheme, delay or loss of communication means that the vehicles will not 

eceive any instructions for performing tasks, whereas in a decentralized scheme, each 

vehicle can still perform tasks, though there may be some repetition of tasks and loss of 

others.  Mitchell, Schumacher, and Chandler studied the effects of a delay using the 

hierarchical control methods38.  Communication delays of 1 to 3 seconds were simulated 

and resulted in a significantly decrease in successful attack and verification, though tasks 

were still completed.  A delay or loss of communication implies a lack of cooperation, 

but for UAVs that are involved in the decision-making process, tasks can still be 

performed39.    

 

 

 

 

 

in

s

c

c

r
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Chapter 3 
Development of the Path Planning/Task Allocation Scheme 

 
 

3.1  Discussion of Setup 
 

In selection of methods for performing path planning and task allocation, the type of 

mission envisioned is crucial.  For the research presented here, the problem statement 

given in Section 1.3 dictates the following: 

 

Given ‘nuav’ UAVs with ‘nzones’ no-fly zones such as mountains or 

political boundaries, and given ‘ntarg’ targets or waypoints to visit, the 

UAVs must accomplish a mission such as visiting each target or waypoint 

while minimizing an overall cost to the group.  Extending this basic 

formulation to add realistic constrains and boundary conditions include 

timing constraints, such as a preliminary target needing to be 

reconnoitered prior to attacking.  Also dynamic constraints on planned 

paths, such as maximum linear velocities for UAVs and maximum angular 

rates for rolling performance need to be accounted for.  Furthermore, the 

problem may be time varying, where there are addition/removal or 

targets, loss of UAVs in the team, and loss of communications may occur.  

Also, in the role of high-risk but high-value missions, there will also be 

‘nthreats’ threats in the scenario that the UAVs should avoid. 

 

This setup is considered to be appropriate for the mission of high-risk by high-value 

target attack.  In this mission, the high-valued targets are known, the area having been 

reconnoitered previously by possibly other UAVs or even satellite intelligence.  During 

this reconnaissance, threat and no-fly zone information is also given.  The mission must 

still be able to account for a dynamic environment where new targets may appear, known 

targets may disappear, and real threats can ‘pop-up’ and destroy UAVs working in a 

team. 
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 The literary review of Chapter 2 presented three main approaches for the solution 

of the path planning and task allocation problem.  As concluded, the use of a Mixed-

Integer Linear Program based approach is only appropriate for a benchmark.  Of the 

remaining two, for a high-risk by high-value mission, the approach presented by How 

will be seen as more suitable.  Currently, the hierarchical control scheme is quite suitable 

for a highly dynamic environment that a flying munition such as LOCAAS is expected to 

encounter.  These UAVs perform the Suppression of Enemy Air Defenses role by being 

released in an area thought to contain some threats and enemy air defenses.  As the UAVs 

search for targets (which are air defenses in the SEAD mission, so there are no threats), 

any changes in the environment cause the market-based bidding scheme to be employed.   

 

 While highly effective for such missions, whenever known target locations and 

no-fly zone and threat-avoidance are considered, a method similar to How’s approach is 

more desirable.  With this type of approach, all the a priori information about the targets, 

threats, and no-fly zones can be considered during path planning and task allocation, 

while certainly being adaptable to dynamic environment changes.  The first part of this 

research presents a path planning and task allocation approach that shares similarities 

with the one presented by How et.al. in "Co-ordination and Control of Multiple UAVs".  

The presented approach uses a Multi-dimensional, Multiple-Choice Knapsack Problem 

algorithm for solution of the task allocation portion, as does How’s approach, but the 

steps leading to the MMKP employment are quite distinct.  The information used to set 

up the approach presented here includes the following:  

 
• Information about UAV positions, altitude, velocity, and heading angle; 

• Information about target positions, deemed target values, and the current state of 

the target (whether it is confirmed as a target, reconned, attacked, or battle-damage 

assessment performed) 

• Information about threat positions, effective ranges, and probability of kill 

• Information about no-fly zone positions and size 
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3.2 Voronoi Diagram Generation 
 

The first step in this approach is the determination of possible paths that the UAVs 

could take to reach targets.  Several methods were discussed in the literary review, 

including graph-based methods, optimal control, virtual potential fields, and the line-of-

sight method described in How’s method.  Of these, the graphical methods have the 

advantage.  Optimal control tends to be computationally inefficient, and the virtual 

potential field method is largely unresearched.  While the line-of-sight method 

theoretically finds the shortest paths to initially choose from, the threats must be modeled 

the same as the no-fly zones, with definitive boundaries and vertices surrounding.  This is 

less than optimal with threats because the probability of being destroyed if the UAV 

enters the range of the threat is not considered.  Though the UAV would incur an 

additional cost due to the possibility of being destroyed, this may be desirable, as the 

overall path may be cheaper from the lowering of the distance cost.  The inability to pass 

within the boundaries of a threat also causes a certain dilemma when considering that 

multiple threat ranges can overlap, and targets can possibly (an most probably will) be 

inside of the effective range of one or many threats. 

 

 Graphical methods do not take into consideration the boundaries of no-fly zones 

or threats.  These methods must account for these boundaries with additional costs such 

as a probability of being destroyed cost for entering the effective range of a threat and an 

infinite cost for flying into the boundary of a no-fly zone (more on the cost function in 

the following section).  Of the possible graphical methods, Voronoi diagrams were 

concluded to have many advantages for path planning and have been used in this research 

approach. 

 

 In order to properly define a Voronoi diagram, the Euclidean distance between 

two points p and q must be defined for points in a plane: 

 

( ) ( ) ( )22, yyxx qpqpqpdist −+−≡      (3.1) 
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The sites for the Voronoi diagram are defined as: 
 

( )npppp ,,, 21 K≡       (3.2) 

40

 are shown in 

e lower left corner while the target positions are shown in the upper right. 

 

 
which are a set of n distinct points.  The Voronoi diagram of these sites is defined as the 

subdivision of the plane into n cells, one for each site, with the property that a point q lies 

in the cell corresponding to a site pi if and only if the distance dist(p,qi) is less than the 

distance dist(pj,q) for each pj in p where i is not equal to j .  Each site p corresponds to a 

single Voronoi cell, which is the intersection of a number of half-planes.  The Voronoi 

diagram is a planar subdivision whose edges are a number of straight-line segments.  

Figure 3.1 illustrates a typical Voronoi diagram showing 13 no-fly zones, represented by 

black dots, and 12 threats, represented by green circles.  The UAV positions

th

 

Figure 3.1:  Voronoi diagram with 25 sites 

 
 A  

is a pla shown in 

Computational Geometry: Algorithms and Applications40. 

n algorithm for computing a Voronoi diagram is illustrated next.  This algorithm

ne sweep algorithm commonly known as Fortune’s algorithm, which is 
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utation of Voronoi Diagram 

In s in the plane 
ed edge 

1
2. 
3 . 

5
6 E IRCLE VENT_ __ _ nt of the circle causing 

7
8 e half-infinite edges 

f the Voronoi diagram. Compute a boundi box that contains all vertices 
n its interior, and attach the half-infinite 

H

2
e other two leaves store the 

riginally stored with 〈. Store the tuples hpj _ pii and 
pip jrepresenting the new breakpoints at the two new internal nodes. 

in the Voronoi diagram structure for the two halfedges 
_pj_, which will be traced out by the two 

new breakpoints. 
4. Check the triples of consecutive arcs involving one of the three new arcs. 

eep line 
and the circle event isn’t present yet in Q.

  

Algorithm for comp
put. A set of point site

Output. The Voronoi diagram given inside a bounding box in a doubly connect
list structure 

. Initialize the event queue Q with all site events. 
while Q is not empty 

. do Consider the event with largest y-coordinate in Q 
4.      if the event is a site event, occurring at site pi 

.           then HANDLESITEEVENT_pi_ 

C E p , where p is the lowest poi.           else HANDL
the event 

.      Remove the event from Q . 

. The internal nodes still present in T correspond to th
ng o

of the Voronoi diagram i
edges to the bounding box by updating the doubly-connected edge list 
appropriately. 

9. Traverse the half-edges of the doubly connected edge list to add the cell records and 
the pointers to and from them. 

 
The procedures to handle the events are defined as follows. 

ANDLESITEEVENT(pi) 
T 〈 1. Search in for the arc vertically above pi, and delete all circle events 

involving 〈 from Q . 
. Replace the leaf of T that represents 〈 with a subtree having three leaves. 

 stores the new site pi and thThe middle leaf
site pj that was o
h _ i 

Perform rebalancing operations on T if necessary. 
3. Create new records 

separating V _pi_ and V 

Insert the corresponding circle event only if the circle intersects the sweep 
line and the circle event isn’t present yet in Q . 
 

HANDLECIRCLEEVENT(p_) 
1. Search in T for the arc 〈 vertically above p_ that is about to disappear, and delete all 

circle events that involve 〈 from Q. 
2. Delete the leaf that represents 〈 from T. Update the tuples representing the breakpoints 

at the internal nodes. Perform rebalancing operations on T if necessary. 
3. Add the center of the circle causing the event as a vertex record in the Voronoi 

diagram structure and create two half-edge records corresponding to the new 
breakpoint of the Voronoi diagram. Set the pointers between them appropriately. 

4. Check the new triples of consecutive arcs that arise because of the disappearance of 〈.  
Insert the corresponding circle event into Q only if the circle intersects the sw

 

 
This algorithm is implemented in the MATLAB function as found in voronoi.m, which is 

shown in Appendix A.     
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 The number of vertices in the Voronoi diagram of a set of n point sites is at most 

2n-5 and the number of edges is at most 3n-6 (40).  From this theorem it is seen that for an 

insufficient number of sites (threats and no-fly zones in this case), the Voronoi diagram 

will either not be able to be computed or will have a small number of edges for finding 

appropriate paths.  To work around this difficulty, 16 extra sites are added around the 

edges of the known battlefield.  This ensures that even without any threats or targets, 

ere will be edges to choose paths from.  Once this is accomplished, the next step is to 

om fore is voronoi.m.   

 

ronoi diagram.   This completes the Voronoi diagram section of the approach, and 

next follows the cost assignment and determination of the cheapest paths for each 

permut

th

c pute the Voronoi diagram, which as mentioned be

 

The computation of the Voronoi diagram is the first major step in this path 

planning and task allocation research.  The MATLAB code implementing this is 

vrn_diag_gen.m, which is shown in Appendix A.  After the computation of the Voronoi 

diagram, the UAV locations and the target locations must be added into its list of 

vertices.  For each of the locations of UAVs and targets, the 3 closest vertices are found.  

Three edges between these vertices and the location are formed and added to the edges of 

the Vo

ation. 

 
 

3.3 Dijkstra’s Algorithm and Cost Assignment 
 

Once the Voronoi diagram is complete and the UAV positions and target 

positions are connected, a path planning method must determine the optimal path for each 

permutation of UAV to target.  This consists of two separate parts – first, a cost function 

must be developed and applied to each edge of the Voronoi diagram, and second, the 

edges must be searched to determine the optimal path, which is defined as the 

combination of graph edges that connects the UAV to the target with the lowest possible 

cost. 
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The first task in this section of the approach is the assignment of costs to each 

graph edge.  The cost function developed here consists of three separate parts.  The first 

art of the cost relates to the fuel cost.  Since typically UAVs will be flying at a constant 

speed, the fuel required to fly onal to the length of the edge.  

Thu rst part of t unction is ost.  T d part of t is 

that is re o s coul ossibly mountains or 

po ndaries AVs liti u

disastrous and should never be allowed.  Sim , a UAV cr  a physical ary 

(cra to a mountain) is also unacceptable.  Thus, to ensure that crossing political 

nd physical boundaries is never a cheapest path, a cost of infinity is assigned to each 

nges and probabilities-of-kill. 

Table 3.1:  Typical threats41

Name KS-19 SA-7 Grail Crotale SA-2 

p

along an edge will be proporti

s, the fi he cost f  a distance c he secon the cos

 which lated to no-fly zone c st.  No-fly zone d be p

litical bou .  Offensive U crossing a po cal boundary co ld certainly be 

ilarly ossing  bound

shing in

a

edge that intersects such a boundary.  The last part of the proposed cost function is 

associated with threats.  A typical threat can be visualized as a munition (whether anti-

aircraft artillery or surface-to-air missile) that has an effective range which inside has a 

‘probability-of-kill’ for destruction of intended aircraft.  Table 3.1 illustrates some typical 

threats and their associated effective ra

 

Type 100mm - 
Antiaircraft Artillery

Man-
Portable SAM 

SAM SAM 

Effective 
range 

4000 meters 5000 meters 10,000 meters 30,000 meters 

Probability 
of kill 

40% 50% 80% 80% 

 
 
These threats are used as examples of real-world threats that might be encountered in 

current conflicts.  These particular threats were compiled by selection of several arms 

available to the former Iraqi regime.  Figure 3.2 depicts a launched Crotale “Rattlesnake” 

SAM that can be used

struction of 80%.  

 effectively inside at 10-kilometer range, with a probability of 

intended aircraft de
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Figure 3.2:  Crotale “Rattlesnake” surface-to-air missile 

 
 
Thus, the cost assigned due to threat boundary intersection is as follows:  for each 

permutation of edges and threats, the length of edge is found, and the Euclidean distances 

of the first (starting) vertex of the edge to the center of the threat and the second 

(finishing) vertex to the center of the threat are found.  These distances are provided in 

the following equations: 

 

( ) ( )2
,,

2
,,_ yfysxfxs vvvvlengthEdge −+−=     (3.3) 

( ) ( )2
,

2
,__ yysxxsstart cvcvcentertoV −+−=     (3.4) 

( ) ( )2
,

2
,__ xxffinish cvcentertoV −= yyf cv −+     (3.5) 

 

Next, the 3 distances are used in the following equation to find the distance from the 

starting vertex to the point where the perpendicular of the edge to the center of the threat 

intersects the edge. 

 

( )
lengthEdge

centertoVcentertoVlengthEdge
intersecttoV finishstart

s _2
_____

__
222

∗

−+
=   (3.6) 
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 this distance from the starting vertex to the intersection is greater than zero (meaning it If

is past the starting vertex in the direction of the other end of the edge) and is less than the 

length of the edge, then the closest point on the edge to the threat is that point of 

intersection.  Equation 3.7 gives that distance. 

 
22 _____ intersecttoVcentertoVdistanceClosest ss    (3.7) 

 
If the distance from the starting vertex to the intersection is negative, the closest point on 

the edge is the starting vertex.  Otherwise, the distance is greater than the length of the 

edge, and the closest point is the finishing vertex. 

 

 Once the closest point on the edge is computed, the effective range of the threat 

and the distance between that edge and the center of the threat are compared.  If the edge 

falls within the range of the threat, a threat cost is added to the distance cost of the edge, 

shown by Equation 3.8. 

 

killofprobThreatWlengthEdgeWcostEdge _____ 21

−=

∗+∗=    (3.8) 

 
In this equation, W1 is a weight for the cost of distance due to the proportionality of fuel 

to distance and W2 is a weight for the probability of being destroyed.  The preceding 

algorithm is implemented in the code c_assign.m, which again is found in the first 

appendix. 

 

 At this point, all edges now have realistic costs associated with flying along that 

edge.  The next step is searching of these edges to determine the cheapest paths for each 

UAV to target permutation.  As the section title suggests, this has been accomplished 

using Dijkstra’s algorithm.  Dijkstra’s algorithm solves the cheapest path problem for a 

irected graph that has nonnegative edge costs42.  The necessary inputs for the algorithm 

clude the set of vertices and the set of ordered pair representing the edges connecting 

ose vertices.  Not  that Dijkstra’s algorithm requires a graph with directed edges.  

his means that each edge must be designated with a starting vertex and a finishing 

d

in

th ice

T



vertex (unlike in the threat cost assignment where the starting and finishing vertex labels 

re arbitrary).  To overcome this difficulty, the Voronoi diagram is overlaid with two 

nd finishing vertices while the second, identical edge has the opposite labeling.  The 

oding labeled set_thc.m (meaning tail-head-cost) solves this.  This code first renames all 

vertices with integers f

rected edges and their 

ssociated cost form an adjacency list.   

For implementation of Dijkstra’s algorithm, a weighted adjacency matrix must 

dicates the cost from the ith to the jth vertex43.  Figure 3.3 

hows an example of a directed graph with costs. 

 
 

 

 
ple directed graph with costs 

 
The corres
 
 

⎦⎢⎣ 00900
1500

 

a

edges connecting each set of vertices.  The first edge has an arbitrary labeling of starting 

a

c

rom 1 to n and refers to them in this manner instead of using their 

coordinates.  The ordered pairs of vertices representing di

a

 

 

first be formed.  A weighted adjacency matrix is defined as a square n-by-n matrix whose 

entry in row in and column j in

s

 

 

 
 
 
 

  

Figure 3.3: Exam

ponding weighted adjacency matrix for this figure is: 
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The adjacency matrix is formed using the file list2adj.m.  This file is available from the 

MATLAB toolbox Matlog44.   

 

 The algorithm for Dijkstra with inputs of the adjacency matrix and the beginning 

vertex (a UAV position) and finishing vertex (a target position) works by constructing a 

bgraph S such that the cost of any vertex v in S from the beginning vertex s is known to 

e minimum44.  The algorithm43 is as follows: 

1. 

 cheapest cost from the UAV position to the target 

position is found.  This algorithm is implemented in the Matlog toolbox function dijk.m.   

The fun

 previously, developing paths based on a Voronoi diagram has 

limitations for battlefields with smaller numbers of sites (the threats and no-fly zones).  

To address this issue, it was suggested that additional sites should be added into the list of 

su

b

 

for each vertex v, set d(v), the cost of reaching that vertex, to infinity 

2. Set d(s), the cost of reaching the current vertex from itself, to zero 

3. Initialize S a an empty set 

4. Initialize Q as a set of all the vertices 

5. while Q still has vertices in it, 

a. find vertex u in Q that has the lowest d(v) value 

b. include the vertex u in the set S 

i. for each vertex v with is connected to u with an edge 

1. if d(v) > d(u) + edge cost 

2. then d(v) = d(u) + edge cost 

c. remove vertex u from Q 

 

This algorithm continues until the

ction outputs the total cost for the individual UAV to reach a target, and the order 

of vertices the path takes.  This concludes the selection of the cheapest paths for each 

UAV to target permutation. 

 

 
3.4 Path Shortening and Flyability 

 

As mentioned
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sites, e

UAV is permitted to enter 

at threat up to the radius it had previously before.  Each UAV may ‘see’ a different set 

nsuring that Voronoi produces acceptable possible paths.  However, this adds an 

unwanted side effect.  When the cheapest paths are selected, some of the paths may have 

unnecessary ‘kinks’ due to Voronoi avoidance of these sites that do not represent either 

threats or no-fly zones.  This issue can be dealt with by using a path shortening method 

based on line-of-site.  Whenever the method of line-of-sight path shortening is employed 

at this point, the best features of Voronoi diagrams are coupled with the best features of 

line-of-sight path generation.  The previous disadvantages of the line-of-sight method 

were highlighted as the lack of realistic threat modeling and the situations where threats 

overlapped each other or desired targets.  The modified line-of-sight version presented 

here removes these disadvantages. 

 

The file path_shrtng.m uses the methods discussed in this section.  Adding a 

number of new vertices along each edge modifies the previously selected cheapest paths.  

The number of new vertices is variable, but typically ten new vertices are added per edge.  

These vertices take the place of the vertices surrounding threats and no-fly zones are 

proposed previously for a line-of-sight method.  Once these vertices are added, new 

edges are effectively created.  With these new edges, the modified line-of-sight method 

can be implemented. 

 

Since UAV paths already selected from the above sections may include passing 

into threat boundaries, the modified line-of-sight approach must address this.  The first 

step the approach takes is identifying which UAV pass though which threats and at what 

range.  The next step is to essentially decrease the range of the threats for these UAVs.  

These vehicles have already incurred a threat cost, thus that 

th

of threats at this point, representing where its previous path went.  It should be noted, 

however, that for each UAV to target permutation, all of the threats that it did not enter as 

part of its previously selected path remain unmodified.  The only boundaries that are 

reduced are the ones that the individual UAV passes through. 
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The path-shortening algorithm executes for each UAV to target permutation.  This 

 is found.  The vertex at the end of this edge becomes the new second 

ertex of the path and the new starting vertex for the algorithm to pair up with the target 

e 

be too computationally intensive.  

 new method is presented here to solve this problem. 

 

 Fillets can be added to intersection of edges in order to m

s for aircraft dynamics, the concept being addressed deals solely with a minimum 

algorithm begins by selecting the UAV position for a single permutation.  This position 

becomes the starting vertex in the list of vertices that produce the path.  From the starting 

vertex, the algorithm couples that vertex with the target vertex and checks the produced 

edge to see if it intersects a threat or no-fly zone via the method discussed in the previous 

section.  If the edge is found to intersect a boundary line, the starting position is coupled 

with the vertex immediately preceding the target position.  The algorithm continues to 

choose vertices successively backward until a combination that produces no intersections 

with any boundary

v

position.  The algorithm continues until the target position is reached, which can occur in 

as few as a single edge from the UAV position to the target position to as many as the 

number of edges selected from the original Voronoi diagram. 

 

 The next issue to address is the flyability issue.  In Section 2.1, two methods wer

presented for this task.  The first was one that discretized the paths into chains and used 

smoothing effect via forces.  The second method was one in which splines were used.  

The spline approach was considered to be excellent for producing flyable paths.  

However, upon implementation, it was soon to found to 

A

ake paths more flyable.  

A

turning radius.  Though a full review of aircraft dynamics is covered in a subsequent 

chapter, the concept of minimum turning radius for an aircraft is the tightest turn that the 

aircraft is physically able to make.  This property is dependent upon several variables, 

including the aircraft inertia properties and velocity.  For a known minimum turning 

radius, each intersection of edges for the paths can be filleted to account for simple 

aircraft dynamics. 
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 This concept is found using several equations and a few trigonometric relations.  

Adding fillets begins with selecting the first three vertices of a path.  These three vertices 

will form some sort of angle that the aircraft will by some degree not be able to 

completely follow.  These vertices are labeled Start, Middle, and Finish, relating to their 

position in the path.  The first calculations needed are the Euclidean distances from the  

Start to the Middle vertices, from the Middle to the Finish vertices, and from the Start to 

e Finish vertices.  These distances are labeled SM, MF, and SF, respectively.  The angle 

formed by the intersection of the two edges i

th

s called α, and can be found using the 

following equation, which is simply the law of cosines: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗∗

−+
=

MFSM
SFMFSM

2
arccos

222

α      (3.9) 

hus, the lengths SM, MF, and SF, and the angle α are now known.  A circle of minimum 

r is now fitted to the angle caused by the intersection of the edges.  The 

irc such that each edge forms a tangent on the circle.  The place where the 

dge touches the circle is where a n  vertex should be placed.  From the Start position 

aveling along the path, it can be seen that upon reaching the position of the first new 

ertex, the vehicle should follow the circle until it reaches the next vertex, upon which it 

e follows the original path on toward the Finish vertex. 

The position of the new vertex can be found by noting that a line of the minimum 

ength connecting the center of the circle to the tangent intersection of the 

le and the edge SM is obviously perpendicular to the edge.  The radius is known, a 

ght angle is found, and the angle formed between the edge and a line connecting the 

Middle vertex and the center of 

efines the length entitled Fillet.   

 
T

tu ning radius 

le is fitted c

e ew

tr

v

th

 

 

turning radius l

circ

ri

the circle is half of α.  This leads to Equation 3.10 that 

d

 

⎟
⎞

⎜
⎛

=
tan

__
α

radiusturnMinFillet       (3.10) 

⎠⎝ 2
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The following figure illustrates the filleting principle.  The circle meets both edges on a 

tangent, and the new vertices are found using the length Fillet, as shown in the figure. 

his procedure creates the two new fillets and removes the vertex Middle.  This is 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 

Figure 3.4:  Picture illustrating fillet principle 

 
 
T

continued by moving along the path and re-labeling new vertices with Start, Middle, and 

Finish until the target vertex is labeled Finish, at which point the path can be considered 

flyable.    Each path representing every permutation of UAV to target is made flyable in 

this manner. 

 

 A second task for flyability is met when considering that a current path is not 

formed with respect to the aircraft’s heading angle.  Though the path is considered to be a 

flyable one, this can only be if the UAV was initially facing directly towards the first 

vertex along the path from its initial starting vertex.  This will only occur a small 

percentage of the time, so the path must be supplemented at the beginning with several 

segments that get the UAV onto the path facing the correct direction. 

 

Start

Finish

Middle

α

Circle of minimum 
turn radius 

Fillet 
length 

Place new 
vertex here 

Place new 
vertex here 
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 As the location of the next vertex is not guaranteed to be any specific distance 

away from the starting vertex, it is unacceptable to simply let the aircraft attempt to turn 

in order to align itself with the path aside from relatively small angular differences.  

Depending on how close the UAV is to the next vertex and how important reaching that 

vertex is, a vehicle could potentially overshoot its intended target.  A method is devised 

here that adds the minimum length section to the beginning of the path and allows the 

AV to turn as quickly as possible to arrive on the selected path starting from the same 

initial vertex but now facing with the correct heading angle. 

 

 This methods shares similarities with the theory behind the fillets presented in the 

preceding pages and is much an extension of it.  For an aircraft traveling along a given 

heading angle and suddenly re-planned and assigned a new path with a different heading 

angle, the quickest method to get on the new path with the correct heading angle without 

the possibility of overshooting any target will be to ircles of minimum turning 

radius to the old and new paths, with each circle being tangent to one of the paths and 

both circles being tangent to each other.  To illustrate this concept, Figure 3.5 shows two 

different paths.  This plot begins with a UAV initially with a heading angle of –90 

degrees (heading toward the bottom of the plot).  The ne signed to it has a 

heading angle of 0 degrees (heading toward the right edge of the plot).  Whenever the 

new path is assigned, the UAV is located in the center, where the two paths cross.  In 

order to get on the new path with a minimum amount of time, the aircraft will begin by 

flying along the current path heading at –90 degrees.  Upon reaching the tangent with the 

lower left circle (which has a radius equal to the aircraft’s minimum turning radius), the 

UAV will begin following the circle.  At the tangent between the two circles, the aircraf

will follow the secon ance until it reaches 

s initial start point.  The aircraft will now be heading exactly 0 degrees, toward the right 

f the plot, starting exactly from where the new path was planned to start.  

U

fit two c

w path as

t 

d circle of minimum turn radius for the short dist

it

o
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Initial 
heading

Final 
heading 

Figure 3.5:  Example of heading angle s  

 

 

 This method can be used for any change in heading angle.  The next example 

demonstrates the effects of having a new path such that the heading angle flips, and the 

aircraft must turn around.  Once again, the vehicle begins by continuing along its current 

path until it reaches the tangent of the first circle with the current path.  It follows this 

circle until it reaches the tangent of the two circles, where is beings to follow the other

circle.  Upon reac ngent to the new 

ath, the aircraft follows the newly assigned path now currently heading in the correct 

olution

 

hing its initial location, where the second circle is ta

p

direction to accurately follow the new path. 
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Figure 3.6:  Second example of heading angle solution 

mple, the UAV is initially heading at –20 degrees and 

 

 
 
 Figure 3.7 is the last example meant to illustrate how this approach handles 

varying heading angles.  In this exa

is assigned a heading angle of 25 degrees.   

   

Figure 3.7:  Final example of heading angle solution 

 
his last example is getting nearing a limit that should be imposed on the usefulness of 

this approach.  For angles with less than about 30 degrees difference, the aircraft can 

T

Initial 
heading

Final 
heading 

Initial 
heading 

Final 
heading 
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follow the new path with sufficient accuracy.  It should be noted that a filleting type 

approach could not be used here since the aircraft is already to the intersection of the two 

edges before the new path is assigned and corrective measures are taken. 

 

 For performing this procedure, the current heading angle and the new heading 

angle are found.  For ease in computation, these angles are then rotated such that the new 

heading angle is horizontal at 0 degrees, and the current heading angle of the aircraft is 

rotated by the same amount.  Again, for small angles of roughly 30 degrees or less 

difference, this procedure is omitted.  The first calculation involves finding the distance 

the aircraft must fly before beginning to turn onto the first circle. 
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2
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2

2     (3.11) 

 
The coefficients have been determined by numerical methods for use in the MATLAB 

code heading_angle_paths.m.  The coordinates of this first break point may now be 

calculated using the initial position of the aircraft and the distance determined from 

Equation 3.11. 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= urnmin_t

pi
angleHeading

Cdistinit 2
_

_
3

1

( )angleHeadingdistinituavxbreakx _cos___ ∗+=    (3.12) 

( )angleHeadingdistinituavybreaky _sin___ ∗+=    (3.13) 

 

With these coordinates, all the information for computing the two circles of minimum 

rning radius is at hand.  The centers of the circles are found based on whether the 

orig r counter clockwise 

ire tion.  For positively rotated heading angles, the variable ccw will be set to negative 

one; otherwise, it will have a unitary value.  Equations 3.14 and 3.15 are used to find the 

tu

inal heading angle was rotated in the clockwise direction o

d c
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center of the second circle.  For finding the center of the first circle, the new heading 

angle is substituted for the current heading angle and the position of the UAV is used 

instead of the first breakaway point. 

 

⎟
⎠
⎞

⎜
⎝
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−∗+=
2

____ ccwpiangleHeadingCOSdistinitbreakxcirclex        (3.14) 

⎟
⎠
⎞

⎜
⎝
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−∗+=
2

____ ccwpiangleHeadingSINdistinitbreakycircley        (3.15) 

 
Two more angles are needed to find the locations where the two circles become tangent 

and at what angle the first circle becomes tangent to the current path.  The first angle is 

the one made by the horizon (the reason this system was first rotated) and the line 

 the first circle.  The second angle is the 

a

hs, with shortening, adding fillets, and 

angle sections, updated costs are assigned to the paths 

 

onally prudent to perform path shortening and flyability 

ber of possible paths that Voronoi presents.  The 

ombination of using both a Voronoi diagram approach and a line-of-sight shortening 

ffer advantages that an offer by themselves.  Using the flyability methods 

resented in the preceding pages ensure that dynamically feasible paths will be chosen 

rom without the complexities associated with a linear program or optimal control.  This 

connecting the breakaway point and the center of

one m de by the horizon and the line connecting the center of the second circle to the 

center of the first circle.  This now leads to the creation of vertices around the circles, 

starting first with the initial location of the UAV, followed by the first breakaway vertex, 

then with vertices around the first circle until the circles become tangent, then with the 

vertices along the second circle until the initial position once again becomes a vertex, and 

finally ending with the first assigned vertex of the new path.  The coordinates are then 

rotated to reflect the change back to the unrotated system, and the new vertices are 

inserted into the new paths. 

 

 Since much change has occurred to the pat

possibly adding initial heading 

using the same methods as first described in Section 3.3.  It may seem redundant to have 

already assigned costs, only to later change them before they are used in task allocation. 

However, it is not computati

additions to such a large num

c

o  neither c

p

f
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concludes the entire path planning section and leads directly into the last section, the 

pplication of a Multi-dimensional, Multiple-Choice Knapsack Problem for solution to 

e task allocation problem. 

 
3.5 Multi-dimensional, Multiple-Choic Knapsack Problem 
 

 
The task allocation problem is solved via implementation of a Multi-dimensional, 

Multiple-Choice K  be NP-hard 45 in 

 of knapsack problems.  For a typical knapsack problem, items for the knapsack 

 is packing of cargo – the 

oal is to maximum the amount of cargo put aboard a ship or a truck or an aircraft, but 

resource con e MMKP is 

a variant of such a problem.  With MMKP, there are multiple groups of items.  Each 

group has an assigned value but uses up certain resources.  The objective of the MMKP is 

to select a single item from each group for maximizing the value while adhering to the 

resource constraints46.    

 

 As applied to the current problem, the choice of a single item from a group 

presents a single permutation of UAV to target within the group of a single UAV.  The 

a

th

 
 

e 

napsack Problem (MMKP), which is considered to

the class

must be picked such that a total value is maximized while adhering to resource 

constraints.  A simple example of the classic knapsack problem

g

straints such as total weight and volume must be considered.  Th

re

constraints on the solution are that each target has to be visited, and each UAV has to be 

assigned a path.  These constraints assure that tasks are assigned to all UAVs and that 

objectives of visiting targets are not missed by assigning multiple UAVs to perform the 

same task while neglecting to perform others.  Instead of maximizing a value function, 

the equivalent benefit is derived when attempting to minimize a cost.  Each permutation 

has already been assigned a cost as addressed in early sections, and thus it is the goal of 

the MMKP to use these costs to find the optimal combination of paths to minimize the 

cost of performing the entire mission for the team. 
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 An example will clarify this concept.  The MMKP knapsack problem of Figure 

3.8 features 3 UAVS and 3 targets, and each block represents a possible path. 

   

Table 3.2:  List of example path permutations and mission costs 

 

From inspecting the combinations above, the cheapest combination of paths that satisfies 

the constraints of every target being visited and each UAV being assigned a task is the 

 

   

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3.8:  Example UAV to target MMKP setup 

 

For this problem, there are six different permutations of the path combinations.  

Specifically, the list of permutations is found in Table 3.2. 

 

382
413
153
351
162
391

31
21
12
32
13
23

Paths of CostChoice Path 3 UAVChoice Path 2 UAVChoice Path 1 UAV

 

Path to 
target 1 
 
Cost: 10 

Path to 
target 1 
 
Cost: 5 

Path to 
target 1 
 
Cost: 13 

Path to 
target 3 
 
Cost: 2 

Path to 
target 3 
 
Cost: 19 

Path to 
target 3 
 
Cost: 7 

Path to 
target 2 
 
Cost: 3 

Path to 
target 2 
 
Cost: 24 

Path to 
target 2 
 
Cost: 9 

UAV 1 UAV 2 UAV 3
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combination of UAV 1 being assigned AV 2 being assigned to target 1, and 

UAV 3 being assigned to target 3 erforming the mission using this 

ssignment of tasks is 15.  Any other assignment of tasks results in an increased cost to 

per  It should be noted that the goal is only to minimize the total 

mission cost, not the individual costs for the UAVs.  The can be seen where UAV 1 was 

not cho

 
 he algorithm for solution to the task allocation problem initializes by inputting 

each U

 Figure 3.8.  Similar to Dijkstra’s algorithm, the cost of assignment of any 

combination of paths is set to infinity.  A permutations m

e UAV to target paths could be combined while adhering to the resource constraints is 

 combination.  As 

lower cost combinations are found, they become the selected assignments unless an even 

lower cost combination is encountered.  Once determined that the

ermutations of assignments, the MMKP reports the selected assignments and the cost to 

to target 2, U

.  The total cost of p

a

form the mission. 

sen to follow its cheapest path.  It would have been cheaper for UAV 1 to be 

assigned to target 3 with a cost of only 2 instead of being assigned to target 2 with a cost 

of 3.  However, such an assignment would have used up a resource allotted for target 3, 

and caused overall mission costs of either 16 or 39, depending on where UAV 2 and 

UAV 3 were assigned. 

T

AV to target permutation and associated cost in a matrix similar to the layout 

shown in

atrix that captures all the ways 

th

formed.   These permutations are then searched to find the lowest cost

re are no cheaper 

p

perform the mission.  The code applying this method is titled MMKP_task_allocation.m. 

 

 The first two research objectives have now been fulfilled.  Each UAV has a task 

assignment for visiting a target and a dynamically feasible path to complete that task.  

The coupling of the problem has been accounted for using this approach, and the last 

steps in the path planning and task allocation scheme are simple data conversion used for 

plotting purposes.  All MATLAB code employing the methods discussed here are 

included in Appendix A, and are listed in the order in which they are run.   
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Chapter 4 

The third research objective is the development of a simulation environment that 

employs the path planning and task allocation approach described in the previous chapter.  

Thi ree-of-freedom aircraft model to follow the assigned paths 

at are generated for each UAV.  Therefore, it is appropriate to first review the aircraft 

dynami

Aircraft Dynamics  
 

4.1 Introduction 

 

s simulation uses a six deg

th

cs and equations of motion.  More detailed descriptions and analyses than those 

presented here can be found in several references47-49. 

 

A single, nonlinear vector equation can be formulated to accurately model an 

aircraft: 

( ) ( )( )tlt totatotal MFxfx ,,=&     (4.1) 

 Equation 4.1, x is defined as the following vector of state variables: 

   (4.2) 

his state variable modeling consists of twelve state equations that can be divided into 

ur groups.  The first group of state variables, the translational velocity variables, 

onsists of the true airspeed V, the aircraft angle-of-attack α, and the sideslip angle, β.  

he second group is the rotational velocities of the aircraft, with p, the angular roll rate, 

, the angular pitch rate, and r, the angular yaw rate.  The third group describes the 

aircraft attitude i e vertical axes.  

his group includes ψ, the Euler yaw angle, θ, the Euler pitch angle, and φ, the Euler roll 

ircraft x-coordinate with respect to the 

arth-fixed x-axis, ye, the aircraft y-coordinate with respect to the Earth-fixed y-axis, and 

ze, the aircraft z-coordinate with respect to

 

In
 

[ ]T
ee HyxrqpV φθψβα=x

 

T

fo

c

T

q

n terms of orientation of the body axes with respect to th

T

angle.  The last group of variables describes the aircraft position with respect to an Earth-

fixed set of axes.  This group contains xe, the a

E

 the Earth-fixed z-axis. 
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 Certain assumptions should be noted for the following analysis of the aircraft 

equations of motion.  First, the aircraft is considered to be a rigid body.  Secondly, the 

mass of aircraft is not time-dependent – it is cons

sed, where the curvature and rotation of the Earth are neglected. 

 

4.2 Body Axes Modeling 

The body axis system is depicted in Figure 4.1.  Forces and moments acting on an 

aircraft are also shown and will be used in the follow

riginates at the center of gravity of the aircraft, as shown by the point.  The x-axis is the 

nward from the aircraft. 

 

 

 

Figure 4.1: Body axis system with forces and moments 

 
 Consider a point mass δm, moving with velocity V, and being acted upon by force 

tant.  Finally, a flat Earth assumption is 

u

 

 

ing analysis.  The body axis system 

o

longitudinal axis of the aircraft that extends along the nose to the tail.  The y-axis is the 

lateral axis of the aircraft and is parallel with the wings.  The z-axis is perpendicular with 

the x-y plane and points dow

 

 

 

 

 

 

 

F.  Application of Newton’s Second Law yields: 

 

N, r

L, p 

M, q 
uX

w

v

Y

Z
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VF &mδδ =        (4.3) 

 
An aircraft is considered to be a rigid body consisting of a finite number of point masses.  

Applying Equation 4.3 to each point mass δm and summing results in Equation 4.4. 

∑∑ = VF &mδδ       (4.4) 

 
The equation accounts for the total force acting upon the aircraft. 
 

( )∑= VF m
dt
d δ      (4.5) 

 
here the force can be defined as: w

 

zyx FFF kjiF ++=       (4.6) 

 
he center of gravity of the aircraft is defined as the average location of the weight.  This 

location ponents u, v, 

and w.   

kiiV

T

 can be used to describe the velocity of the entire aircraft, using com

wvugc ++=..

 
The velocity for any poin

      (4.7) 

t inside a rigid body is: 
 

rVV &+= ..gc   

on of velocity, Equation 4.5 becomes: 

 

     (4.8) 

 
where r is the vector connecting any point inside the rigid body to the center of gravity.  

Using this definiti

( )( )∑ += rVF &..gcm
dt
d δ     (4.9) 

This can be divided into two separate parts, 
 

 

( ) ( )∑∑ += m
dt
dm

dt
d

gc δδ rVF &..     (4.10) 
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The second part of Equation 4.20 will be identically zero due to the definition of the 

center of gravity.  Thus, the general force equation can be defined as: 

 

..gcmVF &=       (4.11) 

 
 The moment developed about the center of gravity for a point m

r is shown in the following equation.  This equation also uses the definition of angular 

ass δm located at 

momentum h. 

( ) hVrMδ = δδ
dt
dm

dt
d

=×      (4.12) 

 
 this, the general moment equation about the center of gravity is found to be: 

      (4.13) 

where the moment is defined to be: 
 

jiM

From

 

hM &=..gc

 

NkMLgc ++=..

 
Next angular velocity is introduced.  Angu
 

      (4.14) 

lar velocity is defined as: 

rqp kji ++=Ω
r

      (4.15) 

 
The angular velocity can be used to find the total velocity for any point mass according to 

the following equation: 

 

rVV ×Ω+= ..gc       (4.16) 

 
The angular momentum can also be shown to be I, the inertia tensor, dotted with the 

angular velocity. 

Ω⋅=
r

Ih       (4.17) 

 

 44



The inertia tensor is given by: 
 

     (4.18) 

 
Using the body reference frame described in Figure 4.1, the entire reference frame 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=

zzyzx

yzyyx

xzxyx

III
III
III

I

 

rotates with the angular velocity.  The general force and moment equations given by 

Equations 4.11 and 4.13 then become:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×Ω+

∂

∂
= ..

..
gc

gc

t
m V

V
F

r
     (4.19) 

( )Ω⋅×Ω+
∂

Ω⋅∂
=

rr
r

IIM
tgc ..      (4.20) 

 
The force equation shown by Equation 4.19 can be rearranged to solve for th linea

accelerations at the center of gravity. 

e r 

 

..
..

gc
gc

mt
VFV

×Ω−=
∂

∂ r
     

he above equation can be broken into its scalar acceleration parts as shown in Equations 

4.22

 (4.21) 

 
T

 through 4.24. 

 

rvqw
m
F

u x +−=&       (4.22) 

pwru
m
F

v y +−=&       (4.23) 

qupv
m
Fw z +−=&       (4.24) 

 
For a constant inertial system, the moment equation shown in 4.20 can be rearranged to 

solve for the angular accelerations. 
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( )( )Ω⋅×Ω−=
∂
Ω∂ −

rr
r

IMI ..
1

gct
     (4.25) 

 
where  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−

653

542

321
1

III
III
III

II       (4.26) 

 
with 
 

xyxzyzxzyxyzyzxzyx IIIIIIIIIIII 2222 −−−−=I    (4.27) 

⎤

⎢
⎢
⎢

⎣ ++
+++
++−

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

2

2

653

542

321

xzxyyzxxzyyzxy

xzxyyzxxzzxxyyzzxy

xzyyzxyxyyzzxyyzzy

IIIIIIII
IIIIIIIIIII
IIIIIIIII

III
III    (4.28) 

ollowing three equations represent the first three of twelve state equations that are used 

to describe the motion of an aircraft in flight. 

 

⎡⎤⎡ IIIII

⎥⎦+ 2
xzzx III

⎥
⎥

 
As with the rearranged force equation, Equation 4.25 can be broken into scalar parts.  The 

f

 

( ) (( )(

( )( ) ( ) (
( )( ))132

12
2

31
2

213

32123
2

321
1

IIIIIIIqr

IIIIrIIIIqIIIIIIIpr

IIIIIIIpqIIIIpNIMILIp

yzxzxy

yzxzxyyzzxxyyz

xyyzxzxzxy

−−−+

−+−+−−−+

−−−+−+++=
I

&

  

)

)    (4.29) 

 

( ) ( )( )( 2
542 IIIIIIIpqIIIIpNIMILI −−−+−+++

I
&

( )( ) ( ) ( )
( )( ))254

24
2

52
2

425

54245
1

IIIIIIIqr

IIIIrIIIIqIIIIIIIpr

q

yzxzxy

yzxzxyyzzxxyyz

xyyzxzxzxy

−−−+

−+−+−−−+

=

    (4.30) 
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( )( ))
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2
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2
536
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1

IIIIIIIqr

IIIIrIIIIqIIIIIIIpr

IIIIIIIpqIIIIpNIMILIr

yzxzxyyzzxxyyz
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−−−+−+++=
I
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  (4.31) 

4.3 Flight Path Equations 

In lieu of using the velocity variables u, v, and w, which are found in terms of the 

true velocity, and the 

ngle-of-attack α and the sideslip angle β are used to determine where the true velocity 

vector points with respect to the body axes.  Figure 4.2 

path axes, it body axes, the corresponding angles, and the true velocity vector. 

)
365 yzxzxy

 
 
 

 

aircraft body axes, a set of axes based on the flight path reference system is used.  The 

velocity used by the state equations then becomes the aircraft’s 

a

illustrates an aircraft and its flight 

 

 

Figure 4.2: Stability axis system and angles with body axis system 

 Using this figure, it can be seen that the body axes-based velo a
 

cities are rel ted to 

the true aircraft velocity using: 

 

α 
β 

X

X 

Y, Ys 

V 

v 

u 

s 

  Zs   Z 

w 
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⎥
⎥
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⎦
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⎢
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⎪
⎭

⎪
⎬

⎫

⎪
⎩
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βα
β

βα

sinsin
sin

coscos
V

w
v
u

     (4.32) 

he ma
 
T gnitude of the true velocity is then determined by the following equation. 

 
222 wvuV ++=       (4.33) 

 
f-attack α and the sideslip angle β are then found by The angle-o

 

⎟
⎠
⎞

⎜
⎝
⎛=

v
warctanα      (4.34) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=

22
arctan

wu
vβ             (4.35) 

ntiating 

quation 4.33, which results in: 

 

 
 Determining the aircraft’s true acceleration is accomplished by differe

E

( )
V

wwvvuuwvu
dt
dV

&&&& ++
=++= 222     (4.36) 

, and w from Equation 4.32 yields: 

 

 
Using the expressions for u, v

( ) ( ) ( )
V

VvVuVV
&&& w&βα sininββα ssincoscos ++

=

 
Finally, the fourth state equation can be found by substituting the expressions for the

found in Equations 4.22 through 4.24. 

 

    (4.37) 

 

body axes accelerations 

( )βα sinsinF     (4.38) ββα sincoscos1
zyx FF

m
V ++=&
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 The fifth state equation is the rate of change of the angle-of-attack.  It is 

determined by first differentiating Equation 4.34, as shown below. 

 

22arctan
wu

wuwu
v
w

dt
d

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

&&
&α      (4.39) 

 
The above equation can be manipulated to get: 

 

( ) ββ
α 222222 cossin V

wuwu
V

wuwu
vV
wuwu &&&&&&

&
−

=
−

−
=

−
−

=     (4.40) 

 of the rate of angular change equation for 

ngle-of-attack can be found by substitution of Equations 4.32 and 4.22 through 4.24. 

 

 
As with the true acceleration, the final form

a

( ) ( ) βααα
β

α scoscossin1
cos
1 rpqFF

mV zx +−+
⎭
⎬
⎫

⎩
⎨
⎧ +−=&

 
 The sixth state equation is found in the same manner.  The rate of change of the 

sideslip angle is first found by differentiating. 

 

α tanin   (4.41) 

( ) ( )
22222 wuV

wwuuv
wudt +

+−
⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ +

&&22

arctan vuvvd +
=⎟

⎞
⎜
⎛

⎟
⎞

⎜
⎛

=
&&β    (4.42) 

 
Substituting in the expressions for u, v, and w and their derivatives: 

 

( ) αα

tate equations can be broken 

into components.  These components consist of aerodynamic forces and moments, 

propuls

βαββαβ cossinsinsincossincos11 rpFFF
mV zyx −+

⎭
⎬
⎫

⎩
⎨
⎧ −+−=&        (4.43) 

 
  
 The forces and moments acting upon these first six s

ion forces and moments, and gravitational force. 
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    (4.44) 

 

⎪⎪

     (4.45) 

ypically, aerodynamic forces are used in more familiar terms of lift, drag, and side force 

s opposed to the body axis system forces.  The two sets of forces are related by: 

    (4.46) 

erodynamic forces and moments can be found using the following six equations. 

 the longitudinal direction, 
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A

 

In

SqCLift L=       (4.47) 

SqCDrag D=      (4.48) 

cSqCM m=       (4.49) 

 

In the lateral direction, 

SqCY Y=       (4.50) 

SbqCL l=       (4.51) 

SbqCN n=       (4.52) 

an be found from known aircraft 

oefficient derivatives.  In the longitudinal direction, the coefficients are built up 

component-wise using the following three equations: 

 
Aerodynamic coefficients used in the above equations c

c
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EDHDDDD EiH
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 the lateral direction, the coefficients are: 
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rnAnnnYn rArp
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pbCCC δδβ
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⎛+⎟

⎠
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⎜
⎝
⎛+=

22
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4.4 Earth-fixed Axes and Kinematic Relationships 

 

The last six state equations are derived from a new set of axes and kinematic 

lationships.  These equations will relate the aircraft orientation to an Earth-fixed set of 

arth-

xed axes until the origin of the translated set corresponds to the center of gravity of the 

raft.  This set of axes will be labeled X1, Y1, and Z1

The first rotation of the axes is about the Z1 axis over the Euler angle ψ.  This axis 

is then labeled X2, Y2, and Z2.  The next rotation of the new ax

rough the Euler angle φ.  This results in the new set of axes X3, Y3, and Z3.  The final 

re

axes.  Figure 4.3 illustrates the principles discussed here for relating the aircraft to the 

Earth-fixed axes.  The first step is to translate a set of axes parallel to those of the E

fi

airc .  These axes will be rotated three 

times to align themselves with the body axes of the aircraft. 

 

es set is about the Y2 axis 

th
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rotation of the axes is about the axis X3, through the Euler angle θ.  The set of axes that 

sults from these three rotations is labeled X, Y, and Z, and is aligned with the body axes 

of the aircraft. 

 

 

 

 

 

 

 

The first relation from the above is that the first set of axes X1, Y1, and Z1 is 

re

 

 

 

 

 

 

 

 

Figure 4.3: Aircraft orientation with Euler angles 

  

 

parallel to the Earth-fixed axis.  From this, it is easily seen that 

 

eee zWyVxU &&& === 121      (4.59) 

Using the above equation and relating each set of axis to the next, the Earth-relative 

velocities can be related to the body-relative velocities. 

 

   (4.60) 
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This reduces to provide an equation for Earth-relative velocities. 

 

 each of the 

( ){ } ( ) ψφφψθφφθ sinsincoscossincossincos wvwvuxe −−++=&   (4.61) 

}({ ) ( ) ψφφψθφφθ cossincossinsincos wvsincos wvuye ++=& −−   (4.62) 

( ) θφφθ coscossinsin wvuze ++−=&     (4.63) 

 

Using the expressions of Equation 4.32 to relate the body axes velocities to the true 

velocity h, and ninth 

state equations are found to be: 

 

The Z-axis is defined to be pointed downward, so the relationship between the ZE axis 

and the altitude of the aircraft is: 

 

ezh && −=       (4.64) 

 

 V, the angle-of-attack α, and the sideslip angle β, the seventh, eight

( ){
( )}ψφψθφβα

ψφψθφβψθβα
sinsincossincoscossin

sincoscossinsinsincoscoscoscos
++

−+= Vxe&    (4.65) 

 

( ){
( )}ψφψθφβα

ψθφψφβψθβα
cossinsinsincoscossin

sinsinsincoscossinsincoscoscos
−+

++= Vye&    (4.66) 

 

   (4.67) 

 

 

 The last three state equations come from the airplane kinematic equations.  The 

relationship between the Euler angular rates and the angular velocity components is: 

 

{ }θφβαθφβθβα coscoscossincossinsinsincoscos −−= Vh&

φθψ
r
&

r
&

r
&

r
++=++=Ω rqp kji       (4.68) 

 
The Euler angular rates can be found by referencing which axis each rotates about.  For 

the angular rate ψ
r
& , the rot o the next equation. ation is about the Z1 axis.  This leads t
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( )( )ψφφθθψ &
r
& cossincossin kji ++−=     (4.69) 

 

The next angular rate is θ
r
& , which rotates around the Y2 axis.   

 

( )θφφθ &
r
& sincos kj −=      (4.70) 

 
The last angular rate is φ

r
& .  Since its rotation is about the X3 axis, its equation is: 

 

φφ &
r
& i=        (4.71) 

 
These three relations can be substituted into Equation 4.68 to yield the kinematic 

equations: 
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     (4.72) 

 
The final three state equations are found by inverting the above equation. 
 

Invert to get: 

( )φφθψ cossinsec rq +=&      (4.73) 

      (4.74) φφθ sincos rq −=&

( ) θφφφ tancossin rqp ++=&     (4.75) 

 
 

 At this time, all twelve state equations have been developed, and an aircraft model 

can be implemented into the simulation presented in the next chapter. 
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Chapter 5 

Development of Centralized UAV Simulation  

 

5.1

The simulation environment developed in this chapter is one where a central 

processor controls all of the decision-making abilities for the entire UAV team.  This 

simulation fulfil hapter 1, and is 

me-varying since the states of targets can change, UAVs can be and actually are 

 Main Simulation System 

 

s the third and fourth research objectives as presented in C

ti

destroyed during the simulation, unknown threats and targets can appear, and the group 

of UAVs can replan using this new information. 

 

Figure 5.1 shows the main SIMULINK block of the simulation code. 

 

 

Figu tem re 5.1:  Main simulation sys
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There are several main components of the simulation, and each will be discussed 

Section 5.4.  The outputs from this are 

ositions of each UAV, which are checked to see if the position coincides with a threat 

boundary or a no-fly zone.  If a UAV position does meet one of these criteria, another 

scheme is executed to determ urvives.  A UAV Manager 

block is discussed in Section 5.5.  This block keeps track of all UAVs and triggers action 

 be taken if a UAV is lost.  The Targets Manager block keeps track of the state of each 

5.2 Simulation Inputs 

 

The obvious first step for the simulation is to initialize all inputs.  The necessary 

inputs can be derived from the original problem statement given.  The first information is 

the number of UAVs, targets, threats, and no-fly zones.  Because the fourth research 

objective states that the simulation should be of a dynamic environment, the targets and 

threats are divided into the number of static and the number of pop-up for each.  Pop-up 

targets and threats are now defined as those that are not known by the UAV team 

separately in subsequent sections of this chapter.  The first component is the simulation 

inputs.  All necessary information is inputted based on graphical user interfaces that are 

discussed in Section 5.2.  The top left block initializes these.  The next component is the 

path planning and task allocation block, seen as the large middle block of Figure 22.  This 

block executes the path planning and task allocation approach discussed in Chapter 3 and 

will be elaborated further upon is Section 5.3.  Once a UAV is given an objective and has 

a planned path, the aircraft dynamics discussed in Chapter 4 are implemented in the 

Aircraft Dynamics Blockset, discussed in 

p

ine if the UAV is destroyed or s

to

target.  As assignments are completed by individual UAVs, target states change, and 

targets are eventually removed once confirmed as destroyed.  More information about the 

Target Manager is found in Section 5.6.  The last main block of the simulation is the 

Threats Manager.  It is similar to the Targets Manager, and keeps track of all known 

threats, their positions, and when they fire at a UAV.  Section 5.7 will complete the 

discussion of this manager.  The final section of this chapter shows the outputs of the 

simulation and gives an example simulation. 
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whenever the simulation first begins, but rather appear after a time that the omnipotent 

user defines.   

 

Graphical user interfaces have been developed to collect this necessary 

information in an easy manner.  Figure 5.2 illustrates the main menu of the GUIs.   

 

 

Figure 5.2:  Cooperating UAVs Simulation Main Menu 

 

This GUI collects the information specified above and allows the user to continue 

inputting information in one of two ways.  The first way, the GUIs with visual 

initialization, will be discussed further in this section and allow the user to ‘point-and-

click’ to initialize the battlefield.  The second way to input the information is with the 

numerical initialization GUIs, where the user types in all locations manually. 
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 All GUIs in this initialization scheme have error checking.  All numbers inputted 

must be within proper ranges, and all necessary values must be specified for proper 

initialization.  The following figure shows the error message shown to the user whenever 

n input error is detected. 

 

a

 

Figure 5.3:  Error message 

 

 The next step for initializing the data is the aircraft menu.  From the previous 

chapter, it is clear that many aircraft parameters are needed to accurately model the 

aircraft dynamics.  The following menu uses several ‘built-in’ aircraft with all the 

necessary parameters already defined.  The only necessary input from the user is the type 

f aircraft and its initial positions.  Using the numerical initialization option, a value for 

each Earth-fixed initial position is chosen manually by entering numbers.  With the 

graphical initialization option, only the height needs to be typed for the aircraft position.  

Figure 5.4 illustrates the Aircraft Menu GUI. 

 

o
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Figure 5.4:  Aircraft Menu GUI 

 

The Earth-fixed axial positions for XE and YE are now entered using a graphical ‘point-

and-click’ method.  A message indicating what is being placed on the graph is displayed, 

along with instructions to first determine the location of the object using the crosshairs, 

and finally click on that location to place the object there.  Figure 5.5 shows the use of 

this point-and-click tool for setting up the battlefield.  This method is quite useful for 

determining where appropriate locations for the UAVs should be and illustrates where the 

placed UAVs for use in placing other UAVs. 
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Figure 5.5:  Point-and-click method of placing UAV positions 

 

 The UAVs are displayed as blue diamonds with the individual number to the right 

of the UAV.  The battlefield size is defaulted to a 200-kilometers by 200-kilometers.  

This size was selected so that longer distances for target engagement could be simulated 

without having an excessively long simulation time for literal cross-country travel by a 

team of UAVs. 

 

 Next, the target information is inputted.  Two different menus are used to 

accomplish this task.  The first of these menus is for the static target values and locations, 

while the second is for d locations.  Since the 

pical mission envisioned within this research has been the ‘high-risk but high-value’ 

the so-called ‘pop-up’ target values an

ty
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mission type, associated values for individual targets are appropriate.  These values are 

use  the case of more targets than 

AVs, and will be discussed further in the next section.   The Static Target Menu and the 

Pop-up

d for determining which targets are attacked first in

U

 Target Menu vary only by addition of a pop-up time for the second menu.   

 

 

Figure 5.6:  Pop-up Target Menu 

 

The static target values are first selected; next, the static targets are then placed using the 

same ‘point-and-click’ method as discussed earlier.  The UAV positions are still visible 

hen targets are placed for ease of battlefield setup.  Once the static targets are placed, w

the pop-up menu is used to select values for pop-up targets.  These targets are then placed 

to complete the target information for the simulation.  On the battlefield plot, static 

targets are depicted by a green ‘x’, while the popup targets are shown with a green cross. 
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 Now, no-fly zone information is required.  The only necessary information for 

these is the location and the radius.  Figure 5.7 is the menu for the radius input.  No-fly 

zones can represent two either physical or political boundaries that the UAVs are not 

allowed to cross.  For ease of use input, the no-fly zones are modeled as simple 

mountains with a known radius.  While input of complex political boundaries could be 

ccomplished, it was chosen that ‘point-and-click’ mountains would be used to simulate a

no-fly zones. 

 

 

Figure 5.7:  No-Fly Zones Menu 

utted, the point-and-click menu appears and the 

cations of the no-fly zones are chosen.  On the battlefield plot, each placed no-fly zone 

app rs sly placed UAVs and 

targ  e plot while no-fly zones are placed. 

 

 threats.  Threats are 

bro ar to the targets.  Typical threats are 

 

Once the radius of each no-fly zone is inp

lo

ea  as a black filled in circle of given radius.  The previou

ets are also visible on th

The last inputs are the descriptions and locations of the 

ken into two groups of static and pop-up, simil
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bui n s 

the effective range of the threat and the probability of kill.  The threats that are built in to 

lt-i  to the drop down list for the threat type and description.  The description include

the list include all the threats described in Table 3.1 from Chapter 3.  As with the target 

menus, the static threat information is first input and then locations are point-and-click 

inputted.  The static threats appear on the battlefield as a red star with a red circle of 

effective range surrounding. 

 

 

Figure 5.8: Pop-up Threats Menu 

 

The ‘Pop-up Threats’ menu also includes the pop-up time for each threat.  As above, the 

threats are then placed where desired on the battlefield.  All previously placed objects 

will still be visible when placing the threats.  Pop-up threats will appear as red ‘O’s with 

a red circle of the effective range surrounding it. 
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 At this point, all needed information is now entered into the simulation.  A typical 

nal bafi ttlefield setup is shown in Figure 5.9, below.  The next sections will describe the 

components used within the simulation. 

 

 

Figure 5.9:  Example battlefield setup 

 

 

5.3 Path Planning and Task Allocation Execution 

 
Before the path planning and task allocation scheme can be executed, the number 

of targets and waypoints must first be equated with the number of UAVs.  This 

requirement is a consequence of the MMKP constraints that each UAV must be assigned 

a single task and each target is required to be visited.  However, this is fairly easily 
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overcome using the Place Waypoints block and the accompanying MATLAB code, 

place_waypoints.m, as found in Appendix B. 

 

 

Figure 5.10:  Place Waypoints block 

 

The UAV locations and velocities and the target locations, values, and states are 

input into the block.  The MATLAB code place_waypoints.m is then executed.  This 

code approaches the problem with two different types of solution.  For the situation 

where the ghest 

alues and removes the lower-valued targets for any number greater than the number of 

t of targets until the number of targets equals the number of UAVs.  These 

aypoints are added at the same locations as the targets based upon the value of targets.  

Targets with a higher value have waypoints added to their position before lower-valued 

targets.  This is to help ensure that higher-valued targets will have a higher probability of 

successful mission e targets.   

red and a waypoint is assigned 

with the same location but no value.  The stored value is then decreased by 50%.  The 

reason that the stored value decreases in half is that if the target is more than twice as 

valuable as any other target, it will automatically get two waypoints assigned to it before 

any other target gets an extra waypoint.  The waypoints do not have values themselves 

re are more targets than UAVs, the program sorts the targets by the hi

v

UAVs.  The removed, lower-valued targets are not forgotten and will be later added back 

in to the list of targets whenever higher-valued targets are removed after being destroyed.  

The second solution is employed whenever the number of UAVs is higher than the 

number of targets, such as toward the end of a mission.  In this situation, waypoints are 

added to the lis

w

 accomplishment by assigning multiple UAVs to thes

 

 The actual method of assigning waypoints begins by finding the highest valued 

target.  The location and value of this target are then sto
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because they are simply the same as the target whose coordinates they share.  The 

program executes for the same number of times as the difference between the number of 

UAVs and targets.   

 

 The path planning and task allocation scheme can now be executed.  The 

following block diagram illustrates the inputs for the scheme and the outputs   

 

Figure 5.11: Path Planning and Task Allocation block 

 

Inputs into this block are the following:  

 

• UAV coordinates, altitudes, velocities, and heading angles 

• Target coordinates 

• No-fly zone coordinates and radii 

• Target coordinates, effective ranges, and probability-of-kill 

• The time at which the program is executing 

• The number of times the path planning and task allocation scheme has executed 
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The program then executes and outputs which assignment each UAV receives and the 

orresponding optimal path for the UAV to fly to complete that assignment.  Options are 

also given whether the user wants to see static plots for every execution of this block.  It 

should be not e 5.11.  This 

ddition indicates the path-planning scheme will only execute whenever the Enable is 

iggere

 

A six degree-of-freedom aircraft model is used within this section to model the 

aircraft dynamics.  The centralized control scheme simulates all of the UAV dynamics for 

the entire group.  The inputs to this section are specifically the outputs of the previous 

section, the assignment each UAV receives and the corresponding optimal path for the 

UAV to fly to complete that assignment.  The outputs are the current positions and 

rotations of the UAV, the current heading angle of the aircraft, and an end-of-path signal 

for each UAV (to indicate when it has reached the target). 

 

Figure 5.12 shows the ‘UAV Dynamics’ block for each of the possible UAVs, 

and the inputs and outputs of the block.   Note that while there are blocks for 9 UAVs, 

there do not have to be 9 UAVs in the simulation, only a maximum of 9 UAVs.  If there 

is less than the maximum number of UAVs running in the simulation, whether from the 

initialization or due to UAV loss, the individual blocks are not enabled within the 

centralized simulation.  All of the present UAVs will then contribute to the outputs of 

positions and rotations, the heading angle output, and the end-of-path signals. 

c

ed that this block contains an “Enable”, seen at the top of Figur

a

tr d.  When the simulation is first started, the path planning and task allocation 

scheme will execute, but after that only when there is a signal to indicate replan.  The 

necessary conditions to produce a replan are discussed in later sections of this chapter. 

 

 

5.4 Aircraft Dynamics Subsystem
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Figure 5.12:  ‘UAV Dynamics’ blocks for all UAVs 

 is 

resent, or if the UAV is not involved in the simulation, the appropriate outputs to 

indicate this.  

 

 

 Under each of the blocks labeled ‘UAV Dynamics’ lies the subsystem shown in 

Figure 5.13.  This block coordinates the enabling of the aircraft model is the UAV

p
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Figure 5.13: Blocks to output UAV positions, heading angle, and signal end of path 

 

 The above subsystem sends an enable signal to the blocks show in Figure 5.14.  

These blocks are subsystems for three separate functions.  The first mask labeled ‘X, Y, 

Z, time, pos_des’ is used to determine a next position for the individual UAV.  The ‘End 

of path’ block is used to determine when the UAV has reached the target position, and 

the ‘UAV DYNAMICS’ block is a mask for the actual aircraft model and autopilot 

subsystem. 

 

 

 

Figure 5.14: Determines next path position, runs aircraft model, and signals end of path 

 

 The first of these subsystems to be discussed is the ‘X, Y, Z, time, pos_des’ block.  

Looking under the mask results in the blocks shown in Figure 5.15.  These blocks are 

used to break up the paths coming out of the path planning and task assignment scheme 

to short segments to use with the aircraft model.  This is accomplished by using look-up in
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tables to find e.  

his location is then outputted and used with the aircraft model. 

 where the UAV will be on the path after a small elapsed amount of tim

T

 

 

Figure 5.15: Blocks that ‘look ahead’ and output next position in path 

 

 The next mask co ining when a UAV has 

reached the end of its path, which is analogous to saying the UAV has reached its target.  

hene

ver the simple subsystem used for determ

W ver the UAV reaches its target, it no longer can look forward in time to the next 

position on its assigned path.  This causes an empty output, which signals the target has 

been reached.  

 

 

Figure 5.16: Determination of end of assigned path 

The last of these three subsystems is the actual subsystem that controls the aircraft 

motion.  Figure 5.17 illustrates this subsystem

 

 
 

. 
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Figure 5.17:  Actual UAV dynamics block, with aircraft model and heading-angle autopilot 

 
This subsystem itself contains three major subsystems.  The first and most obvious 

system is the block labeled “Discrete Time General Aircraft Model’.  This is where 

specific control commands are inputted and used in conjunction with external forces and 

moments and known aircraft parameters to model the aircraft dynamics.  This flight 

simulation environment is an open-source blockset distributed as FDC (Flight Dynamics 

and Control) 49.  This environment consists of five groups, which can be viewed in Figure 

39.  The first such group up contains the standard 

and are used in conjunction with 

quations 4.44 and 4.45.  The fourth group is the Aircraft Equations of Motion group.  

oup.  

group is the determination of the flight path variables, the time-

erivatives of the body axes velocity components and acceleration components, and the 

rouping of aerodynamic forces and moments, propulsive forces and moments, gravity 

forces, and atmospheric turbulences. 

 is the Airdata group.  This gro

atmospheric model, such as gravity variation, temperature, pressure, density, and 

equations related to these, such as dynamic pressure and Mach number.  The second 

group is the Aerodynamics group.  This group calculates the dimensionless coefficients 

discussed in the fourth chapter, in Equations 4.53 through 4.58.  The third group 

calculates forces associated with gravity and wind, 

E

This group uses the twelve state equations in conjunction with the first three blocks to 

completely describe the motion of the aircraft.  These state equations are solved using a 

fourth-order Runge-Kutta method.  The last group is the Additional Outputs gr

Contained within this 

d

g
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Figure 5.18: Flight simulation environment for aircraft model 

 

The aircraft parameters seen in Figure 5.19 are used with the flight simulation 

  

 

environment to model the motion of the aircraft.  These parameters include the geometry, 

mass, and inertial properties, aerodynamic coefficient derivatives, and the state vector of 

initial conditions that was shown in Equation 4.1.  These parameters can be set up to be 

entered manually, as shown in the figure or can be used in conjunction with the specific 

aircraft selected from the GUI inputs. 
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Figure 5.19:  Parameters and inputs for aircraft model 

 

 The second subsystem shown in Figure 5.17 is the Cable and Actuator Dynamics 

subsystems.  This system models the dynamic response associated with the throttle, 

stabilators, ailerons, and rudder as generic first order systems with an inherent delay.   

 

( )
as

asGActuator +
=       (5.1) 
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The ailerons are modeled as a fast response system with the value of a set to 40.  The 

rudder and stabilators are modeled as moderately fast actuators with the value of a set to 

15.  The throttle is set to a slow response, with a low value of 4 being used for a.   

 

 

Figure 5.20: Actuator and cable dynamics subsystem 

he third subsystem shown is the heading angle autopilot.  This autopilot 

enerates commands in terms of throttle adjustment and stabilators, aileron, and rudder 

eflections to follow a desired heading angle.  This is where the input of looking ahead in 

the raft compares its current position and rotations with those of 

here it needs to be at in certain amount of time (usually 15 or 20 seconds later).  It then 

uses th

 

 T

g

d

path is used.  The airc

w

e autopilot shown in Figure 5.21 to generate the necessary commands to follow 

that path (or at least attempt to in case that the path is not dynamically feasible). 
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Figure 5.21: Heading angle autopilot, showing turn generator 

 
 The turn generator of Figure 5.21 is shown in detail in the below figure.  This 

system generates the necessary outputs of p, q, r, and the Euler angles of ψ, θ, and φ. 

 

 

Figure 5.22:  Turn generator subsystem 

 

 This completes the rcraft dynamics.  The last 

part of this section is the block called UAV Positions in the main system.  This block 

moves the angular orientations of the aircraft and leaves only the positions of each 

AV f

 discussion of the modeling of the ai

re

U or use in later calculations of the simulation.  Heading angle is the only orientation 
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angle that is used for the path-planning scheme, and it is output before reaching this 

block.  The other orientation angles are not needed for such calculations as if the UAV is 

destroyed or when a UAV reaches the end of its path.  However, all state information is 

contained within the system of Figure 5.17 for each individual UAV, so these angular 

orientations are not lost, just removed from the UAVs matrix. 

 

 

Figure 5.23: UAV Positions block 

 

5.5

hat fall within the scope of this 

efinition.  The first two blocks are the UAV CRASH and UAV INTERCEPTED blocks, 

hich serve similar functions.  The first of these two blocks is the UAV CRASH block.  

This block uses a MATLAB s-function to determine if a UAV crosses the boundary of a 

no-fly zone.  Though this should never happen with correct paths being assigned, the 

 

 UAVs Manager 

 

For the centralized simulation, the UAV manager is what keeps track of all the 

UAVs.  There are four blocks in the main system t

d

w
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function is still included for simulation completeness and is useful for error checking 

purposes.   

 

Figure 5.24: UAV CRASH block 

 
he MATLAB function uav_crash.m, as found in Appendix B, uses the UAV positions 

 The second block is the UAV INTERCEPTED block.  This block performs 

similarly to e the UAV 

positions with the threat positions and effective ranges.  Figure 46 shows this block. 

Figure 5.25: UAV INTERCEPTED block 

 

If the function finds that a UAV has entered the effective range of a threat, the threat is 

simulated to have fired at the UAV.  Note that each threat is considered to expend its 

entire armament when firing at a UAV.  The amount of this armament is the same 

amount that was originally used to determine the probability-of-kill.  For SAMs, a single 

missile determines this number, while for anti-aircraft artillery, the number of munitions 

T

as output by the aircraft dynamics and compares them with the no-fly zone information.  

If a UAV is determined to cross a boundary for a no-fly zone, the binary vector of UAV 

Crash is changed to a unit value for that UAVs position.  That UAV is then deleted by the 

UAV DOWN block, which will be discussed shortly. 

 

 the UAV CRASH block.  It uses a MATLAB s-function to compar
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fired would be much higher.  When a UAV is considered to have been fired upon, the 

simulator uses a random number generator to determine if the UAV got destroyed.   For a 

random number between zero and one, if the number is less than the probability-of-kill 

for the threat, the UAV is considered destroyed and the binary vector UAV SHOT 

DOWN is changed to a unit value for that UAVs position.  If the number is greater than 

or equal to the probability-of-kill, the UAV survives and continues on its path.  Either 

way, the binary vector THREATS FIRED changes to a unit value for the firing threat and 

the Threats manager, discussed in Section 5.7, then removes that threat.   

 

 The third block that can be considered part of the UAVs manager is the UAV 

DOWN block.  This block combines the two binary vectors UAV SHOT DOWN and 

UAV Crash into a single binary vector UAV DOWN that represents destroyed UAVs that 

are to be removed from the simulation. 

 

Figure 5.26: UAV DOWN block 

 

cheme to replan if a UAV is 

st.  Figure 5.27illustrates the main subsystem. 

 

The information from the UAV DOWN block is used in conjunction with the 

current UAV positions as output by the AIRCRAFT DYNAMICS block for the system 

entitled UAV MANAGER.  The job of this system is to keep track of a current UAV 

matrix and to signal the path planning and task allocation s

lo
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Figure 5.27: UAV MANAGER subsystem 

 

This system is divided into a subsystem for each UAV that keeps track of the positions 

for each UAV, the velocity of the UAV, and if the UAV is destroyed or runs out of fuel.  

The binary value of the UAV DOWN vector associated with the individual UAV is 

combined with a binary value associated with the UAV running out of fuel to determine 

if the UAV is destroyed.  The binary fuel value changes from zero to a unit value after a 

predetermined amount of time (for example, a LOCAAS type UAV has 30 minutes 

before it runs out of fuel).  Changing the velocity of the aircraft to zero is used for a 

determination of UAV destruction.  Because of inherent delays in the simulation, the 

change of velocity to zero is used to signal a replan as opposed to a binary value that is 

only a unit value for a single time step.  Once the velocity changes to zero, the UAV is 
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officially removed from the list of UAVs and thus a replanning of the tasks and paths 

occurs only once for the loss of a UAV.  For UAVs that are not used in the simulation, a 

zero vector is used to denote they do not exist.  Because this vector is assigned at the start 

of the simulation and remains throughout, replanning is never based upon those UAVs. 

 

 

Figure 5.28: Individu city, and destruction al UAV manager for tracking positions, velo

 

In addition to tracking UAV positions, velocities, and destruction, the individual manager 

has a subsystem to print a statement saying which UAV was destroyed and at what time. 

This statement is triggered when the combined binary number contains a unit value.  The 

blocks to accomplish this function are seen in the next figure. 
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Figure 5.29: Printing blocks for UAV destruction 

 

e, and targets are 

eventually removed once confirmed as destroyed.  There are two subsystems of the main 

system

 

All targets start with the first state being assigned to them, where each is indicated as a 

possible target.  The first assignment a UAV must do is to determine is the object really is 

a target.  If the object is determined to be a target, then the second state is assigned stating 

 This concludes the UAVs manager description and the functions performed 

therein. 

 

 

5.6 Targets Manager 

 

The Target managing blocks keeps track of the state of each target.  As 

assignments are completed by individual UAVs, target states chang

 that performs the necessary management.  The first subsystem is contained within 

the block TARGETS CLASSIFIER, while second is the TARGETS MANAGER. 

 

The TARGETS CLASSIFIER has the job of tracking the states of each target.  

The five possible states of any given target are:  

 

1. Indicated as a possible target 

2. Identified as a target 

3. Classified but not attacked 

4. Attacked but not assessed 

5. Assessed as destroyed 
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so.  For objects determined to not be a target, a state indicating that it has been identified 

as not being a target is assigned.   For targets determined to be such, the next possible 

state declares a target as classified but not attacked.  UAVs must determine what type of 

target they are going to attack once the object is declared a target, but prior to the actual 

attack.  Once a UAV attacks a target, that target receives the state ‘attacked but not 

assessed’.  The target must then be assessed as to whether the attack was successful or 

not.  If so, the final state is assigned as ‘assessed as destroyed’; otherwise, the target has 

not been successfully destroyed and must be reattacked.  This is accomplished by 

returning the target to state 3, indicating that the target has been classified but not 

attacked.  The target is then reattacked and reassessed.  

 

 The subsystem performing this state management is shown in Figure 5.30. 

 

 

Figure 5.30:  Target State Manager 

 

 This manager features two parts.  The first part uses a MATLAB s-function called 

tion can be viewed in 

their assigned target.  

re 

ssessed as destroyed.  However, for simulation purposes, it also includes random 

target_classifier_s.m to perform the classification task.  This func

Appendix B.  Individual UAVs signal when they have reached 

Whenever this occurs, this manager increases the state of the target for successful state 

succession, and removes objects that are found to be not actual targets and targets that a

a
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probability that objects are not targets and that targets will take more than one attack for 

successful destruction.  Figure 5.31 contains the function used for classifying purposes. 

 

 

Figure 5.31:  Target classifier function 

The second part of this subsystem is used to signal replanning to occur.  Whenever a 

target changes states, a new task m

anning and task allocation scheme to be assigned to an individual UAV, so thus a signal 

hows how an inequality between the former 

ates of all targets and the new states of the targets is used to enable a replan. 

 

ust be performed.  This task must go through the path 

pl

is issued to cause a replan.  Figure 5.32 s

st

 

Figure 5.32: Part of target classification used for signaling replan 

 

 The second subsystem considered to be part of the managing of targets is the 

block called TARGETS MANAGER.  This subsystem handles the tasks of tracking pop-

up targets and issuing replanning commands based upon new target information.  The 

following figure is of the blocks used for this purpose. 
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Figure 5.33: TARGETS MANAGER 

 

This subsystem contains two smaller systems within itself.  The first of these systems is 

identical to the one shown in Figure 5.32.  This system uses a comparison of old target 

information and current target information to determine when a change has occurred.  

When a change occurs, a signal is sent to initiate a replan. 

 

 

Figure 5.34:  Part of target management used for signaling replan 

 

The second, small system within the TARGETS MANAGER system is used for 

managing pop-up targets.  Pop-up targets have 

ow up on the list of targets at a predetermined time.  This manager tracks the time, and 

rget is included into the target matrix.  Figure 5.35 shows 

with an associated pop-up time. 

been declared by the omniscient user to 

sh

at the predetermined time, the ta

the nine possible targets that can be used 
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Figure 5.35: Pop-up target manager 

 

nder each block labeled TARGET CHANGE lies the blocks shown in Figure 5.36.  

rget and display to the 

ser whenever the pop-up occurs. 

 

U

These blocks control the pop-up function for each individual ta

u

 

Figure 5.36: Pop-up target manager for an individual target 
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5.7 T

r, the threats manager 

 quite similar to the targets manager.  The THREATS MANAGER is shown in the 

llowing figure.  As with the TARGETS MANAGER subsystem, there are two parts 

used to control the replan signal and the new list of threats. 

 

hreats Manager 

 

Aside from the state change functions of the targets manage

is

fo

 

Figure 5.37:  THREATS MANAGER 

 

The first part controls the replan initialization.  This part is the same as the one used in 

the targets manager, as shown in Figure 5.34.  This part compares the list of old threats to 

the current list of threats.  If a change is detected, such as a new pop-up threat being 

added or an old threat firing and then being removed, the replan signal is issued. 

 

 

Figure 5.38:  Part of threat management used for signaling replan 

 

 THREAT CHANGE 

locks, as shown in Figure 5.39. 

The second part of the THREATS MANAGER contains a set of 15

b
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Figure 5.39:  THREAT CHANGE blocks 

 

These blocks each contain a subsystem that controls the pop-up function for each 

individual target and displays to the user whenever the pop-up occurs.  In addition to 

these functions, this subsystem also tracks if and when the threat fires.  If a threat is 

determined to have fired as declared by the UAV SHOT DOWN system, the threat is 

removed from the list of threats, as explained in section 5.5 

 

 

 87



 

Figure 5.40:  Pop-up and firing threat manager for an individual t reat 

 

 

The outputs of this simulation are threefold.  The first is output to the MATLAB 

command window.  This output initially displays all inputted information to the user.  

This infor ons and 

initial states, threat locations, ranges, and pr -kill, and no-fly zone coordinates 

 displays whenever a 

e, and what event caused it.  The second types of output are 

static plots showing the planned paths and allocated tasks.  These plots can be turned on 

or off, and when on, are displayed every time a replan is performed.  The last output is a 

graphical visualization using moving plots to illustrate the simulation. 

 

The first two simulation outputs are illustrated through an example.  This example 

is relatively simple, to keep the length down for necessary plots to shown simulation 

steps.  This simulation consists of four UAVs, three static targets, a single pop-up target 

occurring at 100 seconds, three no-fly zones of radius nine kilometers, two static threats, 

and one pop-up threat appearing after 150 seconds.  Figure 5.41 illustrates the initial 

battlefield setup.  Note that the scales along the axes are in terms of kilometers.  The 

h

5.8 Simulation Outputs 

 

mation includes UAV locations, altitudes, and velocities, target locati

obability-of

and radii.  After this initial display, the command window output

replan occurs, at what tim
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UAVs are shown as blue diamonds numbered 1 through 4 along the left side of the 

battlefield.  The static targets are green ‘x’s, while the single pop-up target is shown as a 

green ‘+’.  The no-fly zones are the obvious black circles.  Threats are shown as a red star 

with surrounding effective radius for the static variety, and the pop-up threat is the large 

read range with the red ‘O’ at the center. 

 

 

Figure 5.41:  Initial battlefield setup 

 

 The first outputs when the simulation is started are the following expressions 

printed in the MATLAB command window: 

 
UAV 1 exists at location 25 x, location 133 y, altitude 2 km, and is flying at 130 m/s.  

UAV 2 exists at location 27 x, location 96 y, altitude 2 km, and is flying at 130 m/s.  

UAV 3 exists at location 27 x, location 61 y, altitude 2 km, and is flying at 130 m/s.  

UAV 4 exists at location 38 x, location 24 y, altitude 2 km, and is flying at 130 m/s.  

Target 1 indicated to be at location 87 x, location 110 y , and with an estimated value of 40. 

Target 2 indicated to be at location 125 x, location 64 y, and with an estimated value of 70.  

Target 3 indicated to be at location 97 x, location 37 y, and with an estimated value of 100.  
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No-Fly Zone 1 exists at location 66 x, location 119 y, and with a radius of 9 km.  

No-Fly Zone 2 exists at location 85 x, location 80 y, and with a radius of 9 km.  

No-Fly Zone 3 exists at location 74 x, location 47 y, and with a radius of 9 km.  

Threat 1 exists at location 110 x, location 65 y, with a range of 10 km, and has a probability of kill of 80%.  

Threat 2 exists at location 98 x, location 40 y, with a range of 5 km, and has a probability of kill of 50%. 
 

These expressions completely specify the initial battlefield setup in words.  From here 

out, the example will proceed with text stating what event occurred, and a figure 

illustrating the path planning and task allocation based on the new information will 

immediately follow.   

 

 

Path Planning ran at time 0. 

 

 

 

 

Figure 5.42:  Path Planning and Task Allocation occurring at time 0 
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Target 4 has popped up at time 100.  

 

 

 

Figure 5.43: Path Planning and Task Allocation occurring at time 100 

 
 
Threat 3 has popped up at time 150.  

 

 

Figure 5.44: Path Planning and Task Allocation occurring at time 150 
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Threat 3 has fired at time 325.  

UAV 2 has been destroyed at time 325. .  

 

 

Figure 5.45: Path Planning and Task Allocation occurring at time 325 

 

 

 

 

Figure 5.46: Detail of UAV 3 turning to now attack target 1 at time 325 
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Threat 2 has fired at time 462.  

UAV 3 has been destroyed at time 462.  

 

 

Figure 5.47: Path Planning and Task Allocation occurring at time 462 

 
Target 2 (value 70) identified as NOT a target at time 538 by UAV 4. 

Target 2 has been removed from target status at time 538.  

 

 

Figure 5.48: Path Planning and Task Allocation occurring at time 538 
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Target 4 (value 50) identified as a target at time 688 by UAV 1.   

 

 

Figure 5.49: Path Planning and Task Allocation occurring at time 688 

 
Target 4 (value 50) classified not attacked at time 704 by UAV 1.   

 

 

 

Figure 5.50: Path Planning and Task Allocation occurring at time 704 
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Target 4 (value 50) attacked not assessed at time 749 by UAV 1.   

 

 

Figure 5.51: Path Planning and Task Allocation occurring at time 749 

 

Target 4 (value 0) assessed as destroyed at time 764 by UAV 1.   

 

 

 

Figure 5.52: Path Planning and Task Allocation occurring at time 764 
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Target 3 (value 100) identified as a target at time 838 by UAV 4.   

 

 

Figure 5.53: Path Planning and Task Allocation occurring at time 838 

 

Target 3 (value 100) classified not attacked at time 878 by UAV 4.   

 

 

 

Figure 5.54: Path Planning and Task Allocation occurring at time 878 
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Target 3 (value 100) attacked not assessed at time 921 by UAV 4.   

 

 

Figure 5.55: Path Planning and Task Allocation occurring at time 921 

 

Target 1 (value 40) identified as a target at time 938 by UAV 1.   

 

 

 

Figure 5.56: Path Planning and Task Allocation occurring at time 938 
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Target 1 (value 40) classified not attacked at time 978 by UAV 1.   

 

 

Figure 5.57: Path Planning and Task Allocation occurring at time 978 

 

 

Target 3 (value 0) assessed as destroyed at time 1014 by UAV 4.   

 

 

Figure 5.58: Path Planning and Task Allocation occurring at time 1014 
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Target 1 (value 40) attacked not assessed at time 1056 by UAV 1.   

 

 

Figure 5.59: Path Planning and Task Allocation occurring at time 1056 

 

Target 1 (value 0) assessed as destroyed at time 1098 by UAV 1.  

 

 

Figure 5.60: Path Planning and Task Allocation occurring at time 1098 
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Since no more tasks are to be allocated, all UAVs are assigned to return to a 

predetermined set of home-base coordinates (typically the origin is used for simulation).  

It should be noted that the static plots presented here are based off of the plot_uav.m 

MATL

ber of the path planning and task allocation scheme.   

 

 The simulation presented in this chapter has been a centralized version that fulfils 

the third and fourth research objectives.  This simulation has been designed to simulate a 

maximum of nine UAVs, nine targets, fifteen no-fly zones, and fifteen threats, and 

encompasses time-varying simulation aspects, such as UAVs being destroyed, targets and 

threats popping-up at a time unknown to the UAVs, and simulates accurate battle 

management. 

 

 

 

AB code shown in Appendix A.  Since is uses the knowledge presented by the 

path planning and task allocation scheme, there is an occasional renumbering of targets 

shown on the static plots.  However, the actual numbering kept by the targets manager is 

the same as the original numbering, even as targets are removed from the list.  The 

MATLAB command window printouts are also based upon this list, rather than the 

localized renum
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Chapter 6 

Decentralized Path Planning and Task Allocation  
 

 
6.1 Main Simulation System 

 

The decentralized simulation developed here is a truly decentralized control 

heme for a team of UAVs.   This approach is an extension of the centralized version 

discussed in the preceding chapter.  The following figure illustrates the new simulation 

with a maximum of n etween each. 

 

sc

ine UAVs and corresponding communications b

 

Figure 6.1: Main simulation system for decentralized UAV control 
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As seen with leader.  All 

UAVs are used to make decisions and perform tasks.  The theory behind this 

decentralized approach is the following statement: a team of UAVs with every member 

ossessing full situational awareness (SA) will always arrive at the same correct 

decisio

he theoretical statement made in the last section has been applied to designing 

an indi

 the main system, this scheme has no center controller or even 

p

n.   

 

6.2 Individual UAV System 

 
T

vidual UAV system that makes decisions for that UAV and performs similar 

management as the centralized simulation.  Each UAV uses the same path planning and 

task allocation scheme as the centralized version discussed but then uses only the 

information necessary for that UAV to perform its allocated task.  Figure 6.2 contains the 

main system that is used within each individual UAV.  The similarities between the 

centralized simulation and the system used for individual UAVs should be noted.  The 

differences between these systems will be discussed shortly.   

 

Figure 6.2: Main system for individual UAVs 
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‘X e 
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 UAV Calculations 
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The first difference occurs with the AIRCRAFT DYNAMICS subsystem.  In the 

cent sion, the central processo mulated the d cs of eam 

me dividual UAVs in the d  v there  n te 

dy UAVs that an indiv ce es co re 

bel f the UAV D S first V.

ralized ver r si ynami  all UAV t

mbers.  For in ecentralized ersion,  is o need to simula

namics for other idual UAV rtain do not ntrol.  The figu

ow shows the subsystem o YNAMIC for the UA  

 

 

Figure 6.3: ‘UAV D loc

 
Th  and task allocation sc rate sk as nm or 

ted assignments of all other UAV team 

members.  For correct communications, all UAVs will know what every other UAV will 

be doing.  As mentioned with the dynamics, there is no need after the path planning and 

ynamics’ b ks for UAV 1 

e path planning heme gene s a ta sig ent and path f

the individual UAV along with the predic
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task allocation assignment for an individual UAV to be concerned with other UAVs who 

it certainly does not control.  The aircraft dynamics for the individual aircraft are found 

using the exact same approach as described in Section 5.4.  Once the actual aircraft 

positions and rotations are found using the aircraft model, the UAV Positions block 

passes on the positions of that UAV, as seen in Figure 6.4. 

 

 

Figure 6.4: UAV Positions block 

 

 The position of the UAV is then used in the same way as the central version to 

determine if the individual UAV passes within the boundary of any threat or no-fly zone.  

The calculations are much simpler here since only a single UAV position is compared 

with known threat and no-fly zone positions.  The former UAV DOWN vector is turned 

into a single binary number to signal UAV loss.  This information is then used in 

conjunction with the position to signal the group of the loss of the individual UAV, as 

performed in the UAV MANAGER, shown in Figure 6.5. 

 

 

Figure 6.5: Individual UAV MANAGER subsystem 

 
The UAV no longer issues replanning signals itself.    To ensure the entire UAV team 

replans as the new surviving UAV information becomes available, the replan has been 

relocated to the initialization block for the UAVs, as shown in the next figure. 
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Figure 6.6: UAV initialization block with UAV REPLAN subsystem 

 

This block still serves its initialization function uninterrupted, as seen in the upper branch 

of the system, but has the addition of the UAV REPLAN block.  This subsystem 

compares the UAVs current knowledge of the UAV team with its former knowledge of 

the UAV team.  When a difference is detected that indicates a loss of one or more 

members, the replan signal is issued.  Figure 6.7 illustrates the new UAV REPLAN 

subsystem. 

 

 

Figure 6.7: UAV REPLAN subsystem 

 

 

Whenever the other UAVs become aware of the loss of a member, each UAV replans 

based on the surviving UAV positions and current target and threat information.  Each 

UAV contains the same target and threat management that the central version contains.  

Each UAV has knowledge of every threat and target and the corresponding states.  As 

mentioned, whenever any UAV presents new information to the group about a threat or 

target, all team members update their information and each replans accordingly. 
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 Target management is conducted in a similar manner.  The new TARGETS 

MANAGER still determines if a new target is added to the list of current targets, but the 

replan signal for target changes (including target state changes) occurs within the 

TARGETS initialization block, as seen in Figure 6.9, which is preceded by the figure of 

the new manager. 

 

 
Figure 6.8: TARGETS MANAGER 

 
 

 

Figure 6.9: TARGETS initialization block with UAV REPLAN subsystem 

 

The TARGETS REPLAN subsystem functions the same as the UAV REPLAN system.  

This system detects changes in the same manner as the comparing system originally 

5.6 in Figure 5.32. 

 

described in Section 

 

Figure 6.10: TARGET REPL

 

 

AN subsystem 
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6.5 Simulation Outputs 

 

The outputs of this simulation are the same as the centralized version.  As with the 

centralized simulation, there are three outputs; however, only two of them would be 

typically used with a decentralized simulation.  The first is, again, the output to the 

MATLAB command window.  Initially, it displays the UAV locations, altitudes, and 

velocities, target locations and initial states, threat locations, ranges, and probability-of-

kill, and no-fly zone coordinates and radii.  After this, occurring events will be displayed 

y the UAV that detected them, and each UAV will display whenever it replans.  

Typically, thi  displays for 

replanning.  There can be a maximum of nine UAVs for this simulation, and while less 

than the m  can be ran, the path planning and task me still runs in 

the nonexi en though th  pe r
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allocated t ypically a w d tra  Because 

the path p s o s ill be 

nine sets h occurring e o  s hat each 

dividual UAV knows, not what could realistically be happening.  Contrasting 

formation such as misinformation or loss of information will produce different plots 

ccurrences are discussed in the next section. 
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Figure 6.11: Initial battlefield setup for decentralized simulation example 

ulation completes, the user can choose the PLOT 

IMULATION button shown at the top left of the main simulation system in Figure 6.1.  

This produce s in motion 

traveling toward their assigned targets, and shows dynami hanges such as 

pop-up targets, pop-up threats, remov get Vs.  An 

option is al tting to nd e traveled 

thus far.  T veal in

times of re gets they have been assigned to.  Figure 6.12 illustrates a 

captured fr oving plot.   

 

 

 Once the user sets up the initial battlefield, the simulation proceeds just as the 

centralized version would.  As events occur, the MATLAB command window prints 

them, and replans occur.  Once the sim

S

s the moving plot being discussed.  This plot shows the UAV

c environment c

al of destroyed tar s, and loss of UA

so given with this plo

aths re

 show the path the i ividual UAVs hav

hese traveled p formation about where the UAVs were located at 

plan and which tar

ame of this m
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Figure 6.12: Decentralized simulation example 

 

In this specific frame, two replans have already occurred.  UAV 1 has confirmed target 2 

is a target and is currently assessing the target; UAV 2 was first assigned to target 3 but 

has now been reassigned to target a; UAV 3 was initially assigned to target 2 along with 

UAV 1, was later assigned to target 3, and finally has been reassigned back to target 2; 

and lastly, UAV 4 has completed assessing target 1 and is now assigned to target 3.  It 

can also be seen that threat 4, which was an antiaircraft artillery piece guarding target 1, 

has fired unsuccessfully at the only UAV to have entered its effective range – UAV 4. 

 

The decentralized simulation environment proposed by research objective 5 has 

now been completed.  The next and last discussion chapter will be dedicated to 

comparison of the centralized and decentralized simulations in terms of ‘real-time’ 

simulation; furthermore, communication issues will be addressed for this decentralized 

simulation environment. 
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Chapter 7 

Comparison of Decentralized and Centralized Simulations  
 
 

7.1 Simulation Efficiency 

 
Real-time performance is crucial for implementation of any scheme aboard an 

aircraft

location approach 

discussed in Chapter 3 can be used with MATLAB function profile to track program 

executi

Table 7.1: Summary of MATLAB Profile Reports 

.  This section investigates all MATLAB codes in terms of time of completion, 

and both SIMULINK simulations are run in conjunction with a simulation profiler that 

shows how much time is spent executing the simulation. 

 

The MATLAB code that performs the path planning and task al

on time.  The results of running the path_planning.m code with the MATLAB 

Profiler is shown in the next four tables for three different cases.  The first of these tables 

gives a summary of the profile reports, such as number of UAVs, targets, threats, and no-

fly zones used to generate the profile report, in which table the report is found in, and the 

total recorded time the path_planning.m code took to execute.  The next three tables 

present the profile report generated for each of the three cases. 

 

Number of UAVs 4 5 9 
Number of Targets 4 5 9 
Number of Threats 4 5 15 
Number of No-fly Zones 4 5 15 
Profile Report found in: Table 4 Table 5 Table 6 
Total recorded time:  1.41 s 3.10 s 20.48 s 
Number of M-functions:  30 30 30 
Number of M-subfunctions: 2 2 2 
Number of MEX-functions: 1 1 1 
Clock precision:  0.00000006 s 0.00000006 s 0.00000006 s
Clock Speed:  1584 Mhz 1584 Mhz 1584 Mhz 
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Table 7.2: Profile Report based on 4 UAVs, 4 Targets, 4 Threats, and 4 No-fly Zones 

Name  Time  Calls  Time/call  
path_shrtng 1.11100000 78.7% 1 1.11100000000 
shorten_paths 0.88100000 62.4% 16 0.05506250000 
cheapest_paths 0.16100000 11.4% 1 0.16100000000 
vrn_diag_gen 0.11000000 7.8% 1 0.11000000000 
update_cost 0.09000000 6.4% 16 0.00562500000 
dijk 0.08100000 5.7% 16 0.00506250000 
heading_angle_paths 0.06000000 4.2% 16 0.00375000000 
voronoi 0.06000000 4.2% 1 0.06000000000 
delaunay 0.04000000 2.8% 1 0.04000000000 
delaunayn 0.03000000 2.1% 1 0.03000000000 
pred2path 0.02100000 1.5% 16 0.00131250000 
vrt_sim_convert 0.02000000 1.4% 1 0.02000000000 
list2adj 0.02000000 1.4% 1 0.02000000000 
c_assign 0.02000000 1.4% 1 0.02000000000 
set_thc 0.02000000 1.4% 1 0.02000000000 
unique 0.02000000 1.4% 2 0.01000000000 
perms 0.01000000 0.7% 4 0.00250000000 
mmkp_new 0.01000000 0.7% 1 0.01000000000 
mmkp_t 0000 ask_allocation 0.01000000 0.7% 1 0.0100000
cart2p 2941 ol 0.01000000 0.7% 136 0.0000735
fillet_path 0.01000000 0.7% 16 0.00062500000 
connect_vrn 0.01000000 0.7% 2 0.00500000000 
voronoi/circle 0.01000000 0.7% 2 0.00500000000 
sortrows 0.01000000 0.7% 2 0.00500000000 
profile 0.00000000 0.0% 1 0.00000000000 
pol2cart 0.00000000 0.0% 136 0.00000000000 
isint 2 0.00000000000 0.00000000 0.0% 
num2cell 0.00000000 0.0% 1 0.00000000000 
mat2vec 0.00000000 0.0% 1 0.00000000000 
qhullmx 0.00000000 0.0% 1 0.00000000000 
sortrows/sort_back_to_front 0.00000000 0.0% 2 0.00000000000 
nargchk 0.00000000 0.0% 39 0.00000000000 
filter_zeros 0.00000000 0.0% 4 0.00000000000 
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Table 7.3: Profile Report based on 5 UAVs, 5 Targets, 5 Threats, and 5 No-fly Zones 

Name  Time  Calls  Time/call  
path_shrtng 2.72400000 87.8% 1 2.72400000000 
shorten_paths 2.35300000 75.8% 25 0.09412000000 
cheapest_paths 0.22000000 7.1% 1 0.22000000000 
update_cost 0.16000000 5.2% 25 0.00640000000 
dijk 0.14000000 4.5% 25 0.00560000000 
heading_angle_paths 0.12000000 3.9% 25 0.00480000000 
vrn_diag_gen 0.11000000 3.5% 1 0.11000000000 
voronoi 0.06000000 1.9% 1 0.06000000000 
delaunay 0.05000000 1.6% 1 0.05000000000 
delaunayn 0.04000000 1.3% 1 0.04000000000 
vrt_sim_convert 0.03000000 1.0% 1 0.03000000000 
unique 0.03000000 1.0% 2 0.01500000000 
mmkp_new 0.02000000 0.6% 1 0.02000000000 
mmkp_task_allocation 0.02000000 0.6% 1 0.02000000000 
pol2cart 0.02000000 0.6% 481 0.0000415 04 80
fillet 000000 _path 0.02000000 0.6% 25 0.00080
list2a 000000 dj 0.02000000 0.6% 1 0.02000
c_assign 0.02000000 0.6% 1 0.02000000000 
set_thc 0.02000000 0.6% 1 0.02000000000 
cart2pol 0.01000000 0.3% 481 0.00002079002 
voronoi/circle 0.01000000 0.3% 2 0.00500000000 
isint 0.01000000 0.3% 2 0.00500000000 
num2cell 0.01000000 0.3% 1 0.01000000000 
mat2vec 0.01000000 0.3% 1 0.01000000000 
sortrows 0.01000000 0.3% 2 0.00500000000 
profile 0.00000000 0.0% 1 0.00000000000 
perms 0.00000000 0.0% 5 0.00000000000 
pred2path 0.00000000 0.0% 25 0.00000000000 
connect_vrn 0.00000000 0.0% 2 0.00000000000 
qhullmx 0.00000000 0.0% 1 0.00000000000 
sortrows/sort_back_to_front 0.00000000 0.0% 2 0.00000000000 
nargchk 0.00000000 0.0% 57 0.00000000000 
filter_zeros 0.00000000 0.0% 4 0.00000000000 
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Table 7.4: fly Zones 

Name  Time  Calls  Time/call  

 Profile Report based on 9 UAVs, 9 Targets, 15 Threats, and 15 No-

path_shrtng 15.46200000 75.5% 1 15.462000000000 
shorten_paths 13.88000000 67.8% 81 0.171358024691 
mmkp_task_allocation 4.03600000 19.7% 1 4.036000000000 
mmkp_new 4.02600000 19.7% 1 4.026000000000 
perms 1.02200000 5.0% 9 0.113555555556 
cheapest_paths 0.82100000 4.0% 1 0.821000000000 
update_cost 0.71100000 3.5% 81 0.008777777778 
dijk 0.71100000 3.5% 81 0.008777777778 
heading_angle_paths 0.43100000 2.1% 81 0.005320987654 
vrn_diag_gen 0.12000000 0.6% 1 0.120000000000 
cart2pol 0.07000000 0.3% 2801 0.000024991075 
voronoi 0.06000000 0.3% 1 0.060000000000 
delaunay 0.05000000 0.2% 1 0.050000000000 
pol2cart 0.05000000 0.2% 2801 0.000017850768 
pred2path 0.05000000 0.2% 81 0.000617283951 
fillet_path 0.04000000 0.2% 81 0.000493827160 
delaunayn 0.04000000 0.2% 1 0.040000000000 
vrt_sim_convert 0.04000000 0.2% 1 0.040000000000 
c_assign 0.04000000 0.2% 1 0.040000000000 
set_thc 0.04000000 0.2% 1 0.040000000000 
unique 0.03000000 0.1% 2 0.015000000000 
num2cell 0.01000000 0.0% 1 0.010000000000 
mat2vec 0.01000000 0.0% 1 0.010000000000 
list2adj 0.01000000 0.0% 1 0.010000000000 
connect_vrn 0.01000000 0.0% 2 0.005000000000 
voronoi/circle 0.01000000 0.0% 2 0.005000000000 
profile 0.00000000 0.0% 1 0.000000000000 
isint 0.00000000 0.0% 2 0.000000000000 
qhullmx 0.00000000 0.0% 1 0.000000000000 
sortrows/sort_back_to_front 0.00000000 0.0% 2 0.000000000000 
sortrows 0.00000000 0.0% 2 0.000000000000 
nargchk 0.00000000 0.0% 169 0.000000000000 
filter_zeros 0.00000000 0.0% 4 0.000000000000 
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As shown in Table 7.1, a case where there are only four UAVs executes quickly in 1.41 

seconds.  This time represents the necessary time for the code to complete once started.  

This time is of course a function of processor speed and memory.  All figures shown here 

were performed with a 1.6 GHz processor and 256 MB of RAM.  However, completion 

time is not just a function of computer hardware, but also the initial problem set up.  

Whenever the problem is extended to 5 UAVs, 5 targets, 5 threats, and 5 no-fly zones, the 

program takes 3.10 seconds to complete.  Whenever the problem is extended to the 

maximum allowable inputs of 9 UAVs, 9 targets, 15 threats, and 15 no-fly zones, the 

simulation takes over 20 seconds to output all paths and assignments!   

 

 performing 4 assignments, there are only 16 different 

ombinations of UAV to assignment.  For 5 UAVs, that number increases to 120.  For 6 

UAVs there are 720 permutations, 7 UAVs have 5040 permutations, and for 8 UAVs 

there are 40,520 permutations.  Whenever 9 different UAVs are used in a single team and 

each must have a different assignment, there are 362,880 possible combinations of UAV 

to assignment!  For the simulation with 4 UAVs, the MMKP section takes 0.7% of the 

total completion time to execute.  For the 5 UAV simulation, MMKP takes roughly the 

same percentage of time, decreasing slightly to 0.6%.  However, for the 9 UAV 

simulation, MMKP takes 19.7% of the completion time to determine the optimal 

combination of UAVs to assignments.  For this reason, the limit of the UAVs and targets 

in simulation was chosen to be 9 each.  Since the complexity of permutations is a 

factorial function, a path planning and task allocation scheme for 10 UAVs would have 

3,628,880 permutations, 11 UAVs would have 39,916,800 permutations, and 12 UAVs 

would encounter 479,001,600 different combinations of UAV to assignment.   

 

 A second reason for the increased computation time for higher UAV systems is 

the number of paths that have to be shortened and made flyable.  For the 4 UAV 

simulation, there are only 16 paths, for 5 UAVs there is 25 paths, and for 9 UAVs, there 

are 81 paths.  The time required to shorten and make flyable the paths also depends on 

 The reason behind the greatly increased computing time can be seen by the 

number of permutations experienced by increasing the number of UAVs.  With a 

standard simulation of 4 UAVs

c
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how complex the system is.  If there are a high number of UAVs but a low number of 

threats and no-fly zones, the paths can quickly be optimized.  For a high number of 

obstacles to fly around, this time increases.  Path shortening can be seen in Tables 7.2-7.4 

to take roughly 70% of the total completion time, indicating an approximate linear 

function to complexity associated with path shortening.  

 

 For standard simulations with a limited number of UAVs and targets (such as 4 or 

5), the path planning and task allocation MATLAB code computes in only a few seconds, 

indicating that it could be used in real aircraft systems.  MATLAB code is also a slower 

computational environment and turning this code into an executable C code will speed up 

completion time even further.  In situations with near maximum numbers of UAVs, 

targets, threats, and no-fly zones are desired, there are two possible options for quicker 

completion time of task assignments.  First, the team of UAVs could be broken into two 

smaller teams that cooperate to perform tasks, so essentially there would be two teams of 

4 or 5 with each team performing 4 or 5 assignments.  Secondly, the path optimization 

(shortening and flyability) can be performed after the assignments are chosen.  This 

would cause the completion time of the code to be reduced by about 50%.  Performing 

path optimization before allocating tasks is beneficial to choosing an optimal assignment.  

For a standard number of UAVs, targets, threats, and no-fly zones, the degraded 

performance is not worth the trade off for a shorter computational time where paths are

shortened up some 

optimality for much faster running time should be considered. 

AVs, 3 targets, 3 no-fly zones, and 4 threats. 

 

and made flyable post-assignment.  In large simulations, giving 

 
 Execution times for simulation is also of interest.  SIMULINK has a simulation 

profiler built into its Performance Tools option.  This simulation profile generates a 

profile report similar to the MATLAB profile report, detailing the execution time of a 

simulation.  The decentralized and centralized simulations were both run with this tool, 

and the findings are presented next.  To ensure equitable conditions when comparing 

these two simulations, the same initial battlefield was used for both.  This battlefield is 

show in the following figure and uses 4 U
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Figure 7.1: Initial battlefield setup for SIMULINK Profile Reports 

 

 The centralized profile function.  The 

simulation was tested for running the initi ulation and the first 10 

mulat

Table 7.5: SIMULINK Profile Summary for centralized simulation

Simulation Speed Normal Accelerator

simulation was first executed using the 

alization of the sim

si ed second.  Table 7.5 shows the results of running this simulation normally within 

SIMULINK, and also with the Accelerator function. 

 

Total recorded time:  18.03 s 4.90 s 
Number of Block Methods:  1471 76 
Number of Internal Methods:  9 5 
Number of Nonvirtual Subsystem Methods: 104 4 
Clock precision:  0.00000006 s 0.00000006 s 
Clock Speed:  1584 Mhz 1600 Mhz 
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The SIMULINK Accelerator produces an executable C file that replaces the simulation 

used within SIMULINK.  The completion time of the simulation to initialize and run for 

10 simulated seconds was 4.90 seconds with the Accelerator function, and 18.03 seconds 

when the simulation was executed as normal.   Tables 7.6 and 7.7 detail the profile report 

for the normal execution and the Accelerator execution, respectively.  For the normal 

execution, the initialization of the simulation task 35% of the completion time, or 6.3 

seconds.  The rest of the time is used for executing the simulation for 10 simulated 

seconds, which occurred in 11.7 seconds.  

 

Table 7.6: SIMULINK Profile Report for centralized version 

Name  Time  Calls Time/call  
sim 18.02600000 100.0% 1 18.02600000000  
ModelExecute 11.66600000 64.7% 1 11.66600000000  
pathplan (Output) 8.46200000 46.9% 205 0.04127804878  
MajorOutputs 8.46200000 46.9% 205 0.04127804878  
ModelInitialize 6.30900000 35.0% 1 6.30900000000  
Integrate 2.46200000 13.7% 202 0.01218811881  
pathplan (MinorOutput) 2.14100000 11.9% 210 0.01019523810  
MinorOutputs 2.14100000 11.9% 210 0.01019523810  

 

 

 over The Accelerator-based simulation ran in 4.9 seconds.  The model initialization took

half of the completion time, representing 2.7 seconds.  The simulation ran for 10 

simulated seconds afterward in 2.2 seconds. 

 

Table 7.7: SIMULINK Profile Report for centralized version, with Accelerator 

Name  Time  Calls Time/call  
sim 4.89700000 100.0% 1 4.89700000000  
ModelInitialize 2.71400000 55.4% 1 2.71400000000  
ModelExecute 2.14300000 43.8% 1 2.14300000000  
pathplan (Output) 1.81300000 37.0% 205 0.00884390244  

 

 

 119



 The same steps were used with the decentralized simulation.  As shown in Figure 

7.1, the same battlefield setup was used for both simulations.  As with the centralized 

version, a normal simulation and a SIMULINK Accelerator-based simulation were 

initialized and ran for 10 simulated seconds.  Table 7.8 shows both summaries for the two 

simulations of the decentralized version. 

 

Table 7.8: SIMULINK Profile Summary for decentralized simulation

Simulation Speed Normal Accelerator
Total recorded time:  63.05 s 37.37 s 
 Number of Block Methods:  2965 160 
Number of Internal Methods:  9 5 
Number of Nonvirtual Subsystem Methods: 455 4 
Clock precision:  0.00000006 s 0.00000006 s 
Clock Speed:  1600 Mhz 1600 Mhz 

 
 

The decentralized simulations took considerably longer to execute than their centralized 

counterparts.  For the normal simulation, initialization and 10 simulated seconds took 63 

seconds to complete.  For the Accelerator-based version, this took 37 seconds.  Tables 7.9 

and 7.10 detail the two profile reports. 

 

Table 7.9: SIMULINK Profile Report for decentralized version 

Name  Time  Calls Time/call  
sim 63.05100000 100.0% 1 63.05100000000  
ModelExecute 53.03700000 84.1% 1 53.03700000000  
pathplan (Output) 46.30200000 73.4% 201 0.23035820896  
MajorOutputs 46.30200000 73.4% 201 0.23035820896  
ModelInitialize 9.92400000 15.7% 1 9.92400000000  
Integrate 3.29100000 5.2% 200 0.01645500000  
pathplan (MinorOutput) 2.95100000 4.7% 200 0.01475500000  
MinorOutputs 2.95100000 4.7% 200 0.01475500000  
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Table 7.10: SIMULIN ion, with Accelerator 

 Time  Calls Time/call  

K Profile Report for decentralized vers

Name 
sim 37.37300000 100.0% 1 37.37300000000  
ModelExecute 24.26500000 64.9% 1 24.26500000000  
pathplan (Output) 22.00300000 58.9% 201 0.10946766169  
ModelInitialize 13.01800000 34.8% 1 13.01800000000  

 

For the normal simulation, the initialization took 10 seconds and the Accelerator-

based simulation initialized in 13 seconds.  The increase in initialization times represents 

the increased from a single centralized simulation to 9 independent UAV simulations.  

Therefore, this increase in initialization is expected.  The execution times were then 53 

seconds and 24.3 seconds, respectively.  It should here be noted that the profile function 

itself is quite computationally expensive to simulate.  About 15 seconds at the beginning 

of the simulation can be attributed to the initial path planning.  Because the simulation is 

setup for a maximum of nine UAVs, each of these possible UAVs run a path-planning 

scheme even if they do not exist.  This accounts for the first 15 seconds after the 

initialization.  However, without the profiler running, 10 simulated seconds was found to 

n in 6.62 seconds for the normal simulation.  The profile shows 38 seconds for this part 

dividual UAV system is approximately one-ninth of the total 

sim lation time for the decentralized simulation.  This computes to seven seconds for the 

rmal

ru

for the normal simulation, and 9 seconds for the Accelerator-based simulation. 

 

Though the decentralized simulation has been shown to take longer to simulate a 

given system, an interesting aspect is found when considering that the decentralized 

simulation consists of essentially 9 UAVs being simulated by the same central processor 

(a personal computer).  Since the objective is to achieve real-time performance for an 

individual UAV simulation, the individual UAV system needs to be investigated, not the 

entire team being run by a central processor.  Since a single CPU cannot run simulations 

in parallel, the time for an in

u

no  simulation and just over four seconds for the Accelerator-based simulation.  

These times are even faster than the centralized version, and with reason.  Since the 

individual UAVs within the decentralized simulation do not have to perform calculation 
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regarding the other UAVs (with respect to dynamics and threats and no-fly zone 

checking), the simulation should occur in less time. 

 

 

7.2 Miscommunication 

 

Just like the real-time performance of software, investigation of real-life situations 

using simulation is crucial.  For decentralized path planning and task allocation, the 

critical link for correct decision making is communication amongst a team of UAVs.  The 

next three sections investigate three possible scenarios where problems in 

ommunications can lead to incorrect decisions for the team of UAVs. 

 

blem with communication is miscommunication.  There are 

o po

he part of the individual UAVs 

ith a cooperating team.  The likely outcome of miscommunication is that certain tasks 

ill be duplicated by multiple UAVs while other tasks will be neglected.  To test the 

ffects of miscommunication, the decentralized simulation was modified as shown in 

igure 7.2.  A noise generator was added to the communications about UAV positions, so 

at individual UAVs would not know the location of their team members within a few 

kilometers.  Small allowances within aircraft position will not cause any incorrect 

decisions, but the difference of several kilometers can. 

 

c

The first possible pro

tw ssible ways for miscommunication to occur.  The first way would be a fault within 

the aircraft’s software or hardware to either send out incorrect signals or misinterpret 

signals from other aircraft.  This is less likely to occur than the second way, which is 

caused by enemy electronic warfare efforts.  If this electronic warfare leads to some 

uncertainty, say within the exact locations of other team members, then the individual 

UAVs may base their path planning on wrong information.   

 

Miscommunication leads to incorrect decision on t

w

w

e

F

th
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Figure 7.2: Main system for decentralized UAV control with miscommunication 

 

he noise that is added to the positions of each U ility 

density fun nd a standard deviation of 1.  This noise is run 

rough a gain of value 2, so each UAV’s position can be plus or minus 2 kilometers in 

e re 7.3 illustrates 

the SE

gains for ea

T AV follows a Gaussian probab

 ction with a mean of zero a

th

th X-direction and plus or minus 2 kilometers in the Y-direction.  Figu

NOI  block of the main system, and Figure 7.4 shows the noise generators and 

ch individual UAV of the team. 
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Figure 7.3: NOISE block used for simulating miscommunication 

 

 

 

 

Figure 7.4: Individual UAV noise 

 

 The

xample is presented here for the simple simulation of 3 UAVs, 2 targets, 2 no-fly zones, 

and gl

se modifications were used to test the response to misinformation.  An 

e

 a sin e threat.  Figure 7.5 contains the initial battlefield setup for this example. 
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Figure 7.5: Initial battlefield setup for miscommunication example 

 

 The

orrectly until the first replan occurs.  Whenever this replan occurs, UAV 2 is assessing 

targ

information l 

hre V

still being 

are being n

e aerodynamic path discontinuities for the UAVs.  The moving plot shown here is 

bas pon

to be disto ly 

nf le.

they only r

 UAVs are initialized with the correct information, so the simulation proceeds 

c

et 1 while UAVs 1 and 3 are assigned to target 2.  The replan contains incorrect 

 for the locations of all three UAVs.  This incorrect information causes al

t e UA s to be assigned to target 2, while no UAV is assigned to target 1.  Tasks are 

accomplished, but the simulation will take longer overall because certain tasks 

eglected.  Figure 7.6 shows the UAVs after the replanning.  One should note 

th

ed u  the UAVs knowledge of positions, and whenever noise causes the positions 

rted during a replan, the paths become strange and certainly dynamical

u easib   However, the dynamics of the aircraft do not see these discontinuities, since 

epresent noise that makes the plot somewhat incorrect. 
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Figure 7.6: Miscommunication, decentralized simulation example 

 

 

7.3 Delay of Communication 

 

Delay of comm ype of investigated problems with 

com

seful for initialization purposes and comparison of old information with current 

info  certainly cause 

incorrect d

that occurs

e next se munication 

wil on

hile the team neglects other tasks. 

 

 

unication is the second t

munication.  Delays are already inherent within the situation, as delays can be quite 

u

rmation.  However, longer delays within the communications will

ecisions.  Longer delays can be seen as essentially a loss of communication 

 for a definite period of time.  Loss of communication will be investigated in 

ction, and an example will be presented as well.  Delays in comth

l resp d in the exact same manner, with multiple UAV assignments of a single task 

w
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7.4 L s of Communication os

The third source for problems in communication is loss of communication.  Loss 

f c munication would typically result from highly effective enemy electronic warfare, 

hich would produce an environment where all communications are effectively jammed.  

os of communication could also result from damage to an individual UAV, but not 

enough damage to cause destruction of the UAV or inability to perform tasks.   

 

In any situation, one or more UAVs can experience loss of communication.  The 

A s that loose communication effectively become a separate, one vehicle team from 

e other group.  The lone UAVs will still see teammates where their last known position 

as, and it will still be assumed they will perform tasks, but when no communication 

about task accomplishment is received, the lone UAV performs all known tasks on all the 

known targets.  Meanwhile, for the team of UAVs that has lost contact with one or more 

members, these members will essentially be seen as UAVs whose last known coordinates 

represent their location.  These lost UAVs will still be expected to perform tasks as 

before, but because no information is received from them, their tasks are eventually 

delegated to other team members who still properly communicate with the team.  From 

these two scenarios, the omniscient user sees a group of UAVs performing tasks, and one 

or more lone UAVs who are attempting to duplicate those same tasks, whether they have 

been performed or not.  Thus, typically there are multiple UAVs performing the same 

task while other tasks are neglected, as has been seen in the miscommunication case.   

 

An example can be shown representing this scenario.  The decentralized 

simulation must first be modified to account for a loss of communication.  Figure 7.7 

shows the modification to the decentralized scheme where UAV 2 has lost 

communication with the group. 

 

 

o om

w

L s 

U V

th

w
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Figure 7.7: Main system with individual UAV communication loss 

 

The group of UAVs remains the same, but in place of UAV 2 are now just the 

riginal coordinates of the vehicle.  The group sees this UAV as one who continuously 

remains at its initial position, but not as one who has been destroyed (because the loss of 

communication may just be temporary).  UAV 2 is now acting like a team by itself.  

Though it sees the rest of the group as not being destroyed, the group essentially stays at 

their original coordinates.  Figure 7.8 shows the modifications for the individual system 

to allow for simulation of this isolation. 

  

o
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Figure 7.8: Main system for individual UAV 2, showing modifications 

n known coordinates and target and threat states, and uses two new 

ss of a team.  These two blocks contain the system shown in 

e 7.9.  These systems show the UAV team as stationary at their original coordinates.  

V 2 to perform tasks, but because UAV 2 

ually UAV 2 will perform all the 

 
The UAV uses its ow

systems to simulate this lo

Figur

The team members are still expected by UA

sees them as never accomplishing those tasks, event

known target assignments. 

 

 

Figure 7.9: Loss of team of UAVs block 
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 An example is now shown using this new simulation.  The initial battlefield is 

given by the following figure.  There are 3 UAVs, 2 targets, 2 no-fly zones, and a single 

threat.   

 

 

Figure 7.10: Initial battlefield setup for individual communication loss example 

owing the correct initial positions.  The UAVs 

nd 2 being assigned to the higher-valued target, 

owever, target 1 lies inside of a Crotale 

e, and whenever UAV 3 crosses that boundary, it is destroyed.  At 

nt, UAV 1 believes UAV 2 still exists at its original position, which is the last 

osition for UAV 2.  Whenever UAV 1’s path planning and task allocation 

s expected to perform 

et 1.  Meanwhile, UAV 2 has lost communication with the 

other two UAVs.  Therefore, UAV 2 simply continues on for its assigned task at target 2, 

because UAV 2 never receives communication that UAV 3 gets destroyed.  The end 

result is shown in Figure 7.11.   

 

The simulation begins with all UAVs kn

make the correct decisions of UAVs 1 a

target 2, while UAV 3 is assigned to target 1.  H

SAM’s effective rang

this poi

known p

scheme runs, UAV 1 is again assigned to target 2, while UAV 2 i

target reconnaissance on targ

 130



 

Figure 7.11: Individual communication loss example 

 
As seen here, both UAV 1 and UAV 2 are assigned to target 2.  Neither UAV has 

assigned tasks at target 1, because of the lack of communication.  UAV 1 expects UAV 2 

to perform tasks on target 1, while UAV 2 expects the now destroyed UAV 3 to perform 

tasks on target 1.  The result of this loss of communication is a lack of cooperation.  

Tasks are still performed, even if duplicated, and eventually all tasks will be completed 

(assuming there is at one surviving UAV to perform assignments).  The decentralized 

scheme allows the UAVs to make their own decisions, even if incorrect because of 

problems with communication.  Even with incorrect decision making on the individual 

UAV parts, missions can still be accomplished, whereas with a centralized scheme, all 

UAVs would be lost once proper communication ceased. 
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Chapter 8 

 accomplished the six research objective as 

s were to create a path 

by using Voronoi diagram to 

xt had costs assigned to 

e edge costs were assigned, 

hm was used to search the graph edges to determine the lowest-cost path 

ere then further refined 

ng the edge intersections, and 

path to transition the current UAV heading angle to the 

 The last step in the path planning and task allocation scheme was to use a 

olution to allocate all 

bjects by development of a 

ed simulation environment.  This simulation used the path 

ed, and added time-varying, 

capabilities were implemented.  

e possibilities of individual or multiple 

aircraft dynamics subsystem.  

ck the tasks performed on individual targets, and real-

, and targets that are not 

as focused on development of a 

 the last research objectives.  This 

wn decision making capabilities and 

Conclusions and Recommendations 
 
 
8.1 Conclusions 

  

 The research effort presented here

stated at the end of the Introduction chapter.  The first objective

planning and task allocation scheme.  This scheme began 

connect UAVs to targets with graphical edges.  These edges ne

them based on their length and possible threat cost.  Onc

Dijkstra’s algorit

for each permutation of UAV to target.  These lowest-cost paths w

by shortening using a line of sight method, adding fillets alo

adding initial sections to the 

desired one. 

Multi-dimensional, Multiple-Choice Knapsack Problem s

assignments while minimizing UAV team costs. 

 

          The next research addressed the third and fourth o

SIMULINK-based centraliz

planning and task allocation scheme previously develop

dynamic environment, aspects.  Pop-up target and threat 

A UAV manager was developed to address th

UAV loss.  A UAV model was implemented with an 

Target states were used to tra

possibilities were modeled to include objects disguised as targets

destroyed in the first attack. 

 

 The latter part of the research effort w

decentralized simulation environment to complete

decentralized version now includes a vehicle’s o
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communication amongst vehicles.    Next, the decentralized simulation was compared 

ith the centralized version in terms of simulation efficiency.  It was concluded that the 

 

xpected.  The centralized simulation proved to be a faster simulation than the 

 

 

were addressed to show that 

this research effort, further investigation and implementation of this 

ntralized path planning and task allocation scheme could be pursued in several 

 

f UAVs cooperating.  The next direction this 

ive UAVs.  These UAVs could 

be used as a proving vehicle for this approach, to show the actual implementation of this 

decentralized path planning and task allocation scheme.   

 
 
 
 
 
 
 

w

path planning and task allocation scheme could be implemented in a real-time 

environment only for a limited number of UAVs, targets, threats, and no-fly zones, as

e

decentralized version, but when the decentralized is considered to be essentially running

nine separate simulations at once, the individual UAV simulations show faster times than

the centralized version.  Lastly, real communications issues 

while communication problems lead to a lack of cooperation, tasks can still be performed 

and missions completed within the decentralized simulation environment. 

 
 
 

endations 8.2 Recomm
 

From 

dece

directions.  The first direction would be conversion of the decentralized simulation 

environment into executable files in C code.  These executable files could be tested using

parallel processing to truly model a team o

research could be taken in would include small, inexpens
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path_planning.m 

=in([1:36],1); 
_long=reshape(UAVS_long,4,9); 

NES_long=reshape(ZONES_long,3,10); 

ADING_ANGLE=in([165:173]); 

)>0 & abs(sum(UAVS_long(:,i)))~=0.26 
 uavs_existing(1,i)=1; 

v=size(UAVS,2); 

_existing=zeros(1,9); 

ARGETS_temp]=filter_zeros(TARGETS_long,9); 
ARGETS=[TARGETS_temp(1,:);TARGETS_temp(2,:)]; 
_targ=size(TARGETS,2); 

ONES_long,10); 

g(3,i)~=0 
,i)=1; 

EATS_long,15); 
size(THREATS,2); 

ES; 
ATS; 

_REAL(3,:); 
S(3,:)=1.15*THREATS_REAL(3,:); 

seg=10; 
in_turn=1; 

[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS); 

Authored by Matthew Lechliter and Zachary Spritzer 
function [out]=path_planning(in) 
 
UAVS_long
UAVS
TARGETS_long=in([37:72]); 
TARGETS_long=reshape(TARGETS_long,4,9); 
ZONES_long=in([73:102]); 
ZO
THREATS_long=in([103:162]); 
THREATS_long=reshape(THREATS_long,4,15); 
TIME=in(163); 
n_plots=in(164); 
HE
 
uavs_existing=zeros(1,9); 
for i=1:9 
    if abs(sum(UAVS_long(:,i))
       
   end 
end 
[UAVS]=filter_zeros(UAVS_long,9); 
n_ua
 
targ
for i=1:9 
    if TARGETS_long(3,i)~=0, 
        targ_existing(1,i)=1; 
   end 
end 
[T
T
n
 
[ZONES]=filter_zeros(Z
n_zones=size(ZONES,2); 
 
threats_existing=zeros(1,15); 
for i=1:15 
    if THREATS_lon
        threats_existing(1
   end 
end 
[THREATS]=filter_zeros(THR
n_threats=
 
ZONES_REAL=ZON
THREATS_REAL=THRE
 
ZONES(3,:)=1.15*ZONES
THREAT
 
split_
m
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[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

(stored_paths,all_pos,ZONES,THREATS,m
turn,split_seg,n_uav,n_targ,HEADING_ANGLE); 

ths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path
n_uav); 

s_x,Selected_Paths_y,UA

path_x,uav_path_y,n_plots,

(sprintf('Path Planning ran at time %d. \n',round(TIME))); 

 if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) & 

nd 

ros(9,100); 
s(9,1); 

); 

r i=1:9, 
ting(1,i)==1 

ounter); 

ath])=uav_path_y(counter,:); 

emp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)]; 

temp,selected_targets']; 

S,THREATS); 
[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng
in_
[Selected_Pa
s_y,
[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Path
VS,min_turn*2); 
if n_plots~=0, 
    
plot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long,uav_
uavs_existing,targ_existing,threats_existing); 
end 
 
disp
 
bestcomb=zeros(1,9); 
for i=1:n_uav, 
    for j=1:n_targ, 
       

 round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10) 
            bestcomb(1,i)=j; 
            break 
        end 
    e
end 
 
%Making into vector 
uav_x=zeros(9,100); 
uav_y=zeros(9,100); 
uav_time=zeros(9,100); 
uav_alt=ze
selected_targets=zero
szpath=size(uav_path_x,2
counter=1; 
fo
    if uavs_exis
        selected_targets(i,1)=bestcomb(1,c
        uav_x(i,[1:szpath])=uav_path_x(counter,:); 
        uav_y(i,[1:szp
        uav_time(i,[1:szpath])=time_uav(counter,:)+TIME; 
        uav_alt(i,[1:szpath])=altitude_uav(counter,:); 
        counter=counter+1; 
    end 
end 
sys_temp=[ ]; 
for i=1:9; 
    sys_temp=[sys_t
end 
out=[sys_
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filter_zeros.m 
Authored by Matthew Lechliter and Zachary Spritzer 

]=filter_zeros(A_long,n) 

um(A_long(:,i)))>0 & abs(sum(A_long(:,i)))~=0.26 

ter=counter+1; 

function [A
 
A=[ ]; 
counter=1; 
for i=1:n 
    if abs(s
        A(:,counter)=A_long(:,i); 
        coun
   end 
end 
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vrn_diag_gen.m 
uthored by Matthew Lechliter, Zachary Spritzer, and Jennifer Hazelton 

nes_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS) 

r of UAVs, the first row is the  
he initial y position 

elocity of the UAVs. 

ix where n is the number of Targets, the first row 

f No-Fly Zones, the first 
es, the second row is the y 

dius or range of 
-fly zones. 

 first row 
 y position of the 

reats, the third row is the range of the threats, and the fourth row is 

ue voronoi points, 
uav points, and target points.  Where the first row is the x position and 

unique points. 

all_lines_x - is a 2xn matrix where n is the number of all of the lines 

and the second row is the starting point's 
x position for the nthe line. 

for the voronoi, uavs, and targets.  The first row is the ending point's  
e and the second row is the starting point's 

 
where n is the number of all of the lines 
nd targets.  This row is the costs for all of the 

x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])+25; 
in_x=min([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])-25; 

,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])+25; 
(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])-25; 

ax_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ... 
  [(((max_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ... 

+min_x);(min_y)*ones(1,4)] ... 
in_x)*[1:4]/4)+min_x);(max_y)*ones(1,4)]]; 

A
function [all_pos,all_lines_x,all_li
 
%INPUTS: 
% 
%UAVS - is a 4xn matrix where n is numbe
%initial x position of the UAVs, the second row is t
%of the UAVs, the third row is the initial altitude of the UAVs, and  
%the fourth row is the intial V
% 
%TARGETS - is a 2xn matr
%is the x position of the targets and the second row is the y position of 
%the targets. 
% 
%ZONES - is a 3xn matrix where n is the number o
%row is the x position of the no-fly zon
%position of the no-fly zones, and the third row is the ra
%the no
% 
%THREATS - is a 4xn matrix where n is the number of Threats, the
%is the x position of the threats, the second row is the
%th
%the level of danger of the threats. 
% 
%OUTPUTS: 
% 
%all_pos - is a 2xn matrix where n is the number of uniq
%
%the second row is the y position of all of these 
% 
%
%for the voronoi, uavs, and targets.  The first row is the ending point's  
%x position for the nth line 
%
% 
%all_lines_y - is a 2xn matrix where n is the number of all of the lines 
%
%y position for the nth lin
%y position for the nthe line. 
%
%all_costs - is a 1xn row 
%for the voronoi, uavs, a
%lines of all_lines_x and all_lines_y 
 
max_
m
max_y=max([TARGETS(2
min_y=min([TARGETS
 
VRNPTS=[ZONES([1,2],:) THREATS([1,2],:) ... 
    [(((m
  
    [(((max_x-min_x)*[1:4]/4)
    [(((max_x-m
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[vx,vy] = voronoi(VRNPTS(1,:),VRNPTS(2,:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 n mbers om vx and vy 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
(round(1e6*[vx(:),vy(:)]),'rows'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Connecting UAV's into voronoi  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vy]=connect_vrn(vxyn,UAVS([1,2],:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Connecting the targets into the voronoi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[line_cost_targ,targx,targy]=connect_vrn(vxyn,TARGETS([1,2],:)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Generation for voronoi line costs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nvlines=size(vx,2); 
line_cost_vrn=zeros(1,nvlines); 
for i=1:nvlines, 
    line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Stacking unique positions, lines for x and y, and costs of those lines 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
all_pos=[UAVS([1,2],:) vxyn(:,[1,2])' TARGETS([1,2],:)]; 
all_lines_x=[uavx([1,2],:) vx([1,2],:) targx([1,2],:)]; 
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],:)]; 
all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,:)]; 
 

 
%
%Taking unique u fr
%%%%%%%%%%%%%%%
[vxyn]= 1e-6*unique
 
 
%%%
%
%%%%%%%%%
[line_cost_uav,uavx,ua
 
%%%%%%%%%%%%%%%%%%%
%
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voronoi.m 
 
function [vxx,vy] = voronoi(x,y,arg3,arg4) 

lots the Voronoi diagram for the points X,Y. 
 point at infinity are unbounded and  

tion TRI instead of 

 H = VORONOI(...,'LineSpec') plots the diagram with color and linestyle 
reated in H. 

 the Voronoi 
reates the 

 Voronoi diagram. 

   For the topology of the voronoi diagram, i.e. the vertices for 
IN as follows:  

         [V,C] = VORONOIN([X(:) Y(:)]) 

NOIN, DELAUNAY, CONVHULL. 

ks, Inc.  
Revision: 1.15 $  $Date: 2002/06/05 20:05:17 $ 

rror(nargchk(2,4,nargin)); 

 nargin==2, 
y); 

, 
if isstr(arg3), 

(x,y); 

 
 tri = arg3; 

    ls = ''; 
  end 
else 
  tri = arg3; 
  ls = arg4; 
end 
 
% re-orient the triangles so that they are all clockwise 
xt = x(tri); yt=y(tri); 
ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ... 
     xt(:,2).*(yt(:,3)-yt(:,1)) + ... 
     xt(:,3).*(yt(:,1)-yt(:,2)); 
bt = find(ot<0); 
tri(bt,[1 2]) = tri(bt,[2 1]); 
 
n = prod(size(x)); 
ntri = size(tri,1); 

%VORONOI Voronoi diagram. 
%   VORONOI(X,Y) p
%   Cells that contain a
%   are not plotted. 
% 
%   VORONOI(X,Y,TRI) uses the triangula
%   computing it via DELAUNAY.  
% 
%  
%   specified and returns handles to the line objects c
% 
%   [VX,VY] = VORONOI(...) returns the vertices of
%   edges in VX and VY so that plot(VX,VY,'-',X,Y,'.') c
%  
% 
%
%   each voronoi cell, use the function VORONO
% 
%
% 
%   See also VORO
 
%   Copyright 1984-2002 The MathWor
%   $
 
e
 
if
  tri = delaunay(x,
  ls = ''; 
elseif nargin==3
  
    tri = delaunay
    ls = arg3; 
  else
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t = (1:ntri)'; 
T = sparse(tri,tri(:,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)  

ge if E(i,j)  

isempty(ls), 
rorder'); 

  h = plot(vx,vy,'-',x,y,'.','color',co(1,:)); 

sg) 
  if isempty(m), m = '.'; end 

if ~ishold, 
min(x(:)) max(x(:)) min(y(:)) max(y(:))]) 

end 

vxx = vx; 

) 

,Y) returns a N-by-3 vector containing [xcenter(:) 

 = x(:); y = y(:); 

1 = x(tri(:,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3)); 
)); y3 = y(tri(:,3)); 

center of each circumcircle:  
1 a22]*[x;y] = [b1;b2] * 0.5; 

1; a12 = y2-y1; 
2 = y3-y1; 

y1); 
 (x3+x1) + a22 .* (y3+y1); 

 explicitly 
.*a12; 

dom displacement to points that are either the same 
e. 

), % Add small random displacement to points 

E = (T & T').*T; % Voronoi ed
 
[i,j,v] = find(triu(E)); 
[i,j,vv] = find(triu(E')); 
c1 = circle(tri(v,:),x,y); 
c2 = circle(tri(vv,:),x,y); 
 
vx = [c1(:,1) c2(:,1)].'; 
vy = [c1(:,2) c2(:,2)].'; 
 
if nargout<2 
  if 
    co = get(gcf,'defaultaxescolo
  
  else 
    [l,c,m,msg] = colstyle(ls); error(m
  
    h = plot(vx,vy,ls,x,y,[c m]); 
  end 
  
    view(2), axis([
  
  if nargout==1, vxx = h; end 
else 
  
end 
 
function c = circle(tri,x,y
%CIRCLE Return center and radius for circumcircles 
%   C = CIRCLE(TRI,X
%   ycenter(:) radius(:)] for each triangle in TRI. 
 
% Reference: Watson, p32. 
x
 
x
y1 = y(tri(:,1)); y2 = y(tri(:,2
 
% Set equation for 
%    [a11 a12;a2
 
a11 = x2-x
a21 = x3-x1; a2
 
b1 = a11 .* (x2+x1) + a12 .* (y2+
b2 = a21 .*
 
% Solve the 2-by-2 equation
idet = a11.*a22 - a21
 
% Add small ran
% or on a lin
d = find(idet == 0); 
if ~isempty(d
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  delta = sqrt(eps); 
) + delta*(rand(size(d))-0.5); 

lta*(rand(size(d))-0.5); 
(rand(size(d))-0.5); 

) + delta*(rand(size(d))-0.5); 
(rand(size(d))-0.5); 

 y2-y1; 
x1; a22 = y3-y1; 

12 .* (y2+y1); 
1 .* (x3+x1) + a22 .* (y3+y1); 

 - a21.*a12; 

et = 0.5 ./ idet; 

.*b1 - a12.*b2) .* idet; 
 = (-a21.*b1 + a11.*b2) .* idet; 

1-xcenter).^2 + (y1-ycenter).^2; 

  x1(d) = x1(d
  x2(d) = x2(d) + de
  x3(d) = x3(d) + delta*
  y1(d) = y1(d) + delta*(rand(size(d))-0.5); 
  y2(d) = y2(d
  y3(d) = y3(d) + delta*
  a11 = x2-x1; a12 =
  a21 = x3-
  b1 = a11 .* (x2+x1) + a
  b2 = a2
  idet = a11.*a22
end 
 
id
 
xcenter = ( a22
ycenter
 
radius = (x
 
c = [xcenter ycenter radius]; 
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connect_vrn.m 
uthored by Matthew Lechliter and Zachary Spritzer 

]=connect_vrn(vxyn,UAVS) 

 all of the unique x 
positions of the voronoi diagram or grid and the second column defining 

ram or grid. 

UAVS - is a 2xn matrix with the first row defining the x position of the 

the UAV's into the voronoi diagram or grid 

 with first row defining ending point and second row 

 
%uavy - is a 2xn matrix with first row defining ending point and second row 
%defining starting point for the y coordinates. 
nuav=size(UAVS,2); 
nvxynpts=size(vxyn,1); 
du=zeros(1,nvxynpts-1); 
uavx=zeros(2,nuav*3); 
uavy=zeros(2,nuav*3); 
line_cost_uav=zeros(1,nuav*3); 
for k=1:nuav, 
    for j=2:nvxynpts, 
        du(1,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))^2+(UAVS(2,k)-vxyn(j,2))^2);        
    end 
    mdu=sort(du,2); 
    for i=1:3, 
        mdu_loc=find(du==mdu(1,i)); 
        uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1); 
        uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2); 
        uavx(2,3*(k-1)+i)=UAVS(1,k); 
        uavy(2,3*(k-1)+i)=UAVS(2,k); 
        line_cost_uav(1,3*(k-1)+i)=mdu(1,i); 
    end 
end 

A
function [line_cost_uav,uavx,uavy
 
%Inputs: 
% 
%vxyn - is a nx2 matrix with first column defining
%
%all of the unique y positions of the voronoi diag
% 
%
%UAV and the second row defining the y position of the UAV. 
% 
%Outputs: 
% 
%line_cost_uav - is a vector containing the cost of the lines of connecting  
%
% 
%uavx - is a 2xn matrix
%defining starting point for the x coordinates. 
%
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cheapest_paths.m 
uthored by Matthew Lechliter and Zachary Spritzer 

es_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

all_pos - is a 2xn matrix where n is the number of unique voronoi points, 
ow is the x position and 

f all of these unique points. 
 

gets.  The first row is the ending point's  
int's 

 
ere n is the number of all of the lines 

%for the voronoi, uavs, and targets.  The first row is the ending point's  
%y position for the nth line and the second row is the starting point's 
%y position for the nthe line. 
% 
%all_costs - is a 1xn row where n is the number of all of the lines 
%for the voronoi, uavs, and targets.  This row is the costs for all of the 
%lines of all_lines_x and all_lines_y. 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row is the initial y position 
%of the UAVs, the third row is the initial altitude of the UAVs, and  
%the fourth row is the intial Velocity of the UAVs. 
% 
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row 
%is the x position of the targets and the second row is the y position of 
%the targets. 
% 
%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of Threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%OUTPUTS: 
% 
%stored_paths - is a mxn matrix where m is the number of uavs times the 
%number of targets and n is the length of the longest path.  The first row 
%being the first path for the first uav and the last row being the last 
%path for the last uav. The paths are output by node numbers coming from 
%the implementation of dijkstra's algorithm. 
%  
%totalcost - is a mxn matrix where m is the number of uavs and n is the 
%number of possible paths for each uav.  The element (m,n) of this matrix 
%is the cost for the mth uav to take the nth path. 

A
function  
[stored_paths,totalcost]=cheapest_paths(all_pos,all_lin
S,THREATS) 
% 
%INPUTS: 
%  
%
%uav points, and target points.  Where the first r
%the second row is the y position o
%
%all_lines_x - is a 2xn matrix where n is the number of all of the lines 
%for the voronoi, uavs, and tar
%x position for the nth line and the second row is the starting po
%x position for the nthe line. 
%
%all_lines_y - is a 2xn matrix wh
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

jkstra's algorithm 
%%%%%%%%%%%%%%% 

os,all_lines_x,all_lines_y,all_costs); 

%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
REATS); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
e  

%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

i=1:nuav, 

; 
 stored_paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]); 

%Making THC matrix for di
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[THC]=set_THC(all_p
 
%%%%%%%%%%%%%%%%%%%%%%%%%%
%Cost Assignment for all lines 
%%%%%%%%%%%%%%%
[THC]= c_assign(all_pos,THC,ZONES,TH
 
%%%%%%%%%%%%%%%%%%%
%Adding the reverse of the THC matrix onto the end, so that th
%reverse of the lines is possible 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
THC=[THC(:,[1,2,3]); THC(:,[2,1,3])]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%
%Implementing Dijkstra's algorithm 
%%
nuav=size(UAVS,2); 
ntarg=size(TARGETS,2); 
A = list2adj(THC); 
totalcost=zeros(nuav,ntarg); 
for 
    for j=1:ntarg, 
        [totalcost(i,j),path] = dijk(A,i,size(all_pos,2) - j + 1)
       
    end 
end 
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set_THC.m 
Authored by Matthew Lechliter, Zachary Spritzer, and Elena Lucci 

 [THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs) 

INPUTS: 

all_pos - is a 2xn matrix where n is the number of unique voronoi points, 
 Where the first row is the x position and 

 unique points. 
 

2xn matrix where n is the number of all of the lines 
oronoi, uavs, and targets.  The first row is the ending point's  

 position for the nth line and the second row is the starting point's 

 is the number of all of the lines 
vs, and targets.  The first row is the ending point's  

e nth line and the second row is the starting point's 
 line. 

osts - is a 1xn row where n is the number of all of the lines 
oi, uavs, and targets.  This row is the costs for all of the 

x and all_lines_y. 

PUTS: 

 
e first column is the tail of the line or starting point, the second 

r the ending point, and the third column 
e line. With updated costs due to no-fly zones and 

nes_x,2),3); 
 

*size(all_lines_x,2)) 
(round(all_pos(1,:)*100)== round(all_lines_x(i)*100)) & 

0)==round(all_lines_y(i)*100)); 

=find(P); 

); 
HC(bz,1)=num;  

  tz=(fix((i./2))+1); 

(i/2),2)=i; 

function
% 
%
%  
%
%uav points, and target points. 
%the second row is the y position of all of these
%
%all_lines_x - is a 
%for the v
%x
%x position for the nthe line. 
% 
%all_lines_y - is a 2xn matrix where n
%for the voronoi, ua
%y position for th
%y position for the nthe
% 
%all_c
%for the voron
%lines of all_lines_
% 
%OUT
% 
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%th
%column is the head of the line o
%is the cost of th
%threats. 
 
 
 
THC=zeros(size(all_li
THC(:,3)=all_costs(:);
for i=1:(2
    P=
(round(all_pos(2,:)*10
    if  any(P)  
        num
        if (rem(i,2))~=0 
            bz=((fix(i./2))+1
            T
        else THC((i/2),2)=num; 
        end 
    else 
        if (rem(i,2))~=0 
          
            THC(tz,1)=i; 
        else THC(
        end 
    end       
end  
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c_assign.m 
uthored by Matthew Lechliter and Zachary Spritzer 

THREATS) 

PUTS: 
%  
%all_pos - is a 2xn matrix where n is the number of unique voronoi points, 
%uav points, and target points.  Where the first row is the x position and 
%the second row is the y position of all of these unique points. 
% 
%THC - is a nx3 matrix where n is the number of possible lines to be chosen 
%the first column is the tail of the line or starting point, the second 
%column is the head of the line or the ending point, and the third column 
%is the cost of the line. 
% 
%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of Threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%OUTPUTS: 
% 
%THC - is a nx3 matrix where n is the number of possible lines to be chosen 
%the first column is the tail of the line or starting point, the second 
%column is the head of the line or the ending point, and the third column 
%is the cost of the line. With updated costs due to no-fly zones and 
%threats. 
szthc=size(THC,1); 
nzones=size(ZONES,2); 
nthrts=size(THREATS,2); 
 
for i=1:szthc, 
    start=THC(i,1);finish=THC(i,2); 
    SF=sqrt(((all_pos(1,finish)-all_pos(1,start))^2)+((all_pos(2,finish)-all_pos(2,start))^2)); 
    for j=1:nzones, 
        SC=sqrt(((ZONES(1,j)-all_pos(1,start))^2)+((ZONES(2,j)-all_pos(2,start))^2)); 
        FC=sqrt(((ZONES(1,j)-all_pos(1,finish))^2)+((ZONES(2,j)-all_pos(2,finish))^2)); 
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 
        else 
            if SC<FC,PC=SC; 
            else 
                PC=FC; 
            end 
        end 
        if PC < ZONES(3,j),THC(i,3)=1e30*THC(i,3); 
        end 
    end 
    for j=1:nthrts, 
        SC=sqrt(((THREATS(1,j)-all_pos(1,start))^2)+((THREATS(2,j)-all_pos(2,start))^2)); 
        FC=sqrt(((THREATS(1,j)-all_pos(1,finish))^2)+((THREATS(2,j)-all_pos(2,finish))^2)); 

A
function [THC]= c_assign(all_pos,THC,ZONES,
% 
%IN
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        SN=(SC^2+SF^2-FC^2)/(2*SF); 

          else 
=FC; 

     end 

        if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 
        else 
            if SC<FC,PC=SC; 
  
                PC
       
        end 
        if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3); 
        end 
    end    
end        
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list2adj.m 
 
function A = list2adj(IJC,m,spA) 
%LIST2ADJ Arc list to node-node weighted adjacency matrix representation. 

es 
c costs, where n = number of arcs 

 
nored 

(j))}  

 = 0, always make A full matrix 
     A = m x m node-node weighted adjacency matrix 

) 
 

                    A[-j(k),i(k)] = c(k) 

y duplicate arcs added together in A 

right (c) 1994-2002 by Michael G. Kay 

put Error Checking ****************************************************** 
rror(nargchk(1,3,nargin)) 

,1); end 

in(min([i j])); 

= max{max(i),max(abs(j))}.'); 
 

sempty(spA) 
 = 0.1; 

lseif length(spA(:)) ~= 1 | spA < 0 

%     A = list2adj(IJC,m,spA) 
%   IJC = n x 2-5 matrix arc list [i j c u l], where 
%     i = n-element vector of arc tails nodes 
%     j = n-element vector of arc head nod
%     c = (optional) n-element vector of ar
%       = (default) ONES(n,1)
%     u = (optional) ig
%     l = (optional) ignored 
%     m = (optional) scalar size of A if greater than max{max(i),max(abs
%   spA = (optional) make A sparse matrix if n <= spA x m x m 
%       = 1, always make A sparse 
%       = 0.1 (default), A sparse if 10% arc density 
%      
%
% 
% Transforms: If j(k) > 0, then [i(k) j(k) c(k)] -> A[i(k),j(k)]  = c(k
%             If j(k) < 0, then [i(k) j(k) c(k)] -> A[i(k),-j(k)] = c(k) and
%                               
% 
% Note: Weights of an
%       c(k) = 0 => A(i(k),j(k)) = NaN 
%       Wrapper for c(c==0) = NaN; A = SPARSE(i,j,c,m,m); 
% 
% See also LIST2INCID, ADJ2LIST, and ADJ2INCID 
 
% Copy
% Matlog Version 6 19-Sep-2002 
 
% In
e
 
[n,cIJC] = size(IJC); 
if cIJC < 2 | cIJC > 5, error('IJC must be a 2-3 column matrix.'), end 
 
[i,j,c] = mat2vec(IJC); 
if isempty(c), c = ones(n
 
jsgn = sign(j); j = abs(j); 
minIJ = m
if isempty(minIJ) | minIJ < 1 | any(~isint(i)) | any(~isint(j)) 
   error('All elements of ''i'' and ''j'' must be nonzero integers.'); 
end 
 
if nargin < 2 | isempty(m) 
   m = max(max([i j])); 
elseif length(m(:)) ~= 1 | ~isint(m) | m < max(max([i j])) 
   error('''n'' must be >
end
 
if nargin < 3 | i
   spA
e
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   error('''spA'' must be non-negative scalar.'); 
end 
% End (Input Error Checking) ************************************************ 
 
if any(jsgn < 0)      % Add elements from undirected arcs 

; c(jsgn < 0)]; 

(c==0) = NaN; 

 full(A); end 

   jsgn(jsgn < 0 & i == j) = 1; 
   i = [i; j(jsgn < 0)]; 
   j = [j; i(jsgn < 0)]; 
   c = [c
end 
 
c
A = sparse(i,j,c,m,m); 
 
if n > spA * m * m, A =
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adj2list.m 
 
function [i,j,c] = adj2list(A) 
%ADJ2LIST Node-node weighted adjacency matrix to arc list representation. 

j2list(A) 
i,j,c] = adj2list(A) 

lengths 

lement vector of arc head nodes 
   c = n-element vector of arc weights 

Arc (i,j) exists with 0 weight 
     Wrapper for [i,j,c] = FIND(C); c(ISNAN(c)) = 0) 

ael G. Kay 
atlog Version 6 19-Sep-2002 

********** 

 must be a square matrix.'); 
 

rror Checking) ************************************************ 

 = 0; end 

 -j; end 

%     IJC = ad
% [
%     A = m x m node-node weighted adjacency matrix of arc 
%   IJC = n x 2-3 matrix arc list [i j c], where 
%     i = n-element vector of arc tails nodes 
%     j = n-e
%  
% 
% Note: All A(i,j) = A(j,i) => [i -j c] (symmetric A) 
%       A(i,j) = 0   => Arc (i,j) does not exist 
%       A(i,j) = NaN => 
%  
% 
% See also LIST2INCID, LIST2ADJ, and ADJ2INCID 
 
% Copyright (c) 1994-2002 by Mich
% M
 
% Input Error Checking ********************************************
[rA,cA] = size(A); 
if rA ~= cA 
   error('''A''
end
% End (Input E
 
if all(all(triu(A)==tril(A)')), A = triu(A); issym = 1; else issym
 
[i,j,c] = find(A); 
if issym, j =
c(isnan(c)) = 0; 
 
if nargout == 1 
   i = [i j c]; 
end 
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pred2path.m 

nction rte = pred2path(P,s,t) 
edecessor indices to shortest paths from node 's' to 't'. 

h(P,s,t) 
atrix of predecessor indices (from DIJK) 

de indices 
(default), paths from all nodes 

es 
  = [] (default), paths to all nodes 

ell array of paths (or routes) from 's' to 't', where 
   rte{i,j} = path from s(i) to t(j) 

f no path exists from s(i) to t(j) 

tput of DIJK) 

) 1994-2002 by Michael G. Kay 
ion 6 19-Sep-2002 

t Error Checking ****************************************************** 
)); 

= t(:); end 

ents of P must be integers between 1 and ',num2str(n)]); 

eger between 1 and ',num2str(n)]); 
 | t > n) 

eger between 1 and ',num2str(n)]); 

t Error Checking) ************************************************ 

(t)); 

ngth(s) 
 1 

  si = 1; 

       if si < 1 | si > rP 
%          error('Invalid P matrix.') 
%       end 
%    end 
   si = find(idxs == s(i)); 
   for j = 1:length(t) 
      tj = t(j); 
      if tj == s(i) 
         r = tj; 
      elseif P(si,tj) == 0 
         r = []; 

 
fu
%PRED2PATH Convert pr
%   rte = pred2pat
%     P = |s| x n m
%     s = FROM no
%       = [] 
%     t = TO node indic
%     
%   rte = |s| x |t| c
%      
%                  = [], i
% 
% (Used with ou
 
% Copyright (c
% Matlog Vers
 
% Inpu
error(nargchk(1,3,nargin
 
[rP,n] = size(P); 
 
if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end 
if nargin < 3 | isempty(t), t = (1:n)'; else t 
 
if any(P < 0 | P > n) 
   error(['Elem
elseif any(s < 1 | s > n) 
   error(['''s'' must be an int
elseif any(t < 1
   error(['''t'' must be an int
end 
% End (Inpu
 
rte = cell(length(s),length
 
[ans,idxs] = find(P==0); 
 
for i = 1:le
%    if rP ==
%     
%    else 
%       si = s(i); 
%
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      else 
         r = tj; 
         while tj ~= 0 
            if tj < 1 | tj > n 

r('Invalid element of P matrix found.') 
     end 

nd 

 end 

hile 0%t ~= s 
 if t < 1 | t > n | round(t) ~= t 

o reaching ''s'''); 

nd 

               erro
       
            r = [P(si,tj) r]; 
            tj = P(si,tj); 
         end 
         r(1) = []; 
      e
      rte{i,j} = r; 
  
end 
 
if length(s) == 1 & length(t) == 1 
   rte = rte{:}; 
end 
 
%rte = t; 
w
  
      error('Invalid ''pred'' element found prior t
   end 
   rte = [P(t) rte]; 
   t = P(t); 
e
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mat2vec.m 
 
function varargout = mat2vec(X) 
%MAT2VEC Convert columns of matrix to vectors. 
% [X(:,1),X(:,2),...] = mat2vec(X) 

 (Additional output vectors assigned as empty) 

atlog Version 6 19-Sep-2002 

************************* 

 error('X must be numeric.') 

********************************************* 

out = cell(1,max(1,nargout)); 

X,2)));  

% 
%
 
% Copyright (c) 1994-2002 by Michael G. Kay 
% M
 
% Input Error Checking *****************************
if ~isnumeric(X) 
  
end 
% End (Input Error Checking) ***
 
vararg
X = num2cell(X,1); 
varargout(1,1:min(nargout,size(X,2))) = X(1,1:min(nargout,size(
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isint.m 
 
function y = isint(x,TolInt) 

     = [0.01*sqrt(eps)], default 

ay 
on 6 19-Sep-2002 

ecking ****************************************************** 
rgchk(1,2,nargin)); 

rgin < 2 | isempty(TolInt), TolInt = 0.01*sqrt(eps); end 
************** 

 

%ISINT True for integer elements (within tolerance). 
%      y = isint(x,TolInt) 
%        = abs(x-round(x)) < TolInt 
% TolInt = integer tolerance 
%   
 
% Copyright (c) 1994-2002 by Michael G. K
% Matlog Versi
 
% Input Error Ch
error(na
if na
% End (Input Error Checking) **********************************
 
y = abs(x-round(x)) < TolInt;
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dijk.m 
 
function [D,P] = dijk(A,s,t) 
%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm. 

ighted adjacency matrix of arc lengths 
 (Note: A(i,j) = 0   => Arc (i,j) does not exist; 

 Arc (i,j) exists with 0 weight) 

 [] (default), paths from all nodes 
  t = TO node indices 

ult), paths to all nodes 
 's' to 't' 

nce from node 'i' to node 'j'  
indices, where P(i,j) is the 

ex of the predecessor to node 'j' on the path from 's(i)' to 
NaN is 'j' not on path to 's(i)' 

nvert P to paths) 
th from 's' to 't', if |s| = |t| = 1 

intensive node 
raph is acyclic (triangularity is a  

tion for a graph to be acyclic) 
can have non-negative elements) 

(A',t,s) used, where D is now 
osed and P now represents successor indices) 

Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows, 
ll, 1993, p. 109.) 

ay 

t Error Checking ****************************************************** 
r(nargchk(1,3,nargin)) 

nd 
1:n)'; else t = t(:); end 

(any(tril(A) ~= 0))       % A is upper triangular 

)   % A is lower triangular 
clic = 2; 

aph may not be acyclic 

'A must be a square matrix'); 
if ~isAcyclic & any(any(A < 0)) 

); 
if any(s < 1 | s > n) 

 be an integer between 1 and ',num2str(n)]); 

% [D,P] = dijk(A,s,t) 
%     A = n x n node-node we
%        
%                A(i,j) = NaN =>
%     s = FROM node indices 
%       =
%   
%       = [] (defa
%     D = |s| x |t| matrix of shortest path distances from
%       = [D(i,j)], where D(i,j) = dista
%     P = |s| x n matrix of predecessor 
%         ind
%         'j',where P(i,i) = 0 and P(i,j) = 
%         (use PRED2PATH to co
%       = pa
% 
%  (If A is a triangular matrix, then computationally 
%   selection step not needed since g
%   sufficient, but not a necessary, condi
%   and A 
% 
%  (If |s| >> |t|, then DIJK is faster if DIJK
%   transp
% 
%  (
%   Prentice-Ha
 
% Copyright (c) 1994-2002 by Michael G. K
% Matlog Version 6 19-Sep-2002 
 
% Inpu
erro
 
[n,cA] = size(A); 
 
if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); e
if nargin < 3 | isempty(t), t = (
 
if ~any
   isAcyclic = 1; 
elseif ~any(any(triu(A) ~= 0)
   isAcy
else                             % Gr
   isAcyclic = 0; 
end 
 
if n ~= cA 
   error(
else
   error('A must be non-negative'
else
   error(['''s'' must
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elseif any(t < 1 | t > n) 
   error(['''t'' must be an integer between 1 and ',num2str(n)]); 

g) ************************************************ 

 A';    % Use transpose to speed-up FIND for sparse A 

,n); end 

r i = 1:length(s) 

Lab = logical(zeros(length(t),1)); 

cal(ones(n,1)); 

rgout > 1, P(i,s(i)) = 0; end  % Change from NaN to indicate no pred 

Di(isUnLab)); 

; 
UnLab(j) = 0; 

nd 
     

 1; 
 (j == t); end 

Aj(isnan(Aj)) = 0; 

if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end 

 isAcyclic == 1       % Increment node index for upper triangular A 

triangular A 
  j = j - 1; 

      end 
   end 
   D(i,:) = Di(t)'; 

end 
% End (Input Error Checkin
 
A =
 
D = zeros(length(s),length(t)); 
if nargout > 1, P = NaN*ones(length(s)
 
fo
   j = s(i); 
    
   Di = Inf*ones(n,1); Di(j) = 0; 
    
   is
   if isAcyclic ==  1 
      nLab = j - 1; 
   elseif isAcyclic == 2 
      nLab = n - j; 
   else 
      nLab = 0; 
      UnLab = 1:n; 
      isUnLab = logi
   end 
    
   if na
    
   while nLab < n & ~all(isLab) 
      if isAcyclic 
         Dj = Di(j); 
      else % Node selection 
         [Dj,jj] = min(
         j = UnLab(jj); 
         UnLab(jj) = []
         is
      e
  
      nLab = nLab +
      if length(t) < n, isLab = isLab |
       
      [jA,kA,Aj] = find(A(:,j)); 
      
             
      
       
      if nargout > 1, P(i,jA(Dk < Di(jA))) = j; end 
      Di(jA) = min(Di(jA),Dk); 
       
      if
         j = j + 1; 
      elseif isAcyclic == 2   % Decrement node index for lower 
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end 
 
if nargout > 1 & length(s) == 1 & length(t) == 1 
   P = pred2path(P,s,t); 
end 
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path_shrtng.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [Shortened_Paths_x,Shortened_Paths_y,totalcost]= 

targ,HEADING_ANGLE) 

row being the last 
ath for the last uav. The paths are output by node numbers coming from 

w is the x position and 
e second row is the y position of all of these unique points. 

ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first 
osition of the no-fly zones, the second row is the y 

osition of the no-fly zones, and the third row is the radius or range of 

sition of the threats, the second row is the y position of the 
threats, the third row is the range of the threats, and the fourth row is 
the level of danger of the threats. 

m turning radius for the UAVs 

 voronoi lines into for the  
purpose of a more near-optimal solution 

ntarg - number of targets 

 element (nxmx1) x position of the mth uav at point n.  The element  
%(nxmx2) y position of the mth uav at point n.  
%  
%totalcost - is a mxn matrix where m is the number of uavs and n is the 
%number of possible paths for each uav.  The element (m,n) of this matrix 
%is the cost for the mth uav to take the nth path. 
% 
%Stored_Pos - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs multiplied by the number of targets.   
%The element (nxmx1) x position of the mth uav at point n.  The element  
%(nxmx2) y position of the mth uav at point n.   
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Splitting the voronoi lines into more segments for the purpose of a more near-optimal solution 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

path_shrtng(stored_paths,all_pos,ZONES,THREATS,min_turn,split_seg,nuav,n
 
%INPUTS: 
% 
%stored_paths - is a mxn matrix where m is the number of uavs times the 
%number of targets and n is the length of the longest path.  The first row 
%being the first path for the first uav and the last 
%p
%the implementation of dijkstra's algorithm. 
%  
%all_pos - is a 2xn matrix where n is the number of unique voronoi points, 
%uav points, and target points.  Where the first ro
%th
% 
%
%row is the x p
%p
%the no-fly zones. 
% 
%THREATS - is a 4xn matrix where n is the number of Threats, the first row 
%is the x po
%
%
% 
%min_turn - minimu
% 
%split_seg - number of segments to Split the
%
%  
%nuav - number of UAVs 
% 
%
 
%OUTPUTS: 
% 
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs multiplied by the number of targets.   
%The
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szpths=size(stored_paths,2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
inding the corresponding x and y coordinates  

%%%%%%%%%%%%%%% 

ed_paths(:,szpths+1)=0; 
*ntarg, 

nz=min(find(stored_paths(i,:)==0)); 

z:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))'; 
ored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg); 

ths-1)*split_seg)+1),nuav*ntarg); 

 
 -1), 

seg -1))],k)= 
lit_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-Stored_Pos_x(i,k)); 

ew([j:(j + (split_seg -1))],k)= 
_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-Stored_Pos_y(i,k)); 

; 

red_Pos_x_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_x(szpths,k); 
  Stored_Pos_y_new((((szpths-1)*split_seg)+1),k)=Stored_Pos_y(szpths,k); 

end 
 
Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:); 
Shortened_Paths_y_end=ones(500,1)*Stored_Pos_y(szpths,:); 
Shortened_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end]; 
Shortened_Paths_y=[Stored_Pos_y_new;Shortened_Paths_y_end]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Shortening the paths 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:nuav*ntarg, 
    
[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten_paths(Shortened_Paths_x(:,i),Shortened_Paths_y
(:,i),ZONES,THREATS,Stored_Pos_x(:,i),Stored_Pos_y(:,i)); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Putting fillets into the shortened paths 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:nuav*ntarg, 
    
[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shortened_Paths_y(:,i
)],min_turn); 
end 
 

  
split_vect=[(0:(1/split_seg):(1- 1/split_seg))]'; 
 
%%%%%
%F
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Stored_Pos_x=ones(szpths,nuav*ntarg); 
Stored_Pos_y=ones(szpths,nuav*ntarg); 
stor
for i=1:nuav
    m
    Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))'; 
    Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))'; 
    Stored_Pos_x(mn
    St
end  
 
%%%%%%%%%%%%
Stored_Pos_x
Stored_Pos_y_new=ones((((szp
for k=1:nuav*ntarg, 
        j=1;
    for i=1:(szpths
          Stored_Pos_x_new([j:(j + (split_
ones(sp
          Stored_Pos_y_n
ones(split_seg,1)*Stored_Pos
          j=j+ split_seg
    end 
    Sto
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
i=1:nuav, 

g, 
 [Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-1)*ntarg)+j)]=... 

g)+j),Shortened_Paths_y(:,((i-

ened_Paths_y=[]; 
j=1:size(Shortened_Paths_x_old,1)-1, 

Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) & 
ened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:), 

 break 

Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% 

(nuav*ntarg,1); 

hs_y(:,z)],THREATS); 

lcost=reshape(permcost,ntarg,nuav)'; 

%Adding initial path based on heading angle 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for 
    for j=1:ntar
       
            heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntar
1)*ntarg)+j)],min_turn,HEADING_ANGLE(i,1),72); 
    end 
end 
 
 
Shortened_Paths_x_old=Shortened_Paths_x; 
Shortened_Paths_y_old=Shortened_Paths_y; 
Shortened_Paths_x=[]; 
Short
for 
    if Shortened_
Short
        Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:); 
        Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 
       
    else 
       Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:); 
       
    end 
end 
 
%%
%Updating the Costs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
szsp_perm=size(Shortened_Paths_x,2); 
permcost=zeros
 
for z=1:szsp_perm, 
    [permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Pat
end 
tota
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shorten_paths.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [shr_x,shr_y]=shorten_paths(sp_x,sp_y,Z,T,spo_x,spo_y) 

x2 matrix where n is the length of the longest 
 m is the number of UAVs.  The element (nxmx1) x position of the 

nxmx2) y position of the mth uav at 

 a 3xn matrix where n is the number of No-Fly Zones, the first 
 is the x position of the no-fly zones, the second row is the y 

position of the no-fly zones, and the third row is the radius or range of 

number of Threats, the first row 
ond row is the y position of the 

threats, the third row is the range of the threats, and the fourth row is 
nger of the threats. 

atrix where n is the length of the longest 

 of the mth uav at 
 n. This matrix is the original matrix without the voronoi segements 

 - is a nxmx2 matrix where n is the length of the longest 
path and m is the number of UAVs.  The element (nxmx1) x position of the 

lement (nxmx2) y position of the mth uav at 
point n. 

; 
]; 

0; 

]; 
1:size(spo,1)-1, 

      SC=sqrt(((T(1,j)-spo(i,1))^2)+((T(2,j)-spo(i,2))^2)); 
        FC=sqrt(((T(1,j)-spo(i+1,1))^2)+((T(2,j)-spo(i+1,2))^2)); 
        SF=sqrt(((spo(i+1,1)-spo(i,1))^2)+((spo(i+1,2)-spo(i,2))^2)); 
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<SF & SN>0 
            PC(i)=sqrt(SC^2-SN^2); 
        else 
            if SC<FC 
                PC(i)=SC; 
            else 
                PC(i)=FC; 
            end 
        end 
        mPC=min(PC); 
        if  mPC< T(3,j), 
            T(3,j)=mPC*.995; 
        end 

 
%INPUTS: 
% 
%sp - is a nxm
%path and
%mth uav at point n.  The element (
%point n. 
% 
%Z - is
%row
%
%the no-fly zones. 
% 
%T - is a 4xn matrix where n is the 
%is the x position of the threats, the sec
%
%the level of da
% 
%spo - is a nxmx2 m
%path and m is the number of UAVs.  The element (nxmx1) x position of the 
%mth uav at point n.  The element (nxmx2) y position
%point
%split up. 
% 
%OUTPUTS: 
% 
%shr
%
%mth uav at point n.  The e
%
spo=[spo_x,spo_y]
sp=[sp_x,sp_y
SC=0;FC=0;SF=0;SN=
for j=1:size(T,2), 
    PC=[
    for i=
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    end 
end 
 
ZT=[Z([1:3],:) T([1:3],:)]; 
szzt=size(ZT,2); 
szsp=size(sp,1); 
shr=ones(szsp,2); 
for i=1:2, 
    shr(:,i)=sp(szsp,i); 

(1,:); 

))^2)+((shr(a,2)-sp(i,2))^2)); 

(i,1))^2)+((ZT(2,j)-sp(i,2))^2)); 
2+SF^2-FC^2)/(2*SF); 

N<SF & SN>0 
   PC(1,j)=sqrt(SC^2-SN^2); 

d 
d 

,:)>ZT(3,:), 
   a=a+1; 

          shr(a,:)=sp(i,:); 

end 
shr(1,:)=sp
a=1; 
PC=zeros(1,szzt); 
while shr(a,:)~=sp(szsp,:), 
    for i=1:szsp, 
        if shr(a,:)==sp(i,:) 
            pck=i; 
            break 
        end 
    end 
    for i=szsp:-1:pck+1, 
        SF=sqrt(((shr(a,1)-sp(i,1
        for j=1:szzt, 
            SC=sqrt(((ZT(1,j)-shr(a,1))^2)+((ZT(2,j)-shr(a,2))^2)); 
            FC=sqrt(((ZT(1,j)-sp
            SN=(SC^
            if S
             
            else 
                if SC<FC 
                    PC(1,j)=SC; 
                else 
                    PC(1,j)=FC; 
                end 
            en
        en
        if PC(1
         
  
            break 
        end 
    end 
end 
shr_x=shr(:,1); 
shr_y=shr(:,2); 
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fillet_path.m 

n [Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path(Shortened_Paths,min_turn) 

INPUTS: 
 

mx2 matrix where n is the length of the longest 
of UAVs multiplied by the number of targets.   

ement  
mx2) y position of the mth uav at point n.   

 
AVs 

S: 

rtened_Paths_fillet - is a nxmx2 matrix where n is the length of the  
%longest path with the addition of fillets ((2*old size)-1) and m is the  
%number of UAVs multiplied by the number of targets.  The element (nxmx1)  
%x position of the mth uav at point n.  The element (nxmx2) y position of  
%the mth uav at point n.   
 
 
Shortened_Paths_fillet=Shortened_Paths*0; 
Shortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1); 
Shortened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2); 
Shortened_Paths_fillet(1,:)=Shortened_Paths(1,:); 
 
fillet_counter=2; 
for j=2:size(Shortened_Paths,1)-1, 
    if Shortened_Paths(j,:)==Shortened_Paths(j+1,:), 
        break 
    end 
    start=Shortened_Paths(j-1,:); 
    middle=Shortened_Paths(j,:); 
    finish=Shortened_Paths(j+1,:); 
    SM=sqrt(sum((middle-start).^2)); 
    MF=sqrt(sum(((finish-middle).^2))); 
    SF=sqrt(sum(((finish-start).^2))); 
    alpha=acos((SM^2+MF^2-SF^2)/(2*SM*MF)); 
    Fillet=min_turn/tan(alpha/2); 
    if Fillet>=SM 
        Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:); 
    else 
        Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:)+(Shortened_Paths(j,:)-
Shortened_Paths(j-1,:))*((SM-Fillet)/SM); 
    end 
    if Fillet>=MF, 
        Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j+1,:); 
    else 
        Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+(Shortened_Paths(j+1,:)-
Shortened_Paths(j,:))*(Fillet/MF); 
    end 
    fillet_counter=fillet_counter+2; 
end 
Shortened_Paths_fillet_x=Shortened_Paths_fillet(:,1); 
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2);  

Authored by Matthew Lechliter 
functio
 
%
%
%Shortened_Paths - is a nx
%path and m is the number 
%The element (nxmx1) x position of the mth uav at point n.  The el
%(nx
%
%min_turn - minimum turning radius for the U
 
%OUTPUT
% 
%Sho
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heading_angle_paths.m 
Authored by Matthew Lechliter 
function [Shortened_Paths_heading_angle_x,Shorten _Paths_heading_angle_y]= 
heading_angle_paths(Shortened_Paths,min_turn,HEA ING_ANGLE,num_segs); 
 
warning off MATLAB:divideByZero 
 
if HEADING_ANGLE < 0, 
    HEADING_ANGLE=pi*2+HEADING_ANGLE; 
end 
 
delta_x = Shortened_Paths(2,1) - Shortened_Paths(1,1);  
delta_y = Shortened_Paths(2,2) - Shortened_Paths(1,2);  
 
NEW_HEADING_ANGLE=(atan(abs(delta_y)/abs(delta_x))); 
if delta_x>=0 & delta_y>=0, 
    NEW_HEADING_ANGLE=NEW_HEADING_A GLE; 
end 
if delta_x<0 & delta_y>=0, 
    NEW_HEADING_ANGLE=pi-NEW_HEADING_ NGLE; 
end 
if delta_x<0 & delta_y<0, 
    NEW_HEADING_ANGLE=pi+NEW_HEADING NGLE; 
end 
if delta_x>=0 & delta_y<0, 
    NEW_HEADING_ANGLE=2*pi-NEW_HEADING_ANGLE; 
end 
 
% x and y are the initial positions of the UAV 
x=Shortened_Paths(1,1); 
y=Shortened_Paths(1,2); 

 Rotated heading angle 
ROTATED_HEADING_ANGLE=HEADING_ANGLE-NEW_HEADING_ANGLE; 
 
% Rotated NEW_HEADING_ANGLE is 0 degrees 
ROTATED_NEW_HEADING_ANGLE=0; 
 
% This section ensures that ROTATED_HEADING_ANGLE is between -pi and pi 
if abs(ROTATED_HEADING_ANGLE) > pi 
    if ROTATED_HEADING_ANGLE > 0 
        ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE-2*pi; 
    else 
        ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE+2*pi; 
    end   
end 
 
if abs(ROTATED_HEADING_ANGLE) < pi/5.5 
    small_ang=1; 
else 
    small_ang=0; 
    %  Equation found by numerical methods, used to find the location of the 
    %  first point to break from the old path onto the first circle 
    
init_dist=0.082565052*(abs(ROTATED_HEADING_ANGLE)/pi*(2*min_turn))^3+0.020254038*(abs(R

ed
D

N

A

_A

 
%
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OTATED_HEADING_ANGLE)/pi*(2*min_turn))^2+0.629231718*(abs(ROTATED_HEADING_ANGL

from the 
he circles 

t_dist*cos(ROTATED_HEADING_ANGLE); 
u = y+init_dist*sin(ROTATED_HEADING_ANGLE); 

OTATED_HEADING_ANGLE >= 0 
-1; 

cw = 1; 

inds the locations of the center of both circles, based on whether 
e made by the intersection of the old and new heading angles 

  xc1 = (x+min_turn*cos(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi)); 

GLE - ccw*.5*pi)); 

en the position of the 
first break off point and the center of the first circle 

by the horizon (x-axis) and the line between 
ter of the first circle 

c2)/abs(dx_c2))); 

f dx_c2<0 & dy_c2>=0, 

d 

  c2_angle=pi+c2_angle; 

elta x and delta y between the position of the 
  % center of the final circle and the center of the first circle  
  dx_cc = (xc1 - xc2);  

   
le made by the horizon (x-axis) and the line between 

    % the position of the center of the final circle and the center of the first circle  
    cc_angle=(atan(abs(dy_cc)/abs(dx_cc))); 
    if dx_cc>=0 & dy_cc>=0, 
        cc_angle=cc_angle; 

E)/pi*(2*min_turn)); 
     
    %  xu and yu are the coordinates of the first point that breaks 
    %  old path and onto the new path following t
    xu = x+ini
    y
     
     
    if R
        ccw = 
    else  
        c
    end 
     
    %  F
    %  the angl
    %  is positive or negative 
     
  
    yc1 = (y+min_turn*sin(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi)); 
     
    xc2 = (xu+min_turn*cos(ROTATED_HEADING_AN
    yc2 = (yu+min_turn*sin(ROTATED_HEADING_ANGLE - ccw*.5*pi)); 
     
    % dx_c2 and dy_c2 are the delta x and delta y betwe
    % center of the 
    dx_c2 = xu - xc2;  
    dy_c2 = yu - yc2;  
     
    % c2_angle is the angle made 
    % the break off point and cen
    c2_angle=(atan(abs(dy_
    if dx_c2>=0 & dy_c2>=0, 
        c2_angle=c2_angle; 
    end 
    i
        c2_angle=pi-c2_angle; 
    en
    if dx_c2<0 & dy_c2<0, 
      
    end 
    if dx_c2>=0 & dy_c2<0, 
        c2_angle=2*pi-c2_angle; 
    end 
     
    % dx_cc and dy_cc are the d
  
  
    dy_cc = (yc1 - yc2);  
  
    % cc_angle is the ang
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    end 
    if dx_cc<0 & dy_cc>=0, 
        cc_angle=pi-cc_angle; 
    end 

c<0, 

  end 
  if dx_cc>=0 & dy_cc<0, 

le; 

 abs(ROTATED_HEADING_ANGLE)>pi/2 
  cc_point = (2*pi-cc_angle); 

          c2_point = -(2*pi-c2_angle); 

2_angle); 
      end 

DING_ANGLE)>pi/2 
nt = ccw*(cc_angle); 

_point = ccw*(cc_angle); 

  counter = 1; 
i/num_segs:ccw*2*pi/num_segs:cc_point+c2_point)+pi/2-c2_angle 
r)=min_turn*sin(i)+xc2; 

cos(i)+yc2; 
unter + 1; 

)); 

_angle=c1_angle; 

_c1>=0, 
e=pi-c1_angle; 

 & dy_c1<0, 
_angle=2*pi-c1_angle; 

d 
   

gle+ccw*pi; 

    if dx_cc<0 & dy_c
        cc_angle=pi+cc_angle; 
  
  
        cc_angle=2*pi-cc_ang
    end  
     
    if ccw == 1 
        if
          
  
        else 
            cc_point = (2*pi-cc_angle); 
            c2_point = (c
  
    else 
        if abs(ROTATED_HEA
            cc_poi
            c2_point = -1*ccw*(c2_angle); 
        else 
            cc
            c2_point = ccw*(2*pi-c2_angle); 
        end 
    end 
     
  
    for i = (ccw*2*p
        x_c2(1,counte
        y_c2(1,counter) = min_turn*
        counter = co
    end 
     
    dx_c1 = x - xc1;  
    dy_c1 = y - yc1;  
     
    c1_angle=(atan(abs(dy_c1)/abs(dx_c1)
    if dx_c1>=0 & dy_c1>=0, 
        c1
    end 
    if dx_c1<0 & dy
        c1_angl
    end 
    if dx_c1<0 & dy_c1<0, 
        c1_angle=pi+c1_angle; 
    end 
    if dx_c1>=0
        c1
    en
  
    cc_angle=cc_an
     
    counter = 1; 
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    for i = (-ccw*2*pi/num_segs:-ccw*2*pi/num_segs:(cc_angle-c1_angle))-(cc_angle-pi/2) 
1; 

+ NEW_HEADING_ANGLE; 
_temp,yu_temp] = pol2cart(t,r); 

  Shortened_Paths_heading_angle_x_temp(1) = x; 
; 

  Shortened_Paths_heading_angle_x_temp(2) = xu_temp + x; 
    Shortened_Paths_heading_angle_y_temp(2) = yu_temp + y; 
     
    for i = 1:size(x_c2,2) 
        [t,r] = cart2pol(x_c2(i) - x,y_c2(i) - y); 
        t = t + NEW_HEADING_ANGLE; 
        [x_c2_temp,y_c2_temp] = pol2cart(t,r);  
        Shortened_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) = 
(x_c2_temp + x); 
        Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) = 
(y_c2_temp + y); 
    end 
     
     
    for i = 1:size(x_c1,2) 
        [t,r] = cart2pol(x_c1(i) - x,y_c1(i) - y); 
        t = t + NEW_HEADING_ANGLE; 
        [x_c1_temp,y_c1_temp] = pol2cart(t,r);  
        Shortened_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) = 
(x_c1_temp + x); 
        Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) = 
(y_c1_temp + y); 
    end 
end 
 
if small_ang==0, 
    sze = size(Shortened_Paths,1); 
    Shortened_Paths_heading_angle_x=ones(sze,1)*Shortened_Paths(end,1); 
    Shortened_Paths_heading_angle_y=ones(sze,1)*Shortened_Paths(end,2); 
     
    szpts=size(Shortened_Paths_heading_angle_x_temp,2); 
     
    Shortened_Paths_heading_angle_x([1:szpts],1)=Shortened_Paths_heading_angle_x_temp'; 
    Shortened_Paths_heading_angle_x([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],1); 
    Shortened_Paths_heading_angle_y([1:szpts],1)=Shortened_Paths_heading_angle_y_temp'; 
    Shortened_Paths_heading_angle_y([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],2); 
else 
    Shortened_Paths_heading_angle_x=Shortened_Paths(:,1); 
    Shortened_Paths_heading_angle_y=Shortened_Paths(:,2); 
end

        x_c1(1,counter)=min_turn*sin(i)+xc
        y_c1(1,counter) = min_turn*cos(i)+yc1; 
        counter = counter + 1; 
    end 
     
    %  Rotation back to original coordinates 
    [t,r] = cart2pol(xu - x,yu - y); 
    t = t 
    [xu
 
  
    Shortened_Paths_heading_angle_y_temp(1) = y
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update_cost.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [permcost]=update_cost(Shortened_Paths,THREATS) 

ed_Paths - is a nxmx2 matrix where n is the length of the longest 
ber of targets.   

ent (nxmx1) x position of the mth uav at point n.  The element  
.   

 where n is the number of Threats, the first row 
n of the threats, the second row is the y position of the 

level of danger of the threats. 

ortened_Paths,1)-1; 

tened_Paths(i,2); 
ths(i+1,1);finish_y=Shortened_Paths(i+1,2); 

)^2)+((finish_y-start_y)^2)); 

S(1,j)-start_x)^2)+((THREATS(2,j)-finish_y)^2)); 
 FC=sqrt(((THREATS(1,j)-finish_x)^2)+((THREATS(2,j)-finish_y)^2)); 

SF); 
  if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 

      if SC<FC,PC=SC; 

SF; 
nd 

 
%INPUTS: 
% 
%Shorten
%path and m is the number of UAVs multiplied by the num
%The elem
%(nxmx2) y position of the mth uav at point n
% 
%THREATS - is a 4xn matrix
%is the x positio
%threats, the third row is the range of the threats, and the fourth row is 
%the 
 
%OUTPUTS: 
% 
%permcost - cost associated with the nth UAV going to the mth TARGET 
 
 
szsp_num=size(Sh
nthrts=size(THREATS,2); 
permcost=0; 
 
for i=1:szsp_num, 
    start_x=Shortened_Paths(i,1);start_y=Shor
    finish_x=Shortened_Pa
    SF=sqrt(((finish_x-start_x
    for j=1:nthrts, 
        SC=sqrt(((THREAT
       
        SN=(SC^2+SF^2-FC^2)/(2*
      
        else 
      
            else 
                PC=FC; 
            end 
        end 
        if PC < THREATS(3,j),SF=SF+(THREATS(4,j)*100); 
        end 
    end 
    permcost=permcost+
e
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mmkp_task_allocation.m 

_Paths_y,nuav) 

t - is a mxn matrix where m is the number of uavs and n is the 
 matrix 

e cost for the mth uav to take the nth path. 

e length of the longest 
 and m is the number of UAVs multiplied by the number of targets.   

x position of the mth uav at point n.  The element  
h uav at point n.  

ber of UAVs 

TPUTS: 
 

 x position of the 
 the mth uav at 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
p_new(totalcost); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mmkp 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

s(size(Shortened_Paths_x,1),nuav); 
ected_Paths_y=zeros(size(Shortened_Paths_x,1),nuav); 

elected_Paths_x(:,i)=Shortened_Paths_x(:,(nuav)*(i-1)+bestcomb(1,i)); 
tened_Paths_y(:,(nuav)*(i-1)+bestcomb(1,i)); 

 

Authored by Matthew Lechliter and Zachary Spritzer 
function [Selected_Paths_x,Selected_Paths_y]= 
mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened
 
%INPUTS: 
% 
%totalcos
%number of possible paths for each uav.  The element (m,n) of this
%is th
% 
%Shortened_Paths - is a nxmx2 matrix where n is th
%path
%The element (nxmx1) 
%(nxmx2) y position of the mt
% 
%nuav - num
 
%OU
%
%Selected_Pos - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs.  The element (nxmx1)
%mth uav at point n.  The element (nxmx2) y position of
%point n.   
 
 
%%%%%%%%%
%MMKP algorithm 
%%%%%%%%%%%%%
[bestcomb,mincost]=mmk
 
%%%%%%%%%%%%%
%Taking the results from 
%%%%%%%%%%%%%%
 
Selected_Paths_x=zero
Sel
for i=1:nuav, 
    S
    Selected_Paths_y(:,i)=Shor
End
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mmkp_new.m 
lena Lucci 

mkp_new(totalcost) 

totalcost - is a nxm matrix where n is the total number of uav's and m is 
or paths. Where the element nxm is the cost 

associated with uav "n" choosing target or path "m". 

to the number or uav's where each 
which path the uav should select to give the 

ution. 

cost - is a scalar number which is sum of the optimal costs for all 

uav=size(totalcost,1); 
mincost=inf; 
C_new=perms(1:nuav); 
for j=1:size(C_new,1), 
    sc=0; 
    for i=1:nuav, 
        sc=sc+totalcost(i,C_new(j,i)); 
    end 
    if sc < mincost  
        bestcomb=C_new(j,:);  
        mincost = sc; 
    end 
end 
 

Authored by Matthew Lechliter, Zachary Spritze, and E
function [bestcomb,mincost]=m
 
%Inputs: 
% 
%
%the total number of targets 
%
% 
%Outputs: 
% 
%bestcomb - is a 1xn row with n equal 
%element of the row represents 
%optimal sol
% 
%min
%the uav's paths. 
n
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vrt_sim_convert.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,UAVS,distpast) 

r - is a nxmx2 matrix where n is the length of the longest 
 m is the number of UAVs.  The element (nxmx1) x position of the 

 mth uav at 
 n. 

UAVs, the first row is the  
al x position of the UAVs, the second row is the initial y position 

ird row is the initial altitude of the UAVs, and  
locity of the UAVs. 

uav_path_x - is a mxn matrix where m is the number of uavs and m is the 

f uavs and m is the 

f uavs and m is the 
gest path. These values correspond to the time at which 

th_y. 

atrix where m is the number of uavs and m is the 
. These values correspond to the altitudes that 
 are at coordinates x and y in uav_path_x and 

 number of threats, where 
nge of the threats at the altitude where the uavs 

re flying. 

ne_range_vrt - is a 1xn vector where n is the number of zones, where 
the zones at the altitude where the uavs 

e flying. 

h+1); 
av_path_y=zeros(nuav,szshrpth+1); 
r i=1:nuav, 

      if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j,i)] | j==szshrpth, 
(j,i); 

          nxtlst_pnt_x=shr_x(j-1,i); 
            lst_pnt_y=shr_y(j,i); 
            nxtlst_pnt_y=shr_y(j-1,i); 
            dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((lst_pnt_y-nxtlst_pnt_y)^2)); 

% 
%INPUTS: 
% 
%sh
%path and
%mth uav at point n.  The element (nxmx2) y position of the
%point
% 
%UAVS - is a 4xn matrix where n is number of 
%initi
%of the UAVs, the th
%the fourth row is the intial Ve
% 
% 
%OUTPUTS: 
% 
%
%length of the longest path. These are the x coordinates of the paths. 
% 
%uav_path_y - is a mxn matrix where m is the number o
%length of the longest path. These are the y coordinates of the paths. 
% 
%time_uav - is a mxn matrix where m is the number o
%length of the lon
%the uavs are at coordinates x and y in uav_path_x and uav_pa
% 
%altitude_uav - is a mxn m
%length of the longest path
%the uavs are at when they
%uav_path_y. 
% 
%Threat_range_vrt - is a 1xn vector where n is the
%the first row is the ra
%a
% 
%Zo
%the first row is the range of 
%ar
 
nuav=size(shr_x,2); 
szshrpth=size(shr_x,1); 
shr_x=[[shr_x];[shr_x(szshrpth,:)]]; 
shr_y=[[shr_y];[shr_y(szshrpth,:)]]; 
uav_path_x=zeros(nuav,szshrpt
u
fo
    for j=1:szshrpth, 
  
            lst_pnt_x=shr_x
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            last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts)); 
ast/dist_pnts)); 

1])=last_x; 
          uav_path_y(i,[j+1:szshrpth+1])=last_y; 

          break 

_x(j,i); 
_path_y(i,j)=shr_y(j,i); 

 
=zeros(nuav,szshrpth+1); 

 matrix 
1:nuav, 

dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))^2+(uav_path_y(i,j)-uav_path_y(i,j+1))^2); 
      time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i); 

    end 
    time_uav(i,[2:szshrpth+1])=sum(time_uav_temp(i,:)); 
    for j=2:szshrpth+1, 
        time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j); 
    end 
end 
 
time_uav=time_uav*1.01; 
 
%Altitude matrix 
for i=1:nuav, 
    for j=1:szshrpth+1, 
        altitude_uav(i,j)=UAVS(3,i); 
    end 
end 
 

            last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(distp
            uav_path_x(i,[j+1:szshrpth+
  
            uav_path_x(i,j)=shr_x(j,i); 
            uav_path_y(i,j)=shr_y(j,i); 
  
        else 
            uav_path_x(i,j)=shr
            uav
        end 
    end 
end 
 
%Initializing matrixes 
time_uav_temp=zeros(nuav,szshrpth+1); 
time_uav=zeros(nuav,szshrpth+1);
altitude_uav
 
%Time
for i=
    for j=1:szshrpth, 
        shr_
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plot_uav.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function 
plot_uav(UAVS,TARGETS,ZONES,THREATS,uav_path_x,uav_path_y,n_plots,uavs_existing,targ_existi

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
otting results 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n; 

i=1:size(UAVS,2) 
(1,i)==1 

2,i),'bd'); 
  text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b'); 

200 5 200]); 

nd 
  end 

,.4,0]); 

2) 
)==1 
),THREATS(2,i),'r*'); 
+5,THREATS(2,i),{i},'FontSize',12,'Color','r') 

); 

ld on; 

=1:size(THREATS,2) 

2*pi; 

EATS(2,i); 

eat,y_threat,'r.');hold on; 
      end 
  end 

Plotting No fly Zones 

  t_nfz = (1/16:1/16:1)'*2*pi; 
    x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i); 
    y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i); 

ng,threats_existing) 
%%%%%%%
%Pl
%%%%%
figure(n_plots); 
hold o
for i=1:2, 
    subplot(1,2,i), 
    for 
        if uavs_existing
            plot(UAVS(1,i),UAVS(
          
            axis([5 
            hold on; 
        e
  
    for i=1:size(TARGETS,2) 
        if targ_existing(1,i)==1 
            plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0
            text(TARGETS(1,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]); 
            axis([5 200 5 200]); 
            hold on; 
        end 
    end 
    for i=1:size(THREATS,
        if threats_existing(1,i
            plot(THREATS(1,i
            text(THREATS(1,i)
            axis([5 200 5 200]
            hold on; 
        end 
    end 
    ho
end  
 
%Plotting Threats and range 
for i
    if threats_existing(1,i)==1 
        t_threat = (1/32:1/32:1)'*
        x_threat = THREATS(3,i)*sin(t_threat)+THREATS(1,i); 
        y_threat = THREATS(3,i)*cos(t_threat)+THR
        for i=1:2, 
            subplot(1,2,i),plot(x_thr
  
  
end 
 
%
for i=1:size(ZONES,2) 
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    for i=1:2, 
        subplot(1,2,i),fill(x_nfz,y_nfz,'k');hold on; 
    end 
end 

Plotting shortened paths 

  subplot(1,2,2),plot(uav_path_x(i,:),uav_path_y(i,:),'b-');hold on; 

s');hold on; 
; 

r i=1:2, 
-25 250]);hold on; 

nd 

 
 
%
for i=1:size(uav_path_x,1) 
  
end 
 
subplot(1,2,1),title('Initial Position
subplot(1,2,2),title('Shortened Selected Paths');hold on
fo
    subplot(1,2,i),axis([-25 250 
e
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MATLAB Codes for Simulation 
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place_waypoints_s.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] =place_waypoints_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u); % Calculate outputs 
         
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
         
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    9*4+9; 

4; sizes.NumInputs=     9*4+9*
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
 
 
[sys]=place_waypoints(u); 
 
% End of mdlOutputs. 
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place_waypoints.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys]=place_waypoints(u) 
 
UAVS=u([1:36],1); 
UAVS=reshape(UAVS,4,9); 
 
 
uavs_existing=zeros(1,9); 
for i=1:9 
    if abs(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26 

nd 

TS_REAL,4,9); 

9 
(UAVS(:,i)))~=0.26 

))>0  

v < n_targ 

sort(A); 
))); 

AL(1,Column(1,1)); 
RGETS(2,i) = TARGETS_REAL(2,Column(1,1)); 

EAL(3,Column(1,1)); 
AL(4,Column(1,1)); 

gets_location(1,i)=Column(1,1); 
ARGETS_REAL(3,Column(1,1))=0; 
 

  counter=1; 
    for i=1:9 
        if abs(sum(TARGETS_REAL(:,i)))>0 
            TARGETS(:,counter)=TARGETS_REAL(:,i); 
            targets_location(1,counter)=i; 
            counter=counter+1; 
        end 
    end 
end 
 
if n_uav > n_targ 
    for i=1:(n_uav-n_targ) 
        A=TARGETS_REAL(3,:); 

        uavs_existing(1,i)=1; 
   end 
e
 
TARGETS_REAL=u([37:72],1); 
TARGETS_REAL=reshape(TARGE
n_uav=0;n_targ=0; 
 
TARGETS=zeros(4,9); 
targets_location=zeros(1,9); 
for i=1:
    if abs(sum(UAVS(:,i)))>0 & abs(sum
        n_uav=n_uav+1; 
    end 
    if abs(sum(TARGETS_REAL(:,i)
        n_targ=n_targ+1; 
    end 
end 
 
if n_ua
    for i = 1:n_uav 
        A=TARGETS_REAL(3,:); 
        B=
        Column=find(A==B(1,size(B,2
        TARGETS(1,i) = TARGETS_RE
        TA
        TARGETS(3,i) = TARGETS_R
        TARGETS(4,i) = TARGETS_RE
        tar
        T
    end
else 
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        B=sort(A); 
        Column=find(A==B(1,size(B,2))); 
        TARGETS(1,n_targ+i) = i*.01+TARGETS_REAL(1,Column(1,1)); 

umn(1,1)); 

TS(4,n_targ+i) = 0; 
  TARGETS_REAL(3,Column(1,1))=0.5*TARGETS_REAL(3,Column(1,1)); 

ts_location(1,i+n_targ)=Column(1,1); 

S=[TARGETS,zeros(4,9-size(TARGETS,2))]; 

eshape(TARGETS,36,1);targets_location']; 

        TARGETS(2,n_targ+i) = i*.01+TARGETS_REAL(2,Col
        TARGETS(3,n_targ+i) = 0; 
        TARGE
      
        targe
    end 
end 
TARGET
 
sys=[r
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path_planning_s.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] = path_planning_s(t,x,u,flag,T) 

 Dispatch the flag. The switch function controls the calls to  
on stage. 

% Initialization 

uts 

handled flag = ',num2str(flag)]); % Error handling 

==============================================  
es the states, sample  

s, state ordering strings (str), and sizes structure. 
============================================== 

Sizes(T) 
function simsizes to create the sizes structure. 

itialization information. 
umContStates= 0; 

 

umInputs=     36+36+30+60+1+1+9; 
 

 the sys vector with the sizes information. 

; % No continuous states 

mple time 

========================================================== 
nction mdlOutputs performs the calculations. 
=========================================================== 

ys]=path_planning(u); 
% End of mdlOutputs. 
 

%
% S-function routines at each simulati
switch flag, 
   case 0 
     [sys,x0,str,ts] = mdlInitializeSizes(T); 
   case 3 
     sys = mdlOutputs(u); % Calculate outp
   case { 1, 2, 4, 9 } 
     sys = [ ]; % Unused flags 
   otherwise 
     error(['Un
end; 
%================
% Function mdlInitializeSizes initializ
% time
%================
function [sys,x0,str,ts] = mdlInitialize
% Call 
sizes = simsizes; 
% Load the sizes structure with the in
sizes.N
sizes.NumDiscStates= 0;
sizes.NumOutputs=    9*100*4+9; 
sizes.N
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1; 
% Load
sys = simsizes(sizes); 
% 
x0 = [ ]
%  
str = [ ]; % No state ordering 
%  
ts = [T 0]; % Inherited sa
% End of mdlInitializeSizes. 
%====
% Fu
%===
function sys = mdlOutputs(u) 
[s
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uav_crash_s.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] =uav_crash_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     

 
       

utputs 
       

       

 

ts(u); 

; 

 

    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization
  
    case 3 
        sys = mdlOutputs(u); % Calculate o
  
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
  
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    9; 
sizes.NumInputs=     57; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutpu
 
 
[sys]=uav_crash(u)
 
% End of mdlOutputs. 
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uav_crash.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys]=uav_crash(u) 

:27],1),3,9); 
),3,10); 

s(1,i)-zone_pos(1,j))^2)+((uav_pos(2,i)-zone_pos(2,j))^2)); 
uav_zone < zone_pos(3,j), 

  end 

 
uav_pos=reshape(u([1
zone_pos=reshape(u([28:57],1
 
uav_shot_down=zeros(9,1); 
 
for i=1:9, 
    for j=1:10, 
        dist_uav_zone=sqrt(((uav_po
        if dist_
            uav_shot_down(i,1)=1; 
        end 
  
end 
sys=[uav_shot_down]; 
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uav_interc
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] =uav_intercepted_s(t,x,u,flag,T  

 Dispatch the flag. The switch function controls the calls to  
 S-function routines at each simulation stage. 

switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u)
         
    case { 1, 2, 4, 9
        sys = []; % U

       
  otherwise 

        error(['Unhandled flag = ',num2str(fla
end; 
 

=========================== ==============  
 Function mdlInitializeSizes initializes the states, sample  

% times, state ordering strings (str), and sizes structur  
%============================================================== 
function [sys,x0,str,t
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes stru
sizes.NumContStates
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    24; 
sizes.NumInputs=     87; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%===========================================================
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
 
 
[sys]=uav_intercepted(u); 
 
% End of mdlOutputs. 
 

epted_s.m 

)
%
%

; % Calculate outputs 

 } 
nused flags 

  
  

g)]); % Error handling 

%
%

=====================

e.

s] = mdlInitializeSizes(T) 

cture with the initialization information. 
= 0; 

=== 
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uav_intercepted.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys]=uav_intercepted(u) 
 
uav_pos=reshape(u([1:27],1),3,9); 
threat_pos=reshape(u([28:87],1),4,15); 
 
uav_shot_down=zeros(9,1); 
threats_fired=zeros(15,1); 
for i=1:9, 
    for j=1:15, 
        dist_uav_threat=sqrt(((uav_pos(1,i)-threat_pos(1,j))^2)+((uav_pos(2,i)-threat_pos(2,j))^2)); 
        if dist_uav_threat < threat_pos(3,j), 
            threats_fired(j,1)=1; 
            uav_chance=rand; 
            if uav_chance <= threat_pos(4,j), 
                uav_shot_down(i,1)=1; 
            end 
        end 
    end 
end 
sys=[uav_shot_down; threats_fired]; 
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target_classifier_s.m 
Authored by Matthew Lechliter and Zachary Spritzer 
 function [sys,x0,str,ts] = target_classifier_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u); % Calculate outputs 
         
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
         
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    36; 
sizes.NumInputs=     100; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
 
 
[sys]=target_classifier(u); 
 
 
% End of mdlOutputs. 
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target_classifier.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys]=target_classifier(u) 
 
TARGETS_OLD=u([1:36],1); 
TARGETS_OLD=reshape(TARGETS_OLD,4,9); 
 
END_OF_PATH=u([37:45],1); 
 
SELECTED_TARGETS=u([46:54],1); 
 
TARGETS_REAL=u([55:90],1); 
TARGETS_REAL=reshape(TARGETS_REAL,4,9); 
 
target_location=u([91:99],1); 
 
clock=round(u(100,1)); 
 
uav_complete=find(END_OF_PATH==1); 
nuav_complete=size(uav_complete,2); 
action=0; 
for i=1:nuav_complete, 
    target_real_location=target_location(SELECTED_TARGETS(uav_complete(1,i),1)); 
    action=TARGETS_REAL(4,target_real_location); 
    if TARGETS_REAL(4,target_real_location) < 4, 
        TARGETS_REAL(4,target_real_location)=TARGETS_REAL(4,target_real_location)+1; 
    else 
        TARGETS_REAL(:,target_real_location)=0; 
    end 
    if action==1,  
        target_present=rand; 
        if target_present <= .9, 
            disp(sprintf('Target %d (value %d) indentified as a target at time %d by UAV %d. \n',... 
            target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));  
        else 
            disp(sprintf('Target %d (value %d) indentified as NOT a target at time %d by UAV %d.',... 
            target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); 
            disp(sprintf('Target %d has been removed from target status at time %d.\n',... 
            target_real_location,clock)); 
            TARGETS_REAL(:,target_real_location)=0; 
        end 
    end 
    if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV %d. \n',... 
            target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); end 
    if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV %d. \n',... 
            target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); end 
    if action==4,  
        target_destroyed=rand; 
        if target_destroyed <= .85, 
            disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',... 
                target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); 
        else 
            disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. \n',... 
                target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); 
            TARGETS_REAL(4,target_real_location)=3; 
        end 
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    end 
end 
 
if sum(sum(TARGETS_REAL))==0, 
    TARGETS_REAL(:,1)=[4 2 3 1]'; 
end 
 
 
sys=reshape(TARGETS_REAL,36,1); 
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compare_targets_s.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] =compare_targets_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u); % Calculate outputs 
         
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
         
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    36; 
sizes.NumInputs=     36*9; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = [ ]; % No continuous states 
%  
str = [ ]; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
 
 
[sys]=compare_targets(u); 
 
% End of mdlOutputs. 
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compare_targets.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys]=compare_targets(u) 
 
targets_1=reshape(u([1:36],1),4,9); 
targets_2=reshape(u([37:72],1),4,9); 
targets_3=reshape(u([73:108],1),4,9); 
targets_4=reshape(u([109:144],1),4,9); 
targets_5=reshape(u([145:180],1),4,9); 
targets_6=reshape(u([181:216],1),4,9); 
targets_7=reshape(u([217:252],1),4,9); 
targets_8=reshape(u([253:288],1),4,9); 
targets_9=reshape(u([289:324],1),4,9); 
 
for i = 1:9 
    real_targets(:,i) = targets_1(:,i); 
    if targets_2(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_2(:,i); 
    end 
    if targets_3(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_3(:,i); 
    end 
    if targets_4(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_4(:,i); 
    end 
    if targets_5(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_5(:,i); 
    end 
    if targets_6(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_6(:,i); 
    end 
    if targets_7(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_7(:,i); 
    end 
    if targets_8(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_8(:,i); 
    end 
    if targets_9(4,i)>real_targets(4,i) 
        real_targets(:,i) = targets_9(:,i); 
    end 
end 
         
sys=reshape(real_targets,36,1); 
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compare_threats_s.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] =compare_threats_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u); % Calculate outputs 
         
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
         
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    60; 
sizes.NumInputs=     60*9; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = [ ]; % No continuous states 
%  
str = [ ]; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
 
 
[sys]=compare_threats(u); 
 
% End of mdlOutputs. 
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compare_threats.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys]=compare_threats(u) 
 
threats_1=reshape(u([1:60],1),4,15); 
threats_2=reshape(u([61:120],1),4,15); 
threats_3=reshape(u([121:180],1),4,15); 
threats_4=reshape(u([181:240],1),4,15); 
threats_5=reshape(u([241:300],1),4,15); 
threats_6=reshape(u([301:360],1),4,15); 
threats_7=reshape(u([361:420],1),4,15); 
threats_8=reshape(u([421:480],1),4,15); 
threats_9=reshape(u([481:540],1),4,15); 
for i = 1:15 
    real_threats(:,i) = threats_1(:,i); 
    if threats_2(4,i) == 0 
        real_threats(:,i) = threats_2(:,i); 
    end 
    if threats_3(4,i) == 0 
        real_threats(:,i) = threats_3(:,i); 
    end 
    if threats_4(4,i) == 0 
        real_threats(:,i) = threats_4(:,i); 
    end 
    if threats_5(4,i) == 0 
        real_threats(:,i) = threats_5(:,i); 
    end 
    if threats_6(4,i) == 0 
        real_threats(:,i) = threats_6(:,i); 
    end 
    if threats_7(4,i) == 0 
        real_threats(:,i) = threats_7(:,i); 
    end 
    if threats_8(4,i) == 0 
        real_threats(:,i) = threats_8(:,i); 
    end 
    if threats_9(4,i) == 0 
        real_threats(:,i) = threats_9(:,i); 
    end 
end 
         
sys=reshape(real_threats,60,1); 
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display_initial_s.m  
Authored by Matthew Lechliter and Zachary Spritzer 
function [sys,x0,str,ts] = display_initial_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
 
   case 0 
     [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
 
   case 3 
     mdlOutputs(u); % Calculate outputs 
 
   case { 1, 2, 4, 9 } 
     sys = []; % Unused flags 
 
   otherwise 
     error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    0; 
sizes.NumInputs=     36+36+30+60; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = [ ]; % No continuous states 
%  
str = [ ]; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function mdlOutputs(u) 
 
 
display_initial(u); 
 
% End of mdlOutputs. 
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display_initial.m 
Authored by Matthew Lechliter and Zachary Spritzer 
function display_initial(u) 
 
UAVS=u([1:4*9],1); 
UAVS=reshape(UAVS,4,9); 
a=4*9; 
TARGETS=u([a+1:a+4*9]); 
TARGETS=reshape(TARGETS,4,9); 
a=a+4*9; 
ZONES=u([a+1:a+3*10]); 
ZONES=reshape(ZONES,3,10); 
a=a+3*10; 
THREATS=u([a+1:a+4*15]); 
THREATS=reshape(THREATS,4,15); 
 
for i=1:9 
    if abs(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26 
        disp(sprintf('UAV %d exists at location %d x, location %d y, altitude %d km, and is flying at %d m/s. 
\n',... 
            i,round(UAVS(1,i)),round(UAVS(2,i)),round(UAVS(3,i)),round(UAVS(4,i)*1000))); 
   end 
end 
 
for i=1:9 
    if abs(sum(TARGETS(:,i)))>0  
        disp(sprintf('Target %d indicated to be at location %d x, location %d y , and with an estimated value 
of %d. \n',... 
            i,round(TARGETS(1,i)),round(TARGETS(2,i)),round(TARGETS(3,i)))); 
   end 
end 
 
for i=1:10 
    if abs(sum(ZONES(:,i)))>0  
        disp(sprintf('No-Fly Zone %d exists at location %d x, location %d y, and with a radius of %d km. 
\n',... 
            i,round(ZONES(1,i)),round(ZONES(2,i)),round(ZONES(3,i)))); 
   end 
end 
 
for i=1:15 
    if abs(sum(THREATS(:,i)))>0  
        disp(sprintf('Threat %d exists at location %d x, location %d y, with a range of %d km, and has a 
probability of kill of %d%%. \n',... 
            
i,round(THREATS(1,i)),round(THREATS(2,i)),round(THREATS(3,i)),round(THREATS(4,i)*100))); 
   end 
end 
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