WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2004

Decentralized control for UAV path planning and task allocation

Matthew C. Lechliter
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Lechliter, Matthew C., "Decentralized control for UAV path planning and task allocation" (2004). Graduate
Theses, Dissertations, and Problem Reports. 1443.
https://researchrepository.wvu.edu/etd/1443

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1443?utm_source=researchrepository.wvu.edu%2Fetd%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Decentralized Control for UAV Path Planning and Task Allocation

Matthew C. Lechliter

Thesis submitted to the
College of Engineering and Mineral Resources
at West Virginia University
in partial fulfillment of the requirements
for the degree of

Master of Science
in
Aerospace Engineering

Marcello R. Napolitano, Ph.D., Chair
Gary Morris, Ph.D.
Jacky Prucz, Ph.D.

Department of Mechanical and Aerospace Engineering

West Virginia University
Morgantown, WV
2004

Keywords: unmanned air vehicle, cooperative control, decentralized control

ABSTRACT
Decentralized Control for UAV Path Planning and Task Allocation

Matthew C. Lechliter

The effort of this research is to move toward enabling Unmanned Air Vehicles to
fly in autonomous formations with intelligent mission planning capabilities. In
particular, UAVs will be able to autonomously perform path planning and task allocation.
During missions, the UAVs must be able to avoid threats and no-fly zones while still
reaching their target optimally in time.

A path planning and task allocation approach was first developed that treats the
problem as a Multi-dimensional, Multiple-Choice Knapsack Problem. Paths are selected
and task assigned while minimizing the UAV team’s overall mission cost. Next, a
SIMULINK-based centralized simulation environment was created. This simulation uses
the path planning and task allocation scheme previously developed, and adds time-
varying, dynamic environment aspects. The latter part of the research effort was focused
on development of a decentralized simulation environment. This decentralized version
includes a vehicle’s own decision making capabilities and communication amongst a
team of vehicles.

The decentralized simulation was compared with the centralized version in terms of
simulation efficiency and was found to be faster for individual UAVs. Finally, real
communications issues were addressed to show that while communication problems lead
to a lack of cooperation, tasks can still be performed and missions completed within the
decentralized simulation environment.

Acknowledgments

I would first like to thank my wife Leah for all her love and support throughout
these last two years. Your dedication to me while obtaining this degree and choosing my

career path means more to me than I can express. | love you.

I would like to thank my committee chairman and research advisor Dr. Marcello
Napolitano. Your help and guidance throughout the last two years have been integral to

not only this research, but my career as well.

I would like to acknowledge and thank my committee members Dr. Garry Morris
and Dr. Jacky Prucz for taking time from their busy schedules to review and contribute
their thoughts to this research effort.

I would like to thank everyone who contributed to this research effort: Zachary
Spritzer, Jennifer Hazelton, Dr. Giampiero Campa, Dr. Brad Seanor, Elena Lucci, and Dr.

Mario George Perhinschi.

Finally, I would like to thank God, for through Him all things are possible.

Table of Contents

THEIE PAJE ..ttt b ettt et bttt Rt et ne e neenres i
AADSTTACTttt ii
ACKNOWIEAGMENTS. ...ttt sb et ene e i
TADIE OF CONTENTS ...ttt bttt e s \Y
[A0 B 1= o] 5 USROS Vi
[A0 T U= SRS vii
NOMEBNCIALUIE ...ttt b e et et e bt e be e e nreenee e X
Chapter 1: INTrOUUCTIONeeiiieie et e et esraenae e e nreanee s 1
RS N Y o 11 (o] YOS UPRT 1
1.2 ENVISIONE FULUIE ...ttt e 4
1.3 RESEAICH ODJECTIVES......eiiiiieitieitieee ettt b e sre e sbe e e 8
Chapter 2: LITErary REVIEW.........vciuiiieiieie et este st seesae e staestessee e aeanaesnaesaesnaestaenseaneessens 11
2.1 Path PIanning MEethodScouiiiiiiiie e 11
2.2 Path Planning/Task Allocation APProachesccccccveivereiieeieerieseeseesie e e 14
2.3 Decentralized Control and CommMUNICAIONScoouerierieriiiie e 17
Chapter 3: Development of the Path Planning/Task Allocation Scheme...........ccccceoeiveneae 18
3.1 DISCUSSION OF SEBIUP....ceuviitieitieieiiie sttt sttt ettt eenne e 18
3.2 Voronoi Diagram GENEIAtIONc.coviiiieeieiieseesesee e este e seesae e e saesnee e enee e 20
3.3 Dijkstra’s Algorithm and Cost ASSIGNMENT.........ccuoiiiiriiiieiie e 23
3.4 Path Shortening and FIyability..........ccooiieiriii e 28
3.5 Multi-dimensional, Multiple-Choice Knapsack Problem...........cccccvviiiiiinniennnne. 38
Chapter 4: AIrCraft DYNAMICS.......c.civviiieiecieie et se e e et aesreeae e e sreeneeas 41
g I 1o (oo [FTox { To o U RRTPR SRR 41
4.2 Body AXES MOTEIING ..o 42
4.3 Flight Path EQUALIONScoiiiiiiiccie ettt nne e 47
4.4 Earth-fixed Axes and Kinematic Relationships..........cccocooiiiiiiniiicici e 51
Chapter 5: Development of Centralized UAV SIMUulationcccoeveviieiiiieiieie e 55
5.1 Main SIMUIATION SYSTEMoiiiiiiiiie s 55
5.2 SIMUIALION INPULSeeiieiie e e e te e re e e 56
5.3 Path Planning and Task AllOCAtion EXECULION............cooiiiririeieieiese e 64
5.4 Aircraft Dynamics SUDSYSIEMc.coiiiiiiiie e 67
O.5 UAVS IMANAGET ...ttt 76
5.6 TaArgetS MANAGET .. .eiiiiiieiieie ettt e e e e e e e nrne e 81
5.7 THIEALS MANAGETcviiiieiieiieie ettt sttt 86
5.8 SIMUIALION QULPULScvveiiieiieeie ettt et e taeaesreesre e 88
Chapter 6: Decentralized Path Planning and Task Allocation............ccccooveniiiinniniinienn. 101
6.1 Main SIMUIALION SYSIEM.......cccuiiiiiice e 101
6.2 INAIVIAUAL UAV SYSTEM ..ottt 102
6.3 UAV COMMUNICALIONS.oviiiiiieitisiisiieeeieie ettt bt st ssessenneas 103
6.4 Individual UAV CalCUltioNScccoiiiiiieieiie e s 104
6.5 SIMUIALION QULPULScvveiiieiieeie ettt be e sre e sre e 109
Chapter 7: Comparison of Decentralized and Centralized Simulationscccccceeveienen. 112
7.1 Simulation EFfICIENCY ...ccviiiee e 112
7.2 MISCOMMUNICALION ..vvvveiieiteenie st sie et ste e ee e e be et e s e sreeseeaseesseenaeaneesreenee e 122

7.3 Delay of COMMUNICALIONeiuiiiiiiieieeie sttt 126

7.4 1L.0SS OF COMMUNICALIONviuiiiiitiiiiiti sttt 127
Chapter 8: Conclusions and Recommendationscocuoveiieneriienienisie e 132
8.1 CONCIUSIONS ...ttt bbbttt b ettt bbb ene s 132
8.2 RECOMMENAALIONS......coiiiiiisiieii ettt sttt sttt re et ne e re e e e 133
RETEIEINCES ...ttt bbb bbbttt bbb 134
Appendix A: MATLAB codes for Path Planning and Task Allocationc.ccccceveenee. 139
QL= Yt T o] F= T 1o X SR 140

LT L= 4= (T30 1 SRS 142

1Y T L= o TR o =10 Y SRS 143
1770] (]2 To T 1N 1 RSP SSURP 145

oto] 0T LTt Y 0 11 1 PO P TSP 148
ChEAPEST_PALNS.IM ... 149

=] S I [1 USRI 151
(o= 7] o | 10 o PSP 152
FIST2@GJ. M.ttt 154

10 74 1] 0 SRS 156
Q=0 1A 0 U1 o X PR 157

L E LAY T o3 1 | O TP TSP P UP PR PP 159

1S 1 1 S PP 160
KM ettt Rt R e R et neene e 161

[OF2 UL 0 To 8 0 1 ISR 164
SNOITEN_PAINS.IM ... 167
L= = L1 101 SR SR 169
heading_angle Paths.M ..o 170

0] o0 L= o0 1) 1 1 1 OSSO 174
MMKP_taSK_@HOCALION.IM ...ttt ee e 175

0T T =32 1 PSS 176

1Y ST L o0 01T o 101 PSSRSO 177

[0 (o] QU E= LV ¢ TSP SRR 179
Appendix B: MATLAB codes for SIMUIAtioN............cccovieiiiieieesecic e 181
PlACE_WAYPOINES _SulM .iiiiiiiiitiitete ettt ettt 182

[0 Eo TR\ o Lo [1 1 S OR 183
PAN_PIANNING _S.Miiiiiiiieii bbbttt ettt 185
U\ o =] T TSSO 186
0=V o] = Y] 12 SR 187
0oV T L T (o= o1 (=T T 1 2SS 188

U A L] G oL=] 01T 1 OSSR 189
target ClaSSITIEr _S.M .ot 190
tArget_ClaSSITIEIM ..ot sre e s e s e be e e e reenreeas 191
COMPAIE_LANGETS SuM eeiiiiiiii ittt ettt sttt e et e s tb e e e st be e snbeeebee e srbeesnbbeesnbeean 193
COMPAIE_tANGEIS.IM ..ottt e 194
COMPAIE_NFEALS_S.M .ttt et ne e e sae e e e sbeaseeseesreeneeneeas 195

(o0 0] o V=T AL (== 1301 4 SR 196
AISPIAY_INTTIALS.M ..t 197
AISPlaY _INILIALIM L.ttt st ne e nae 198

List of Tables

Table 3.1: TyPICal tNFEALScc.eeieiiee e 24
Table 3.2: List of example path permutations and mMiSSION COSESccovvvevvereivereerieseeee 39
Table 7.1: Summary of MATLAB Profile REPOIScccooeiiiiiiiiiiee e 112

Table 7.2: Profile Report based on 4 UAVSs, 4 Targets, 4 Threats, and 4 No-fly Zones....... 113
Table 7.3: Profile Report based on 5 UAVSs, 5 Targets, 5 Threats, and 5 No-fly Zones....... 114
Table 7.4: Profile Report based on 9 UAVSs, 9 Targets, 15 Threats, and 15 No-fly Zones...115

Table 7.5: SIMULINK Profile Summary for centralized simulationcccoccevviiiinnnnn. 118
Table 7.6: SIMULINK Profile Report for centralized VErsion..........cccccceevveevieeienneneenene 119
Table 7.7: SIMULINK Profile Report for centralized version, with Accelerator 119
Table 7.8: SIMULINK Profile Summary for decentralized simulationccccceevvvuenee. 120
Table 7.9: SIMULINK Profile Report for decentralized Versionccccocevenenvencnnennn. 120
Table 7.10: SIMULINK Profile Report for decentralized version, with Accelerator 121

Vi

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:

List of Figures

USAF FIreDee droneoovoiiiiiiieece et 2
U.S. MQ-1 Predator UAV, equipped with Hellfire missiles...........cccccocvvvennnn 3
U.S. Air Force RQ-4 Global HawkKcccccovviiiiiiiiice e 4
Department of Defense Annual Funding Profile for UAVS........ccccccevivvicieenns 5

Autonomous Control Level Trend ... 6
LOCAAS MiNi=-UAY MUNITION ..ottt e e e e e e e e e 7

Figure 1.7: U.S. Air FOICe X-45A UAVooiiiiiie ettt 8

Figure 1.8: Cooperative Operation of UAVS fOr SEAD.........cccccveiiviie i 9

Figure 2.1: Vertices of @ SIMPIe graph........oooiiiii e 11
Figure 2.2: VVoronoi diagram for threat 10Cationsccoccvieiiieie i 12
Figure 3.1: VVoronoi diagram With 25 SITEScceeuiiiiiiiii e 21
Figure 3.2: Crotale “Rattlesnake” surface-to-air missileccccccoovvvevieiiiiicnie e, 25
Figure 3.3: Example directed graph With COSES.........ccoviiiiiiiiiiiie e 27
Figure 3.4: Picture illustrating fillet prinCiple..........ccovovieii i 32
Figure 3.5: Example of heading angle SOIUtION ... 34
Figure 3.6: Second example of heading angle sOIUtiONcccccveveriiiiecic s 35
Figure 3.7: Final example of heading angle SOIUtION...........cccoviiriiiiiie 35
Figure 3.8: Example UAV to target MIMKP SEIUDocveviviieiiceee e 39
Figure 4.1: Body axis system with forces and momentsccccoeevieienieniennene e 42
Figure 4.2: Stability axis system and angles with body axis Systemc.cccceecvvveriverernnnn. 47
Figure 4.3: Aircraft orientation with Euler angles..........ccoooiiiiiiiiiii 52
Figure 5.1: Main Simulation SYSTEIM..........ccviiiiiieii e 55
Figure 5.2: Cooperating UAVs Simulation Main Menu..........cccoceivviieeneninnenie e 57
FIQUIE 5.3: EFTON MESSAQEvveveeieesieetiesteeteeseesteetesseestaesseaseesseeseassesseesseaneesseesseansesseesseansenns 58
Figure 5.4: Aircraft Menu GUI..........coo oo 59
Figure 5.5: Point-and-click method of placing UAV POSItIONSccccceveiiiineninieeee, 60
Figure 5.6: POP-UP Target MENU........ccveiiiiiieie ettt 61
Figure 5.7: NO-FIY ZONES MENUooiiiiiiiiii e 62
Figure 5.8: POP-UP THreats MENUccviiiiiiiiicie e 63
Figure 5.9: Example battlefield SEtUPccoieiiiiieee e 64
Figure 5.10: Place Waypoints DIOCKc.ccoviiiiiiiie e 65
Figure 5.11: Path Planning and Task Allocation BIOCK ..o 66
Figure 5.12: ‘UAV Dynamics’ blocks for all UAVS ... 68
Figure 5.13: Blocks to output UAV positions, heading angle, and signal end of path.......... 69
Figure 5.14: Determining next position in path, runs aircraft model, and signal end of path69
Figure 5.15: Blocks that “look ahead” and output next position in path..........cccccociviinenn. 70
Figure 5.16: Determination of end of assigned path..............ccccovveiiiiiiici e, 70
Figure 5.17: Actual UAV dynamics block, with aircraft model and heading-angle autopilot......... 71
Figure 5.18: Flight simulation environment for aircraft modelcccooevviiiiiiiieiees 72
Figure 5.19: Parameters and inputs for aircraft modelccocoooiiiiiiiinniee, 73
Figure 5.20: Actuator and cable dynamics SUDSYStEM...........ccoeeieiieiieie e 74
Figure 5.21: Heading angle autopilot, showing turn generatorcccocevvvenenencneneennnn 75
Figure 5.22: Turn generator SUDSYSIEIMcciiiiiiiie e 75
Figure 5.23: UAV POSITIONS DIOCK........ccoiiiiiiiiiiceee e 76

Figure 5.24: UAV CRASH DIOCKcuiiiii e 77

Figure 5.25: UAV INTERCEPTED DBIOCK........c.cccoiiiiiiieie e 77
Figure 5.26: UAV DOWN DIOCKccuiiiiiieiiiieiieie s 78
Figure 5.27: UAV MANAGER SUDSYSIEMccviiiieiiiie e 79
Figure 5.28: Individual UAV manager for tracking positions, velocity, and destruction80
Figure 5.29: Printing blocks for UAV deStrucCtion............cecveieiieeresieieesie e e e see e 81
Figure 5.30: Target State IMANAGETcovuiriiiieiesie ettt 82
Figure 5.31: Target classifier FUNCLION..........cccooiiieii e 83
Figure 5.32: Part of target classification used for signaling replancccccovoviinieiiennnn 83
Figure 5.33: TARGETS MANAGER........cccoiiiiiiieie e 84
Figure 5.34: Part of target management used for signaling replan............cccoccovovviiininnnnne 84
Figure 5.35: POP-UP target ManAgEr..........coveueiieieeie e sieeieseeseeseesree e e e snee e e e sneesseeneeans 85
Figure 5.36: Pop-up target manager for an individual target...........ccccoooeiiniiiinninneneen, 85
Figure 5.37: THREATS MANAGER.........cccoiiiiiieee et 86
Figure 5.38: Part of threat management used for signaling replan............cccoccovvviiiininnnnne 86
Figure 5.39: THREAT CHANGE DIOCKScveiiiiieiicic e 87
Figure 5.40: Pop-up and firing threat manager for an individual threat............c..ccccoeninen. 88
Figure 5.41: Initial battlefield SETUP........ceovveieeece e 89
Figure 5.42: Path Planning and Task Allocation occurring at time O........cccocevvveiienennnnne 90
Figure 5.43: Path Planning and Task Allocation occurring at time 100..........ccccccevvverirennene. 91
Figure 5.44: Path Planning and Task Allocation occurring at time 150.........cccccooevieriennnene 91
Figure 5.45: Path Planning and Task Allocation occurring at time 325........cccccveeevvevirennenn. 92
Figure 5.46: Detail of UAV 3 turning to now attack target 1 at time 325.........ccccoeeeveennene. 92
Figure 5.47: Path Planning and Task Allocation occurring at time 462...........ccccccceevevieennene. 93
Figure 5.48: Path Planning and Task Allocation occurring at time 538..........ccccoccevievennnnne 93
Figure 5.49: Path Planning and Task Allocation occurring at time 688............cccccccevevvennene. 94
Figure 5.50: Path Planning and Task Allocation occurring at time 704...........cccccceevevieennenn. 94
Figure 5.51: Path Planning and Task Allocation occurring at time 749..........ccccocvevvnnnnnne 95
Figure 5.52: Path Planning and Task Allocation occurring at time 764............cc.ccccevevueenee. 95
Figure 5.53: Path Planning and Task Allocation occurring at time 838...........cccccocevviinene 96
Figure 5.54: Path Planning and Task Allocation occurring at time 878...........cccccccevvevieenenn. 96
Figure 5.55: Path Planning and Task Allocation occurring at time 921..........ccccocevvvvienene. 97
Figure 5.56: Path Planning and Task Allocation occurring at time 938...........ccccccevvevirennenn. 97
Figure 5.57: Path Planning and Task Allocation occurring at time 978..........ccccococvvvninnnne. 98
Figure 5.58: Path Planning and Task Allocation occurring at time 1014.............ccccovevveenee. 98
Figure 5.59: Path Planning and Task Allocation occurring at time 1056.............cc.ccocvvvenee. 99
Figure 5.60: Path Planning and Task Allocation occurring at time 1098.............cccccevveenee. 99
Figure 6.1: Main simulation system for decentralized UAV control............ccccoecvnincinnnnnns 101
Figure 6.2: Main system for individual UAVSccoooiiieie i 102
Figure 6.3: “UAV Dynamics’ blocks for UAV L. 105
Figure 6.4: UAV POSItioNS DIOCK..........cccoiiiiiicce e 106
Figure 6.5: Individual UAV MANAGER SUDSYSIEMcoviiiiiiiiiiiiieeeeee 106
Figure 6.6: UAV initialization block with UAV REPLAN subsystemccccceevvevieennenn. 107
Figure 6.7: UAV REPLAN SUDSYSEM ..o 107
Figure 6.8: TARGETS MANAGER..........cciitiiiiieee e 108
Figure 6.9: TARGETS initialization block with UAV REPLAN subsystem............cccc........ 108

Figure 6.10: TARGET REPLAN SUDSYSIEMcoouiiiiiiiiiiie e 108

Figure 6.11: Initial battlefield setup for decentralized simulation examplec..c......... 110
Figure 6.12: Decentralized simulation eXxample ... 111
Figure 7.1: Initial battlefield setup for SIMULINK Profile Reports.........ccccccevvvevviieinennenn. 118
Figure 7.2: Main system for decentralized UAV control with miscommunication............... 123
Figure 7.3: NOISE block used for simulating miscommunication............c.cccceecveverieeninennenn 124
Figure 7.4: INdivVidual UAV NOISEc.oiiiiiiiieiieiie ettt 124
Figure 7.5: Initial battlefield setup for miscommunication example...........ccccoovevviieinenenn 125
Figure 7.6: Miscommunication, decentralized simulation examplecccccocviiiiiienne. 126
Figure 7.7: Main system with individual UAV communication 10SScccccevveveiierirennenn 128
Figure 7.8: Main system for individual UAV 2, showing modificationsc.cccccvenee. 129
Figure 7.9: Loss of team 0f UAVS DIOCK..........coviieiiiiiiiece s 129
Figure 7.10: Initial battlefield setup for individual communication loss example................. 130
Figure 7.11: Individual communication 10SS eXample...........ccccovvveiinieiieeic e 131

Nomenclature

Symbol Description

English

Co Drag coefficient

CL Lift coefficient

C Rolling moment coefficient

Cm Pitching moment coefficient

Cn Yawing moment coefficient

Cy Side force coefficient

H Altitude

Iy Airplane moment of inertia about x
Ixy Airplane product of inertia about x
Iy, Airplane product of inertia about z
ly Airplane moment of inertia about y
Iy Airplane product of inertia about y
I, Airplane moment of inertia about z
m Mass

ntarg Number of targets

nthreats Number of threats

nuav Number of UAVs

nzones Number of no-fly zones

p Airplane angular velocity component about x
q Airplane angular velocity component about y
r Airplane angular velocity component about z
u Airplane velocity component about x

\Y/ True aircraft velocity

Y Airplane velocity component about y

w Airplane velocity component about z

Xe X-position with respect to Earth-fixed axes
Ve Y-position with respect to Earth-fixed axes
Greek

o Angle of attack
o Angle formed by two intersecting edges
B Sideslip angle

v Airplane heading angle

0 Airplane pitch attitude angle

) Airplane bank angle

Acronym

GUI Graphical User Interface

MILP Mixed-Integer Linear Program

MMKP Multi-dimensional, Multiple Choice Knapsack Problem

UAV Unmanned Air Vehicle

Chapter 1
Introduction

1.1 UAV History

The United States Armed Forces has a long history of involvement with Unmanned
Air Vehicles (UAVs), with roots beginning in late World War 1. The first person to
successfully address the issues of automatic stabilization, control, and navigation in
creating a UAV was Elmer Ambrose Sperry. In early World War I, the U.S. Navy had
appointed him to chair the development of an “aerial torpedo.” The first successful flight
of a UAV occurred on 6 March 1918, when the Curtis Sperry Aerial Torpedo was
catapulted into the air, flew a preplanned 1000-yard flight, and successfully landed in the
waters off Long Island to be later reflown®. Other aerial torpedoes soon appeared,
including the Liberty Eagle ‘Kettering Bug’, which attempted to navigate to a target some

50 miles away, turn its engine off, and hit the target with a 200-pound bomb.

The first robotic aircraft to successfully take off, fly radio-controlled maneuvers,
and land was the British RAE 1921 TARGET, followed a year later by the U.S. Navy’s
Curtiss N-9 Seaplane on 15 September 1924. The N-9 was remotely controlled for 40
minutes and executed 50 commands before landing®. As a result of these early aerial
torpedoes efforts, target drones came about in the 1930s. These drones were used to train
aerial gunners. The first operation cruise missiles (formerly called aerial torpedoes) were
the German V-1 ‘Buzz Bombs,” which sadly introduced the general public to these
weapons, as all previous aerial torpedoes/cruise missiles had been classified. During the
course of World War 11, some 10,500 V-1s were launched, with over 2,400 reaching their
targets, most of which resided in England®.

Reconnaissance drones were first evaluated in the 1950s. In 1955, the U.S. Army’s
SD-1 Observer became the first tactical UAV. Other reconnaissance drones that
appeared during that decade include the Army’s SD-2 Overseer, SD-3 Sky Spy, SD-4
Swallow, SD-5 Osprey, the U.S. Air Force’s GAM-67 Crossbow, and the USMC’s small

Bikini UAV. However, during the Cuban Missile Crisis of the early 1960’s, the Air
Force successfully modified some of its Ryan Firebee drones to carry cameras and return
with reconnaissance pictures. These reconnaissance drones were successfully used in

3,500 sorties flown during the Vietnam Conflict’.

Figure 1.1: USAF Firebee drone (u.s. Air Force photo) 2

The strike role of UAVs was first explored in 1962 with the U.S. Navy’s Gyrodyne
QH-50 drone helicopter. These unmanned helicopters carried anti-submarine torpedoes.
In 1972, the Air Force again modified Firebee drones to carry Maverick and Stubby
Hobo missiles for use in Suppression of Enemy Air Defenses (SEAD) roles. The end of

the Vietnam Conflict, however, put an end to this “Have Lemon” program.

UAYV development continued in the 1980°s, but really expanded in the 1990’s. In
the U.S. military’s arsenal during this time were the Predator, Hunter, Pioneer, and
Shadow UAVs, which were used for reconnaissance in the conflicts in the Persian Gulf,

the Balkans, and more recently in Afghanistan and Irag®>. The MQ-1 (formerly RQ-1)
2

Predator is a 2,250 pound UAV that has been used by the military forces since 1995.
The UAV was used for reconnaissance purposes in Bosnia, Kosovo, Afghanistan, and
Irag with its 24-hour endurance flight time while carrying up to a 450-pound payload. In
2001, a Predator was equipped with Hellfire missiles and successfully used to engage

targets, thus earning it a multi-mission capability status.

Figure 1.2: U.S. MQ-1 Predator UAV, equipped with Hellfire missiles?

The RQ-2 Pioneer was developed in 1986. It is a Navy UAV that was used in
1991 in the Persian Gulf, as well as in Bosnia and Kosovo. The RQ-5 Hunter was used
in 1999 through 2002 in NATO operations in the Balkans. The RQ-7 Shadow is a U.S.
Army UAV. It can provide video surveillance for 4 hours and up to a 50-kilometer

range, while carrying a 60-pound payload.

The last of the currently employed UAVs is the Air Force’s RQ-4 Global Hawk.
This is a large 26,750 pound UAV capable of 32-hour flight endurance while carrying a
payload of 1950-pounds. It is a high altitude, long endurance UAV designed to provide

reconnaissance coverage of up to 40,000 nm? per day®.

Figure 1.3: U.S. Air Force RQ-4 Global Hawk (u.s. Air Force photo) 2

1.2 Envisioned Future

During the decade of the 1990s, the Department of Defense spent roughly $3
billion on Unmanned Air Vehicles. For the following decade, the DOD is scheduled to
spend over $10 billion on UAVs! As described in the Unmanned Aerial Vehicles
Roadmap 2002 — 20277 the DoD is aggressively pursuing UAV technology and
significantly increasing spending on UAVs. Figure 1.4 illustrates this tremendous

increasing in the funding.

SM(TY$)

3 2
[] o &=
400 - Eﬁﬁ—ﬁ‘ﬁﬁﬁ 3

o

N
[=]
=]

< Q105

T
1985 1990

Figure 1.4: Department of Defense Annual Funding Profile for UAVs?

T L] T
19956 2000 2005

UAVs offer numerous advantages to the military. Most notable are the advantages

"3 Missions that

of the ability to perform missions classified as “dull, dirty, or dangerous
are classified as dull include examples of an aircraft loitering over airspace for long
periods of time while providing surveillance or jamming enemy electronic devices.
These types of missions can last for especially long periods of time, such that manned
crews would not be optimal to perform, plus UAVs could be outfitted with multiple
sensors and/or jamming equipment and provide and even higher efficiency at performing
the “dull” missions. The second type of mission is the dirty type. This type of mission
includes reconnaissance in areas that have been contaminated by nuclear, biological, or
chemical weapons, where the presence of manned aircraft would put the crew in danger.
The last type is the dangerous mission, such as high-risk but high-value targets or

Suppression of Enemy Air Defenses (SEAD).

Additional advantages offered by the use of UAVs offer include:
e Maximizing maneuverability, where there are no constraints based on the crew’s
physical limits;

e Low or no risk to human operators, such as in the dirty or dangerous missions;

e Lower overall weight of the aircraft, resulting from elimination of crew support
hardware;
e A lower overall cost, due in part to the lack of crew support hardware and the

elimination of expensive pilot training®.

Currently UAVs require several operators on the ground for control of a single
UAV, as all of the current UAVs discussed in Section 1.1 are controlled in this manner.
While such elimination of the pilot and crew from the aircraft do result in many benefits
such as decreasing cost and eliminating danger to aircrews, the future of UAVSs is moving
in the direction of autonomy®. Autonomous UAVs will require little or no human support
to carry out missions, and this addition of autonomy adds another benefit — that is
superior coordination among a group of UAVs. Figure 1.5 illustrates the trend in the

increase of UAV autonomous control from early in their history until the year 2015.

Autonomous Control Levels
Fully Autonomous Swamms = 10

Group Strategic Goals = 9

Distributed Control = 8
Group Tactical Goals = 7
Group T aclical Replan = 6 Q@ UCAV-N
Group Coondination = 5
Onboard Route Replan | 4

Adaptio Failures & Flight Conditions |~ 3
o Global Hawk

Real Time Health/Diagnosis = 9 Predator

Remotely Guided |

1 1 1 1 1 1 1
1955 1965 1975 1985 1995 2005 2015 2025

Figure 1.5: Autonomous Control Level Trend (u.s. Air Force)?

Cooperative UAV flight based on autonomous aircraft offers capabilities of the use

a formation to overwhelm enemy defenses, the ability of adjust timing in a coordinated

6

attack, and the expansion from the small area a single UAV can see and detect to a much
broader situational awareness created by multiple UAVs sharing information?. These
teams of UAVs lead to superior abilities to perform a large variety of missions, including
reconnaissance, jamming, suppression of enemy air defenses, missile defense, fixed and

moving high-priority target attacks, and eventually air-to-air combat”.

Currently there are several DOD projects attempting to address the possibilities of
autonomous capabilities for the future for the next quarter-century. These include the
Broad Area Maritime Surveillance, the RQ-8 Fire Scout, the MQ-9 Predator B, which is
an extension of the current MQ-1 Predator to allow hunter-killer groups, the Dragon Eye
mini-UAV, the Force Protection Aerial Surveillance System (FPASS), Neptune, the Low
Cost Autonomous Attack System (LOCAAS), and finally the Air Force’s X-45. The first
of significant interest is the LOCAAS. This UAV is a miniature, autonomous munition
that is capable of a broad area search, identification, and destruction of ground targets®.
These UAVs are designed to cooperate upon locating a possible target, and they work
together to destroy it, as each is itself also a flying munition. Figure 1.6 illustrates the
LOCAAS munition.

Figure 1.6: LOCAAS mini-UAV munition (u.s. Air Force photo) 2

Another developmental UAV of interest is the U.S. Air Force’s X-45. This
Unmanned Combat Air Vehicle (UCAV) is designed to use UAV autonomy and
cooperation to perform dangerous but high-priority missions such as high-value targets or
SEAD’. These UCAVs will be designed to have preprogrammed objectives and target
information from ground mission planners. This information is used to carry out

missions autonomously and efficiently by taking advantage of cooperation amongst a

group.

X-45A

Figure 1.7: U.S. Air Force X-45A UAV (u.s. Air Force photo) 2

1.3 Research Objectives

As mentioned in Section 1.2, dangerous missions including Suppression of Enemy
Air Defenses (SEAD) and high-risk but high-value target missions are important
objectives for future UAV capabilities. These UAVs are very attractive in that they
eliminate risk to the human crew while performing these dangerous missions, the aircraft
have potential for greater survivability, they have greater endurance to perform a mission
as opposed to crew fatigue, the cooperative nature gives a greater probability of
successful outcome, and finally cost is reduced®. Figure 1.8 illustrates what a typical
SEAD or high-risk but high-value might look like, with several cooperating UCAVs

attacking targets.

Figure 1.8: Cooperative Operation of UAVs for SEAD (U.S. Air Force picture) ?

The general basic problem formulation for SEAD or high-risk but high-value
missions is as follows: given ‘nuav’ UAVs with ‘nzones’ no-fly zones such as mountains
or political boundaries, and given ‘ntarg’ targets or waypoints to visit, the UAVs must
accomplish a mission such as visiting each target or waypoint while minimizing an
overall cost to the group. Extending this basic formulation to add realistic constrains and
boundary conditions include timing constraints, such as a preliminary target needing to
be reconnoitered prior to attacking. Also dynamic constraints on planned paths, such as
maximum linear velocities for UAVs and maximum angular rates for rolling performance
need to be accounted for. Furthermore, the problem may be time varying, where there
are addition/removal or targets, loss of UAVs in the team, and loss of communications
may occur. Also, in the role of high-risk but high-value missions, there will also be

‘nthreats’ threats in the scenario that the UAVs should avoid.

The following research objectives are intended to address the problem of

Suppression of Enemy Air Defenses or high-risk but high-value mission planning.

Item #1.

Item #2.

Item #3.

Item #4.

Item #5.

Item #6.

A path planning and task allocation scheme must be created for an elementary
two-dimensional scenario, with a limited number of UAVs, targets, and no-fly
zones. The generated trajectories must be of minimal length, but subject to a
cost factor to include flying around the no-fly zones. The trajectories must be
dynamically feasible, and additionally, the software must be computationally
efficient in order to be run ‘real-time’®.

The coding is to be extended to encompass a larger number of UAVS, targets,
and no-fly zones, and now has the addition of threats — areas that can be flown
into but with an additional cost of the probability of the UAV being destroyed.
After the path planning and task allocation scheme is finished, the
development of a SIMULINK-based centralized simulation environment is
next. This centralized simulation environment is such that a central processor
controls all of the decision making abilities for the entire UAV team.

After the basic simulation is in place, it now needs to be extended to include
the time-varying aspects of the problem. Included in this are ‘pop-up’ threats,
ones that were not previously known to the team of UAVs but appear some
time into the mission, varying states of targets, such as ‘identified but not
reconned,” ‘reconned but not attacked,” ‘attacked but not confirmed,” and
‘confirmed destroyed,” the ability of threats to attempt to destroy UAVSs if the
UAVs pass within range of the threat, and finally the ability of the group to
replan if any of these events occur.

Once the time-varying centralized simulation environment is complete, a
decentralized simulation environment is to be developed based on the
centralized version. This decentralized version now includes a vehicle’s own
decision making capabilities and communication amongst vehicles.

Finally, the decentralized simulation is to be compared to the centralized
simulation in terms of ‘real-time’ efficiency, and the real-life ‘what-if’
communication problems are to be tested in the decentralized simulation

environment.

10

Chapter 2
Literary Review

2.1 Path Planning Methods

Vehicle path planning is a broad subject with a significant body of research
already established, especially in the field of robotics. Applied to UAVs, however, path
planning has been the subject of study for only a limited number of years. In general,
three different approaches have been studied to generate UAV paths, as discussed by
Bortoff>. These include graph-based methods, where paths are generated from a
sequence of edges connecting vertices of the graph, optimal control, which computes an
optimal path based on a cost function, and finally virtual potential fields, where a simpler,

related problem is solved to obtain the path®.

For UAV trajectory planning, graph-based approaches have received the most
attention. In a graph approach, vertices are assigned to discrete points in space, edges are
used to connect these vertices, costs are assigned to each of the edges, and lastly the
graph is searched for an optimal trajectory®. For a simple graph, vertices can be assigned
rectangular points, as illustrated in Figure 2.1.

Figure 2.1: Vertices of a simple graph
11

However, in this simple arrangement, for a well-defined graph, the computational
complexity tends to grow at an exponential rate. A graph with a higher density of
vertices will result in a more optimal solution, but will also be more complex. A better
starting arrangement of vertices can curtail this exponential increase in complexity and

still yield a near-optimal solution.

Known locations for threats, such as radar sites, can be used to build the graph.
Since threats and radar are generally to be avoided, a graphical approach based on
Delaunay Triangles and their geometric dual, Voronoi diagrams, arranges the vertices in
a much more natural layout®. ~ McLain” * and Beard'® developed a Voronoi-based
approach for UAV trajectory generation. Figure 2.2 illustrates a typical Voronoi

diagram.

Figure 2.2: Voronoi diagram for threat locations (shown as black dots)

12

A Voronoi diagram places vertices such that the edges connecting any two will be
equidistant from the two closest sites (in this case, threats or radar sites). The diagram is
constructed without regard to starting or finishing points, and thus these must be added
into the graph. In McLain and Beard’s approach, the starting and finishing points are

connected to the three closest vertices.

Once the Voronoi diagram is complete, costs are assigned to each of the edges. The
general approach is to construct costs based on fuel costs and threat costs. When costs
are assigned, the VVoronoi diagram is searched to determine the lowest cost path from the
starting position to the finishing position. A number of algorithms can be used for this —
McLain and Beard use Dijkstra’s algorithm™, but Eppstein’s k-shortest paths algorithm
can also be used” 2. For a graph with V vertices and E edges, the complexity of
Dijkstra’s algorithm is O(V log(V)+E); thus the complexity of the problem is always
predictable. Once a solution is generated, it will be the lowest cost path for a UAV from a
given starting position to a known finishing position. It may neither be the shortest path,
nor the safest path, but will be the lowest in cost according to whatever cost function was
assigned. Voronoi can also be modified if certain sites are weighted (such as flying
between a powerful radar and a weak one), resulting in curves known as circles of

Apollonius®®.

For graph-based path planning, the resulting path must be made flyable for the
aircraft. There are several techniques for accomplishing this goal. The first involves
discretization of the path. This ‘chain path’ is made flyable by smoothing®. Another
method involves overlying splines to the path, as demonstrated by Judd and McLain™.
The Voronoi diagram and other graph-based methods have advantages that the optimal
solution from the graph is always found and that the complexity of the solution is always

bounded. Thus, the problem can be setup such that it can achieve real-time performance.

The second approach to UAV path planning is classical optimal control. This

approach, using Calculus of Variations, had been used since the 1960’s for aircraft path

13

planning. In it, a cost function consisting of a path length cost, a proposed ‘radar cost’,
and a turning cost are subject to constraints of the starting and final aircraft states and a

simple model of the aircraft kinematics® ** *°

. The dynamic constraints assure that the
final path will be flyable. Although optimal control produces an optimal solution,

computation complexity means that it may not be able to achieve real-time performance.

The third approach to UAV path planning is one using virtual potential fields and
forces, as proposed by Bortoff °. In this method, a chain of masses connected to each
other by springs and dampers represents a UAV path. Obstacles to be avoided, such as
radar and threats, have repulsive force fields that shape the path until equilibrium is
reached. This method has had the smallest amount of research performed among the
three, though Bortoff concludes that the method is quite promising for a uniform radar
field.

2.2 Path Planning/Task Allocation Approaches

Whenever task allocation is added to the path-planning problem, the complexity
greatly increases because the task allocation and the trajectory generation are highly
coupled. The cost for each UAV to visit a particular target is clearly a function of the
path taken. If trajectory optimization could be performed for all the possible
permutations of vehicle to target, the task assignment could be performed, and a globally
optimal, dynamically feasible solution would be reached. Unfortunately, this can
realistically be performed only for a very limited number of vehicles and targets.
Otherwise, the number of possible permutations makes the probably computationally

impossible for real-time in-flight performance.

Aside from specialized, proposed approaches such as a genetic algorithm
proposed by Chen and Cruz®’, there have been three main approaches for solution of the
task allocation and path-planning problem. Jonathan How and his group at MIT
researched the first of these approaches. In this approach, the coupling between task

allocation and path planning is partially decoupled®. From the known locations of no-fly

14

zones, threats, waypoints, and targets, the first step is the creation of polygons for threats
and no-fly zones. The vertices of these polygons are then connected to polygons and to
the vehicle and target using a ‘line-of-sight’ approach. Once all possible graph segments
using the polygons and line-of-sight are formed, the Floyd-Warshall All-Shortest Path
algorithm®® is employed to find the shortest paths (where cost is based solely on path
length) for all vehicles to all targets and waypoints. Once these paths are known, the
basic task allocation problem is formulated as a Multi-dimensional, Multiple-Choice
Knapsack Problem (MMKP) *°. In this type of knapsack problem, one element must be
chosen from each of the multiple sets. Each choice yields a benefit but uses up a resource
dimension. The goal of the MMKP applied to this problem is to minimize overall cost
while selecting a single path for each vehicle and being constrained to ensure that each
target and waypoint is visited. Once task assignment has been performed, a more refined
trajectory generation scheme is used to make the chosen paths flyable. If the flyable
paths are sufficiently different from the original paths used to calculate the task
allocation, the problem can be resolved using different, more refined, paths to begin with.
To cope with a dynamic environment, How proposes using a local repair method *® for
reshaping an individual UAV’s path or a sub-team reallocation for those UAVs directly
affected by a change in environment.

The second approach for solution of the path planning and task allocation problem
has also been researched by How and his group at MIT?°. This method combines the task
allocation and trajectory planning into a single Mixed-Integer Linear Program (MILP)

optimization problem? 2 %,

In order to create a linear (as opposed to nonlinear)
program, the aircraft dynamics are linearized. These dynamic constraints, plus other
constraints such as each UAV only having one selected path and each pre-assigned target
and waypoint being visited, create the variables for the MILP problem. This method is
guaranteed to find the globally optimal solution that provides detailed trajectories for
each vehicle to reach its allocated waypoints in minimum time, but it is computationally
intensive. Although experiments involving ground vehicle have been performed to

demonstrate the usefulness for small-scale path planning and task allocation problems®, a

15

MILP strategy is typically used for a benchmark, as it is a centralized scheme that is
computationally inefficient for real-time applications®*.

The third approach is a hierarchical control scheme that has been developed by
Chandler and Pachter at Wright-Patterson Air Force Base®. This hierarchical
decomposition deals with the coupling-induced complexity and a method to reduce it®.
There are four layers within the hierarchical autonomous controller?” %%, The first layer is
the decision-making layer. This layer performs the task allocation function by using a
market-based bidding method and also assures that all mission objectives and sub-
objectives are met. The second layer is the path planning level. This layer coordinates
cooperative search, classification, attack, damage assessment, and rendezvous. The third
layer is the trajectory-planning layer, which the individual UAVs perform for themselves.
The fourth layer is a redundancy management layer, which ensures accurate following of
desired trajectories. Whenever task allocation is needed, each of the vehicles performs
trajectory planning in their third layer. The top, centralized layer uses an auction, such as
a forward Gauss-Seidel auction, a forward Jacobi auction, or a forward/reverse auction to
perform the task allocation®. The auction resembles a stock exchange, in that each
vehicle ‘bids’ on an assignment. Vehicles with a higher bid (meaning higher cost to
perform the assignment) trade off with vehicles that have a lower cost to perform the
assignment. The goal of the auction is to minimize the overall cost of performing all
assignments. There has been much research performed using this approach >*, and
currently the U.S. Air Force’s LOCAAS UAV (discussed in Section 1.2) uses this

scheme.

Of the three methods, the first method by MIT and the third method by WPAFB
have been shown to be the most appropriate for path planning and task allocation
performed aboard actual UAVs. While the results of both methods are suboptimal,
research performed has shown that they perform well, without the complexity associated

with an optimal solution as found using the second method.

16

2.3 Decentralized Control and Communications

The first and third methods mentioned in the previous section have been shown to
be more appropriate for actual implementation in part due to the decoupling of the tasks.
Especially with the third method as researched by the Air Force, individual UAVs make
calculations for themselves in the decentralized portion of the scheme. The topmost layer
of the scheme then uses these calculations for task allocation®. In How’s research for the
first method, he proposes distributing the optimization of the selected paths to the
individual UAVs. These methods are partially decentralized, meaning that there is still

some ‘supervisory’ centralized processor®®’

that makes group decisions. For both the
centralized and decentralized schemes, communication among UAVS is an issue. For a
centralized scheme, delay or loss of communication means that the vehicles will not
receive any instructions for performing tasks, whereas in a decentralized scheme, each
vehicle can still perform tasks, though there may be some repetition of tasks and loss of
others. Mitchell, Schumacher, and Chandler studied the effects of a delay using the
hierarchical control methods®. Communication delays of 1 to 3 seconds were simulated
and resulted in a significantly decrease in successful attack and verification, though tasks
were still completed. A delay or loss of communication implies a lack of cooperation,
but for UAVs that are involved in the decision-making process, tasks can still be

performed™.

17

Chapter 3
Development of the Path Planning/Task Allocation Scheme

3.1 Discussion of Setup

In selection of methods for performing path planning and task allocation, the type of
mission envisioned is crucial. For the research presented here, the problem statement

given in Section 1.3 dictates the following:

Given ‘nuav’ UAVs with ‘nzones’ no-fly zones such as mountains or
political boundaries, and given ‘ntarg’ targets or waypoints to visit, the
UAVs must accomplish a mission such as visiting each target or waypoint
while minimizing an overall cost to the group. Extending this basic
formulation to add realistic constrains and boundary conditions include
timing constraints, such as a preliminary target needing to be
reconnoitered prior to attacking. Also dynamic constraints on planned
paths, such as maximum linear velocities for UAVs and maximum angular
rates for rolling performance need to be accounted for. Furthermore, the
problem may be time varying, where there are addition/removal or
targets, loss of UAVs in the team, and loss of communications may occur.
Also, in the role of high-risk but high-value missions, there will also be

‘nthreats’ threats in the scenario that the UAVs should avoid.

This setup is considered to be appropriate for the mission of high-risk by high-value
target attack. In this mission, the high-valued targets are known, the area having been
reconnoitered previously by possibly other UAVs or even satellite intelligence. During
this reconnaissance, threat and no-fly zone information is also given. The mission must
still be able to account for a dynamic environment where new targets may appear, known
targets may disappear, and real threats can ‘pop-up’ and destroy UAVs working in a

team.

18

The literary review of Chapter 2 presented three main approaches for the solution
of the path planning and task allocation problem. As concluded, the use of a Mixed-
Integer Linear Program based approach is only appropriate for a benchmark. Of the
remaining two, for a high-risk by high-value mission, the approach presented by How
will be seen as more suitable. Currently, the hierarchical control scheme is quite suitable
for a highly dynamic environment that a flying munition such as LOCAAS is expected to
encounter. These UAVs perform the Suppression of Enemy Air Defenses role by being
released in an area thought to contain some threats and enemy air defenses. As the UAVs
search for targets (which are air defenses in the SEAD mission, so there are no threats),
any changes in the environment cause the market-based bidding scheme to be employed.

While highly effective for such missions, whenever known target locations and
no-fly zone and threat-avoidance are considered, a method similar to How’s approach is
more desirable. With this type of approach, all the a priori information about the targets,
threats, and no-fly zones can be considered during path planning and task allocation,
while certainly being adaptable to dynamic environment changes. The first part of this
research presents a path planning and task allocation approach that shares similarities
with the one presented by How et.al. in "Co-ordination and Control of Multiple UAVs".
The presented approach uses a Multi-dimensional, Multiple-Choice Knapsack Problem
algorithm for solution of the task allocation portion, as does How’s approach, but the
steps leading to the MMKP employment are quite distinct. The information used to set

up the approach presented here includes the following:

Information about UAV positions, altitude, velocity, and heading angle;

Information about target positions, deemed target values, and the current state of
the target (whether it is confirmed as a target, reconned, attacked, or battle-damage

assessment performed)

Information about threat positions, effective ranges, and probability of kill

Information about no-fly zone positions and size

19

3.2 Voronoi Diagram Generation

The first step in this approach is the determination of possible paths that the UAVs
could take to reach targets. Several methods were discussed in the literary review,
including graph-based methods, optimal control, virtual potential fields, and the line-of-
sight method described in How’s method. Of these, the graphical methods have the
advantage. Optimal control tends to be computationally inefficient, and the virtual
potential field method is largely unresearched. =~ While the line-of-sight method
theoretically finds the shortest paths to initially choose from, the threats must be modeled
the same as the no-fly zones, with definitive boundaries and vertices surrounding. This is
less than optimal with threats because the probability of being destroyed if the UAV
enters the range of the threat is not considered. Though the UAV would incur an
additional cost due to the possibility of being destroyed, this may be desirable, as the
overall path may be cheaper from the lowering of the distance cost. The inability to pass
within the boundaries of a threat also causes a certain dilemma when considering that
multiple threat ranges can overlap, and targets can possibly (an most probably will) be

inside of the effective range of one or many threats.

Graphical methods do not take into consideration the boundaries of no-fly zones
or threats. These methods must account for these boundaries with additional costs such
as a probability of being destroyed cost for entering the effective range of a threat and an
infinite cost for flying into the boundary of a no-fly zone (more on the cost function in
the following section). Of the possible graphical methods, Voronoi diagrams were
concluded to have many advantages for path planning and have been used in this research

approach.

In order to properly define a Voronoi diagram, the Euclidean distance between

two points p and g must be defined for points in a plane:

dist(p.q)=/(p, -a,)" +(p, —q, f 3D

20

The sites for the VVoronoi diagram are defined as:

p=(py Pyrees Py) (3.2)

which are a set of n distinct points. The Voronoi diagram of these sites is defined as the
subdivision of the plane into n cells, one for each site, with the property that a point g lies
in the cell corresponding to a site p; if and only if the distance dist(p,q;) is less than the
distance dist(p;,q) for each p; in p where i is not equal to j**. Each site p corresponds to a
single Voronoi cell, which is the intersection of a number of half-planes. The Voronoi
diagram is a planar subdivision whose edges are a number of straight-line segments.
Figure 3.1 illustrates a typical Voronoi diagram showing 13 no-fly zones, represented by
black dots, and 12 threats, represented by green circles. The UAV positions are shown in

the lower left corner while the target positions are shown in the upper right.

200

150

100

50

Figure 3.1: Voronoi diagram with 25 sites

An algorithm for computing a VVoronoi diagram is illustrated next. This algorithm
is a plane sweep algorithm commonly known as Fortune’s algorithm, which is shown in

Computational Geometry: Algorithms and Applications®.

21

Algorithm for computation of Voronoi Diagram

Input. A set of point sites in the plane
Output. The Voronoi diagram given inside a bounding box in a doubly connected edge
list structure
1. Initialize the event queue Q with all site events.
. while Q is not empty
. do Consider the event with largest y-coordinate in Q .
if the event is a site event, occurring at site pi
then HANDLESITEEVENTpi
else HANDLECIRCLEEVENTp, where pis the lowest point of the circle causing
the event
Remove the event from Q .
. The internal nodes still present in T correspond to the half-infinite edges
of the Voronoi diagram. Compute a bounding box that contains all vertices
of the Voronoi diagram in its interior, and attach the half-infinite
edges to the bounding box by updating the doubly-connected edge list
appropriately.
9. Traverse the half-edges of the doubly connected edge list to add the cell records and
the pointers to and from them.

S UA WM

o ~

The procedures to handle the events are defined as follows.

HANDLESITEEVENT(pi)

1. Search in T for the arc { vertically above pi, and delete all circle events
involving (from Q .

2. Replace the leaf of T that represents { with a subtree having three leaves.
The middle leaf stores the new site piand the other two leaves store the
site pj that was originally stored with (. Store the tuples pj piand
pip jrepresenting the new breakpoints at the two new internal nodes.
Perform rebalancing operations on T if necessary.

3. Create new records in the VVoronoi diagram structure for the two halfedges
separating V piand V pj, which will be traced out by the two
new breakpoints.

4. Check the triples of consecutive arcs involving one of the three new arcs.
Insert the corresponding circle event only if the circle intersects the sweep
line and the circle event isn’t present yet in Q .

HANDLECIRCLEEVENT(p)

1. Search in T for the arc (vertically above pthat is about to disappear, and delete all
circle events that involve (from Q.

2. Delete the leaf that represents { from T. Update the tuples representing the breakpoints
at the internal nodes. Perform rebalancing operations on T if necessary.

3. Add the center of the circle causing the event as a vertex record in the VVoronoi
diagram structure and create two half-edge records corresponding to the new
breakpoint of the VVoronoi diagram. Set the pointers between them appropriately.

4. Check the new triples of consecutive arcs that arise because of the disappearance of (.
Insert the corresponding circle event into Q only if the circle intersects the sweep line
and the circle event isn’t present yet in Q.

This algorithm is implemented in the MATLAB function as found in voronoi.m, which is
shown in Appendix A.
22

The number of vertices in the Voronoi diagram of a set of n point sites is at most
2n-5 and the number of edges is at most 3n-6 “%. From this theorem it is seen that for an
insufficient number of sites (threats and no-fly zones in this case), the VVoronoi diagram
will either not be able to be computed or will have a small number of edges for finding
appropriate paths. To work around this difficulty, 16 extra sites are added around the
edges of the known battlefield. This ensures that even without any threats or targets,
there will be edges to choose paths from. Once this is accomplished, the next step is to

compute the VVoronoi diagram, which as mentioned before is voronoi.m.

The computation of the Voronoi diagram is the first major step in this path
planning and task allocation research. The MATLAB code implementing this is
vrn_diag_gen.m, which is shown in Appendix A. After the computation of the VVoronoi
diagram, the UAV locations and the target locations must be added into its list of
vertices. For each of the locations of UAVs and targets, the 3 closest vertices are found.
Three edges between these vertices and the location are formed and added to the edges of
the Voronoi diagram. This completes the VVoronoi diagram section of the approach, and
next follows the cost assignment and determination of the cheapest paths for each

permutation.

3.3 Dijkstra’s Algorithm and Cost Assignment

Once the Voronoi diagram is complete and the UAV positions and target
positions are connected, a path planning method must determine the optimal path for each
permutation of UAV to target. This consists of two separate parts — first, a cost function
must be developed and applied to each edge of the Voronoi diagram, and second, the
edges must be searched to determine the optimal path, which is defined as the
combination of graph edges that connects the UAV to the target with the lowest possible

cost.

23

The first task in this section of the approach is the assignment of costs to each
graph edge. The cost function developed here consists of three separate parts. The first
part of the cost relates to the fuel cost. Since typically UAVs will be flying at a constant
speed, the fuel required to fly along an edge will be proportional to the length of the edge.
Thus, the first part of the cost function is a distance cost. The second part of the cost is
that which is related to no-fly zone cost. No-fly zones could be possibly mountains or
political boundaries. Offensive UAVs crossing a political boundary could certainly be
disastrous and should never be allowed. Similarly, a UAV crossing a physical boundary
(crashing into a mountain) is also unacceptable. Thus, to ensure that crossing political
and physical boundaries is never a cheapest path, a cost of infinity is assigned to each
edge that intersects such a boundary. The last part of the proposed cost function is
associated with threats. A typical threat can be visualized as a munition (whether anti-
aircraft artillery or surface-to-air missile) that has an effective range which inside has a
‘probability-of-kill” for destruction of intended aircraft. Table 3.1 illustrates some typical

threats and their associated effective ranges and probabilities-of-kill.

Table 3.1: Typical threats*

Name KS-19 SA-7 Grail Crotale SA-2
Type 100mm - Man- SAM SAM
Antiaircraft Artillery | Portable SAM
Effective 4000 meters 5000 meters 10,000 meters | 30,000 meters
range
Probability 40% 50% 80% 80%
of kill

These threats are used as examples of real-world threats that might be encountered in
current conflicts. These particular threats were compiled by selection of several arms
available to the former Iraqi regime. Figure 3.2 depicts a launched Crotale “Rattlesnake”
SAM that can be used effectively inside at 10-kilometer range, with a probability of

intended aircraft destruction of 80%.

24

Figure 3.2: Crotale “Rattlesnake” surface-to-air missile

Thus, the cost assigned due to threat boundary intersection is as follows: for each
permutation of edges and threats, the length of edge is found, and the Euclidean distances
of the first (starting) vertex of the edge to the center of the threat and the second
(finishing) vertex to the center of the threat are found. These distances are provided in

the following equations:

Edge _length = \/(Vs,x v Sl vy,) (3.3)
V.« _to_center = \/(VS'X —c,f + (vsyy —cy)2 (3.4)
Ve _t0_center = \/(vf‘X —c P+ (vfyy —cy)2 (3.5)

Next, the 3 distances are used in the following equation to find the distance from the
starting vertex to the point where the perpendicular of the edge to the center of the threat

intersects the edge.

_ (Edge_length2 +V,, _to_center® -V, . _to_centerz)
V, _to_intersect = (3.6)
2+ Edge _length

25

If this distance from the starting vertex to the intersection is greater than zero (meaning it
IS past the starting vertex in the direction of the other end of the edge) and is less than the
length of the edge, then the closest point on the edge to the threat is that point of

intersection. Equation 3.7 gives that distance.

Closest _ distance = \/Vs _to_center’ -V, to_intersect® (3.7)

S

If the distance from the starting vertex to the intersection is negative, the closest point on
the edge is the starting vertex. Otherwise, the distance is greater than the length of the

edge, and the closest point is the finishing vertex.

Once the closest point on the edge is computed, the effective range of the threat
and the distance between that edge and the center of the threat are compared. If the edge
falls within the range of the threat, a threat cost is added to the distance cost of the edge,

shown by Equation 3.8.

Edge_cost =W, * Edge_length+W, *Threat _ prob_of _kill (3.8)

In this equation, Wy is a weight for the cost of distance due to the proportionality of fuel
to distance and W, is a weight for the probability of being destroyed. The preceding
algorithm is implemented in the code c_assign.m, which again is found in the first

appendix.

At this point, all edges now have realistic costs associated with flying along that
edge. The next step is searching of these edges to determine the cheapest paths for each
UAYV to target permutation. As the section title suggests, this has been accomplished
using Dijkstra’s algorithm. Dijkstra’s algorithm solves the cheapest path problem for a
directed graph that has nonnegative edge costs*>. The necessary inputs for the algorithm
include the set of vertices and the set of ordered pair representing the edges connecting
those vertices. Notice that Dijkstra’s algorithm requires a graph with directed edges.

This means that each edge must be designated with a starting vertex and a finishing

26

vertex (unlike in the threat cost assignment where the starting and finishing vertex labels
are arbitrary). To overcome this difficulty, the Voronoi diagram is overlaid with two
edges connecting each set of vertices. The first edge has an arbitrary labeling of starting
and finishing vertices while the second, identical edge has the opposite labeling. The
coding labeled set_thc.m (meaning tail-head-cost) solves this. This code first renames all
vertices with integers from 1 to n and refers to them in this manner instead of using their
coordinates. The ordered pairs of vertices representing directed edges and their

associated cost form an adjacency list.

For implementation of Dijkstra’s algorithm, a weighted adjacency matrix must
first be formed. A weighted adjacency matrix is defined as a square n-by-n matrix whose
entry in row in and column j indicates the cost from the ith to the jth vertex*®. Figure 3.3

shows an example of a directed graph with costs.

\

Figure 3.3: Example directed graph with costs

The corresponding weighted adjacency matrix for this figure is:

0 2515 0 0]
00 7 13 0
00 0 0 O
00 0 0 15
0 0 9 0 0

27

The adjacency matrix is formed using the file list2adj.m. This file is available from the
MATLAB toolbox Matlog™.

The algorithm for Dijkstra with inputs of the adjacency matrix and the beginning
vertex (a UAV position) and finishing vertex (a target position) works by constructing a
subgraph S such that the cost of any vertex v in S from the beginning vertex s is known to

be minimum*. The algorithm*® is as follows:

for each vertex v, set d(v), the cost of reaching that vertex, to infinity
Set d(s), the cost of reaching the current vertex from itself, to zero
Initialize S a an empty set

Initialize Q as a set of all the vertices

o B~ w Dk

while Q still has vertices in it,
a. find vertex u in Q that has the lowest d(v) value
b. include the vertex u in the set S
i. for each vertex v with is connected to u with an edge
1. ifd(v) > d(u) + edge cost
2. then d(v) = d(u) + edge cost

c. remove vertex u from Q

This algorithm continues until the cheapest cost from the UAV position to the target
position is found. This algorithm is implemented in the Matlog toolbox function dijk.m.
The function outputs the total cost for the individual UAV to reach a target, and the order
of vertices the path takes. This concludes the selection of the cheapest paths for each

UAV to target permutation.

3.4 Path Shortening and Flyability

As mentioned previously, developing paths based on a Voronoi diagram has
limitations for battlefields with smaller numbers of sites (the threats and no-fly zones).

To address this issue, it was suggested that additional sites should be added into the list of

28

sites, ensuring that VVoronoi produces acceptable possible paths. However, this adds an
unwanted side effect. When the cheapest paths are selected, some of the paths may have
unnecessary ‘kinks’ due to Voronoi avoidance of these sites that do not represent either
threats or no-fly zones. This issue can be dealt with by using a path shortening method
based on line-of-site. Whenever the method of line-of-sight path shortening is employed
at this point, the best features of VVoronoi diagrams are coupled with the best features of
line-of-sight path generation. The previous disadvantages of the line-of-sight method
were highlighted as the lack of realistic threat modeling and the situations where threats
overlapped each other or desired targets. The modified line-of-sight version presented
here removes these disadvantages.

The file path_shrtng.m uses the methods discussed in this section. Adding a
number of new vertices along each edge modifies the previously selected cheapest paths.
The number of new vertices is variable, but typically ten new vertices are added per edge.
These vertices take the place of the vertices surrounding threats and no-fly zones are
proposed previously for a line-of-sight method. Once these vertices are added, new
edges are effectively created. With these new edges, the modified line-of-sight method

can be implemented.

Since UAV paths already selected from the above sections may include passing
into threat boundaries, the modified line-of-sight approach must address this. The first
step the approach takes is identifying which UAV pass though which threats and at what
range. The next step is to essentially decrease the range of the threats for these UAVS.
These vehicles have already incurred a threat cost, thus that UAV is permitted to enter
that threat up to the radius it had previously before. Each UAV may ‘see’ a different set
of threats at this point, representing where its previous path went. It should be noted,
however, that for each UAV to target permutation, all of the threats that it did not enter as
part of its previously selected path remain unmodified. The only boundaries that are

reduced are the ones that the individual UAV passes through.

29

The path-shortening algorithm executes for each UAV to target permutation. This
algorithm begins by selecting the UAV position for a single permutation. This position
becomes the starting vertex in the list of vertices that produce the path. From the starting
vertex, the algorithm couples that vertex with the target vertex and checks the produced
edge to see if it intersects a threat or no-fly zone via the method discussed in the previous
section. If the edge is found to intersect a boundary line, the starting position is coupled
with the vertex immediately preceding the target position. The algorithm continues to
choose vertices successively backward until a combination that produces no intersections
with any boundary is found. The vertex at the end of this edge becomes the new second
vertex of the path and the new starting vertex for the algorithm to pair up with the target
position. The algorithm continues until the target position is reached, which can occur in
as few as a single edge from the UAV position to the target position to as many as the

number of edges selected from the original VVoronoi diagram.

The next issue to address is the flyability issue. In Section 2.1, two methods were
presented for this task. The first was one that discretized the paths into chains and used
smoothing effect via forces. The second method was one in which splines were used.
The spline approach was considered to be excellent for producing flyable paths.
However, upon implementation, it was soon to found to be too computationally intensive.

A new method is presented here to solve this problem.

Fillets can be added to intersection of edges in order to make paths more flyable.
As for aircraft dynamics, the concept being addressed deals solely with a minimum
turning radius. Though a full review of aircraft dynamics is covered in a subsequent
chapter, the concept of minimum turning radius for an aircraft is the tightest turn that the
aircraft is physically able to make. This property is dependent upon several variables,
including the aircraft inertia properties and velocity. For a known minimum turning
radius, each intersection of edges for the paths can be filleted to account for simple

aircraft dynamics.

30

This concept is found using several equations and a few trigonometric relations.
Adding fillets begins with selecting the first three vertices of a path. These three vertices
will form some sort of angle that the aircraft will by some degree not be able to
completely follow. These vertices are labeled Start, Middle, and Finish, relating to their
position in the path. The first calculations needed are the Euclidean distances from the
Start to the Middle vertices, from the Middle to the Finish vertices, and from the Start to
the Finish vertices. These distances are labeled SM, MF, and SF, respectively. The angle
formed by the intersection of the two edges is called «, and can be found using the

following equation, which is simply the law of cosines:

(3.9)

(SMZ + MF?2 —SFZJ
o/ = alcCosS

2% SM * MF

Thus, the lengths SM, MF, and SF, and the angle « are now known. A circle of minimum
turning radius is now fitted to the angle caused by the intersection of the edges. The
circle is fitted such that each edge forms a tangent on the circle. The place where the
edge touches the circle is where a new vertex should be placed. From the Start position
traveling along the path, it can be seen that upon reaching the position of the first new
vertex, the vehicle should follow the circle until it reaches the next vertex, upon which it
the follows the original path on toward the Finish vertex.

The position of the new vertex can be found by noting that a line of the minimum
turning radius length connecting the center of the circle to the tangent intersection of the
circle and the edge SM is obviously perpendicular to the edge. The radius is known, a
right angle is found, and the angle formed between the edge and a line connecting the
Middle vertex and the center of the circle is half of «. This leads to Equation 3.10 that
defines the length entitled Fillet.

Min _turn_ radius

=d

Fillet = (3.10)

31

The following figure illustrates the filleting principle. The circle meets both edges on a

tangent, and the new vertices are found using the length Fillet, as shown in the figure.

_ Place new
Place new Middle : vertex here

vertex here '\F'Ile‘t/

Circle of minimum

turn radius Finish

Start

Figure 3.4: Picture illustrating fillet principle

This procedure creates the two new fillets and removes the vertex Middle. This is
continued by moving along the path and re-labeling new vertices with Start, Middle, and
Finish until the target vertex is labeled Finish, at which point the path can be considered
flyable. Each path representing every permutation of UAV to target is made flyable in

this manner.

A second task for flyability is met when considering that a current path is not
formed with respect to the aircraft’s heading angle. Though the path is considered to be a
flyable one, this can only be if the UAV was initially facing directly towards the first
vertex along the path from its initial starting vertex. This will only occur a small
percentage of the time, so the path must be supplemented at the beginning with several

segments that get the UAV onto the path facing the correct direction.

32

As the location of the next vertex is not guaranteed to be any specific distance
away from the starting vertex, it is unacceptable to simply let the aircraft attempt to turn
in order to align itself with the path aside from relatively small angular differences.
Depending on how close the UAV s to the next vertex and how important reaching that
vertex is, a vehicle could potentially overshoot its intended target. A method is devised
here that adds the minimum length section to the beginning of the path and allows the
UAV to turn as quickly as possible to arrive on the selected path starting from the same

initial vertex but now facing with the correct heading angle.

This methods shares similarities with the theory behind the fillets presented in the
preceding pages and is much an extension of it. For an aircraft traveling along a given
heading angle and suddenly re-planned and assigned a new path with a different heading
angle, the quickest method to get on the new path with the correct heading angle without
the possibility of overshooting any target will be to fit two circles of minimum turning
radius to the old and new paths, with each circle being tangent to one of the paths and
both circles being tangent to each other. To illustrate this concept, Figure 3.5 shows two
different paths. This plot begins with a UAV initially with a heading angle of —90
degrees (heading toward the bottom of the plot). The new path assigned to it has a
heading angle of 0 degrees (heading toward the right edge of the plot). Whenever the
new path is assigned, the UAV is located in the center, where the two paths cross. In
order to get on the new path with a minimum amount of time, the aircraft will begin by
flying along the current path heading at —90 degrees. Upon reaching the tangent with the
lower left circle (which has a radius equal to the aircraft’s minimum turning radius), the
UAYV will begin following the circle. At the tangent between the two circles, the aircraft
will follow the second circle of minimum turn radius for the short distance until it reaches
its initial start point. The aircraft will now be heading exactly 0 degrees, toward the right

of the plot, starting exactly from where the new path was planned to start.

33

N\

Initial
heading

///

l Final
/ heading

Figure 3.5: Example of heading angle solution

This method can be used for any change in heading angle. The next example
demonstrates the effects of having a new path such that the heading angle flips, and the
aircraft must turn around. Once again, the vehicle begins by continuing along its current
path until it reaches the tangent of the first circle with the current path. It follows this
circle until it reaches the tangent of the two circles, where is beings to follow the other
circle. Upon reaching its initial location, where the second circle is tangent to the new
path, the aircraft follows the newly assigned path now currently heading in the correct
direction to accurately follow the new path.

34

Initial
heading

A

B L
Final
heading

Figure 3.6: Second example of heading angle solution

Figure 3.7 is the last example meant to illustrate how this approach handles
varying heading angles. In this example, the UAV is initially heading at —20 degrees and
is assigned a heading angle of 25 degrees.

Initial

Final
heading

Figure 3.7: Final example of heading angle solution

This last example is getting nearing a limit that should be imposed on the usefulness of

this approach. For angles with less than about 30 degrees difference, the aircraft can

35

follow the new path with sufficient accuracy. It should be noted that a filleting type
approach could not be used here since the aircraft is already to the intersection of the two
edges before the new path is assigned and corrective measures are taken.

For performing this procedure, the current heading angle and the new heading
angle are found. For ease in computation, these angles are then rotated such that the new
heading angle is horizontal at O degrees, and the current heading angle of the aircraft is
rotated by the same amount. Again, for small angles of roughly 30 degrees or less
difference, this procedure is omitted. The first calculation involves finding the distance
the aircraft must fly before beginning to turn onto the first circle.

|Heading _angle|
pi (

3
init_ dist = Cl(2min_turn)j

pi
N C{|Heading._ angle|(

2
Headi l
. C{| eadlng__ angle| (2min_turn)J (3.11)

2min_turn)]
pi

The coefficients have been determined by numerical methods for use in the MATLAB
code heading_angle_paths.m. The coordinates of this first break point may now be
calculated using the initial position of the aircraft and the distance determined from
Equation 3.11.

X _break = x _uav +init _dist * cos(Heading _angle) (3.12)

y_break = y_uav +init_dist *sin(Heading _angle) (3.13)

With these coordinates, all the information for computing the two circles of minimum
turning radius is at hand. The centers of the circles are found based on whether the
original heading angle was rotated in the clockwise direction or counter clockwise
direction. For positively rotated heading angles, the variable ccw will be set to negative

one; otherwise, it will have a unitary value. Equations 3.14 and 3.15 are used to find the

36

center of the second circle. For finding the center of the first circle, the new heading
angle is substituted for the current heading angle and the position of the UAV is used
instead of the first breakaway point.

(3.14)

X _circle = x_break +init _ dist * COS(Heading _angle - i *ZCCW]

y _circle =y _break +init _dist * SIN(Heading _angle - (3.15)

pi * ccwj
2
Two more angles are needed to find the locations where the two circles become tangent
and at what angle the first circle becomes tangent to the current path. The first angle is
the one made by the horizon (the reason this system was first rotated) and the line
connecting the breakaway point and the center of the first circle. The second angle is the
one made by the horizon and the line connecting the center of the second circle to the
center of the first circle. This now leads to the creation of vertices around the circles,
starting first with the initial location of the UAV, followed by the first breakaway vertex,
then with vertices around the first circle until the circles become tangent, then with the
vertices along the second circle until the initial position once again becomes a vertex, and
finally ending with the first assigned vertex of the new path. The coordinates are then
rotated to reflect the change back to the unrotated system, and the new vertices are

inserted into the new paths.

Since much change has occurred to the paths, with shortening, adding fillets, and
possibly adding initial heading angle sections, updated costs are assigned to the paths
using the same methods as first described in Section 3.3. It may seem redundant to have
already assigned costs, only to later change them before they are used in task allocation.
However, it is not computationally prudent to perform path shortening and flyability
additions to such a large number of possible paths that Voronoi presents. The
combination of using both a Voronoi diagram approach and a line-of-sight shortening
offer advantages that neither can offer by themselves. Using the flyability methods
presented in the preceding pages ensure that dynamically feasible paths will be chosen
from without the complexities associated with a linear program or optimal control. This

37

concludes the entire path planning section and leads directly into the last section, the
application of a Multi-dimensional, Multiple-Choice Knapsack Problem for solution to

the task allocation problem.

3.5 Multi-dimensional, Multiple-Choice Knapsack Problem

The task allocation problem is solved via implementation of a Multi-dimensional,
Multiple-Choice Knapsack Problem (MMKP), which is considered to be NP-hard ** in
the class of knapsack problems. For a typical knapsack problem, items for the knapsack
must be picked such that a total value is maximized while adhering to resource
constraints. A simple example of the classic knapsack problem is packing of cargo — the
goal is to maximum the amount of cargo put aboard a ship or a truck or an aircraft, but
resource constraints such as total weight and volume must be considered. The MMKP is
a variant of such a problem. With MMKP, there are multiple groups of items. Each
group has an assigned value but uses up certain resources. The objective of the MMKP is
to select a single item from each group for maximizing the value while adhering to the

resource constraints*.

As applied to the current problem, the choice of a single item from a group
represents a single permutation of UAV to target within the group of a single UAV. The
constraints on the solution are that each target has to be visited, and each UAV has to be
assigned a path. These constraints assure that tasks are assigned to all UAVs and that
objectives of visiting targets are not missed by assigning multiple UAVs to perform the
same task while neglecting to perform others. Instead of maximizing a value function,
the equivalent benefit is derived when attempting to minimize a cost. Each permutation
has already been assigned a cost as addressed in early sections, and thus it is the goal of
the MMKP to use these costs to find the optimal combination of paths to minimize the

cost of performing the entire mission for the team.

38

An example will clarify this concept. The MMKP knapsack problem of Figure
3.8 features 3 UAVS and 3 targets, and each block represents a possible path.

UAV 1 UAV 2 UAV 3
Path to Path to Path to
target 1 target 1 target 1
Cost: 10 Cost: 5 Cost: 13
Path to Path to Path to
target 2 target 2 target 2
Cost: 3 Cost: 24 Cost: 9
Path to Path to Path to
target 3 target 3 target 3
Cost: 2 Cost: 19 Cost: 7

Figure 3.8: Example UAV to target MMKP setup

For this problem, there are six different permutations of the path combinations.
Specifically, the list of permutations is found in Table 3.2.

Table 3.2: List of example path permutations and mission costs

UAV 1 Path Choice UAV 2 Path Choice UAV 3 Path Choice Cost of Paths
3 2 1 39

16

35

15

41

38

P P, DD DN W
N W W E DN

1
3
1
2
3

From inspecting the combinations above, the cheapest combination of paths that satisfies
the constraints of every target being visited and each UAV being assigned a task is the

39

combination of UAV 1 being assigned to target 2, UAV 2 being assigned to target 1, and
UAYV 3 being assigned to target 3. The total cost of performing the mission using this
assignment of tasks is 15. Any other assignment of tasks results in an increased cost to
perform the mission. It should be noted that the goal is only to minimize the total
mission cost, not the individual costs for the UAVs. The can be seen where UAV 1 was
not chosen to follow its cheapest path. It would have been cheaper for UAV 1 to be
assigned to target 3 with a cost of only 2 instead of being assigned to target 2 with a cost
of 3. However, such an assignment would have used up a resource allotted for target 3,
and caused overall mission costs of either 16 or 39, depending on where UAV 2 and
UAYV 3 were assigned.

The algorithm for solution to the task allocation problem initializes by inputting
each UAV to target permutation and associated cost in a matrix similar to the layout
shown in Figure 3.8. Similar to Dijkstra’s algorithm, the cost of assignment of any
combination of paths is set to infinity. A permutations matrix that captures all the ways
the UAV to target paths could be combined while adhering to the resource constraints is
formed. These permutations are then searched to find the lowest cost combination. As
lower cost combinations are found, they become the selected assignments unless an even
lower cost combination is encountered. Once determined that there are no cheaper
permutations of assignments, the MMKP reports the selected assignments and the cost to

perform the mission. The code applying this method is titled MMKP_task_allocation.m.

The first two research objectives have now been fulfilled. Each UAV has a task
assignment for visiting a target and a dynamically feasible path to complete that task.
The coupling of the problem has been accounted for using this approach, and the last
steps in the path planning and task allocation scheme are simple data conversion used for
plotting purposes. All MATLAB code employing the methods discussed here are

included in Appendix A, and are listed in the order in which they are run.

40

Chapter 4
Aircraft Dynamics

4.1 Introduction

The third research objective is the development of a simulation environment that
employs the path planning and task allocation approach described in the previous chapter.
This simulation uses a six degree-of-freedom aircraft model to follow the assigned paths
that are generated for each UAV. Therefore, it is appropriate to first review the aircraft
dynamics and equations of motion. More detailed descriptions and analyses than those

presented here can be found in several references*’ ™.

A single, nonlinear vector equation can be formulated to accurately model an

aircraft:

X = f(X, I:total (t)’ M total (t)) (4'1)

In Equation 4.1, x is defined as the following vector of state variables:

x=V a g parwv 6 ¢ x y HJI (4.2)

This state variable modeling consists of twelve state equations that can be divided into
four groups. The first group of state variables, the translational velocity variables,
consists of the true airspeed V, the aircraft angle-of-attack «, and the sideslip angle, S.
The second group is the rotational velocities of the aircraft, with p, the angular roll rate,
g, the angular pitch rate, and r, the angular yaw rate. The third group describes the
aircraft attitude in terms of orientation of the body axes with respect to the vertical axes.
This group includes , the Euler yaw angle, &, the Euler pitch angle, and ¢, the Euler roll
angle. The last group of variables describes the aircraft position with respect to an Earth-
fixed set of axes. This group contains X, the aircraft x-coordinate with respect to the
Earth-fixed x-axis, Ye, the aircraft y-coordinate with respect to the Earth-fixed y-axis, and

Ze, the aircraft z-coordinate with respect to the Earth-fixed z-axis.

41

Certain assumptions should be noted for the following analysis of the aircraft
equations of motion. First, the aircraft is considered to be a rigid body. Secondly, the
mass of aircraft is not time-dependent — it is constant. Finally, a flat Earth assumption is

used, where the curvature and rotation of the Earth are neglected.

4.2 Body Axes Modeling

The body axis system is depicted in Figure 4.1. Forces and moments acting on an
aircraft are also shown and will be used in the following analysis. The body axis system
originates at the center of gravity of the aircraft, as shown by the point. The x-axis is the
longitudinal axis of the aircraft that extends along the nose to the tail. The y-axis is the
lateral axis of the aircraft and is parallel with the wings. The z-axis is perpendicular with

the x-y plane and points downward from the aircraft.

L,p
J7a\\
IY;

\4
X
|

u
M, q

i

Figure 4.1: Body axis system with forces and moments

Consider a point mass dm, moving with velocity V, and being acted upon by force

F. Application of Newton’s Second Law yields:

42

OF = SmV (4.3)

An aircraft is considered to be a rigid body consisting of a finite number of point masses.

Applying Equation 4.3 to each point mass dm and summing results in Equation 4.4.

> F=> omv (4.4)

The equation accounts for the total force acting upon the aircratft.
d
F=—\)> omV 45
o) (45)
where the force can be defined as:
F=iF +]F, +kF, (4.6)

The center of gravity of the aircraft is defined as the average location of the weight. This
location can be used to describe the velocity of the entire aircraft, using components u, v,

and w.

V,, =iu+iv+kw (4.7)

c.g
The velocity for any point inside a rigid body is:

V=V, +f (4.8)

where r is the vector connecting any point inside the rigid body to the center of gravity.

Using this definition of velocity, Equation 4.5 becomes:

F= %(Zém(vclg_ +7)) 4.9)
This can be divided into two separate parts,
F=2(3v,,)+ (3 rom) (410
dt “ dt '

43

The second part of Equation 4.20 will be identically zero due to the definition of the

center of gravity. Thus, the general force equation can be defined as:

F=mV, (4.11)

c.g.

The moment developed about the center of gravity for a point mass dm located at
r is shown in the following equation. This equation also uses the definition of angular
momentum h.

M =i(rxv)5m _ 9 (4.12)
dt dt

From this, the general moment equation about the center of gravity is found to be:

M_. =h (4.13)

c.g.
where the moment is defined to be:

M., =iL+jM +kN (4.14)
Next angular velocity is introduced. Angular velocity is defined as:

Q=ip+jq+kr (4.15)

The angular velocity can be used to find the total velocity for any point mass according to
the following equation:

V=V, +Qxr (4.16)

The angular momentum can also be shown to be I, the inertia tensor, dotted with the

angular velocity.

h=1-Q (4.17)

44

The inertia tensor is given by:

Ix _Ixy _Ixz

=1, 1, -1 (4.18)

- sz 7y z

Using the body reference frame described in Figure 4.1, the entire reference frame
rotates with the angular velocity. The general force and moment equations given by
Equations 4.11 and 4.13 then become:

YA

F:m(at'g'+Qch.g_J (4.19)
a-Q .

Moy = +Ox(1-0) (4.20)

The force equation shown by Equation 4.19 can be rearranged to solve for the linear

accelerations at the center of gravity.

2= ——QxV,, (4.21)

The above equation can be broken into its scalar acceleration parts as shown in Equations
4.22 through 4.24.

F
U=—>-qw+rv (4.22)
m
. Fy
V=—-—Tu+ pw (4.23)
m
- F,
W=—2—-pv+qu (4.24)
m

For a constant inertial system, the moment equation shown in 4.20 can be rearranged to

solve for the angular accelerations.

45

o -
21t (M, -0x(1-0)) (4.25)
ot o
where
Il |2 |3
-1
|| I PO PR (4.26)
|3 IS |6
with
2 2 2
=000, =0 =1 =10 =210 0 (4.27)
2
L1, L, =12 L+, L+ 10,
2
L 1 I =Ll +1,0, LI +15 Lo, +1 0, (4.28)
2
ol Tg| [Tl +1,0, Ll +0,0, Ll +12

As with the rearranged force equation, Equation 4.25 can be broken into scalar parts. The
following three equations represent the first three of twelve state equations that are used
to describe the motion of an aircraft in flight.

p |T1|(IL+I M+ N+p (xyS xz 2)+pq(le yzlz_(ly_lx)|3)
+pr(|yz|3_|xy|1_(|x)|2)+q (yz l Ixy|3)+r2(|x2|2_|yz|l) (4.29)
+qr(|xy|2_|xz|3_(lz_Iy)ll))

q ﬁ(l L+1 M+I N+p(xy5 xz 4)+pq(sz yz|4_(|y_|x)|5)

+ pr(yz 5 Ixylz_(lx)|4)+q (yz 2 Ixy|5)+r2(|xz|4_|yz|2) (4.30)
+qr(Xy 4 IXZIS_(IZ_Iy)IZ))

46

ﬁ(lL+lM+lN+p(Iy = Lals)+ pa(l o= 1l = (1, =1,))

+ pr(yz 6 Ixy|3_(|x)|5)+q (yz 3 Ixy|6>+r2(|xz|5_|yz|3) (4.31)

rar(l =100, -1,)1,))

4.3 Flight Path Equations

In lieu of using the velocity variables u, v, and w, which are found in terms of the
aircraft body axes, a set of axes based on the flight path reference system is used. The
velocity used by the state equations then becomes the aircraft’s true velocity, and the
angle-of-attack « and the sideslip angle S are used to determine where the true velocity
vector points with respect to the body axes. Figure 4.2 illustrates an aircraft and its flight

path axes, it body axes, the corresponding angles, and the true velocity vector.

Figure 4.2: Stability axis system and angles with body axis system

Using this figure, it can be seen that the body axes-based velocities are related to

the true aircraft velocity using:

47

u cosa cos
ve=V| sing (4.32)
w sinasin g

The magnitude of the true velocity is then determined by the following equation.

V =+yu® +v? +w? (4.33)

The angle-of-attack « and the sideslip angle g are then found by

a= arctan(ﬂ] (4.34)
v

(4.35)

v
p= arctan(—}
Vu? +w’

Determining the aircraft’s true acceleration is accomplished by differentiating
Equation 4.33, which results in:

VLN Wreav vy WA LR @9

Tt Y,

Using the expressions for u, v, and w from Equation 4.32 yields:

V- (V cosarcos g+ (V sin g+ (V sinasin)W
\

(4.37)

Finally, the fourth state equation can be found by substituting the expressions for the
body axes accelerations found in Equations 4.22 through 4.24.

v :i(FX cosa cos S+ F, sin f+F,sin asinﬂ) (4.38)
m

48

The fifth state equation is the rate of change of the angle-of-attack. It is

determined by first differentiating Equation 4.34, as shown below.

. d W UW — uw

The above equation can be manipulated to get:

d_uv‘v—UW_ uv—uw uw-uw (4.40)
VZ-v? V?_(sing)® V?cos®p '

As with the true acceleration, the final form of the rate of angular change equation for
angle-of-attack can be found by substitution of Equations 4.32 and 4.22 through 4.24.

. 1
a =
V cos f

{%(— F,sina +F, cos a)} +q—(pcosa +rsina)tan g (4.41)

The sixth state equation is found in the same manner. The rate of change of the

sideslip angle is first found by differentiating.

. d v v(u? +v2)—v(uu + wiw)
f=— arctan(j = (4.42)
dt Vu? +w? VZyJu? +w?
Substituting in the expressions for u, v, and w and their derivatives:
101
P = v —(— F.cosasin B+ F, cos - F,sinasin ﬂ) + psSina —rcosa (4.43)
m

The forces and moments acting upon these first six state equations can be broken
into components. These components consist of aerodynamic forces and moments,

propulsion forces and moments, and gravitational force.

49

F. Xaerognamic T X proputsion + X gravity
I:y = Yaerodynamic + Ypropulsion + Ygravity (4-44)
I:z YA aerodynamic + Z propulsion + Z gravity
L Laerodynamic + Lpropulsion
Mt =1 Mognamc T M proputsion (4.45)
N N + N

aerodynamic propulsion

Typically, aerodynamic forces are used in more familiar terms of lift, drag, and side force

as opposed to the body axis system forces. The two sets of forces are related by:

X aerodynamic —cosa 0 singa | Lift
Y = 0 1 0 Drag (4.46)

aerodynamic
-Z sina 0 cosa| Y

aerodynamic

Aerodynamic forces and moments can be found using the following six equations.

In the longitudinal direction,

Lift=C, QS (4.47)

Drag =C,qS (4.48)

M =C,qgsSc (4.49)
In the lateral direction,

Y =C,QS (4.50)

L=C,qsSh (4.51)

N =C,qgSh (4.52)

Aerodynamic coefficients used in the above equations can be found from known aircraft
coefficient derivatives. In the longitudinal direction, the coefficients are built up
component-wise using the following three equations:

50

C =C, +C_a+Cy i, +C, [%}CL& (“_ +C,, & (453)

Py,

Cp =Cp, +Cp a+Cy iy +Cop, 0 (4.54)

Cp=Cpy +Cp @ +Cy iy +Co [L s, [L4c, o (4.55)
o o iH N | 2 5e

In the lateral direction, the coefficients are:

C, =C, +C, (;\?jm (Zr\k;jm 8, +Cy 5, (4.56)
C,A+C, (;\?jm (Zr\t;jm 5,+C, 3, (457)
c,=C,f+C, (;\?jw (Zr\t;j +C, 8,+C, &, (4.58)

4.4 Earth-fixed Axes and Kinematic Relationships

The last six state equations are derived from a new set of axes and kinematic
relationships. These equations will relate the aircraft orientation to an Earth-fixed set of
axes. Figure 4.3 illustrates the principles discussed here for relating the aircraft to the
Earth-fixed axes. The first step is to translate a set of axes parallel to those of the Earth-
fixed axes until the origin of the translated set corresponds to the center of gravity of the
aircraft. This set of axes will be labeled X3, Y31, and Z;. These axes will be rotated three

times to align themselves with the body axes of the aircraft.

The first rotation of the axes is about the Z; axis over the Euler angle w. This axis
is then labeled X, Y2, and Z,. The next rotation of the new axes set is about the Y, axis

through the Euler angle ¢. This results in the new set of axes X3, Y3, and Zs. The final

51

rotation of the axes is about the axis X3, through the Euler angle 6. The set of axes that
results from these three rotations is labeled X, Y, and Z, and is aligned with the body axes

of the aircraft.

Ye

\‘——
- —

N

\
Z o Z; 6 i Xe <
Z1 Earth-fixed Axes
and
Z,

Ze
Figure 4.3: Aircraft orientation with Euler angles

The first relation from the above is that the first set of axes X, Y1, and Z; is

parallel to the Earth-fixed axis. From this, it is easily seen that

U, =X, V, =Y, W, =12, (4.59)

Using the above equation and relating each set of axis to the next, the Earth-relative
velocities can be related to the body-relative velocities.

Xq cosy -—siny 0| cos¢ 0 sind||1 O 0 u
Y.r=|sSiny cosy O 0 1 0 [0 cosg —singfqv (4.60)
Z, 0 0 1||—-sin@ 0 cos@||0 sing cos¢ ||w

52

This reduces to provide an equation for each of the Earth-relative velocities.

= {ucos @+ (vsin ¢ +wcos¢)sin &}cosy —(vcosg—wsin g)siny (4.61)
= {ucos @+ (vsin ¢ +wcos¢)sin 8}siny — (vcos g — wsin ¢)cosy (4.62)
2, =—usin @+ (vsin ¢+ wcos ¢)cos (4.63)

The Z-axis is defined to be pointed downward, so the relationship between the Zg axis
and the altitude of the aircraft is:

h=-2 (4.64)

e

Using the expressions of Equation 4.32 to relate the body axes velocities to the true
velocity V, the angle-of-attack «, and the sideslip angle g, the seventh, eighth, and ninth

state equations are found to be:

=V {coswcosﬂcosecosv/ +5sin ,B(sin $sin @ cosy —cospsiny)

_ _ o (4.65)
+in a cos B(cos ¢ sin @cosy +sin gsiny)}

y, =V {cosa cos S cosfsiny +sin S(cos g cosy +sin gsin Gsiny) .
+5in & cos B(cos gsin Osiny —sin gcosy)} '

h =V {cosa cos Asin & —sin Bsin ¢ cosd —sin a cos S cos ¢ cos 6} (4.67)

The last three state equations come from the airplane kinematic equations. The
relationship between the Euler angular rates and the angular velocity components is:
:ip+jq+kr:y;+§+¢; (4.68)

The Euler angular rates can be found by referencing which axis each rotates about. For

the angular rate , the rotation is about the Z; axis. This leads to the next equation.

53

—

y = (~isin @+ cos@(jsin ¢ + k cos ¢y (4.69)
The next angular rate is 5 , which rotates around the Y axis.

6 - (jcosg —ksing)o (4.70)
The last angular rate is ¢; . Since its rotation is about the X3 axis, its equation is:

5 =ig 4.71)

These three relations can be substituted into Equation 4.68 to yield the kinematic

equations:

p 1 0 0 W
qp=|0 cosg cosdsing |0 (4.72)
r| |0 —sing cosdcosg ||

The final three state equations are found by inverting the above equation.

Invert to get:

y =secd(qsin g+ rcosg) (4.73)
6 =qcos¢—rsing (4.74)
é=p+(qgsing+rcosg)tand (4.75)

At this time, all twelve state equations have been developed, and an aircraft model

can be implemented into the simulation presented in the next chapter.

54

Chapter 5

Development of Centralized UAV Simulation

5.1 Main Simulation System

The simulation environment developed in this chapter is one where a central

of UAVs can replan using this new information.

processor controls all of the decision-making abilities for the entire UAV team. This
simulation fulfils the third and fourth research objectives as presented in Chapter 1, and is
time-varying since the states of targets can change, UAVs can be and actually are

destroyed during the simulation, unknown threats and targets can appear, and the group

Figure 5.1 shows the main SIMULINK block of the simulation code.

Plot Simulation

Double-cli
for inf

8

UAY MANAGER

A

Run after Simulaticn

UAW DOWN

SIGNAL REFLAN

THREATS MANAGER

UAY OFTIMAL FATHS

ZONES

F 3

—51 THREATS

[3

UAV CRASH

Z0

MES

AIRCRAFT DYNAMICS

UAVS POSITIONS

UAVvsTHREAT

UAY INTERCEFTED

THREATS

ol
el

Figure 5.1: Main simulation system

55

There are several main components of the simulation, and each will be discussed
separately in subsequent sections of this chapter. The first component is the simulation
inputs. All necessary information is inputted based on graphical user interfaces that are
discussed in Section 5.2. The top left block initializes these. The next component is the
path planning and task allocation block, seen as the large middle block of Figure 22. This
block executes the path planning and task allocation approach discussed in Chapter 3 and
will be elaborated further upon is Section 5.3. Once a UAYV is given an objective and has
a planned path, the aircraft dynamics discussed in Chapter 4 are implemented in the
Aircraft Dynamics Blockset, discussed in Section 5.4. The outputs from this are
positions of each UAV, which are checked to see if the position coincides with a threat
boundary or a no-fly zone. If a UAV position does meet one of these criteria, another
scheme is executed to determine if the UAV is destroyed or survives. A UAV Manager
block is discussed in Section 5.5. This block keeps track of all UAVs and triggers action
to be taken if a UAV is lost. The Targets Manager block keeps track of the state of each
target. As assignments are completed by individual UAVs, target states change, and
targets are eventually removed once confirmed as destroyed. More information about the
Target Manager is found in Section 5.6. The last main block of the simulation is the
Threats Manager. It is similar to the Targets Manager, and keeps track of all known
threats, their positions, and when they fire at a UAV. Section 5.7 will complete the
discussion of this manager. The final section of this chapter shows the outputs of the

simulation and gives an example simulation.

5.2 Simulation Inputs

The obvious first step for the simulation is to initialize all inputs. The necessary
inputs can be derived from the original problem statement given. The first information is
the number of UAVs, targets, threats, and no-fly zones. Because the fourth research
objective states that the simulation should be of a dynamic environment, the targets and
threats are divided into the number of static and the number of pop-up for each. Pop-up
targets and threats are now defined as those that are not known by the UAV team

56

whenever the simulation first begins, but rather appear after a time that the omnipotent

user defines.

Graphical user interfaces have been developed to collect this necessary

information in an easy manner. Figure 5.2 illustrates the main menu of the GUIs.

B MainMenu M =)

Cooperating UAVs Simulation
Main Menn

Number of UAVs Number of Targets
- (Max. 9)
- (Max. 9) Static Targets (Min. 1) -

Pop-up Targets -

Number of No-Fly Zones Number of Threats

Tl Max 15

Static Threats (Min. 1) -
Pop-up Threats -

- (Max. 10)

Par. 5.1 July 2003

Figure 5.2: Cooperating UAVs Simulation Main Menu

This GUI collects the information specified above and allows the user to continue
inputting information in one of two ways. The first way, the GUIs with visual
initialization, will be discussed further in this section and allow the user to ‘point-and-
click’ to initialize the battlefield. The second way to input the information is with the

numerical initialization GUIs, where the user types in all locations manually.

57

All GUIs in this initialization scheme have error checking. All numbers inputted
must be within proper ranges, and all necessary values must be specified for proper
initialization. The following figure shows the error message shown to the user whenever

an input error is detected.

u.ermﬂ g =

Var. 5.1 July 2003

Figure 5.3: Error message

The next step for initializing the data is the aircraft menu. From the previous
chapter, it is clear that many aircraft parameters are needed to accurately model the
aircraft dynamics. The following menu uses several ‘built-in’ aircraft with all the
necessary parameters already defined. The only necessary input from the user is the type
of aircraft and its initial positions. Using the numerical initialization option, a value for
each Earth-fixed initial position is chosen manually by entering numbers. With the
graphical initialization option, only the height needs to be typed for the aircraft position.
Figure 5.4 illustrates the Aircraft Menu GUI.

58

AircraftMenu g o/E4

Cooperating UAVs Simulation

Aircraft Menu

Initial Position
Aircraft Type and Description y)
g Altitude (km)

UAV #1
UAV #2
UAV #3

UAYV {4 ESEEeay type----
-—--Select UAV type-—--
UAV Modsl F-4
JAV Model F-22
UAV Model B777
UCAV

Figure 5.4: Aircraft Menu GUI

The Earth-fixed axial positions for Xg and Yg are now entered using a graphical ‘point-
and-click” method. A message indicating what is being placed on the graph is displayed,
along with instructions to first determine the location of the object using the crosshairs,
and finally click on that location to place the object there. Figure 5.5 shows the use of
this point-and-click tool for setting up the battlefield. This method is quite useful for
determining where appropriate locations for the UAVs should be and illustrates where the
placed UAVs for use in placing other UAVS.

59

Figure No. 1 g@
File Edit Vew Insert Tools Window Help
DedES M A A B RT
200 ! ! ! ! ! ! ! T !
) N S N S S S
L S
140}------ e i &t SELLEEL SECEEEE e — e
e
- L N S . T .
: : : {5 SR : : : :
) S R N S -
i fiest bbb
| e bRk e AL Ermnesdbensne e e e dena s drmnrsmrbnmnes =
| O S S N S S S
R =
| | | | | | | | |
20 40 60 a0 100 120 140 160 180 200

Figure 5.5: Point-and-click method of placing UAV positions

The UAVs are displayed as blue diamonds with the individual number to the right
of the UAV. The battlefield size is defaulted to a 200-kilometers by 200-kilometers.
This size was selected so that longer distances for target engagement could be simulated
without having an excessively long simulation time for literal cross-country travel by a
team of UAVs.

Next, the target information is inputted. Two different menus are used to
accomplish this task. The first of these menus is for the static target values and locations,
while the second is for the so-called ‘pop-up’ target values and locations. Since the

typical mission envisioned within this research has been the “high-risk but high-value’

60

mission type, associated values for individual targets are appropriate. These values are
used for determining which targets are attacked first in the case of more targets than
UAVs, and will be discussed further in the next section. The Static Target Menu and the

Pop-up Target Menu vary only by addition of a pop-up time for the second menu.

~

(n-Ta‘rgétHenu g D._

Cooperating UAVs Simulation

Pop-up Target Menu

Pop-up
Time (s)

Ta[‘ge‘[‘ t#H1 | Select Target Value -- m

-- Select Target Value --

Target's Value

Figure 5.6: Pop-up Target Menu

The static target values are first selected; next, the static targets are then placed using the
same ‘point-and-click” method as discussed earlier. The UAV positions are still visible
when targets are placed for ease of battlefield setup. Once the static targets are placed,
the pop-up menu is used to select values for pop-up targets. These targets are then placed
to complete the target information for the simulation. On the battlefield plot, static

targets are depicted by a green ‘x’, while the popup targets are shown with a green cross.

61

Now, no-fly zone information is required. The only necessary information for
these is the location and the radius. Figure 5.7 is the menu for the radius input. No-fly
zones can represent two either physical or political boundaries that the UAVs are not
allowed to cross. For ease of use input, the no-fly zones are modeled as simple
mountains with a known radius. While input of complex political boundaries could be
accomplished, it was chosen that “point-and-click” mountains would be used to simulate

no-fly zones.

B zonesMenu [;]. O W
Cooperating UAVs Simulation
No-Fly Zones Menu

No-Fly Zone #1
No-Fly Zone #2

No-Fly Zone #3

Figure 5.7: No-Fly Zones Menu

Once the radius of each no-fly zone is inputted, the point-and-click menu appears and the
locations of the no-fly zones are chosen. On the battlefield plot, each placed no-fly zone
appears as a black filled in circle of given radius. The previously placed UAVs and
targets are also visible on the plot while no-fly zones are placed.

The last inputs are the descriptions and locations of the threats. Threats are

broken into two groups of static and pop-up, similar to the targets. Typical threats are

62

built-in to the drop down list for the threat type and description. The description includes
the effective range of the threat and the probability of kill. The threats that are built in to
the list include all the threats described in Table 3.1 from Chapter 3. As with the target
menus, the static threat information is first input and then locations are point-and-click
inputted. The static threats appear on the battlefield as a red star with a red circle of

effective range surrounding.

Cooperating UAVs Simulation
Popup Threats Menu

Popup
Threat Type and Description Time ()

Threat #1 |- Select Threat Type —

Figure 5.8: Pop-up Threats Menu

The “Pop-up Threats” menu also includes the pop-up time for each threat. As above, the
threats are then placed where desired on the battlefield. All previously placed objects
will still be visible when placing the threats. Pop-up threats will appear as red ‘O’s with

a red circle of the effective range surrounding it.

63

At this point, all needed information is now entered into the simulation. A typical
final battlefield setup is shown in Figure 5.9, below. The next sections will describe the
components used within the simulation.

Figure No. 1 g@
File Edit Vew Insert Tools Window Help
DeEdE M A AL/ BP0
200 o et o T e o o o T e o oAt T Vet vt TS A e e KAt oo o Tt G R o T e o Pt s T e
L O -
s’ VI S S
- e (et SELLEEL SELREEE Rt SRUUEA CELLEE — s
! : ! ; : A & ! :
f=d ! : : : : G4 : | 2: :
: : ; :] !] W :
o i T - {}2 """ arii @ """ 1
. T, .@ _ ____ I A s L, O
L. I
| R R CERE SN b s e SRR A
B e
: ! : : : . > 3 : i
L s e e
| | | | | i | | | |
20 40 60 a0 100 120 140 160 180 200

Figure 5.9: Example battlefield setup

5.3 Path Planning and Task Allocation Execution

Before the path planning and task allocation scheme can be executed, the number
of targets and waypoints must first be equated with the number of UAVs. This
requirement is a consequence of the MMKP constraints that each UAV must be assigned
a single task and each target is required to be visited. However, this is fairly easily

64

overcome using the Place Waypoints block and the accompanying MATLAB code,

place_waypoints.m, as found in Appendix B.

Figure 5.10: Place Waypoints block

The UAV locations and velocities and the target locations, values, and states are
input into the block. The MATLAB code place_waypoints.m is then executed. This
code approaches the problem with two different types of solution. For the situation
where there are more targets than UAVS, the program sorts the targets by the highest
values and removes the lower-valued targets for any number greater than the number of
UAVs. The removed, lower-valued targets are not forgotten and will be later added back
in to the list of targets whenever higher-valued targets are removed after being destroyed.
The second solution is employed whenever the number of UAVs is higher than the
number of targets, such as toward the end of a mission. In this situation, waypoints are
added to the list of targets until the number of targets equals the number of UAVs. These
waypoints are added at the same locations as the targets based upon the value of targets.
Targets with a higher value have waypoints added to their position before lower-valued
targets. This is to help ensure that higher-valued targets will have a higher probability of
successful mission accomplishment by assigning multiple UAVs to these targets.

The actual method of assigning waypoints begins by finding the highest valued
target. The location and value of this target are then stored and a waypoint is assigned
with the same location but no value. The stored value is then decreased by 50%. The
reason that the stored value decreases in half is that if the target is more than twice as
valuable as any other target, it will automatically get two waypoints assigned to it before

any other target gets an extra waypoint. The waypoints do not have values themselves
65

because they are simply the same as the target whose coordinates they share. The
program executes for the same number of times as the difference between the number of
UAVs and targets.

The path planning and task allocation scheme can now be executed. The

following block diagram illustrates the inputs for the scheme and the outputs

Enable

UAV OPTIMAL PATHS

a7 O
if
S

Figure 5.11: Path Planning and Task Allocation block

Inputs into this block are the following:

e UAV coordinates, altitudes, velocities, and heading angles
e Target coordinates

e No-fly zone coordinates and radii

e Target coordinates, effective ranges, and probability-of-Kkill
e The time at which the program is executing

e The number of times the path planning and task allocation scheme has executed

66

The program then executes and outputs which assignment each UAV receives and the
corresponding optimal path for the UAV to fly to complete that assignment. Options are
also given whether the user wants to see static plots for every execution of this block. It
should be noted that this block contains an “Enable”, seen at the top of Figure 5.11. This
addition indicates the path-planning scheme will only execute whenever the Enable is
triggered. When the simulation is first started, the path planning and task allocation
scheme will execute, but after that only when there is a signal to indicate replan. The

necessary conditions to produce a replan are discussed in later sections of this chapter.

5.4 Aircraft Dynamics Subsystem

A six degree-of-freedom aircraft model is used within this section to model the
aircraft dynamics. The centralized control scheme simulates all of the UAV dynamics for
the entire group. The inputs to this section are specifically the outputs of the previous
section, the assignment each UAV receives and the corresponding optimal path for the
UAYV to fly to complete that assignment. The outputs are the current positions and
rotations of the UAV, the current heading angle of the aircraft, and an end-of-path signal
for each UAYV (to indicate when it has reached the target).

Figure 5.12 shows the ‘UAV Dynamics’ block for each of the possible UAVS,
and the inputs and outputs of the block. Note that while there are blocks for 9 UAVs,
there do not have to be 9 UAVs in the simulation, only a maximum of 9 UAVSs. If there
is less than the maximum number of UAVs running in the simulation, whether from the
initialization or due to UAV loss, the individual blocks are not enabled within the
centralized simulation. All of the present UAVs will then contribute to the outputs of

positions and rotations, the heading angle output, and the end-of-path signals.

67

UAY Dynamics

UAY Dynamics

UAV PATHS

UAY Dynamics

UAY Dynamics

UAY OPTIMAL PATHS UAY Dynamics OUTPUTS

UAN Dynamics

UAN Dynamics

m

(=]

O
mn
n
1

UAN Dynamics

L J
1

UAY Dynamics

Y Y Y Y Y Y Y Y VYV Y YV VY YV YYYYIYIVIYSY

¥
;

Figure 5.12: ‘UAV Dynamics’ blocks for all UAVs

Under each of the blocks labeled ‘UAV Dynamics’ lies the subsystem shown in
Figure 5.13. This block coordinates the enabling of the aircraft model is the UAV is
present, or if the UAV is not involved in the simulation, the appropriate outputs to
indicate this.

68

[¥

- Dynamics ::I_.
(00000 0}

50

¥

e eSS
El
€

¥

B
L

Figure 5.13: Blocks to output UAV positions, heading angle, and signal end of path

The above subsystem sends an enable signal to the blocks show in Figure 5.14.
These blocks are subsystems for three separate functions. The first mask labeled *X, Y,
Z, time, pos_des’ is used to determine a next position for the individual UAV. The ‘End
of path’ block is used to determine when the UAV has reached the target position, and
the ‘UAV DYNAMICS’ block is a mask for the actual aircraft model and autopilot

subsystem.

[I)—px. ¥, Z, time pos_des | LAY DYNAMICS oot
In1
Out2
Enakle L] End of path —@

Out3

Figure 5.14: Determines next path position, runs aircraft model, and signals end of path

The first of these subsystems to be discussed is the *X, Y, Z, time, pos_des’ block.
Looking under the mask results in the blocks shown in Figure 5.15. These blocks are
used to break up the paths coming out of the path planning and task assignment scheme

into short segments to use with the aircraft model. This is accomplished by using look-up

69

tables to find where the UAV will be on the path after a small elapsed amount of time.

This location is then outputted and used with the aircraft model.

Times Lock-up Table Trajectory

h 4

Y¥yYY

Clodk

X trajectary

Pasitions

XY, E time

Times Lockup Table Trajectory

YYyYvy

YyYvYyvy
¥
¥
:EI

Y trajectory

Positions

Times Lock-up Table Trajectory
B_\T/ 2 rajectory

Figure 5.15: Blocks that “look ahead” and output next position in path

h 4

The next mask cover the simple subsystem used for determining when a UAV has
reached the end of its path, which is analogous to saying the UAV has reached its target.
Whenever the UAV reaches its target, it no longer can look forward in time to the next
position on its assigned path. This causes an empty output, which signals the target has

been reached.

{1 —mUE)

In1 a

-
.

é

Ot

Equal

Figure 5.16: Determination of end of assigned path

The last of these three subsystems is the actual subsystem that controls the aircraft

motion. Figure 5.17 illustrates this subsystem.

70

Cable &
actuator
dynamics

YYYY

Autopilot

elevators

Figure 5.17: Actual UAV dynamics block, with aircraft model and heading-angle autopilot

This subsystem itself contains three major subsystems. The first and most obvious
system is the block labeled “Discrete Time General Aircraft Model’. This is where
specific control commands are inputted and used in conjunction with external forces and
moments and known aircraft parameters to model the aircraft dynamics. This flight
simulation environment is an open-source blockset distributed as FDC (Flight Dynamics
and Control) *°. This environment consists of five groups, which can be viewed in Figure
39. The first such group is the Airdata group. This group contains the standard
atmospheric model, such as gravity variation, temperature, pressure, density, and
equations related to these, such as dynamic pressure and Mach number. The second
group is the Aerodynamics group. This group calculates the dimensionless coefficients
discussed in the fourth chapter, in Equations 4.53 through 4.58. The third group
calculates forces associated with gravity and wind, and are used in conjunction with
Equations 4.44 and 4.45. The fourth group is the Aircraft Equations of Motion group.
This group uses the twelve state equations in conjunction with the first three blocks to
completely describe the motion of the aircraft. These state equations are solved using a
fourth-order Runge-Kutta method. The last group is the Additional Outputs group.
Contained within this group is the determination of the flight path variables, the time-
derivatives of the body axes velocity components and acceleration components, and the
grouping of aerodynamic forces and moments, propulsive forces and moments, gravity

forces, and atmospheric turbulences.

71

| yam
— »= !
Ll = yad1
]

Airdata group yad3

) = q=]

Ll
el —]

deflact "I;I Caero

Asrodynamics

¢‘|F ¥

’ - Fiaerc
= group {Beaver) =
(i Lt |
et Fm FIM ext
| .
"1 Gravity =]
> =
Gravity foroes Fgrav
| .
"1 Fwind =
> =
Wind foross — — Fwind
FMsort

Add + s:}rt—‘

forces and =
s moments e x

9 i 9
wind T 7] et

uwin | xdo

ircraft equations bwel
mation {Beaver)

.
O

2 YY¥YYY

5 »=
P Gotod
> > feen
— -
- - [acd |
Ll
Dutput Gotos

Additional cutputs

BEAVER, level 2 [main level)
M.C. Rauw

Figure 5.18: Flight simulation environment for aircraft model

The aircraft parameters seen in Figure 5.19 are used with the flight simulation
environment to model the motion of the aircraft. These parameters include the geometry,
mass, and inertial properties, aerodynamic coefficient derivatives, and the state vector of
initial conditions that was shown in Equation 4.1. These parameters can be set up to be
entered manually, as shown in the figure or can be used in conjunction with the specific

aircraft selected from the GUI inputs.

72

Block Parameters: DT-F4 X
— Discrete Time General Monlinear Aircraft Model (mask) fink)

The first input contains the wind velocty and acceleration.

The second input cortains extemal forces and moments in body Zxds.
The third input contains the deflections of elevataors, ailerons, udder
and, flaps. Far a list of outputs look under the mask.

MB : The Intemational measurement system (MKS) is adopted.

— Parameters

Geometry, Mass, T:[cbar b 5 bk ly Iz by Juz Jya m T)
|33ﬁ.4439 165620.954 18954335 0 298275935 0 176301 T]

Aerodynamic D-Force Dervatives : [CO0 CDa CDg CDde Chik]
I[I}.I}EI}E 03 00 07]

Aerodynamic L-Force Dervatives : [CLO CLa Clg Clde CLih]
|[n.1 375 18 0 04

Aerodynamic Y-Moment Dervatives : [Cm0 Cma Cmg Cmde Cmih]
I[D.DEE- 04 27 0 058

Aerodyrnamic Y-Force Denvatives : [CY0 Cb Cp Cyr Cda Cydr]
|[D 068 0 0 00160 0095

Aerodyrnamic ¥-moment Dervatives : [CI0 Clb Clp Cir Clda Cldr]
|[[!I 416 034 013 0.013 0.008]

Aerodynamic Z-moment Dervatives : [Cnl Cnb Cnp Crr Cnda Cndr]
I[D 0.125 0036 0270 0001 -0.066]

Initial Condition 20 [v alpha beta p q r psi theta phi xe ye H]
|[|_|P-.‘-.-“S[4.'I}‘1 000 -0.005073020 000 O-0.009079020 UAVS(11)

QK I Cancel Help Spply

Figure 5.19: Parameters and inputs for aircraft model

The second subsystem shown in Figure 5.17 is the Cable and Actuator Dynamics
subsystems. This system models the dynamic response associated with the throttle,

stabilators, ailerons, and rudder as generic first order systems with an inherent delay.

_ . a
S+a

G petuator (5) (5.1)

73

The ailerons are modeled as a fast response system with the value of a set to 40. The
rudder and stabilators are modeled as moderately fast actuators with the value of a set to

15. The throttle is set to a slow response, with a low value of 4 being used for a.

Actuator & cable dynamics
Mare Rauw, October 1997

Actuators initial condition are present
inside delays and filters

_thr delay Eq Foroe [M]
IR 3 L] throttle

T

(]

7
5
l
8

5+15

C_stab d;lg':r' IRz

DRy —» :3 > >

1IR3

15
D%Z s+15

- rud delay 1IR4

stab

77
& 1&

]

Figure 5.20: Actuator and cable dynamics subsystem

The third subsystem shown is the heading angle autopilot. This autopilot
generates commands in terms of throttle adjustment and stabilators, aileron, and rudder
deflections to follow a desired heading angle. This is where the input of looking ahead in
the path is used. The aircraft compares its current position and rotations with those of
where it needs to be at in certain amount of time (usually 15 or 20 seconds later). It then
uses the autopilot shown in Figure 5.21 to generate the necessary commands to follow

that path (or at least attempt to in case that the path is not dynamically feasible).

74

turn_generator

Figure 5.21: Heading angle autopilot, showing turn generator

The turn generator of Figure 5.21 is shown in detail in the below figure. This

system generates the necessary outputs of p, g, r, and the Euler angles of y, 6, and ¢.

7.452e+002

Display2

deltay y_sens

Figure 5.22: Turn generator subsystem

This completes the discussion of the modeling of the aircraft dynamics. The last
part of this section is the block called UAV Positions in the main system. This block
removes the angular orientations of the aircraft and leaves only the positions of each

UAV for use in later calculations of the simulation. Heading angle is the only orientation

75

angle that is used for the path-planning scheme, and it is output before reaching this
block. The other orientation angles are not needed for such calculations as if the UAV is
destroyed or when a UAV reaches the end of its path. However, all state information is
contained within the system of Figure 5.17 for each individual UAV, so these angular

orientations are not lost, just removed from the UAVs matrix.

i

v

i

r

k.

i

r

Y

il

v

i

UAV PATHS

r

»{

k.

UAV POSITIONS

i

¥

il

v

k.

i

h i

i

r

Y

Figure 5.23: UAV Positions block

5.5 UAVs Manager

For the centralized simulation, the UAV manager is what keeps track of all the
UAVs. There are four blocks in the main system that fall within the scope of this
definition. The first two blocks are the UAV CRASH and UAV INTERCEPTED blocks,
which serve similar functions. The first of these two blocks is the UAV CRASH block.
This block uses a MATLAB s-function to determine if a UAV crosses the boundary of a
no-fly zone. Though this should never happen with correct paths being assigned, the

76

function is still included for simulation completeness and is useful for error checking

purposes.

LA

POSITIONS

uav_orash_s —@
)

ZONES

Figure 5.24: UAV CRASH block

The MATLAB function uav_crash.m, as found in Appendix B, uses the UAV positions
as output by the aircraft dynamics and compares them with the no-fly zone information.
If a UAV is determined to cross a boundary for a no-fly zone, the binary vector of UAV
Crash is changed to a unit value for that UAVs position. That UAYV is then deleted by the
UAV DOWN block, which will be discussed shortly.

The second block is the UAV INTERCEPTED block. This block performs
similarly to the UAV CRASH block. It uses a MATLAB s-function to compare the UAV

positions with the threat positions and effective ranges. Figure 46 shows this block.

v intescepied = UAV SHOT DOWN

THREATS FIRED

Figure 5.25: UAV INTERCEPTED block

If the function finds that a UAV has entered the effective range of a threat, the threat is
simulated to have fired at the UAV. Note that each threat is considered to expend its
entire armament when firing at a UAV. The amount of this armament is the same
amount that was originally used to determine the probability-of-kill. For SAMs, a single

missile determines this number, while for anti-aircraft artillery, the number of munitions

77

fired would be much higher. When a UAV is considered to have been fired upon, the
simulator uses a random number generator to determine if the UAV got destroyed. For a
random number between zero and one, if the number is less than the probability-of-kill
for the threat, the UAV is considered destroyed and the binary vector UAV SHOT
DOWN is changed to a unit value for that UAVs position. If the number is greater than
or equal to the probability-of-kill, the UAV survives and continues on its path. Either
way, the binary vector THREATS FIRED changes to a unit value for the firing threat and

the Threats manager, discussed in Section 5.7, then removes that threat.

The third block that can be considered part of the UAVs manager is the UAV
DOWN block. This block combines the two binary vectors UAV SHOT DOWN and
UAYV Crash into a single binary vector UAV DOWN that represents destroyed UAVS that

are to be removed from the simulation.

Reshape —M 4 — Feshape

UAN DOWN

It i1l It A A

Figure 5.26: UAV DOWN block

The information from the UAV DOWN block is used in conjunction with the
current UAV positions as output by the AIRCRAFT DYNAMICS block for the system
entitled UAV MANAGER. The job of this system is to keep track of a current UAV
matrix and to signal the path planning and task allocation scheme to replan if a UAV is
lost. Figure 5.27illustrates the main subsystem.

78

UAY Column

b J
+

UAW Column

¥
+

UAW Column

¥
+

UAW Column

¥
+

UAY POSITIONS NEW

LAV POSITICNS WAV Gelumn

-+ UAVS_MANAGER_REPLAN

LI DOWN
UAW Column

¥
+

UAW Column

¥
+

UAW Column

¥
+

UAY Column

b J
+

Figure 5.27: UAV MANAGER subsystem

This system is divided into a subsystem for each UAV that keeps track of the positions
for each UAV, the velocity of the UAV, and if the UAV is destroyed or runs out of fuel.
The binary value of the UAV DOWN vector associated with the individual UAV is
combined with a binary value associated with the UAV running out of fuel to determine
if the UAV is destroyed. The binary fuel value changes from zero to a unit value after a
predetermined amount of time (for example, a LOCAAS type UAV has 30 minutes
before it runs out of fuel). Changing the velocity of the aircraft to zero is used for a
determination of UAV destruction. Because of inherent delays in the simulation, the
change of velocity to zero is used to signal a replan as opposed to a binary value that is

only a unit value for a single time step. Once the velocity changes to zero, the UAV is

79

officially removed from the list of UAVs and thus a replanning of the tasks and paths
occurs only once for the loss of a UAV. For UAVs that are not used in the simulation, a
zero vector is used to denote they do not exist. Because this vector is assigned at the start

of the simulation and remains throughout, replanning is never based upon those UAVS.

P 4th slement

¥

Current

+
! Actions Display

- ot

Figure 5.28: Individual UAV manager for tracking positions, velocity, and destruction

In addition to tracking UAV positions, velocities, and destruction, the individual manager
has a subsystem to print a statement saying which UAV was destroyed and at what time.
This statement is triggered when the combined binary number contains a unit value. The

blocks to accomplish this function are seen in the next figure.

80

Trigger

round
“ i MATLAB

- Function

Figure 5.29: Printing blocks for UAV destruction

This concludes the UAVs manager description and the functions performed

therein.

5.6 Targets Manager

The Target managing blocks keeps track of the state of each target. As
assignments are completed by individual UAVs, target states change, and targets are
eventually removed once confirmed as destroyed. There are two subsystems of the main
system that performs the necessary management. The first subsystem is contained within
the block TARGETS CLASSIFIER, while second is the TARGETS MANAGER.

The TARGETS CLASSIFIER has the job of tracking the states of each target.

The five possible states of any given target are:

Indicated as a possible target
Identified as a target
Classified but not attacked

Attacked but not assessed

o D

Assessed as destroyed

All targets start with the first state being assigned to them, where each is indicated as a
possible target. The first assignment a UAV must do is to determine is the object really is

a target. If the object is determined to be a target, then the second state is assigned stating

81

so. For objects determined to not be a target, a state indicating that it has been identified
as not being a target is assigned. For targets determined to be such, the next possible
state declares a target as classified but not attacked. UAVs must determine what type of
target they are going to attack once the object is declared a target, but prior to the actual
attack. Once a UAV attacks a target, that target receives the state ‘attacked but not
assessed’. The target must then be assessed as to whether the attack was successful or
not. If so, the final state is assigned as ‘assessed as destroyed’; otherwise, the target has
not been successfully destroyed and must be reattacked. This is accomplished by
returning the target to state 3, indicating that the target has been classified but not
attacked. The target is then reattacked and reassessed.

The subsystem performing this state management is shown in Figure 5.30.

TARGETS_CLASSIFIER_REPLAN

[oo =oren_ameeTs >y
(B—»

¥

Figure 5.30: Target State Manager

This manager features two parts. The first part uses a MATLAB s-function called
target_classifier_s.m to perform the classification task. This function can be viewed in
Appendix B. Individual UAVs signal when they have reached their assigned target.
Whenever this occurs, this manager increases the state of the target for successful state
succession, and removes objects that are found to be not actual targets and targets that are

assessed as destroyed. However, for simulation purposes, it also includes random

82

probability that objects are not targets and that targets will take more than one attack for
successful destruction. Figure 5.31 contains the function used for classifying purposes.

Enable
(I}—p- target_classifier_s —@
In1 Out1

Figure 5.31: Target classifier function

The second part of this subsystem is used to signal replanning to occur. Whenever a
target changes states, a new task must be performed. This task must go through the path
planning and task allocation scheme to be assigned to an individual UAV, so thus a signal
is issued to cause a replan. Figure 5.32 shows how an inequality between the former

states of all targets and the new states of the targets is used to enable a replan.

TARGETS CLD |—P

= EMABLE
Egqual Sum of
TARGETS NEW Elements

Figure 5.32: Part of target classification used for signaling replan

The second subsystem considered to be part of the managing of targets is the
block called TARGETS MANAGER. This subsystem handles the tasks of tracking pop-
up targets and issuing replanning commands based upon new target information. The

following figure is of the blocks used for this purpose.

83

:':: U

ARGET CHANGE TARGETS_MAMAGER_REFLAN

h 4

g:l—b TARGETS_VRT

Figure 5.33: TARGETS MANAGER

This subsystem contains two smaller systems within itself. The first of these systems is
identical to the one shown in Figure 5.32. This system uses a comparison of old target
information and current target information to determine when a change has occurred.

When a change occurs, a signal is sent to initiate a replan.

TARGETS OLD
Ve e D

= EMNABLE
Equal Sum of
TARGETS NEW Elements

Figure 5.34: Part of target management used for signaling replan

The second, small system within the TARGETS MANAGER system is used for
managing pop-up targets. Pop-up targets have been declared by the omniscient user to
show up on the list of targets at a predetermined time. This manager tracks the time, and
at the predetermined time, the target is included into the target matrix. Figure 5.35 shows

the nine possible targets that can be used with an associated pop-up time.

84

. TARGET CHANGE -
b TARGET CHANGE »
- TARGET CHANGE -
- TARGET CHANGE -

TARGETS_OLD TARGETS_NEW

- TARGET CHANGE L
. TARGET CHANGE -
. TARGET CHANGE -
- TARGET CHANGE -

Figure 5.35: Pop-up target manager

Under each block labeled TARGET CHANGE lies the blocks shown in Figure 5.36.
These blocks control the pop-up function for each individual target and display to the

user whenever the pop-up occurs.

Pop-up Time r;\w
{

TARGET_NEW

1

TARGET_CLD

Switch

Cument
Actions Display

~

Figure 5.36: Pop-up target manager for an individual target

-

85

5.7 Threats Manager

Aside from the state change functions of the targets manager, the threats manager
is quite similar to the targets manager. The THREATS MANAGER is shown in the
following figure. As with the TARGETS MANAGER subsystem, there are two parts
used to control the replan signal and the new list of threats.

>
THREATS DEEL I EEA T ANCE z THREATS_MANAGER_REFLAN

Figure 5.37: THREATS MANAGER

The first part controls the replan initialization. This part is the same as the one used in
the targets manager, as shown in Figure 5.34. This part compares the list of old threats to
the current list of threats. If a change is detected, such as a new pop-up threat being
added or an old threat firing and then being removed, the replan signal is issued.

THREATS OLD | »
- e D
= EMABLE
Sum of
THREATS NEW Elements

Figure 5.38: Part of threat management used for signaling replan

The second part of the THREATS MANAGER contains a set of 15 THREAT CHANGE
blocks, as shown in Figure 5.39.

86

|
THREAT CHANGE -

|

g
THREAT CHANGE »-

1

-

1
THREAT CHANGE »

g

.

»
THREAT CHANGE »

-

1

-

»
THREAT CHANGE -

.

»

1
THREAT CHANGE -

-

»

|
THREAT CHANGE -

1

1 - g

REAT CHANG »- D
3 o THREATS OLD - THREAT CHANGE - B
Lg Lg THREATS NEW
THREATS FIRED

.
THREAT CHANGE »

g

.

»
THREAT CHANGE »

-

1

-

|
THREAT CHANGE -

.

»

-
THREAT CHANGE -

-

»

|
THREAT CHANGE -

1

g
THREAT CHANGE »-

|

.
THREAT CHANGE -

g

Figure 5.39: THREAT CHANGE blocks

These blocks each contain a subsystem that controls the pop-up function for each
individual target and displays to the user whenever the pop-up occurs. In addition to
these functions, this subsystem also tracks if and when the threat fires. If a threat is
determined to have fired as declared by the UAV SHOT DOWN system, the threat is
removed from the list of threats, as explained in section 5.5

87

(D

THREAT_NEW

L\

@7_.,_" Switch
THREAT_OLD Cument
— . .
Actions Display

Current
®1 Actions Display @j

Figure 5.40: Pop-up and firing threat manager for an individual threat

5.8 Simulation Outputs

The outputs of this simulation are threefold. The first is output to the MATLAB
command window. This output initially displays all inputted information to the user.
This information includes UAV locations, altitudes, and velocities, target locations and
initial states, threat locations, ranges, and probability-of-kill, and no-fly zone coordinates
and radii. After this initial display, the command window output displays whenever a
replan occurs, at what time, and what event caused it. The second types of output are
static plots showing the planned paths and allocated tasks. These plots can be turned on
or off, and when on, are displayed every time a replan is performed. The last output is a

graphical visualization using moving plots to illustrate the simulation.

The first two simulation outputs are illustrated through an example. This example
is relatively simple, to keep the length down for necessary plots to shown simulation
steps. This simulation consists of four UAVS, three static targets, a single pop-up target
occurring at 100 seconds, three no-fly zones of radius nine kilometers, two static threats,
and one pop-up threat appearing after 150 seconds. Figure 5.41 illustrates the initial

battlefield setup. Note that the scales along the axes are in terms of kilometers. The

88

UAVs are shown as blue diamonds numbered 1 through 4 along the left side of the
battlefield. The static targets are green ‘x’s, while the single pop-up target is shown as a
green ‘+’. The no-fly zones are the obvious black circles. Threats are shown as a red star
with surrounding effective radius for the static variety, and the pop-up threat is the large

read range with the red ‘O’ at the center.

200 : : , !
180|- : | 5 : 4 -
160|- § 5 5 : -
140} : § E 5 w .
£ ; 5 :
120 - : . ot o © ’
: o ol A"
100 B g e S : i
80 ? . A T e : y
; -y :
: : BT B :
R b :...<>.3 *.,'.’ ’.';:. s 2]
A0 _
20 L - : ; 4 |
I i i | i I i i |
20 40 60 80 100 120 140 160 180 200

Figure 5.41: Initial battlefield setup

The first outputs when the simulation is started are the following expressions
printed in the MATLAB command window:

UAYV 1 exists at location 25 x, location 133y, altitude 2 km, and is flying at 130 m/s.

UAYV 2 exists at location 27 x, location 96 v, altitude 2 km, and is flying at 130 m/s.

UAYV 3 exists at location 27 x, location 61 vy, altitude 2 km, and is flying at 130 m/s.

UAYV 4 exists at location 38 x, location 24 y, altitude 2 km, and is flying at 130 m/s.

Target 1 indicated to be at location 87 X, location 110 y , and with an estimated value of 40.
Target 2 indicated to be at location 125 X, location 64 y, and with an estimated value of 70.

Target 3 indicated to be at location 97 x, location 37 y, and with an estimated value of 100.

89

No-Fly Zone 1 exists at location 66 x, location 119 y, and with a radius of 9 km.

No-Fly Zone 2 exists at location 85 x, location 80 y, and with a radius of 9 km.

No-Fly Zone 3 exists at location 74 x, location 47 y, and with a radius of 9 km.

Threat 1 exists at location 110 x, location 65 y, with a range of 10 km, and has a probability of kill of 80%.
Threat 2 exists at location 98 x, location 40 y, with a range of 5 km, and has a probability of kill of 50%.

These expressions completely specify the initial battlefield setup in words. From here
out, the example will proceed with text stating what event occurred, and a figure
illustrating the path planning and task allocation based on the new information will
immediately follow.

Path Planning ran at time 0.

130 -
120 -
110 -

100 -

80

60
50
40

30

30 40 50 60 70 80 90 100 110 120 130

Figure 5.42: Path Planning and Task Allocation occurring at time 0

90

Target 4 has popped up at time 100.

120

&0

60

40+

20 40

100 120

60

Figure 5.43: Path Planning and Task Allocation occurring at time 100

Threat 3 has popped up at time 150.

130 .
120
110
100
u __,..,2,
80
70+
60
50
40

30

1
30 40 50

1 1 1 1 1 1 1
60 70 80 90 100 110 120 130

Figure 5.44: Path Planning and Task Allocation occurring at time 150

91

Threat 3 has fired at time 325.
UAYV 2 has been destroyed at time 325. .

120

80

60

20 1 1 1 1
20 40 60 80 100 120

Figure 5.45: Path Planning and Task Allocation occurring at time 325

74

72

0 e
68 = . '_‘,--""’-'... 5
66

64 -

62

1 1 1 I 1 1 1
78 79 &0 a1 a2 a3 84 a5 86 a7

Figure 5.46: Detail of UAV 3 turning to now attack target 1 at time 325

Threat 2 has fired at time 462.
UAYV 3 has been destroyed at time 462.

140

120 .

100

80_ .

60 "
't 4
40t .

201 I I I
20 40 60 a0 100 120

Figure 5.47: Path Planning and Task Allocation occurring at time 462

Target 2 (value 70) identified as NOT a target at time 538 by UAV 4.
Target 2 has been removed from target status at time 538.

120+

100 +

60

40

20 1 1 1 1 1
20 40 60 80 100 120

Figure 5.48: Path Planning and Task Allocation occurring at time 538

93

Target 4 (value 50) identified as a target at time 688 by UAV 1.

120+

100

80+

60

40

1 1 1 1 1 1
20 40 60 &0 100 120

Figure 5.49: Path Planning and Task Allocation occurring at time 688

Target 4 (value 50) classified not attacked at time 704 by UAV 1.

o .

100

80 _ . § 12

60)
. ".L:. 4
40+ <

20 | i | L
20 40 60 80 100 120

Figure 5.50: Path Planning and Task Allocation occurring at time 704

94

Target 4 (value 50) attacked not assessed at time 749 by UAV 1.

140+

= .

100+

il . g ﬁ

60 - % :
40 . =

20+

1 1 1 1 1
20 40 60 &0 100 120

Figure 5.51: Path Planning and Task Allocation occurring at time 749

Target 4 (value 0) assessed as destroyed at time 764 by UAV 1.

120
100+
80
60

40

20

L L L L L L L L
20 40 50 60 70 80 S0 100 110 120 130

Figure 5.52: Path Planning and Task Allocation occurring at time 764

95

Target 3 (value 100) identified as a target at time 838 by UAV 4.

| .
% 1

100}

\ ;
80+

60+
40 .

20

8" &

1 1 1 1
20 40 60 80 100 120

Figure 5.53: Path Planning and Task Allocation occurring at time 838

Target 3 (value 100) classified not attacked at time 878 by UAV 4.

120+
100+
80
60

40

20},

1 1 1
20 40 60 80 100 120 140

Figure 5.54: Path Planning and Task Allocation occurring at time 878

96

Target 3 (value 100) attacked not assessed at time 921 by UAV 4.

130

120 .
110 % Y

100/
90 -

®
70+

60/

. e
40/

30}

20 40 60 80 100 120

Figure 5.55: Path Planning and Task Allocation occurring at time 921

Target 1 (value 40) identified as a target at time 938 by UAV 1.

130

120+

1104

100+

. ?.«-\ 11
90
80 | .

70

60

) .
40

30

A 2
L) 4

(] L 1 L L
20 40 60 80 100 120

Figure 5.56: Path Planning and Task Allocation occurring at time 938

97

Target 1 (value 40) classified not attacked at time 978 by UAV 1.

120+

100+

80

60+

401

20

L L L L | L L L
30 40 50 60 70 80 90 100 110 120 130

Figure 5.57: Path Planning and Task Allocation occurring at time 978

Target 3 (value 0) assessed as destroyed at time 1014 by UAV 4.

¥ 0

100

60 3
a0t . & 4

20+

1 1 1 1 1
20 40 60 &0 100 120 140

Figure 5.58: Path Planning and Task Allocation occurring at time 1014

Target 1 (value 40) attacked not assessed at time 1056 by UAV 1.

120 .

S—t
100
80 | .

1
60 4
40 .
) 4
204 1 1 1 1 1
20 40 60 80 100 120

Figure 5.59: Path Planning and Task Allocation occurring at time 1056

Target 1 (value 0) assessed as destroyed at time 1098 by UAV 1.

120+
2 1

100+

60 .
40 p

20 1 __..-»""...;.. 1 L 1 1 1 L 1 1
30 40 50 B0 70 80 80 100 110 120 120

Figure 5.60: Path Planning and Task Allocation occurring at time 1098

99

Since no more tasks are to be allocated, all UAVs are assigned to return to a
predetermined set of home-base coordinates (typically the origin is used for simulation).
It should be noted that the static plots presented here are based off of the plot_uav.m
MATLAB code shown in Appendix A. Since is uses the knowledge presented by the
path planning and task allocation scheme, there is an occasional renumbering of targets
shown on the static plots. However, the actual numbering kept by the targets manager is
the same as the original numbering, even as targets are removed from the list. The
MATLAB command window printouts are also based upon this list, rather than the

localized renumber of the path planning and task allocation scheme.

The simulation presented in this chapter has been a centralized version that fulfils
the third and fourth research objectives. This simulation has been designed to simulate a
maximum of nine UAVS, nine targets, fifteen no-fly zones, and fifteen threats, and
encompasses time-varying simulation aspects, such as UAVs being destroyed, targets and
threats popping-up at a time unknown to the UAVs, and simulates accurate battle

management.

100

Chapter 6
Decentralized Path Planning and Task Allocation

6.1 Main Simulation System

The decentralized simulation developed here is a truly decentralized control
scheme for a team of UAVS. This approach is an extension of the centralized version
discussed in the preceding chapter. The following figure illustrates the new simulation

with a maximum of nine UAVs and corresponding communications between each.

Plot Simulation z;l)—

Initial Positions of UAWS

Targets, Mo-Fly Zones, and Threats Targets

SUl Inouts er Defined Battlefield Run sfter Simulation
GUI Inputs Hesr Defined Batl=fisle ,z_ftﬁ,T',T:tl:f' Flotting UAV Positions
= < EE—— < I
A S .,
P_.-ﬁ o x - -
Ry e >
-, bt
Y S < HN

- it
] ey P 3 -
Y T a N
pT e e — UaVS

2
o = - TARGETS .
E--"-UAVE'(s - THREATS HEADING ANGLE
-, bt A
bl |
— P = >

-4 e 1'5’/ -
o < BN

= S
] e P 2 -
4 ; {/ B
e)-UAVB. bl [
Ll B e T Ll
> e >
e — [
> ,..‘UA"’B."(/ Ll -
| r Ll

= o

Figure 6.1: Main simulation system for decentralized UAV control

101

As seen with the main system, this scheme has no center controller or even leader. All
UAVs are used to make decisions and perform tasks. The theory behind this
decentralized approach is the following statement: a team of UAVs with every member
possessing full situational awareness (SA) will always arrive at the same correct

decision.

6.2 Individual UAV System

The theoretical statement made in the last section has been applied to designing
an individual UAV system that makes decisions for that UAV and performs similar
management as the centralized simulation. Each UAV uses the same path planning and
task allocation scheme as the centralized version discussed but then uses only the
information necessary for that UAV to perform its allocated task. Figure 6.2 contains the
main system that is used within each individual UAV. The similarities between the
centralized simulation and the system used for individual UAVs should be noted. The

differences between these systems will be discussed shortly.

UAW 1 Paositions
and Heading Angle|

d
fat UAY MANAGER

UAV CRASH
SIGNAL REFLAN ZONES

Ay » UAVS | UAVS

UAY OFTIMAL FATHS|

UAVS POSITIONS

AIRCRAFT DYNAMICS

-t
THREATS MANAGER
THREATS1

THREATS

¥ ¥

UAV INTERCEPTED

Figure 6.2: Main system for individual UAVs

102

Essentially each UAV in the team is running the above system. Necessary
information is passed between all cooperating UAVs. That information is used by each
individual UAV to run a path planning and task allocation scheme. Because the
information communicated between UAVSs is current and globally known, each UAV is
able to run the path planning and task allocation scheme and arrive at the same decisions
as every other UAV. This minimizes the amount of information communicated between
UAVs and eliminates the need to have a central path planning and task allocation scheme
issuing commands to each UAV; however, it implies the need for availability of
substantial computational power for the on-board computer of each UAV. Each
individual UAV uses their planned path to perform its assigned task. Because each UAV
has arrived at the exact same path planning and task allocation assignments, the

decentralized scheme progresses much like the centralized version.

6.3 UAV Communications

There are three main pieces of information that need to be communicated:
information about individual UAVs, updated target information, and updated threat
information. Since the no-fly zones are stationary (scenarios including ‘pop-up
mountains’ are unrealistic), this information does not need to be communicated by the
individual UAVs. As can be seen in the first figure of this chapter, there are four outputs
of each UAV: the first output is the positions of the individual UAVs. Second is the
individual UAV’s knowledge of the targets. Third is the UAV’s knowledge of the
threats, and lastly is the individual UAV’s current heading angle. Each of the outputs of
the individual UAVs is multiplexed and sent to every UAV. This is the information that

each UAV is communicating with every other UAV.

Once this information enters the individual UAV, several things happen to
correctly process this information. For the UAV positions and heading angle, the
information can be used directly, since there is only one set of information about UAV

103

‘X’, because only UAV ‘X’ output that information. For the targets, the UAV has the
knowledge of each other UAV for the targets. The individual UAV then compares that
knowledge to what it already knew about those targets. For example, if all but one UAV
indicates that target “Y’ has been attacked but battle damage assessment has not been
accomplished, and the one dissenting UAV indicates that battle damage assessment has
been performed (because he performed it), then each of the individual UAVs update their
information to indicate that target Y’ has had battle damage assessment performed, and a
replan occurs in each of the UAVS. The same occurs with the inputs for the threats. If a
threat fires, and a single UAV indicates that it fires, then all the UAVs will update their
information showing that that threat fired. These comparisons are accomplished using
the MATLAB code compare_targets.m and compare_threats.m, which can be found in

Appendix B.

This information will give all UAVs full situational awareness and the ability to
correctly make planning decisions. The next chapter will investigate issues occurring
whenever all team members do not possess full situational awareness, which indicates the

above information is not being properly communicated.

6.4 Individual UAV Calculations

As aforementioned, the system running inside each individual UAV shares many
features with the centralized simulation, but also contains a number of differences to
allow the decentralized simulation to occur. The steps to the path planning and task
allocation scheme essentially remain the same. In the centralized simulation, this entailed
using the most current information, running an ADD WAYPOINTS subsystem to
generate extra waypoints or suspend lower-valued targets for the team, and finally
perform the path planning and task allocation process. The decentralized version remains
the same, with current information (now coming from team communication) and

waypoint information being used for path planning and task allocation.

104

The first difference occurs with the AIRCRAFT DYNAMICS subsystem. In the
centralized version, the central processor simulated the dynamics of all UAV team
members. For individual UAVs in the decentralized version, there is no need to simulate
dynamics for other UAVs that an individual UAV certain does not control. The figure
below shows the subsystem of the UAV DYNAMICS for the first UAV.

f r 1 VR
L AN _1_V

UAY PATHS

LAY Dynamics

*

UAW HEADING ANGLE

UAY OFTIMAL PATHS

¥
¥
m
T
1
I
7

Figure 6.3: “‘UAV Dynamics’ blocks for UAV 1

The path planning and task allocation scheme generates a task assignment and path for
the individual UAV along with the predicted assignments of all other UAV team
members. For correct communications, all UAVs will know what every other UAV will

be doing. As mentioned with the dynamics, there is no need after the path planning and

105

task allocation assignment for an individual UAV to be concerned with other UAVs who
it certainly does not control. The aircraft dynamics for the individual aircraft are found
using the exact same approach as described in Section 5.4. Once the actual aircraft
positions and rotations are found using the aircraft model, the UAV Positions block

passes on the positions of that UAV, as seen in Figure 6.4.

UAN POEITICNS

Figure 6.4: UAV Positions block

The position of the UAV is then used in the same way as the central version to
determine if the individual UAV passes within the boundary of any threat or no-fly zone.
The calculations are much simpler here since only a single UAV position is compared
with known threat and no-fly zone positions. The former UAV DOWN vector is turned
into a single binary number to signal UAV loss. This information is then used in
conjunction with the position to signal the group of the loss of the individual UAV, as
performed in the UAV MANAGER, shown in Figure 6.5.

AW POSITIONS »

UAN DOWN

AV Column .(:,

UAN FOSITIONS NEW

Figure 6.5: Individual UAV MANAGER subsystem

The UAV no longer issues replanning signals itself. To ensure the entire UAV team
replans as the new surviving UAV information becomes available, the replan has been

relocated to the initialization block for the UAVs, as shown in the next figure.

106

D e ()

sy REFLAN

Figure 6.6: UAV initialization block with UAV REPLAN subsystem

This block still serves its initialization function uninterrupted, as seen in the upper branch
of the system, but has the addition of the UAV REPLAN block. This subsystem
compares the UAVs current knowledge of the UAV team with its former knowledge of
the UAV team. When a difference is detected that indicates a loss of one or more
members, the replan signal is issued. Figure 6.7 illustrates the new UAV REPLAN

subsystem.
L f W, i4i
(I)—} - [= Welorcities =
In z
LAvs DETECT UAV CHANGE UAVS_MANAGER_REPLAN_UAV
Velocities =
InZ

Figure 6.7: UAV REPLAN subsystem

Whenever the other UAVs become aware of the loss of a member, each UAV replans
based on the surviving UAV positions and current target and threat information. Each
UAV contains the same target and threat management that the central version contains.
Each UAV has knowledge of every threat and target and the corresponding states. As
mentioned, whenever any UAV presents new information to the group about a threat or
target, all team members update their information and each replans accordingly.

107

Target management is conducted in a similar manner. The new TARGETS
MANAGER still determines if a new target is added to the list of current targets, but the
replan signal for target changes (including target state changes) occurs within the
TARGETS initialization block, as seen in Figure 6.9, which is preceded by the figure of

the new manager.

Figure 6.8: TARGETS MANAGER

Figure 6.9: TARGETS initialization block with UAV REPLAN subsystem

The TARGETS REPLAN subsystem functions the same as the UAV REPLAN system.
This system detects changes in the same manner as the comparing system originally
described in Section 5.6 in Figure 5.32.

0

T CHANGE —.-IE [= TARGETS_MAMAGER_REFPLAM_UAV1

Figure 6.10: TARGET REPLAN subsystem

108

6.5 Simulation Outputs

The outputs of this simulation are the same as the centralized version. As with the
centralized simulation, there are three outputs; however, only two of them would be
typically used with a decentralized simulation. The first is, again, the output to the
MATLAB command window. Initially, it displays the UAV locations, altitudes, and
velocities, target locations and initial states, threat locations, ranges, and probability-of-
kill, and no-fly zone coordinates and radii. After this, occurring events will be displayed
by the UAV that detected them, and each UAV will display whenever it replans.
Typically, this means that an event will happen, and then there will be nine displays for
replanning. There can be a maximum of nine UAVs for this simulation, and while less
than the maximum can be ran, the path planning and task allocation scheme still runs in

the nonexistent UAVs, even though they never receiver or perform tasks.

The second types of output are static plots showing the planned paths and
allocated tasks. These plots typically are not used with a decentralized scheme. Because
the path planning and task allocation scheme actually produces the plots, there will be
nine sets of plots for each occurring event. Also, these plots display only what each
individual UAV knows, not what could realistically be happening. Contrasting
information such as misinformation or loss of information will produce different plots
based upon what each UAV sees as the correct information. This could be helpful in
situations where the user wants to find out ‘who-knows-what’, but generally these plots

would not be of much use. Misinformation occurrences are discussed in the next section.

The last output is a graphical visualization using moving plots to illustrate the
simulation. Coupled with a statement of the events occurring in the MATLAB command
window, this moving plot greatly helps the user to visualize the simulation. A short
example to illustrate this plotting is shown in the form of captured images. Figure 6.11
shows an initial battlefield setup with four UAVS, three targets, three no-fly zones, and

four threats.

109

120

100

80

60

40

20k i i i |
40 60 80 100 120 140

Figure 6.11: Initial battlefield setup for decentralized simulation example

Once the user sets up the initial battlefield, the simulation proceeds just as the
centralized version would. As events occur, the MATLAB command window prints
them, and replans occur. Once the simulation completes, the user can choose the PLOT
SIMULATION button shown at the top left of the main simulation system in Figure 6.1.
This produces the moving plot being discussed. This plot shows the UAVs in motion
traveling toward their assigned targets, and shows dynamic environment changes such as
pop-up targets, pop-up threats, removal of destroyed targets, and loss of UAVs. An
option is also given with this plotting to show the path the individual UAVs have traveled
thus far. These traveled paths reveal information about where the UAVs were located at
times of replan and which targets they have been assigned to. Figure 6.12 illustrates a

captured frame of this moving plot.

110

140 T T

120 =

100

80

60

40

20 40 60 80 100 120

Fauze Plot

Figure 6.12: Decentralized simulation example

In this specific frame, two replans have already occurred. UAV 1 has confirmed target 2
is a target and is currently assessing the target; UAV 2 was first assigned to target 3 but
has now been reassigned to target a; UAV 3 was initially assigned to target 2 along with
UAYV 1, was later assigned to target 3, and finally has been reassigned back to target 2;
and lastly, UAV 4 has completed assessing target 1 and is now assigned to target 3. It
can also be seen that threat 4, which was an antiaircraft artillery piece guarding target 1,
has fired unsuccessfully at the only UAV to have entered its effective range — UAV 4.

The decentralized simulation environment proposed by research objective 5 has
now been completed. The next and last discussion chapter will be dedicated to
comparison of the centralized and decentralized simulations in terms of ‘real-time’
simulation; furthermore, communication issues will be addressed for this decentralized

simulation environment.

111

Chapter 7

Comparison of Decentralized and Centralized Simulations

7.1 Simulation Efficiency

Real-time performance is crucial for implementation of any scheme aboard an
aircraft. This section investigates all MATLAB codes in terms of time of completion,
and both SIMULINK simulations are run in conjunction with a simulation profiler that

shows how much time is spent executing the simulation.

The MATLAB code that performs the path planning and task allocation approach
discussed in Chapter 3 can be used with MATLAB function profile to track program
execution time. The results of running the path_planning.m code with the MATLAB
Profiler is shown in the next four tables for three different cases. The first of these tables
gives a summary of the profile reports, such as number of UAVS, targets, threats, and no-
fly zones used to generate the profile report, in which table the report is found in, and the
total recorded time the path_planning.m code took to execute. The next three tables

present the profile report generated for each of the three cases.

Table 7.1: Summary of MATLAB Profile Reports

INumber of UAVs | 4 | 5 | 9 |
INumber of Targets I 4 | 5 | 9 |
INumber of Threats | 4 | 5 | 15 |
INumberof NoflyZones || 4 || 5 || 15 |
Profile Report found in: | Table4 || Table5 | Table6 |
Total recorded time: | 141s | 310s | 2048s |
INumber of M-functions: || 30 || 30 || 30 |
INumber of M-subfunctions:] 2 || 2 | 2 |
\Number of MEX-functions:H 1 H 1 H 1 \
Clock precision: 10.000000086 s/[0.00000006 s/[0.00000006 s|
IClock Speed: | 1584 Mhz || 1584 Mhz | 1584 Mhz |

112

Table 7.2: Profile Report based on 4 UAVS, 4 Targets, 4 Threats, and 4 No-fly Zones

|Name ||Time ||Ca||s ||Time/ca|| |
[path_shrtng || 1.11100000| 78.7%|| 1) 1.11100000000]
[shorten_paths | 0.88100000| 62.4%| 16| 0.05506250000]
[cheapest_paths || 0.16100000] 11.4%|| 1) 0.16100000000)
[vrn_diag_gen || 0.11000000] 7.8%|| 1)l 0.11000000000]
[update_cost || 0.09000000| 6.4%| 16| 0.00562500000]
[dijk | 0.08100000| 5.7%| 16| 0.00506250000]
[heading_angle_paths | 0.06000000| 4.2%| 16| 0.00375000000]
[voronoi || 0.06000000] 4.2%|| 1) 0.06000000000)
[detaunay || 0.04000000] 2.8%|| 1)l 0.04000000000)
[delaunayn || 0.03000000] 2.1%|| 1)l 0.03000000000)
[pred2path | 0.02100000] 1.5%| 16| 0.00131250000]
[vrt_sim_convert | 0.02000000][1.4%|| 1) 0.02000000000)
[Tist2ad]j | 0.02000000] 1.4%|| 1)l 0.02000000000)
[c_assign || 0.02000000] 1.4%| 1) 0.02000000000)
[set_thc || 0.02000000] 1.4%|| 1)l 0.02000000000)
[unique | 0.02000000] 1.4%|| 2| 0.01000000000|
[perms || 0.02000000] 0.7%|| 4| 0.00250000000|
[nmkp_new | 0.02000000] 0.7%|| 1) 0.01000000000)
[nmkp_task_allocation | 0.02000000| 0.7%|| 1)l 0.01000000000)
[cart2pol | 0.01000000] 0.7%|| 136| 0.00007352941]
[Fillet_path | 0.01000000| 0.7%| 16| 0.00062500000]
[connect_vrn || 0.02000000] 0.7%|| 2| 0.00500000000]
[voronoi/circle || 0.02000000] 0.7%|| 2| 0.00500000000]
[sortrows | 0.02000000] 0.7%|| 2| 0.00500000000|
[profile || 0.00000000] 0.0%|| 1)l 0.00000000000)
[pol2cart || 0.00000000] 0.0%| 136| 0.00000000000]
[isint | 0.00000000] 0.0%|| 2| 0.00000000000]
[num2cell || 0.00000000] 0.0%|| 1)l 0.00000000000)
[nat2vec | 0.00000000][0.0%|| 1) 0.00000000000)
[ahul Imx || 0.00000000] 0.0%|| 1)l 0.00000000000]
[sortrows/sort_back_to_front | 0.00000000] 0.0%|| 2| 0.00000000000|
[nargchk | 0.00000000] 0.0%| 39| 0.00000000000]
[filter_zeros || 0.00000000] 0.0%|| 4 0.00000000000|

113

Table 7.3: Profile Report based on 5 UAVS, 5 Targets, 5 Threats, and 5 No-fly Zones

|Name ||Time ||Ca||s||Time/caII |
[path_shrtng || 2.72400000| 87.8%| 1|| 2.72400000000|
[shorten_paths || 235300000 75.8%| 25| 0.09412000000|
[cheapest_paths | 0.22000000| 7.1%]|| 1][0.22000000000|
[update_cost | 0.16000000| 5.2%]|| 25|[0.00640000000|
[dijk || o.14000000 45%| 25/ 0.00560000000|
[heading_angle_paths | 0.12000000| 3.9%|| 25| 0.00480000000|
[vrn_diag_gen | 011000000 3.5%]|| 1|[0.11000000000|
[voronoi | 0.06000000| 1.9%| 1]| 0.06000000000|
[detaunay | 005000000 1.6%| 1]| 0.05000000000|
[delaunayn || 004000000 1.3%| 1|| 0.04000000000|
[vrt_sim_convert || 0.03000000| 1.0%| 1][0.03000000000|
[unique | 003000000 1.0%|| 2| 0.01500000000|
[nmkp_new | 0.02000000 0.6%|| 1|[0.02000000000|
[nmkp_task_allocation || 0.02000000| 0.6%| 1]| 0.02000000000|
[pol2cart | 0.02000000| 0.6%]|| 481] 0.00004158004]
[Fillet_path || 0.02000000 0.6%| 25| 0.00080000000|
[Nist2adj || 0.02000000] 06%| 1|| 0.02000000000|
[c_assign | 0.02000000| 0.6%| 1]| 0.02000000000|
[set_thc | 0.02000000 0.6%|| 1|[0.02000000000|
[cart2pol || 0.01000000| 0.3%]|| 481] 0.00002079002
[voronoi/circle | 001000000 0.3%| 2| 0.00500000000|
[isint | 001000000 0.3%| 2| 0.00500000000|
[num2cell || o.01000000] 0.3%| 1| 0.01000000000|
[nat2vec | 001000000 0.3%| 1| 0.01000000000|
[sortrows | 001000000 0.3%| 2| 0.00500000000|
[profile || o0.00000000 0.0%| 1]| 0.00000000000|
[perms | 0.00000000| 0.0%| 5[0.00000000000|
[pred2path || 0.00000000| 0.0%|| 25|[0.00000000000|
[connect_vrn || o0.00000000 0.0%| 2|| 0.00000000000|
[ahul Imx | 0.00000000] 0.0%| 1|[0.00000000000|
[sortrows/sort_back_to_front |[0.00000000] 0.0%| 2| 0.00000000000]
[nargchk || o0.00000000 0.0%| 57|| 0.00000000000|
[filter_zeros | 0.00000000] 0.0%| 4| 0.00000000000|

114

Table 7.4: Profile Report based on 9 UAVSs, 9 Targets, 15 Threats, and 15 No-fly Zones

|Name ||Time ||Ca||s ||Time/ca|| |
[path_shrtng || 15.46200000| 75.5%|| 1)| 15.462000000000]
[shorten_paths || 13.88000000| 67.8%| 81| 0.171358024691]
[nmkp_task_allocation || 4.03600000| 19.7%|| 1) 4.036000000000)
[nmkp_new || 4.02600000| 19.7%|| 1)l 4.026000000000]
[perms || 1.02200000| 5.0%] 9| 0.113555555556|
[cheapest_paths || 0.82100000| 4.0%] 1)l 0.821000000000)
lupdate_cost | 071100000 35%| 81| 0.00877777777§|
[dijk || 071100000 35%| 81| 0.008777777778
[heading_angle_paths | 043100000 21%| 81| 0.005320987654]
lvrn_diag_gen || 0.12000000| 0.6%| 1)l 0.120000000000)
[cart2pol || 0.07000000| 0.3%| 2801|| 0.000024991075|
[voronoi || 0.06000000| 0.3%|| 1)l 0.060000000000)
[delaunay || 0.05000000| 0.2%]| 1)l 0.050000000000)
[pol2cart || 0.05000000| 0.2%| 2801|| 0.000017850768|
[pred2path | 005000000 0.2%| 81| 0.000617283951|
[Fillet_path || 0.04000000| 0.2%|| 81| 0.000493827160|
[delaunayn || 0.04000000| 0.2%]| 1)l 0.040000000000)
[vrt_sim_convert || 0.04000000| 0.2%]| 1)l 0.040000000000)
[c_assign || 0.04000000| 0.2%|| 1)l 0.040000000000)
[set_thc || 0.04000000| 0.2%]| 1)l 0.040000000000)
lunique || 0.03000000| 0.1%]| 2| 0.015000000000]
[num2cell || 0.01000000| 0.0%]| 1)l 0.010000000000)
[mat2vec || 0.01000000| 0.0%] 1)l 0.010000000000)
[list2adj || 0.01000000| 0.0%] 1)l 0.010000000000)
[connect_vrn || 0.01000000| 0.0%]| 2| 0.005000000000]
[voronoi/circle || 0.01000000| 0.0%] 2| 0.005000000000]
[profile || 0.00000000| 0.0%] 1)l 0.000000000000)
[isint || 0.00000000| 0.0%]| 2|| _ 0.000000000000]
[ghul Imx || 0.00000000| 0.0%] 1)l 0.000000000000)
|sortrows/sort_back_to_front || 0.00000000] 0.0%| 2| 0.000000000000]
[sortrows || 0.00000000| 0.0%]| 2|| 0.000000000000]
[nargchk || 0.00000000| 0.0%| 169|| 0.000000000000|
[filter_zeros || 0.00000000| 0.0%] 4| 0.000000000000|

115

As shown in Table 7.1, a case where there are only four UAVs executes quickly in 1.41
seconds. This time represents the necessary time for the code to complete once started.
This time is of course a function of processor speed and memory. All figures shown here
were performed with a 1.6 GHz processor and 256 MB of RAM. However, completion
time is not just a function of computer hardware, but also the initial problem set up.
Whenever the problem is extended to 5 UAVS, 5 targets, 5 threats, and 5 no-fly zones, the
program takes 3.10 seconds to complete. Whenever the problem is extended to the
maximum allowable inputs of 9 UAVs, 9 targets, 15 threats, and 15 no-fly zones, the

simulation takes over 20 seconds to output all paths and assignments!

The reason behind the greatly increased computing time can be seen by the
number of permutations experienced by increasing the number of UAVs. With a
standard simulation of 4 UAVs performing 4 assignments, there are only 16 different
combinations of UAV to assignment. For 5 UAVSs, that number increases to 120. For 6
UAVs there are 720 permutations, 7 UAVs have 5040 permutations, and for 8 UAVs
there are 40,520 permutations. Whenever 9 different UAVSs are used in a single team and
each must have a different assignment, there are 362,880 possible combinations of UAV
to assignment! For the simulation with 4 UAVs, the MMKP section takes 0.7% of the
total completion time to execute. For the 5 UAV simulation, MMKP takes roughly the
same percentage of time, decreasing slightly to 0.6%. However, for the 9 UAV
simulation, MMKP takes 19.7% of the completion time to determine the optimal
combination of UAVS to assignments. For this reason, the limit of the UAVs and targets
in simulation was chosen to be 9 each. Since the complexity of permutations is a
factorial function, a path planning and task allocation scheme for 10 UAVs would have
3,628,880 permutations, 11 UAVs would have 39,916,800 permutations, and 12 UAVs
would encounter 479,001,600 different combinations of UAV to assignment.

A second reason for the increased computation time for higher UAV systems is
the number of paths that have to be shortened and made flyable. For the 4 UAV
simulation, there are only 16 paths, for 5 UAVs there is 25 paths, and for 9 UAVSs, there
are 81 paths. The time required to shorten and make flyable the paths also depends on

116

how complex the system is. If there are a high number of UAVs but a low number of
threats and no-fly zones, the paths can quickly be optimized. For a high number of
obstacles to fly around, this time increases. Path shortening can be seen in Tables 7.2-7.4
to take roughly 70% of the total completion time, indicating an approximate linear

function to complexity associated with path shortening.

For standard simulations with a limited number of UAVs and targets (such as 4 or
5), the path planning and task allocation MATLAB code computes in only a few seconds,
indicating that it could be used in real aircraft systems. MATLAB code is also a slower
computational environment and turning this code into an executable C code will speed up
completion time even further. In situations with near maximum numbers of UAVS,
targets, threats, and no-fly zones are desired, there are two possible options for quicker
completion time of task assignments. First, the team of UAVs could be broken into two
smaller teams that cooperate to perform tasks, so essentially there would be two teams of
4 or 5 with each team performing 4 or 5 assignments. Secondly, the path optimization
(shortening and flyability) can be performed after the assignments are chosen. This
would cause the completion time of the code to be reduced by about 50%. Performing
path optimization before allocating tasks is beneficial to choosing an optimal assignment.
For a standard number of UAVs, targets, threats, and no-fly zones, the degraded
performance is not worth the trade off for a shorter computational time where paths are
shortened and made flyable post-assignment. In large simulations, giving up some

optimality for much faster running time should be considered.

Execution times for simulation is also of interest. SIMULINK has a simulation
profiler built into its Performance Tools option. This simulation profile generates a
profile report similar to the MATLAB profile report, detailing the execution time of a
simulation. The decentralized and centralized simulations were both run with this tool,
and the findings are presented next. To ensure equitable conditions when comparing
these two simulations, the same initial battlefield was used for both. This battlefield is

show in the following figure and uses 4 UAVSs, 3 targets, 3 no-fly zones, and 4 threats.

117

200 ! !) !
SR IR H ____________________________ ____________________ __________________ i
140
120
100
80
60

40

20

20 40 60 80 100 120 140 160 180 200
Figure 7.1: Initial battlefield setup for SIMULINK Profile Reports

The centralized simulation was first executed using the profile function. The
simulation was tested for running the initialization of the simulation and the first 10
simulated second. Table 7.5 shows the results of running this simulation normally within
SIMULINK, and also with the Accelerator function.

Table 7.5: SIMULINK Profile Summary for centralized simulation

Simulation Speed | Normal| Accelerator|
[Total recorded time: I 18.03 || 4.90 5|
INumber of Block Methods: I 1471)| 76|
INumber of Internal Methods: I 9| 5|
[INumber of Nonvirtual Subsystem Methods:|| 104 4|
[Clock precision: 110.00000006 s|{0.00000006 s|
[Clock Speed: | 1584 Mhz|| 1600 Mhz|

118

The SIMULINK Accelerator produces an executable C file that replaces the simulation

used within SIMULINK. The completion time of the simulation to initialize and run for

10 simulated seconds was 4.90 seconds with the Accelerator function, and 18.03 seconds

when the simulation was executed as normal. Tables 7.6 and 7.7 detail the profile report

for the normal execution and the Accelerator execution, respectively. For the normal

execution, the initialization of the simulation task 35% of the completion time, or 6.3

seconds. The rest of the time is used for executing the simulation for 10 simulated

seconds, which occurred in 11.7 seconds.

Table 7.6: SIMULINK Profile Report for centralized version

|Name ||Time ||Ca||s||Time/caII |
[sim ||18.02600000[200.0%|| 1| 18.02600000000|
[ModelExecute ||11.66600000]| 64.7%|| 1|l 11.66600000000|
[pathplan (Output) || 8.46200000]| 46.9%|| 205| 0.04127804878|
[MajorOutputs || 8.46200000]| 46.9%]|| 205| 0.04127804878|
ModelInitialize || 6.30900000]| 35.0%|| 1|l 6.30900000000|
[Integrate || 2.46200000]| 13.7%|| 202| 0.01218811881]
lpathplan_(MinorOutput)|| 2.14100000| 11.9%|| 210 0.01019523810|
[MinorOutputs || 2.14100000]| 11.9%|| 210| 0.01019523810|

The Accelerator-based simulation ran in 4.9 seconds. The model initialization took over

half of the completion time, representing 2.7 seconds. The simulation ran for 10

simulated seconds afterward in 2.2 seconds.

Table 7.7: SIMULINK Profile Report for centralized version, with Accelerator

|Name ||Time ||Ca||s||Time/caII |
[sim 114.89700000[200.0%|| 1|| 4.89700000000|
ModelInitialize |2.71400000| 55.4%| 1| 2.71400000000]
[ModelExecute ||2.14300000]| 43.8%|| 1| 2.14300000000|

lpathplan (Output)|[1.81300000|| 37.0%| 205| 0.00884390244|

119

The same steps were used with the decentralized simulation. As shown in Figure

7.1, the same battlefield setup was used for both simulations. As with the centralized

version, a normal simulation and a SIMULINK Accelerator-based simulation were

initialized and ran for 10 simulated seconds. Table 7.8 shows both summaries for the two

simulations of the decentralized version.

Table 7.8: SIMULINK Profile Summary for decentralized simulation

Simulation Speed | Normal| Accelerator|
[Total recorded time: I 63.05 3| 37.37 5|
| Number of Block Methods: I 2965 160|
|Number of Internal Methods: || 9|| 5|
INumber of Nonvirtual Subsystem Methods:|| 455|| 4]
[Clock precision: /0.00000006 $/[0.00000006 5|
[Clock Speed: | 1600 Mhz|| 1600 Mhz|

The decentralized simulations took considerably longer to execute than their centralized

counterparts. For the normal simulation, initialization and 10 simulated seconds took 63

seconds to complete. For the Accelerator-based version, this took 37 seconds. Tables 7.9

and 7.10 detail the two profile reports.

Table 7.9: SIMULINK Profile Report for decentralized version

|Name ||Time ||Ca||s||Time/caII |
[sim ||63.05100000[200.0%]|| 1/63.05100000000|
[ModelExecute |l53.03700000|| 84.1%|| 1|[53.03700000000|
[pathplan (Output) ||46.30200000]| 73.4%]|| 201|| 0.23035820896|
[Majoroutputs ||46.30200000]| 73.4%]|| 201|| 0.23035820896|
ModelInitialize || 9.92400000]| 15.7%]|| 1|| 9.92400000000|
[Integrate || 3.29100000|| 5.2%]|| 200]| 0.01645500000|
[pathplan (MinorOutput)|| 2.95100000| 4.7%|| 200]|| 0.01475500000)
[Minoroutputs || 2.95100000| 4.7%]|| 200 0.01475500000|

120

Table 7.10: SIMULINK Profile Report for decentralized version, with Accelerator

|Name ||Time ||Ca||s||Time/caII |
[sim 1137.37300000|(100.0%]|| 1|[37.37300000000|
[Mode IExecute ||24.26500000]| 64.9%|| 1][24.26500000000|

lpathplan (Output)|[22.00300000]| 58.9%| 201][0.10946766169|
ModelInitialize |[13.01800000| 34.8%| 1/[13.01800000000|

For the normal simulation, the initialization took 10 seconds and the Accelerator-
based simulation initialized in 13 seconds. The increase in initialization times represents
the increased from a single centralized simulation to 9 independent UAV simulations.
Therefore, this increase in initialization is expected. The execution times were then 53
seconds and 24.3 seconds, respectively. It should here be noted that the profile function
itself is quite computationally expensive to simulate. About 15 seconds at the beginning
of the simulation can be attributed to the initial path planning. Because the simulation is
setup for a maximum of nine UAVSs, each of these possible UAVs run a path-planning
scheme even if they do not exist. This accounts for the first 15 seconds after the
initialization. However, without the profiler running, 10 simulated seconds was found to
run in 6.62 seconds for the normal simulation. The profile shows 38 seconds for this part

for the normal simulation, and 9 seconds for the Accelerator-based simulation.

Though the decentralized simulation has been shown to take longer to simulate a
given system, an interesting aspect is found when considering that the decentralized
simulation consists of essentially 9 UAVs being simulated by the same central processor
(a personal computer). Since the objective is to achieve real-time performance for an
individual UAV simulation, the individual UAV system needs to be investigated, not the
entire team being run by a central processor. Since a single CPU cannot run simulations
in parallel, the time for an individual UAV system is approximately one-ninth of the total
simulation time for the decentralized simulation. This computes to seven seconds for the
normal simulation and just over four seconds for the Accelerator-based simulation.
These times are even faster than the centralized version, and with reason. Since the

individual UAVs within the decentralized simulation do not have to perform calculation

121

regarding the other UAVs (with respect to dynamics and threats and no-fly zone
checking), the simulation should occur in less time.

7.2 Miscommunication

Just like the real-time performance of software, investigation of real-life situations
using simulation is crucial. For decentralized path planning and task allocation, the
critical link for correct decision making is communication amongst a team of UAVSs. The
next three sections investigate three possible scenarios where problems in
communications can lead to incorrect decisions for the team of UAVS.

The first possible problem with communication is miscommunication. There are
two possible ways for miscommunication to occur. The first way would be a fault within
the aircraft’s software or hardware to either send out incorrect signals or misinterpret
signals from other aircraft. This is less likely to occur than the second way, which is
caused by enemy electronic warfare efforts. If this electronic warfare leads to some
uncertainty, say within the exact locations of other team members, then the individual
UAVs may base their path planning on wrong information.

Miscommunication leads to incorrect decision on the part of the individual UAVs
with a cooperating team. The likely outcome of miscommunication is that certain tasks
will be duplicated by multiple UAVs while other tasks will be neglected. To test the
effects of miscommunication, the decentralized simulation was modified as shown in
Figure 7.2. A noise generator was added to the communications about UAV positions, so
that individual UAVs would not know the location of their team members within a few
kilometers. Small allowances within aircraft position will not cause any incorrect

decisions, but the difference of several kilometers can.

122

40.;

0.26

21
= e :
Ia!IIQ!

of
)

=x
-
_
Y i s
bl s IR (]
L =1 [—
Y T s I
= -+ <
=< =] i —X
S L o= s IR
T . >
- —

i >

: :
> > :
et N -
— g mecers | [—
_;__.__LI“U‘-\”‘ hal I HEADING ANGLE
- > —
=T = ,

] -

b Lo ol
S] [oo
b e o Y o
S o " . —
o =1 —
meY e e s I
. =
m < 1,
.._J)u.ws{, L n =
i ",
]

Display

Figure 7.2: Main system for decentralized UAV control with miscommunication

The noise that is added to the positions of each UAV follows a Gaussian probability
density function with a mean of zero and a standard deviation of 1. This noise is run
through a gain of value 2, so each UAV’s position can be plus or minus 2 kilometers in
the X-direction and plus or minus 2 kilometers in the Y-direction. Figure 7.3 illustrates
the NOISE block of the main system, and Figure 7.4 shows the noise generators and

gains for each individual UAV of the team.

123

Figure 7.3: NOISE block used for simulating miscommunication

=
N,

White Moise Zain

E
7

White Noise1 Gaini

Ot
0

Constant

a

Constant1

Figure 7.4: Individual UAV noise
These modifications were used to test the response to misinformation. An

example is presented here for the simple simulation of 3 UAVS, 2 targets, 2 no-fly zones,

and a single threat. Figure 7.5 contains the initial battlefield setup for this example.

124

e - | e
120
110
100

90

50 i | | | i j =
10 20 30 40 50 60 70

Figure 7.5: Initial battlefield setup for miscommunication example

The UAVs are initialized with the correct information, so the simulation proceeds
correctly until the first replan occurs. Whenever this replan occurs, UAV 2 is assessing
target 1 while UAVs 1 and 3 are assigned to target 2. The replan contains incorrect
information for the locations of all three UAVs. This incorrect information causes all
three UAVs to be assigned to target 2, while no UAV is assigned to target 1. Tasks are
still being accomplished, but the simulation will take longer overall because certain tasks
are being neglected. Figure 7.6 shows the UAVs after the replanning. One should note
the aerodynamic path discontinuities for the UAVs. The moving plot shown here is
based upon the UAVs knowledge of positions, and whenever noise causes the positions
to be distorted during a replan, the paths become strange and certainly dynamically
unfeasible. However, the dynamics of the aircraft do not see these discontinuities, since
they only represent noise that makes the plot somewhat incorrect.

125

T T T T T T

120+

110+

100 -
j

90 2 .

13
80~ 3

60—

S0 | | | | | | | | | | | il
15 20 25 30 35 40 45 50 55 60 65

Figure 7.6: Miscommunication, decentralized simulation example

7.3 Delay of Communication

Delay of communication is the second type of investigated problems with
communication. Delays are already inherent within the situation, as delays can be quite
useful for initialization purposes and comparison of old information with current
information. However, longer delays within the communications will certainly cause
incorrect decisions. Longer delays can be seen as essentially a loss of communication
that occurs for a definite period of time. Loss of communication will be investigated in
the next section, and an example will be presented as well. Delays in communication
will respond in the exact same manner, with multiple UAV assignments of a single task

while the team neglects other tasks.

126

7.4 Loss of Communication

The third source for problems in communication is loss of communication. Loss
of communication would typically result from highly effective enemy electronic warfare,
which would produce an environment where all communications are effectively jammed.
Loss of communication could also result from damage to an individual UAV, but not

enough damage to cause destruction of the UAV or inability to perform tasks.

In any situation, one or more UAVSs can experience loss of communication. The
UAVs that loose communication effectively become a separate, one vehicle team from
the other group. The lone UAVs will still see teammates where their last known position
was, and it will still be assumed they will perform tasks, but when no communication
about task accomplishment is received, the lone UAV performs all known tasks on all the
known targets. Meanwhile, for the team of UAVs that has lost contact with one or more
members, these members will essentially be seen as UAVs whose last known coordinates
represent their location. These lost UAVs will still be expected to perform tasks as
before, but because no information is received from them, their tasks are eventually
delegated to other team members who still properly communicate with the team. From
these two scenarios, the omniscient user sees a group of UAVs performing tasks, and one
or more lone UAVs who are attempting to duplicate those same tasks, whether they have
been performed or not. Thus, typically there are multiple UAVs performing the same

task while other tasks are neglected, as has been seen in the miscommunication case.

An example can be shown representing this scenario. The decentralized
simulation must first be modified to account for a loss of communication. Figure 7.7
shows the modification to the decentralized scheme where UAV 2 has lost

communication with the group.

127

Initial Pesiticns of UAVS

Plot Simulation E}*

Targets, No-Fly £Zones, and Threats Targets
GUI Inputs User Defined Battlefield Run after Simulation T
has Completed Plotting UAV Paositicns
= e
) "UA\M_ ol >
i
e, >
uav =1 - -
TARGETS =1 L
THREATS
-—!— . . - d - N
> ,.‘UAV 3.{/ Lt -
BT e e L
» — ———— -
B ; R {/ b P
— e T UAVS
o i > TARGETS
b)UA'\-’ =-7-.l,'"-/ £ THREATS
| g . o [= HEADING ANGLE
- e, — b -
T -
;__’um-:._ s BN
e, —
— T — g B
. ; T — e Communication lost with UAW 2
> : o bl L
e — =1 » _)Ufwz__(
[- [» [-, -
4 AV - > L
- L o
e - =
- U {/ .
L - Lt

Figure 7.7: Main system with individual UAV communication loss

The group of UAVS remains the same, but in place of UAV 2 are now just the
original coordinates of the vehicle. The group sees this UAV as one who continuously
remains at its initial position, but not as one who has been destroyed (because the loss of
communication may just be temporary). UAV 2 is now acting like a team by itself.
Though it sees the rest of the group as not being destroyed, the group essentially stays at
their original coordinates. Figure 7.8 shows the modifications for the individual system

to allow for simulation of this isolation.

128

5
B
a %k
;,—:
Fo
8
3
F o
g
a3

UAV MANAGER

SIGNAL REFLAN

Loss of team of UAVS UAVS {UAVS

UAY OPTIMAL PATHS |

UAVS POSITIONS

AIRCRAFT DYNAMICS

Figure 7.8: Main system for individual UAV 2, showing modifications

The UAV uses its own known coordinates and target and threat states, and uses two new
systems to simulate this loss of a team. These two blocks contain the system shown in
Figure 7.9. These systems show the UAV team as stationary at their original coordinates.
The team members are still expected by UAV 2 to perform tasks, but because UAV 2
sees them as never accomplishing those tasks, eventually UAV 2 will perform all the

known target assignments.

Figure 7.9: Loss of team of UAVs block

129

An example is now shown using this new simulation. The initial battlefield is
given by the following figure. There are 3 UAVS, 2 targets, 2 no-fly zones, and a single
threat.

T T T T
140 .
130+ -
120 o 1 i
110} e SR -
) 2
100 x B ,
& 3
90| E
80| -
70 g
| 1 1 | | 1 | 1
10 20 30 40 50 60 70 80

Figure 7.10: Initial battlefield setup for individual communication loss example

The simulation begins with all UAVs knowing the correct initial positions. The UAVs
make the correct decisions of UAVs 1 and 2 being assigned to the higher-valued target,
target 2, while UAV 3 is assigned to target 1. However, target 1 lies inside of a Crotale
SAM’s effective range, and whenever UAV 3 crosses that boundary, it is destroyed. At
this point, UAV 1 believes UAV 2 still exists at its original position, which is the last
known position for UAV 2. Whenever UAV 1’s path planning and task allocation
scheme runs, UAV 1 is again assigned to target 2, while UAV 2 is expected to perform
target reconnaissance on target 1. Meanwhile, UAV 2 has lost communication with the
other two UAVSs. Therefore, UAV 2 simply continues on for its assigned task at target 2,
because UAV 2 never receives communication that UAV 3 gets destroyed. The end

result is shown in Figure 7.11.

130

140 - ,

130

120

110

100 -

80

70r- -

20 30 40 50 60 70 80

Figure 7.11: Individual communication loss example

As seen here, both UAV 1 and UAV 2 are assigned to target 2. Neither UAV has
assigned tasks at target 1, because of the lack of communication. UAV 1 expects UAV 2
to perform tasks on target 1, while UAV 2 expects the now destroyed UAV 3 to perform
tasks on target 1. The result of this loss of communication is a lack of cooperation.
Tasks are still performed, even if duplicated, and eventually all tasks will be completed
(assuming there is at one surviving UAV to perform assignments). The decentralized
scheme allows the UAVs to make their own decisions, even if incorrect because of
problems with communication. Even with incorrect decision making on the individual
UAYV parts, missions can still be accomplished, whereas with a centralized scheme, all

UAVs would be lost once proper communication ceased.

131

Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The research effort presented here accomplished the six research objective as
stated at the end of the Introduction chapter. The first objectives were to create a path
planning and task allocation scheme. This scheme began by using Voronoi diagram to
connect UAVs to targets with graphical edges. These edges next had costs assigned to
them based on their length and possible threat cost. Once edge costs were assigned,
Dijkstra’s algorithm was used to search the graph edges to determine the lowest-cost path
for each permutation of UAV to target. These lowest-cost paths were then further refined
by shortening using a line of sight method, adding fillets along the edge intersections, and
adding initial sections to the path to transition the current UAV heading angle to the
desired one. The last step in the path planning and task allocation scheme was to use a
Multi-dimensional, Multiple-Choice Knapsack Problem solution to allocate all

assignments while minimizing UAV team costs.

The next research addressed the third and fourth objects by development of a
SIMULINK-based centralized simulation environment. This simulation used the path
planning and task allocation scheme previously developed, and added time-varying,
dynamic environment, aspects. Pop-up target and threat capabilities were implemented.
A UAV manager was developed to address the possibilities of individual or multiple
UAV loss. A UAV model was implemented with an aircraft dynamics subsystem.
Target states were used to track the tasks performed on individual targets, and real-
possibilities were modeled to include objects disguised as targets, and targets that are not
destroyed in the first attack.

The latter part of the research effort was focused on development of a
decentralized simulation environment to complete the last research objectives. This

decentralized version now includes a vehicle’s own decision making capabilities and

132

communication amongst vehicles. Next, the decentralized simulation was compared
with the centralized version in terms of simulation efficiency. It was concluded that the
path planning and task allocation scheme could be implemented in a real-time
environment only for a limited number of UAVS, targets, threats, and no-fly zones, as
expected. The centralized simulation proved to be a faster simulation than the
decentralized version, but when the decentralized is considered to be essentially running
nine separate simulations at once, the individual UAV simulations show faster times than
the centralized version. Lastly, real communications issues were addressed to show that
while communication problems lead to a lack of cooperation, tasks can still be performed

and missions completed within the decentralized simulation environment.

8.2 Recommendations

From this research effort, further investigation and implementation of this
decentralized path planning and task allocation scheme could be pursued in several
directions. The first direction would be conversion of the decentralized simulation
environment into executable files in C code. These executable files could be tested using
parallel processing to truly model a team of UAVs cooperating. The next direction this
research could be taken in would include small, inexpensive UAVs. These UAVs could
be used as a proving vehicle for this approach, to show the actual implementation of this

decentralized path planning and task allocation scheme.

133

10.

11.

12.

13.

14.

References

UAV Forum. “Unmanned Aerial Vehicles and Precision Guided Munitions at
the Centennial” http://www.uavforum.com/library/defnews.doc

Department of Defense. Unmanned Aerial Vehicles Roadmap 2002-2027.
Office of the Secretary of Defense: December 2002.

UAV Forum. “Librarian’s Desk — UAV forum” http://www.uavforum.com/
library/librarian.htm

McLain, T.W., “Coordinated Control of Unmanned Air Vehicles” Air
Vehicles Directorate, Wright-Patterson Air Force Base, Ohio, summer 1999.

USAF ARFL - Air Vehicles Directorate. “Unmanned Air Vehicles”
http://www.va.afrl.af. mil/FA/UAV/uav index.html

FAS Military Analysis Network. “Low Cost Autonomous Attack System
(LOCAAS) Miniature Munition Capability” http://www.fas.org/man/dod-
101/sys/smart/locaas.htm

Phantom Works. “Unmanned Combat Air Vehicle (X-45)”
http://www.boeing.com/phantom/ucav.html

Bortoff, S.A., “Path-Planning for Unmanned Air Vehicles” Air Vehicles
Directorate, Wright-Patterson Air Force Base, Ohio, August 1999.

McLain, T.W., “Cooperative Control of UAV Rendezvous” Air Vehicles
Directorate, Wright-Patterson Air Force Base, Ohio, Summer 2000.

McLain, T.W., and Beard, R.W., “Trajectory Planning for Coordinated
Rendezvous of Unmanned Air Vehicles” AIAA Paper 200-4369. 2000.

Moon, T.K. and Stirling, W.C. Mathematical Methods and Algorithms. New
Jersey: Prentice Hall, 2000.

Eppstein, D. “Finding the k Shortest Paths” March 1997.
Novy, M.C. and Jacques, D.R. “Air Vehicle Optimal Trajectories Between
Two Radars” Proceedings of the American Control Conference, Anchorage,

AK, May 2002.

Judd, K.B., and McLain, T.W. *“Spline Based Path Planning for Unmanned
Air Vehicles” AIAA Paper 2001-4238.

134

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Herbert, J., Jacques, D., Novy, M., and Pachter, M. “Cooperative Control of
UAVs” AIAA Paper 2001-4240. AIAA Guidance, Navigations, and Control
Conference, Montreal, Canada, August 2001.

Anderson, E.P., and Beard, RW. “An Algorithmic Implementation of
Constrained Extremal Control for UAVs” AIAA Paper 2002-4470. AIAA
Guidance, Navigations, and Control Conference, Monterey, CA, August
2002.

Chen, G., and Cruz, J.B. “Genetic Algorithm for Task Allocation in UAV
Cooperative Control” AIAA Paper 2003-5582. AIAA Guidance, Navigations,
and Control Conference, Austin, TX, August 2003.

Bellingham, J., Tillerson, M., Richards, A., How, J. "Multi-Task Allocation
and Trajectory Design for Cooperating UAVS," in Cooperative Control:
Models, Applications and Algorithms at the Conference on Coordination,
Control and Optimization, November 2001.

Moser, M., Jokanovic, D.P., and Shiratori, N. “An Algorithm for the
Multidimensional Multiple-Choice Knapsack Problem” IEICE Trans.
Fundamentals, Vol. E80-A, No. 3, March 1997.

Richards, A., Bellingham, J., Tillerson, M., How, J. "Co-ordination and
Control of Multiple UAVs" AIAA Guidance, Navigation, and Control
Conference, Monterey, CA, August 2002.

Richards, A, M., How, J. *“Aircraft Trajectory Planning with Collision
Avoidance Using Mixed Integer Linear Programming” Proceedings of the
American Control Conference, Anchorage, AK, May 2002.

Schouwenaars, T., De Moor, B., Feron, E., and How, J. “Mixed Integer
Linear Programming for Multi-Vehicle Path Planning” ECC Conference,
2001.

Richards, A., Kuwata, Y., and How, J. “Experimental Demonstrations of
Real-time MILP Control” AIAA Paper 2003-5802. AIAA Guidance,
Navigations, and Control Conference, Austin, TX, August 2003.

Chandler, P.R., Pachter, M., Rasmussen, S., and Schumacher, C. “Distributed
Control for Multiple UAVs with Strongly Coupled Tasks” Paper 2003-5799.
AIAA Guidance, Navigations, and Control Conference, Austin, TX, August
2003.

Chandler, P.R., and Pachter, M., “Hierarchical Control for Autonomous

Teams” AIAA Paper 2001-4149. AIAA Guidance, Navigations, and Control
Conference, Montreal, Canada, August 2001.

135

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Chandler, P.R., Pachter, M., Swaroop, D., Fowler, J.M., Howlett, J.K.,
Rasmussen, S., Schumacher, C., Nygard, K., “Complexity in UAV
Cooperative Control” Proceedings of the American Control Conference,
Anchorage, AK, May 2002.

Boskovic, J.D., Prasanth, R., and Mehra, R.K. “An Autonomous Hierarchical
Control Architecture for Unmanned Aerial Vehicles” AIAA Paper 2002-4468.
AIAA Guidance, Navigations, and Control Conference, Monterey, CA,
August 2002.

Boskovic, J.D., Prasanth, R., and Mehra, R.K. “A Multi-Layer Control
Architecture for Unmanned Aerial Vehicles” Proceedings of the American
Control Conference, Anchorage, AK, May 2002.

Howlett, J.K. “Path Planning and Cooperative Assignment” Air Vehicles
Directorate, Wright-Patterson Air Force Base, Ohio, Summer 2001.

Verma, A, Wu, C., and Castelli, V. “Autonomous Command and Control for
UAV Formation” Paper 2003-5704. AIAA Guidance, Navigations, and
Control Conference, Austin, TX, August 2003.

Schumacher, C., Chandler, P.R., and Rasmussen, S. “Task Allocation for a
Wide Area Search Munition via Iterative Network Flow” AIAA Paper 2002-
4586. AIAA Guidance, Navigations, and Control Conference, Monterey, CA,
August 2002.

Schumacher, C., Chandler, P.R., Pachter, M., and Pachter, L.S. “UAV Task
Assignment with Timing Constraints” Paper 2003-5664. AIAA Guidance,
Navigations, and Control Conference, Austin, TX, August 2003.

Rasmussen, S., Chandler, P., Mitchell, J.W., Schumacher, C., and Sparks, A.
“Optimal vs. Heuristic Assignment of Cooperative Autonomous Unmanned
Air Vehicles” Paper 2003-5586. AIAA Guidance, Navigations, and Control
Conference, Austin, TX, August 2003.

Rasmussen, S., Mitchell, J.W., Schulz, C., Schumacher, C., and Chandler, P.
“A Multiple UAV Simulation for Researchers” Paper 2003-5684. AIAA
Guidance, Navigations, and Control Conference, Austin, TX, August 2003.

Carpenter, J.R. “Partially Decentralized Control Architectures for Satellite
Formations” AIAA Paper 2002-4959. AIAA Guidance, Navigations, and
Control Conference, Monterey, CA, August 2002.

Boskovic, J.D., and Mehra, R.K. “A Decentralized Scheme for Autonomous
Compensation of Multiple Simultaneous Flight-Critical Failures” AIAA Paper

136

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

2002-4453. AIAA Guidance, Navigations, and Control Conference,
Monterey, CA, August 2002.

Yang, Y., Minai, A.A., Polycarpou, M.M., “Decentralized Cooperative Search
in UAVs Using Opportunistic Learning” AIAA Paper 2002-4590. AIAA
Guidance, Navigations, and Control Conference, Monterey, CA, August
2002.

Mitchell, J.W., Schumacher, C., Chandler, P.R., “Communication Delays in
the Cooperative Control of Wide Area Search Munitions Via lterative
Network™ AIAA Paper 2003-5665. AIAA Guidance, Navigation, and Control
Conference, Austin, TX, August 2003.

Ashokkumar, C.R., and Jeffcoat, D.E., “Cooperative Systems Under
Communication Delay” AIAA Paper 2003-5663. AIAA Guidance,
Navigations, and Control Conference, Austin, TX, August 2003.

de Berg, M., van Kreveld, M., Schwarzkopf, O., and Overmarr, M.
Computational Geometry: Algorithms and Applications, Second Edition. New
York: Springer-Verlag, 2000.

Global Security.org “World Military Guide”. http://www.globalsecurity.org/
military/world/index.html

Wikipedia. “Dijkstra’s Algorithm” http://en.wikipedia.org/wiki/
Dikjstra’s_algorithm

Wikipedia. “Adjacency Matrix” http://en.wikipedia.org/wiki/
Advacency_matrix

Kay, Michael. MATLOG, MATLAB toolbox package. Available from
http://www.ie.ncsu.edu/kay/matlog

Wikipedia. “NP-hard” http://en.wikipedia.org/wiki/NP-hard

Akbar, M.M., Manning, E.G., Shoja, G.C., and Khan, S. “Heuristic Solution
for the Multiple-Choice Multi-Dimensional Knapsack Problem” International
Conference on Computational Science, San Francisco, May 2001.

Roskam, J. Airplane Fight Dynamics and Automatic Flight Controls: Part I.
DARcorporation: Lawrence, 1995.

Stevens, B.L., and Lewis, F.L. Aircraft Control and Simulation. John Wiley
and Sons: New York, 1992.

137

49. Rauw, M. FDC 1.2 — A SIMULINK Toolbox for Flight Dynamics and Control
Analysis. May, 2001. http://home.wanadoo.nl/dutchroll/manual.html

138

Appendix A

MATLAB Codes for Path Planning and Task Allocation

139

path_planning.m

Authored by Matthew Lechliter and Zachary Spritzer

function [out]=path_planning(in)

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS long,4,9);
TARGETS_long=in([37:72)]);
TARGETS_long=reshape(TARGETS long,4,9);
ZONES _long=in([73:102]);
ZONES_long=reshape(ZONES long,3,10);

THREATS long=in([103:162]);

THREATS_long=reshape(THREATS_long,4,15);

TIME=in(163);
n_plots=in(164);
HEADING_ANGLE=in([165:173]);

uavs_existing=zeros(1,9);
fori=1:9

if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26

uavs_existing(1,i)=1;
end
end
[UAVS]=filter_zeros(UAVS_long,9);
n_uav=size(UAVS,2);

targ_existing=zeros(1,9);
for i=1:9
if TARGETS_long(3,i)~=0,
targ_existing(1,i)=1;
end
end

[TARGETS_ temp]=filter_zeros(TARGETS long,9);
TARGETS=[TARGETS temp(1,:);TARGETS_ temp(2,.)];

n_targ=size(TARGETS,?2);

[ZONES]=filter_zeros(ZONES long,10);
n_zones=size(ZONES,2);

threats_existing=zeros(1,15);
fori=1:15

if THREATS_long(3,i)~=0

threats_existing(1,i)=1;

end
end
[THREATS]=filter_zeros(THREATS_long,15);
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=THREATS;

ZONES(3,:)=1.15*ZONES_REAL(3,.);
THREATS(3,)=1.15*THREATS_REAL(3,’);

split_seg=10;
min_turn=1;

[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS, TARGETS,ZONES, THREATS);

140

[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs, UAVS, TARGETS,ZONE
S,THREATYS);
[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES, THREATS,m
in_turn,split_seg,n_uav,n_targ, HEADING_ANGLE);
[Selected_Paths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path
S_y,n_uav);
[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA
VS, min_turn*2);

if n_plots~=0,

plot_uav(UAVS long, TARGETS long,ZONES_REAL,THREATS long,uav_path_x,uav_path_y,n_plots,
uavs_existing,targ_existing,threats_existing);
end

disp(sprintf(‘Path Planning ran at time %d. \n',round(TIME)));

bestcomb=zeros(1,9);
for i=1:n_uav,
for j=1:n_targ,
if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)
bestcomb(1,i)=j;
break
end
end
end

%Making into vector
uav_x=zeros(9,100);
uav_y=zeros(9,100);
uav_time=zeros(9,100);
uav_alt=zeros(9,100);
selected_targets=zeros(9,1);
szpath=size(uav_path_x,2);
counter=1,
for i=1:9,
if uavs_existing(1,i)==1
selected_targets(i,1)=bestcomb(1,counter);
uav_x(i,[1:szpath])=uav_path_x(counter,:);
uav_y(i,[1:szpath])=uav_path_y(counter,:);
uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
uav_alt(i,[1:szpath])=altitude_uav(counter,:);
counter=counter+1;
end
end
sys_temp=[];
for i=1:9;
sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)];
end
out=[sys_temp,selected_targetsT;

141

filter_zeros.m
Authored by Matthew Lechliter and Zachary Spritzer
function [A]=filter_zeros(A_long,n)

A=L];
counter=1,
for i=1:n
if abs(sum(A_long(:,1)))>0 & abs(sum(A_long(:,i)))~=0.26
A(:,counter)=A_long(:,i);
counter=counter+1;
end
end

142

vrn_diag_gen.m
Authored by Matthew Lechliter, Zachary Spritzer, and Jennifer Hazelton
function [all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS, TARGETS,ZONES, THREATS)

%INPUTS:

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVS, the third row is the initial altitude of the UAVs, and

%the fourth row is the intial Velocity of the UAVS.

%

%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
Y%the targets.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%OUTPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%x position for the nth line and the second row is the starting point's

%x position for the nthe line.

%

%eall_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%y position for the nth line and the second row is the starting point's

%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y

max_x=max([TARGETS(L,:),UAVS(L,:),ZONES(1,:), THREATS(L,:)])+25;
min_x=min([TARGETS(L,:),UAVS(1,:),ZONES(L,:), THREATS(L,:)])-25;
max_y=max([TARGETS(2,.),UAVS(2,:),ZONES(2,:), THREATS(2,:)])+25;
min_y=min([TARGETS(2,:),UAVS(2,:),ZONES(2,:), THREATS(2,:)])-25;

VRNPTS=[ZONES([1,2],:) THREATS([1,2],) ...
[(((max_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ...
[(((max_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ...
[(((max_x-min_x)*[1:4]/4)+min_x);(min_y)*ones(1,4)] ...
[(((max_x-min_x)*[1:4]/4)+min_x);(max_y)*ones(1,4)]];

143

[vx,vy] = voronoi(VRNPTS(1,:),VRNPTS(2,:));

%%%%%%%6%%%%6%%% %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% % %% %% Y%
%Taking unique numbers from vx and vy

%%%%%%%%% %% %% % %% % %% % %% % %% % % %% % %% %% %% %% %% %% % %% %% % %% %
[vxyn]= 1e-6*unique(round(1e6*[vx(:),vy(:)]), rows";

9%%%%%%%%% %%
%Connecting UAV's into voronoi

%%%%% %Yo
[line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS([1,2],:));

%%%%%%%6%%%%6%%% %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% % %% %% %
%Connecting the targets into the voronoi

%%%%%%%%%%% %% % %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% % %% %% %
[line_cost_targ,targx,targy]=connect_vrn(vxyn, TARGETS([1,2],:));

%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% % % %% % %% %% % %% %
%Generation for voronoi line costs
%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% % %% %% %% % %% %% %
nvlines=size(vx,2);
line_cost_vrn=zeros(1,nvlines);
for i=1:nvlines,

line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))*2+(vy(1,i)-vy(2,i))"2);
end
%%%%%%%6%%%%%% % %% % %% % %% % %% % % %% %% % % %% %% %% % %690 % %% %% % %% %
%Stacking unique positions, lines for x and y, and costs of those lines
%%%%%%%%%%%%%% %% % %% % %% % %% % % %% %% % %% %% % %% % %% % %% %% % %% %
all_pos=[UAVS([1,2],:) vxyn(;,[1,2])' TARGETS([1,2],))];
all_lines_x=[uavx([1,2],:) vx([1,2],) targx([1,2],)];
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],))];
all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,:)];

144

voronoi.m

function [vxx,vy] = voronoi(x,y,arg3,arg4)
%VORONOI Voronoi diagram.

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%

VORONOI(X,Y) plots the Voronoi diagram for the points X,Y.
Cells that contain a point at infinity are unbounded and
are not plotted.

VORONOI(X,Y,TRI) uses the triangulation TRI instead of
computing it via DELAUNAY.

H = VORONOI(...,'LineSpec") plots the diagram with color and linestyle
specified and returns handles to the line objects created in H.

[VX,VY] = VORONOI(...) returns the vertices of the VVoronoi
edges in VX and VY so that plot(VX,VY,-',X,Y,".") creates the
Voronoi diagram.

For the topology of the voronoi diagram, i.e. the vertices for
each voronoi cell, use the function VORONOIN as follows:

[V,C] = VORONOIN(X() Y()])
See also VORONOIN, DELAUNAY, CONVHULL.

Copyright 1984-2002 The MathWorks, Inc.
$Revision: 1.15 $ $Date: 2002/06/05 20:05:17 $

error(nargchk(2,4,nargin));

if nargin==2,
tri = delaunay(x,y);
Is=",

elseif nargin==3,
if isstr(arg3),

tri = delaunay(x,y);

Is = arg3;
else
tri = arg3;
Is=";
end
else
tri = arg3;
Is = arg4;
end

% re-orient the triangles so that they are all clockwise
xt = x(tri); yt=y(tri);
ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ...

Xt(:,2). *(yt(:,3)-yt(:,1)) + ...
xt(:,3).*(yt(:, 1)-yt(:,2));

bt = find(ot<0);
tri(ot,[1 2]) = tri(bt,[2 1]);

n = prod(size(x));
ntri = size(tri,1);

145

t = (L:ntri);
T = sparse(tri,tri(:,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)
E = (T & T').*T; % Voronoi edge if E(i,j)

[i,j,v] = find(triu(E));
[i,j,vv] = find(triu(E");
cl = circle(tri(v,:),x,y);
c2 = circle(tri(vv,:),x,y);

vx = [cl(;,1) c2(:,1)].";
vy = [c1(;,2) c2(:,2)].";

if nargout<2
if isempty(ls),
co = get(gcf,'defaultaxescolororder");
h = plot(vx,vy,-' x,y," ", 'color',co(1,:));
else
[1,c,m,msg] = colstyle(ls); error(msg)
if isempty(m), m=""; end
h = plot(vx,vy,ls,x,y,[c m]);
end
if ~ishold,
v:jew(Z), axis([min(x(:)) max(x(:)) min(y(:)) max(y(:))1)
en
if nargout==1, vxx = h; end
else
VXX = VX;
end

function c¢ = circle(tri,x,y)

%CIRCLE Return center and radius for circumcircles

% C = CIRCLE(TRI,X,Y) returns a N-by-3 vector containing [xcenter(:)
% ycenter(:) radius(:)] for each triangle in TRI.

% Reference: Watson, p32.

x=X();y =y();

x1 = x(tri(:,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3));
y1=y(tri(:,1)); y2 = y(tri(:,2)); y3 = y(tri(:,3));

% Set equation for center of each circumcircle:
% [all al2;a21 a22]*[x;y] = [b1;b2] * 0.5;

all =x2-x1; al2 =y2-y1;
a2l = x3-x1; a22 = y3-y1;

bl =all .* (x2+x1) +al2 .* (y2+yl);
b2 = a21 * (x3+x1) + a22 .* (y3+yl);

% Solve the 2-by-2 equation explicitly
idet = all.*a22 - a21.*al2;

% Add small random displacement to points that are either the same
% oron aline.

d = find(idet == 0);

if ~isempty(d), % Add small random displacement to points

146

delta = sqrt(eps);
x1(d) = x1(d) + delta*(rand(size(d))-0.5);
x2(d) = x2(d) + delta*(rand(size(d))-0.5);
x3(d) = x3(d) + delta*(rand(size(d))-0.5);
y1(d) = y1(d) + delta*(rand(size(d))-0.5);
y2(d) = y2(d) + delta*(rand(size(d))-0.5);
y3(d) = y3(d) + delta*(rand(size(d))-0.5);
all = x2-x1; al2 = y2-y1,
a2l = x3-x1; a22 = y3-y1;
bl =all.* (x2+x1) + al2 .* (y2+yl);
b2 =a21 .* (x3+x1) + a22 .* (y3+yl);
idet = all.*a22 - a21.*al2;

end

idet = 0.5 ./ idet;

xcenter = (a22.*bl - al2.*b2) .* idet;
ycenter = (-a21.*b1 + all.*b2) .* idet;

radius = (x1-xcenter).”2 + (y1-ycenter).”2;

¢ = [xcenter ycenter radius];

147

connect_vrn.m
Authored by Matthew Lechliter and Zachary Spritzer
function [line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS)

%Inputs:
%
%vxyn - is a nx2 matrix with first column defining all of the unique x
%positions of the voronoi diagram or grid and the second column defining
%eall of the unique y positions of the voronoi diagram or grid.
%
%UAVS - is a 2xn matrix with the first row defining the x position of the
%UAYV and the second row defining the y position of the UAV.
%
%Outputs:
%
%line_cost_uav - is a vector containing the cost of the lines of connecting
%the UAV's into the voronoi diagram or grid
%
%uavx - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the x coordinates.
%
%uavy - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the y coordinates.
nuav=size(UAVS,2);
nvxynpts=size(vxyn,1);
du=zeros(1,nvxynpts-1);
uavx=zeros(2,nuav*3);
uavy=zeros(2,nuav*3);
line_cost_uav=zeros(1,nuav*3);
for k=1:nuav,
for j=2:nvxynpts,
du(l,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))"2+(UAVS(2,k)-vxyn(j,2))"2);
end
mdu=sort(du,2);
fori=1:3,
mdu_loc=find(du==mdu(1,i));
uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1);
uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2);
uavx(2,3*(k-1)+i)=UAVS(1,k);
uavy(2,3*(k-1)+i)=UAVS(2,k);
line_cost_uav(1,3*(k-1)+i)=mdu(1,i);
end
end

148

cheapest_paths.m

Authored by Matthew Lechliter and Zachary Spritzer

function
[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs, UAVS, TARGETS,ZONE
S,THREATYS)

%

%INPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%x position for the nth line and the second row is the starting point's

%x position for the nthe line.

%

%eall_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%y position for the nth line and the second row is the starting point's

%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y.

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVS, the second row is the initial y position
%of the UAVS, the third row is the initial altitude of the UAVs, and

%the fourth row is the intial Velocity of the UAVS.

%

%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
Y%the targets.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%OUTPUTS:

%

%stored_paths - is a mxn matrix where m is the number of uavs times the
%number of targets and n is the length of the longest path. The first row
%Dbeing the first path for the first uav and the last row being the last

%path for the last uav. The paths are output by node numbers coming from
%the implementation of dijkstra's algorithm.

%

Y%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

149

%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% %% %% %% % %% % %% %
%Making THC matrix for dijkstra's algorithm
%%%%%%%6%%%%6%% % %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% %% % %% %
[THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs);

%%%0%%6%%%% %%
%Cost Assignment for all lines

9%6%%%%%%%% %%
[THC]= c_assign(all_pos, THC,ZONES, THREATS);

%%%%% %% %% %% % %% % %% % %% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %
%Adding the reverse of the THC matrix onto the end, so that the

%reverse of the lines is possible

9%%%%% %% % %% % %% %% %% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %
THC=[THC(:,[1,2,3]); THC(:,[2,1,3])];

%%%%%%%%%%% %% % %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% %% % %% %
%Implementing Dijkstra's algorithm
%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% % %% %% %% % %% %% %
nuav=size(UAVS,2);
ntarg=size(TARGETS,2);
A = list2adj(THC);
totalcost=zeros(nuav,ntarg);
for i=1:nuav,
for j=1:ntarg,
[totalcost(i,j),path] = dijk(A,i,size(all_pos,2) - j + 1);
stored_paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]);
end
end

150

set THC.m

Authored by Matthew Lechliter, Zachary Spritzer, and Elena Lucci
function [THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs)

%

%INPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's
%x position for the nth line and the second row is the starting point's
%x position for the nthe line.

%

%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's
%y position for the nth line and the second row is the starting point's
%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y.

%

%OUTPUTS:

%

%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due to no-fly zones and
Y%threats.

THC=zeros(size(all_lines_x,2),3);
THC(:,3)=all_costs(:);
for i=1:(2*size(all_lines_x,2))
P=(round(all_pos(1,:)*100)== round(all_lines_x(i)*100)) &
(round(all_pos(2,:)*100)==round(all_lines_y(i)*100));
if any(P)
num=find(P);
if (rem(i,2))~=0
bz=((fix(i./2))+1);
THC(bz,1)=num;
else THC((i/2),2)=num;
end
else
if (rem(i,2))~=0
tz=(fix((i./2))+1);
THC(tz,1)=i;
else THC((i/2),2)=i;
end
end
end

151

c_assign.m

Authored by Matthew Lechliter and Zachary Spritzer

function [THC]= c_assign(all_pos, THC,ZONES, THREATS)

%

%INPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%OUTPUTS:

%

%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%ithe first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due to no-fly zones and
Y%threats.

szthc=size(THC,1);

nzones=size(ZONES,2);

nthrts=size(THREATS,2);

for i=1:szthc,
start=THC(i,1);finish=THC(i,2);
SF=sgrt(((all_pos(1,finish)-all_pos(1,start))*2)+((all_pos(2,finish)-all_pos(2,start))"2));
for j=1:nzones,
SC=sqrt(((ZONES(1,j)-all_pos(1,start))*2)+((ZONES(2,j)-all_pos(2,start))"2));
FC=sgrt(((ZONES(1,j)-all_pos(1,finish))*2)+((ZONES(2,j)-all_pos(2,finish))*2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0,PC=sqrt(SC"2-SN"2);
else
if SC<FC,PC=SC;
else
PC=FC;
end
end
if PC < ZONES(3,j), THC(i,3)=1e30*THC(i,3);
end
end
for j=1:nthrts,
SC=sqrt(((THREATS(1,j)-all_pos(1,start))2)+((THREATS(2,j)-all_pos(2,start))"2));
FC=sqgrt(((THREATS(1,j)-all_pos(1,finish))*2)+((THREATS(2,j)-all_pos(2,finish))"2));

152

SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0,PC=sqrt(SC"2-SN"2);
else

if SC<FC,PC=SC;

else

PC=FC;

end
end
if PC < THREATS(3,j),THC(i,3)=(THREATS(4,))*100)+THC(i,3);
end

end
end

153

list2adj.m

function A = list2adj(1JC,m,spA)

%LIST2ADJ Arc list to node-node weighted adjacency matrix representation.
% A= list2adj(1JC,m,spA)

% 1JC =nx 2-5 matrix arc list [i j c u I], where

% i =n-element vector of arc tails nodes

% j = n-element vector of arc head nodes

% ¢ = (optional) n-element vector of arc costs, where n = number of arcs
% = (default) ONES(n,1)

% u = (optional) ignored

% | =(optional) ignored

% m = (optional) scalar size of A if greater than max{max(i),max(abs(j))}
% spA = (optional) make A sparse matrix if n <=spAxmxm

% =1, always make A sparse

% =0.1 (default), A sparse if 10% arc density

% =0, always make A full matrix

% A =mx m node-node weighted adjacency matrix

%

% Transforms: If j(k) > 0, then [i(K) j(k) c(k)] -> A[i(K),j(k)] = c(k)
% If j(k) <0, then [i(K) j(k) c(k)] -> A[i(k),-j(k)] = c(k) and
% AL-i(k),i(k)] = c(k)

%

% Note: Weights of any duplicate arcs added together in A
% c(k) =0=>A(i(k),j(k)) = NaN

% Wrapper for c(c==0) = NaN; A = SPARSE(i,j,c,m,m);
%

% See also LIST2INCID, ADJ2LIST, and ADJ2INCID

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checking B R R e o S S S S o R S S S S S e

error(nargchk(1,3,nargin))

[n,clJC] = size(1JC);
if clJC < 2| clJC > 5, error('1JC must be a 2-3 column matrix."), end

[i,j,c] = mat2vec(lJC);
if isempty(c), c = ones(n,1); end

jsgn = sign(j); j = abs(j);

minlJ = min(min([i j1));

if isempty(minlJ) | minlJ < 1 | any(~isint(i)) | any(~isint(j))
error('All elements of "i" and "j" must be nonzero integers.");

end

if nargin < 2 | isempty(m)
m = max(max([i j]));
elseif length(m(:)) ~= 1| ~isint(m) | m < max(max([i j1))

end

if nargin < 3 | isempty(spA)
spA =0.1;
elseif length(spA(:)) ~=1|spA <0

154

error("'spA" must be non-negative scalar.");

end
% End (Input Error Checklng) FERAKRAAKRAAAAXRAAAARAAAAAAhdrrkhhhdrrkhhhihrhhhkhhiihhhiiik

if any(jsgn < 0) % Add elements from undirected arcs
jsgn(jsgn <0 & i==j) = 1;
i =[i; j(sgn < 0)];
i=105iGsgn < 0)];
¢ = [c; c(jsgn < 0)];
end

c(c==0) = NaN;
A = sparse(i,j,c,m,m);

if n>spA*m*m, A =full(A); end

155

adj2listm

function [i,j,c] = adj2list(A)

%ADJ2LIST Node-node weighted adjacency matrix to arc list representation.
% 1C =adj2list(A)

% [i,j,c] = adj2list(A)

% A =mx m node-node weighted adjacency matrix of arc lengths
% 1JC =n x 2-3 matrix arc list [i j c], where

% i=n-element vector of arc tails nodes

% j = n-element vector of arc head nodes

% ¢ = n-element vector of arc weights

%

% Note: All A(i,j) = A(j,i) => [i -j c] (symmetric A)

% A(i,j)=0 => Arc (i,j) does not exist

% A(i,j) = NaN => Arc (i,j) exists with 0 weight

% Wrapper for [i,j,c] = FIND(C); c(ISNAN(c)) = 0)

%

% See also LIST2INCID, LIST2ADJ, and ADJ2INCID

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error ChECklng *hkkkhkkhhkhkkhkhkkhhkhkkhhkhhkhkkihkhkhhkhkhhkihkhkhhkikhhkhhhkhhkkihhkihkhkhhkihkhiikik

[rA,cA] = size(A);

if rA~=cA
error("A" must be a square matrix.");
end

% End (Input Error Checklng) KTEAKAKKAAKREAARAKAAAR KA AXAKRAAAAAARAARAAARAAA AR A AAAAAAAix %
if all(all(triu(A)==tril(A)"), A = triu(A); issym = 1, else issym = 0; end

[i.j.c] = find(A);

if issym, j = -j; end

c(isnan(c)) = 0;

if nargout ==

i=Jijc];
end

156

pred2path.m

function rte = pred2path(P,s,t)

%PRED2PATH Convert predecessor indices to shortest paths from node 's' to 't'.
% rte = pred2path(P,s,t)

% P =|s| x n matrix of predecessor indices (from DIJK)

% s=FROM node indices

% =[] (default), paths from all nodes

% t=TO node indices

% =[] (default), paths to all nodes

% rte = |s| x [t| cell array of paths (or routes) from 's' to 't', where
% rte{i,j} = path from s(i) to t(j)

% =1], if no path exists from s(i) to t(j)

%

% (Used with output of DIJK)

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checking B R R e e R R o o S S S S S R R S S S e S T e

error(nargchk(1,3,nargin));
[rP,n] = size(P);

if nargin < 2 | isempty(s), s = (1:n)'; else s =s(:); end
if nargin < 3 | isempty(t), t = (1:n)’; else t = t(:); end

ifany(P<0|P>n)

error(['Elements of P must be integers between 1 and ',num2str(n)]);
elseifany(s<1|s>n)

error([™'s" must be an integer between 1 and ',num2str(n)]);
elseifany(t<1|t>n)

error(["'t" must be an integer between 1 and ‘,num2str(n)]);

end
% End (Input Error Checklng) KhAhkhkhhkhkhkhkhkhkhkhhkhhhkhhhhhkhhhkhhkhhhkkhhhhhhhhhhhhkhhhik

rte = cell(length(s),length(t));
[ans,idxs] = find(P==0);

for i = 1:length(s)

% ifrP==

% si=1;

% else

% si=s(i);

% ifsi<l|si>rP

% error('Invalid P matrix.")
% end

% end

si = find(idxs == s(i));
for j = 1:length(t)
tj = t();
if tj ==s(i)
r=1;
elseif P(si,tj) == 0
r=_[I

157

else
r=1;
while tj ~=0
iftj<l|tj>n
error('Invalid element of P matrix found.")
end
r=[P(si.tj) r];
tj = P(si,tj);
end
r(1) =[I;
end
rte{i,j}=r;
end
end

if length(s) == 1 & length(t) == 1
rte = rte{:};
end

%rte = 1t;
while 0%t ~=s
ift<1|t>n]|round(t)~=t
error('Invalid "pred" element found prior to reaching "s");
end
rte = [P(t) rte];
t=P(0);
end

158

mat2vec.m

function varargout = mat2vec(X)

%MAT2VEC Convert columns of matrix to vectors.
% [X(:,1),X(:,2),...] = mat2vec(X)

%

% (Additional output vectors assigned as empty)

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checklng AEAAEAAAARAKAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhhhrAAAAAAAAhx
if ~isnumeric(X)
error("X must be numeric.")

end
% End (Input Error Checklng) FEAAKRAAKRAAAAXRAARAAAAAAAhArAAdhhhdrrkhhhhhhhhhhiihhhiik

varargout = cell(1,max(1,nargout));
X = num2cell(X,1);
varargout(1,1:min(nargout,size(X,2))) = X(1,1:min(nargout,size(X,2)));

159

isint.m

function y = isint(x, Tollnt)
%ISINT True for integer elements (within tolerance).
% y=isint(x,Tollnt)

% = abs(x-round(x)) < TollInt
% Tollnt = integer tolerance
% =[0.01*sqrt(eps)], default

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error ChECklng *kkkhkhhkhkkhhkkhhkhkkhhkhhkhkkihkhkkhhkhkhhkihkhkhhkikhhkhhhhhkihkhkhhkhhhkihkhiikik

error(nargchk(1,2,nargin));
if nargin < 2 | isempty(Tollnt), Tollint = 0.01*sqrt(eps); end

% End (Input Error ChECkIng) *hkkkhkkhkhkkhhkkkhhkkhkhkhhkkhkhhkkikhkhhkhkhhkhhhhhkhkhhkihhhhihhiixkx

y = abs(x-round(x)) < Tollnt;

160

dijk.m

function [D,P] = dijk(A,s,t)

%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.
% [D,P] = dijk(A,s,t)

% A =nxnnode-node weighted adjacency matrix of arc lengths
% (Note: A(i,j) =0 => Arc (i,j) does not exist;

% A(i,j) = NaN => Arec (i) exists with 0 weight)

% s=FROM node indices

% =[] (default), paths from all nodes

% t=TO node indices

% =[] (default), paths to all nodes

% D =|s| x |t| matrix of shortest path distances from 's' to 't'

% =[D(i,j)], where D(i,j) = distance from node 'i' to node 'j'
% P =|s| x n matrix of predecessor indices, where P(i,j) is the
% index of the predecessor to node 'j' on the path from 's(i)' to

% '';where P(i,i) = 0 and P(i,j) = NaN is 'j' not on path to 's(i)'

% (use PRED2PATH to convert P to paths)

% =pathfrom's'to't,if|s|=t|=1

%

% (If A is a triangular matrix, then computationally intensive node
% selection step not needed since graph is acyclic (triangularity is a
% sufficient, but not a necessary, condition for a graph to be acyclic)
% and A can have non-negative elements)

%

% (If |s| >> |t|, then DIJK is faster if DIJK(A't,s) used, where D is now
% transposed and P now represents successor indices)

%

% (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows,
% Prentice-Hall, 1993, p. 109.)

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error ChECklng *hkkkhkhhkhkkhhkkhhkhkhhkhhkhkkikhkhkkhhkhhkhkihkhkhhkikhhkhhhhhkkihkhihkhhhkihkhiikkik

error(nargchk(1,3,nargin))
[n,cA] = size(A);

if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end
if nargin < 3 | isempty(t), t = (1:n)’; else t = t(:); end

if ~any(any(tril(A) ~=0)) % A is upper triangular

isAcyclic = 1;

elseif ~any(any(triu(A) ~= 0)) % A is lower triangular
isAcyclic = 2;

else % Graph may not be acyclic
isAcyclic = 0;

end

ifn~=cA

error('A must be a square matrix’);
elseif ~isAcyclic & any(any(A < 0))
error('A must be non-negative");
elseif any(s<1|s>n)
error(["'s" must be an integer between 1 and ',num2str(n)]);

161

elseifany(t<1|t>n)
error(["'t" must be an integer between 1 and ',num2str(n)]);

end
% End (Input Error Checklng) FAARAAKRAKAAAXRAARARAAAAAAhdrAAdhhAhdrdhdhhhihhhhhhhiihhhiik

A=A, % Use transpose to speed-up FIND for sparse A

D = zeros(length(s),length(t));
if nargout > 1, P = NaN*ones(length(s),n); end

for i = 1:length(s)
J=s();

Di = Inf*ones(n,1); Di(j) = 0;

isLab = logical(zeros(length(t),1));
if isAcyclic ==

nLab =j-1;
elseif isAcyclic ==

nLab=n-j;
else

nLab =0;

UnLab =1:n;

isUnLab = logical(ones(n,1));
end

if nargout > 1, P(i,s(i)) = 0; end % Change from NaN to indicate no pred

while nLab < n & ~all(isLab)

if isAcyclic
Dj = Di(j);

else % Node selection
[Dj,ji] = min(Di(isUnLab));
J = UnLab(jj);
UnLab(jj) = [I;
isUnLab(j) = 0;

end

nLab =nLab + 1;
if length(t) < n, isLab = isLab | (j ==t); end

A KA Aj] = find(AG.j));
Aj(isnan(Aj)) = 0;

if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end

if nargout > 1, P(i,jA(Dk < Di(jA))) = j; end
Di(jA) = min(Di(jA),Dk);

if isAcyclic==1 % Increment node index for upper triangular A
=i+l
elseif isAcyclic == 2 % Decrement node index for lower triangular A

i=i-L
end
end
D(i,:) = Di(t);

162

end
if nargout > 1 & length(s) == 1 & length(t) == 1

P = pred2path(P,s,t);
end

163

path_shrtng.m

Authored by Matthew Lechliter and Zachary Spritzer

function [Shortened_Paths_x,Shortened_Paths_y,totalcost]=

path_shrtng(stored_paths,all_pos,ZONES, THREATS,min_turn,split_seg,nuav,ntarg, HEADING_ANGLE)

%INPUTS:

%

%stored_paths - is a mxn matrix where m is the number of uavs times the
%number of targets and n is the length of the longest path. The first row
%Dbeing the first path for the first uav and the last row being the last

%path for the last uav. The paths are output by node numbers coming from
%the implementation of dijkstra's algorithm.

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%min_turn - minimum turning radius for the UAVs

%

%split_seg - number of segments to Split the voronoi lines into for the
%purpose of a more near-optimal solution

%

%nuav - number of UAVs

%

%ntarg - number of targets

%OUTPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

Y%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

%

%Stored_Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

9%%%%%%%%% %%
%Splitting the voronoi lines into more segments for the purpose of a more near-optimal solution
9%%%%%%%%% %Yo

164

szpths=size(stored_paths,2);
split_vect=[(0:(1/split_seg):(1- 1/split_seg))]’;

%%%%%%%6%%%%6%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %690 % %% % %% %% Y%

%PFinding the corresponding x and y coordinates

%%%%%%%%%%% %% % %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% % %% % %%

Stored_Pos_x=ones(szpths,nuav*ntarg);

Stored_Pos_y=ones(szpths,nuav*ntarg);

stored_paths(:,szpths+1)=0;

for i=1:nuav*ntarg,
mnz=min(find(stored_paths(i,:)==0));
Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))’;
Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))’;
Stored_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1));
Stored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1));

end

%%%%%%%%%%%%%% %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% %% % % %%
Stored_Pos_x_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);
Stored_Pos_y _new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);
for k=1:nuav*ntarg,
=L
for i=1:(szpths -1),
Stored_Pos_x_new([j:(j + (split_seg -1))],k)=
ones(split_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-Stored_Pos_x(i,k));
Stored_Pos_y_new([j:(j + (split_seg -1))].k)=
ones(split_seg,1)*Stored_Pos_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-Stored_Pos_y(i,k));
j=j+ split_seg;
end
Stored_Pos_x_new((((szpths-1)*split_seg)+1),k)=Stored Pos_x(szpths,k);
Stored_Pos_y new((((szpths-1)*split_seg)+1),k)=Stored_Pos_y(szpths,k);
end

Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:);

Shortened_Paths_y end=ones(500,1)*Stored_Pos_y(szpths,:);
Shortened_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end];

Shortened_Paths_y=[Stored_Pos_y new;Shortened_Paths_y end];
%%%%%%%6%%%%%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %% % %% %% % %% %
%Shortening the paths

%%%%%%%%%%% %% % %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% % %% % %%
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten_paths(Shortened_Paths_x(:,i),Shortened_Paths_y
(:,),ZONES, THREATS,Stored _Pos_x(:,i),Stored_Pos_y(:,i));
end

%%%%%%%% %% % %%
%Putting fillets into the shortened paths

%%%%% %%
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shortened_Paths_y(:,i

)],min_turn);
end

165

%%%%% %%
%Adding initial path based on heading angle
%%%%%%%6%%%6%6%% % %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% %% % %% Y%
for i=1:nuav,

for j=1:ntarg,

[Shortened Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-1)*ntarg)+j)]=...
heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-

1)*ntarg)+j)],min_turn,HEADING_ANGLE(i,1),72);

end
end

Shortened_Paths_x_old=Shortened_Paths_x;
Shortened_Paths_y old=Shortened_Paths_y;
Shortened_Paths_x=[];
Shortened_Paths_y=[];
for j=1:size(Shortened_Paths x_old,1)-1,
if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
Shortened_Paths_y_old(j,:)==Shortened_Paths_y old(j+1,:),
Shortened _Paths_x(j,:)=Shortened_Paths_x_old(j,:);
Shortened_Paths_y(j,:)=Shortened_Paths_y old(j,:);
break
else
Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
Shortened_Paths_y(j,:)=Shortened_Paths_y old(j,:);
end
end

%%%0%%6%%%% %%
%Updating the Costs

%6%%0%%6%%%% %%
szsp_perm=size(Shortened_Paths_x,2);

permcost=zeros(nuav*ntarg,1);

for z=1:szsp_perm,
[permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(:,z)], THREATYS);

end

totalcost=reshape(permcost,ntarg,nuav)’;

166

shorten_paths.m
Authored by Matthew Lechliter and Zachary Spritzer
function [shr_x,shr_y]=shorten_paths(sp_x,sp_V,Z,T,Spo_X,Spo_Y)

%INPUTS:
%
%sp - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.
%
%Z - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.
%
%T - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%spo - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVS. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n. This matrix is the original matrix without the voronoi segements
%split up.
%
%OUTPUTS:
%
%shr - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.
spo=[spo_x,spo_y];
sp=[sp_x,sp_yl;
SC=0;FC=0;SF=0;SN=0;
for j=1:size(T,2),
PC=[];
for i=1:size(spo,1)-1,
SC=sqrt(((T(1.j)-spo(i,1))*2)+((T(2.j)-spo(i,2))"2));
FC=sqrt(((T(1.j)-spo(i+1,1))"2)+((T(2.j)-spo(i+1,2))"2));
SF=sqrt(((spo(i+1,1)-spo(i,1))"2)+((spo(i+1,2)-spo(i,2))"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0
PC(i)=sqrt(SC"2-SN"2);
else
if SC<FC
PC(i)=SC;
else
PC(i)=FC;
end
end
mPC=min(PC);
if mPC<T(3,j),
T(3,j)=mPC*.995;
end

167

end
end

ZT=[Z([1:3],:) T([1:3],)];
szzt=size(ZT,2);
szsp=size(sp,1);
shr=ones(szsp,2);
fori=1:2,
shr(:,i)=sp(szsp,i);
end
shr(1,:)=sp(1,:);
a=1;
PC=zeros(1,szzt);
while shr(a,:)~=sp(szsp,:),
for i=1:szsp,
if shr(a,:)==sp(i,:)
pck=i;
break
end
end
for i=szsp:-1:pck+1,
SF=sqrt(((shr(a,1)-sp(i,1))*2)+((shr(a,2)-sp(i,2))"2));
for j=1:szzt,
SC=sqrt(((ZT(1,j)-shr(a,1))"2)+((ZT(2,j)-shr(a,2))"2));
FC=sqrt(((ZT(1,))-sp(i,1))"2)+((ZT(2.))-sp(i,2))"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0
PC(1,j)=sqrt(SC"2-SN"2);
else
if SC<FC
PC(1,j)=SC;
else
PC(1,j)=FC;
end
end
end
if PC(1,:))>ZT(3,),
a=a+tl;
shr(a,:)=sp(i,:);
break
end
end
end
shr_x=shr(:,1);
shr_y=shr(:,2);

168

fillet_path.m
Authored by Matthew Lechliter

function [Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path(Shortened_Paths,min_turn)

%INPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%min_turn - minimum turning radius for the UAVs

%OUTPUTS:

%

%Shortened_Paths_fillet - is a nxmx2 matrix where n is the length of the
%Ilongest path with the addition of fillets ((2*old size)-1) and m is the
%number of UAVs multiplied by the number of targets. The element (nxmx1)
%x position of the mth uav at point n. The element (nxmx2) y position of
%the mth uav at point n.

Shortened_Paths_fillet=Shortened_Paths*0;
Shortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1);
Shortened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2);
Shortened_Paths_fillet(1,:)=Shortened_Paths(1,:);

fillet_counter=2;
for j=2:size(Shortened_Paths,1)-1,
if Shortened_Paths(j,:)==Shortened_Paths(j+1,:),
break
end
start=Shortened_Paths(j-1,:);
middle=Shortened_Paths(j,:);
finish=Shortened_Paths(j+1,:);
SM=sqgrt(sum((middle-start).”2));
MF=sgrt(sum(((finish-middle).*2)));
SF=sqgrt(sum(((finish-start).”2)));
alpha=acos((SM"2+MF"2-SF"2)/(2*SM*MF));
Fillet=min_turn/tan(alpha/2);
if Fillet>=SM
Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:);
else
Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:)+(Shortened_Paths(j,:)-
Shortened_Paths(j-1,:))*((SM-Fillet)/SM);
end
if Fillet>=MF,
Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j+1,:);
else
Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+(Shortened_Paths(j+1,:)-
Shortened_Paths(j,:))*(Fillet/MF);
end
fillet_counter=fillet_counter+2;
end
Shortened_Paths_fillet x=Shortened_Paths_fillet(:,1);
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2);

169

heading_angle _paths.m

Authored by Matthew Lechliter

function [Shortened_Paths_heading_angle_x,Shortened_Paths_heading_angle_y]=
heading_angle_paths(Shortened_Paths,min_turn,HEADING_ANGLE,num_segs);

warning off MATLAB:divideByZero

if HEADING_ANGLE <0,
HEADING_ANGLE=pi*2+HEADING_ANGLE;
end

delta_x = Shortened_Paths(2,1) - Shortened_Paths(1,1);
delta_y = Shortened_Paths(2,2) - Shortened_Paths(1,2);

NEW_HEADING_ANGLE=(atan(abs(delta_y)/abs(delta_x)));

if delta_x>=0 & delta_y>=0,
NEW_HEADING_ANGLE=NEW_HEADING_ANGLE;

end

if delta_x<0 & delta_y>=0,
NEW_HEADING_ANGLE=pi-NEW_HEADING_ANGLE;

end

if delta_x<0 & delta_y<0,
NEW_HEADING_ANGLE=pi+NEW_HEADING_ANGLE;

end

if delta x>=0 & delta_y<0,
NEW_HEADING_ANGLE=2*pi-NEW_HEADING_ANGLE;

end

% x and y are the initial positions of the UAV
x=Shortened_Paths(1,1);
y=Shortened_Paths(1,2);

% Rotated heading angle
ROTATED_HEADING _ANGLE=HEADING_ANGLE-NEW_HEADING_ANGLE;

% Rotated NEW_HEADING_ANGLE is 0 degrees
ROTATED_NEW_HEADING_ANGLE=0;

% This section ensures that ROTATED _HEADING_ANGLE is between -pi and pi
if abs(ROTATED_HEADING_ANGLE) > pi
if ROTATED_HEADING_ANGLE >0
ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE-2*pi;
else
ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE+2*pi;
end
end

if abs(ROTATED_HEADING_ANGLE) < pi/5.5
small_ang=1;
else
small_ang=0;
% Equation found by numerical methods, used to find the location of the
% first point to break from the old path onto the first circle

init_dist=0.082565052*(abs(ROTATED_HEADING_ANGLE)/pi*(2*min_turn))"3+0.020254038*(abs(R

170

OTATED_HEADING_ANGLE)/pi*(2*min_turn))"2+0.629231718*(abs(ROTATED_HEADING_ANGL
E)/pi*(2*min_turn));

% xu and yu are the coordinates of the first point that breaks from the
% old path and onto the new path following the circles

xu = x+init_dist*cos(ROTATED_HEADING_ANGLE);

yu = y+init_dist*sin(ROTATED_HEADING_ANGLE);

if ROTATED_HEADING_ANGLE >=0

ccw =-1;
else

ccw =1;
end

% Finds the locations of the center of both circles, based on whether
% the angle made by the intersection of the old and new heading angles
% is positive or negative

xcl = (x+min_turn*cos(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi));
ycl = (y+min_turn*sin(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi));

xc2 = (xu+min_turn*cos(ROTATED_HEADING_ANGLE - ccw*.5*pi));
yc2 = (yu+min_turn*sin(ROTATED_HEADING_ANGLE - ccw*.5*pi));

% dx_c2 and dy_c2 are the delta x and delta y between the position of the
% center of the first break off point and the center of the first circle
dx_c2 = xu - xc2;

dy €2 =yu-yc2;

% c2_angle is the angle made by the horizon (x-axis) and the line between
% the break off point and center of the first circle
c2_angle=(atan(abs(dy_c2)/abs(dx_c2)));
if dx_c2>=0 & dy_c2>=0,
c2_angle=c2_angle;
end
if dx_c2<0 & dy_c2>=0,
c2_angle=pi-c2_angle;
end
if dx_c2<0 & dy c¢2<0,
c2_angle=pi+c2_angle;
end
if dx_c2>=0 & dy_c¢2<0,
c2_angle=2*pi-c2_angle;
end

% dx_cc and dy_cc are the delta x and delta y between the position of the
% center of the final circle and the center of the first circle

dx_cc = (xcl - xc2);

dy_cc = (ycl - yc2);

% cc_angle is the angle made by the horizon (x-axis) and the line between
% the position of the center of the final circle and the center of the first circle
cc_angle=(atan(abs(dy_cc)/abs(dx_cc)));
if dx_cc>=0 & dy_cc>=0,
cc_angle=cc_angle;

171

end

if dx_cc<0 & dy_cc>=0,
cc_angle=pi-cc_angle;

end

if dx_cc<0 & dy_cc<0,
cc_angle=pi+cc_angle;

end

if dx_cc>=0 & dy_cc<0,
cc_angle=2*pi-cc_angle;

end

if ccw ==
if abs(ROTATED_HEADING_ANGLE)>pi/2
cc_point = (2*pi-cc_angle);
c2_point = -(2*pi-c2_angle);
else
cc_point = (2*pi-cc_angle);
c2_point = (c2_angle);
end
else
if abs(ROTATED_HEADING_ANGLE)>pi/2
cc_point = ccw*(cc_angle);
c2_point = -1*ccw*(c2_angle);
else
cc_point = ccw*(cc_angle);
c2_point = ccw*(2*pi-c2_angle);
end
end

counter = 1;

for i = (ccw*2*pi/num_segs:ccw*2*pi/num_segs:cc_point+c2_point)+pi/2-c2_angle
X_c2(1,counter)=min_turn*sin(i)+xc2;
y_c2(1,counter) = min_turn*cos(i)+yc2;
counter = counter + 1;

end

dx_cl=x-xcl;
dy cl=y-ycl,;

cl_angle=(atan(abs(dy_c1)/abs(dx_c1)));
if dx_c1>=0 & dy_c1>=0,
cl angle=cl_angle;
end
if dx_c1<0 & dy c1>=0,
cl _angle=pi-cl_angle;
end
if dx_c1<0 & dy_c1<0,
cl_angle=pi+cl_angle;
end
if dx_c1>=0 & dy_c1<0,
cl angle=2*pi-c1_angle;
end

cc_angle=cc_angle+ccw™*pi;
counter =1,

172

for i = (-ccw*2*pi/num_segs:-ccw*2*pi/num_segs:(cc_angle-c1_angle))-(cc_angle-pi/2)
x_c1(1,counter)=min_turn*sin(i)+xcl,;
y_c1(1,counter) = min_turn*cos(i)+ycl;
counter = counter + 1,

end

% Rotation back to original coordinates
[t,r] = cart2pol(xu - X,yu - y);

t=t+ NEW_HEADING_ANGLE;
[xu_temp,yu_temp] = pol2cart(t,r);

Shortened_Paths_heading_angle x_temp(1) = x;
Shortened_Paths_heading_angle y temp(1) =;
Shortened_Paths_heading_angle x_temp(2) = xu_temp + X;
Shortened_Paths_heading_angle y temp(2) =yu_temp +;

for i = l:size(x_c2,2)
[t,r] = cart2pol(x_c2(i) - x,y_c2(i) - y);
t=t+ NEW_HEADING_ANGLE;
[x_c2_temp,y_c2_temp] = pol2cart(t,r);
Shortened_Paths_heading_angle x_temp(size(Shortened_Paths_heading_angle x_temp,2)+1) =
(x_c2_temp +Xx);
Shortened_Paths_heading_angle y temp(size(Shortened_Paths_heading_angle_y temp,2)+1) =
(y_c2_temp +y);
end

for i = 1:size(x_c1,2)
[t,r] = cart2pol(x_c1(i) - x,y_c1(i) - y);
t=t+NEW_HEADING_ANGLE;
[x_cl _temp,y_cl_temp] = pol2cart(t,r);
Shortened_Paths_heading_angle x_temp(size(Shortened_Paths_heading_angle x_temp,2)+1) =
(x_cl_temp +Xx);
Shortened_Paths_heading_angle y temp(size(Shortened_Paths_heading_angle_y temp,2)+1) =
(y_cl_temp +y);
end
end

if small_ang==0,
sze = size(Shortened_Paths,1);
Shortened _Paths_heading_angle_x=ones(sze,1)*Shortened_Paths(end,1);
Shortened _Paths_heading_angle_y=ones(sze,1)*Shortened Paths(end,2);

szpts=size(Shortened_Paths_heading_angle_x_temp,2);

Shortened_Paths_heading_angle x([1:szpts],1)=Shortened Paths_heading_angle x_temp’;
Shortened_Paths_heading_angle x([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],1);
Shortened_Paths_heading_angle_y([1:szpts],1)=Shortened Paths_heading_angle_ y temp’;
Shortened_Paths_heading_angle_y([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],2);
else
Shortened _Paths_heading_angle_x=Shortened_Paths(:,1);
Shortened Paths_heading_angle_y=Shortened_Paths(:,2);
end

173

update_cost.m
Authored by Matthew Lechliter and Zachary Spritzer
function [permcost]=update_cost(Shortened_Paths, THREATS)

%INPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%OUTPUTS:
%
%permcost - cost associated with the nth UAV going to the mth TARGET

szsp_num=size(Shortened_Paths,1)-1;
nthrts=size(THREATS,2);
permcost=0;

for i=1:szsp_num,
start_x=Shortened_Paths(i,1);start_y=Shortened_Paths(i,2);
finish_x=Shortened_Paths(i+1,1);finish_y=Shortened_Paths(i+1,2);
SF=sqrt(((finish_x-start_x)"2)+((finish_y-start_y)"2));
for j=1:nthrts,
SC=sqrt(((THREATS(L,j)-start_x)"2)+((THREATS(2,j)-finish_y)"2));
FC=sqgrt(((THREATS(1,j)-finish_x)*2)+((THREATS(2,j)-finish_y)"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0,PC=sqrt(SC"2-SN"2);
else
if SC<FC,PC=SC;
else
PC=FC;
end
end
if PC < THREATS(3,j),SF=SF+(THREATS(4,j)*100);
end
end
permcost=permcost+SF;
end

174

mmkp_task allocation.m

Authored by Matthew Lechliter and Zachary Spritzer

function [Selected_Paths_x,Selected_Paths_y]=
mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Paths_y,nuav)

%INPUTS:

%

Y%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%nuav - number of UAVs

%OUTPUTS:

%

%Selected Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
Y%point n.

%%%%%%% %% %% %% %% %% %% %% % %% %% % %% %% %% % %% %% % %% %% %% % %% %% %

%MMKP algorithm

%%%%%%% %% %% %% %% %% %% %% % %% %% % %% %% %% % %% %% %% % %% %% %% % %% %

[bestcomb,mincost]J=mmkp_new(totalcost);

%%%%% %%

%Taking the results from mmkp

%%%%%%%%%% %% %% %% % %% % %% % %% % % %% %% % %% %% %% %% %% %% %% %% %% %

Selected_Paths_x=zeros(size(Shortened_Paths_x,1),nuav);

Selected_Paths_y=zeros(size(Shortened_Paths_x,1),nuav);

for i=1:nuav,
Selected_Paths_x(:,i)=Shortened_Paths_x(:,(huav)*(i-1)+bestcomb(1,i));
Selected Paths_y(:,i)=Shortened_Paths_y(:,(nuav)*(i-1)+bestcomb(1,i));

End

175

mmkp_new.m
Authored by Matthew Lechliter, Zachary Spritze, and Elena Lucci
function [bestcomb,mincost]J=mmkp_new(totalcost)

%Inputs:
%
Y%totalcost - is a nxm matrix where n is the total number of uav's and m is
%the total number of targets or paths. Where the element nxm is the cost
%associated with uav "n" choosing target or path "m".
%
%0Outputs:
%
%Dbestcomb - is a 1xn row with n equal to the number or uav's where each
%element of the row represents which path the uav should select to give the
%optimal solution.
%
%mincost - is a scalar number which is sum of the optimal costs for all
%the uav's paths.
nuav=size(totalcost,1);
mincost=inf;
C_new=perms(1:nuav);
for j=1:size(C_new,1),
sc=0;
for i=1:nuav,
sc=sc+totalcost(i,C_new(j,i));
end
if sc < mincost
bestcomb=C_new(j,:);
mincost = sc;
end
end

176

vrt_sim_convert.m

Authored by Matthew Lechliter and Zachary Spritzer

function [uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,UAVS,distpast)
%

%INPUTS:

%

%shr - is a nxmx2 matrix where n is the length of the longest

%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVSs, the third row is the initial altitude of the UAVSs, and

%the fourth row is the intial Velocity of the UAVSs.

%

%

%OUTPUTS:

%

%uav_path_x - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These are the x coordinates of the paths.

%

%uav_path_y - is a mxn matrix where m is the humber of uavs and m is the
%Ilength of the longest path. These are the y coordinates of the paths.

%

%time_uav - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These values correspond to the time at which
%the uavs are at coordinates x and y in uav_path_x and uav_path_y.

%

%ealtitude_uav - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These values correspond to the altitudes that
%the uavs are at when they are at coordinates x and y in uav_path_x and
%uav_path_y.

%

%Threat_range_vrt - is a 1xn vector where n is the number of threats, where
%ithe first row is the range of the threats at the altitude where the uavs
%eare flying.

%

%Zone_range_vrt - is a 1xn vector where n is the number of zones, where
%ithe first row is the range of the zones at the altitude where the uavs

%eare flying.

nuav=size(shr_x,2);
szshrpth=size(shr_x,1);
shr_x=[[shr_x];[shr_x(szshrpth,:)]];
shr_y=[[shr_y];[shr_y(szshrpth,:)]];
uav_path_x=zeros(nuav,szshrpth+1);
uav_path_y=zeros(nuav,szshrpth+1);
for i=1:nuav,
for j=1:szshrpth,
if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j,i)] | j==szshrpth,
Ist_pnt_x=shr_x(j,i);
nxtlst_pnt_x=shr_x(j-1,i);
Ist_pnt_y=shr_y(j,i);
nxtlst_pnt_y=shr_y(j-1,i);
dist_pnts=sqrt(((Ist_pnt_x-nxtlst_pnt_x)"2)+((Ist_pnt_y-nxtlst_pnt_y)"2));

177

last_x=Ist_pnt_x+((Ist_pnt_x-nxtlst_pnt X)*(distpast/dist_pnts));
last_y=Ist_pnt_y+((Ist_pnt_y-nxtlst_pnt y)*(distpast/dist_pnts));
uav_path_x(i,[j+1:szshrpth+1])=last_x;
uav_path_y(i,[j+1:szshrpth+1])=last_y;
uav_path_x(i,j)=shr_x(j,i);
uav_path_y(i,j)=shr_y(j,D);
break

else
uav_path_x(i,j)=shr_x(j,i);
uav_path_y(i,j)=shr_y(j,D);

end

end
end

%Initializing matrixes
time_uav_temp=zeros(nuav,szshrpth+1);
time_uav=zeros(nuav,szshrpth+1);
altitude_uav=zeros(nuav,szshrpth+1);

%Time matrix
for i=1:nuav,
for j=1:szshrpth,
shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))*2+(uav_path_y(i,j)-uav_path_y(i,j+1))"2);
time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i);
end
time_uav(i,[2:szshrpth+1])=sum(time_uav_temp(i,:));
for j=2:szshrpth+1,
time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j);
end
end

time_uav=time_uav*1.01;

%Altitude matrix
for i=1:nuav,
for j=1:szshrpth+1,
altitude_uav(i,j)=UAVS(3,i);
end
end

178

plot_uav.m
Authored by Matthew Lechliter and Zachary Spritzer
function

plot_uav(UAVS, TARGETS,ZONES,THREATS,uav_path_x,uav_path_y,n_plots,uavs_existing,targ_existi

ng,threats_existing)

%%%%%%%% %% %% %% % %% %% %% %% %% %% %% %% % %% % %% %% %% %% % %% %

%Plotting results

%%9%%%%%%%%%%%%% %% %% %% %% %% % %% %% %% %% %% % %% %% %% % %% %

figure(n_plots);
hold on;
for i=1:2,
subplot(1,2,i),
for i=1:size(UAVS,2)
if uavs_existing(1,i)==1
plot(UAVS(1,i),UAVS(2,i),'bd");
text(UAVS(L,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b");
axis([5 200 5 200]);
hold on;
end
end
for i=1:size(TARGETS,2)
if targ_existing(1,i)==1
plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0,.4,0]);
text(TARGETS(1,i)+5, TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);
axis([5 200 5 200]);
hold on;
end
end
for i=1:size(THREATS,2)
if threats_existing(1,i)==1
plot(THREATS(L,i),THREATS(2,i),'r*");
text(THREATS(L,i)+5, THREATS(2,i),{i},'FontSize',12,'Color','r")
axis([5 200 5 200]);
hold on;
end
end
hold on;
end

%Plotting Threats and range
for i=1:size(THREATS,2)
if threats_existing(1,i)==1
t threat = (1/32:1/32:1)*2*pi;
X_threat = THREATS(3,i)*sin(t_threat)+ THREATS(L,i);
y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i);
fori=1:2,
subplot(1,2,i),plot(x_threat,y_threat,'r.");hold on;
end
end
end

%Plotting No fly Zones

for i=1:size(ZONES,2)
t nfz = (1/16:1/16:1)*2*pi;
x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);

179

fori=1:2,
subplot(1,2,i),fill(x_nfz,y_nfz,'k");hold on;
end
end

%Plotting shortened paths

for i=1:size(uav_path_x,1)
subplot(1,2,2),plot(uav_path_x(i,:),uav_path_y(i,:),'b-");hold on;

end

subplot(1,2,1),title(‘Initial Positions');hold on;
subplot(1,2,2),title('Shortened Selected Paths');hold on;
for i=1:2,

subplot(1,2,i),axis([-25 250 -25 250]);hold on;
end

180

Appendix B

MATLAB Codes for Simulation

181

place_waypoints_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =place_waypoints_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9*4+9;

sizes.Numlnputs= 9*4+9*4;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdllnitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=place_waypoints(u);

% End of mdlOutputs.

182

place_waypoints.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=place_waypoints(u)

UAVS=u([1:36],1);
UAVS=reshape(UAVS,4,9);

uavs_existing=zeros(1,9);
fori=1:9
if abs(sum(UAVS(:,1)))>0 & abs(sum(UAVS(:,i)))~=0.26
uavs_existing(1,i)=1;
end
end

TARGETS_REAL=u([37:72],1);
TARGETS_REAL=reshape(TARGETS_REAL,4,9);
n_uav=0;n_targ=0;

TARGETS=zeros(4,9);
targets_location=zeros(1,9);
fori=1:9
if abs(sum(UAVS(:,1)))>0 & abs(sum(UAVS(:,i)))~=0.26
n_uav=n_uav+1,;
end
if abs(sum(TARGETS_REAL(:,i)))>0
n_targ=n_targ+1,;
end
end

if n_uav <n_targ
fori=1:n_uav
A=TARGETS_REAL(3,);
B=sort(A);
Column=find(A==B(1,size(B,2)));
TARGETS(1,i) = TARGETS_REAL(1,Column(1,1));
TARGETS(2,i) = TARGETS_REAL(2,Column(1,1));
TARGETS(3,i) = TARGETS_REAL(3,Column(1,1));
TARGETS(4,i) = TARGETS_REAL(4,Column(1,1));
targets_location(1,i)=Column(1,1);
TARGETS_REAL(3,Column(1,1))=0;
end
else
counter=1,
fori=1:9
if abs(sum(TARGETS_REAL(:,i)))>0
TARGETS(:,counter)=TARGETS_REAL(:,i);
targets_location(1,counter)=i;
counter=counter+1,;
end
end
end

if n_uav > n_targ
for i=1:(n_uav-n_targ)
A=TARGETS_REAL(3,);

183

B=sort(A);
Column=find(A==B(1,size(B,2)));
TARGETS(1,n_targ+i) = i*.01+TARGETS_REAL(1,Column(1,1));
TARGETS(2,n_targ+i) = i*.01+TARGETS_REAL(2,Column(1,1));
TARGETS(3,n_targ+i) = 0;
TARGETS(4,n_targ+i) = 0;
TARGETS_REAL(3,Column(1,1))=0.5*TARGETS_REAL(3,Column(1,1));
targets_location(1,i+n_targ)=Column(1,1);
end
end
TARGETS=[TARGETS,zeros(4,9-size(TARGETS,2))];

sys=[reshape(TARGETS,36,1);targets_location';

184

path_planning_s.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] = path_planning_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,
case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization
case 3
sys = mdlOutputs(u); % Calculate outputs
case{1,2,4,9}
sys =[1; % Unused flags
otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9*100*4+9;
sizes.Numlnputs= 36+36+30+60+1+1+9;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

x0 =[1; % No continuous states
%

str =[]; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u)
[sys]=path_planning(u);
% End of mdlOutputs.

185

uav_crash_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =uav_crash_s(t,x,u,flag, T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9;

sizes.Numlnputs= 57;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdllnitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=uav_crash(u);

% End of mdlOutputs.

186

uav_crash.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=uav_crash(u)

uav_pos=reshape(u([1:27],1),3,9);
zone_pos=reshape(u([28:57],1),3,10);

uav_shot_down=zeros(9,1);

for i=1:9,
for j=1:10,
dist_uav_zone=sqrt(((uav_pos(1,i)-zone_pos(1,j))"2)+((uav_pos(2,i)-zone_pos(2,j))"2));
if dist_uav_zone < zone_pos(3,j),
uav_shot_down(i,1)=1;
end
end
end
sys=[uav_shot_down];

187

uav_intercepted_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =uav_intercepted_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 24;

sizes.Numlnputs= 87;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdllnitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=uav_intercepted(u);

% End of mdlOutputs.

188

uav_intercepted.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=uav_intercepted(u)

uav_pos=reshape(u([1:27],1),3,9);
threat_pos=reshape(u([28:87],1),4,15);

uav_shot_down=zeros(9,1);
threats_fired=zeros(15,1);
for i=1:9,
for j=1:15,
dist_uav_threat=sqrt(((uav_pos(1,i)-threat_pos(1,j))*2)+((uav_pos(2,i)-threat_pos(2,j))"2));
if dist_uav_threat < threat_pos(3,j),
threats_fired(j,1)=1;
uav_chance=rand;
if uav_chance <= threat_pos(4,j),
uav_shot_down(i,1)=1;
end
end
end
end
sys=[uav_shot_down; threats_fired];

189

target_classifier_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] = target_classifier_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 36;

sizes.Numlnputs= 100;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=target_classifier(u);

% End of mdlOutputs.

190

target_classifier.m
Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=target_classifier(u)

TARGETS_OLD=u([1:36],1);
TARGETS_OLD=reshape(TARGETS_OLD,4,9);

END_OF_PATH=u([37:45],1);
SELECTED_TARGETS=u([46:54],1);

TARGETS_REAL=u([55:90],1);
TARGETS_REAL=reshape(TARGETS_REAL 4,9);

target_location=u([91:99],1);
clock=round(u(100,1));

uav_complete=find(END_OF PATH==1);
nuav_complete=size(uav_complete,2);
action=0;
for i=1:nuav_complete,
target_real_location=target_location(SELECTED_TARGETS(uav_complete(1,i),1));
action=TARGETS_REAL (4,target_real_location);
if TARGETS_REAL(4,target_real_location) < 4,
TARGETS_REAL (4,target_real_location)=TARGETS_REAL (4,target_real_location)+1,;
else
TARGETS_REAL(: target_real location)=0;
end
if action==1,
target_present=rand,;
if target_present <= .9,
disp(sprintf(‘Target %d (value %d) indentified as a target at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL(3,target_real location),clock,uav_complete(1,i)));
else
disp(sprintf(‘Target %d (value %d) indentified as NOT a target at time %d by UAV %d."...
target_real_location, TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
disp(sprintf(‘Target %d has been removed from target status at time %d.\n',...
target_real_location,clock));
TARGETS_REAL(: target_real location)=0;
end
end

if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV %d. \n',...

target_real_location, TARGETS REAL(3,target_real location),clock,uav_complete(1,i))); end
if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL (3 target_real location),clock,uav_complete(1,i))); end
if action==4,
target_destroyed=rand,;
if target_destroyed <= .85,
disp(sprintf(‘'Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
else
disp(sprintf(‘Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. \n',...
target_real_location,TARGETS_REAL(3,target_real location),clock,uav_complete(1,i)));
TARGETS_REAL(4,target_real_location)=3;
end

191

end
end

if sum(sum(TARGETS_REAL))==0,
TARGETS_REAL(;,1)=[4 23 1]}
end

sys=reshape(TARGETS_REAL,36,1);

192

compare_targets_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =compare_targets_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 36;

sizes.Numlnputs= 36*9;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 =[1; % No continuous states
%

str = 1; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=compare_targets(u);

% End of mdlOutputs.

193

compare_targets.m

Authored by Matthew Lechliter and Zachary Spritzer

function [sys]=compare_targets(u)

targets_1=reshape(u([1:36],1),4,9);
targets_2=reshape(u([37:72],1),4,9);
targets_3=reshape(u([73:108],1),4,9);
targets_4=reshape(u([109:144],1),4,9);
targets_5=reshape(u([145:180],1),4,9);
targets_6=reshape(u([181:216],1),4,9);
targets_7=reshape(u([217:252],1),4,9);
targets_8=reshape(u([253:288],1),4,9);
targets_9=reshape(u([289:324],1),4,9);

fori=1:9

real_targets(:,i) = targets_1(:,i);

if targets_2(4,i)>real_targets(4,i)
real_targets(:,i) = targets_2(:,i);

end

if targets_3(4,i)>real_targets(4,i)
real_targets(:,i) = targets_3(;,i);

end

if targets_4(4,i)>real_targets(4,i)
real_targets(:,i) = targets_4(:,i);

end

if targets_5(4,i)>real_targets(4,i)
real_targets(:,i) = targets_5(:,i);

end

if targets_6(4,i)>real_targets(4,i)
real_targets(:,i) = targets_6(:,i);

end

if targets_7(4,i)>real_targets(4,i)
real_targets(:,i) = targets_7(:,i);

end

if targets_8(4,i)>real_targets(4,i)
real_targets(:,i) = targets_8(:,i);

end

if targets_9(4,i)>real_targets(4,i)
real_targets(:,i) = targets_9(:,i);

end

end

sys=reshape(real_targets,36,1);

194

compare_threats_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] =compare_threats_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 60;

sizes.Numlnputs= 60*9;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 =[1; % No continuous states
%

str = 1; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=compare_threats(u);

% End of mdlOutputs.

195

compare_threats.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys]=compare_threats(u)

threats_1=reshape(u([1:60],1),4,15);
threats_2=reshape(u([61:120],1),4,15);
threats_3=reshape(u([121:180],1),4,15);
threats_4=reshape(u([181:240],1),4,15);
threats_5=reshape(u([241:300],1),4,15);
threats_6=reshape(u([301:360],1),4,15);
threats_7=reshape(u([361:420],1),4,15);
threats_8=reshape(u([421:480],1),4,15);
threats_9=reshape(u([481:540],1),4,15);

fori=1:15

real_threats(:,i) = threats_1(:,i);

if threats_2(4,i)==0

real_threats(:,i) = threats_2(:,i);

end
if threats_3(4,i) ==

real_threats(:,i) = threats_3(;,i);

end
if threats_4(4,i)==0

real_threats(:,i) = threats_4(:,i);

end
if threats_5(4,i) ==0

real_threats(:,i) = threats_5(:,i);

end
if threats_6(4,i) == 0

real_threats(:,i) = threats_6(:,i);

end
if threats_7(4,i)==0

real_threats(:,i) = threats_7(;,i);

end
if threats_8(4,i) == 0

real_threats(:,i) = threats_8(:,i);

end
if threats_9(4,i)==0

real_threats(:,i) = threats_9(:,i);

end
end

sys=reshape(real_threats,60,1);

196

display_initial_s.m

Authored by Matthew Lechliter and Zachary Spritzer
function [sys,x0,str,ts] = display_initial_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
mdIOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 0;

sizes.Numlnputs= 36+36+30+60;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 =[1; % No continuous states
%

str = 1; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function mdlOutputs(u)

display_initial(u);

% End of mdlOutputs.

197

display_initial.m
Authored by Matthew Lechliter and Zachary Spritzer
function display_initial(u)

UAVS=u([1:4*9],1);
UAVS=reshape(UAVS,4,9);

a=4*9;

TARGETS=u([a+1:a+4*9]);
TARGETS=reshape(TARGETS,4,9);
a=a+4*9;

ZONES=u([a+1:a+3*10]);
ZONES=reshape(ZONES,3,10);
a=a+3*10;
THREATS=u([a+1:a+4*15]);
THREATS=reshape(THREATS,4,15);

fori=1:9
if abs(sum(UAVS(:,1)))>0 & abs(sum(UAVS(;,i)))~=0.26
disp(sprintf(UAV %d exists at location %d x, location %d y, altitude %d km, and is flying at %d m/s.
\n',...
i,round(UAVS(1,1)),round(UAVS(2,i)),round(UAVS(3,i)),round(UAVS(4,i)*1000)));
end
end

for i=1:9
if abs(sum(TARGETS(:,i)))>0
disp(sprintf(‘Target %d indicated to be at location %d x, location %d y , and with an estimated value
of %d. \n',...
i,round(TARGETS(1,i)),round(TARGETS(2,i)),round(TARGETS(3,i))));
end
end

for i=1:10
if abs(sum(ZONES(:,i)))>0
disp(sprintf('No-Fly Zone %d exists at location %d X, location %d y, and with a radius of %d km.

\n',...
i,round(ZONES(1,i)),round(ZONES(2,i)),round(ZONES(3,1))));
end
end
for i=1:15

if abs(sum(THREATS(:,i)))>0
disp(sprintf('Threat %d exists at location %d X, location %d y, with a range of %d km, and has a
probability of kill of %d%%. \n',...

i,round(THREATS(1,i)),round(THREATS(2,i)),round(THREATS(3,i)),round(THREATS(4,i)*100)));

end
end

198

	Decentralized control for UAV path planning and task allocation
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1 - Introduction
	1.1 UAV History
	1.2 Envisioned Future
	1.3 Research Objectives

	Chapter 2 - Literary Review
	2.1 Path Planning Methods
	2.2 Path Planning/Task Allocation Approaches
	2.3 Decentralized Control and Communications

	Chapter 3 - Development of the Path Planning/Task Allocation Scheme
	3.1 Discussion of Setup
	3.2 Voronoi Diagram Generation
	3.3 Dijkstra's Algorithm and Cost Assignment
	3.4 Path Shortening and Flyability
	3.5 Multi-dimensional, Multiple-Choice Knapsack Problem

	Chapter 4 - Aircraft Dynamics
	4.3 Flight Path Equations
	4.2 Body Axes Modeling
	4.1 Introduction
	4.4 Earth-fixed Axes and Kinematic Relationships

	Chapter 5 - Development of Centralized UAV Simulation
	5.1 Main Simulation System
	5.2 Simulation Inputs
	5.3 Path Planning and Task Allocation Execution
	5.4 Aircraft Dynamics Subsystem
	5.5 UAVs Manager
	5.6 Targets Manager
	5.7 Threats Manager
	5.8 Simulation Outputs

	Chapter 6 - Decentralized Path Planning and Task Allocation
	6.1 Main Simulation System
	6.2 Individual UAV System
	6.3 UAV Communications
	6.4 Individual UAV Calculations
	6.5 Simulation Outputs

	Chapter 7 - Comparison of Decentralized and Centralized Simulations
	7.1 Simulation Efficiency
	7.2 Miscommunication
	7.3 Delay of Communication
	7.4 Loss of Communication

	Chapter 8 - Conclusions and Recommendations
	8.1 Conclusions
	8.2 Recommendations

	References
	Appendix A
	Appendix B

		John.Hagen@mail.wvu.edu
	2004-04-23T14:04:52-0400
	West Virginia University Libraries
	John H. Hagen
	I am approving this document

